当前位置: 仪器信息网 > 行业主题 > >

元件原子级涂覆系统

仪器信息网元件原子级涂覆系统专题为您提供2024年最新元件原子级涂覆系统价格报价、厂家品牌的相关信息, 包括元件原子级涂覆系统参数、型号等,不管是国产,还是进口品牌的元件原子级涂覆系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合元件原子级涂覆系统相关的耗材配件、试剂标物,还有元件原子级涂覆系统相关的最新资讯、资料,以及元件原子级涂覆系统相关的解决方案。

元件原子级涂覆系统相关的资讯

  • 评估智能手机镜头中光学元件的透过率
    评估智能手机镜头中光学元件的光学性能-透过率1.前言刚刚发布的华为P30手机因后置拍照评分高登上DXO榜首,随后三星发微博表示不服,并称其S10+手机拍照总分高。可见,手机/数码相机以及摄像机中光学元件的微型化和先进性已取得重大进展。但是要获得还原度高的图像,就需要精确评估镜头中微透镜和滤光片的光学特性。日立UH4150不仅拥有独特的光学系统,大型的样品室,还可以进行专属定制,是测量相机中光学元件的理想工具。2.测量附件2.1微小样品测量附件由于手机照相机镜片太小,将照射到样品的光通量调节到小于样品尺寸比较困难。使用微小样品测量附件可以解决这个问题,该附件包括聚光镜/参照光束膜/样品支架。样品支架可以根据透镜的尺寸和形状灵活配置。附件如图1所示。图1 微小样品测量附件图片及结构(左)微小样品支架 (右)微小样品测量附件2.2 全积分球附件透射光束的形状受散射和折射影响大的样品,如透镜,需要使用积分球消除检测器的局域性。60mm标准全积分球附件和高灵敏度积分球在透镜测量中都可使用。图2 ф60mm的全积分球附件(仪器顶部视图)3.测量实例智能手机相机中CMOS和CCD传感器在近红外区域具有高度的敏感性。而人眼只能看到380nm-700nm的可见光,因此,为了重现肉眼看到的图像,需要切断对成像质量形成干扰的700nm以上波长的光。很多相机和摄像机,通过加入红外截止滤光片,达到上述效果。具体详细测量数据请参考:https://www.instrument.com.cn/netshow/sh102446/s910399.htm4.总结现在智能手机更新换代频率加快,各大品牌都在系统,拍照,内存等多种参数方面竞相提升。手机镜头从单摄到如今的双摄,甚至华为新出的三摄,手机成像原件的进步,手机摄影的方便与快捷,都让我们对手机摄影爱不释手。日立高新技术通过独特的技术,开发的固体样品分析专家紫外/可见/近红外分光光度计,能够对相机镜头的光学元件进性准确评估,促进科技产品更加飞速的发展。 日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。其产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。 参考文献:张帆. 手机摄影艺术的发展与表现[D]. 2016.驱动之家.屠榜DxO Mark之后 华为P30 Pro再获TIPA 2019拍照手机大奖[N].2019
  • 量子导航领域又一突破:原子自旋陀螺仪原理样机研制成功
    全空域、全时域的无缝定位导航是未来定位导航产业的技术制高点。随着量子精密测量技术的快速发展,基于量子精密测量的陀螺及惯性导航系统具有高精度、小体积、低成本等优势,将对无缝定位导航领域提供颠覆性新技术。  “十二五”863计划地球观测与导航技术领域主题项目“基于磁共振的微小型原子自旋陀螺仪关键技术”由北京自动化控制设备研究所承担,项目研究开展一年半取得突破性进展。项目组攻克了核自旋-电子自旋耦合极化与检测等精密量子操控技术,完成了小型化磁共振气室、高效磁屏蔽等元件的精密设计与制造,并研制成功我国首个基于磁共振的原子自旋陀螺仪原理样机。样机零偏稳定性优于2° /h,成为世界上第二个掌握该技术的国家,与美国技术差距从10年缩小到7年。  项目所取得的研究成果为进一步提高基于磁共振的微小型原子自旋陀螺仪的精度与集成度,为支撑我国量子导航领域的发展打下了坚实的技术基础。原子陀螺仪的技术突破使现有应用于高端装备的无缝定位导航系统的体积、质量、功耗、成本等下降约两个数量级,将应用于大众定位导航市场,可在微小体积、低成本条件下实现米级定位精度,提供不依赖卫星的全空域、全时域无缝定位导航新能力。
  • 业界首款基于纳米硅元件的气相色谱问世(图)
    2013年2月14日,APIX(Analytical Pixels Technology)公司宣布推出其第一款专为工业、石化等领域设计开发的商用产品:GCAP™ 气相色谱仪,可用于过程监控、能源分配,安全以及环境控制等。GCAP™ 气相色谱仪  GCAP™ 由APIX公司设计、组装并测试,代表了新一代的气体色谱仪器。在GCAP™ 灵活且多功能的体系结构中安装有小型的纳米硅元件。据悉,这一元件已获得CEA-Leti以及加州理工学院授权,并由CEA-Leti位于格勒诺布尔的先进半导体工厂生产,而整个系统的组装与测试工作则在APIX公司设在格勒诺布尔的工厂完成。  APIX联合创始人兼CTO Pierre Puget博士表示:“GCAP建立在高密度硅柱和传感器的基础上,可允许在多种不同模式中运行,包括常规、多维或并行分析,这使GCAP成为了一款可用于工业应用、研究实验室、先进气体分析和生物医学筛查等领域的理想工具。”  Pierre Puget博士补充到,GCAP的主要功能之一是它可以在多种不同的载气中运行,这得益于系统内部超级灵敏的纳米硅传感器。尤其是GCAP可以过滤空气作为载气,从而代替昂贵且笨重的瓶装气体,可以做到现场操作,实时分析,并显著减少运行成本。  据悉,2013年3月17-21日,APIX将出席在美国费城举办的PITTCON 2013,展位号是441。  APIX公司成立于2011年,总部设在格勒诺布尔,主要生产并销售由CEA-Leti和加州理工学院共同研究开发的气相色谱仪产品。CEA-Leti是法国著名的科研机构,专门从事微电子学和精微技术研究的实验室。
  • 揭秘时间“魔盒”,定制化光学原子钟低温系统——全新超精细无液氦低温光学系统交付使用!
    日前,两套全新定制型Montana超精细多功能无液氦低温光学恒温器在国内完成安装,两套设备将用于低温光学原子钟的相关研究。这是Montana超精细多功能无液氦低温光学恒温器在国内的又一全新应用方向。超稳定的激光是现代高精度测量科学的重要手段之一。高度相干的稳定激光可以被应用于引力波探测、射电天文学、低相位噪声的微波合成器。近几年来,超稳定激光新的用途是用于精确记录时间流逝的原子钟。原则上原子钟的极限准确度仅受限于只有几个毫赫兹的激光带宽。然而这就要求了全新一代超稳定的激光器需要达到10-18的稳定度。近年来,人们研究发现在低温硅腔中的激光器具有非常高的稳定性,将工作温度降至4 K时可提供诸多优势。首先,涂层热噪声在4 K时显著降低,不稳定性降低至10&minus 18水平;其次热膨胀(CTE)在极低温时迅速减小,进一步减少了温度波动的影响。超精细多功能无液氦低温光学恒温系统中的光学腔尤其适用于超高精度的原子钟系统以及需要特殊超高稳定度的精密低温光学实验。自2017年科研人员基于Montana搭建了超稳定光学微腔并将重要的结果发表在PRL期刊以来,Montana超精细多功能无液氦低温光学恒温器在超稳定光学微腔方面的应用引起了全球科学家广泛的兴趣。光学微腔低温系统的样品腔结构示意图*用于光学微腔的Montana超稳定低温光学系统示意图*日前,由Montana Instruments公司根据我国用户的要求全新打造的两套超高稳定性光学微腔低温系统已完成安装并交付使用。系统将用于基于光学微腔的原子钟相关的超高精度科学实验。基于Montana S200型超精细低温光学系统定制的用于光学微腔低温系统外观图该系统可以实现优于mK级的温度稳定性和超低振动,为超精密的光学实验提供稳定的环境。系统可以设计多个光学窗口和多种电学通道,满足用户的各种光电测量需求。因此该系统不仅适用于光学微腔实验,还适用于多种需要超稳定低温环境的精密光学、电学实验。* Ultrastable Silicon Cavity in a Continuously Operating Closed-Cycle Cryostat at 4 K, PRL 119, 243601 (2017)Montana超精细多功能无液氦低温光学系统先进光学恒温器制造商Montana Instruments多年来为低温光学、量子信息等领域提供高性能的光学恒温器而广受赞誉。作为低温光学恒温器的旗舰产品,Montana Instruments在S系列基础上推出了全新型号CryoAdvance系列。该系列的目标是助力科技工作者在先进材料和量子信息领域的研究更上一层楼。CryoAdvance 新特色☛ 自动控制:全新智能触摸屏系统,“一键式操作”,实时显示温度、稳定性、真空度等多种指标。☛ 模块化设计:多种配置可选,快速满足各种实验需求,后续升级简单。☛ 多通道设计:基本配置已包含光学窗口+直流电学+高频电学通道。☛ 稳定性设计:新设计在变温和振动稳定性上进一步优化。CryoAdvance 50主要参数☛ 低温极限:3.2K☛ 震动稳定性:5 nm(峰-峰值)☛ 降温时间: 300K-4.2K~2小时☛ 样品腔空间:Φ53 mm ×100 mm☛ 光学窗口:5个光学窗口,可选光纤引入☛ 水平光路高度:140 mm☛ 窗口材料:多种材质可选☛ 基本电学通道:20条直流通道。☛ 接口面板:双RF接口+25DC接口Cryostation s200系统s200系统具有超大的样品腔,可满足多种低温光学实验方案和高度定制化的个性化实验方案。☛ 低温极限:3.6K☛ 震动稳定性:15 nm(峰-峰值)☛ 降温时间: 300K-4.2K ~10小时☛ 样品腔空间:Φ196 mm ×75 mm☛ 光学窗口:9个光学窗口☛ 窗口材料:多种材质可选☛ 接口面板:多种接口可选相关产品1、超精细多功能无液氦低温光学恒温器
  • Nature重磅:用透射电子显微镜追踪液体中单个吸附原子!
    表面上的单个原子或离子,影响从成核到电化学反应以及多相催化的多个过程。透射电子显微镜(TEM)是一种主要的方法,可用来可视化的各种衬底上的单个原子。它通常需要高真空条件,但已被开发用于液体和气体环境中的原位成像,其结合的空间和时间分辨率是任何其他方法所无法比拟的,尽管有电子束对样品的影响。当使用商业技术在液体中成像时,包裹样品的窗口和液体中的电子散射,通常将可达到的分辨率限制在几个纳米。另一方面,石墨烯液体电池,实现了液体中金属纳米颗粒的原子分辨率成像。在此,来自英国曼彻斯特大学的Roman Gorbachev&Sarah J. Haigh等研究者展示了一个双石墨烯液体电池,其由中心的二硫化钼单分子层组成,再用六方氮化硼间隔层与两个封闭的石墨烯窗口隔开,这使得在盐溶液中以原子分辨率监测单分子层上铂吸附原子的动力学成为可能。相关论文以题为“Tracking single adatoms in liquid in a Transmission Electron Microscope”于2022年07月27日发表在Nature上。石墨烯,具有极薄、高机械强度、低原子序数、化学惰性、不渗透性和清除侵略性自由基的能力,是原位TEM电池的理想窗口材料。初始的石墨烯液体电池(GLC)设计,依赖于两个石墨烯薄片之间液体囊的随机形成,因此,在长时间的电子暴露下,其产率较低,稳定性较差。更先进的设计,包括了SiNx或六方氮化硼(hBN)的图案间隔层来定义液体袋,从而改善了GLC几何形状和实验条件的控制。在此,研究者开发了一种双石墨烯液体电池(DGLC),用于在透射电镜中研究原子薄膜上单个溶剂化金属原子的运动。这是由于非原位STEM研究表明,液体环境的选择,可以改变金属原子从纳米团簇到单个原子的分布,但原位实验探测这种行为是不可行的,甚至在早期的研究中,单个原子在液体中的成像被证明是难以捉摸的。研究者的重点是MoS2上的Pt,已有的丰富数据使其成为探索原子分辨率液体电池显微镜的局限性和潜力的理想模型系统。DGLC如图1a所示,由两个hBN间隔层组成,每层数十纳米厚,中间夹有二硫化钼(MoS2)单层。两种hBN间隔都包含用电子束光刻和随后的反应离子蚀刻预图纹的空洞。利用堆栈顶部和底部的几层石墨烯(FLG)将液体样品困在空隙中。原子平面的hBN晶体与石墨烯和MoS2形成密封;如果电池局部破裂,这可以防止渗漏,单个细胞之间的液体转移和液体的完全损失。研究表明,通过对70000多个单吸附原子吸附位点的成像,研究者比较了吸附原子在完全水合和真空状态下的位置偏好和动态运动。研究发现,与真空相比,吸附原子在液相中的吸附位分布有所改变,扩散系数也有所提高。这种方法,为单原子精度的化学过程原位液相成像铺平了道路。图1. 双液电池的设计图2. 水溶液环境中单Pt吸附原子在MoS2上的吸附位点图3. 在液槽和真空中的首选吸附位点图4. 使用最近邻链接的单原子跟踪综上所述,尽管强调了理解电子束效应和对复杂水合体系中原子行为进行补充理论研究的重要性,但本文的结果表明了测量固液界面上吸附原子运动的能力。该实验技术广泛适用于不同的材料系统,并提供了一种在不同环境中获得以前无法获得的原子解析、动态、结构信息的途径,适用于物理科学中的许多不同系统。文献信息Clark, N., Kelly, D.J., Zhou, M. et al. Tracking single adatoms in liquid in a Transmission Electron Microscope. Nature (2022). https://doi.org/10.1038/s41586-022-05130-0
  • 中国检科院张峰研究员团队在食品安全检测关键材料和核心元件研究方向取得突破
    食品种类多、供应链条长、安全监管难度大。检测技术是保障食品安全的重要手段。但现有检测技术存在检测关键材料特异性差导致样品前处理时间长、富集效率低,质谱离子源等检测核心元件选择性低导致食品样品无法实时分析等食品安全检测难题。面对挑战,我院张峰首席专家团队在食品安全检测关键材料、核心元件和创新方法研究方向取得系列技术突破。   在关键材料研发方面,团队探明了前处理材料对食品中有害物的特异性吸附作用机制,研制了系列高特异性吸附的微纳结构前处理材料。痕量/超痕量水平的目标物检测需要先进行富集净化前处理,但现有材料富集能力有限、特异性不足,导致检测灵敏度达不到检测要求。团队从分子结构入手,解析了前处理材料对食品中有害物的特异吸附作用机制,引入脲类等官能团,制备了系列化学键调控共价有机框架材料(Fe3O4@ETTA-PPDI、Fe3O4@TAPB-BTT和Fe3O4@TAPM-PPDI等),并包覆在磁性纳米粒子表面。用于食品中黄曲霉毒素、氟喹诺酮类兽药和苯脲类除草剂等有害物的富集净化,前处理时间由几小时缩短至几分钟,与国家标准方法相比,检测灵敏度提高超百倍,突破了材料特异性差导致前处理过程繁琐、检测灵敏度低等难以满足检测要求的技术难题。   在核心元件研发方向,团队将分离新材料与质谱离子源相融合,研制了高选择性质谱离子源元件和实时质谱快检方法。目前现场快检常用的胶体金试纸条等小巧便携,但定性定量准确度较低。质谱具有准确度高的优势,但设备笨重且需要冗长的样品前处理和色谱分离过程,难以用于现场快检。团队突破现有实时质谱离子源只具有电离功能的瓶颈,将系列分离材料修饰技术引入质谱离子源,使离子源具备了分离功能,可以对食品等复杂样品基质净化的同时进行目标物电离,摈弃了食品质谱分析前的繁冗色谱分离,研发了系列分离-电离一体化实时质谱离子源。如将研发的分子印迹材料与导电基板相偶联,研制出新型质谱离子源(如图2所示),建立的实时质谱快检方法用于食品中氨基甲酸酯类的检测,检测速度≤40秒,方法定量限可达0.5 μg/kg,与国标方法相比,检测速度由几十分钟缩短至几十秒,灵敏度提高近20倍,破解了食品安全现场检测技术准确度不足的技术难题。   2023年团队在食品安全创新检测技术方向取得系列突破,研制新型净化富集材料8种、新型质谱离子源元件3件;申请发明专利15件;授权发明专利14件;获得软件著作权2项;研制食品安全标准9项,在国内外期刊发表文章21篇,其中SCI一区TOP文章8篇。
  • 新华光:积极抢占红外元件市场,新年加班冲刺“开门红”
    “今年春节和往年一样,我们公司不停工、不停产,员工24小时轮值在岗。”1月17日,在湖北新华光信息材料有限公司(以下简称:新华光)制造二部的厂房里,厂房里5台熔炉正在同时运作,工人们正有条不紊的在生产线上完成玻璃成型和检验包装工作,还有2台大修熔炉正在紧锣密鼓砌筑中,准备春节期间投产上线。新华光生产车间新华光制造二部副部长杨爱清介绍说:“公司熔炉经过技术革新,产能和品质均得到大幅提升,最新一代大熔炉的产能比过去小型熔炉平均提升46%,部门将实现‘三大三小+一条K9线’满负荷生产,月度光学玻璃产能可达270多吨,同比去年增长超过百分之四十。”在该公司镜头事业部的超净工房,员工展示了自动组装机的组装成果——10秒便可完成一次镜头的组装,一次性合格率达97%以上。“我们目前的产品主要运用在智能驾驶、安防、监控、投影机、数码相机,还有观望类的望远镜枪瞄上,以前做材料,现在我们要做产业链的延伸,更好地服务于终端客户。今年我们还计划投入建立更多的自动化线体去代替人工,进一步提高效率和产能。”新华光市场总监、镜头事业部部长吴克忠向记者这样介绍。据悉,新华光作为全球第四、国内第二大的光学材料科研生产基地,目前已成为日系索尼、松下、爱普生等国际品牌,国内海康、大华、艾睿、高德等知名大型企业的合作伙伴,产品广泛用于车载、3C消费电子产品制造、安防与医疗等领域,出口比例不断提高。近年来,新华光积极抢占红外元件市场,以高性能光学材料及先进元件技术改造为契机,于2022年5月成立镜头事业部,建立七条人工产线,一条自动产线,每月平均出厂1万多只红外镜头订单,主要应用智能驾驶、工业测温、红外观瞄、安防、智能家居、AR、VR镜头等领域,通过下游产业流向终端,对应到具体客户。经过一年多的发展,部门目前已完成100多款镜头的开发,规模也从成立之初的5人发展到现在50人的团队。新华光生产车间“光学玻璃市场旺盛,产品供不应求,例如用于智能手机外屏盖板高强度纳米微晶玻璃和智能驾驶汽车的摄像头和激光雷达的订单,近年的增量非常大。”吴克忠说。在模压产品的品控把关上,新华光确保产品高品质高成交量出厂。厂内37台模压机,产能可达到每月两百万片。“我们自主供应原材料,通过改变工艺方式,节省工序来减少预制件的成本。在模具设计方面,我们产品的面间偏芯控制在1.5微米,目前是国内领先的水平。”新华光营销管理部副部长覃胡超向记者详细介绍。从光学玻璃材料到终端产品成品,新华光着力推动产业链向下延伸,提高产品附加值。值得一提的是,新华光作为主研单位编制完成了六项红外光学材料领域的检测以及产品的国家标准。其中,红外硫系玻璃条纹度、杂质和均匀性等3项国际标准获得ISO立项并最终定稿发布,在该领域处于国内国外相对领先的状态。覃胡超介绍说,目前公司生产经营稳健,订单不断增长也带动了盈利能力的稳步提升。2024年新华光将继续在光学科研领域精准发力,并不断向下延伸产业链,通过技术引领实现市场突破。关于湖北新华光信息材料有限公司湖北新华光信息材料有限公司是北方光电股份有限公司(股票代码:600184)的全资子公司,是全球第四大光学玻璃生产企业。公司通过ISO9001:2015、ISO/TS 16949:2016质量管理体系认证和ISO14001-2015环境管理体系认证、GB/T28001-2011职业健康安全管理体系认证、GB/T29490-2013知识产权管理体系认证,具有自营进出口权。公司年产无色光学玻璃材料5000吨,光学元件1.5亿件,红外光学玻璃5吨。产品全部实现环保化,出口20多个国家和地区,广泛应用于投影机、视频监控、车载等消费电子、工业应用、光学器材、红外成像等领域,国际市场占有率达13%,国内市场占有率达25%。
