当前位置: 仪器信息网 > 行业主题 > >

长工作距离显微物镜

仪器信息网长工作距离显微物镜专题为您提供2024年最新长工作距离显微物镜价格报价、厂家品牌的相关信息, 包括长工作距离显微物镜参数、型号等,不管是国产,还是进口品牌的长工作距离显微物镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合长工作距离显微物镜相关的耗材配件、试剂标物,还有长工作距离显微物镜相关的最新资讯、资料,以及长工作距离显微物镜相关的解决方案。

长工作距离显微物镜相关的资讯

  • 如何选择一台适合自己的显微镜——光学部件物镜的选择(下)
    小伙伴们,我又来了~本期给大家带来显微镜物镜的知识。啥是物镜,我想地球人都知道~物镜是显微镜的灵魂所在,物镜是影响清晰度的最重要部件,先来了解下物镜的重要参数。在选择物镜时需要考虑以下几个问题:1、需要多大的放大倍数?● 物镜可以根据其放大倍率分为三大类。其中包括:低倍物镜(2x、4x/5x和10x),中倍物镜(20x、40x)和高倍物镜(60x/63x、100x)。除了物镜的放大倍率不同外,物镜使用的介质也不同。例如,对于高倍镜头(60x和100x),经常使用浸油来获得高分辨率。放大倍率较低的镜头则采用空气作为介质。2、选择哪种观察方式?● 显微物镜有很多类型,应用场景也各有不同,根据观察方式的不同,也有不同种类。一般在物镜的外壳上会标注物镜的观察方式。● BF:明场;DF:暗场;PH:相差;PO:偏光;DIC:微分干涉;FL:荧光观察(蓝、绿、紫等);UVFL:紫外荧光观察。3、如何选择一个成像效果好的物镜?● ①要选择有平场矫正功能的物镜,即标有Plan。 ②主要根据色差校正的能力来判断成像效果:消色差物镜(Achromatic):仅能校正红蓝光的色差。半复消色差物镜(FL):能校正红绿蓝三色光的色差。全复消色差物镜(Apo):能对红绿蓝三色光的色差校正两次,同时能校正红、蓝两色光的球差。● 看透明切片可选择平场消色差物镜(Ach)。看荧光可选择半复消色差物镜(FL),而且有长工作距离可选,既可以看玻片也可以看培养皿。若需要更好的成像效果可选择全复消色差物镜(Apo),但Apo物镜没有长工作距离的,只适用于看玻片,不适合看培养皿或培养瓶等厚的样品。4、对分辨率的要求是什么?● 显微镜的分辨率是能分辨两点间的最小距离,能分辨的距离越小分辨率越高。数值孔径(NA值)与分辨率成正比,NA = n * sin α。与放大率成正比,与景深成反比。同样的放大倍数下,NA值越高越好。在工作距离都满足的情况下选择NA值高的物镜。5、需要多长的工作距离(WD)● 根据工作距离的不同,可以分为:①普通工作距离物镜:工作距离小,可以观察切片,但不能观察培养皿。②长工作距离物镜:用于倒置显微镜,可以满足组织、悬浮液等材料的镜检。6、所使用的玻片或培养板的厚度是多少?● 在标注物镜的光学类型的后面(∞/0)(210/0),也就是斜杠后面这个数字代表的是适用玻片厚度,(∞/0.17)(210/0.17),适用玻片厚度就是0.17毫米。如果用了不合适的盖玻片,则会出现很明显的球差(不同角度的光线没有会聚在同一高度)从而降低成像的对比度和分辨率。NA值越高的物镜对盖玻片厚度越敏感,所以要选择正规的盖玻片。有些高NA值的物镜以及长工作距离的物镜有可调的盖玻片厚度调节环可以对不同厚度的玻璃进行矫正,可用于培养皿的观察,观察时调节到相应的培养皿的厚度,或使用共聚焦培养皿,中间厚度也为0.17。
  • 工作距离的选择,对电镜拍摄会有什么影响?
    “TESCAN电镜学堂”又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性以及其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。今天主要谈一谈电镜拍摄时工作距离的选择。 这里是TESCAN电镜学堂第11期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能! 第三节 常规拍摄需要注意的问题 平时电镜使用者都进行常规样品的观察,常规样品不像分辨率标准样品那么理想,样品比较复杂,而且有时候关注点并不相同。因此我们要根据样品类型以及所关注的问题选择合适的电镜条件。 关注分辨率、衬度、景深、形貌的真实性、其它分析的需要等等,不同的关注点之间需要不同的电镜条件,有时甚至相互矛盾。因此我们必须明确拍摄目的,寻找最适合的电镜条件,而不是贸然的追求大倍数。 电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。本期将为大家介绍工作距离的影响。 §3. 工作距离的影响① 分辨率由前面的束斑尺寸公式我们就已经得知,不管任何电镜、任何电压束流条件,都是工作距离越近,分辨率越好。不过工作距离越近,操作越危险,需要操作者较为小心,避免试样碰撞极靴。而且工作距离越近,试样允许的倾转角度也受到更大的限制。② 景深除了分辨率外,有时候景深也是电镜图片非常重要的因素,特别是当倍数较大时,景深会大幅度缩小,试样稍有起伏则不能全部聚焦清楚。 景深有如下公式可以表示: 其中M为放大倍数、D为工作距离、d为电子束直径、α为光阑孔径。TESCAN所有的电镜都可以从软件中读取当前工作条件下的景深,如图5-27。 图5-27 TESCAN软件直接读取景深 从景深公式中我们可以知道,影响景深的几个工作参数: 工作距离越大,景深越大;加速电压越大,电子束直径越小,景深越大;束流越小,电子束直径越小,景深越大;光阑孔径越小,景深越大;放大倍数越小,景深越大。 另外,TESCAN电镜具有独特的景深模式,通过中间镜和物镜的聚焦配合,能够增加高倍数下的景深。此外,无磁场模式的景深要好于磁浸没式。 图5-28是不同距离下的景深效果,可以明显的看出长工作距离下的景深优于短工作距离,但是工作距离过长会导致分辨率的下降。 图5-28 工作距离对景深的影响③ 衬度与工作距离的影响 对背散射电子来说,工作距离还会引起衬度的不同。工作距离较远时,极靴下背散射电子探测器的接收立体角较小,相对接收更高角的背散射电子信号;距离较近时,立体角变大,可以接收更多的低角背散射电子信号。图5-29,试样是抛光的金属镍,测试了不同区域的灰度值,可以发现工作距离较近时,不同的晶粒的灰度值相差更大,通道衬度更好。 图5-29 工作距离与背散射电子衬度④ 物镜模式和附件的要求 采用半磁浸没式物镜时(MAIA的Depth或Resolution模式),需要较近的工作距离。半浸没式物镜的磁场仅在物镜附近,工作距离远了磁场不能将试样表面包住,使得电子束不能很好的聚焦到试样表面。因此在这种工作模式下,工作距离最好小于7mm。如果插入了极靴下背散射电子探测器,由于探测器本身具有一定的厚度,所以工作距离也不能太近,否则会撞上探测器。插入极靴下背散射探测器的情况下,工作距离要大于6mm。如果工作距离更近了,可以拔出极靴下背散射探测器,改用镜筒内背散射电子探测器进行观察。在使用减速模式或者镜筒内二次电子探测器时,也需要相对较小的工作距离。 电镜的其它附件,比如EDS/WDS,由于这些附件自带准直器,需要有特定的工作距离,不在此工作距离下,附件会因为没有信号而不能正常工作。 福利时间每期文章末尾小编都会设置1个问题,大家可以在留言区自由作答,每期在答对的朋友中我们会选出点赞数最高的两位送出本书的印刷版。【本期问题】工作距离对背散射电子成像会有怎样的影响?(快去留言区回答问题领取奖品吧↓)奖品公布上期获奖的两位用户@Yuki@Organometallics,请在3个工作日内后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。电镜学堂“有奖问答”奖品 (印刷版书籍1本)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请戳以下文字或点击阅读原文:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备统电镜学堂丨扫描电子显微镜样品要求及制备 (二) - 特殊试样处理&试样放置 电镜学堂丨扫描电镜的基本操作 & 分辨率指标详解电镜学堂丨电镜操作之如何巧妙选择加速电压?电镜学堂丨电镜使用中,如何选择合适的束斑束流? 更多详情内容请关注“TESCAN公司”微信公众号查看
  • 未来低温光学实验我们更“近”一步 ——OptiCool发布近工作距离等多种选件
    超全开放强磁场低温光学研究平台-OptiCool发布以来就受到全球用户的广泛关注,目前国内销售已超过10台。7T强磁场、8个光学窗口、自由光路、超低振动等优异的性能让OptiCool突破了传统光学磁体对光学实验的多种限制。成熟易用的控制系统使用户从复杂的设备操作中解放出来更加专注于实验本身。Quantum Design从未满足于此,根据用户在具体实验需求中的反馈开发出了丰富的选件以满足各种具体需求。在探索真理的道路上不断前进。近工作距离选件——毫厘之间,追寻光谱本色!为进一步提高数值孔径,提高显微光谱的收集效率,Quantum Design开发出了近工作距离(LWD)窗口。标准的OptiCool系统窗室温环境到低温样品之间的小工作距离约为15 mm,使用LWD窗口选件后可以缩小到约3 mm。在对限低温要求不高的情况下,可以通过移除内窗的方式获得小于1 mm的工作距离。由于OptiCool系统配备了高均匀度磁体,在整个窗口处的磁场均匀度高于0.3%。LWD窗口选件配备室温物镜安装套环,标准的SM3螺纹兼容多种物镜,这样室温物镜也可以实现大数值孔径的低温测量。该选件安装简单,用户自己即可完成更换,使得低温强磁场显微光谱测量更加方便。本月国内近工作距离选件在清华现场升完成。左,近工作距离窗口示意图;右,清华大学近工作距离选件安装完毕真空物镜集成方案——百尺竿头,更进一步!为了满足对数值孔径和限低温的限追求,Quantum Design在近工作距离选件的基础上进一步开发了物镜集成方案。该选件兼容0.75 NA,Zeiss 100x LD EC Epiplan-Neofluar, infinity-corrected物镜。系统保证物镜工作在真空环境且接近于室温,使物镜可以发挥好的光学性能,物镜的工作距离2 mm,此时样品仍可实现1.7K限低温,这可能是集成镜头系统的佳典范。左,近工作距离窗口与外部室温镜头;右,室温真空镜头集成方案高频电学、光纤接口选件—— 想要光、电?全都配齐!系统在原有直流通道的基础上开发了高达20 GHz的高频电学通道。这对于高频电学测量或者对样品施加高频电信号调控都带来了巨大的帮助。系统的直流电学通道和高频电学通道都采用了良好的热沉处理,避免了电学通道漏热对样品温度的影响。此外系统为满足特定实验需要接入光纤的需求开发了光纤接口选件。该方案将系统的一个侧窗窗口用光纤面板替代,实现了光纤接入,这将满足更加多样化的高灵敏度光学实验。左,RF同轴线外部接口;中,同轴线样品台接口;右,样品台接线左,光纤接口选件;右,光纤接头位移器集成方案——让样品灵动自如!系统标配低阻通道,该通道专为集成位移器而设计。系统可以非常方便的安装集成attocube低温纳米位移器系列,在显微光谱方面可以实现样品对焦、特定区域测量、大范围扫描测量。系统配有位移器专用的导热连接让样品始终保持佳的低温性能。左,位移器集成示意图;右,大空间位移器集成示意图(下凹式样品台获取更多空间) 丰富多样的选件大的提升了OptiCool系统的适用性,体现了系统超全开放的理念。同时丰富的选件让低温强磁场光学实验像室温光学实验一样方便。拥有超全开放强磁场低温光学研究平台-OptiCool,让您的科研任何时刻都是高光时刻!
  • 新品首发!DSX1000 数码显微镜强势来袭!
