杂散光眩光测试系统

仪器信息网杂散光眩光测试系统专题为您提供2024年最新杂散光眩光测试系统价格报价、厂家品牌的相关信息, 包括杂散光眩光测试系统参数、型号等,不管是国产,还是进口品牌的杂散光眩光测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合杂散光眩光测试系统相关的耗材配件、试剂标物,还有杂散光眩光测试系统相关的最新资讯、资料,以及杂散光眩光测试系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

杂散光眩光测试系统相关的厂商

  • 上海倍蓝光电科技有限公司于2012年成立,是世界上最早也是目前规模最大的生产积分球及以积分球为核心的光电仪器厂商Labsphere在中国最大的代理经销商。 目前公司产品包括针对 LED、半导体照明产品、通用照明光源和激光器的光测量系统、反射率透射率测试组件,成像设备校准用均匀光源等,广泛应用于光学计量,光学检测,照明领域测试及研究、遥感成像定标,化妆品、纺织品紫外透过率及防晒指数分析等。目前主要产品包括: (1) 用于检测LED、SSL及其他光源的光色电测试系统 (2) 用于空间研究、遥感、观测、计量等科研机构的辐射标定均匀光源系统 (3) 用于大功率密度或大发散角的激光功率测试系统 (4) 用于众多行业的反射率及透射率测试系统 (5) 用于化妆品及纺织行业的紫外透过率及防晒指数分析仪 (6) 光学元件杂散光、雾度、平板显示器特性等专业应用检测仪器 (7) 用于光谱测量设备的全球最高漫反射率反射材料
    留言咨询
  • 广州至一科技有限公司(To One Technolgoy Co.,Ltd)以欧美产品,特别是高精密设备为依托,致力于服务光学影像界,为光学影像生产制造商、光学影像研究机构、光学影像质检单位提供光学成像质量测试系统、仪器设备以及测试方案。 产品系列可用于测试镜头/镜片、相机的MTF、像散、MDTD、MRTD、焦距、畸变、杂散光等等,广泛运用于车载镜头、手机相机、热像仪、安防镜头、红外镜头等领域。
    留言咨询
  • 联合光科技(北京)有限公司创立于2016年, 由国内多家知名光学企业联手创办, 致力于为用户提供优质激光光学元件、工业成像镜头、进口高精度光学检测系统和快捷、专业的解决方案。我们的产品涵盖了大多数光学领域,包括元件类,机械类,光学检测服务,光学冷加工及镀膜,并提供光学产品的定制服务,在高功率激光和特殊镀膜应用尤为突出。总部位于北京,在深圳和香港设有分公司,在济南、上海设有办事处,并且在长春,锦州,昆明和重庆设有工厂。为了将更好的产品提供给用户,我们在北京建立了先进的检测实验室和较完善的检测体系,并且采用国际知名品牌检测仪器。 主要产品:l 光学元件(标准光学镜片、高功率激光窗口镜片、定制光学元件、偏振元件)l 英国ULO CO2红外光学材料、镜片、光学器件l 光机械部件(压电电控平台,光学防震桌,光学调整架,手动位移台,光机组件,光桥系统)l 全系列高品质工业成像镜头(定焦/远心/线扫/变焦变倍/特殊定制镜头)、照明光源l 光学测量仪器? 德国MarOpto- 轮廓仪、干涉仪(倾斜波干涉仪、斐索干涉仪、动态干涉仪、干涉测量软件、断面检测、表面检测)? 德国Dioptic- ARGOS 表面疵病检测仪、光纤端面缺陷检测? 日本壶坂Tsubosaka-镜头/相机鬼影、杂散光测试系统;可调色温、亮度光源;镜头焦点偏差、光圈、闪光灯、快门测量、手机防抖测试系统;太阳灯? 美国 Bristol- 非接触式测厚仪? 美国Optometrics- 衍射光栅、分光器件、线栅偏振片、Minichrom? 单色仪等? 德国Artifex-光功率计、跨阻抗放大器、门控积分放大器、LIV激光二极管和LED特性测试系统、积分球、激光二极管驱动器? 波兰inframet-可见光电视相机测试系统(TVT)、红外热像仪测试系统(DT、LAFT、SAFT)、夜视仪测试系统(NVT、NVS、NVB)、激光测距机测试系统(LT、LTF、LTE)、二代像管像增强器测试系统(ITS-I、ITS-P、ITS-R)、条纹管测试系统(SPT、STT)、多传感器测试系统(JT、MS)、被动式THz成像仪测试系统(THP)、短波成像仪测试系统(ST)、紫外成像仪测试系统(UT)以及红外热像仪计算机模拟器(Simterm)等? 美国Headwall -高光谱成像、拉曼光谱仪、衍射光学元件? 其他-SPF防晒指数测试仪;大气测量辐射计/光度计;Mini-Chrom单色仪;激光二极管测试分析系统;积分球;激光功率探测器;光伏测试太阳模拟器;固态光电倍增管等等
    留言咨询