  • 原子层沉积系统研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="122"p style="line-height: 1.75em "成果名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "原子层沉积系统/p/td/trtrtd width="122"p style="line-height: 1.75em "单位名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "中科院物理研究所/p/td/trtrtd width="122"p style="line-height: 1.75em "联系人/p/tdtd width="175"p style="line-height: 1.75em "郇庆/p/tdtd width="159"p style="line-height: 1.75em "联系邮箱/p/tdtd width="192"p style="line-height: 1.75em "qhuan_uci@yahoo.com/p/td/trtrtd width="122"p style="line-height: 1.75em "成果成熟度/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "□正在研发 √已有样机 □通过小试 □通过中试 □可以量产/p/td/trtrtd width="122"p style="line-height: 1.75em "合作方式/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√技术转让 √技术入股 □合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/1d453046-e68e-4e65-ab38-25f533935dee.jpg" title="ALD.jpg" width="350" height="261" border="0" hspace="0" vspace="0" style="width: 350px height: 261px "//pp style="line-height: 1.75em " br//pp style="line-height: 1.75em " 原子层沉积(ALD)技术,由于采取自限性的生长模式,因此可以在原子尺度上调控沉积薄膜的厚度,从而形成具有优异的台阶覆盖性和平整性,并可用于制备高深宽比材料和对多孔纳米材料进行修饰。我们自行研制的ALD系统与市场上现有商业化产品相比,具有如下特点:1)复杂完善的管路气路,在自制控制器和软件的配合下,可高度自动化完成生长过程;2)全金属密封,适于各种类型反应;3)圆筒型反应腔体,最高烘烤温度达到350℃,前驱体及载气利用率高;4)特殊设计的样品台,适用于包括粉末样品在内的各类基底;5)可选配四极质谱和石英膜厚检测仪,对反应过程实时监控。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ ALD是一项简单和实用的技术,在微电子、太阳能电池、光子晶体以及催化等许多领域都有广泛的应用前景。我们目前研发的系统主要针对科研应用,国内每年需求量在数十台至上百台。/p/td/tr/tbody/tablepbr//p
  • 上海光谱发布上海光谱SP-3887塞曼原子吸收分光光度计新品
    仪器简介:SP-3887AA塞曼原子吸收分光光度计为塞曼单石墨炉原子吸收一体机。SP-3887仪器具有的突出性能有:在石墨炉直流供电横向加热技术、自动补偿石墨炉电阻变化技术、横向可变交流磁场塞曼背景校正技术、自吸背景校正技术等关键技术方面具有创新性,该产品为石墨炉一体机,能较好检测高背景样品的小信号,也能直接检测高温元素,具有较广泛的应用前景。应用领域和用途:仪器定位于中挡偏上价位和性能,具有多种不同配置以适应于不同用户的需求。价格从25万元~45万元不等。仪器可广泛应用于食品、医药、环境、生物、农业、石油化工、建筑、材料、地质、冶金、科研等领域。鉴于仪器具有优良的交流、直流塞曼背景和氘灯背景校正能力,该背景校正系统除能很好地校正传统的分子吸收和粒子散射背景外,还能校正结构背景和部分谱线重叠干扰,尤其适用在测定食品、中药材、海水、血液、生物制品、高盐溶液等样品的痕量元素分析检验领域中使用。特别是对于日常必须分析的元素如Cd、Pb、Cu、Zn等,校正性能可与进口塞曼仪器塞曼相媲美,但仪器价格仅为进口塞曼仪器的1/2,将更适合我国国情。双检测器光学双光束,全反射消色差光学系统;超强的抗原子化器光辐射能力,可有效消除高温下石墨管强烈的光辐射。智能杂散光测量和校正技术.,有效改善了原子吸收光谱仪的光学精度、线性范围,提高了背景校正能力。光学降噪技术,结合光学元件紫外增强技术,有效改善了仪器光学性能和线性范围。间隙控灯技术,使普通国产空心阴极灯用于自吸背景校正,空心阴极灯使用寿命延长十倍以上,降低使用成本。横向Zeeman(塞曼)磁场纵向加热石墨炉采用光源发射方向与重心平行式八灯架系统,自动换灯。同时具有氘灯、自吸、Zeeman(塞曼)三种扣背景方式;波长范围:180nm-900nm自动寻峰光谱带宽:0.1nm、0.2nm、0.4nm、0.7nm、1.4nm、2.0nm六档自动切换石墨炉原子化器位置水平、垂直、转位全部免调;石墨炉可视化系统测量方式:石墨炉法,氢化物法;浓度计算方式:标准曲线法(共6种线性、非线性拟合方法),标准加入法,内标法。石墨炉塞曼背景校正:100倍(1Abs);石墨炉自动进样技术,样品杯位数≥80个。创新点:1.氘灯、自吸、高性能塞曼背景校正模式2.石墨炉一体机,具有较广泛的应用前景。3.石墨炉标配可视化系统4.全自动8灯座自动调节灯位上海光谱SP-3887塞曼原子吸收分光光度计
  • Chematur选择仕富梅为印度提供TDI分析仪系统
    2009-6-24, Shanghai, China - 作为专业气体分析仪的全球领先供应商,仕富梅被选中成为位于印度Dahej市在建的TDI厂提供完整的气体分析监控系统。瑞典Chematur Engineering AB公司代表印度化学品生产商GNFC,选择了仕富梅及渠道合作伙伴OmniProcess AB为其在建新厂提供此类关键的测试仪器,新厂建成后将具有50,000 MTA生产能力。 新系统将帮助进行过程控制并监控TDI生产过程中的输出质量,TDI作为一种生产聚氨酯所用的主要异氰酸酯,可用于各种应用,包括家具装修中使用的软质泡沫以及电动机行业。 仕富梅将提供一系列世界一流的气体分析仪产品来满足TDI监控的复杂应用需求,包括15台SERVOTOUGH SpectraExact (2500)过程气体分析仪,两台SERVOPRO 4210气体纯度分析仪,一台SERVOTOUGH OxyExact (2200)顺磁氧气分析仪和三台k1550导热析气计分析仪。 SERVOTOUGH SpectraExact 是一款光度测量过程分析仪,其设计、制造及测试均满足特定的测量及背景流量要求,具有单组分或双组分气体分析能力,适用于几乎所有过程、燃烧或排放的气体分析应用,是几类TDI过程测量的理想选择,比如,制造光气时氯气与一氧化碳混合后产生的废气监控,以及光气中一氧化碳和氯气的监控。 SERVOTOUGH OxyExact 2200采用了仕富梅著名的顺磁测量池技术,在气体监控时可实现完全不受其他气体影响的氧气测量,确保了测量精度,将纯一氧化碳中的残留02浓度控制在0%-0.5%内。SERVOPRO 4210气体纯度分析仪可以监控纯H2和纯CO中特定的杂质量,一个元件监控纯氢气流中的微量一氧化碳,而另一基于4210的系统监控一氧化碳中的甲烷。三台k1550导热析气计分析仪监控氢气纯度,并通过检查残留H2的浓度且将其控制在0-1%之内,监控提供给TDI过程的CO质量。 每台仕富梅气体分析仪都将安装到各自的隔间中,并配备相应的取样系统和各种所需管线,以备安装至工厂的相应区域。 Chematur之所以选择仕富梅,不仅仅是因为仕富梅具有世界一流的经验,可提供适用于各种苛刻应用的可靠、精确的过程分析仪,更是因为仕富梅在设计、建造TDI分析仪系统有据可查的实际经验,同时具有提供行业最优服务与支持的能力。 &ldquo TDI生产从来都是一个复杂的过程,因此仕富梅非常高兴能有机会再次与Chematur合作,并通过OmniProcess AB为Chematur提供气体分析系统,&rdquo 仕富梅总经理Chris Cottrell说道,&ldquo 选择我们,不仅是因为我们产品具有公认的高质量,更因为我们能够提供全套的气体分析方案,包括系统设计与制造,也包括我们在印度当地提供的服务与支持&rdquo 。 TDI厂计划于2010年9月完工。 有关仕富梅气体分析方法的更多信息,请致电仕富梅各区销售部:欧洲商务中心电话:+31 (0) 79 330 1581 / 00800 737866390(法国、荷兰、德国、比利时和英国为免费电话) 美洲商务中心电话:+1 281 295 5800 亚太地区商务中心电话:+86 (0)21 6489 7570。更多信息请查看仕富梅网站:www.servomex.com。
  • 测试秘籍丨原子力显微镜(AFM)
    原子力显微镜(Atomic Force Microscopy,AFM)是一种具有原子级别高分辨率的新型表面分析仪器,它不但能像扫描隧道显微镜(STM)那样观察导体和半导体材料的表面现象,而且能用来观察诸如玻璃、陶瓷等非导体表面的微观结构,还可以在气体、水和油中无损伤地直接观察物体,大大地拓展了显微技术在生命科学、物理、化学、材料科学和表面科学等领域中的应用,具有广阔的应用前景。1 原子力显微镜的工作原理1.1 基本原理AFM 进行表面分析的基本原理如下:AFM 中有一由氮化硅片或硅片制成的对微弱力极敏感的弹性臂,微悬臂顶端有一硅或碳纳米管等材料制成的微小针尖,控制这一针尖,使其扫描待测样品的表面,这一过程是由压电陶瓷三维扫描器驱动的。当针尖与样品表面原子做相对运动时,作用在样品与针尖之间的力会使微悬臂发生一定量的形变。通过光学或电学的方法检测微悬臂的形变,转化成为图像输出,即可用于样品表面分析。简单地说,原子力显微镜是通过分析样品表面与一个微弱力敏感元件之间的相互作用力来呈现材料表面结构的。1.2 工作模式(一)接触工作模式扫描时如果控制针尖一直与样品表面原子或分子接触,那么这种工作模式称为接触模式。在这一过程中,针尖原子与样品表面原子之间力的作用主要表现为是两者相接触原子间的互斥力(大小约为10-8-10-11 N)。接触模式下工作的原子力显微镜可得到稳定的、高分辨率的样品表面图像。但是这种工作模式也有它的不足之处:当研究易变形的样品(液体样品)、生物大分子等的时候,由于针尖与样品原子直接接触,会使样品表面的原子移动、粘附于针尖或者发生较大形变,从而造成样品损坏、污染针尖或者结果中出现假象。(二)非接触工作模式扫描时如果控制针尖一直不与样品表面的原子或分子接触,那么这种工作模式称为非接触模式。非接触工作模式下由于扫描样品时针尖始终在样品上方5-20 nm 距离范围内,针尖与样品间的距离较接触模式远,所以获得的样品表面图像分辨率相对接触模式较低。但正是这一距离也克服了接触模式的不足之处,不再会造成样品的损坏、针尖污染等问题,灵敏度也提高了。(三)间歇接触工作模式扫描时如果控制针尖间歇性的与样品表面的原子或分子接触,那么这种工作模式称为间歇接触模式,也称为轻敲模式,常通过振动来实现针尖与样品的间歇性接触。该模式下微悬臂的振动是由磁线圈产生的交流磁场直接激发的,针尖与样品表面原子作用力主要是垂直方向的,不再受横向力的影响。间歇接触工作模式集合了接触与非接触模式的优点,既减少了剪切力对样品表面的破坏,又适用于柔软的样品表面成像,因此特别适合于生物样品研究。2 原子力显微镜的组成AFM 的硬件系统由力检测部分、位置检测部分和反馈控制系统三部分组成。图1 所示为AFM 的工作原理图,从图中可以看出,AFM 就是通过集合以上三个系统来将样品的表面特性反映出来的:在AFM的工作系统中,使用由微小悬臂和针尖组成的力检测部分来感应样品与针尖间的作用力;当微悬臂受力形变时,照射在微悬臂末端的激光会发生一定程度的偏移,此偏移量反射到激光检测器的同时也会将信号传递给反馈控制系统;反馈控制系统根据接受的调节信号调节压电陶瓷三维扫描器的位置,最终通过显示系统将样品表面的形貌特征以图像的形式呈现出来。3 样品制备3.1 样品要求原子力显微镜研究对象可以是有机固体、聚合物以及生物大分子等,样品的载体选择范围很大,包括云母片、玻璃片、石墨、抛光硅片、二氧化硅和某些生物膜等,其中最常用的是新剥离的云母片,主要原因是其非常平整且容易处理。而抛光硅片最好要用浓硫酸与30%双氧水的7∶3 混合液在90 ℃下煮1h。利用电性能测试时需要导电性能良好的载体,如石墨或镀有金属的基片。试样的厚度,包括试样台的厚度,最大为10 mm。如果试样过重,有时会影响Scanner的动作,请不要放过重的试样。试样的大小以不大于试样台的大小(直径20 mm)为大致的标准。稍微大一点也没问题。但是,最大值约为40 mm。如果未固定好就进行测量可能产生移位。请固定好后再测定。3.2 样品制备粉末样品的制备:粉末样品的制备常用的是胶纸法,先把两面胶纸粘贴在样品座上,然后把粉末撒到胶纸上,吹去为粘贴在胶纸上的多余粉末即可。块状样品的制备:玻璃、陶瓷及晶体等固体样品需要抛光,注意固体样品表面的粗糙度。液体样品的制备:液体样品的浓度不能太高,否则粒子团聚会损伤针尖。(纳米颗粒:纳米粉末分散到溶剂中,越稀越好,然后涂于云母片或硅片上,手动滴涂或用旋涂机旋涂均可,并自然晾干)。4 原子力显微镜的应用4.1 在材料科学及化学中的应用目前,AFM 在材料科学中主要应用于材料的表面结构、表面重构现象以及表面的动态过程(例如扩散现象)等方面的研究,表面科学的中心内容是研究晶体表面的原子结构,例如从理论上推算出的金属表面结构往往不如实际复杂,借助原子力显微镜可以直观地观察材料的表面重构现象,有助于理论的进一步完善。4.1.1 在探测材料样貌方面的应用利用原子力显微镜来观测材料的样貌进行成像的时候,材料与探针之间出现相应作用力改变能够很好的反映出材料表面的三维图像。可以通过数值分析出材料表面的高低起伏情况,因此,在利用原子力显微镜对材料进行图像分析的时候,可以有效地发现材料表面的颗粒程度、粗糙程度、孔径分布以及孔的结构等。可以利用这种成像的方式把材料表面的情况形成三维图像进行模拟显示,促使形成的图像更加利于人们观察。4.1.2 在粉体材料中的应用在对粉体材料进行分析和研究的时候,可以利用原子力显微镜来逐渐分析原子或者分子中尺度,从而保证可以准确观测晶体以及非晶体的位置、形态、缺陷、聚能、空位以及不同力之间的相互作用。一般来说,粉体材料基本上都是使用在工业中的,但是现阶段有关于检测粉体材料的方法还是十分少的,研制样品也相对比较困难。原子力显微镜实际上是一种新兴的检测方式,具有操作方便、制样简单等特点。很多专家学者认为,人们使用化学方式研制出了SnS粉末,利用原子力显微镜把涂在硅基板上的材料进行成像,从图像上我们很容易发现此类材料具有分布均匀的特点,每一个大约15nm。4.1.3 在晶体材料中的应用专家学者经过不断研究和分析得到了很多晶体生长的模型,但是经过更加深入的分析和研究发现这些理论模型和实际情况是否相同还是具有一定差异,也逐渐成为学者讨论和研究的重点,所以人们希望通过显微镜来监测和观察生长过程。虽然,使用传统的显微镜已经观测出一定的成果,但是由于这些光学显微镜、激光全息干涉技术等存在分辨率不是十分高、实验条件不是很好以及放大不足等问题,使得研究过程出现很大困难,导致不能观测纳米级的分子等。原子力显微镜的发展,为科学家们研究纳米级分子或者原子提供了依据,也成为了专业人士研究晶体过程的重要方式。利用这种显微镜具有的能够在溶液中观察以及高分辨率等特点,可以保证科学家们能够很好的观测到晶体生长过程中的纳米级图像,从而不断分析和掌握材料的情况。4.2 在生物学中的应用AFM 能在气体、液体中无损伤地直接观察物体,可对生物分子在近生理条件下进行检测,是生命科学研究中的有力工具。目前,在生命科学中AFM 主要应用于对细胞、病毒、核酸、蛋白质等生物大分子的三维结构和动态结构信息进行研究。4.2.1 对细胞膜表面形态的研究细胞膜有重要的生理功能,它既使细胞维持稳定代谢的胞内环境,又能调节和选择物质进出细胞。AFM 能够观察到细胞膜表面的超微结构,因此它可以用来观察正常细胞与病变细胞的细胞膜,发现两者的异同,为临床病理诊断提供新的视角和方法。4.2.2 测定细胞弹性以及力学性质病变这一生理过程与细胞的形态和力学性质有关。细胞形态学的变化会影响和反映细胞性质、功能以及细胞微环境的改变。健康细胞与病理状态的细胞在机械性能上是完全不同的。抓住这一点,可以利用AFM 测量出的细胞弹性性质识别癌细胞,以及辅助诊断红细胞相关的各种疾病等,从细胞层面上对各种疾病进行早期诊断和治疗。4.2.3 检测活细胞间相互作用AFM 也可以对细胞间的相互作用进行观察。将一种细胞连接在AFM 扫面探针的尖端,使针尖功能化,对另一种单层排列的细胞进行扫描就可以进行细胞间相互作用的研究。4.2.4 观察动态生物过程AFM也是观察细胞生物过程非常有效的工具。研究痘病毒和活细胞,得到了痘病毒感染活细胞全过程的AFM 图。通过活着的细胞观察子代病毒颗粒,并用AFM 在水溶液环境中在分子水平分辩出有规则重复的烙铁状结构和准有序的环状结构。观察中发现: 在感染前后最初几小时,细胞并无显著变化 子代病毒粒子沿细胞骨架进入细胞内部,还有胞吐、病毒颗粒聚集等现象。通过AFM 图像可以看出哑铃状小泡逐渐形成、消失并在细胞膜表面形成凹陷的全过程。4.2.5 观察生物大分子之间相互作用在生物体内,DNA 与蛋白质间的相互作用有着同样举足轻重的地位。在转录、翻译的过程中,DNA 与特定的蛋白质如解旋酶、聚合酶、启动因子等的结合就决定着生命活动的开启。Gilmore 等利用AFM 以每500 ms 拍摄1 次的速度,清晰地观察到了蛋白质在DNA 上的结合情况。因此,AFM 可以真正帮助我们深入地“看到”生命活动的本质。4.2.6 测定细胞电学性质细胞不论在静止状态还是活动状态,都会产生与生命状态密切相关的、有规律的电现象,生物电信号包括静息电位和动作电位,其本质是离子的跨膜流动。因此,研究细胞的电生理学也成为了生命科学领域一个重要的分支。在AFM 系统中增加了导电模块,在迎春花细胞、酵母菌细胞等样品和探针之间加一个偏压,在扫描的过程中,同时获得样品的表面形貌和电流像,且在成像的同时检测探针和细胞样品之间的电流,得到样品表面形貌和局域电流分布及两者之间的对应关系,从而实现AFM 在纳米尺度上对细胞样品电学特性的分析检测。参考文献[1]高翔.原子力显微镜在材料成像中的应用[J].化工管理,2015(08):67.[2]王明友,王卓群,焦丽君.原子力显微镜在表面分析中的应用[J].邢台职业技术学院学报,2015,32(01):75-78.[3]万旻亿.原子力显微镜的核心技术与应用[J].科技资讯,2016,14(35):240-241.[4]鞠安,蒋雯,许阳,杨升,常宁,王鹏,顾宁.原子力显微镜在生命科学领域研究中的应用进展[J].东南大学学报(医学版),2015,34(05):807-812.