    奥林巴斯公司(代表董事兼总裁:竹內康雄)宣布在全球范围内推出 DSX1000 数码显微镜,它极大地改善了用户的检验工作流程,能够通过简易的操作实现对各种样品的分析。这款新产品由奥林巴斯科学事业于2019年6月3日面向全球发布。 DSX 系列数码显微镜将我们卓越的光学技术与先进的数字技术融为一体。DSX1000 数码显微镜用于观察和测量各种样品,包括电子元件和金属材料。此显微镜使用简单,只要放上样品,就可以轻松地完成 3D 观察、测量、报告自动生成等一系列操作。 您只需要一台 DSX1000 显微镜就可满足各种观察和分析需要,改善检验的工作流程。镜头数量增加至 15 个,涵盖20-7,000X的放大倍率。用户还可以利用该显微镜的六种观察方法,对各种样品进行观察与测量。比如突出显示样品表面的不规则和轮廓形貌。显微镜头部和载物台可以分别进行± 90°的自由角度调节,从而满足对各种复杂外形样品的任意角度观察。另外,新开发的算法可以实现更快的 3D 图像采集,与奥林巴斯传统数码显微镜相比,速度快了近十倍。最后,我们将根据每位用户的工作环境校准显微镜,以帮助用户实现精确、高效的观察和测量。新 品 首 发NEW ARRIVAL主要特点放大倍率范围 20–7,000X,可旋转式载物台。可迅速切换物镜和六种观察方式。远心光学系统保证了在整个放大范围内的测量准确度。放大倍率范围 20–7,000X,可旋转式载物台DSX1000 数码显微镜新增了 5 个物镜,物镜总数达到 15 个。20-7,000X 的放大倍率范围实现了精确观察,而长工作距离物镜则实现了对不规则样品的观察,例如电路板和机加工零件。显微镜头部和载物台都可以旋转± 90°,更易于观察和分析薄样品,如晶圆,或大型样品,如汽车部件。 可调节的头部和载物台显微镜头部和载物台可以分别旋转± 90°使用高分辨率长工作距离的物镜长工作距离使用户能够观察不规则形状的电子基板。 20–7,000X 放大倍率下的晶圆图像对比可迅速切换物镜和六种观察方式显微镜的电动变焦光路结合了先进的观察功能,可实现六种观察方法和对比度增强功能:明场、暗场、MIX、偏光、简易偏振和微分干涉。偏光观察和对比度增强功能可以突出样品表面的不规则和轮廓形貌。例如,此功能可用于在观察晶圆表面较大的不规则形状与细微破损和划痕之间快速切换。从而用户可以观察到使用其他方法难以检测到的对象。太阳能电池图像对比(左图:明场观察,右图:偏光观察)单侧光线照射突出了表面的不规则形状。该项技术适用于观察不规则形状、扭曲的样品和槽口。集成电路 (IC) 芯片图像对比(左图:常规;右图:带对比度增强功能)色彩清晰明亮的图像替代了明暗图像。远心光学系统保证了在整个放大范围内的测量精确性。*汽车制造商、精密设备和其他产品制造商必须精确测量和分析产品的规格,以证明产品的安全性。DSX1000 数码显微镜使用远心光学系统,在整个放大范围内图像失真极低,实现了有保证的准确度和重复性的高精度测量。为了确保准确度,在完成 DSX1000 显微镜的安装后,奥林巴斯的技术人员将根据客户使用环境对每台显微镜进行校准。 远心光学系统和非远心光学系统的图像采集对比图改变聚焦位置不会改变图像大小。此新闻稿中的公司名称和产品名称分别是其对应公司的商标或注册商标。*必须由奥林巴斯进行校准。奥林巴斯科学事业科学事业的主要产品为光学显微镜、工业视频内窥镜、无损检测设备和合金分析仪。通过这些产品,科学事业帮助维持社会基础设施的安全和稳定,包括医疗、生命科学和工业领域的研发;生产设施的质量改善;飞机和其他大型设备的检验等等。奥林巴斯将于 2019 年 10 月 12 日迎来百年华诞。我们向支持我们公司发展的客户和股东表示诚挚的感谢。我们期待秉承“实现世界人民的健康、安心和幸福生活”的使命,继续为社会做出贡献。
  • 351万!自然资源部第二海洋研究所“显微镜设备”采购项目
    项目编号:0625-22212640项目名称:自然资源部第二海洋研究所“显微镜设备”采购项目预算金额:351.0000000 万元(人民币)最高限价(如有):315.9000000 万元(人民币)采购需求:招标内容货物名称数量用途分项限价(万元)是否允许采购进口产品简要技术规格显微镜设备智能FISH荧光原位杂交系统1台科研67.5是用于海洋生物遗传学研究全电动体视显微镜1台科研40.5是高分辨率、高反差,电动光学变倍技术,智能控制调焦变倍,航天级材料的Z轴格栅,1.0× 平场复消色差荧光物镜,双支光纤照明器、环形光照明器、透射光反射光两用底座,原厂同品牌彩色数码冷CCD。全电动体视荧光显微镜1台科研45是连续变倍、大视野、长工作距离(电动连续变倍16:1);大视野高荧光亮度,可获得10倍于常规体视显微镜的荧光强度,荧光滤光块转盘含4个滤光块; 智能、高精度电子变焦。可实现对荧光样品光学切片的图像效果。高倍体视镜1台科研18是数值孔径、分辨率、放大率、焦深、视场宽度、工作距离、覆盖差等高倍显微镜2台科研14.4是物镜放大倍率,×4,×10,×20,×40,×100,目镜×10。工作环境:+0~60℃扫描电子显微镜1台科研108是放大倍率:×5-×300000,分别率:3.0nm(30kV*1)、4nm(20kV)、8nm(3kV)、15nm(1kV)正置荧光显微镜1台科研22.5是物镜放大倍率,×4,×10,×20,×40,×100,目镜×10。光路:普通光路,紫外线,蓝光,绿光三色发光系统▲注:本项目投标人须对本招标文件中的所有产品进行投标。 合同履行期限:合同签订后6个月内本项目( 不接受 )联合体投标。
  • 应用分享 | 激光扫描显微镜用于测量锂电池集流体的表面粗糙度
    小至手机和运动手环,大至各种电动汽车,锂离子电池都是其中的关键能源供给装置。锂离子电池重量轻,能量密度大,循环使用寿命长,且不会对环境造成污染。对于锂离子电池来说,电容量是衡量电池性能的重要指标之一。锂离子电池电极的材料主要有铝(正电极)和铜(负电极)。在充电和放电期间,电子转移发生在集流体和活性材料之间。当集流体和电极表面之间的活性材料电阻过大时,电子转移的效率降低,电容量就会减少。若集流体的金属箔的表面粗糙度过大,则会增加集流体和电极表面之间的活性材料电阻,并降低整体电容量。 集流体(左图:铝 右图:铜)如何进行锂电池负极集流体的铜箔粗糙度测定呢? 奥林巴斯提供非接触式表面粗糙度测量的解决方案: Olympus LEXT 3D激光扫描显微镜 奥林巴斯 OLS5000 激光共焦显微镜使用奥林巴斯 OLS5000 激光共焦显微镜,能够通过非接触、非破坏的观察方式轻松实现3D 观察和测量。仅需按下“Start(开始)”按钮,用户就能在亚微米级进行精细的形貌测量。 锂电池负极集流体的铜箔粗糙度测定使用奥林巴斯 OLS5000 显微镜测量粗糙度时,用户会得到以下三种类型的信息:粗糙度数据,激光显微镜3D彩色图像和高度信息以及光学显微镜真实彩色图像。这让使用人直观的看到粗糙度数据。同时,使用人可以从数据中了解集流体表面的状态。通过观察这些图像,也可以观察到实际的表面形貌。产品优点与特点 非接触式:与接触式粗糙度仪不同,非接触式测量可确保在测量过程中不会损坏易损的铜箔。这有助于防止由于样品损坏而导致的数据错误。专用物镜:LEXT OLS5000使用专用的物镜,因此您可以获得在视场中心和周围区域均准确的数据。平面数据拼接:数据可以水平拼接,从而可以在大区域上采集数据。由于拼接区域的数据也非常准确,因此与传统的测量方法相比,可以更高的精度获取电池集流体的粗糙度数据。超长工作距离:载物台水平范围为300 mm×300 mm使您可以测量较大的样品,例如汽车电池中的集流体,也不需要制备样品就可以在显微镜下观察。OLS5000显微镜的扩展架可容纳高达210毫米的样品,而超长工作距离物镜能够测量深度达到25毫米的凹坑。在进行这两种测量时,您只需将样品放在载物台上即可。
  • 易轻忽之肯綮:扫描电镜工作距离与探头的选择(下)——安徽大学林中清32载经验谈(10)
    p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "strong【作者按】/strong前文【a href="https://www.instrument.com.cn/news/20200616/551389.shtml" target="_self"strongspan style="font-family: 宋体, SimSun font-size: 16px color: rgb(0, 176, 240) "扫描电镜工作距离与探头的选择(上)/span/strong/a】我们通过实例展示并探讨了:工作距离与探头的不同组合与样品表面形貌像的分辨力之间存在怎样的关系,列表对比了不同工作距离和探头组合的优缺点。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "本文将进一步以实例来展现并探讨,正确的工作距离和探头的选择,将会对扫描电镜的测试结果和状态的维持产生怎样的影响。给大家在进行扫描电镜测试工作时,对于工作距离及探头的选择,提供一定参考。/span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-family: 宋体, SimSun color: rgb(0, 176, 80) font-size: 18px "一、工作距离和探头的选择与表面形貌像的形成/span/h1p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "如前面一再强调,形成扫描电镜表面形貌像的基础在于反映表面形貌高低差异的形貌衬度。形成形貌衬度的因素,取决于探头对样品信号的接收角度,而形成这个接收角度的主要因素,依据样品特性及信息需求的不同分为两个层面。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "第一个层面:低倍,观察的样品表面形貌起伏较大(大于20纳米)。要表达这类信息,需要相应的形貌衬度也较大。只有在探头、样品和电子束之间存在一定角度,所形成的形貌衬度才能充分展现这种位置上的差异。strong此时样品仓探头(L)将作为接收样品信息的主体/strong。不同的形貌衬度,要求这三者之间形成的最佳接收角不同,需要进行不停的调整。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "实际操作时,由于探头和电子束中轴位置是固定的,因此这个角度的改变就落实在样品位置的调整上。工作距离和样品台倾斜角的改变是进行这个角度大范围调整的唯二之法。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "第二个层面:高倍,观察区域缩小,样品表面起伏减弱,形貌高低位置的差异也将削弱,样品电子信息的溢出角度所形成的形貌衬度足以呈现样品表面高分辨形貌特征。因观察的细节小,小于10纳米,信息扩散对这些细节的干扰将左右最终结果。用小工作距离、镜筒内探头来获取充分的二次电子信息是最佳方案,此时形成高分辨表面形貌像的关键点在于strong镜筒内探头(U)能否充分获取样品的低角度电子信息/strong。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "在扫描电镜的实际测试过程中,所要获取的样品表面形貌信息,绝大部分都落实在第一个层面中。因此充分利用样品仓探头来形成样品的表面形貌像,就应当成为日常测试工作的主要选择。以此为基础,依据样品所表现出的特性及所需获取的样品信息,来改变测试条件,将会使得测试工作真真做到有的放矢,获取的样品信息也更充分。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "十分可惜,由于认识上的偏差,对工作距离和探头的选择思路往往与此背道而驰。将小工作距离做为获取高分辨像的唯一途径,进而推广为常规测试条件,这容易形成样品信息不充分、假象多、压缩样品操作空间、增加镜筒污染和样品损伤几率的结果。这些事例都将在本文中给予充分的体现。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "要使表面形貌像含有充足的样品信息,关键是如何调控样品仓探头(L)和镜筒内探头(U)对样品信息的获取。而这个调控工作的关键点又在于工作距离的选择/span/strongspan style="font-family: 宋体, SimSun font-size: 16px "。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "下面将以工作距离的改变为主轴,从表面形貌像的信息量、样品荷电的应对、磁性材料的观察这几个方面来探讨不同的工作距离和探头选择究竟能带来怎样的测试结果。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "1.1 工作距离的改变与表面形貌像的获取/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "利用扫描电镜对样品的表面形貌进行观察,其过程和我们对日常事物的观察并无不同。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "要充分观察一个物体,在这个物体与眼睛离开一定距离时,获取的信息最多。太远,无法分辨;太近,虽然看的细致,但往往只能观察到局部,获取的信息精细但贫乏。即所谓鼠目寸光,可明察秋毫,也容易以偏概全、以点代面。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "获取一个物体信息的过程都始于全貌观察。由整体到局部、远观到近考。近考是以远观为基础,而物体的大部分信息都是在一定距离下从各种不同角度去观察来获得。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "对于扫描电镜来说也是如此:探头如同人的眼睛,工作距离就如同物体所处的观察位置。大量的样品信息都应当在一个特定的工作距离上,从侧面(样品仓探头)和顶部(镜筒内探头)来获取。少量的细节信息(strong 10nm/strong)需要靠近样品,用镜筒内探头,小工作距离来观察。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "这个特定的工作距离各电镜厂家都不相同,个人认为日立冷场扫描电镜是15mm。下面将从各种不同工作距离获取的信息对比开始,用实例来展示各种工作距离和探头组合的优劣,同时分享我在测试时对其选择的流程,供大家参考。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "1.1.1图像的清晰度和辨析度/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "清晰度:是指影像上各细部纹理及其边界的清晰程度。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "辨析度:是指影像上各细部纹理及其边界的分辨程度。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "瑞利判据:一个爱里斑中心与另一个爱里斑的第一级暗环重合时, 刚好能分辨出是两个像。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "依据瑞利判据,图像辨析度要求的是图像足够清晰而并不追求绝对清晰。在获取扫描电镜图像时常常发现,图像的高清晰并不一定带来高分辨。许多高清晰的图像其细节分辨并不好,而某些图像虽然清晰度较差,但并不影响对微小的细节信息进行分辨。辨析度高才能带来高分辨能力,这种情况在对不同放大倍率和采用不同测试条件获取的表面形貌像进行对比时会经常出现,前面有充分的实例给予展示。