杂散光眩光测试系统相关的仪器

  • DSR300系列微纳器件光谱响应度测试系统是一款专用于低微材料光电测试的系统。其功能全面,提供多种重要参数测试。系统集成高精度光谱扫描,光电流扫描以及光响应速率测试。40μm探测光斑,实现百微米级探测器的*对光谱祥响应度测量。超高稳定性光源支持长时间的连续测试,丰富的光源选择以及多层光学光路设计可扩展多路光源,例如超连续白光激光器,皮秒脉冲激光器,半导体激光器,卤素灯,氙灯等,满足不同探测器测试功能的要求。是微纳器件研究的优选。 功能:? 光谱响应度? 外量子效率? 单色光/变功率IV;? 不同辐照度IT曲线(分辨率200ms)? 不同偏压下的IT曲线? LBIC,Mapping? 线性度测试? 响应速率测试 微纳器件光谱响应度测试系统主要技术参数显微镜头标配:10倍超长工作距离物镜,工作距离大于17mmNA值:0.42光谱范围:350-800nm选配:1,50倍超长工作距离消色差物镜,工作距离大于17mmNA值:0.42光谱范围:480-1800nm 2,15倍紫外物镜,工作距离大于8.5mmNA值:0.32光谱范围:250-700nm 3,50倍超长工作距离紫外物镜,工作距离大于12mmNA值:0.42光谱范围:240-500nm 4,40倍反射式长工作距离工作距离大于7.8mmNA值:0.5光谱范围:200nm-20um光斑中心空心光源选配光源1、半导体激光器波长:405nm,532nm,633nm,808nm,980nm可选不稳定性:<1% 2、皮秒脉冲激光器波长:375nm,405nm,488nm,785nm,976nm可选脉宽:100ps频率:1-20M Hz 3、氙灯光源光谱范围:250nm-1800nm不稳定性:<1% 4、超连续白光激光光源光谱范围:400-2400nm频率:0.01MHz-200MHz脉宽:100ps光谱仪焦距:300mm;相对孔径:f/3.9;光学结构:C-T;光谱仪分辨率:0.1nm;倒线色散:2.7nm;波长准确度:±0.2nm波长重复性:±0.1nm扫描步距:0.005nm狭缝规格:圆孔抽拉式固定狭缝,孔径:0.2mm,0.5mm,1mm,1.5mm,2mm,2.5mm,3mm;三光栅塔台;光栅配置:1-120-300、1-060-500、1-030-1250,光栅尺寸:68×68mm6档自动滤光片轮,光谱范围200-2000nm;内置电动机械快门,软件控制快门开关;杂散光抑制比:10-5探针台配置4个探针座,配20/10微米针尖探针2米三同轴电缆,漏电流小于1pA。真空吸附样品台。探针座:XYZ方向12mm调节行程,0.75um调节分辨率,0-30°调节探针角度。LBIC MaappingXY方向行程50mm,分辨率5um。数釆v 锁相放大器斩波频率:20Hz~1KHz;频率6位显示,2.4英寸屏,320×240液晶显示;电压输入模式:单端输入或差分输入;电压、电流两种输入模式; 满量程灵敏度:1nV至1V;电流输入增益:106或108V/A;动态储备:>100dB;时间常数范围:10μs至3ks; v keithley2612B量程:100nA/1A最小信号:1nA本地噪音:100pa分辨率:100fa通道数:2 v keithley2636B量程:1nA/1A最小信号:10pA本地噪音:1pa分辨率:10fa通道数:2制冷样品台温度范围:-196℃-600℃,(-196℃需要选择专用冷却系统)全程温度精度/温度性:0.1℃/<0.01℃光孔直径:2.4mm样品区域面积:直径22mm两个样品探针,1个LEMO接头(可增加至1探针)工作距离:4.5-12.5mm气密样品腔室,可充入保护性气体独立温度控制响应速率测试示波器型号:MDO32模拟带宽100MHz采样率5GS/s记录长度10M时间范围:uS-S,需要配合调制激光器使用时间范围:10nS-S,需要配合皮秒脉冲激光器使用 三维可调高稳定探针台结构,方便样品位置调节。内置三路半导体激光器或者两路光纤激光器,外置一路激光光路。可以引入可调单色光源,进行全光谱范围的光谱响应度测试。测试功能曲线:40um光斑@550nm@50倍物镜200um光纤 70um光斑@550nm@50倍物镜400um光纤5um光斑@375nm皮秒激光器@40倍物镜 紫外增强氙灯和EQ99光源的单色光能量曲线,使用40倍反射式物镜,300mm焦距光谱仪,光谱仪使用1200刻线300nm闪耀光栅,光斑直径大小80um。