  • Nature|清华大学魏飞团队实现分子筛孔道内单分子原子级显微成像突破
    有机小分子在以分子筛为代表的多孔材料中的单分子成像与构象研究,是深入理解其相变、吸附、催化和相互作用过程的基础与关键。其中,有机小分子(吡啶,苯,噻吩等)在室温或更高温度下的原子级成像,一直是电子显微学领域的圣杯。近日,魏飞团队借助于包含酸性位点的孔道允许吡啶分子较大机率形成平躺稳定构象的原理,制备了利于观察的高硅铝比准二维片层ZSM-5(2-3个单胞厚度),利用电子显微镜技术,首次实现了在室温下ZSM-5分子筛孔道内限域的有机小分子(吡啶、噻吩)的原子级成像,实现了分子筛孔道内单分子原子级显微成像突破。2021年至今,魏飞团队利用对二甲苯和苯分子与ZSM-5孔道的匹配特性,首先在室温下,巧妙地借助了两个对位甲基与多孔骨架间的受限空间势阱的构型束缚效应,率先成功研究了客体分子与主体骨架间的范德华力相互作用;在此基础上,通过高温原位实时观测苯分子与骨架结构的相互作用,揭示了苯分子与分子筛在亚纳米尺度上的拓扑柔性行为(相关工作发表于Nature 592, 541, 2021;Science 376, 6592,2022),为此次突破打下了坚实的基础。图1 孔道内吡啶分子吸脱附过程的原位成像研究表明,在分子筛孔道中,主客体氢键相互作用和范德华力能够稳定吡啶分子在分子筛孔口处平躺时的原子构象,当吡啶六元环被充分地暴露在孔口成像投影方向上时,能够从静态图像甚至原位实验中直观地识别分子的原子排列、键长及与酸性位的相互作用。这一成像策略的核心是积分差分相位衬度扫描透射电子显微技术(iDPC-STEM)可以实现超低电子剂量下有机小分子的皮米级高分辨成像,以及高硅铝比准二维片层ZSM-5(2-3个单胞厚度)孔道内相互作用势阱能够限域单个吡啶分子,利用酸碱相互作用使吡啶单分子平躺在孔口处,实现了吡啶六元环的原子级分辨率成像。首先,采用原位成像实验研究了孔道内吡啶分子动态吸脱附过程,随着脱附过程的进行,能够在部分孔道中观察到与酸性位点相互作用的吡啶六元环结构(如图1所示),这证明了酸性位结合孔口范德华力作用使小分子环球结构原子级分辨的成像策略可行性。更进一步,如图2所示,实现了对单个吡啶分子的原子级成像,吡啶六元环上的原子清晰可辨。通过图像和计算的对比,证实了吡啶分子的成像结果,同时通过最小二乘法确定了吡啶环中N原子的位置。此外,根据吡啶环的位置和取向,能够识别出孔道内酸性位点的位置。图2 孔道内限域单个吡啶分子的原子级解析上述工作不仅提供了一种有效、通用的相互作用势阱在室温下对单个有机小分子的原子级结构成像策略,同时推动了电子显微学在有机小分子原子级成像上的进一步应用。可以预期,使用其他类型的相互作用来稳定目标分子,可以从原子和化学键的新视角,研究各种分子结构在反应条件下单分子演变和相互作用行为,例如催化反应中小分子结构演化的分子电影和生物大分子构型的转变等重要命题。更重要的是,这些分子行为可以在室温甚至更高温度下成像,这更接近它们实际应用条件下的真实状态,将有助于理解各种化学和物理过程中分子的真实行为。上述研究成果以“电子显微镜对分子筛限域单分子的原子级成像”(Atomic imaging of zeolite-confined single molecules by electron microscopy)为题,于7月13日发表在国际学术期刊《自然》(Nature)上。论文共同第一作者为清华大学化工系2020届博士毕业生申博渊(现已入职苏州大学)、2018级博士生王挥遒、2019级博士生熊昊。论文通讯作者为清华大学化学工程系魏飞教授和陈晓助理研究员。参与该项工作的研究人员还包括清华大学化工系骞伟中教授、赛默飞世尔科技的Eric G. T. Bosch和Ivan Lazić。论文链接:https://www.nature.com/articles/ s41586-022-04876-x
  • Nature:利用透射电镜以原子分辨率观察材料中的热效应
    随着电子、热电和计算机技术已经小型化到纳米级,工程师们面临着研究相关材料基本特性的挑战。在许多情况下,研究目标太小而无法用光学仪器观察。加州大学欧文分校、麻省理工学院和其他机构的一组研究人员利用尖端电子显微镜和新技术,找到了一种以原子分辨率绘制声子(晶格中的振动)的方法,从而实现更深入地理解热通过量子点传播的方式,设计电子元件中的纳米结构。为了研究声子如何被晶体中的缺陷和界面散射,研究人员使用透射电子显微镜中的振动电子能量损失光谱法探测了靠近硅锗单量子点的声子动态行为,该设备位于欧文材料研究所在UCI校园内。该项目的成果近日发表在《自然》杂志。“我们开发了一种新技术,以原子分辨率差分映射声子动量,这使我们能够观察仅存在于界面附近的非平衡声子,”共同作者,UCI 材料科学与工程和物理学教授、Henry Samueli 工程学院讲席教授、IMRI 主任Xiaoqing Pan说。 “这项工作标志着该领域的一项重大进展,因为这是我们第一次能够提供直接证据,证明漫反射和镜面反射之间的相互作用在很大程度上取决于具体的原子结构。”据Xiaoqing Pan所述,在原子尺度上,热量在固体材料中传输,因为当热量远离热源时,原子波会从其平衡位置移位。在具有有序原子结构的晶体中,这些波被称为声子:原子位移的波包,其携带的热能等于它们的振动频率。该团队使用硅和锗的合金,能够研究声子在量子点的无序环境、在量子点与周围硅之间的界面以及在量子点纳米结构的圆顶形表面周围行为表现。“我们发现SiGe合金呈现出一种成分无序的结构,阻碍了声子的有效传播,”Xiaoqing Pan说。 “由于硅原子在各自的纯结构中比锗原子更靠近,因此合金稍微拉伸了硅原子。由于这种应变,UCI 团队发现由于纳米结构内设计的应变和合金化效应,量子点中的声子正在软化。”Xiaoqing Pan补充说,软化的声子能量更少,这意味着每个声子携带的热量更少,从而降低了热导率。振动的软化是热电设备阻碍热量流动的众多机制之一。该项目的主要成果之一是开发了一种,用于绘制材料中热载体的方向的新技术。 “这类似于计算有多少声子上升或下降,然后计算差异,证明它们的主要传播方向,”他说。 “这项技术使我们能够映射声子从界面的反射。”电子工程师已经成功地将电子设备中的结构和组件小型化到这样的程度,因此它们现在已经下降到十亿分之一米的数量级,远小于可见光的波长,所以这些结构对光学技术来说是不可见的。“纳米工程的进步已经超过了电子显微镜和光谱学的进步,但通过这项研究,我们正在开始追赶的过程,”共同作者,Xiaoqing Pan小组的UCI 研究生 Chaitanya Gadre 说。一个可能从这项研究中受益的领域是热电学——将热能转化为电能的材料系统。 “热电技术的开发人员努力设计阻碍热传输或促进电荷流动的材料,以及如何通过嵌入的固体传输热量的原子级知识,因为它们通常带有故障、缺陷和缺陷,将有助于这一探索”共同作者、UCI 物理学和天文学教授Ruqian Wu说。“人类活动产生的能量中有 70% 以上是热量,因此我们必须找到一种方法将其回收成可用的形式,最好是电力,来满足人类日益增长的能源需求。”潘说。参与这项由美国能源部基础能源科学办公室和美国国家科学基金会资助的研究项目的还有麻省理工学院机械工程系教授Gang Chen;台湾国立中央大学材料科学与工程系教授Sheng-Wei Lee,和UCI材料科学与工程博士后研究员Xingxu Yan。关于加州大学欧文分校(the University of California, Irvine,UCI):UCI 成立于 1965 年,是久负盛名的美国大学协会中最年轻的成员,被U.S. News & World Report评为全美排名前 10 的公立大学。该校区培养了五位诺贝尔奖获得者,以其学术成就、最早的研究、创新和食蚁兽吉祥物而闻名。在校长Howard Gillman的带领下,UCI 拥有 36,000 多名学生,并提供 224 个学位课程。它位于世界上最安全、最具经济活力的社区之一,是奥兰治县的第二大雇主,每年为当地经济贡献70亿美元,在全州范围内贡献80亿美元。
  • 我国首台多通道原子磁力计新型脑磁图原型机研制成功
    p style="text-indent: 2em text-align: justify "近日,中国科学院生物物理研究所完成我国首台基于原子磁力计的新型多通道脑磁图系统原型机,并成功获得高质量脑磁信号。/pp style="text-indent: 2em text-align: justify "脑磁图(MEG)设备可通过探测大脑神经活动产生的颅外微弱的磁信号,来反映神经活动发生的位置和时间过程。与其他脑成像技术相比,脑磁图设备能观测到功能磁共振成像(fMRI)无法获得的脑功能实时动态信息,空间定位精度显著高于脑电(EEG),且安全、无创,是脑科学研究中的先进技术手段。脑磁图在临床医学上也有重要应用,例如在癫痫病灶的定位、术前语言功能区定位等领域具有特殊重要的作用。/pp style="text-indent: 2em text-align: justify "传统脑磁图设备基于超导量子干涉仪(SQUID),需在超低温下运行,购置和运行成本高昂,且探头位置固定并距头皮较远,适应性差,大大妨碍了该技术的普及。基于原子磁力计的脑磁图系统是近年来新出现的技术,可在常温下工作,探头可紧贴头皮,具备低建设/运行成本、高灵敏度和高适应性(可做成可穿戴式系统)的优势,有望提高脑磁图普及率并拓展到更多的研究和临床领域。/pp style="text-indent: 2em text-align: justify "生物物理所已成功搭建一套12通道的原子磁力计脑磁图原型机,其中包含96通道3D打印个性化定制,可兼容多种探测器可调型脑磁图头盔等创新技术,并已成功获得高质量脑磁成像信号。与传统SQUID脑磁图系统相比,该原型机信噪比局部提高一倍以上,在某些应用上,通过调整探测器布置,可使用比传统SQUID脑磁图少得多的探头就能达到相同或更高的定位精度。该原型机可有效探测海马、小脑等传统脑磁无法有效探测的脑深部区域,还可有效应用于传统脑磁图难以应用的低龄儿童、帕金森患者等群体,在发育心理学和脑疾病诊断等领域有着潜在的应用前景。/pp style="text-indent: 2em text-align: left "相关研究由生物物理所脑与认知科学国家重点实验室完成。该实验室已装备国内首台科研专用3T、7T人类磁共振成像系统和传统脑磁图系统。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201809/uepic/d829f8d2-1fea-4093-abc8-71f31428286c.jpg" title="1.png" alt="1.png"//pp style="text-indent: 2em text-align: center "原子磁力计脑磁图原型机br//p
  • 小元件,大制造——探访气动元件制造商SMC的精益化生产之道
    p  strong仪器信息网讯/strong 现代生活方式离不开便利产品,这样的产品大多产自高度自动化的工厂,而实现自动化的关键就是使用气动控制元件。无论汽车、电子、半导体等尖端领域,还是食品、医疗等与人们生活密切相关的产业,或是分析仪器行业,在实现自动化的过程中都得益于气动元件的广泛使用。/pp  2017年11月17日,由中国仪器仪表学会分析仪器分会主办的“精益化生产& 分析仪器核心部件技术沙龙”走进位于北京市经济技术开发区的SMC(中国)有限公司,探访这家“全球气动元件市场占有率第一”企业的致胜之道。20余位分析仪器相关企业代表参与沙龙,仪器信息网全程报道本次活动。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/e8ee9cf0-cf32-47bc-951c-613a28d8b32a.jpg" title="DSC03275.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "“精益化生产& 分析仪器核心部件技术沙龙”现场/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/7243a7b3-cac8-40d9-a7af-59129f779321.jpg" title="曹以刚.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "本次沙龙由分析仪器分会秘书长曹以刚主持/span/pp  SMC CORPORATION 成立于1959年,总部设在日本东京都,历经近60年的发展,现已成长为世界著名的气动元件综合制造商。创立至今,SMC研制推出的气动元件产品仅基本型就有11000种,由此派生出的型号甚至达62万种之多,完全符合汽车、半导体、电子、医疗、食品等基础工业领域的多样化用途。此外,SMC还在全球78个国家和地区设立了直属分公司、360处营业机构和众多代理店,便于提供第一时间产品服务与技术支持。截至目前,SMC气动元件产品全球市场占有率已达32%,位居第一。/pp  SMC中国于1994年9月在首都北京成立,并以北京、上海为起点逐渐发展壮大。SMC中国在北京设有4个工厂、1个技术中心,在上海设有特注品工厂。SMC中国生产的气缸、电磁阀、F.R.L组合元件、冷冻式空气干燥机、接头等供应着中国在内的81个国家与地区。SMC中国还在北京、上海、广州、香港设有物流中心,确保产品在中国市场短期交货,迅速满足用户需求。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/fc17e4bf-e7b6-48f4-8bc2-c317332f1a9f.jpg" title="参观.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "企业代表参观SMC产品展厅/span/pp  沙龙活动中,SMC中国总经理赵彤、副总经理马清海、北京营业部部长龚华丰、行业开发总括负责人付忠林各自发言,就SMC发展历程、精益化生产体系、营业管理流程及产品在科分行业的应用等内容展开精彩介绍,分享SMC扎根中国二十余年的成功经验。而中国仪器仪表学会分析仪器分会常务副理事长刘长宽也介绍了分会概况,以加深上游元器件厂商对分析仪器行业的了解,对接需求、共促发展。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/4410f356-379e-4b51-9e5a-fbd78c74de03.jpg" title="赵彤.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "SMC中国总经理赵彤介绍公司发展历程/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/1b095aa2-79e2-4c68-babd-fb6c12edeed8.jpg" title="马清海.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "SMC中国副总经理马清海展示SMC精益化生产体系/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/04628bc3-da0d-4685-b2c5-268f86c1cbf1.jpg" title="刘长宽.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "分析仪器分会常务副理事长刘长宽介绍学会概况/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/148a98d9-a84c-4acc-9153-640d20af6683.jpg" title="龚华丰.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "SMC中国北京营业部部长龚华丰介绍公司营业管理体系/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/192f4152-faaf-436e-8faf-073f63514c38.jpg" title="付忠林.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "SMC中国营业本部行业开发总括负责人付忠林介绍科分行业应用/span/pp  早在1993年,SMC就分别与哈尔滨工业大学、北京理工大学、清华大学3所中国高校合作建立“气动技术中心”。后随着产学研合作的深入,SMC中国有限公司才注册成立,甚至当时的注册工作都是委托高校操作完成。赵彤将中国公司的特点总结为“一家从中国理工科大学研究室走出的外商投资企业”,是“成功的国际化产学研合作平台”。/pp  而在SMC种类繁多的气动元件体系中,液体控制、进样/移液、温度控制、气体控制等产品也适用于分析仪器的前处理等单元,有助于节省空间、降低成本,实现分析仪器的小型化、轻便化。据了解,国内外已有50余家仪器厂商成为SMC元件客户,分析仪器企业与上游元部件厂商之间沟通合作有望进一步增强。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/d91646ad-d9d7-48e3-bccc-d50f5802e8e6.jpg" style="" title="initpintu_副本1.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/abf819de-dc58-4611-adb3-eddadff28fcc.jpg" style="" title="initpintu_副本2.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "沙龙现场交流火热,产业链上下游企业有效对接/span/pp  活动尾声时,多位参会者还就人才培养、库存供货、客户需求等话题与SMC方面的工作人员展开深入交流。本期沙龙在热闹氛围中圆满落下帷幕,参与者们亦满载而归,不虚此行。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/041298a8-fcc0-4159-b319-3c59f5664ea4.jpg" title="DSC03483_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "“精益化生产& 分析仪器核心部件技术沙龙”合影留念/span/p
  • 三项激光器/激光相关设备国标征求意见 涉及紫外、可见、红外光谱范围元件
    p  日前,全国光学和光子学标准技术委员会电子光学系统分技术委员会(SAC/TC103/SC6)秘书处发布关于征求《激光器和激光相关设备 光腔衰荡高反射率测量方法》等3项国家标准(征求意见稿)意见的通知。/pp  根据通知内容,由全国光学和光子学标准技术委员会、电子光学系统分技术委员会(SAC/TC103/SC6)负责归口的《激光器和激光相关设备光腔衰荡高反射率测量方法》、《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》、《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》等3项国家标准已完成,现公开征求意见,截止日期11月17日。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"近年来随着薄膜沉积技术的发展,光学薄膜,尤其是广泛应用于大型高功率激光装置、干涉引力波探测、激光陀螺、腔增强和腔衰荡光谱测量中的高反射薄膜的性能获得了极大的提高。激光光学系统中需要用到一些反射率很高(高于99.9%甚至99.99%)的反射元件,必须精确测量其反射率(测量重复性精度达到0.001%甚至更低)。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai" strong /stronga title="" href="http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319778323438.rar" target="_blank"strong1.《激光器和激光相关设备 光腔衰荡高反射率测量方法》(征求意见稿)及编制说明/strong/a/span/pp  本标准规定了激光光学元件反射率的测量方法,适用于激光光学元件高于99%的反射率的精确测量。/pp  基于光腔衰荡技术,本标准的测试方法和流程可实现激光光学元件的高反射率(大于99%,理论上可达100%)测量,且精度高、重复性和再现性好、可靠性高。特别是大于99.9%的反射率的准确测量对发展高性能反射激光元件具有重要意义。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"目前,激光应用领域越来越多,包括医疗、材料处理、信息技术和计量等等。激光器及激光系统一般要用到光学窗口、反射镜、分光镜和透镜等光学元件,为防止激光损伤,这些光学元件要禁得起激光系统高峰值功率/能量密度的技术要求,这对光学元件提出了更高的制造要求。另外,随着我国光学与光电子产业的迅猛发展,光学元件加工制造形成了相当的产业规模,在满足国内要求的同时,产品正在走向国际化。因此对此类光学元件标准化的要求越来越高。/span/pp  a title="" href="http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319792051186.rar" target="_blank"strong2.《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》(征求意见稿)及编制说明/strong/a/pp  本部分规定了紫外、可见和近红外波段,波长从170nm至2100nm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。/pp  本部分的发布可以填补我国用于紫外、可见和近红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。/pp  a title="" href="http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319805778591.rar" target="_blank"strong3.《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》(征求意见稿)及编制说明/strong/a/pp  本部分规定了近红外到中红外波段,波长从2.1mm至15mm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。/pp  本部分的发布可以填补我国用于红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。/pp  联系地址:北京市海淀区车道沟十号院科技一号楼 兵器标准化所 电光系统分标委秘书处 010-68962373/pp  邮编:100089/pp  联系电话:010-6896 2373/pp  传 真:010-6896 3156/pp  邮件地址:a href="mailto:bzsbjw@126.com"bzsbjw@126.com/a/p