/span/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 395px height: 193px " src="https://img1.17img.cn/17img/images/202007/uepic/74932b14-2635-4e9f-9673-707661babbbf.jpg" title="扫描电镜工作距离与探头的选择1.png" alt="扫描电镜工作距离与探头的选择1.png" width="395" height="193" border="0" vspace="0"//pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 395px height: 186px " src="https://img1.17img.cn/17img/images/202007/uepic/3d61fa9f-335d-4a6c-bbbf-6fdb80bff7c4.jpg" title="扫描电镜工作距离与探头的选择2.png" alt="扫描电镜工作距离与探头的选择2.png" width="395" height="186" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "关于扫描电镜图像的清晰度与辨析度,以后还有专文探讨。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "1.1.2样品仓探头的最佳工作距离/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "各电镜厂家的样品仓探头位置设计不同,因此它们的最佳工作距离也不相同,日立冷场电镜在15mm。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "如上篇的实例所示:样品仓探头在工作距离小于8mm时接收到的样品信息较少,小于4mm基本接收不到样品信息。大于8mm接收到的样品信息逐渐增多,15mm达到最佳的成像效果,大于15mm接收效果及图像立体感缓慢减弱。/span/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 395px height: 236px " src="https://img1.17img.cn/17img/images/202007/uepic/b4abd10c-402d-4db3-825b-afe30e288b80.jpg" title="扫描电镜工作距离与探头的选择3.png" alt="扫描电镜工作距离与探头的选择3.png" width="395" height="236" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "依据样品仓探头对样品信息的接收效果,可将工作距离大于8mm称“大工作距离”,小于4mm称为“小工作距离”。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "小工作距离下,对样品信息的接收局限在镜筒内探头,接收到的样品信息较为单调。虽有利于在高倍时呈现小于10nm的样品细节信息,但不利于全面获取样品的表面信息。故将样品至于样品仓探头的最佳工作距离就十分必要。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "样品仓探头位置设计的越合理,利用探头组合来改变表面形貌像中SE2:BSE的比值和信息接收角度的范围就越大,同时样品的可操控范围也越大。这将使得图像中的各种衬度信息更能得到充分的展现,形貌像的信息内容也越多。 /span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "下面将从图像的分辨能力、信息量、倍率变化范围以及样品操控等几个方面来对比大、小工作距离测试的优劣。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "A)大工作距离与图像细节的分辨能力/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "对于图像细节分辨力,目前在认识上存在一种简单的单调思维方式。所谓简单的单调思维方式就是用部分代替整体。如某测试条件在高倍时对极细小的细节拥有非常好的测试效果,就想当然的认为在低倍时也会拥有非常好的测试结果。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "实际情况往往并非如此,高倍有好的细节分辨力,不代表这个测试条件就一定能在低倍获得良好的结果。这在上篇有充分的展示,本文将再以一个实例来介入该问题的探讨。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "二氧化硅介孔样品。选择小工作距离、镜筒探头这组测试条件有利于对孔道信息的展现。但是否在低倍观察二氧化硅颗粒的整体信息时,也有同样的表现?请看以下这一组图片:/span/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 395px height: 546px " src="https://img1.17img.cn/17img/images/202007/uepic/6242e319-3fc5-4cfa-9265-f8cab4995494.jpg" title="扫描电镜工作距离与探头的选择4.png" alt="扫描电镜工作距离与探头的选择4.png" width="395" height="546" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "上述实例可以看到,图像分辨力的主要影响因素是动态变化的。随着样品特性以及信息需求的变化,形成形貌像的主导因素也会发生改变。因此测试条件也应随之变更,否则将无法获得充分的样品信息和图像的高分辨力。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "不少样品表面形貌细节的高分辨观察并不需要用小工作距离来进行。在大工作距离下就可以获取非常优异的高分辨像,且高分辨像的空间伸展更加充分。如下图: /span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "/span/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 395px height: 264px " src="https://img1.17img.cn/17img/images/202007/uepic/6a4a204e-120c-43f4-83ce-37a47487776c.jpg" title="扫描电镜工作距离与探头的选择5.png" alt="扫描电镜工作距离与探头的选择5.png" width="395" height="264" border="0" vspace="0"/span style="font-family: 宋体, SimSun text-align: justify text-indent: 2em " /span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "仪器性能优异,即便是介孔样品的介孔信息,在大工作距离下采用镜筒内探头或混合探头,该信息也并非无法观察。但因上探头的接收效果变差,图像整体清晰度及信号量有所减弱,但介孔却可被明确分辨,且能保证一定的图像质量。/span/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 395px height: 539px " src="https://img1.17img.cn/17img/images/202007/uepic/17ae15f9-81ab-4e92-8e5c-5b4df1f6d027.jpg" title="扫描电镜工作距离与探头的选择6_看图王.png" alt="扫描电镜工作距离与探头的选择6_看图王.png" width="395" height="539" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "B)大工作距离获取的图像,空间信息更充分/span/strong/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 395px height: 301px " src="https://img1.17img.cn/17img/images/202007/uepic/bc5317f4-233a-496d-95ba-0fb5e2424ad9.jpg" title="扫描电镜工作距离与探头的选择7.png" alt="扫描电镜工作距离与探头的选择7.png" width="395" height="301" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "高分子膜和二氧化硅小球,左图采用大工作距离,下探头从侧向接收样品信息,图像的形貌衬度充分,空间立体感强烈,信息更丰富。右图小工作距离,只能是镜筒内探头从顶部接收样品信息,形貌衬度薄弱。图像如同被压扁,空间信息贫乏,整体分辨力不足。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "C)大工作距离有较大的倍率变化空间/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "采用大工作距离测试,获得图像的倍率变化空间大。有利于在原位从低倍到高倍进行倍率的大范围改变,获取样品的信息更全面,形成的样品信息系统性更为优异。/span/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 395px height: 336px " src="https://img1.17img.cn/17img/images/202007/uepic/2a84df37-7a41-498a-af58-38005c84c34c.jpg" title="扫描电镜工作距离与探头的选择8.png" alt="扫描电镜工作距离与探头的选择8.png" width="395" height="336" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "小工作距离的起始倍率较高,对低倍获取样品的全貌有所限制,特别是应对那些体积较大的样品。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "D)大工作距离有利于样品做大范围移动/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "工作距离越大样品的可移动范围也越大,越有利于我们从多个侧面来对样品进行观察。特别是对空间差异较小的样品,大角度的倾斜,可改变探头获取样品信息的角度,将有利于充分展现样品的空间形态,减少误判。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun text-indent: 2em "/span/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 395px height: 212px " src="https://img1.17img.cn/17img/images/202007/uepic/6b060682-9fe3-4a92-bcd3-caad054258a4.jpg" title="扫描电镜工作距离与探头的选择9.png" alt="扫描电镜工作距离与探头的选择9.png" width="395" height="212" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "以上多个实例,充分展示大工作距离测试所带来的强大优势,下面将对大工作距离、样品仓探头组合做重点探究。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "1.1.3大工作距离、样品仓探头组合的测试优势/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "样品仓探头在大工作距离测试时,如同从侧上方观察样品,获取的样品表面形貌衬度要远大于从样品顶部采用镜筒内探头所获取的结果。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "形成表面形貌像的优点:空间信息丰富,立体感强,样品信息更充分,可减少假象的形成,低倍时图像的分辨能力强,Z衬度更优异,受荷电影响极小。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/0adc0222-c481-4f28-b16b-2c48174c697e.jpg" title="扫描电镜工作距离与探头的选择10.png" alt="扫描电镜工作距离与探头的选择10.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/f57a85d1-c7fd-4ee6-9c89-080d03abda74.jpg" title="扫描电镜工作距离与探头的选择11.png" alt="扫描电镜工作距离与探头的选择11.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "样品仓探头(下探头)获取的图像形态对工作距离、样品倾斜角度、加速电压的改变都比较敏感,这为充分获取样品信息提供足够的保障,可以多维度展现样品的形貌特征。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "A)工作距离的改变对下、上探头接收样品信息的影响/span/strong/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/90c24635-fbff-4738-8b75-e7266d0ce577.jpg" title="扫描电镜工作距离与探头的选择12.png" alt="扫描电镜工作距离与探头的选择12.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/a76b631c-75f0-4fe5-8b91-d4cb2b251d97.jpg" title="扫描电镜工作距离与探头的选择13.png" alt="扫描电镜工作距离与探头的选择13.png"//pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "B)样品倾斜对下、上探头接收样品信息的影响/span/strong/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/7a00753c-32a0-4541-9a54-31ebcb1df725.jpg" title="扫描电镜工作距离与探头的选择14.png" alt="扫描电镜工作距离与探头的选择14.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/041513de-536d-41ce-9892-254c4612bbe9.jpg" title="扫描电镜工作距离与探头的选择15.png" alt="扫描电镜工作距离与探头的选择15.