    留言咨询
  • 系统主要功能指标:宽光谱测量范围:UV-VIS-NIR, 200-900nm 高系统时间分辨率: =5ps寿命衰减测量时间范围:=50ps—100us 高系统光谱分辨率: 0.1nm宽单次成谱范围: =200nm静态(稳态)光谱采集,瞬态时间分辨光谱图像及荧光寿命曲线系统集成整体控制及数据处理软件超快时间分辨光谱系统 是由光谱仪、超快探测器、耦合光路、系统控制及数据处理软件组成。光谱仪对入射光信号进行分光,分光光谱耦合到超快探测器,入射光由透镜聚焦在阴极上,激发出的光电子通过阳极加速,入射到偏转场中的电极间,此时电压加在偏转电极上,光电子被电场偏转,激射荧光屏,以光信号的形式成像在荧光屏上。转换后的光信号还可以再通过图像增强器进行能量放大,并在图像增强器的荧光屏上成像。最后通过制冷相机采集荧光屏上信号。因为电子的偏转与其承受的偏转电场成正比,因此,通过电极的时间差就可以作为荧光屏上条纹成像的位置差被记录下来,也就是将入射光的时间轴转换成了荧光屏空间轴。系统控制软件用于整个系统的参数设置、功能切换、数据采集等,图像工作站用于采集数据处理分析主要应用方向超快化学发光超快物理发光超快放电过程超快闪烁体发光时间分辨荧光光谱,荧光寿命,半导体材料时间分辨PL谱钙钛矿材料时间分辨PL谱瞬态吸收谱,时间分辨拉曼光谱测量光通讯,量子器件的响应测量自由电子激光,超短激光技术各种等离子体发光 汤姆逊散射,激光雷达。。。。。。 光谱仪建议选型参数列表光谱仪型号Omni-λ2002iOmni-λ3004iOmni-λ5004iOmni-λ7504i光谱仪焦距200mm320mm500mm750mm相对孔径F/3.5F/4.2F/6.5F/9.7光谱分辨率(1200l/mm)0.3nm0.1nm0.08nm0.05nm波长准确度+/-0.2nm+/-0.2nm+/-0.15nm+/-0.1nm倒线色散(1200l/mm)3.6nm/mm2.3nm/mm1.7nm/mm1.1nm/mm光栅尺寸50*50mm68*68mm68*68mm68*68mm光栅台双光栅三光栅三光栅三光栅与探测器耦合中继光路1:1耦合,配合二维焦面精密调节一体化底板系统光谱分辨率(1200l/mm)=0.3nm=0.2nm=0.1nm0.08nm一次摄谱范围(150 l/mm)230nm150nm90nm60nm光谱仪入口选项光纤及光纤接口,标准荧光样品室,镜头收集耦合,共聚焦显微收集耦合等多系统灵活组合超快时间分辨光谱测试系统既可以与飞秒超快光源配合完成独立的光谱测试,也可以与卓立汉光的其他系统比如 TCSPC, RTS&FLIM显微荧光寿命成像系统,TAM900宽场瞬态吸收成像系统,以及低温制冷室,飞秒&皮秒激光器等配合完成更为复杂全面的超快测试。Zolix其他可配合超快测量系统lRTS2& FLIM 显微荧光寿命成像系统光谱扫描范围:200-900nm(可拓展)最小时间分辨率:16ps荧光寿命测量范围:500ps-1μs@ 皮秒脉冲激光器激发源: 375nm- 670nm 皮秒脉冲激光器可选,或使用飞秒光源科研级正置显微镜及电动位移台空间分辨率:≤1μm@100X 物镜@405nm 皮秒脉冲激光器OmniFluo-FM 荧光寿命成像专用软件Omni-TAM900 宽场飞秒瞬态吸收成像系统测量模式:1:点泵浦-宽场探测:测量载流子迁移和热导率等;2:宽场泵浦-宽场探测:测量载流子分布和物理态的空间异质性等。探测器:sCMOS相机成像空间分辨率:优于500nm载流子迁移定位精度 优于30nm时间延时范围:0-4ns或0-8ns可选搭配倒置显微镜,可兼容低温,探针台,电学调控等模块20ps 的钙钛矿薄膜ASE 发光寿命曲线
    留言咨询