  • 工程师约稿:手机镜头等光学元件如何测?紫外分光光度法应用详解
    近年来,随着5g时代的到来,整个光学产业链步入发展快车道,相关各种新产品新技术在各个应用场景中不断跟新迭代。如手机市场领域,接连上演“镜头大战”,大底面、高像素、多镜头手机层出不穷。而在光学产品技术极大丰富的背后,如何保证好光学元件的光学性能至关重要。在诸多测试方法中,紫外分光光度计能够测定相关光学元件的透过率和反射率并确定实际效果,这对评价其光学传输特性和进行质量控制有着重要意义。以下,仪器信息网邀请日立高新(上海)国际贸易有限公司北京分公司技术工程师曹亚南,为大家分享紫外分光光度法在光学元件测试中的应用案例、检测器选择、以及测试配件的选择。1. 概要在我们日常生活中,眼镜、建筑物和车辆的窗玻璃、手机显示面板、液晶面板表面、涂膜、遥控接收器类似的玻璃、薄膜等光学元件随处可见(如图1),而紫外分光光度计能够测定这些光学元件的透过率和反射率并确定实际效果,这对评价其光学传输特性和进行质量控制至关重要。图1 常见光学元件在光学元件的评价中,为了确保获得精确的测定结果,一方面要考虑分光光度计本身的性能参数,另一方面还要选用合适的配件,根据样品尺寸大小和测量目的,使用正确的附件。下文以日立紫外可见近红外分光光度计UH4150为例(如图2),介绍如何选择合适的配件来测量不同的光学元件。图2 多种测量配件2. 配件的选择2.1 检测器的选择紫外可见分光光度计通常有两类检测器,直射光检测器(如图3)和积分球检测器(如图4)。直射光检测器一般用于液体样品或非扩散性平板样品的测量,而对长棒形样品、透镜和扩散性样品,其透射光束的形状受折射和散射的影响。若使用直射光检测器,样品测定时的光束形状会与基线测定的不同,从而无法获得准确结果。这种情况下,我们需要选用积分球检测器,让入射光在积分球内部进行漫反射,然后将其导入到检测器中消除检测器的局域性。图3 直射光检测系统示意图图4 积分球检测器积分球检测器通常分为两类,直径60 mm和直径150 mm的积分球。Φ60 mm积分球因其多功能性和卓越的基线平坦度和噪音水平而应用广泛。对于不同的测量目的,Φ60 mm积分球的开口数和开口倾角的选择也不同。对于常规透过率的测量,几乎可使用所有类型的积分球。但是若测试透镜和厚样品时,透射光会发散,如果使用四口积分球(如图5),入射光将从副白板溢出,积分球内表面材料和副白板材料之间反射特性的差异可能引起测量误差,此时应选用没有此类测量误差的两口全积分球(如图6)。图5 四口积分球的基线校正和透镜测定图6 两口积分球的基线校正和透镜测定若测定全反射率,需要将样品放在积分球后。使用后端开口倾角是8°或10°的积分球,可测定包括镜面反射在内的全反射率,如图7。而测定漫反射率要使用后端开口倾角是0°的积分球,样品的镜面反射光通过入射口射出,积分球只测定样品的漫反射率,如图8。图7 全反射率测定图8 漫反射率测定2.2测量附件的选择紫外可见分光光度计附件选择很多(如表1、表2),应根据具体样品特征和测量目的,选取相应的附件,部分附件如下表所示。表1 部分常用附件表2 自动附件以上是列举的在紫外分光光度计检测中的部分测量附件,若测定样品为玻璃、薄膜等,需要先判定入射角是否是0度测定,再判定样品是否对光有扩散性,一般有扩散性的样品透射,需要选择紧密附着的透射支架和积分球。3. 光学元件测量案例3.1智能手机相关测定成像质量是人们选购手机时的关注点之一,而镜片是手机镜头中的光学元件,尺寸微小,一般直径为3 mm,为确保其透过率的准确测定,需要选用微小样品测定附件。图9为使用微小样品测定附件测量两种手机镜头的透过率。微小样品透过率附件中设置有聚光镜和掩膜,能够缩小仪器光斑,使入射光束完全照射在微小样品内。图9 两种手机镜头的透过率图10为使用微小棱镜测定附件测量潜望镜式手机镜头中的直角棱镜的反射率。图10 微小棱镜的反射率图11为使用角度可变透射附件测量防窥膜的透过率。图11 手机防窥膜不同角度的透过率图12为使用微小5˚镜面反射附件测量手机中红外截止滤光片的反射率。图12 红外截止滤光片的反射光谱3.2 汽车相关测定随着汽车传感器、显示器分辨率的不断提升,内外装饰材料也在追求高附加值化,因此光学特性的评价需求也越来越多。只有正确选择合适的附件评价汽车零部件的光学特性,才能最有效地保障每一次安全出行。图13为使用直射光检测器和滤光片支架测定紫外-可见-近红外区域的双带通滤光片。图13 LIDAR中双带通滤光片的透过光谱图14为使用微小自动角度可变附件测定微小平面镜不同角度下的反射率。图14 LIDAR中微小平面镜不同入射角的反射率图15为使用标准Φ60 mm积分球和选配程序包测量车身涂料的太阳光反射率。图15 隔热涂料的全反射光谱从以上智能手机和汽车的相关测量案例中可以看出,无论是不同入射光角度的样品测量还是微小样品测定,通过正确使用变角度、自动化附件等,都可以高效率获取低噪声的光谱数据。4. 总结光学元件性能的准确评价离不开附件的正确选择,日立紫外可见近红外分光光度计UH4150是光学元件测量的领先者,具有优质平行光束性能技术和大型样品仓,可以安装多种附件。日立凭借优异的光栅技术和丰富经验,具有多种紫外可见分光光度计产品,不仅如此,日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,未来,日立将丰富完善产品线,不断实现技术创新。图片来源:日立高新(上海)国际贸易有限公司北京分公司*部分图片来源于网络https://pixabay.com/zh/images/search/ 如您想和工程师进一步交流,欢迎致电日立:400 630 5821
  • 孚昇电子收购新加坡电子元件测试中心-PR-Newswire
    波士顿2022年2月21日 // -- 孚昇电子(Fusion Worldwide) 收购了位于新加坡的大型电子元件测试公司 Prosemi Mfg Pte Ltd 。由于供应链经历了历史性的限制,导致周转时间过长,此次收购将进一步巩固孚昇电子提供世界级采购和交付的使命,同时提高其维持最高质量标准的能力。孚昇电子总裁Tobey Gonnerman表示:“孚昇电子和Prosemi的合作标志着我们公司的一个重要时刻。质量始终是我们业务的重心,此次收购展示了我们对卓越的不懈追求。我们期待着为客户提供尽可能短的周转时间,以应对不断变化的市场。”经过22年的发展,Prosemi已成为世界上一些最大的合同电子制造商(CEM)和原始设备制造商(OEM)中值得信赖的电子元件测试来源。孚昇电子业已卓越的质量标准将通过Prosemi最先进的设备、工艺流程和专业知识得到提升。Prosemi创始人兼首席执行官K.H. Siau表示:“Prosemi仍然致力于提供超越预期的最佳制造和测试服务。我们与孚昇电子在全球范围内的全新合作关系将帮助我们继续在半导体、电子产品和印刷电路板装配(PCBA)行业提供优质资源。”自2001年成立以来,孚昇电子一直坚定地履行其承诺,那就是“质量第一”。孚昇电子与Prosemi合计40年的行业专业知识表明未来有赖于持续追求卓越质量以及双方为实现这一未来所付出的努力。孚昇电子整套服务的此次扩展进一步推进了其目标,即针对不可避免的供应链冲击提供快速、一流的战略采购解决方案。
  • 2022难加工材料元件的超精密金刚石加工技术短课程培训
    2022难加工材料元件的超精密金刚石加工技术短课程培训https://b2b.csoe.org.cn/meeting/YSAOM2022SC.html制造业是国民经济的主体,是立国之本、兴国之器、强国之基。单点金刚石车削技术(SPDT)作为一种高效率、高精度的光学表面加工方法,可直接生产具有纳米级表面粗糙度和亚微米级形状精度的光学元件,已成为实现多种光学应用最佳的解决方案。本短课程主要针对难加工材料元件的加工技术进行介绍,以单点金刚石超精密机床为载体,结合物理光学、应用光学、材料力学、精密机械、光学设计、光学加工技术以及相关的应用知识等,介绍难加工材料光学元件的超精密可加工材料和面型金刚石加工技术在当下的发展与挑战、机遇和市场需求。以实践应用角度出发,结合加工材料、加工面型、金刚石刀具等方面介绍难加工材料光学元件的超精密金刚石加工技术,超精密切削的特点和加工表面质量影响规律,以及难加工材料元件能场复合超精密加工技术等方面知识,培养国家急需的高端制造行业的工程人才,为我国成为世界制造强国奠定技术应用基础。一、培训时间:2022年7月29日9:00-12:00(8:00-9:00签到)二、培训地点:长春国际会展中心大饭店三、主办单位:中国光学工程学会四、承办单位:中国光学工程学会先进光学制造青年专家委员会五、课程形式:授课式,实例解析六、课程说明:学员自带电脑,自带Zemax软件,完成培训发放培训证书七、讲师介绍: 薛常喜,长春理工大学光学工程学科教授,博士生导师,2011年香港理工大学从事博士后研究工作。主要从事光学设计与衍射光学、光学超精密制造技术及其应用方面的研究工作。现中国光学工程学会先进光学制造青年专家委员会副主任委员,全国光学和光子学标准化技术委员会光学材料和元件分技术委员会委员,中国光学学会光学制造技术专业委员会委员,红外与激光工程和应用光学期刊青年编委。现主持国家自然科学基金等国家级、省部级高层次科研项目。在国内外学术刊物发表论文50余篇,多篇论文被Spotlight on Optics和Edtior pick。获吉林省自然科技奖三等奖一项,吉林省自然科学学术成果奖二等奖一项,国防科学技术进步奖三等奖一项,兵器集团科技进步二等奖一项,博士学位论文获吉林省优秀博士学位论文。宗文俊,哈尔滨工业大学机电工程学院教授、博士生导师,目前为中国生产工程分会精密工程与微纳技术专业委员会委员、中国机械工程学会高级会员、国际纳米制造学会会员、亚洲精密工程与纳米技术协会会员。近20年来,一直从事天然金刚石刀具与微工具制造技术、可见光-红外宽频谱光学超精密车削技术研究,发表学术论文70余篇,编写专著1部。主持并参与了国家自然科学基金、国防基础科研核科学挑战计划与重点、国家重大科技专项、授权国家发明专利近30项。指导博士生获2020年中国机械工程学会上银优秀博士论文铜奖1人次,荣获机械工业联合会技术发明二等奖、国防科技进步三等奖、兵器工业集团科技进步二等奖等科研奖励。许金凯,长春理工大学机电工程学院教授,博士生导师。现为长春理工大学跨尺度微纳制造教育部重点实验室主任,精密制造及检测技术国家地方联合工程实验室主任。国家科技奖励评审专家,十三五“增材与激光制造”国家重点研发计划青年专家,机械工程学会极端制造分会第一届委员会委员,《International Journal of Extreme Manufacturing》期刊青年编委。长期从事精密超精密加工技术、跨尺度微纳制造技术领域的研究工作。近5年,主持国家重大专项课题、国家重点研发计划、国家自然科学基金重点项目等10余项国家、省部级科研任务,发表SCI学术论文30余篇,获授权发明专利25件,获省部级一等奖2项,二等奖1项,研究成果成功用于国家多个领域,促进了科技水平的进步。张建国,博士,华中科技大学机械科学与工程学院副教授,机械工程学科博士生导师,2014年日本名古屋大学获机械工程博士学位。主要从事椭圆振动金刚石微细雕刻技术研究,进行难加工材料(碳化钨、模具钢、单晶硅等)的微纳切削工艺开发,以推动具有先进功能微结构表面的新型光学元件在光电子产业的应用。在制造领域国际知名期刊发表SCI检索论文45篇,参编Springer英文专著1部,授权超精密制造领域专利5项。研究成果获得2020年《极端制造》优秀论文、2019年中日超精密加工国际会议优秀论文、2015年日本精密工学会研究奖励、2014年日本机械学会优秀论文、2011年日本砥粒加工学会优秀论文。2019年入选湖北省海外高层次人才青年项目,2021年入选华中科技大学第四批学术前沿青年团队,担任中国光学工程学会第一届先进光学制造青年专家委员会委员。八、难加工材料元件的超精密金刚石加工技术提纲第一部分 光学超精密车削技术概论1.1 超精密加工技术发展概述1.2 超精密加工技术分类1.3 超精密车削技术的加工材料和面型第二部分 超精密切削的特点和加工表面质量影响规律2.1 超精密切削的特点2.2 切削参数对加工表面粗糙度的影响2.3 金刚石刀具晶向和刀刃质量对加工表面粗糙度的影响2.4 工件材料特性对加工表面粗糙度的影响第三部分难加工材料光学元件的超精密金刚石切削技术介绍3.1 典型难加工光学材料及其应用3.2 超声振动金刚石切削技术简介3.3 超声振动金刚石切削装置的设计3.4 难加工材料超声振动切削材料去除机理3.5 光学功能表面超精密制造及其应用第四部分 难加工材料元件能场复合超精密加工技术4.1 高强难加工材料激光辅助微加工技术4.2 高精度深/薄零件超声复合加工技术4.3 高强难加工材料零件电化学加工技术2022光学自由曲面设计与检测短课程培训https://b2b.csoe.org.cn/meeting/YSAOM2022SC.html随着现代光学技术的快速发展,光学工程的成像光学技术和非成像光学技术发展迅猛,尤其是光学自由曲面的应用研究,成为光学工程领域的应用研究热点。光学自由曲面是光学照明、光学显示、光生物医学、光通讯与光传感等重要领域的关键核心器件,含有自由曲面元件的光学系统已在军事、商业等髙端成像系统得以应用,能够满足现代工业、生物医学、国防等众多领域对成像的要求,在现代光学工程领域中扮演着重要角色。本课程拟结合光学设计和光学制造的优势,主要介绍成像自由曲面和非成像自由曲面的设计、自由曲面制造以及自由曲面的检测技术及其相关案例,为光学自由曲面在VR、AR和HUD等光学工程领域快速发展和应用提供技术支撑,促进相关领域的更新换代技术的发展。一、培训时间:2022年7月29日13:30-16:30(12:30-13:30签到)二、培训地点:长春国际会展中心大饭店三、主办单位:中国光学工程学会四、承办单位:中国光学工程学会先进光学制造青年专家委员会五、课程形式:授课式,实例解析六、课程说明:学员自带电脑,自带Zemax软件,完成培训发放培训证书七、讲师介绍: 薛常喜,长春理工大学光学工程学科教授,博士生导师,2011年香港理工大学从事博士后研究工作。主要从事光学设计与衍射光学、光学超精密制造技术及其应用方面的研究工作。现中国光学工程学会先进光学制造青年专家委员会副主任委员,全国光学和光子学标准化技术委员会光学材料和元件分技术委员会委员,中国光学学会光学制造技术专业委员会委员,红外与激光工程和应用光学期刊青年编委。现主持国家自然科学基金等国家级、省部级高层次科研项目。在国内外学术刊物发表论文50余篇,多篇论文被Spotlight on Optics和Edtior pick。获吉林省自然科技奖三等奖一项,吉林省自然科学学术成果奖二等奖一项,国防科学技术进步奖三等奖一项,兵器集团科技进步二等奖一项,博士学位论文获吉林省优秀博士学位论文。于清华,中国科学院上海技术物理研究所研究员,博士生导师,上海市三八红旗手,长期专注于空间红外探测成像领域,开展自由曲面光学系统设计、研制和标定方法的研究,主持国家自然学科基金、国防预研、中科院青年创新促进会“优秀会员”基金等多项科研项目,作为科技部重点领域创新团队核心骨干参与国家重大型号任务,获得国家技术发明一等奖、中国科学院杰出科技成就奖、上海市巾帼创新新秀奖等多项科技奖励。近5年,发表代表性科技论文5篇,获授权发明专利6项,翻译学术专著1部。吴仍茂,博士,浙江大学特聘研究员,国家优青。2013年毕业于浙江大学获博士学位,后于2013-2016年期间分别在西班牙马德里理工大学和美国University of Arizona从事博士后研究工作,并于2017年4月入职浙江大学。主要从事自由曲面光束调控和新型成像技术的研究工作,在包括Optica、Laser & Photonics Reviews、Optics Letters等国际知名光学期刊上发表SCI论文50余篇。2017年获中国仪器仪表学会金国藩青年学子奖,2019年获阿里达摩院青橙奖,2020年获国家优秀青年科学基金项目资助,2021年获OSA Kevin P. Thompson Optical Design Innovator Award。沈华,博士,南京理工大学教授、博士生导师。美国加州大学洛杉矶分校(UCLA)访问学者。中国光学学会光学测试专业委员会秘书长,中国光学工程学会首届先进光学制造青年专家委员会常务委员。江苏省“青蓝工程”中青年学术带头人、江苏省“333高层次人才工程”。长期致力于高端激光精密制造与检测成像技术的创新研究工作,主持国家重点研发计划课题、国家自然科学基金、军委装发预研重点项目、江苏省重点研发计划等高层次项目20余项。获得国防科学技术发明二等奖1项、教育部科学技术发明二等奖1项、2019年度中国光学领域“十大社会影响力事件”、中国国际“互联网+”大学生创新创业大赛金奖项目指导教师、江苏省优秀本科毕业设计指导教师。现任国家卓越期刊《Chinese Optics Letters》期刊编委、中国激光杂志社首届青年编委会委员。八、光学自由曲面设计与检测培训提纲第一部分 光学自由曲面简介1.1 光学自由曲面的研究进展及历史1.2 光学自由曲面元件的设计与检测技术1.3 光学自由曲面元件的制造技术第二部分 非成像自由曲面的设计技术及案例2.1 非成像光学基本概念及原理2.2 太阳能光伏中的自由曲面设计简介2.3 自由曲面照明光束调控技术2.4 自由曲面LED照明及激光束整形设计案例第三部分 成像自由曲面的设计技术及案例3.1 光学自由曲面成像系统的结构选型3.2 光学自由曲面成像系统的设计方法3.3光学自由曲面成像系统的性能评价方法3.4光学自由曲面成像系统的装调与标定 第四部分 自由曲面的检测技术及案例4.1 自由曲面检测的特点与难点4.2 接触式自由曲面检测技术及典型案例4.3 基于计算全息的自由曲面检测技术及典型案例4.4 基于倾斜波面干涉术的自由曲面检测及典型案例九、报名人员要求:基础知识要求:参与培训人员需要经过基本的物理学和光学基础知识训练。名额有限,报名从速。1000元/人同时报名两门课程或者同一单位2人以上报名,可以享受9折优惠1.在线支付:线上报名完成后,可跳转到在线支付页面,选择“支付宝”在线完成支付。2.汇款转账:开户银行:工行北京科技园支行户名:中国光学工程学会账号:0200296409200177730费用包含培训、教材、发票、证书和餐费,其他费用自理,开具“培训费”发票报名网址:https://b2b.csoe.org.cn/registration/YSAOM2022SC.html十、同期活动:2022年先进光学制造技术及应用国际会议暨第二届国际先进光学制造青年科学家论坛https://b2b.csoe.org.cn/meeting/YSAOM2022.html十一、协议酒店:会议酒店:长春国际会展中心大饭店(吉林省长春市经济技术开发区会展大街100号)酒店预订方式:陈经理(18166846117)可享受会议价标间(双早):318元/天和298元/天十二、联系人:王海明 中国光学工程学会电话:022-59013420邮箱:wanghaiming@csoe.org.cn刘兴旺 中国光学工程学会电话:022- 58168885邮箱:liuxingwang@csoe.org.cn
  • 上海光机所将时域散斑技术成功运用于大尺寸光学元件测量