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/85154b75-b112-4a41-b918-0adf46978691.jpg" title="扫描电镜工作距离与探头的选择16.png" alt="扫描电镜工作距离与探头的选择16.png"//pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "C)加速电压的变化对上、下探头接收样品信息的影响/span/strong/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/2c486494-f5cf-49e0-8105-9654120bd323.jpg" title="扫描电镜工作距离与探头的选择17.png" alt="扫描电镜工作距离与探头的选择17.png"//pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "1.1.4 大工作距离、样品仓探头组合的测试劣势/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "下探头位于样品侧上方,直接面对的是低角度电子信息。低角度位置上分布的主要是背散射电子,故以下探头为主形成的表面形貌像,容易受背散射电子在样品中扩散的影响。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "结果是:高倍图像的清晰度不足,十纳米以下的细节容易被掩盖,随着镜筒内探头被添加进来,此现象所改善。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "样品仓探头对以二次电子为主导的电位衬度及二次电子衬度信息的展现较差。具体实例如下:/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/23d449e2-83bf-48f6-83fe-1848a196b968.jpg" title="扫描电镜工作距离与探头的选择18.png" alt="扫描电镜工作距离与探头的选择18.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/45799b39-6caa-4e64-afc4-ad88cad42370.jpg" title="扫描电镜工作距离与探头的选择19.png" alt="扫描电镜工作距离与探头的选择19.png"//pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "1.1.5大工作距离测试有利于材料的缺陷分析/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "通过对以上大工作距离下各种探头组合的优、缺点展示可见:无论哪种组合都有局限,很难用一种条件包打天下。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "大工作距离条件下,可轻松切换上、下探头,对比不同探头获取的不同样品讯息,可得到单一探头组合所无法展现的异常现像,这将有利于对材料进行缺陷分析。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "如:在大工作距离条件下,切换上、下探头,获取样品表面的电位衬度不同。通过对比因不同的电位衬度所展现的图像形态差异,可以得到样品表面局部被污染或氧化的信息。下面是两个我遇到的非常成功案列。/span/pp style="text-align:center"span style="font-family: 宋体, SimSun font-size: 16px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/d203ac91-933a-4634-bc34-aba2b70f6678.jpg" title="扫描电镜工作距离与探头的选择20.png" alt="扫描电镜工作距离与探头的选择20.png"//span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "1.2工作距离和探头的选择与样品荷电的应对/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "样品荷电现象指的是:样品中由于电荷累积形成荷电场,该荷电场对样品表面信息的正常溢出产生影响,在形貌像上叠加形成异常亮、异常暗或细节磨平的现象。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px " 不同能量的电子信息受到荷电场的影响程度也会不一样。能量弱小的二次电子极容易被荷电场所影响,使得由其为主形成的表面形貌像上,荷电现象显得较为严重。如果减少二次电子的含量,表面形貌像上的荷电现象将会减轻。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "采用混合探头进行测试时,加大工作距离可减少形貌像中二次电子信息的含量,有效改善荷电的影响。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px " /span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/98dc7be3-89b7-4746-b791-20c77add4ded.jpg" title="扫描电镜工作距离与探头的选择21.png" alt="扫描电镜工作距离与探头的选择21.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px " /spanbr//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "下探头接收的主要是背散射电子。应对样品荷电,大工作距离下单选下探头常常是一个极其有效的方法。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/ee2e6d7a-1c62-4111-8aa3-a7b13975e33b.jpg" title="扫描电镜工作距离与探头的选择22.png" alt="扫描电镜工作距离与探头的选择22.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "样品的荷电现象及应对方式,后面将有专文加以探讨。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "1.3磁性样品的观察/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "物质的磁性来自核外轨道电子自旋。因此严格来说,所有物质都带有一定磁性,都可被称为:磁性材料。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "原子核外都是成对电子,电子之间的磁矩相互抵消,所以无论物质进不进入磁场都对外不显露磁性,称“反磁性”。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "原子核外有不成对电子,不成对电子在热扰动影响下杂乱排列,形成原子或分子间磁矩相互抵消。进入磁场后,不成对电子受磁场作用克服热扰动的影响,按磁场方向有序排列,对外表现出磁性。取消外加磁场,不成对电子在热扰动影响下又进入杂乱排列状态,显现的磁性消失,这就是“顺磁性”。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "将不成对电子换成“磁畴”,所谓“磁畴”指的是多个同方向电子的集合,这类物质进入磁场后表现出的磁性非常强。外加磁场达到一定值,撤除磁场,热扰动无法使磁畴恢复无序状态,形成极强的磁滞现象。这就是“铁磁性”。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "高分辨扫描电镜为了使镜筒内探头获取更多的样品表面电子信息,物镜磁场对样品仓做一定量的泄露,称“半内透镜物镜”设计。这种类型的物镜,当具有“顺磁”或“铁磁”等性质的样品靠近时,会被物镜的漏磁磁化并吸入物镜,污染镜筒并干扰磁透镜的磁场。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "采用大工作距离观察,在样品远离物镜达到一定值以后,这种影响将会减弱直至消失,镜筒也很难被其污染。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "顺磁及铁磁性物质的表面细节都比较粗大,用样品仓探头在大工作距离条件下获取的表面信息往往更优异也更充分。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "如果扫描电镜在大工作距离上有强大的成像能力,可轻松获取高质量的几十万倍高分辨形貌像,则对这些材料的表面形貌测试将不会受到任何限制。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "关于物质的磁性及磁性物质的区分,以及在扫描电镜测试时该如何应对,这些都将在下一篇经验谈中有详细探讨。/span/pp style="text-align:center"strongspan style="font-family: 宋体, SimSun font-size: 16px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/de374333-8a9e-44df-a56b-15ef53770d09.jpg" title="扫描电镜工作距离与探头的选择23.png" alt="扫描电镜工作距离与探头的选择23.png"//span/strong/pp style="text-align:center"strongspan style="font-family: 宋体, SimSun font-size: 16px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/257f0ab6-4546-4706-a3b8-b2ce7ba015a4.jpg" title="扫描电镜工作距离与探头的选择24.png" alt="扫描电镜工作距离与探头的选择24.png"//span/strong/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-family: 宋体, SimSun font-size: 18px color: rgb(0, 176, 80) "二、大、小工作距离对样品热损伤的影响/span/h1p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "大工作距离,电子束的离散度较大,会使得电子束能量也发生较大程度的离散,对样品的热损伤也会减少。应对容易被热损伤的样品,采用大工作距离测试也是重要方式之一。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/6d474a4f-8cd6-424b-bc86-8378e70bd334.jpg" title="扫描电镜工作距离与探头的选择25.png" alt="扫描电镜工作距离与探头的选择25.png"//ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-family: 宋体, SimSun font-size: 18px color: rgb(0, 176, 80) "三、大工作距离与仪器状态的维持/span/h1pbr//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "没有好的仪器状态,仪器调整的再优异都无济于事。要保持良好的仪器状态,维持样品仓、镜筒环境的真空是基础。由于清洁镜筒极为困难,故对其环境的维持也最为关键。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "镜筒污染除了物质的磁性质,还来自以下两个方面:/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "1. 样品中含有的各种挥发物。因此扫描电镜测试对样品的要求是:样品尺寸尽可能的小,固定样品所用的胶体尽可能少,样品表面尽可能地处理干净、干燥。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "2. 电子束从样品表面轰击出来的各种极性或非极性物质,这类物质在镜筒表面的吸附性超强。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "减少镜筒污染,控制样品是一方面,更关键的是将样品远离物镜。样品靠镜筒越近,进入镜筒的污染物会成倍增加,更不用说那些所谓的磁性物质。无论那种类型物镜,长期在小工作距离下测试,仪器状态都无法得到保证。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "本人的S-4800使用十几年了,测试量很饱满,长期坚持大工作距离测试,同时对样品严格控制,因此从09年仪器安装至今,灯丝未更换、仪器也从未做过专门的大保养,但却一直都能保持极佳的工作状态。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "下面以一组拍摄于2019年,用各种低电压、大工作距等较差的测试条件,拍摄的碳球高分辨图像来结束本章节。 /span/pp style="text-align:center"strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/36ce59dc-a082-44a5-88fa-d060a32c294f.jpg" title="扫描电镜工作距离与探头的选择26.png" alt="扫描电镜工作距离与探头的选择26.png"//strong/pp style="text-align:center"strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/844c4116-35ce-491a-8fab-009e54f4e3d4.jpg" title="扫描电镜工作距离与探头的选择27.png" alt="扫描电镜工作距离与探头的选择27.png"//strong/pp style="text-align:center"strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/b8494443-4a3c-451c-bbbf-da813c4e2337.jpg" title="扫描电镜工作距离与探头的选择28.png" alt="扫描电镜工作距离与探头的选择28.png"//strong/pp style="text-align:center"strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/e4c326c7-d26c-464f-b986-51f56c1082f7.jpg" title="扫描电镜工作距离与探头的选择29.png" alt="扫描电镜工作距离与探头的选择29.png"//strong/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-family: 宋体, SimSun font-size: 16px "span style="font-family: 宋体, SimSun font-size: 18px color: rgb(0, 176, 80) "四、结束语/span/span/h1p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "样品仓探头和镜筒内探头是从不同角度来获取样品信息。它们获取样品信息的侧重点不同,所适合应对的样品及展现的样品信息特征也不一样。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "镜筒内探头获取的样品信息以二次电子为主,对尺寸小于20nm的样品细节影响小,故图像清晰度高,二次电子衬度及边缘效应充分,电位衬度明显。