  • 一、前言作为物质存在的第四种状态的等离子体通常由电子、离子和处于基态以及各种激发态的原子、分子等中性粒子组成。等离子体中带电离子间库伦相互作用的长程特性,是带电粒子组分的运动状态对等离子体特性的影响起决定性作用,其中的电子是等离子体与电磁波作用过程中最重要的能量与动量传递粒子,因此,等离子体中最重要的基本物理参数是电子密度及其分布以及描述电子能量分布的函数以及相应的电子温度。而对于中高气压环境下产生的非热低温等离子体来说,等离子体中的主要组分是处于各种激发态的中性粒子,此时除了带电粒子外,中性粒子的分布和所处状态对等离子体电离过程和稳定性控制也起着非常重要的作用,尤其是各种长寿命亚稳态离子的激发。为了可以充分描述等离子体的状态,在实验上不仅要对带电粒子的分布和运动状态进行诊断,如电子温度、电子密度、电离温度等参数,还需要对等离子体中的中性粒子进行必要的实验测量,来获得有关物种的产生、能量分布以及各个激发态布居数分布等信息,如气体温度、转动温度、振动温度、激发温度等参数。基于这种要求,结合相关学科的各种技术形成了一个专门针对等离子体开展诊断研究的技术门类,如对等离子体中电子组分的诊断技术有朗缪尔探针法(Langmuir Probe),干涉度量法(Interferometer),全息法(Holographic Method),汤姆逊散射法(Thomason Scattering, TS),发射光谱法(Optical Emmission Spectroscopy, OES)等,对离子组分的光谱诊断技术有光腔衰减震荡(Cavity Ring-Down Spectroscopy, CRDS)和发射光谱法(OES),而对中性粒子的光谱诊断技术包括了吸收光谱法(Absorption Spectroscopy, AS),发射光谱法(OES),单光子或者双光子激光诱导荧光(Laser Induced Fluorescence, LIF)等。二、汤姆逊散射(Thomson Scattering)基于激光技术发展起来的汤姆逊散射诊断原本用于高温聚变等离子体的测量,借助激光技术和光电探测技术的突飞猛进,汤姆逊散射在近年也大量应用于低温等离子体的密度和电子温度的测量。汤姆逊散射具有空间分辨率高(局域测量),测量值稳定可靠等优点。测量的物理量:电子温度:下限0.1e密度:下限1019m-3.图1. 汤姆逊散射分析系统结构示意图2.1、激光束在等离子体中的束斑大小(束径DLP)激光束经过透镜聚焦,等离子体应该位于透镜的焦点,以达到激光束在等离子体中有最小的束径,最高的功率密度。DLP = f´ q其中f是聚焦透镜的焦距,q是激光束发散角,考虑各种综合因素,实际束径是上述公式的2倍左右。假设使用f=1000mm的聚焦透镜和q=0.5mrad的激光束,DLP大约是1mm。2.2、收集光学系统的光纤的像斑(fP)与等离子体中激光束径DLP的匹配为了有效的收集激光束上的散射光子,光纤的像斑fP应该完全覆盖激光的束径。理想情况是光纤的像斑与DLP尺寸完全相同,并且二者完全重合,这样激光的散射光最大,同时背景非散射光最小。但是考虑到实际的准直的难度,这样的理想条件在有限的资金投入下很难实现。建议fP是DLP的两倍,既能有效的收集散射光子,也能比较容易准直。如果DLP =1mm, fP =2mm是比较合适的。2.3、光纤的芯径、布局和光谱仪以及ICCD的选择汤姆逊散射谱线展宽与温度的关系如下:汤姆逊散射角度 Theta=90度;me是电子质量,c是光速,kB是玻尔兹曼常数,公式右边分母下面:是激光的波长 532nm;分子是谱线展宽,不过是1/e展宽因此汤姆逊散射光谱的半高宽△λ1/e(nm)与等离子体温度Te(ev)的关系可以简化为△λ1/e=1.487×Te1/2Te eV0.10.20.30.4124510△λ1/e nm0.470.530.810.941.492.102.973.324.70表1. 电子温度与汤姆逊散射谱半高宽对应值在光谱仪没有入射狭缝或者入射狭缝宽度超过光纤的芯径的情况下,光纤的芯径实际决定了谱仪的实际分辨率(仪器展宽):△λof = fof ´ LSPfof是光纤的芯径,LSP是谱仪的倒线色散率。针对于此应用,可以考虑选择两款光谱仪,分别是:1、Zolix 北京卓立汉光仪器有限公司的Omni系列 750mm的谱仪,如果使用1200l/mm的光栅,LSP = 1nm/mm。测量电子温度的原则是仪器展宽应该与最低温度的展宽相当,才能有效的测量到最低温度。2、选用207(670mm焦距)光谱仪,在搭配1200l/mm光栅的情况下,LSP=1.24nm/mm,可以满足要求。同时可以考虑搭配1800l/mm光栅,这样的话可以兼容高电子温度和低电子温度的同时测量,以及同时兼顾高分辨和宽光谱。