    p  上海光机所信息光学与光电技术实验室周常河课题组近期将双目测量和时域散斑技术相结合,应用于300mm口径大尺寸透镜毛坯测量,成功重建出透镜毛坯表面的三维形貌。该方法实现了大尺寸透镜的快速、低成本测量,相关成果发表在[Optics Express 27,10898(2019)]上。/pp  大尺寸光学元件,尤其是非球面元件,被广泛运用在大型激光装置,例如“神光”II综合实验激光装置中。在元件的生产过程中,表面检测至关重要。在透镜毛坯的粗研磨阶段,主要检测设备是三坐标测量机。三坐标测量机的测量精度很高,但是这种逐点测量方式的效率低,尤其是在测量大尺寸(例如米级)透镜毛坯时,大型三坐标测量机价格昂贵,且不易移动,不便于使用。/pp  该课题组提出,用双目光学三维测量方法重建透镜粗毛坯的表面。双目视觉原理类似于人眼的三维感知,如图1所示。左右两个不同位置不同角度放置的摄像机,同步拍摄毛坯表面图像,经过同源点匹配和视差计算,可以用三角法对毛坯表面进行三维重构。但是,由于透镜毛坯强散射特性,基于空域的结构光编码方法会出现解码误差。课题组提出用时域散斑技术进行时域方向的编码,实验中顺序投影20幅带通随机数字散斑图像,对于每个像素点,都有一个20维度的编码。通过比较左右待匹配点码值之间的汉明距,可以在极线方向寻找到同源点对。另一方面,偏振技术被运用于消除透镜毛坯的多次反射问题。最终,全场的三维点云数据在短时间内被成功重建出,如图2所示。/pp  相对于三坐标测量机,该方法实现了透镜毛坯表面的快速、全场、低成本的三维测量,是一个很有前景的测量方法,尤其是对米级尺寸的透镜毛坯测量具有重要的应用价值。/pp  该项研究成果得到了中科院前沿科学重点研究项目、上海市科委专业技术服务平台项目、上海市自然科学基金项目的支持。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 266px " src="https://img1.17img.cn/17img/images/201906/uepic/482c68fb-7372-43b1-b732-3fc94bc4fd4c.jpg" title="1.jpg" alt="1.jpg" width="600" height="266" border="0" vspace="0"//pp style="text-align: center "图1 双目三维测量系统结构图/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 235px " src="https://img1.17img.cn/17img/images/201906/uepic/fe72b6f5-fdf9-4e68-99b9-cb2ee607b7ed.jpg" title="2-2.jpg" alt="2-2.jpg" width="600" height="235" border="0" vspace="0"//pp style="text-align: center "图2 透镜毛坯的三维点云/p
  • 中山大学135.00万元采购原子层沉积
    基本信息 关键内容: 原子层沉积 开标时间: 2021-10-28 09:00 采购金额: 135.00万元 采购单位: 中山大学 采购联系人: 郑老师 采购联系方式: 立即查看 招标代理机构: 采联国际招标采购集团有限公司 代理联系人: 林先生 代理联系方式: 立即查看 详细信息 广东省中山大学材料学院等离子增强原子层沉积系统采购项目公开招标公告 广东省-中山市 状态:公告 更新时间: 2021-10-09 广东省中山大学材料学院等离子增强原子层沉积系统采购项目公开招标公告 广东省中山大学材料学院等离子增强原子层沉积系统采购项目公开招标公告 发布日期:2021年10月8日 项目概况 中山大学材料学院等离子增强原子层沉积系统采购项目 招标项目的潜在投标人应在高校电子招投标平台(http://www. szbidding.com)获取招标文件,并于2021年10月28日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:中大招(货)2021 907号/CLF0121GZ09ZC90 项目名称:中山大学材料学院等离子增强原子层沉积系统采购项目 预算金额:135.0000000 万元(人民币) 采购需求: 中山大学根据国家招投标法律法规和学校管理要求,拟以公开招标方式采购下列货物及其相关服务。欢迎符合资格条件的供应商投标。 1、招标采购项目内容及数量:等离子增强原子层沉积系统, 1套(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业属于工业。具体内容及要求详见公告附件招标文件)。 2、项目预算及经费来源: 项目预算135万元人民币。经费来源为财政性资金。 合同履行期限:交货时间:收到发货通知 150个日历天以内。交货地点:中山大学深圳校区。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无。 3.本项目的特定资格要求:(1)具备投标条件的中华人民共和国的法人或其它组织或者自然人;(2)符合《中华人民共和国政府采购法》第二十二条相关规定;(3)必须具有制造标的物或合法的供货和相关项目及安装售后服务的能力(4)投标人未被列入“信用中国”网站(www.creditchina.gov.cn)“失信被执行人”、“重大税收违法案件当事人名单”、“政府采购严重违法失信名单”;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间;(以代理机构于评标当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(www.ccgp.gov.cn)查询结果为准,同时对信用信息查询记录进行存档。如相关失信记录已失效或查询不到,则必须出具其信用良好的承诺书原件扫描件)(5)本项目不允许联合体投标。不接受中标备选方案。 三、获取招标文件 时间:2021年10月01日 至 2021年10月13日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:高校电子招投标平台(http://www. szbidding.com) 方式:详见“其他补充事宜”。 售价:¥400.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2021年10月28日 09点00分(北京时间) 开标时间:2021年10月28日 09点00分(北京时间) 地点:广州市新港西路135号中山大学西南区415号生物楼中山大学政府采购与招投标管理中心会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、招标文件获取方式:本项目以电子招投标形式进行,投标人可于中国政府采购网(http://www.ccgp.gov.cn)、高校电子招投标平台(http://www. szbidding.com)或采联国际招标采购集团有限公司(http://www.chinapsp.cn/)浏览招标公告,确认参与项目的合格投标人应使用企业数字证书(CA)登录高校电子招投标平台,缴纳平台服务费400元/标段(分项)后下载电子招标文件(格式为*.HZBJ)。高校电子招投标平台是获取电子招标文件的唯一途径。 2、报名方式及时间:2021年10月1日9:00至2021年10月13日17:00;登录高校电子招投标平台,凭企业数字证书(CA)在网上报名及获取招标文件及资料,否则不能参与本项目的投标。无高校电子招投标平台企业数字证书(CA)的投标商需按该平台电子认证的要求,提前办理企业数字证书(CA)。办理方式详见网址:http://ca.zhulong.com.cn/ 。本项目不需要现场报名确认,若报名期限届满后,获取招标文件的潜在投标人不足三家的,采购人将可能顺延报名期限并予公告。请各投标人留意网上公告,采购人不再另行通知。 3、电子投标文件的递交:投标人须在提交投标文件截止时间前完成电子投标文件(格式为*.HTBJ)的上传,网上确认电子签名,并打印“上传投标文件回执”,递交网址:http://www.szbidding.com。如果投标文件于递交投标文件截止时间未能上传完毕,该投标文件将视为无效投标文件。投标截止时间前未完成投标文件传输的,视为撤回投标文件。在递交投标文件截止时间前,投标人可以替换投标文件。 注:因合同签订和项目归档要求,中标人需在中标结果公告发布后的两个工作日内补交一正两副三套纸质版本投标文件至招标代理机构。 4、开标时间(投标截止时间)及地点:2021年10月28日9:00(具体时间按招标文件要求)于广州市新港西路135号中山大学西南区415号生物楼中山大学政府采购与招投标管理中心会议室,参加开标的投标授权代表需持有效身份证件。(学校停车场地有限,不对外提供停车场地) 5、评标时间及地点:2021年10月28日上午于中山大学政府采购与招投标管理中心(投标人不参加)。 6、本项目的发布、修改、澄清和补充通知将在中国政府采购网(http://www.ccgp.gov.cn)、高校电子招投标平台(http://www.szbidding.com/)及采联国际招标采购集团有限公司(http://www.chinapsp.cn/)发布,敬请各投标人留意,采购人不再另行通知。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中山大学 地址:广州市新港西路135号 联系方式:郑老师 020-84115084转810 2.采购代理机构信息 名 称:采联国际招标采购集团有限公司 地 址:广州市越秀区环市东路472号粤海大厦7、23楼 联系方式:林先生 020-87651688-344 3.项目联系方式 项目联系人:林先生 电 话: 020-87651688-344 附件: (货2021-907,发售稿)中山大学材料学院等离子增强原子层沉积系统采购项目.pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:原子层沉积 开标时间:2021-10-28 09:00 预算金额:135.00万元 采购单位:中山大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:采联国际招标采购集团有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 广东省中山大学材料学院等离子增强原子层沉积系统采购项目公开招标公告 广东省-中山市 状态:公告 更新时间: 2021-10-09 广东省中山大学材料学院等离子增强原子层沉积系统采购项目公开招标公告 广东省中山大学材料学院等离子增强原子层沉积系统采购项目公开招标公告 发布日期:2021年10月8日 项目概况 中山大学材料学院等离子增强原子层沉积系统采购项目 招标项目的潜在投标人应在高校电子招投标平台(http://www. szbidding.com)获取招标文件,并于2021年10月28日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:中大招(货)2021 907号/CLF0121GZ09ZC90 项目名称:中山大学材料学院等离子增强原子层沉积系统采购项目 预算金额:135.0000000 万元(人民币) 采购需求: 中山大学根据国家招投标法律法规和学校管理要求,拟以公开招标方式采购下列货物及其相关服务。欢迎符合资格条件的供应商投标。 1、招标采购项目内容及数量:等离子增强原子层沉积系统, 1套(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业属于工业。具体内容及要求详见公告附件招标文件)。 2、项目预算及经费来源: 项目预算135万元人民币。经费来源为财政性资金。 合同履行期限:交货时间:收到发货通知 150个日历天以内。交货地点:中山大学深圳校区。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无。 3.本项目的特定资格要求:(1)具备投标条件的中华人民共和国的法人或其它组织或者自然人;(2)符合《中华人民共和国政府采购法》第二十二条相关规定;(3)必须具有制造标的物或合法的供货和相关项目及安装售后服务的能力(4)投标人未被列入“信用中国”网站(www.creditchina.gov.cn)“失信被执行人”、“重大税收违法案件当事人名单”、“政府采购严重违法失信名单”;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间;(以代理机构于评标当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(www.ccgp.gov.cn)查询结果为准,同时对信用信息查询记录进行存档。如相关失信记录已失效或查询不到,则必须出具其信用良好的承诺书原件扫描件)(5)本项目不允许联合体投标。不接受中标备选方案。 三、获取招标文件 时间:2021年10月01日 至 2021年10月13日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:高校电子招投标平台(http://www. szbidding.com) 方式:详见“其他补充事宜”。 售价:¥400.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2021年10月28日 09点00分(北京时间) 开标时间:2021年10月28日 09点00分(北京时间) 地点:广州市新港西路135号中山大学西南区415号生物楼中山大学政府采购与招投标管理中心会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、招标文件获取方式:本项目以电子招投标形式进行,投标人可于中国政府采购网(http://www.ccgp.gov.cn)、高校电子招投标平台(http://www. szbidding.com)或采联国际招标采购集团有限公司(http://www.chinapsp.cn/)浏览招标公告,确认参与项目的合格投标人应使用企业数字证书(CA)登录高校电子招投标平台,缴纳平台服务费400元/标段(分项)后下载电子招标文件(格式为*.HZBJ)。高校电子招投标平台是获取电子招标文件的唯一途径。 2、报名方式及时间:2021年10月1日9:00至2021年10月13日17:00;登录高校电子招投标平台,凭企业数字证书(CA)在网上报名及获取招标文件及资料,否则不能参与本项目的投标。无高校电子招投标平台企业数字证书(CA)的投标商需按该平台电子认证的要求,提前办理企业数字证书(CA)。办理方式详见网址:http://ca.zhulong.com.cn/ 。本项目不需要现场报名确认,若报名期限届满后,获取招标文件的潜在投标人不足三家的,采购人将可能顺延报名期限并予公告。请各投标人留意网上公告,采购人不再另行通知。 3、电子投标文件的递交:投标人须在提交投标文件截止时间前完成电子投标文件(格式为*.HTBJ)的上传,网上确认电子签名,并打印“上传投标文件回执”,递交网址:http://www.szbidding.com。如果投标文件于递交投标文件截止时间未能上传完毕,该投标文件将视为无效投标文件。投标截止时间前未完成投标文件传输的,视为撤回投标文件。在递交投标文件截止时间前,投标人可以替换投标文件。 注:因合同签订和项目归档要求,中标人需在中标结果公告发布后的两个工作日内补交一正两副三套纸质版本投标文件至招标代理机构。 4、开标时间(投标截止时间)及地点:2021年10月28日9:00(具体时间按招标文件要求)于广州市新港西路135号中山大学西南区415号生物楼中山大学政府采购与招投标管理中心会议室,参加开标的投标授权代表需持有效身份证件。(学校停车场地有限,不对外提供停车场地) 5、评标时间及地点:2021年10月28日上午于中山大学政府采购与招投标管理中心(投标人不参加)。 6、本项目的发布、修改、澄清和补充通知将在中国政府采购网(http://www.ccgp.gov.cn)、高校电子招投标平台(http://www.szbidding.com/)及采联国际招标采购集团有限公司(http://www.chinapsp.cn/)发布,敬请各投标人留意,采购人不再另行通知。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中山大学 地址:广州市新港西路135号 联系方式:郑老师 020-84115084转810 2.采购代理机构信息 名 称:采联国际招标采购集团有限公司 地 址:广州市越秀区环市东路472号粤海大厦7、23楼 联系方式:林先生 020-87651688-344 3.项目联系方式 项目联系人:林先生 电 话: 020-87651688-344 附件: (货2021-907,发售稿)中山大学材料学院等离子增强原子层沉积系统采购项目.pdf
  • 国家重点研发计划 | 疾病标志物单分子免疫敏感元件及分析仪器 项目启动
    4月26日,以“聚焦智能传感器 厚植新质生产力”为主题的国家重点研发计划“智能传感器”重点专项“疾病标志物单分子免疫敏感元件及分析仪器”启动暨实施方案论证会在杭州市滨江区聚光中心召开。本项目由聚光科技(杭州)股份有限公司(以下简称:聚光科技)生命科学板块旗下杭州聚致生物科技有限公司(以下简称:聚致生物)牵头。由中科院上海微系统与信息技术研究所、中科院苏州生物医学工程技术研究所、上海交通大学、上海交通大学附属医学院第九人民医院、浙江大学、广州市第一人民医院协办,浙江省科学技术厅、杭州市科学技术局、滨江区科学技术局出席了会议,共30余人参加会议。“聚焦智能传感器 厚植新质生产力”主题会议成功举办2024年中央经济工作会议提出,要以科技创新推动产业创新,发展新质生产力。为更好地发挥智能传感器在新质生产力发展浪潮中的“先行官”作用,进一步推动智能传感器在生命健康领域的高质量发展,我们借此项目启动会的契机,举办了“聚焦智能传感器 厚植新质生产力”主题会议。杭州市科学技术局党组成员、副局长 楼立群指出,聚光科技在环境等领域做出的重要贡献,并表达了对其在生命医学领域发展的支持。他进一步表示,希望国产仪器可以不断提升仪器的灵敏度、精密度、重复性,逐步替代进口仪器,提高国产仪器在全球医疗行业的影响力。聚光科技生命科学事业部总经理 吕全超对各位领导与专家对本项目的支持表示衷心的感谢,并在会上表示,期望本项目可以突破关键技术瓶颈,从科学研究到技术创新形成综合解决方案,推动我国科学技术的健康发展。中国科学院上海微系统与信息技术研究所 曹俊诚作为本项目负责人,分享了项目立项情况,并表示希望通过本领域多家优势单位的协同创新,提升我国在生物医学领域核心关键器件自主研制和系统可控开发的核心竞争力。随后,吕全超与曹俊诚在浙江省科学技术厅高新处 张毫杰、杭州市科学技术局党组成员、副局长 楼立群,滨江区科学技术局党组成员、副局长 孔照哲,杭州市科学技术局办公室主任 姚寿坤,以及现场众人的见证下,共同宣布了国家重点研发计划“智能传感器”重点专项正式启动。项目组全体成员承诺,将以百分百的热情和专业精神,全力以赴,为项目的成功而努力奋斗。会上,曹俊诚为五位特聘专家,中国人民解放军总医院教授 张立海、中国科学院北京纳米能源与系统研究所研究员 李舟、西安理工大学教授 施卫、西湖大学副校长 仇旻、复旦大学附属华山医院放射科主任 姚振威 颁发聘书。会议最后,吕全超宣布项目攻关单位组建创新联合体。创新联合体是一种实现科技创新发展、攻克关键核心技术的而有限组织形式。习近平总书记多次强调,“要发挥企业出题者作用,推进重点项目协同和研发活动一体化,加快构建龙头企业牵头、高校院所支撑、各创新主题相互协同的创新联合体,发展高效强大的共性技术共给体系,提高科技成果转化成效。”聚光科技绿色科技展厅参观交流在本次会议中,各方领导和专家们在吕全超的带领下参观了聚光科技绿色科技展厅,全面了解了聚光科技的发展历程、业务布局以及在智慧环境、智慧工业、智慧实验室、生命科学等领域的自主创新成果以及产业化应用。吕全超表示,聚光科技作为高端科学仪器领军企业,是新质生产力的典型代表企业。在未来,公司将坚持开放共赢的态度,以解决制约产业发展的关键核心技术问题为目标不断前行。项目启动暨实施方案论证会圆满召开在主题会议成功举办后,吕全超宣布进行“疾病标志物单分子免疫敏感元件及分析仪器”的项目汇报。汇报会上,各项目负责人依次对项目取得的重要研究成果、具体工作及未来规划进行了阐述和说明。各课题小组负责人分别分享了相关课题内容、原理及创新方向,并对课题具体的实施方案进行了详细阐述。报告结束后,线上线下专家针对该项目进行了热烈的讨论。随着医疗行业的发展,市场对产品的要求也在不断提高,相较于化学发光,单分子免疫产品能更好地适应低丰度蛋白检测的需求,有较好的发展前景。当然,中国人民解放军总医院主任医师 张立海,中国科学院北京纳米能源与系统研究所研究员 李舟也从项目本身对我们提出了更高的要求,我们也将在方案实施的过程中予以提升。后续项目组将认真落实专家组建议,脚踏实地,高质量地完成项目研究任务,为癌症早期筛查指标、阿尔兹海默病指标以及细胞因子的联合检测做出重要贡献。微信扫一扫关注该公众
  • 国产仪器研制放异彩-记2018光谱大会原子光谱分论坛