但由于是从顶部通过物镜来获取样品信息,形貌衬度不足,使得其对于较粗大的样品细节(20nm以上)信息获取效果不佳,荷电应对能力差。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "样品仓探头获取的样品信息是背散射电子和二次电子的混合信息,背散射电子为主导。由于背散射电子的影响,高倍图像清晰度不足,对20nm以下的样品细节分辨影响较大,几纳米的样品细节几乎无法分辨。但该探头从样品的侧上方获取样品信息,形貌衬度及Z衬度充足。对低倍下观察表面起伏较大的细节信息(大于20nm)有极其明显的优势。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "改变工作距离的主要目地就是为了调控样品仓探头和镜筒内探头对样品表面信息的接收,形成最佳的效果。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "工作距离越小,越有利于镜筒内探头对样品信息的获取。过小的工作距离,样品仓探头接收不到样品信息,整个表面形貌像的特征都由镜筒内探头来决定。有利于展现10纳米以下的细节,但低倍时图像效果差,信息类型较为单一。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "大工作距离有利于样品仓探头对样品表面信息的接收,同时也能兼顾镜筒内探头接收样品信息。两个探头信息的合理组合,将使获取的形貌像内容更加充实。各种衬度信息的组合越合理,获取的样品信息越丰富,形貌分析的手段更多样,形成的表面形貌假象也越少。大工作距离测试的缺点是镜筒探头接收效果不佳,10纳米以下细节质量退化较严重。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "加大工作距离会使得电子束的离散度增加,从而降低样品热损伤的程度。但对图像清晰度有影响,超过一定值(过度)也会影响到图像细节分辨。该影响也会遵循适度性的原则,不同样品、不同的形貌细节,影响程度不同。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "在工作距离与探头的选择中,工作距离的选择是基础。只有工作距离合适了,探头的作用才能发挥出来。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "扫描电镜的每次测试都会有一个初始工作距离的选择,个人认为这个值应满足以下条件:1. 样品信息尽可能丰富,能为后续调整指明方向;2. 样品的操作空间尽可能大,使得样品能够充分移动;3. 图像的信息尽可能多,使得后续调整更容易;4. 尽可能兼顾样品分析;5. 离物镜尽可能远,保护镜筒,远离样品磁性及污染物的影响。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "对日立的冷场扫描电镜来说这个工作距离应该是15mm。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "加速电压、束流、工作距离、探头这四个测试条件的正确选择是获取高质量扫描电镜测试结果的基础。在工作距离和探头的选择上,目前存在的曲解极其严重,不利于充分获取样品信息。希望本文能给大家提供一个全新的视野。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "参考书籍:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日 /spanspan style="font-family: 宋体, SimSun text-indent: 2em "华南理工出版社/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "《微分析物理及其应用》 丁泽军等 2009年1月 /spanspan style="font-family: 宋体, SimSun text-indent: 2em "中科大出版社/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "《自然辩证法》 恩格斯 于光远等译 1984年10月 /spanspan style="font-family: 宋体, SimSun text-indent: 2em "人民出版社 /span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "《显微传》 章效峰 2015年10月 /spanspan style="font-family: 宋体, SimSun text-indent: 2em "清华大学出版社/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "日立S-4800冷场发射扫描电镜操作基础和应用介绍 /span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun text-indent: 2em "北京天美高新科学仪器有限公司 /spanspan style="font-family: 宋体, SimSun text-indent: 2em "高敞 2013年6月/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 85px height: 131px " src="https://img1.17img.cn/17img/images/202007/uepic/4d9b5e9c-3ce3-4651-9e2d-ceb0eb6b94de.jpg" title="林中清.jpg" alt="林中清.jpg" width="85" height="131" border="0" vspace="0"/作者简介:/span/strongspan style="font-family: 宋体, SimSun text-indent: 2em "林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /spanstrongspan style="font-family: 宋体, SimSun text-indent: 2em " /span/strong/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun text-indent: 2em "延伸阅读:/span/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) font-family: 宋体, SimSun text-indent: 2em "a href="https://www.instrument.com.cn/news/20200616/551389.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "易轻忽之肯綮:扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9)/a/span/strong/span/p
  • 300万!莆田学院采购激光共聚焦显微镜
    一、项目基本情况 项目编号:[350300]YDCG[GK]2022004 项目名称:莆田学院基础医学院激光共聚焦显微镜采购项目货物类采购项目 采购方式:公开招标 预算金额:3000000元 包1: 采购包预算金额:3000000元 采购包最高限价:2900000元 投标保证金:30000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02100309-激光仪器激光共聚焦1(台)是1激光器部分1.1激光器:采用单模保偏光纤,能量动态范围 ≥10000:1;- 固态激光器405nm:额定功率≥15mW,出光纤口功率≥5mW; - 固态激光器488nm:额定功率≥25mW,出光纤口功率≥10mW;- 固态激光器561nm:额定功率≥25mW,出光纤口功率≥10mW; - 固态激光器640nm:额定功率≥15mW,出光纤口功率≥5mW; 1.2软件可以直接调节所有激光器开关以及强度,并具有实验中未使用自动进入关闭状态(Switch off)功能。 2扫描模块2.1扫描器与显微镜一体化,一体化像差及色差校正。所有扫描器组件都直接耦合,无光纤连接。2.2▲共聚焦针孔采用复消色差校正,适合短波长(如 405 nm)激光成像,自动对齐;调节范围0.0到>10AU(Airy Unit)。 2.3检测器数量:荧光检测器≥3个,透射光检测器1个, 2.4荧光检测器类型: 荧光检测器全部为光谱型检测器,检测范围调节精度≤1nm;高灵敏度GaAsP检测器≥1个,QE≥45%。2.5★ 主分光镜:采用10°小角度入射技术,提供更高的激光压制效率,OD值≥6。2.6★利用可变次级二色分光镜(VSD)灵活地向所选通道内进行光谱分光,分光精度≤1.5nm。2.7▲采用X、Y独立的检流计(Galvo)双扫描镜,具有超快线扫及帧飞回技术。2.8扫描头绝对线性扫描运动,回转时间短,>85%的帧时间(frame time)有效地用于图像采样。2.9★可以进行360°任意旋转实时扫描成像。2.10▲扫描光学变倍:最小变倍扫描系数≤ 0.45x,且变倍连续可调,调节精度0.1x。2.11最大扫描分辨率≥6000 x 6000。2.12在非共振扫描模式下,逐行扫描可同时满足以下扫描速度指标:≥8幅/秒(512x512像素)、≥60幅/秒(512x64像素)、≥220幅/秒(512x16像素)。 2.13一次实验中单次扫描可以实现三个荧光检测通道同时成像,如果一次实验设置分次扫描,分次扫描次数≥10。 2.14光谱扫描(Lambda成像):两个检测器平行扫描完成光谱成像,扫描过程无荧光信号损失;光谱分辨率≤1.5nm;可根据结果做线性光谱拆分,去除自发荧光及荧光串扰。2.15扫描成像视场数≥20mm。2.16一个可用于明场和DIC的透射光检测通道。2.17具有实时电子组件(real-time electronics):控制显微镜、激光器、扫描模块和其他附件;通过实时电路进行数据采集和同步管理:过量采样读取逻辑电路,用以获得最佳灵敏度;数据在实时电路与用户计算机之间通过LVDS进行交换,在采集图像的同时可进行数据在线分析。3超高分辨率部分3.1★超高分辨率检测器:采用由不少于30个GaAsP(磷酸砷化镓)-PMT组成的高灵敏度面阵列探测器, 而非常规的GaAsP或HyD系列探测器。3.2▲在确保荧光收集效率的情况下(针孔≥2.5AU),超高分辨成像可同时实现如下效果:分辨率XY方向上≤125nm,Z方向≤360nm;同时相较传统共聚焦提升4-8x灵敏度或信噪比。3.3在确保荧光收集效率的情况下(针孔≥2.5AU),超高分辨率成像速度:不低于4幅/秒(512x512像素,16位)。 3.4超高分辨率多通道成像:可以灵活选择荧光收集波段,调节精度1nm。3.5超高分辨率成像可使用激光器波段:405nm, 488nm, 561nm 和640nm。3.6荧光样品制备:无需选择特定的荧光标记物,常规的激光共聚焦样品都可以进行超高分辨率成像。3.7超高分辨率成像深度:同一样品具有与共聚焦相同的超高分辨率成像深度。4显微镜主机4.1研究型全自动倒置显微镜,高效率V型光路。4.2★齐焦距离:≤45mm国际标准齐焦距离4.3▲显微镜内置电动调焦驱动马达,最小步进≤15nm。 4.4▲全电动扫描台,扫描台面积≥320mm x 140mm,行程≥130 mm x 100 mm,精度≤ 0.1 μm,最大速度≥50mm/s,具有独立的控制器及操控手柄。4.5显微镜透射光源: LED光源,寿命>60000小时。4.6荧光附件:复消色差荧光光路,六位电动滤色镜转盘,电动光闸,含UV、B、G激发滤色镜组件和长寿命荧光光源。4.7全套微分干涉部件(DIC),有与不同数值孔径的物镜一一对应的棱镜。4.8多功能长工作距离电动聚光镜,数值孔径≥0.55。4.9目镜一对:10X,视场数≥23。 4.106孔位电动物镜转盘,具有自动识别功能。4.11★物镜:10x干镜,数值孔径≥0.45;20x干镜,数值孔径≥0.8;40x干镜,数值孔径≥0.95 ;63x油镜,数值孔径≥1.4;工作距离≥190 μm4.12通过TFT电子触控屏系统控制显微镜并显示工作状态,TFT触摸屏可以远离显微镜机身实现远程控制。4.13配有专业共聚焦显微镜系统防震装置。 5软件部分及图像工作站5.1智能化光路设置:通过选择样品的染料标记,提供3种光路配置模式,一键自动设置所有的光路。5.2REUSE功能。再次调用存储在每张图像里的所有的拍照参数来重现实验及进行精确对比。5.3多维获取图像:Z轴序列扫描、时间序列扫描、多点扫描等。5.4▲三维图像处理:3D和4D图像渲染,有四种渲染方式(阴影、表面、透明及最大强度投影)并可进行不同渲染方式的结合(如透明结合表面渲染);可实现三维空间的距离和角度测量;自定义式的3D和4D视频制作与导出。5.5▲交互式漂白,在进行图像采集的同时(包括连续扫描和时间序列实验),通过鼠标点击对任意区域进行漂白。适用于主动光活化实验、光转化实验或者快速光漂白实验等。5.6Z轴深度补偿功能,自动补偿由于样品深度增加造成的信号衰减。5.7具有图形化的感兴趣区域荧光强度平均值分析,实时或在扫描完成后显示和计算离子浓度。5.8裁剪功能,灵活地选择扫描区域。5.9光谱扫描及拆分功能,可以去除自发荧光,及荧光串扰。5.10图像分析功能:具备直方图分析和任意线的序列测量,长度、角度、面积、强度等的测量;定量的共定位分析;可根据要求编辑测量程序,对自定义的类和子类进行图像分割、计数和面积、强度等的测量,并将结果以表格、列表和散点图/直方图形式显示;可进行批量图像分析。5.11图像与视频导入/导出:适用于所有常见的文件格式(如:JPEG, BMP, TIFF, BigTIFF, PNG, WDP, SUR, AVI, WMF, MOV, OME-TIF, ZVI)。5.12反卷积功能:提供3种反卷积方式用于图像处理,提高图像的信噪比、对比度和分辨率。5.13图像工作站一套:经共聚焦厂家验证其匹配性。5.14 硬件配置不低于以下要求: Intel? Xeon Gold 4核处理器,主频≥3.6 GHz; >512 G SSD高速硬盘以及2个4TB SATA 7200 rpm硬盘,≧64GB内存,DVD刻录机,30英寸液晶显示器,分辨率不低于2560 × 1600; Windows 7 Ultimate x64操作系统。6活细胞培养系统6.1可控制温度、CO2浓度以及湿度。6.2细胞培养在独立空间内,培养皿底部可加热,上部也可同时加热;多孔板培养时顶部和底部均可被加热。6.3▲控温系统可同时控制至少4个独立的通道温度设定,温度控制范围:室温至60℃,精度≤0.1℃。6.4▲可进行CO2浓度控制,范围:0至8%,调节精度为≤0.1%,内置精度≤0.1%6.5湿度控制,加湿装置同时也可控温保湿。活细胞培养系统可完全由共聚焦软件一体化控制,并在软件及显微镜显示器上可以直接显示、调节。3000000工业 合同履行期限: 按招标文件要求 本采购包:不接受联合体投标二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.本项目的特定资格要求: 包1 (1)明细:招标文件规定的其他资格证明文件(若有) 描述:1、(强制类节能产品证明材料,若有,应在此处填写); 2、(按照政府采购法实施条例第17条除第“(一)-(四)”款外的其他条款规定填写投标人应提交的材料,如:采购人提出特定条件的证明材料、为落实政府采购政策需满足要求的证明材料(强制类)等,若有,应在此处填写)。 ※1上述材料中若有与“具备履行合同所必需设备和专业技术能力专项证明材料”有关的规定及内容在本表b1项下填写,不在此处填写。 ※2投标人应按照招标文件第七章规定提供。 (2)明细:具备履行合同所必需设备和专业技术能力专项证明材料(若有) 描述:1、招标文件要求投标人提供“具备履行合同所必需的设备和专业技术能力专项证明材料”的,投标人应按照招标文件规定在此项下提供相应证明材料复印件。 