原则上,使用芯径400mm的光纤,△λof=0.4-0.48nm,完全符合0.1eV的测量要求。但是还是建议谱仪安装入射狭缝,靠狭缝来控制分辨率,不仅确保0.1 eV的测量要求,还能实现更低的温度测量。同时在调试阶段,靠狭缝来控制通光量,以免532nm的激光杂散光太强,对ICCD造成破坏。另一方面ICCD的尺寸决定了光纤的排布数量。光纤数量越多,对汤姆逊散射这种微弱光测量是越有利的。在信号很弱的时候,可以把几道合成一道使用,以增加信噪比,提高信号质量。因此在波长覆盖范围(CCD的横向尺寸)满足要求的情况下,ICCD的纵向尺寸应该尽量大一些,以便容纳更多的光纤。选用iStar 334T探测器,这款CCD的尺寸是13.3 ´ 13.3 mm,对焦距目前的光谱仪无论是Omni-750还是207在搭配1200l/mm光栅的情况下,波长覆盖范围是13nm左右,同时纵向13.3mm,容纳的光纤数量也更多,可以做更多的多道光谱。如果已有更大面阵的CCDsCMOS或高速相机,可以考虑使用Zolix 卓立汉光的IIM系列镜头耦合像增强模组与之配合,达到类似ICCD的功能和效果,同时获得更大的相机选取自由度;IIM 内部可以选择25mm 尺寸的增强器,1:1耦合到CCD, 可以获得更大的成像面,双层增强器也可以获得更高的增益;光纤的布局是一字型密集排布,在13mm的长度内,尽量的密布尽可能多的光纤。同时光纤应该严格排列在一条直线上,整排光纤的偏心距小于20mm。2.4、收集透镜的选择等离子体中心到透镜的距离L和光纤的芯径,及像斑决定了收集透镜的焦距。举例如下:如果像斑要求是fP =2mm,光纤芯径400mm, 则物像比是4,如果L=320mm, 则透镜的焦距就是320/4=80mm。同时如果观测的等离子体范围是50mm,那光纤一字排开的范围就是50mm/4=12.5mm。这个宽度和连接谱仪一侧的光纤束的尺寸很接近了,连接收集透镜一侧光纤也应该是密集排布,这样两端容纳的光纤数量就是匹配的。2.5、瑞利散射的滤除与使用瑞利散射信号通常也可以用来测试重粒子的相关信息比如中性原子。但是相比于瑞利散射法来说,作为弹性散射的汤姆逊散射法更多用于自由电子的测试。和离子与原子相比,由于自由电子的速度更快,质量更轻,因此具备更宽的光谱展宽。比较强的杂散光信号与更强的瑞利散射信号则可以通过例如布儒斯特窗、笼式结构或者黑丝挡板的方式滤除掉。图2 滤除瑞利散射的笼式结构示意光路因此在实际的测试过程中,如何合理地使用这些信号为等离子体诊断服务,则是另一个相关的话题。如图3[1]所示,为实际测试过程中得到的瑞利与汤姆逊散射信号如图4[2]所示,为实际测试过程中得到的滤除瑞利散射后的汤姆逊散射信号图3 包含瑞利散射与汤姆逊散射的实测信号图4 滤除瑞利散射后的汤姆逊信号2.6其他附属部件光电倍增管谱仪第二出射口配宽度可调的狭缝三维调整光学支架,用以调节镜头的方位和方向三、整体解决方案汇总推荐根据用户需求,一般推荐的配置如下:光谱仪:Zolix 北京卓立汉光仪器有限公司的Omni-500I 或750i光谱仪搭配1200l/mm和1800l/mm的全息光栅高光通量光谱仪,搭配120*140mm 或110*110mm 的大尺寸,高分辨率的1200l/mm光栅和1800l/mm光栅探测器:ICCD, 18mm 增强器,13*13mm 探测面;Zolix卓立汉光 公司的IIM-A系列 镜头耦合像增强模组,配合更大面阵的CCD或sCMOS相机, 18mm或25mm 的大面积增强器,灵活的CCD 相机选择; DG645数字延迟脉冲发生器:用于系统触发控制标准A光源,用于系统强度校准其他的配件:包括多道光纤,收集光路,可以后续一并考虑,先购买标准部件参考文献[1] Yong WANG, Cong LI, Jielin SHI, et al. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Sci. Technol. 19 (2017) 115403 (8pp) [2] Ma P, Su M, Cao S, et al. Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air[J]. Plasma Science and Technology, 2020.
    留言咨询