    p  strong仪器信息网讯/strong 2018年月13-14日,“2018光谱大会”在北京蟹岛会议中心召开。此次会议由北京理化分析测试技术学会主办,清华大学、北京大学、中国科学院化学研究所、国家重有色金属质量监督检验中心协办,北京理化分析测试技术学会光谱分会承办。br//pp  光谱技术作为现代分析检测技术中的一个重要组成部分,在分析领域中占据着举足轻重的地位,而其发展也反映了分析技术的不断改革与创新。回顾过去、展望未来,清华大学教授、北京理化分析测试技术学会副理事长光谱分会理事长孙素琴倡议,并实施召开了“2018光谱大会”。该会议以“接地气”的光谱分析技术发展为主,兼顾光谱前沿研究最新进展,老中青的光谱人齐聚一堂。来自全国高等院校、科研机构和各企业单位近300名光谱相关人员参会。/pp  13日上午大会报告环节结束后,当天下午原子光谱与分子光谱两个分论坛同时举行。本次原子光谱分论坛共设置了9个邀请报告,内容既有将原子光谱(质谱)技术用于当前热点的医学检验领域,也有用于较传统的食品安全、材料等领域,同时也有最新的仪器技术研制进展,最后则以原子光谱分析技术综述报告结束。/pp  strong应用研究热点br//strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/314fd32d-c378-4953-9031-be4cc54bdf38.jpg" title="IMG_0167.jpg" alt="IMG_0167.jpg"//pp style="text-align: center "北京大学公共卫生学院王京宇教授strong/strongbr//pp  近年来毒物兴奋效应( hormesis)成为毒理学中关注的热点,它是指化学物对生物体在高剂量时表现负面影响,但在低剂量时却表现为有益作用的现象。而其相应提出的毒物兴奋模型也成为一种新的剂量-效应关系模型,并在环境、医学、公共卫生等领域产生了一定的影响。北京大学公共卫生学院王京宇教授早在2002年即提出了“生命元素组”概念。此次报告中王京宇教授介绍了他利用元素组研究了镧元素浓度与大肠杆菌hormesis效应的机制进展。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201809/uepic/59b1a100-70f3-4f9f-b2ce-62d57b1003ee.jpg" title="IMG_0179.jpg" alt="IMG_0179.jpg"/br/span style="text-align: left "岛津公司分析测试仪器市场部郑伟产品经理/spanbr//pp style="text-align: left "  异物分析是指分析产品上的微小嵌入异物或表面污染物、析出物等的技术。例如对表面嵌入异物、斑点、油状物、喷霜等异常物质进行定性分析,藉此找寻污染源或配方不相容者,是改善产品最常用的分析方法之一。对异物分析而言,适用于金属和无机物元素分析的 EDX 与适用于高分子和有机物分析的 FTIR 相结合的方法十分有效。上述两种方法均可实现非破坏性分析,非常迅速和简便,因此非常适合用于异物分析。此次论坛岛津公司分析测试仪器市场部郑伟产品经理即介绍了EDX和FTIR及其联用技术在用于异物分析时,从硬件到软件方面所做的更新、以及实际应用案例。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201809/uepic/b2f26ae7-bba5-4cd5-a1db-dbb511fa68da.jpg" title="IMG_0195.jpg" alt="IMG_0195.jpg"/br/北京疾病预防控制中心刘丽萍研究员/pp  元素在食品中以不同的形态存在,元素对于人体的作用和元素的形态密切相关。这里所说形态是指该元素在不同种类化合物中的表现或分布。砷就是这样的一种元素,不同形态砷之间的毒性差异很大,如以有机砷形式存在的砷糖、砷甜菜碱几乎没有毒性,而无机砷化物的毒性却很高。所以,对于砷这样的元素,只了解其在食品中的总量还是不够的,在了解总量的同时,更希望了解砷元素在食品中的形态组成。北京疾病预防控制中心刘丽萍研究员报告中介绍了《GB 2762-2017食品安全国家标准 食品中污染物限量》、《GB 5009.11-2014 食品安全国家标准 食品中总砷及无机砷的测定》等标准的制修订情况。GB 5009.11-2014中无机砷的测定增加了液相色谱-原子荧光光谱法、液相色谱-电感耦合等离子体质谱法 无机砷的测定并不是适用所有食品,而是适用于稻米、水产动物、婴幼儿谷类辅助食品、婴幼儿罐装辅助食品中无机砷(包括砷酸盐和亚砷酸盐)含量的测定。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/b463abf5-a711-4bf1-b44a-f6d87a5bb566.jpg" title="IMG_0252.jpg" alt="IMG_0252.jpg"//pp style="text-align: center "苏州博飞克分析技术服务有限公司技术总监苏耿贤/pp  辉光放电质谱(GDMS)在几乎不需要样品制备的情形下即可对无机粉末、镀膜/基材和非导电性材料直接检测,能够提供各种元素的信息,并且可以提供包括镀层和基材从100%到ppb级别的主要元素、微量元素的浓度信息。苏州博飞克分析技术服务有限公司技术总监苏耿贤先生介绍了GDMS的特点、国内外标准等情况。苏州博飞克公司在发挥GDMS功能方面做了很多工作,如建立了多样取样方法、高纯样品处理方法、定量分析方法等。/pp  strong国产仪器创新研制成果/strong/pp style="text-align: center "  本次论坛让人印象深刻的是多家国产仪器厂商、科研机构的专家做了多种光谱仪器的研制工作进展,体现了我国国产光谱分析仪器坚持创新并取得了不错的成果。br/img src="https://img1.17img.cn/17img/images/201809/uepic/d2cee81d-9271-4c16-9e70-70dec13340be.jpg" title="IMG_0208.jpg" alt="IMG_0208.jpg"/br/海光仪器梁敬  /pp  火焰在原子吸收光谱、原子荧光光谱、火焰光度计等光谱分析仪器,乃至气相色谱、有机质谱等分析仪器中都有应用。目前的点火技术主要有电炉丝、高压放电、热电偶等方式,不过,其中也存在着点火成功率低、火焰燃烧过程中易熄灭以及安全问题等痛点。海光仪器梁敬在报告中介绍了公司今年推出的新款原子荧光仪器HGAF-900系列中已经应用的免维护点火技术。该高可靠免维护点火技术由百万次免维护点火器件、温度/海拔高度补偿、高灵敏气体泄漏监测等六大体系支撑。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201809/uepic/c2c9c7b6-6b92-43ce-b1f7-59907aa5785d.jpg" title="IMG_0229.jpg" alt="IMG_0229.jpg"//pp style="text-align: center "北京矿冶研究总院史烨弘/pp  《中国制造2025》把发展智能制造作为主攻方向,智能制造需工业化与信息化相结合,而工业过程在线分析检测技术是信息化的基石。常见的过程在线分析技术主要有气相色谱、近红外光谱、拉曼光谱、激光诱导击穿光谱(LIBS) 、质谱、核磁共振波谱等。其中,近红外、质谱、LIBS三类分析仪器的应用领域几乎覆盖所有流程工业,具有巨大的应用市场。LIBS具有远程、在线、原位、快速、无需制样等特点,可用于矿物、金属等无机成分在线分析。北京矿冶研究总院史烨弘报告中介绍了北矿院牵头承担的国家重点研发计划重大科学仪器专项-磷矿浮选工艺过程在线LIBS分析系统及其应用。该系统研制成功后还可以应用于原矿、精矿、尾矿品位浮选工艺的在线检测,以及药剂的在线检测等。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/367b97a8-b2fa-47c1-a56c-18cf584d610c.jpg" title="IMG_0271.jpg" alt="IMG_0271.jpg"//pp style="text-align: center "钢研纳克刘明博/pp  能量色散X射线荧光光谱(EDXRF)具有无损、快速的特点 仪器简单,有台式、便携、手持等多种型式 其应用领域涵盖了冶金、建材、环保、食品等。不过常规EDXRF光斑尺寸超过5mm,只能分析均质样品。在一些特殊领域,这样的技术特点并不能满足其需求,如现代冶金工业需要在大尺寸范围内对细小夹杂物(直径小于10um)的成因来源进行研究,就需要微观局部的无损检测。钢研纳克刘明博报告中介绍了公司根据相关需求研制的微区扫描型EDXRF(uEDXRF)仪器NX-SCAN 200的情况。该uEDXRF应用了多毛细管X射线透镜技术,相对于同样焦斑大小(同样长度)的小孔准直器,多毛细管X射线透镜技术的光通量提高了100倍以上。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/c58bbc1a-183c-4d7d-b0ed-61de41ec43fa.jpg" title="IMG_0280.jpg" alt="IMG_0280.jpg"//pp style="text-align: center "北京瑞利付国余/pp  相比较火花直读光谱,电弧发射光谱可直接检测粉末状样品,广泛应用于国家地质调查、有色冶金材料、半导体材料等领域。在AES-7100的基础上,北京瑞利推出了采用CMOS传感器的AES-8000全谱交直流电弧发射光谱仪。报告中,北京瑞利的付国余介绍了AES-8000的技术特点及应用情况。AES-8000采用了Ebert-Fastic光学系统及三透镜光路+CMOS传感器为核心构建。最新的CMOS传感器及基于FPGA技术、数据处理技术平台,仪器指标性能显著提升。br//pp  最后,中实国金郑国经研究员做题为“原子光谱分析技术的发展动态及应用前景”的综述报告。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/32a888a7-b26a-45c8-9770-9ddf9ab53f69.jpg" title="IMG_0292.jpg" alt="IMG_0292.jpg"//pp style="text-align: center "中实国金郑国经研究员/pp  如今,原子光谱分析从基本理论研究到实用技术已经发展得相当成熟,已经处于高端制造水平 商品化仪器普遍功能稳定可靠,不断向高精密度和高可靠性发展 适用于各种分析要求,广泛应用于工业生产和科技领域。不过,原子光谱分析技术创新的脚步从未停歇,包括通过核心零部件创新而推动光谱仪器的创新,如改进分光元件及分光系统构架进一步提高光谱分辨率 研究快速光谱信息获取新机制和新元件、研制新型激发光源、引入新进样技术等 这些对于光谱仪器的分析功能完善和分析潜力发掘仍具有研究意义和发展潜力。br//ppbr//p
  • 声音和远见的世纪人生
    仪器信息网讯 Per V. Brü el, 世界领先的声学与振动测量公司Brü el & Kjæ r的创始人之一,将于2015年3月6日迎来百岁生日。  声学与振动先驱Per V. Brü el先生即将于2015年3月6日迎来100岁生日  在这具有里程碑意义的重要时刻,Brü el先生将回顾过去一个世纪所扮演的多重非凡角色&mdash &mdash 工程师、有远见的发明家、跨国公司创始人、飞行员,以及开拓新市场的先驱。  &ldquo 毫不夸张地说,是他创造了这个领域,因为在他起步的那个年代,工业领域根本没有对声音和振动进行测量,&rdquo Brü el & Kjæ r 振动校准系统产品经理,与Brü el先生共事20多年的Torben Rask Licht说,&ldquo Brü el先生是制定声学与振动领域标准和确立其重要性的驱动力。用今天的术语来说,他能把想法品牌化。&rdquo   作为一个拥有丹麦技术大学声学博士学位的年轻工程师,Brü el先生在1930年代末1940年代初实现了他的最初突破&mdash &mdash 他开发了世界上第一台声学分析仪,以及第一个商业化的压电加速度计(4303型)。  &ldquo 我成功地创造了世界上第一台声学分析仪,&rdquo Brü el先生说,&ldquo 在此之前没有人做过类似的东西。我们做了两份,这成为我和Viggo Kjæ r创建Brü el & Kjæ r公司以后的第一台商业仪器。&rdquo   在早期,主要的目的是使用这些仪器来测量和降低振动和噪声水平。&ldquo 即使在那时我们也可以看到噪声是我们这个时代面临的最大问题之一,它每天影响着数以百万的人们,&rdquo Brü el先生说,&ldquo 我们的仪器不仅可以测量噪声,还可以帮助客户识别和消除噪声问题。&rdquo   对于Brü el和Kjæ r两人来说,另一个事实也变得很清晰&mdash &mdash 虽然可能的应用范围十分广泛,汽车和航空将成为主要市场。在这两个行业中,声学和振动仪器可以使得制造商了解产品在真实环境下的状况,从而帮助制造商改善产品的安全性和舒适性。Brü el先生创导了产品研发,例如革命性的电平记录器和传声器,这些产品设定了测量准确性和稳定性的新标准。  在Brü el先生的百岁生日之际,我们可以认定一个有趣的事实&mdash &mdash 他和Kjæ r先生战胜工程挑战的豪迈激情带来的声学和振动创新贯穿了整个产品生命周期&mdash &mdash 从早期设计的建模到最终产品的生产,再到运行维护&mdash &mdash 包括汽车、航空航天和电信等多个行业。Brü el & Kjæ r公司今天提供的声学和振动解决方案直接传承于Brü el先生的早期发明。他和Viggo Kjæ r先生创建的Brü el & Kjæ r公司依然遵循着两位合伙人共同制定的正确指导方针在运行。  &ldquo 今天的Brü el & Kjæ r是Brü el先生的行动和远见的反映,&rdquo Brü el & Kjæ r董事总经理Lars Rø nn说,&ldquo 我们的公司文化,我们引以为傲的产品质量,以及我们对创新的专注都源于最初的那些日子。如果Brü el & Kjæ r是声学与振动的代名词,那是因为我们依然完全认同Brü el先生和Viggo Kjæ r先生教给我们的初衷。祝您100岁生日快乐,Brü el先生。&rdquo   Brü el & Kjæ r创始人:Per V. Brü el(站立者,中间)和Viggo Kjæ r(站立者,右一)(1958)Brü el & Kjæ r 供稿
  • 超越摩尔定律?厚度仅0.7 nm!台湾团队成功研发出单原子层二极管
    p  科学家除改善电路中晶体管基本架构外,也积极寻找具有优异物理特性且能微缩至原子尺度( 1纳米)的晶体管材料。/pp  芯科技消息,半导体技术蓬勃发展,但面对集成电路微缩化的3纳米制程极限,科学家除改善电路中晶体管基本架构外,也积极寻找具有优异物理特性且能微缩至原子尺度( 1纳米)的晶体管材料。/pp  成功大学、台湾“科技部”、同步辐射研究中心合作研发出仅有单原子层厚度(0.7纳米)且具优异的逻辑开关特性的二硒化钨(WSesub2/sub)二极管,并在《自然通讯 Nature Communications》杂志上发表研究成果。/pp style="text-align: center "img width="447" height="500" title="1.jpg" style="width: 447px height: 500px " alt="1.jpg" src="https://img1.17img.cn/17img/images/201811/uepic/23354494-092f-4f45-a23e-f3f6ab8d514a.jpg" border="0" vspace="0"//pp  根据研究团对介绍,二维单原子层二极管的诞生,更轻薄,效率更高,除了可超越摩尔定律进行后硅时代电子元件的开发,以追求元件成本/耗能/速度最佳化的产业价值外,还可满足未来人工智能芯片与机器学习所需大量计算效能的需求。/pp  二维材料具有许多独特的物理与化学性质,科学家相信这些性质能为计算机和通信等多方领域带来革命性冲击。成大与同步辐射研究中心团队说明,其中与石墨烯(Graphene)同属二维材料的二硒化钨(WSe2),是一种过渡金属二硫族化合物(Transition Metal Dichalcogenides, 简称TMDs),能在单化合原子层的厚度(约0.7纳米)内展现绝佳的半导体传输特性,比以往传统硅半导体材料,除了厚度上已超越3纳米的制程极限外,可完全满足次世代集成电路所需更薄、更小、更快的需求。/pp  研究团队利用同时兼具高亮度/高能量解析/高显微力的台湾“三高”同步辐射光源,成功观察到可以利用搭载二维材料的铁酸铋(BiFeO3)铁电氧化物基板,能有效地在纳米尺度下改变单原子层二硒化钨半导体不同区域电性。/pp  指导该计划的成大教授吴忠霖表示,相较以往只能利用元素参杂或加电压电极等改变电性方式,最新发表的研究无需金属电极的加入,是极重大的突破。/pp  该研究团队也解释,这项研究利用单层二硒化钨半导体与铁酸铋氧化物所组成的二维复合材料,展示调控二维材料电性无需金属电极的加入,就能打开和关闭电流以产生1和0的逻辑信号,这样能大幅降低电路制程与设计的复杂度,以避免短路、漏电、或互相干扰的情况产生。/pp  由于二维材料极薄,能如同现今先进的晶圆3D堆栈技术一样,透过堆栈不同类型的二维材料展现不同的功能性。研究团对认为,未来若能将此微缩到极限的单原子层二极管组合成各种集成电路,由于负责运算的传输电子被限定在单原子层内,因此能大幅地降低干扰并能增加运算速度。/pp  研究团对期望,若这项技术持续精进,预期可超过现今计算机的千倍、万倍,而且所需的能量极少,大量运算时也不会耗费太多能量达到节能的效果,其各项优点将对现今数字科技发展带来重大影响,团队也举例,或许未来手机充电一次就能连续使用1个月,以现阶段最火的自动驾驶汽车来说,如果所有的感测、运算速度都比现在快上千、万倍,视频中的未来汽车可能再也不是梦想。/pp /p
  • 2023年金属材料产业质量提升技术交流会暨压力管道元件型式试验规则宣贯会盛大召开
    11月24日,由钢研纳克检测技术股份有限公司(以下简称“钢研纳克”)与国家钢铁产品质量检验检测中心联合举办的“2023年金属材料产业质量提升技术交流会暨压力管道元件型式试验规则宣贯会”在北京盛大召开。本次大会邀请石油石化、核电和压力容器制造行业物资采购、工程设计和材料研究的权威专家,及规则主要起草单位出席会议,并作特邀报告,来自金属材料管材行业的140余家企业、240余位代表参加了此次会议。钢研纳克党委委员、副总经理(国家钢铁产品质检中心副主任)鲍磊主持会议。 致辞环节 钢研纳克党委书记、董事长、总经理(国家钢铁产品质检中心主任)杨植岗在致辞中提到,2023年是全面落实党的二十大精神的开局之年,要认真贯彻落实中共中央、国务院印发的《质量强国建设纲要》。他指出,金属材料作为国家先进制造业基础材料中的重中之重,其质量保障是国家综合实力的集中体现和重要标志。他表示,钢研纳克作为我国金属材料检测技术的发源地,已经形成以检验检测、认证评价、科学仪器、标准(含实物标准)、计量校准、腐蚀防护、实验室能力验证为技术要素的材料产业质量基础设施体系。他希望,通过此次大会,钢研纳克能和与会的权威专家、学者、厂商代表共同探讨我国金属材料产业高质量发展之道,携手推动金属材料产业的高质量发展。 主题报告 中国石化工程建设有限公司技术总监王金光作《石油化工承压设备用高端钢管现状及发展》主题报告。中国寰球工程有限公司、管道材料专业腐蚀与防护高级工程师马越作《炼油装置中的主要腐蚀类型及防护》主题报告。中国石化物资装备部、供应链管理室高级主管胡鹏军作《基于供应链管理的产品质量评价介绍》主题报告。中国核电工程有限公司、研究员级高级工程师路晓晖作《核电用管材简介》主题报告。哈尔滨锅炉厂有限责任公司、材料研究所副所长王硕作《新型电力系统和清洁高效工业系统对材料的需求》主题报告。冶金工业信息标准研究院、冶金标准化研究所钢管部主任、全国钢标准化技术委员会钢管分技术委员会副秘书长,李奇作《我国压力管道元件用钢管标准新进展》主题报告。钢铁研究总院有限公司、不锈钢及耐蚀合金研究部主任宋志刚作《不锈钢及耐蚀合金组织均匀性控制》主题报告。钢铁研究总院有限公司、工程用钢研究院院长助理、兼能源石化用钢项目部主任、中国金属学会低合金钢分会理事,贾书君作《高等级管道理化性能统计及质量可靠性因素识别》主题报告。钢研纳克检验认证副总经理、国家钢铁产品质检中心评审部主任,罗静作TSG D7002-2023《压力管道元件型式试验规则》新版特种设备法规解读。 大会活动 钢研纳克党委书记、董事长、总经理杨植岗与党委委员、副总经理鲍磊,为采用新材料、新工艺、新技术,且通过自愿性产品认证工厂检查、产品性能测试的制造单位,颁发“钢研纳克认证标识”授权证书。本次会议的成功举办,为材料研发、制造和应用各方搭建了技术交流与合作的桥梁,极大地推动了金属材料产业质量提升。未来,钢研纳克将与大家携手,共同为落实质量强国战略、推动质量效益提升贡献纳克人的智慧和力量! 精彩集锦
  • 110万!农检中心采购原子吸收、微波消解