2、投标人提供的相应证明材料复印件均应符合:内容完整、清晰、整洁,并由投标人加盖其单位公章。(如项目接受联合体投标,对联合体应提出相关资格要求;如属于特定行业项目,供应商应当具备特定行业法定准入要求。) 三、采购项目需要落实的政府采购政策 进口产品,适用于(合同包1)。节能产品,适用于(合同包1),按照财库〔2019〕19号《关于印发节能产品政府采购品目清单的通知》执行。环境标志产品,适用于(合同包1),按照财库〔2019〕18号《关于印发环境标志产品政府采购品目清单的通知》执行。信息安全产品,适用于(合同包1)。小型、微型企业,适用于(合同包1)。监狱企业,适用于(合同包1)。促进残疾人就业 ,适用于(合同包1)。信用记录,适用于(合同包1),按照下列规定执行:(1)投标人应在(填写招标文件要求的截止时点)前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“投标人提供的查询结果”),投标人提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图)。(2)查询结果的审查:①由资格审查小组通过上述网站查询并打印投标人信用记录(以下简称:“资格审查小组的查询结果”)。②投标人提供的查询结果与资格审查小组的查询结果不一致的,以资格审查小组的查询结果为准。③因上述网站原因导致资格审查小组无法查询投标人信用记录的(资格审查小组应将通过上述网站查询投标人信用记录时的原始页面打印后随采购文件一并存档),以投标人提供的查询结果为准。④查询结果存在投标人应被拒绝参与政府采购活动相关信息的,其资格审查不合格。四、获取招标文件 时间:2022-10-18 15:10至2022-11-07 23:59:59(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至11:59:59,下午12:00:00至23:59:59(北京时间,法定节假日除外) 地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。 方式:在线获取 售价:免费五、提交投标文件截止时间、开标时间和地点 2022-11-08 08:30(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日) 地点:福建省莆田市城厢区莆田市公共资源交易中心三楼开标室六、公告期限 自本公告发布之日起5个工作日。七、其他补充事宜 /八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:莆田学院 地 址:莆田市城厢区学园路兴安新村36号 联系方式:18450050730 2.采购代理机构信息(如有) 名 称:福建省亿达工程咨询有限公司 地  址:三明市梅列区徐碧街道乾龙新村16幢8层 联系方式:13950740195 3.项目联系方式 项目联系人:何凤保 电   话:13950740195 网址:zfcg.czt.fujian.gov.cn 开户名:福建省亿达工程咨询有限公司 福建省亿达工程咨询有限公司 2022-10-18
  • 明美倒置荧光显微镜助力南方科技大学药物研发
    微球(microspheres)是指药物分散或被吸附在高分子聚合物基质中而形成的微小球状实体,由于微球制剂具有长效缓释或靶向作用,可以大大提升患者用药的方便性、依从性,在临床上已突显优势,近年来已成为药物研发的热点。近日,南方科技大学电子工程系针对药物研发需求对制备微球进行观察,找到我司销售工程师购置了倒置荧光显微镜MF52搭配科研级显微镜相机MSX2进行制备微球材料荧光观察,荧光下观察很清晰,成像质量得到高度认可。倒置荧光显微镜MF52是由LED落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。落射荧光显微系统采用模块化设计理念,可以安全、快揵地调整照明系统,切换荧光滤色片组件。多应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微观察。
  • 鑫图参与国家重点项目—“双光子-受激发射损耗(STED)复合显微镜”的研发
    2017年10月20日,科技部重点研发计划-数字诊疗专项"双光子-受激发射损耗(STED)复合显微镜"项目(2017YFC0110200)实施交流研讨会在南京举行,鑫图总经理陈兵在会上作了关于"下一代sCMOS相机"的技术汇报。 该项目以研发及产业化双光子-受激发射损耗(STED)复合显微镜为主要目标,力图在"适用于双光子成像的自适应光学技术"、"基于中空贝塞尔淬灭光场调控的STED 成像技术" 等关键技术上有所突破。在长工作距离显微物镜、飞秒激光器和CMOS 相机等核心部件能自主研发,实现高端光学显微镜的技术创新与装备国产化。项目研发团队是由多名在光学显微成像领域有着丰富研究与产业化经验的资深人员组成,在双光子显微成像、STED超分辨成像及仪器化开发方面都有着深厚的基础。在双光子显微成像方面,项目负责人郑炜博士从2006 年起就开始双光子显微成像的相关研究,自主研发了世界首台双光子\谐波\光声三模态显微镜。在STED成像方面,项目核心成员席鹏教授是国内公认的STED技术领航人,是他首次在国内实现了STED超分辨显微成像,并将STED分辨极限推进到19nm的理论极限,刷新了STED在生物成像上的记录。在产业化方面,申报企业南京东利来公司是中国光学与光子学标准技术委员会的委员单位,是中国显微物镜、目镜标准的第一起草单位。福州鑫图光电有限公司依托其在科学相机产业化方面的优势有幸参与其中,承担该项目核心部件sCMOS相机的研制,助力核心部件国产化目标。
  • 清源创新实验室480万元购买原子力显微镜、激光拉曼光谱仪
    7月28日,清源创新实验室公开招标购买原子力显微镜、激光拉曼光谱仪,预算480万元。  项目编号:[350500]FJHDCG[GK]2021001  项目名称:清源创新实验室原子力显微镜、激光拉曼光谱仪设备货物类采购项目  采购方式:公开招标  预算金额:4800000元  包1:  合同包预算金额:1850000元  投标保证金:0元  采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100301-显微镜原子力显微镜1(台)是1 扫描器:▲1.1 XYZ 三轴闭环扫描器:XY方向扫描范围≥90微米;Z方向扫描范围≥9微米;扫描器Z方向实际测试噪声水平:小于0.03 nm (RMS);XY方向实际测试噪声水平:≤0.1nm (RMS)。1.2 具备探针扫描的扫描器,扫描过程中样品为静止状态。1.3 进针方式:智能自动进针方式,采用马达加压电陶瓷自动探测的智能进针模式,以保护探针及样品。▲1.4 具备快速扫描模式,可实现≥50Hz的扫描速度。2 样品台:★2.1 样品台尺寸≥200mm;能放置最大样品高度≥15mm;样品台自动移动XY行程≥160x150mm。要求样品台可真空吸附样品,并且可360度旋转。3 控制器:3.1 控制器内置≥三个锁相放大器3.2 每条扫描线可获得更多的数据点(≥ 16,000)3.3 最少有8通道同时成像;8个通道可同时获得≥5000×5000数据点。4 功能模式▲4.1 提供智能扫描模式:要求采用以正弦波驱动压电陶瓷管做力曲线的皮牛级力作反馈进行表面成像,且力曲线频率≥2000Hz。用户只需要选择扫描范围,系统就能够在扫描过程自动调节“接触力”,“电路增益”,“扫描速度”和“扫描管的量程范围”。 ▲4.2 提供扭转共振模式:要求使用具有双压电陶瓷的探针支架来实现扭矩共振模式,监测悬臂梁扭矩共振扭转幅度或扭矩共振相移信号。4.3 提供压电力显微镜模式:具备形貌,面外和面外压电力信号同时实时扫描成像功能,不需要在单条线扫描两次。可以加载最高电压≥10V。5 其他配件★5.1要求辅助光学显微镜具备缩放功能,视野单边长度可调节范围≥200微米至1200微米。单视野最大范围≥1mm*1.4mm,以便于大范围观察样品并定位到扫描区域。5.2 提供一体式落地式的隔音减震系统。5.3 提供≥150根探针。5.4 提供原子力显微镜专用镊子一套。5.5 提供标准光栅样品一个。5.6提供高性能工作站一个。5.7除现场安装调试培训以外,质保期内提供两个培训名额前往厂家国内实验室参加培训,培训时间≥4天。  合同履行期限: 详见招标文件  本合同包:不接受联合体投标  包2:  合同包预算金额:2950000元  投标保证金:0元  采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)2-1A02100404-光学式分析仪器激光拉曼光谱仪1(台)否1. 总体性能:可以实现深紫外244nm、紫外325nm、可见532nm拉曼的原位表征,可以得到较高的分辨率以及低波数拉曼,同时配置了分子筛合成以及催化反应原位拉曼光谱池。2. 光谱仪:光谱仪采用三联光谱仪,可以自由切换单光栅或者三光栅模式,单光栅具有高灵敏度,三光栅具有较高的分辨率和低波数性能。光谱仪焦距≥500mm,最佳分辨率≤0.005nm,具有电动狭缝和2个检测器接口。3. 光谱范围:整体拉曼光谱范围为50-4000cm-1,其中244nm拉曼低波数可以低至100 cm-1。4. 拉曼光谱光谱分辨率:≤0.21 cm-1(1800 gr/mm, 10 μm slits, at 500 nm)。5. 光谱灵敏度:8 mW 244nm激发时,特氟龙拉曼信号> 10000 counts/s,10 mW 325nm激发时,特氟龙拉曼信号> 8000 counts/s。6. 光谱重复性:≤0.004 nm。7. 光栅:至少应提供9块光栅,刻线为2400、1800、1200 各三块,其闪耀波长为240nm、300nm、500nm,闪耀波长附近的效率均大于70%。8. 探测器:应配备紫外增强科研级探测器,可以制冷至-70℃,200-800 nm区间量子效率大于50%,244 nm处量子效率大于65%;分辨率≥1024×255,像素尺寸为≥26μm×26μm;FVB模式下,最快采集速度为75谱/秒。9. 显微镜:三目系统,目镜为10x,具有视频辅助,用于样品定位、成像,视频为500万像素彩色相机。10. 物镜:配有50x、15x、5x 物镜,其中15x为长工作距离物镜,工作距离大于15 mm,适用于原位表征,且其为深紫外优化设 计的,波长范围190-1100nm,透过率大于80%。11. 显微共聚焦组件:具有共焦组件,可以通过软件切换针孔,针孔具有50um、100um。用以确保收集焦点附近的信号。12. 空间分辨率:使用50x物镜时,XY方向分辨率≤0.5 um,Z方向分辨率≤0.3um。13. 激光器配置:(1)244 nm激光器:最高功率100 mW。偏振比>100:1,光束直径(1/e2)0.6-0.9 mm,发散角0.5 -0.85mrad,相干长度>1m,寿命3000 h以上,功率稳 定 性≤±1.0% (in 0.5 hours);(2)325 nm激光器,最高功率35 mW。TEM00模式,偏振比>500:1,光束直径(1/e2)<1.2mm,发散角<0.5 mrad,寿命2000 h,功率稳 定 性≤±2.0% (@25℃,in 4 hours);(3)532 nm激光器:最高功率150 mW。TEM00模式,线宽<0.01pm,偏振比>100:1,光束直径(1/e2) 0.7±0.05mm,发散角<1.5 mrad,寿命10000 h,功率稳 定性≤±2.0%。14. 电动平台:通过电动平台可以实现样品观察、定位、以及扫描成像功能。(1)X-Y方向上重复定位精度≤±0.7μm,负载能力≥100N,X-Y扫描范围≥114mm×75mm,分辨率≤0.01μm;(2)Z方向重复定位精度≤±0.7μm,负载能力≥140N,分辨率≤0.02μm。15. 原位池:配置四个原位池,可以通过原位拉曼软件控制反应条件以及自动化采集。(1)原位高温高压水热反应原位池:最高温度250℃;(2)高通量原位合成反应模块,可以进行12通道原位合成表征;(3)气固反应高温高压原位池:反应最高温度500℃,最高压力0.6 MPa;(4)原位液固拉曼反应池,可以进行液固相反应条件下的原位拉曼。16. 自动气路:配置四路自动气路,四路气体可以在0-200sccm范围内(或者根据需求更改)通过软件进行任意调节,并且可以进行任意比例混合,同时可以和原位池进行同步温度、流量的控制,预留升级接口和阀门。  合同履行期限: 详见招标文件  本合同包:不接受联合体投标  开标时间:2021-08-24 09:30(北京时间)
  • 浅谈显微镜——物镜的球差与色差
    上期我们聊到物镜的数值孔径,了解到数值孔径的大小直接影响最终获取的图像分辨率,为物镜的重要参数。然而,在物镜上我还会看到一些简写,如下图所示: 那么,这些英文简写表示什么意思呢?可以看到,上图物镜上游两个简写:N、PLAN。分别表示色差矫正和球差矫正的等级。有些小伙伴就会问道,什么是色差,什么是球差?自然光或LED光源发出的光线都是白光,白光由不同波长的光组合而成,不同的波长呈现不同的颜色,穿过透镜的折射率也不相同,如上图所示:一束白光从w点发出斜射至一块凸透镜中,不同波长的光折射率不同从而分散开来,从而不同颜色的光落在不同的位置。这只是一个点光源就出现这种效果,如果在显微镜成像中,复杂的颜色分布,多种颜色的组合,如果颜色依旧如此乱的呈现在视野中,我们可能都认不出所观察的图像是什么了。下图为一张白纸在体视镜下观察的效果,左边为无色彩矫正的图像,右边为色彩校正后的图像。明显可以看出,白纸的网格状结构未进行色差校正后的像有红色的彩边,产生色差,而色彩校正后就可以还原图像的本质。那么色彩校正是如何实现的?在凸透镜的两侧添加一些校正透镜(如下图),形成透镜组,不同波长的光通过透镜组后改变行程方向,还原初始位置,从而完成色差校正。然而,不同波长的光校正难度有差异,从而物镜的档次有消色差、半复消色差、复消色差等多个等级,可校正颜色越多的物镜等级越高。说完色差校正,凸透镜还有球差需要进行矫正。所谓球差,同一个平面的物体通过透镜后,呈现的像不在同一平面上。如下图所示:凸透镜左侧红、黄两点在同一个平面上,通过透镜折射后,在凸透镜右侧成像却不在同一平面。 在实际的观察中表现的效果为:同一个视野中间是可以清晰可见的,而四周呈现的图像为模糊的,这样的图像给使用者带来的观察效果和感受会很差,无法一次性分析和观察全视野的图像。球差的矫正技术目前在物镜中较为基础,市场上几乎所有的物镜都具有矫正球差的功能(物镜上会有PLAN或PL的标记),从而在选择物镜的过程中不用担心球差问题。Leica徕卡 DMi1 倒置相差显微镜Leica徕卡 DMiL倒置荧光显微镜
  • 帕克网络讲堂:原子力显微镜测定力—距离曲线的原理和应用
    日期和时间:6月28日 上午10点-11点整主讲人: 帕克公司资深售后服务工程师&应用专家,AFM从业经验8年针尖-样品相互作用的力值量测 力-距离(F-D)曲线是一种分光镜检查技术,在Z轴扫描仪伸缩的同时,测量针尖与样品表面间的垂直相互作用。直接测量针尖与样品间的相互作用力时,对比悬臂偏转功能与压电扫描仪延伸,反映表面的力学性能。原子力显微镜包含各种各样的扫描模式可以到样品的形貌图或其他对应的特性分析图, 而这其中的力和距离曲线在表面科学,纳米技术,生物科学和许多其他研究领域中也扮演了非常重要角色。 在帕克的每一台设备的基本配置中都包含力和距离光谱分析。它不需要一些特殊的辅助模块进行操作,只是在探针和样品接触后分离的状态下,去获得相应点的力曲线。但是看似简单地操作, 却也涉及到了很多难点,想探针的选择,参数的设定,悬臂的校准等等。并且,液下力曲线,力曲线成像,更如PinPoint模式也都是这个领域的延伸。 而对于特殊材料进行力曲线分析,如细胞等,探针的改良也是一种保护样品不被破坏的途径,并能够让测量变成更容易的几何运算。它也是一种力曲线分析的难点之一。 这些信息都会在本次研讨会上进行讨论和分析。请参考友情链接,进入官网免费申请听取网络讲堂!