杂散光眩光测试系统相关的资讯

  • 如何测试镜头杂散光 Veiling Glare
    适用于各类镜头VGI杂散光测试 可信赖的测试数据 蓝菲光学(Labsphere)是公认的积分球校准光源的领导者之一。我们的固态可调光源是为满足传感器和材料研究、开发、生产测试和照明的高性能要求而设计的。VGI测试,有两种国标,分别是JB/T8248.4-1999机械行业标准,GB10988-2009质监局国标。两个标准里都要求使用积分球来测试杂散光。国际标准为ISO9358-1994. GB10988-2009为质检总局和国标委员会发布的标准,标准中提到了多种检测方法,首推积分球方法。杂散光系数:该标准中,定义为在均匀亮度的扩展视场中放置一个黑斑,经被测样品成像后,其像中心区域上的光照度与移去黑斑放上白斑后在像面上同一处的光照度之比。VGI以百分比表示。 配置说明 主球:大视场均匀光源白光积分球,球内壁Spectraflect 97%高漫反射率涂层用于实现匀化效果光学环境选配一:3000K-6000K LED色温可调 照度大于5000lux光学环境选配: 卤钨灯宽光谱,3000K/大于5000lux高精度直流电源&照度监控功能背景:配置固定光阱或者黑色吸光黑箱模拟暗背景滑动导轨:用于移动相机用于不同位置测试相机:12位2448 px x 2048px 千兆网口转USB口 符合标准 GB 10988-2009ISO9358-1994JBT8248ISO18844杂散光测试系统简介本系统是针对镜头的杂散光系数定制的杂散光测试系统,系统符合GB/T10988 标准的测试要求,可以实现客户自行对产品进行杂散光测试和检验。系统采用积分球均匀光源、黑色光阱积分球、导轨系统、相机配置。均匀光源可以按照国标大于1000:1 的亮度对比度,可以保证测试结果准确度,使用专利技术的大视场均匀光源结构。主积分球与光阱积分球分离,样品及导轨置于光阱积分球开口,光阱对面的开口放置客户指定灯具,或者使用亮度均匀光源积分球。旋转相机及镜头,使光源的像位于视场的某个位置,然后拍照,得到的图像供软件分析图像的灰度值。经过分析给出报告。计算结果为照度比 可以实现3000-7000K色温,台阶色温可调的白光LED光谱,光谱范围380-780nm也具备380-1000nm的包含红外光谱的入射光。客户可以根据自己需求挑选入射光种类。入射光主动反馈控制*镜头夹具(选配)规格参数
  • 新型光场调控方案,实现大范围散斑眩光消除
    光学散射是指光在传播过程中与散射体相互作用,导致光线的方向和强度发生改变的现象。在复杂的光学系统中,光学散射可能会导致信息混叠和掩盖,从而阻碍光学信息的有效提取。为了解决这个问题,人们会使用各种技术手段来降低散射,提高信息提取的准确性和效率。在复杂的光学系统中,光学散射带来的信息冗杂主要表现于以下两个方面:(1)携带信息的光、在传播过程中与散射体相互作用导致的真实信息扰乱与混叠;(2)没有携带信息的光、依然以散斑炫光等方式进入光学成像系统,从强度上掩盖了携带信息的光信号。这两种情况都会阻碍光学信息的有效提取。近年来,人们已经通过光场调控技术对入射光场进行相位预补偿,实现了目标区域的光学干涉相消(即散斑眩光消除)。然而,由于当前的优化算法过于冗杂低效且准确度不够,实验中获得的散斑眩光消除效率远低于理论预期。此外,缺乏合适的物理模型及理论指导限制了可消除散斑眩光范围的面积。因此,在有限的调控模式下,如何高效地实现大规模散斑眩光消除是目前亟待解决的问题。为解决上述问题,中山大学电子与信息工程学院、广东省光电信息处理芯片与系统重点实验室的李朝晖、沈乐成研究团队提出了一种新型光场调控方案实现大范围散斑眩光消除。该方案可在400个调控模式下对于400个光学散斑(接近于实验中所用相机的全部有效成像范围)进行消除,总计算耗时不超过1秒。相关研究成果发表于Photonics Research 2022年第12期。研究团队以Gerchberg-Saxton(GS)算法为原型,搭建了经由双阶段GS算法迭代的大规模散斑眩光消除方案,称之为TAGS(Two-stage matrix-assisted glare suppression)。该方案可在直接强度测量条件下完成散斑传输特性的精准解析,进而实现大范围的散斑眩光消除。此外,该方案还巧妙地借助目标区域外随机生成的辅助传输矩阵来提高收敛准确性,使得该方案在实际应用中能够获得更高的鲁棒性。图(a)为双阶段GS消除方案示意图,图(b)为消除前的散斑图,图(c)为大范围散斑眩光消除后的图像。图(a)TAGS方案的原理示意图,其中粉色迭代圆环代表经由第一阶段GS算法迭代的传输矩阵测量,蓝色迭代圆环代表第二阶段GS算法迭代获得可用于眩光消除的调制波前;(b)、(c)大范围散斑眩光消除实验结果该文通讯作者之一沈乐成博士表示: “TAGS的优异特性使得我们可以大幅降低测量难度与计算复杂度,使得有限调控模式下的大规模散斑眩光消除成为可能。后续我们将基于该工作,进一步探索更加高效的基于传输特性解析的散斑眩光消除方法,开展多光谱的散斑眩光消除及成像应用。”
  • 海洋光学推高透光率低杂散光全息光谱
    海洋光学(Ocean Optics – www.oceanopticschina.cn) 推出像差校正全息凹面衍射光栅光谱仪 – Torus 系列。该光谱仪具有透光率高、杂散光更低、热稳定性好的特点,可用于液体、固体等的吸收、荧光测量。Torus 可见波段光谱仪(360nm-825nm),杂散光水平:在400nm 处,约0.015%,较平面光栅等微型光纤光谱仪更低。  平场光学设计及全息凹面光栅用于光的色散:Torus 光栅的凹面用于光的反射及汇聚 光栅刻线用于光的色散 光栅的环形设计用于像差校正,提高衍射效率。  Torus 并且具有较高的光学分辨率(1.6nm FWHM,25um 狭缝)和优良的热稳定性(在0-50℃范围内,波长漂移更小,峰型保持基本一致)。  Torus 系列光谱仪可以通过 USB 接口与计算机进行交互控制,可以根据客户需要更改狭缝、滤光片及其它配件来优化配置 也可以通过 C-mount 接口与显微镜等配合使用。与海洋光学的其它光学配件一起,使您的测量更方便,更灵活。  Torus 通过海洋光学的 Spectrasuite 光谱操作软件来进行操作与分析,并且可用于 Windows, Macintosh,及 Linux 操作平台。并且还与海洋光学的 OmniDriver,SeaBreeze 软件开发平台相兼容。

杂散光眩光测试系统相关的方案

杂散光眩光测试系统相关的资料

杂散光眩光测试系统相关的论坛

  • 光学系统杂散光问题

    光学系统还有一个参数那就是杂散光,一般要求在As193.696 nm处用1000 ppm钙测定其背景等效浓度(BEC)要小于3ppm(在这方面Thermo、LEEMAN、VARIAN、PE的指标都表现得很好)。大家留意过这个吗?

  • 紫外杂散光测试漏光

    紫外220nm杂散光测试时黑体测试漏光会导致测定的透光率结果偏大还是偏小呢?会不会导致测试失败呢?