    一、项目基本情况项目编号:JF2022(NH)WZ0107项目名称:农检中心设备购置(原子吸收光谱仪、微波消解仪)采购方式:公开招标预算金额:1,100,000.00元采购需求:品目号品目名称采购标的数量(单位)技术规格、参数及要求最高限价(元)1-1农林牧渔专用仪器原子吸收光谱仪1(套)详见(二)700,000.001-2农林牧渔专用仪器微波消解仪1(套)详见(二)400,000.00本合同包不接受联合体投标二、采购仪器技术参数要求A(原子吸收光谱仪):1、仪器名称:石墨炉原子吸收光谱仪2、数量:1套3、用途:测定食品、材料、环境等样品中痕量元素的含量。4、工作条件:4.1 环境温度:5--35ºC4.2 相对湿度:8--80%4.3 电源:220V±10%,交流50Hz5、仪器性能及技术要求基本描述:原子吸收光谱仪采用石墨炉原子化,背景采用可变磁场强度塞曼扣背景方式,含自动进样器、仪器工作站、循环冷却水仪等配套附件(提供产品彩页证明材料)。5.1 光学系统:5.1.1 波长范围:190-900nm;波长示值误差:≤±0.2nm,波长重复性:≤±0.15nm;(提供彩页证明材料)▲5.1.2 单色仪:C-T型全息平面衍射光栅或消像差的C-T型单色器(提供彩页证明材料)▲5.1.3 光栅刻线密度1800条/mm(提供彩页证明材料)5.1.4 狭缝:有四挡或以上的狭缝宽度,并可自动选择。(提供彩页证明材料)▲5.1.5 焦距≥330mm。(需提供彩页证明材料)▲5.1.6 检测器:光电倍增管检测器(提供彩页证明材料)5.1.7 光学室:光学系统全部采用石英涂层的反射性光学元件,无透射、折射光学元件,提高光通量。▲5.1.8 元素灯灯位:8灯位(提供彩页证明材料)5.1.9 元素灯座:固定灯座,自动准直,无须移动,自动选灯。▲5.1.10 背景扣正:石墨炉采用横向塞曼背景校正,可校正2.5A以上的背景。(需提供彩页证明材料)5.2 石墨炉部分5.2.1 温度范围:室温-3000ºC;温差小于±10°C;最大升温速率:≥2000度/秒。(需提供彩页证明材料)5.2.2 气体控制:二进制气体控制,保护气内外独立自动控制,有节气功能,延长石墨管寿命。▲5.2.3 石墨炉加热方式:带多段程序及温度区域稳定控制技术的纵向加热方式。(提供彩页证明材料)5.2.4 石墨炉加热电源:交流式加热(提供彩页证明材料)5.2.5 温度传感器:采用高频快速光纤或CCD色度温控测温,结合动态反馈温度控制系统。5.2.6 配备石墨炉进样可视系统,对石墨炉进样、原子化状态进行实时观测监控。(提供软件界面截图)5.2.7 保护功能:能够对气体的压力和流量等自动监控。石墨炉温度、冷却水、废液排放等进行监控。在意外情况下能自动切断气路、加热电源,停止工作并指示出故障产生的可能原因。5.2.8 具有自动样品方法开发功能,对每一元素的测量参数自动优化并推荐最佳值,提高效率。5.2.9 石墨炉典型检出限(验收指标):Pb 0.2ug/L;Cd 0.02ug/L;5.3 石墨炉自动进样器:50位以上样品瓶位,进样量:1-50ul,进样精度:±0.1ul,进样重复性:RSD≤1%,具有自动加入基体改进剂,样品稀释功能,含防尘设计。(提供产品彩页证明材料)5.4 软件:支持中文WINDOWS,在分析样品的同时,能同时进行数据处理。附有全汉化版本及中文在线帮助,及全套中文操作手册,有远程诊断功能。(提供软件截图)5.5 详细配置,包括以下部分:5.5.1 石墨炉主机(含仪器控制操作系统软件)1台5.5.2 原子吸收控制操作系统软件(中文版)1套5.5.3 冷却循环水机1台5.5.4 可视系统1套5.5.5 与原子吸收主机同品牌热解涂层石墨管100根5.5.6 工作站电脑1套5.5.7 图文输出设备1台5.5.8 石墨炉自动进样器毛细管1套5.5.9 与原子吸收主机同品牌原装空心阴极灯:元素灯Pb、Cd、Ni、Cr各1支5.5.10 自动进样器备件:2ml样品杯1000个,基体改进杯/试剂杯5个B(微波消解仪):1、用途:用于各种样品的消解和萃取2、工作条件2.1 环境温度0-40℃2.2 适用电源220V(AC),50HZ2.3 微波发射频率2450MHz3、技术指标:3.1 硬件部分▲3.1.1 采用双磁控管微波控制技术,微波输出功率≥1800W;3.1.2 微波发射方式脉冲和非脉冲可选,并有微波功率曲线以于证实。磁控管终身保修。(提供彩页证明材料)3.1.3 满功率工作时,微波泄漏量≤0.05mW/cm2.(提供国际认可的标准检测方法及数据证明材料),以保证操作人员健康。3.1.3 多维微波能量输出或双向波导输出技术,以保证腔体内能量分布均匀和微波能量最优化。▲3.1.4 大微波消解腔体,容积≥66L。3.1.5 腔体内具有多层防腐耐高温聚四氟乙烯或特氟龙涂层,具有≥5年的防腐质量保证3.1.6 不锈钢门体可自吸式关闭,有效防爆、防微波泄露作用,具有自动平移泻压功能,遇到意外事故可自动迅速向外平移,解除隐患后能自动恢复原状。(提供腔内爆炸平移泄压功能的演示视频)3.1.7 系统运行时自动落锁,门体打开后自动切断微波,确保操作人员安全。3.2 温度/压力控制系统▲3.2.1 传感器要求配置≥2套非接触式的红外温度传感器,测温点必须为内管底,不受液位影响且为内管管壁的实际温度,以保证测温准确性.且温度传感器需提供大于3年的免费质保。(底部测温技术提供彩页证明材料)3.3 控制终端3.3.1 触摸式一体/分体两用防腐智能控制终端,高分辨率彩色显示,支持中文界面,大屏幕直观易操作,可远距离在线控制微波消解系统的所有操作,避免微波辐射。(提供彩色图片证明)。3.3.2 控制终端至少有5个USB、1个LAN接口、1个扩展接口,用于连接无线鼠标、键盘打印机、电脑等设备(提供彩页证明材料)▲3.3.3 全自动消解罐识别系统,根据用户消解样品的数量和消解罐类型,全自动调节微波输出功率大小,确保每次试验的重现性。(提供彩页证明材料)3.3.4 全自动过温保护系统,当消解罐内温度高于设定温度时,全自动识别并自动切断微波输出,确保操作安全。当消解温度回归正常时,自动识别并启动,全自动消解罐识别系统。保证样品消解不会中断重做。3.3.5 微波消解过程中能自动记录工作数据,有平均功率计算功能,为新方法的建立提供足够依据▲3.4 仪器反应状态灯功能,仪器可通过≧3种颜色变换,显示仪器运行状态(提供图片证明材料)。3.5 高压高通量样品罐转子3.5.1 高温/高压样品消解罐,每个消解罐均有“弹性泄压阀”主动泻压保护技术,泄压后不影响样品继续消解,泄压过程无任何消耗件3.5.2 样品消解罐最高耐压:≥1500psi3.5.3 样品消解罐最高耐温:≥330℃。▲3.5.4 样品消解罐体积:≥55ml,且批处理量:≥40位3.5.5 样品消解罐和盖子的材料:TFM或PTFE-TFM▲3.5.6 保护外罐材质:复合纤维或复合石英纤维PEEKK材料,不吸收任何溶剂和气体,永远不会发生形变。(提供产品彩页证明材料)3.5.7 外罐如非认为损坏,提供5年免费质保,如有损坏,免费更换新外罐。4. 仪器配置4.1 含安全装置的微波消解主机1套4.2 高精度红外温度控制系统2套4.3 自动落锁系统1套4.4 ≧3种颜色变换状态灯光系统1套4.5 ≥40位超高压样品罐转子1套4.6 一体/分离式两用控制终端1套4.7 高压消解反应罐(含外罐、内罐、弹片、盖子)≥40套(数量≥超高压样品罐转子孔数)4.8 消解罐专用支架(可装所有配套消解罐)4.9 国内配套赶酸器(赶酸器孔数≥转子位数)1台三、售后服务及培训若投标人所投货物为进口产品,则需提供制造商或国内总代理商出具盖章的售后服务承诺函,需涵盖以下内容:1. 原子吸收光谱仪1.1、仪器设备安装、操作手册、工作站软件说明书、维修保养手册等技术文件中、英文各一份。1.2、制造商的售后服务体系通过了ISO认证。1.3、制造商在广东省内有独立的应用实验室和技术服务中心,能提供快捷优质的技术服务及备用零件、易耗品的供应,同时帮助用户进行方法开发;提供800免费热线咨询电话,以保证用户能以最快、最低成本的得到技术支持,需提供实验室照片及联系方式。1.4、保修:3年免费保修服务,提供终身维修维护。1.5、初级培训:提供现场安装培训服务,至少教会3名以上用户人员熟练掌握仪器操作及维护保养。1.6、技术进阶培训班:提供3个或以上技术培训班(中级班或提高班等以上课程)培训名额,到广东省内的制造商的应用实验室或技术服务中心进行3-5天的技术培训,含培训期间的食宿费用,培训名额有效期为到货后的三年。1.7、响应时间:在接到用户的技术/维修电话要求后,工程师在4小时内进行响应,提供技术咨询及解答;如需更换配件,工程师在2个工作日内到现场进行维修服务。2. 微波消解仪2.1 整机提供3年保修;2.2 仪器至安装之日起3年内,制造商工程师须提供1次/年的现场操作培训,每次至少保证4小时,培训人员为采购方技术人员,人数不限,采购方无须支付任何费用。2.3 温度监控系统(包括温度传感器、监测探头等)提供至少5年免费质保,期间如有损坏制造商或总代理商负责免费更换;2.4 消解罐转盘提供至少5年免费质保,期间如有损坏制造商或总代理商负责免费更换;2.5 消解罐外罐、消解罐盖子均提供至少8年免费质保,期间如有损坏制造商或总代理商负责免费更换;
  • “人造原子”近日成国际物理学界大明星
    俄日科学家用“人造单原子”制成量子放大器  “人造原子”这两天成了国际物理学界的“大明星”。就在《物理评论快报》宣告这项成果之前,最新一期《自然—纳米技术》刚刚发布了世界上最小的晶体管——由7个原子在单晶硅表面构成的一个“量子点”,它是另外一种人造原子。接踵而至的这些“不可思议”尤其让我们对人造原子啧啧称奇。完全可以期待,科学家在人造原子这个微型实验室里必将制造更多的惊喜,引领人类走向未知的新天地。  相关新闻:世界最小晶体管问世 仅由7个原子构成  俄罗斯和日本科学家利用“人造单原子”方法,成功研制出量子放大器,使在芯片上建立量子放大器等量子元件的技术向前推进了一步,该科研成果将在电子和光学等领域得到广泛应用。相关研究报告发表在近期出版的《物理评论快报》上。  作为利用量子效应来放大信号的设备,量子放大器以多种不同形式呈现在人们眼前。其中最普遍的形式应该是激光,借助受激辐射过程将光子从原子中激发出来。而实现量子放大器可调可控的一种途径就是利用单个原子或分子建立相关系统。然而,由于自然的原子与需放大的电磁波的耦合性很弱,单原子的量子放大器迄今为止都难以制成。  俄罗斯科学院列别德物理研究所和日本电气公司(NEC)纳米电子研究实验室组成的研究小组,利用“人造单原子”方法成功解决了这一问题。  研究人员介绍说,所谓“人造单原子”,就是一种在普通硅基芯片上人工制成的金属薄膜,它由多个单元组成,包括高频辐射传输线、共振器和一个纳米超导结构等。这一“单原子”能与一维空间的电磁模式强烈耦合,从而可实现电磁波放大过程的可调可控。  研究人员表示,研究的关键在于粒子数反转的准备,这在激光中也是一样。实验中所用的“人造单原子”具有三个分立能级,研究人员通过向该“人造单原子”发射特定频率的电磁信号,可使其从基态激发至第二受激态。此后,“人造单原子”将部分恢复至基态,部分恢复至第一受激态。当处于第一受激态的光子数多于处于基态的光子时,就会发生粒子数反转。随后科研人员将另一个需放大的脉冲信号传递给“人造单原子”,这时,就会与基态粒子和第一受激态的粒子状态转换产生共振,刺激这一转换使光子从“人造单原子”中释放出来,从而实现了信号的全面放大。  研究人员计算出的放大器的最大增益可达1.09,相当于平均每100个入射光子就会释放109个辐射光子,而理论最大增益为1.125。研究人员称,如果使用更多的原子,则可获得更大的增益。  研究人员表示,“人造单原子”为制造基本的量子放大器提供了新思路,其可被用作大规模、可调整的量子放大器组件,也为实现量子太阳能电池的量产带来了希望。
  • 安捷伦科技公司推出新一代串联四极杆 ICP-MS 系统
    安捷伦科技公司推出新一代串联四极杆 ICP-MS 系统新系统的灵敏度提高了两倍,并新增更多单纳米颗粒测定功能,还能对低水平硫/硅实现更准确的测定 2016 年 6 月 23 日北京 — 安捷伦科技(中国)有限公司今天在北京安捷伦原子光谱研讨会上正式推出最新 Agilent 8900 串联四极杆 ICP-MS系统。这款电感耦合等离子体质谱系统能提供可控的反应化学过程,可为之前难以分析的元素(例如硫、硅和磷)提供极低检测限。该系统还配备有快速检测器,可为单纳米颗粒检测应用树立全新标杆。 Agilent 8900 ICP-QQQ 不仅具有媲美于安捷伦市场领先的四极杆 ICP-MS 系统的氦气模式性能和分析效率,还进一步增强了原有用于在反应模式中实现受控和一致的干扰去除能力的 MS/MS 模式性能,使这款系统成为世界上功能最强大、最灵活的多元素分析仪。 2012 年,安捷伦发布了世界上首款具有 MS/MS 功能的串联四极杆 ICP-MS (ICP-QQQ)— Agilent 8800,该系统可提供其他 ICP-MS 系统无法达到的受控和全面干扰去除能力。这款突破性仪器为全球数百个实验室中的分析人员带来了全新的分析可能性,并且在半导体、材料和学术研究领域得到了良好应用。 安捷伦目前是市场上串联四极杆 ICP-MS 技术的独家供应商。 新一代 8900 ICP-QQQ 提供多种配置,可覆盖从常规分析到高级研究和高性能材料分析等多种应用。 通过配备更为强大的单纳米颗粒测定功能,这款新系统的应用范围除半导体和学术研究外,还进一步扩展到食品、制药和生物制药、化妆品、电子元件以及涂层材料领域。 新型 8900 ICP-QQQ 不仅具有更强大的单纳米颗粒测定功能,无与伦比的干扰去除能力,还提供能达到极低检测限的出色性能。此外,8900 ICP-MS/MS 可为硫和硅提供更低的检测限,帮助科学家更准确地分析半导体晶片、高纯材料和生命科学样品中的污染物。关于安捷伦 ICP-MS ICP-MS 是一种先进的元素分析技术,具有高灵敏度、同步分析功能以及宽动态范围。此项技术可用于环境、食品、临床、制药、工业材料、半导体、原子能发电、地质和采矿、法医学、消费品以及考古等多个行业领域。 安捷伦科技公司开展 ICP-MS 技术的研发工作已逾 25 年。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。 安捷伦与全球 100 多个国家和地区的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2015 财年,安捷伦的净收入为40.4亿美元,全球员工数约为 12000 人。 如需了解安捷伦公司的详细信息,请访问 www.agilent.com。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com/go/news。
  • 原子力显微镜助力光伏新时代
    随着全球能源需求的不断增长,可再生能源技术成为人们关注的焦点。其中,基于光伏(photovoltaic,PV)材料的技术实现了将光能转化为电能的难题,具有广阔的应用前景。然而,太阳能电池技术的商业化仍面临着成本高、功率转换效率低以及器件寿命短等挑战1。无论要克服哪方面的问题,成功的关键都依赖于表征技术的提高,尤其是对高空间分辨率的要求更加严苛。以顺应目前先进制造下微米及纳米尺度特征的材料所需(例如钙钛矿薄膜中的多晶体、有机半导体中的体异质结网络和纳米结构化的光捕获层)。牛津仪器原子力显微镜(AFM)以实现纳米级的高空间分辨率著称,可为其他成像技术补充材料器件更多维度的信息2。它不仅可以测量结构,还可以测量功能响应,从而深入了解结构性质、处理流程和表观性能之间的关系(图1)。本文中,我们将探讨牛津仪器AFM在表征两种新兴光伏材料(如钙钛矿和有机半导体)各方面性质的应用。值得注意的是,其他材料,包括无机半导体(Si、CdTe灯),黄铜矿(CIGSSe、CuInSe2等)以及具有多个吸收体的串联系统,也可以从AFM表征中受益。通过AFM,我们可以更好地理解这些材料的性能和潜力,为未来的太阳能电池技术发展提供有力支持。图 1:观察MAPbI3中纳米尺度光响应光伏电池性能指标,如短路电流Isc通常在宏观尺度上测量,但纳米尺度下的表征,可以揭示微结构对性能的关键影响。上图显示在约0.07 W/cm2的照度下,甲基铵铅碘化物(CH3NH3PbI3或MAPbI3)薄膜上的短路电流ISC叠加在三维形貌图的结果。通过光导电AFM(pcAFM)获取了从偏置电压0到+1 V的电流。然后,通过图像每个像素位置的I-V曲线中确定Isc的值,最终生成短路电流-形貌图。使用MFP-3D BIO AFM获得,扫描范围为3微米3。 1 钙钛矿型新材料有机-无机混合型钙钛矿材料的太阳能电池技术因其转换效率的快速提升(仅用了七年时间到22%的转换效率)而备受关注1,4。更重要的是,该技术可以通过相对简单和廉价的溶液处理技术(例如旋涂)进行制造。目前的研究重点在于测量基本属性并提高长期稳定性。通过AFM的表征,有效推动二者的共同发展。1.1理解晶体结构评估钙钛矿薄膜的微观结构对于基础研究和实际应用都具有重要意义。例如,它可以揭示光电响应与晶粒尺寸之间的极敏感的依赖关系,并帮助解决大规模制造中的难题,如钙钛矿如何从前驱体状态结晶等。为了满足这些需求,AFM探测了表面高度和形貌的三维定量图(图2)。形貌图显示了薄膜属性,包括覆盖度和均匀性,并允许快速计算表面高低起伏特性,如粗糙度,以便快速比较不同薄膜。AFM形貌图可以在轻敲或接触模式下获得的,通常可以分辨出纳米以下的垂直特征结构。实际上,当前少数AFM可以实现垂直分辨率达到几十皮米,从而完成晶体和分子的晶格级成像。牛津仪器新型AFM自动化程度高,可大大减少实验设参时间并简化数据采集。当钙钛矿暴露于不同环境条件时,氧化或其他化学反应可能对微观结构和其他材料性能造成不可逆损伤。使用专门的环境控制模块,将样品保护在经过净化的惰性气体环境中进行AFM实验,可以防止这种退化。环控组件还可以提供惰性气体的湿度控制。更有甚者,通过将整个AFM放置在手套箱中以完全隔离大气(参见图5),来实现更严格的环境控制。图 2:晶格结构变化溶液处理技术已被成功应用于生成具有均匀表面覆盖的致密钙钛矿薄膜。然而,这些薄膜的晶粒通常非常细小,导致晶界损失增加,从而降低了光转换效率。为了解决这个问题,研究人员开发出苄基硫代酸根(GUTS)的前驱体处理方法,以增加薄膜的晶粒尺寸。左侧图片中,我们可以看到未经处理的MAPbI3薄膜的形貌,右侧图片是使用GUTS/异丙醇溶液(4 mg/ml,GUTS-4)处理后的薄膜的形貌图。可见通过处理以后,已成功地将平均晶粒尺寸从纳米级别提升到了微米级别。此外,使用GUTS-4处理的薄膜制备的太阳能电池的功率转换效率比未处理的薄膜高出约2%。扫描尺寸5微米5。1.2测量电和功能化响应光伏机制研究在很大程度上依赖于大量的光电数据,以全面理解其工作原理。钙钛矿薄膜的多晶结构极大地推动了在微观和纳米尺度上进行测量的能力。AFM的高分辨率电学测试技术能够揭示电荷传输、捕获和复合等过程以及相关行为。当在配置了样品照明功能的AFM上进行实验时,这些技术的作用更为明显。多模态和其他类似的研究方法也为我们提供了深入理解光伏材料的可能性。这些方法包括使用多种原子力显微镜模式(如KPFM、CAFM、EFM)以及其他表征工具,如扫描和透射电子显微镜(SEM和TEM)、光致发光(PL)和拉曼光谱,以获取获取多维度的数据。如图3(KPFM,CAFM和TEM)和图4(CAFM,KPFM和PL)所示。1.21导电模式(CAFM)测电流导电原子力显微镜(CAFM,在照明下实验时,称为光电导AFM(pcAFM))是常用的AFM电学检测模式。它们都利用导电探针来感知施加了直流偏压的样品中的电流。通过接触扫描或快速力图成像,可以获得局部电流图,进而揭示光诱导的载流子迁移变化、光电导率的局部变化以及其他相关性质。为了避免信号伪影,可以在pcAFM测量期间停用AFM检测激光。而改变测试参数,如偏置电压、照明强度、波长或极化,则可以提供更深入的信息。CAFM和pcAFM也可以获得具有纳米级分辨率的电流-电压(I-V)曲线。只需将探针移动到在用户自定义的位置,并在接触模式下施加偏置电压,就可以测量到电流。得到的I-V曲线可以揭示电荷的生成和注入、接触电阻以及退火或其他处理流程的影响等方面(图3)。由于CAFM和pcAFM在纳米级高分辨电流图方面表现出色,因此对AFM的能力提出更多特殊要求。例如,测量需要高灵敏度和低噪声,因为电流可以跨越六个数量级(皮安到微安)。此外,定量探针-样品的接触面积也需要先校准悬臂梁弹簧常数,完成这些校正之后,就能精确测量和控制施加的力了;如果没有高灵敏度,这些校正将难以完成。1.2.2 静电力(EFM)/开尔文探针力(KPFM)模式测电场静电力显微镜(EFM)和开尔文探针力显微镜(KPFM)是评估光电响应的另外两种独特模式。它们拥有纳米级的空间分辨率,能够深入探究单个晶粒、晶界以及晶粒之间的微观变化。EFM和KPFM都基于轻敲模式运行的,所以可以近似反映开路时的行为。EFM主要感知由长程静电力梯度引起的电场变化,因此对于检测嵌入导体或表面电荷不均引起的电容变化非常敏感。它通常是一种快速简易的方法,可以用来定性地获得电场和电容之间的对比。为了减少形貌变化的干扰,可以使用双通道扫描技术进行EFM扫描。相比之下,KPFM感知的是探针和样品之间的接触电势差(图3和4)。KPFM最关键的优点是能够定量测量功函数,这是许多光伏系统中电势变化的根本原因。使用KPFM进行功函数的纳米级成像可以得到关于能带弯曲、掺杂剂密度和光诱导变化相关的详细信息。KPFM通常采用双通道振幅调制(AM)方法进行操作,类似于EFM,但也可以在单通道频率调制(FM)模式下操作。FM-KPFM通常具有更高的空间分辨率,并包含来自悬臂梁高阶谐波响应的其他信息。图 3:研究晶界处的离子迁移钙钛矿材料具有许多令人着迷的性能特点,如磁滞和热电效应等,其背后的机制尚待深入分析。本图展示了多晶MAPbI3薄膜的表面电势(KPFM)与形貌结构的叠加。通过透射电镜获得的晶体学取向(未在此图中显示)与表面电势的关联性揭示了一个有趣的趋势:具有较大电位差异的晶粒之间的边界角度比那些具有较小电位差异的晶粒间的边界角度更高(如图中的△)。使用CAFM获取的局部I-V曲线显示出在高角度晶粒边界处存在较强的暗流磁滞,但在低角度边界处几乎没有磁滞。(蓝色和红色箭头分别代表加压和降压各一次)。这些结果表明,晶粒边界处的迁移速度远快于晶内迁移,并且对晶内迁移起到了主导作用。通过MFP-3D AFM获取,扫描范围为2微米6。图 4:关联局部光学和纳米电学特性理解钙钛矿材料空间异质性的起源对于提升光电转化效率至关重要。这项研究中,甲基铵铅溴化物(CH3NH3PbBr3或MAPbBr3) 沉积在玻璃(Glass) /碲化镉(ITO) /聚(3,4-亚乙基二氧硫)聚苯乙烯(PEDOT:PSS)等基底上制备薄膜。样品被安装在AFM样品并通过488nm激光束激发,生成局部相对光致发光(PL)强度图。通过CAFM获取的注入电流图像(偏压为+3.2 V)显示的行为与PL强度无关。尽管这些样品的形貌结构相似,但在虚线、点线和实线曲线表示的区域中,PL响应从暗到亮分别为高、中和低。此外,FM-KPFM表面电位图像并未显示出任何相关性。这一结果与裸玻璃上制备的MAPbBr3薄膜的结果形形成鲜明对比,表明异质性的来源并非在薄膜内部,而是在电极-膜界面上。使用MFP-3D AFM获取,扫描范围为7微米7。1.2.3压电力模式(PFM)表征铁电性此外,钙钛矿中的铁电性质可能会对光伏器件的性能有着多样化的影响。例如,极化场可以更有效地分离电子空穴对,带电的畴壁也可以作为额外的导电通路。铁电性还可以扮演开关功能,从而可以通过偏压控制光电流的方向。然而,我们对于特定反应条件和所得铁电性质之间关系的理解不足,阻碍了进一步探究这些行为如何影响器件性能的脚步。因此,提高表征能力,特别是在畴和晶粒大小这个关键尺度的表征水平,变得尤为重要。压电力显微镜(PFM)是表征铁电性质的强大技术。它对于静态和动态行为(例如畴的结构、生长和极化反转)的纳米级探索非常有用。