  • 世界首台!我国成功研制双光子-受激发射损耗(STED)复合显微镜
    p  在常规光学显微系统当中,由于光学元件的衍射效应,平行入射的照明光经过显微物镜聚焦之后在样品上所成的光斑并不是一个理想的点,而是一个具有一定尺寸的衍射斑。在衍射斑范围内的样品均会发出荧光,导致这些样品的细节信息没有办法被分辨,从而限制了显微系统的分辨能力。随着扫描电镜、扫描隧道显微镜及原子力显微镜等技术的出现,实现纳米量级分辨率的观测已经成为可能,但是以上这些技术仍然存在对样品破坏性较大,只能观测样品表面等缺点,并不适合对于生物样品,特别是活体样品的观测。因此,研究人员们急需找到一种光学的超衍射极限显微方法。二十世纪九十年代以来,研究人员们陆续提出了多种超分辨显微技术来实现超越衍射极限的高分辨率。在这些方法之中,以德国科学家S.W.Hell在1994年提出的受激发射损耗显微术(Stimulated Emission Depletion Microscopy,STED)的发展最为成熟,应用也最为广泛。/pp  受激发射损耗显微术(STED)是通过受激发射效应实现减小有效荧光发光的面积。一般STED显微系统中包含两束照明光,一束为激发光,一束为损耗光。当激发光的照射使得衍射斑范围内的荧光分子被激发,其中的电子跃迁到激发态后,损耗光使部分处于激发光斑外围的电子以受激发射的方式回到基态,而位于激发光斑中心的被激发电子则不受影响,继续以自发荧光的方式回到基态。由于在受激发射过程中所发出的荧光和自发荧光的波长及传播方向均不同,因此探测器观测到的光子均是由激发光斑中心的部分荧光样品通过自发荧光方式产生的。通过这种方式可以减小有效荧光的发光面积,提高系统的分辨率。/pp  目前,受激发射损耗显微术的关键主要集中在损耗光斑的调制,激发光与损耗光激光类型和波长的选择等方面。/pp  根据国家科技部消息,近日,在国家重点研发计划“数字诊疗装备研发”专项的支持下,由苏州国科医疗科技发展有限公司、吉林亚泰生物药业股份有限公司、中国科学院物理研究所等多家单位共同承担的数字诊疗重点研发专项项目--双光子-受激发射损耗(STED)复合显微镜获得重要进展:成功研制出国内外首台双光子-STED复合显微镜样机。项目组完成了显微镜系统中核心部件的自主研制,成功研制出了具有自主知识产权的大面阵CMOS相机和长工作距离大数值孔径物镜等核心部件,打破了国外相关产品对我国的垄断。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/003b5e67-5cf9-4afd-8932-d8a32c788f59.jpg" title="首台复合显微镜.png" alt="首台复合显微镜.png"//pp style="text-align: center "strong国内外首台双光子-STED复合显微镜样机/strong/pp  在当今生物学及基础医学的研究中,超分辨显微光学成像是取得原创性研究成果的重要手段。国外双光子-STED成像技术研究开展的相对较早,德国、加拿大、法国、意大利等多个国家的科研机构都已经成功搭建了双光子-STED成像实验系统 而我国相关研究起步较晚,目前双光子STED成像技术仍停留在实验室研究阶段,国际上尚未出现相应的产品。因此,双光子-受激发射损耗(STED)复合显微镜的成功研制对于满足我国生物医学等前沿基础研究的定制化需求、提升创新能力以及推动我国显微镜行业升级等具有重要意义。/p
  • ZOLIX发布微纳器件光谱响应度测试系统新品
    DSR300系列微纳器件光谱响应度测试系统是一款专用于低微材料光电测试的系统。其功能全面,提供多种重要参数测试。系统集成高精度光谱扫描,光电流扫描以及光响应速率测试。40μm探测光斑,实现百微米级探测器的*对光谱祥响应度测量。超高稳定性光源支持长时间的连续测试,丰富的光源选择以及多层光学光路设计可扩展多路光源,例如超连续白光激光器,皮秒脉冲激光器,半导体激光器,卤素灯,氙灯等,满足不同探测器测试功能的要求。是微纳器件研究的优选。 功能:? 光谱响应度? 外量子效率? 单色光/变功率IV;? 不同辐照度IT曲线(分辨率200ms)? 不同偏压下的IT曲线? LBIC,Mapping? 线性度测试? 响应速率测试 微纳器件光谱响应度测试系统主要技术参数显微镜头标配:10倍超长工作距离物镜,工作距离大于17mmNA值:0.42光谱范围:350-800nm选配:1,50倍超长工作距离消色差物镜,工作距离大于17mmNA值:0.42光谱范围:480-1800nm 2,15倍紫外物镜,工作距离大于8.5mmNA值:0.32光谱范围:250-700nm 3,50倍超长工作距离紫外物镜,工作距离大于12mmNA值:0.42光谱范围:240-500nm 4,40倍反射式长工作距离工作距离大于7.8mmNA值:0.5光谱范围:200nm-20um光斑中心空心光源选配光源1、半导体激光器波长:405nm,532nm,633nm,808nm,980nm可选不稳定性:<1% 2、皮秒脉冲激光器波长:375nm,405nm,488nm,785nm,976nm可选脉宽:100ps频率:1-20M Hz 3、氙灯光源光谱范围:250nm-1800nm不稳定性:<1% 4、超连续白光激光光源光谱范围:400-2400nm频率:0.01MHz-200MHz脉宽:100ps光谱仪焦距:300mm;相对孔径:f/3.9;光学结构:C-T;光谱仪分辨率:0.1nm;倒线色散:2.7nm;波长准确度:±0.2nm波长重复性:±0.1nm扫描步距:0.005nm狭缝规格:圆孔抽拉式固定狭缝,孔径:0.2mm,0.5mm,1mm,1.5mm,2mm,2.5mm,3mm;三光栅塔台;光栅配置:1-120-300、1-060-500、1-030-1250,光栅尺寸:68×68mm6档自动滤光片轮,光谱范围200-2000nm;内置电动机械快门,软件控制快门开关;杂散光抑制比:10-5探针台配置4个探针座,配20/10微米针尖探针2米三同轴电缆,漏电流小于1pA。真空吸附样品台。探针座:XYZ方向12mm调节行程,0.75um调节分辨率,0-30°调节探针角度。LBIC MaappingXY方向行程50mm,分辨率5um。数釆v 锁相放大器斩波频率:20Hz~1KHz;频率6位显示,2.4英寸屏,320×240液晶显示;电压输入模式:单端输入或差分输入;电压、电流两种输入模式; 满量程灵敏度:1nV至1V;电流输入增益:106或108V/A;动态储备:>100dB;时间常数范围:10μs至3ks; v keithley2612B量程:100nA/1A最小信号:1nA本地噪音:100pa分辨率:100fa通道数:2 v keithley2636B量程:1nA/1A最小信号:10pA本地噪音:1pa分辨率:10fa通道数:2制冷样品台温度范围:-196℃-600℃,(-196℃需要选择专用冷却系统)全程温度精度/温度性:0.1℃/<0.01℃光孔直径:2.4mm样品区域面积:直径22mm两个样品探针,1个LEMO接头(可增加至1探针)工作距离:4.5-12.5mm气密样品腔室,可充入保护性气体独立温度控制响应速率测试示波器型号:MDO32模拟带宽100MHz采样率5GS/s记录长度10M时间范围:uS-S,需要配合调制激光器使用时间范围:10nS-S,需要配合皮秒脉冲激光器使用 三维可调高稳定探针台结构,方便样品位置调节。内置三路半导体激光器或者两路光纤激光器,外置一路激光光路。可以引入可调单色光源,进行全光谱范围的光谱响应度测试。测试功能曲线:40um光斑@550nm@50倍物镜200um光纤 70um光斑@550nm@50倍物镜400um光纤5um光斑@375nm皮秒激光器@40倍物镜 紫外增强氙灯和EQ99光源的单色光能量曲线,使用40倍反射式物镜,300mm焦距光谱仪,光谱仪使用1200刻线300nm闪耀光栅,光斑直径大小80um。创新点:"针对微纳光电器件探测器的测试系统。监控样品位置,实现微小光斑的宽波段光谱响应度测量宽波段显微光谱测试系统。与常规的显微系统相比较,其光源使用是宽波段光源,而不是单色光。是针对针对微纳光电器件开发的专用测试系统。"微纳器件光谱响应度测试系统
  • 易轻忽之肯綮:扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9)
    p style="text-align: justify text-indent: 2em "strong【作者按】/strong工作距离和探头的选择,主要影响着扫描电镜的信息接收。选择的是否合适,对形成怎样的样品表面形貌像起着举足轻重的作用。实际测试工作中,我们往往只关注信息的产生,也就是加速电压与束流的选择,而对工作距离和探头的选择往往存在轻忽甚至误解的现象。/pp style="text-align: justify text-indent: 2em "关于形貌像分辨率的主流观点:工作距离越小,形貌像分辨率越好。其依据是:1.束斑说:工作距离越小,束斑越小,束斑越小分辨率越好。2.球差说:工作距离越小,物镜球差对结果的影响越小,故分辨率也越佳。球差及束斑说都有一定道理,但都不是影响表面形貌像分辨力的最根本因素。/pp style="text-align: justify text-indent: 2em "形成上述观点,与电镜厂家力推小工作距离的理念有关。特别是有些厂家几乎放弃对使用样品仓探头获取样品信息的研究,仅将其作为一个低倍寻找样品测试位置的工具。这将限制我们的视野,获取的表面形貌信息也极其贫乏。/pp style="text-align: justify text-indent: 2em "本人所用品牌的时候冷场电镜由于对早期样品仓探头结构设计的继承,使得本人充分体会到:各种不同的工作距离和探头组合,将带来怎样不同的样品表面形貌信息,而这些不同的信息又恰恰是我们能够正确且充分观察和分析样品的基石。/pp style="text-align: justify text-indent: 2em "下面将从形貌衬度,这一形成表面形貌像的主导因素为切入点,以实例来展示并详细探讨:不同工作距离和探头的组合与形貌衬度的形成有何关联?对表面形貌像的获取及图像的分辨能力有何影响?各种组合都具有怎样的优缺点?/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="color: rgb(0, 176, 80) font-size: 18px font-family: 宋体, SimSun "一 、工作距离和探头的选择与形貌衬度的形成 /span/strong/h1p style="text-align: justify text-indent: 2em "扫描电镜形貌像的形成如同用眼睛去观察一个物体。物体图像的形态并不取决于眼睛从物体上获取了怎样的光线,而是基于从那个角度去观察这个物体。对图像细节的影响来自四个方面,光线的能量和强度、眼睛的视力及观察角度,其中观察角度是根基。物体细节越粗,观察角度的影响越大。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7446c1ff-2094-4dea-9c24-fd02dc025494.jpg" title="1.png" alt="1.png"//pp style="text-align: justify text-indent: 2em "二次电子和背散射电子是形成样品表面形貌像的信息源,如同形成图像的光。探头如同人的眼睛,它获取样品表面形貌像的形貌衬度信息,如同从不同角度去观察这个样品。信息到达探头的角度是形成表面形貌像的基础。/pp style="text-align: justify text-indent: 2em "正如本人在经验谈(4、5、6)中给大家所描述,形貌衬度是由样品表面形貌高低差异所形成的信息衬度。形成该衬度的主导因素随以下两个不同层级的信息需求而不同:/pp style="text-align: justify text-indent: 2em "A. 低倍率,观察的样品表面形貌起伏较大(二十纳米以上)。探头、样品及电子束三者之间的夹角所形成的形貌衬度才能满足形貌像的形成需求,此时这个夹角就是主导因素。/pp style="text-align: justify text-indent: 2em "B. 高倍下,观察的空间差异小于十几纳米,形貌衬度小,电子信息溢出角度所形成的形貌衬度就完全满足需求。由于信息扩散对这类细节影响极大,靠近镜筒,从样品顶部获取更多二次电子是最佳方案,此时低角度信息就变为主导因素。/pp style="text-align: justify text-indent: 2em "选择不同的工作距离和探头,就是为了调控探头所接收的样品信息类型及信息的接收角度,以形成充分的图像衬度。/pp style="text-align: justify text-indent: 2em "工作距离与探头的选择是如何调控探头获取样品表面形貌像的形貌衬度信息,进而影响表面形貌像的细节形成及分辨?下面将结合实例来给大家做详细的展示及描述。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="color: rgb(0, 176, 80) font-size: 18px font-family: 宋体, SimSun "二、表面形貌像与工作距离和探头的选择/span/strong/h1p style="text-align: justify text-indent: 2em "选择不同的工作距离和探头,能对图像形貌衬度的获取形成调控。那是如何调控?又是如何影响样品表面形貌像?/pp style="text-align: justify text-indent: 2em "strong2.1不同工作距离下各探头对表面信息的接收示意图/strong/pp style="text-align: justify text-indent: 2em "以某公司冷场电镜为例(样品:介孔硅,孔径 10nm):/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b8cc6b0c-010b-4077-97bc-4e1558635e77.jpg" title="2.png" alt="2.png"//pp style="text-align: justify text-indent: 2em " a.样品台不加减速场:到达顶探头的主要是间接的、能量较高的高角度背散射电子(HA BSE)。图像特性表现为:信息量不足、细节分辨差、但受荷电影响小。(SBA-15颗粒)/pp style="text-align: justify text-indent: 2em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f6e11aa0-c8f0-462d-99c9-6787b93e2ac6.jpg" title="3.png" alt="3.png"//pp style="text-align: justify text-indent: 2em "工作距离越大顶探头接收的信息越少,基本不存在测试意义。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/db70895c-9571-49ac-af9a-286cbaa168d2.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em " br//pp style="text-align: justify text-indent: 2em "b.采用减速模式:二次电子能量得到加强,使顶探头接收的样品信息改以高角度二次电子为主。图像特性:二次电子衬度及边缘效应增加、形貌立体感较差、荷电及电位衬度较大。/pp style="text-align: justify text-indent: 0em "span style="text-indent: 2em "/span/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4333ec84-2237-4e5f-9c47-c7424021ada4.jpg" title="5.png" alt="5.png"/span style="text-indent: 2em text-align: justify " /span/pp style="text-align: justify text-indent: 2em "顶探头图像的Z衬度会更强烈一些,但要求样品有较强的信息量,故应用领域不广,实例较少。具体可参看经验谈(6)。