杂散光眩光测试系统相关的耗材

  • 带通光学滤光片消杂滤光片滤波片双光子荧光显微
    带通光学滤光片消杂滤光片滤波片双光子荧光显微 上海屹持光电推出专用带通光学滤光片,性能好、性价比高,可根据用户需求定制。可用于双光子显微成像、荧光显微镜、拉曼光谱仪和激光系统等。 双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术,能记录组织深层最细微的内部结构。双光子显微系统中,由于激发光和发射荧光波段不同,且在双光子成像时有杂散光干扰,所以需要双光子显微专用滤光片选择合适的透过波段成像,反射不需要光波段。参考型号尺寸性能参数主要功能EBPF-40/68-L36W25T0125mmx36mmx1mm透射400~680nm90%反射710~1500nm90%反射红外激光,透过可见光EBPF-75/160-L36W25T0125mmx36mmx1mm反射350~720nm98%透射750~1600nm90%反射可见光,透过红外激光EBPF-39/55-L36W25T0125mmx36mmx1mm透射390~555nm=90%反射575~1000nm90%将可见光分成绿色通道和红色通道EBPF-39/69-D25T01D25mm x1mm透射390~690nm=95%截止波段730~1100nmod值=6~8滤除红外激光配备屹持光电双光子显微镜专用滤光片后,双光子下的花粉颗粒成像图。
  • ZAP-IT激光校准纸
    ZAP-IT® 激光校准纸?行业标准光束轮廓观察纸?记录脉冲激光的光束、发散、模式和强度特性?适用于从UV到IR的宽带源ZAP-IT® 激光校准纸设计用于测试从紫外到红外的脉冲激光的特性。光束特性是通过在光路内手持ZAP-IT® 激光校准纸进行记录的。ZAP-IT® 激光校准纸非常适合用于校准应用或与激光光学件结合使用,其中包括激光扩束器、光学透镜、光圈、衰减器或功率仪表。对于连续波激光,可以使用机械斩波器或Q开关,或者手动快速地打开和关闭激光,以产生短脉冲。注意:如果输入光束的直径为6.3mm或更小,则难以观察到光束特性。如果是这样,可以使用激光扩束器或平凸透镜将光束直径放大。使用平凸透镜时,将ZAP-IT® 激光校准纸放置在图像距离为透镜焦距的2.5倍远的位置上。通用规格厚度(英寸):0.009厚度 (mm):0.24注意:Recommended Pulsed Width: 1ns to 30msRecommended Power Level Range: 5 mJ/cm2to 20 J/cm2产品型号标题产品编码ZAP-IT® 激光对准纸,2 x 5“,20张盒装#15-825ZAP-IT® 激光对准纸,2 x 5“,50张盒装#15-826ZAP-IT® 激光对准纸,4 x 8“,20张盒装#15-824ZAP-IT激光准直纸,4 x 8“,50张盒装#90-709ZAP-IT® 激光对准纸,4 x 8英寸,2mm正方形网格图案,20张盒装#15-827ZAP-IT® 激光对准纸,4 x 8“,2mm正方形网格图案,50张盒装#15-828ZAP-IT® 激光对准纸,20 x 24“,2张#15-829ZAP-IT激光校准纸ZAP-IT低能耗激光校准纸靶型号:ZL-22,ZL-25,ZL-48ZAP-IT® 低能耗激光校准纸靶有3种尺寸。ZL-22:2 x 2.2英寸,带有四个细线,十字准线目标。100张/包。厚度为0.11毫米。卡背面未打印。ZL-25:2 x 5英寸,无目标。75张/包。厚度为0.11毫米。卡背面未打印。ZL-48:4 x 8英寸,无目标。50张/包。厚度为0.11毫米。卡背面未打印。这种低能耗纸的能量阈值比ZAP-IT® 激光校准纸低20%。使用ZAP-IT® 激光校准纸记录激光束特征光束形状模式强度发散能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在可重新封闭的盒子中,以便于访问和存储。在ZAP-IT® 激光校准纸背面提供的区域中记录激光和光束的规格。建立稳定的可视化数据库零件编号:ZL-22(ZL22),ZL-25(ZL25),ZL-48(ZL48)使用ZAP-IT® 激光烧蚀将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜?进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。?对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。?在光束路径中放置一个正透镜(常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。?将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。?并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。?对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:?镜面对准精度?能量分布,模式质量和边缘定义?渐晕?未镀膜或未正确放置的光学元件导致的二次发射?发散?光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT激光校准纸ZAP-IT带网格的激光校准纸4x8英寸型号:ZG-48ZG-48,50张/包装。每张纸为4 x 8英寸,带有细的白线2mm网格。使用ZAP-IT® 激光校准纸记录激光束特征光束形状模式强度发散能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在可重新封闭的盒子中,以便于访问和存储。纸的背面为空白(无打印信息)。建立稳定的可视化数据库。零件编号:ZG-48(ZG48)使用ZAP-IT® 激光烧蚀和对齐纸将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜?进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。?对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。?在光束路径中放置一个正透镜(常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。?将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。?并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。?对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:?镜面对准精度?能量分布,模式质量和边缘定义?渐晕?未镀膜或未正确放置的光学元件导致的二次发射?发散?光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT激光校准纸ZAP-IT® 激光校准纸10x10英寸型号:Z-1010Z-1010,每包50张。每张纸为10 x 10英寸。 0.25mm的厚度。 背面为纯白色。使用ZAP-IT® 激光校准纸记录激光束特征光束形状模式强度发散能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在重型可重新密封的塑料袋中。建立稳定的可视化数据库零件编号:Z-1010(Z1010)使用ZAP-IT® 激光校准纸将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜?进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。?对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。?在光束路径中放置一个正透镜(常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。?将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。?并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。?对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:?镜面对准精度?能量分布,模式质量和边缘定义?渐晕?未镀膜或未正确放置的光学元件导致的二次发射?发散?光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT激光校准纸ZAP-IT® 激光校准纸3x3英寸型号:Z-33Z-33,75张/包每张纸为3英寸x 3英寸。厚度为0.11毫米。卡背面未打印。使用ZAP-IT® 激光校准纸记录激光束特征光束形状模式强度发散能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在可重新封口的塑料袋中,方便取用。纸背面为空白(不打印)。建立稳定的可视化数据库。零件编号:Z-33(Z33)使用ZAP-IT® 激光校准纸将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜?进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。?对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。?在光束路径中放置一个正透镜(常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。?将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。?并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。?对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:?镜面对准精度?能量分布,模式质量和边缘定义?渐晕?未镀膜或未正确放置的光学元件导致的二次发射?发散?光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT® 激光校准纸ZAP-IT® 激光校准纸2 x 5英寸型号:Z-25Z-25,每盒75张。每张纸为2.25英寸x 5英寸。厚度为0.11毫米。文档信息印在背面。使用ZAP-IT® 激光校准纸记录激光束特征?光束形状?模式?强度?发散?能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在选项卡式,可重新封闭的盒子中,以便于访问和存储。在ZAP-IT® 激光校准纸背面提供的区域中记录激光和光束的规格。建立稳定的可视化数据库零件编号:Z-25(Z25)使用ZAP-IT® 激光校准纸将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。在光束路径中放置一个正透镜(最常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:镜面对准精度能量分布,模式质量和边缘定义渐晕未镀膜或未正确放置的光学元件导致的二次发射发散光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT激光校准纸Z3T ZAP-IT® 激光校准纸6x6英寸型号:Z3T-66-100Z3T-66-100,100张装在有封口的塑料盒中。每张纸为6 x 6英寸。厚度为0.25毫米。正面采用缎面黑色专有涂层。纯白背。使用ZAP-IT® 激光校准纸记录激光束特征?光束形状?模式?强度?发散?能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在可重新封口的塑料盒中,以便使用和存放。建立稳定的可视化数据库零件编号:Z-66(Z66)使用ZAP-IT® 激光校准纸将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。在光束路径中放置一个正透镜(最常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:镜面对准精度能量分布,模式质量和边缘定义渐晕未镀膜或未正确放置的光学元件导致的二次发射发散光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT激光校准纸Z3TZAP-IT® 激光校准纸4 x 8英寸型号:Z3T-48-50Z3T-48-50 Zap-It新技术校准纸。每包50张。带封口的保利盒。每张纸为4 x 8英寸。厚度为0.25毫米。正面采用缎面黑色专有涂层。背面为纯白色,无印刷。使用ZAP-IT® 激光校准纸记录激光束特征?光束形状?模式?强度?发散?能量分配ZAP-IT® 激光校准纸张特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件,如扩束器,透镜,光圈,衰减器和功率测量设备对准激光束轴。现在包装在可重新封闭的塑料盒中,以方便查看产品和访问。建立稳定的可视化数据库。零件编号:Z3T-48-50ZAP-IT® 激光校准纸使用方法将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。在光束路径中放置一个正透镜(最常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:镜面对准精度能量分布,模式质量和边缘定义渐晕未镀膜或未正确放置的光学元件导致的二次发射发散光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71A
  • B2500099美国PE校准参考材料的杂散光溶液现货报价
    公司主营:美国PE、戴安DIONEX离子色谱耗材,PE元素灯/PE石墨管/PE氘灯/PE钨灯/PE基体改进剂/PE样品杯/PE GCMS灯丝/PE ICP火炬/PE氧化铝注入管/PE雾化器大量现货!美国Perkinelmer(珀金埃尔默)耗材常备现货:元素灯、石墨管、样瓶杯、取样毛细管、进样针、雾化器、矩管、中心管、泵管、顶空瓶、隔垫、瓶盖、色谱瓶、热脱附管、干燥剂、钨灯、氘灯、铝制等用于Lambda分光光度计的光源氘灯所适用的Lambda分光光度计的型号部件编号Lambda 1/3分光光度计C0550505Lambda 1X/2X/3X/4X/5X/5XX/Bio/6XX/8XX/9XX/10XX分光光度计L6022728Lambda 4/6分光光度计C6880055钨灯所适用的Lambda分光光度计的型号部件编号Lambda 1/3分光光度计*C0550500Lambda 1X/2X/3X/4X/Bio/6XX/8XX/9XX/10XX分光光度计B0114620Lambda 4/6分光光度计*C68800545X/5XX分光光度计B0091906
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制