通过测量机电响应以及形貌,PFM可以深入探究功能特征与结构-性质关系(图5)。在薄膜上进行PFM测量时,需要施加足够高的电压以获得良好的信噪比,但同时也要避免引起极化激活甚至损坏样品。为解决这个问题,推荐在悬臂梁的接触共振频率附近操作,这样可以在较低的驱动电压下实现更高的灵敏度,而牛津仪器Asylum系列的AFM标配该技术。图 5:检测材料铁弹性质通过溶剂退火制备MAPbI3(CH3NH3PbI3)薄膜的形貌图(左)显示,该薄膜是具有阶梯结构的微米级晶粒。相应的垂直PFM振幅图(右)在300 kHz(接近共振频率)处以+2.5V AC偏压获取,观察到了在形貌中不存在的规律间隔条纹畴,相邻畴的方向变化为90°。PFM图中红蓝色线段表明条纹呈周期性变化,范围约从100到350 nm。这表明该薄膜具有铁弹性质,其畴结构依赖于薄膜纹理和特定的制备路线。样品置于氮气环境保护,通过手套箱中的MFP-3D AFM获取的,扫描范围为7微米8。1.3界面层工程在太阳能电池的构造中,最基础的模型仅由两个电极间和中间钙钛矿吸收层构成。然而,为进一步提升电池的性能,通常需要引入其他的层次。在这个过程中,AFM展现出了独特的技术优势,它能够独立或与其他设备协同工作,对各层进行精确的表征。我们可以使用AFM导电探针从顶部接触器件,重构出平面视图来获取电导相关信息,或者在横截面中研究跨界面的行为。表面粗糙度等信息可以通过界面层的纳米尺度形貌成像获取;粗糙度会直接影响层与层之间的粘附性,并展现有机薄膜的相分离和分散等形态特征。CAFM和pcAFM等电学模式也具备广泛的应用价值,例如评估导电均匀性或识别电荷捕获或复合区域。KPFM表征因其对表面接触电势和功函数的敏感性而特别有益。由于设计界面层的目的通常是为了为载流子创造更有利的路径,使其远离吸收体并靠近电极,因此进行仔细选择,确保每个界面处的能级对齐,将从原理层面提高材料的性能。这一过程中,KPFM能够对带弯曲和功函数的空间变化进行成像(图6),为载流子路线的选择提供有益的反馈。图 6:通过多层堆叠改善稳定性为了更有效地利用电子传输层(ETLs),需要对其属性进行更好的控制。研究人员在NiOx上的MAPbI3(CH3NH3PbI3)薄膜上获取了表面电势图,在添加苯基-C71-丁酸甲基酯(PC70BM)和罗丹明101(Rh)层之前和之后获得的图显示了差异。通过钝化钙钛矿晶粒边界缺陷,Rh层显著减少了电势的空间变化。诱导表面光电压的结果显示,附加层降低了表面电势并减少了ETL/阳极界面处的带弯曲。这些结果有助于解释为什么带有Rh层设备的效率和稳定性会增加。在MFP-3D AFM上用双通道KPFM模式获取,扫描范围为1微米9。牛津仪器AFM特点1:软硬件设计与优化微观尺度的导电性能指导了材料设计方向,是光伏领域最常见的表征手段。要实现高分辨率,高灵敏度的电流测量范围,MFP-3D和Cypher系列采用了独特的ORCA模块。Orca在悬臂梁夹具中,集成了一个低噪声传输阻抗放大器,其操作范围从约1 pA到20 nA,并提供了多种增益选项。而更高级的双增益ORCA附件时,会同时激活两个独立的放大器,可以确保在更广泛的电流范围内进行高分辨率测量(约1 pA至10μA)。此外,软件中的Eclipse Mode通过双通道方法改善了Asylum AFMs上的光电流测量精度,并减少了光诱导伪影。其原理是,在第一次扫描中,以接触模式获取形貌信息。然后在第二次扫描中关闭AFM的检测激光,并在相同高度执行pcAFM测量。这时候探针所检测到的信号全部来自样本本征激发,不会耦合检测激光可能造成的光诱导。 同样,Asylum系列标配的GetReal功能使得对探针-样品接触力的理解和测量更加简单和精确。这个功能很轻易在采集软件的界面处找到,用户只需点击一下,就可以自动校准悬臂梁弹簧常数和光杠杆灵敏度,而无需接触样品;对于一些罕见探针,也可以通过输入探针形貌长宽特征的方式进行计算拟合。这个功能大大简化了传统的校正方式,促进力学领域相关探索。基于上述对软硬件的持续升级,电噪声屏蔽和力的精确控制能力大幅加强。Cypher系列和Jupiter提供了新的快速电流成像模式,为柔软或脆性材料提供了强大的电流成像功能。当扫描速率高达1 kHz(Cypher系列)时,可以在不到10分钟内获取256×256像素的数据,且每个像素都包含完整的电流和力曲线信息,方便进一步分析处理。而在铁电研究领域,所有的Asylum Research AFMs都配备了高灵敏度、用于共振增强PFM测量的软件,其中包括双AC共振跟踪(DART)模式或Band Excitation选项。两个(或更多)追踪频率的引入可以减小由于形貌起伏带来的接触共振频率变化,确保针尖信号与形貌变化无关。DART模式扩大样品选取范围,使得形貌对结果的干扰降低了,同时减小了接触共振对探针-样品的磨损。压电响应的另一个问题就是新型材料(如氧化铪)的压电系数太小了,即使是AFM善于在纳米尺度观测突变,也很难实现清晰,高信噪比的扫描。所以牛津仪器Asylum Research针对性提供高压PFM模块。对于MFP-3D Origin+ AFM为±220 V,对于MFP-3D 和Cypher系列AFMs为±150 V,让原本皮米级别的响应变得更清晰可见。牛津仪器AFM特点2:优秀的环境控制许多材料会不可逆转地受到表面与周围氧气或水蒸气的影响,这可能导致样品退化或测量结果不可靠。在新能源与锂电池领域,保护样品,防止环境因素产生不可控变化显得显得尤为重要。对于MFP-3D系列AFM,可以使用封闭的流体腔来实现环境隔离。而对于Cypher ES AFM,则可以使用液体/灌注专用holder来实现环境隔离。这类设计可以确保在测量过程中,样品不会同周围的环境之间有任何直接接触,从而保证材料的原始状态,提高测量结果的准确性和可靠性。而通过更换载物台(PolyHeater或者CoolerHeater),可以实现对样品最低从0°C到最高250°C的环境温度控制。如果样品在大气下极不稳定,需要更极致的环境隔离方案,则可以选择将AFM整机置于充满保护气体的环境中进行测试。Turnkey Glovebox Solutions为MFP-3D和Cypher系列AFM提供了完全的环境隔离解决方案。牛津仪器AFM特点3:MFP-3D 对于光伏领域的特别支持为了适应愈发灵活的光伏检测体系,并改进对光活性材料系统的表征,MFP-3D AFM有特别的选配方案,并构建了一个灵活的光伏一站式平台。这个平台通过将可定制的样品照明激发模块,安装在AFM的底部,然后在MFP-3D已有的各种测试功能中集成照射样品激发功能,使得可以在多种AFM模式和环境中进行高分辨率表征。其参数及特点包括:光纤耦合LED允许最大照度 1太阳,照度控制步长为1%(如图7所示)支持商用的适配器板,可以轻松容纳外部光源,例如Hg-Xe灯开放式设计允许在光路中插入Ø 1〞组件,例如滤光片、偏振器和光阑快速释放适配器可让您在几秒钟内在多个光源和光纤之间切换与MFP-3D 所有的环控附件完美兼容,包括加热、冷却和湿度控制等MFP-3D PV(Photovoltaics)选配的光学元件放置在样品台下面的底座,带有铰链门,便于用内置的LED灯照明样品。样品可以用MFP-3D附随的LED照明器或是用户自己提供的光源照明。通过具有可调节聚焦的透镜将光聚焦到样品上,从而适应一系列不同厚度的样品。同时,插入点允许添加滤镜、偏振器和其他组件获得额外的实验灵活性。使用光伏选配方案,为可视化纳米尺度实时光电响应与定量分析光激发提供了有力的支持。在对新型光伏材料表征技术不断提出新需求的当下,建立了多模态联用的新思路。图 7:氧化铟锡(ITO)衬底上退火的聚(3-己基噻吩)和苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结层使用了ORCA模式,在-1V的偏压下对体异质结层样品进行成像。在测量过程中,打开和关闭530nm的照明光源,同时以1%的增量增加强度(全功率约为0.9 W/cm² )。图像的横截面显示了测量电流对光强度的依赖性,并且对光强度的微小变化具有很高的灵敏度。2 有机半导体以聚合物和有机小分子为基础的有机太阳能电池,作为下一代光伏技术,具有广阔的前景。其原料来源广泛,绿色环保,性能优秀,且可通过低成本的处理技术(如溶液处理或蒸镀)进行制造。目前,这些电池已达到最低的商用转换效率标准(10%), 而要继续推进商业化,关键是增加电池寿命,突破只有几年的服役时长障碍 10。因此,理解其性能如何因光线、热量和其他环境因素而退化至关重要。AFM可以从微观尺度测量设备局部结构和性能变化等重要信息,有助于解决上述问题11。2.1体异质结(BHJ)形貌成像有机太阳能电池通常使用体异质结(BHJ)光吸收剂,这是一种自组装的纳米网络结构,由给体和受体材料组成。其转化效率强烈依赖于网络的特定相分离和连通性,不幸的是,现阶段预测给定合成路线所生成的结构,都仍然具有挑战性。更不用说,探究形态是如何通过各种老化机制发生改变的难题。因此,表征BHJ薄膜的微纳米尺度的形态,探究其中关联性是至关重要的。扫描电子显微镜(SEM)是一种广泛使用的选择,但要保证足够清晰的对比度通常会造成样品损伤。而AFM成像几乎是无损的,可以在各种环境条件下,揭示BHJ组分的大小和分散性,并探索处理流程中变量(例如溶剂蒸发速率和退火)的影响。(图8)。有机材料上的形貌图通常在轻敲模式下扫描,这种模式施加的横向和垂直作用力极其温和。较低的力不仅可以减小样品损伤,而且由于较小的探针-样品接触面积,还可以实现更高的空间分辨率。如果使用非常小的悬臂梁配合新型快速扫描AFM,则可以控制低至亚皮牛级的力,这对于易变形的脆性聚合物非常有帮助。BHJ形态也可以用感知力学性质的AFM模式进行表征。例如,轻敲模式的相位图可以区分在混合物不同组分之间精细的结构细节。通过力曲线获得的弹性模量图还可以显示相分离和分散(图9)。其他纳米力学模式不仅可以进行快速定性成像,而且还可以定量测量弹性和粘性响应。特别是,新型双模轻敲技术(例如AM-FM模式)可以实现高分辨率的快速成像14。图 8:氟化调节性能在共轭聚合物主链中用氟代替氢可以提高转化效率和耐用性。在这里,就探究这种效果进对四个窄带隙聚合物进行了系统研究:PF-0无氟,PF-1a和PF-1b具有中剂量氟和不同的区域选择性,而PF-2具有最多的氟12。使用不同剂量溶剂添加剂DIO获得了聚合物/PC70BM的溶液处理薄膜。PF-1a混合物的形貌图表明,少量的DIO增加了相分离,从而提高了功率转换效率,但更高DIO浓度产生了次优形态。图像显示,所有四个混合物的均方根粗糙度随着氟含量的增加而增加,这可能是因为团聚增强了。通过MFP-3D AFM在轻敲模式下获得,扫描范围为5微米12。图 9:评估分子量效应本研究旨在探究不同聚合物链数平均分子量的PDPP4T-TT和苯基-C61-丁酸甲基酯(PCBM)混合物薄膜的杨氏模量分布。通过力曲线成像获取的分布图,可以区分出BHJ相。其中较低的模量对应于PDPP4T-TT,较高的模量对应于PCBM(插图显示了相应的轻敲模式形貌图)。对于中等分子量的薄膜观察到的大片PCBM域表明,在旋铸过程中通过垂直分离而产生的富含PCBM的表面。这个结果可以解释使用这种薄膜制造的晶体管测量到的异常低的串联电阻值。相比之下,其他薄膜中的相看起来很好地混合在一起,从而产生了具有更高的串联电阻。通过Cypher AFM获取,扫描范围为3微米13。2.2 纳米尺度光电响应成像理解有机半导体的电荷注入、传输、捕获和复合仍然是提高效率并减少性能退化的研究关键点。AFM在纳米尺度的光响应成像可以提供有关潜在机制的宝贵信息,并精确定位BHJ中每个过程发生的地点。使用CAFM和pcAFM对有机半导体成像可以在纳米尺度呈现,供体-受体混合物中获得光电流的状态和电荷传输网络。这些模式因此可以帮助确定微观结构各向异性、光强度或其他参数在光电转换中扮演的角色(图10)。然而,有机半导体的脆弱和相对柔软的特性使其容易受到传统接触式(CAFM和pcAFM)施加横向力的影响。同时,接触模式对样品和针尖的磨损会影响测量电流的稳定性,让数据难以重复,使图像的解释变得更加复杂。为了解决这些问题,近年来已经发展出了快速电流成像技术。快速电流成像技术会驱动悬臂梁在垂向上进行连续正弦运动,同时在横向方向进行移动扫描,最终形成一个快速力曲线阵列并在每一个点都记录了测量电流。当在光照下测量时,可以轻易地将形貌和电流数据相关联,从而揭示出局部结构-性质关系。事实上,只要保存过时间对电流和探针偏转的完整曲线,研究者们还可以通过软件对数据进行更高阶的分析。EFM和KPFM为有机半导体的电学表征提供了许多优势。使用EFM测量电容梯度的局部变化或使用KPFM测量表面电势,可以探索优化器件性能或提高长期稳定性的方法。这些基于非接触性质的模式大大减小了由探针功函数产生的能量屏障效应,因此可以实现开路响应的测量。然而,由于双通道扫描需要每行数据都扫描两次才能获得EFM和KPFM图像,这需要花费好几分钟的时间,所以它们更适合研究相对较慢的过程。对于更快的过程,例如毫秒到秒级别的电荷注入和载流子扩散,可能需要使用其他的电学模式进行研究。例如,FM-EFM以及悬臂梁振荡成像等技术,通过测量功率耗散和电荷捕获的局部变化,来研究光化学降解过程15。此外,还有一些更高阶的方法,如时间分辨EFM和混频KPFM,已经能够对有机半导体和钙钛矿中的局部载流子寿命、光诱导充电速率以及热退火效应进行动态研究15,16。尽管这些技术并非常规AFM的标准配置,但它们却突显了Asylum AFM基于开源软件平台的优势。事实上,Asylum的所有AFM都提供了开放控制架构,为优化数据采集和分析程序提供了无限可能,例如将测量与照明同步启动然后自动化批处理数据。图 10:探索P3HT:PCBM中光电流的异质性本研究测量了聚(3-己基噻吩) (P3HT)和PCBM混合物中的pcAFM电流图像,图像显示了具有较高和较低电导率的区域。并在暗处和照明时(~0.09 W/cm2, 530 nm)测量了画圈位置的I-V曲线。在这两种情况下,电流都随着电压低于-0.3 V时而增加,然后在正偏压下过渡到更高的电阻。其中一些位置,电流量取决于照明条件(黑色和蓝色圆圈),而在另一些位置(绿色圆圈)始终很高。使用PV选配方案和ORCA附件在MFP-3D AFM上获取,扫描范围为1微米17。。2.3 优化中间层有机太阳能电池通常包含附加层,用于提取和接收电荷以及控制表面重组。为了优化性能,先期使用AFM获得的纳米尺度信息,来设计界面层是不可或缺的步骤。例如,形貌图可以评估由于中间层加入而引起的BHJ形态变化,这将会影响载流子复合效率17。此外,EFM和KPFM的跨界面成像可以提供设计中间层所需的信息,使得中间层能够更好地排列从光吸收器到电极的电场和能级。中间层可以通过翻转几何形状或完全封装等方法来提高器件的稳定性。而要模拟设备失效和老化,环境控制功能十分重要,环控功能允许器件被惰性气体包围,并在现实或增强湿度条件下进行实验(图11)。温控是AFM环境控制的另一个重要方面;使用专门的载物台架可以实现高达几百度稳定、精确的温度变化。基于AFM环控功能在微观尺度对于设备稳定性和寿命研究,将推进设备商用化的进程。图 11:表征湿度相关效应P型金属氧化物可以作为有机太阳能电池中有效的空穴提取层,但不同环境条件对它们电学性能的影响尚不完全了解。本研究探究多晶NiOx薄膜在不同环境条件下的电学性能。KPFM结果发现在相对湿度变化时,表面电势呈现出纳米级空间变化。随着相对湿度的增加,表面电势的平均值降低,而形貌特征的平均尺寸增大。这种行为与水在薄膜表面吸附而导致的电荷屏蔽相一致。观察到的表面电势空间不规则性最可能是由于对暴露的不同取向晶粒的不均匀化学吸附引起的。通过Cypher AFM上获取,扫描范围为1微米。数据来源于橡树岭国家实验室纳米材料科学中心18。总结光伏技术的发展正逐渐满足世界日益增长的能源需求。基于钙钛矿和有机半导体的器件也迸发了更多的可能。实现原料丰富、低成本的可再生能源技术已经近在眼前,然而,要实现这一目标,我们需要更先进的表征手段来改进下一代光伏材料。牛津仪器AFM提供了多样模式,可以在黑暗和可变照明下呈现设备纳米级结构和功能响应。结合更高的空间分辨率、更快的成像速度和更完善的环境控制,这些优势将使AFM成为光伏领域不可或缺的工具。通过使用AFM,我们可以更好地了解光伏材料的性能和稳定性,从而为新一代光伏技术的研发提供有力支持。了解更多Asylum网站列举了AFM在常见研究方向中的应用。这些页面包括相关的应用笔记,网络研讨会和选定的出版物。详情请查看:“原子力为纳米尺度电学表征添砖加瓦” –http://AFM.oxinst.com/Nanoelectrical“原子力显微镜对压电铁电研究的进展” – http://AFM.oxinst.com/PFM参考文献1. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Science 352, aad4424 (2016).2. E. M. Tennyson, J. M. Howard, and M. S. Leite, ACSEnergy Lett. 2, 1825 (2017).3. Y. Kutes, Y. Zhou, J. L. Bosse, J. Steffes, N. P. Padture, and B. D. Huey, Nano Lett. 16, 3434 (2016).4. J. Li, B. Huang, E. N. Esfahani, L. Wei, J. Yao, J. Zhao, and W. Chen, npj Quantum Materials 2, 56 (2017).5. N. D. Pham, V. T. Tiong, D. Yao, W. Martens, A. Guerrero, J. Bisquert, and H. Wang, Nano Energy 41, 476 (2017).6. Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, and J. Huang, Energy Environ. Sci. 9, 1752 (2016).7. D. Moerman, G. E. Eperon, J. T. Precht, and D. S. Ginger, Chem. Mater. 29, 5484 (2017).8. I. M. Hermes, S. A. Bretschneider, V. W. Bergmann, D. Li, A. Klasen, J. Mars, W. Tremel, F. Laquai, H.-J. Butt, M. Mezger, R. Berger, B. J. Rodriguez, and S. A. L. Weber, J. Phys. Chem. C 120, 5724 (2016).9. J. Ciro, S. Mesa, J. I. Uribe, M. A. Mejia-Escobar, D. Ramirez, J. F. Montoya, R. Betancur, H.-S. Yoo, N.-G. Park, and F. Jaramillo, Nanoscale 9, 9440 (2017).10. J. R. O’Dea, L. M. Brown, N. Hoepker, J. A. Marohn, and S. Sadewasser, MRS Bull. 37, 642 (2012).11. M. Pfannmoeller, W. Kowalsky, and R. R. Schroeder, Energy Environ. Sci. 6, 2871 (2013).12. J. Yuan, M. J. Ford, Y. Zhang, H. Dong, Z. Li, Y. Li, T.-Q. Nguyen, G. Bazan, and W. Ma, Chem. Mater. 29, 1758 (2017).13. A. Gasperini, X. A. Jeanbourquin, and K. Sivula, J. Polym. Sci., Part B: Polym. Phys. 54, 2245 (2016).14. M. Kocun, A. Labuda, W. Meinhold, I. Revenko, and R. Proksch, ACS Nano 11, 10097 (2017).15. R. Giridharagopal, P. A. Cox, and D. S. Ginger, Acc. Chem. Res. 49, 1769 (2016).16. J. L. Garrett, E. M. Tennyson, M. Hu, J. Huang, J. N. Munday, and M. S. Leite, Nano Lett. 17, 2554 (2017).17.T.-H. Lai, S.-W. Tsang, J. R. Manders, S. Chen, and F. So, Mater. Today 16, 424 (2013).18. C. B. Jacobs, A. V. Ievlev, L. F. Collins, E. S. Muckley, P. C. Joshi, I. N. Ivanov, J. Photonics Energy 6, 038001 (2016).致谢感谢R. Giridharagopal, B. Huey, and H. Phan for valuable discussions and L. Collins, R. Giridharagopal, D. Ginger, A. Gruverman, I. Hermes, B. Huey, J. Huang, I. Ivanov, F. Jaramillo, D. Moerman, N. Pham, Y. Shao, K. Sivula, V. Tiong, H. Wang, S. Weber, and J. Yuan 等人提供的图像支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制