/pp style="text-align: justify text-indent: 2em "总之,该公司扫描电镜设置的探头中:顶探头要求样品本身有较高的信息产额,仅利于在小工作距离条件下获取某些特殊的图像衬度信息,如:Z衬度及电位衬度,故使用频率少。/pp style="text-align: justify text-indent: 2em "对于大部分样品信息的获取,起主力军作用的是上、下探头,因此下面讨论的重点将针对这两个探头展开。实例的展示及探讨将以介孔硅KIT-6为样本,按高、低倍分组来进行。/pp style="text-align: justify text-indent: 2em "WD 3mm、低倍:10万倍以下,观察的细节大于20纳米。 /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/ee3af742-eeab-4911-acf1-ccd39b700db4.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "高倍(20万倍):观察10纳米以下细节。这类细节的起伏小,形貌衬度要求低,不同角度的二次电子就足以形成表面形貌像所需的形貌衬度。此时信息扩散对细节影响将变成主导因素,更多的接收二次电子就成为获取高分辨细节的关键。/pp style="text-align: justify text-indent: 2em "如上示意图,EXB系统对进入上探头的信号进行分离,使其接收的基本是二次电子,对细节影响小;通过信息转换板,探头又接收到更多的低角度信息,因此利于形成细节为10纳米以下的形貌像。各探头形成图像的具体结果如下:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/cbe76ddb-a22b-4bd5-ad70-c9057c2641ae.jpg" title="7.png" alt="7.png"//pp style="text-align: justify text-indent: 2em "该工作距离,下探头无信号,信息混合后结果倒向上探头。采用减速模式将帮助上探头获取更充分的样品信息。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b3ba0c5c-c2a3-49cb-a4fa-8653853454d2.jpg" title="8.png" alt="8.png"/span style="text-indent: 2em text-align: justify " /span/pp style="text-align: justify text-indent: 2em "B)工作距离适中(WD=8.1mm):/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7a1ebaf2-fb73-4803-a009-cd97a2aa8a65.jpg" title="9.png" alt="9.png"//pp style="text-align: justify text-indent: 2em "低倍:10万倍以下,观察的样品细节主要在20纳米以上。在这个工作距离下:上探头形貌衬度较差,下探头信号量不佳,故单独观察都有较大问题。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/c8c01847-39c9-4150-a862-5ed7dc40b2bf.jpg" title="10.png" alt="10.png"//pp style="text-align: justify text-indent: 2em "高倍:20万倍,观察的样品表面细节在10纳米以下 /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/367f675f-d917-4132-b5b5-dc72868ef096.jpg" title="11.png" alt="11.png"//pp style="text-align: justify text-indent: 2em "上、下探头的混合结果:上探头获取的信息较多,是主要信息源。故整体偏向上探头获取的图像特性。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/202006/uepic/aa45b67b-1415-461d-9ee6-5594b663afdf.jpg" title="12.png"//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/202006/uepic/10a2946a-c21a-4b3b-9c3a-46579b607c42.jpg" title="13.png"//pp style="text-align: justify text-indent: 2em "C)大工作距离(WD=15.1 mm)/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/841a1b4a-39c8-4cea-9114-5c93b196ba13.jpg" title="14.png" alt="14.png"//pp style="text-align: justify text-indent: 2em "低倍:10万倍以下,观察20纳米以上的细节。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/5adb4e8e-4576-4e0e-aa67-2b72bfdf8f99.jpg" title="15.png" alt="15.png"//pp style="text-align: justify text-indent: 2em "高倍:20万倍,观察细节10纳米以下。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/e2dd614b-b1c3-439f-8eca-4a481eae9dcb.jpg" title="15.png" alt="15.png"//pp style="text-align: justify text-indent: 2em "上、下探头混合后,结果倒向下探头。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/aa741213-5299-4f63-9dc8-2f210ade6e28.jpg" title="16.png" alt="16.png"//pp style="text-align: justify text-indent: 2em "细节较粗样品(磁粉),7万倍、大WD,三种探头组合对比:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/84e4cc1f-b36b-4df0-a035-30045f6a1fc2.jpg" title="18.png" alt="18.png"//pp style="text-align: justify text-indent: 2em "strong2.2不同探头组合在不同工作距离(WD)上的图像比对/strong/pp style="text-align: justify text-indent: 2em "上节实例展示了在不同工作距离上,各种探头组合所获取的图像特性。本节以介孔硅SBA-15的测试结果为例,采用高、低倍分组,直球对决的形式,对比三种探头组合分别在三个不同工作距离上所获取的测试结果。评判出各种工作距离与探头组合的优缺点,以充分认识它们的适用范围。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/83a00b53-10d8-4142-bd5e-b16c67491618.jpg" title="19.png" alt="19.png"//pp style="text-align: justify text-indent: 2em "低倍的综合结果:选择15mm工作距离、下探头组合测试效果最佳。空间伸展最好、信号量足、细节丰富、无荷电影响。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/73bb557c-f665-4f26-bfaa-d80bb19cb871.jpg" title="20.png" alt="20.png"//pp style="text-align: justify text-indent: 2em "高倍(20万倍)的结果: 2mm工作距离,混合探头组合二次电子含量足,低角度二次电子信息含量的占比较多,故图像荷电现象较弱,空间信息好,细节充分,结果最佳。/pp style="text-align: justify text-indent: 2em "15mm工作距离、下探头组合,细节几乎看不见,结果最差。/pp style="text-align: justify text-indent: 2em "综合以上所有实例可以得出这样的结论:/pp style="text-align: justify text-indent: 2em "10万倍以下观察20纳米以上细节,大工作距离拥有优势,且倍率越低用下探头观察的优势越明显。10万倍以上观察10纳米以下的细节,小工作距离、上探头获得效果更好。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="color: rgb(0, 176, 80) font-size: 16px "三、工作距离和探头的选择与图像的分辨力/span/strong/h1p style="text-align: justify text-indent: 2em "前面实例充分表明:小工作距离、镜筒探头(上探头)最适用于将图像放大到10万倍以上,去观察小于10纳米的样品细节,而对于观察20纳米以上的细节却未必有利。/pp style="text-align: justify text-indent: 2em "下面将以充分的事例展示:采用大工作距离、样品仓探头(下探头)组合,即便在10万倍以上的高倍率,图像清晰度受大量背散射电子的影响而略显不足,但对20纳米以上样品细节的分辨力却占据优势。/pp style="text-align: justify text-indent: 2em "泡沫镍上生长的氢氧化钴,储电材料。该材料的片状氢氧化钴表面有许多大于10纳米的沟纹状细节,故比表面积较大。存在这种结构也正是其拥有极佳储电能力的基础。/pp style="text-align: justify text-indent: 2em "接下来通过对这些沟纹信息的观察,来对比大工作距离、下探头组合与较小工作距离、上探头组合在的辨析度上优劣。/pp style="text-align: justify text-indent: 2em "为了说明结果的普适性,对比将从一组zeiss SEM的照片开始。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/63ec7b13-bd9e-4d65-9328-1ef32e4aa0b1.jpg" title="21.png" alt="21.png"//pp style="text-align: justify text-indent: 2em "结果:采用WD=8mm、混合探头(M)组合 PK WD=15mm、下探头组合的结果。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/829f8ebf-1b67-40ff-ae48-b248d4a661d7.jpg" title="22.png" alt="22.png"//pp style="text-align: justify text-indent: 2em "以上实例充分展示:工作距离与探头的选择对分辨能力的影响也遵循着辨证的关系。样品的特性以及观察信息的不同是我们选择合适工作距离与探头的依据。/pp style="text-align: justify text-indent: 2em "将小工作距离、镜筒探头做为获取高分辨像的唯一正确选择,进而扩展为扫描电镜主要测试条件的观念存在极大偏颇,不利于充分获取样品信息。大部分样品信息适合在大工作距离,采用多种探头组合来获取,这将在下篇有更充分的展示。/pp style="text-align: justify text-indent: 2em "电镜的性能是否优异,考察其在大工作距离下是否也能获取优异的高倍率形貌像应当是重点。以下是几个实例:/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "S-4800大工作距离高倍率图片/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/395c6a02-3f78-47bb-9a45-4aa553a3ebb7.jpg" title="23.png" alt="23.png"//pp style="text-align: justify text-indent: 2em "Regulus 8230的大工作距离高倍率图片/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/3eb0b9d9-d016-4e1b-aa6a-16c5555ca0a2.jpg" title="24.png" alt="24.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/69da8d82-e400-4dc0-9331-cf795b27a49a.jpg" title="25.png" alt="25.png"//ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="font-size: 18px color: rgb(0, 176, 80) "四、不同工作距离和探头组合的优缺点/span/strong/h1p style="text-align: justify text-indent: 2em "前面分析了,改变工作距离主要影响的是镜筒内探头和样品仓探头对样品表面形貌信息的接收效果。/pp style="text-align: justify text-indent: 2em "工作距离越小,带来的结果是:镜筒内探头(U)接收到的样品信息越多,样品仓探头(L)接收的样品信息越少。当样品紧靠物镜时,样品仓探头基本获取不到样品的信息。/pp style="text-align: justify text-indent: 2em "随着工作距离加大,样品仓探头接收到的样品信息会加强。要形成样品仓探头对样品表面信息接收的最佳固体角,必然存在一个最佳工作距离。这个值各电镜厂家并不一样,我所用的场发射扫描电镜的这个值与附件能谱仪的最佳工作距离相重合(WD=15mm)。/pp style="text-align: justify text-indent: 2em "不同位置的探头形成样品表面形貌像的主导因素不同。/pp style="text-align: justify text-indent: 2em "样品仓探头:探头、样品及电子束三者之间的夹角是主导。获取的形貌衬度信息有利于呈现起伏较大的表面形貌像。/pp style="text-align: justify text-indent: 2em "镜筒内探头:从顶部接收样品信息,电子信息的溢出角是形成表面形貌像的主导因素。获取的形貌衬度小,只适合表现起伏较小(几十纳米)的表面形貌像。工作距离越大,镜筒内探头接收到的高角度二次电子占比越多,图像空间感越差,荷电现象也越明显。具体实例可参看前文经验谈(5)。/pp style="text-align: justify text-indent: 2em "样品表面形貌像的细节会受到样品电子信息扩散的影响,这个影响受到样品特性及信息需求的限制。当样品比较松散,而所要展示的样品信息又极小(10纳米以下细节)时,信号扩散会成为影响测试结果的主体,选用小工作距离、镜筒探头最为有利。除此以外,在大工作距离下选择不同探头组合将更有利于获取充分的样品表面信息。/pp style="text-align: justify text-indent: 2em "大、小工作距离对样品进行测试的优缺点对比列表如下/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/ae51a279-a821-44a9-8ff7-f3f675295dcb.jpg" title="26.png" alt="26.png"//pp style="text-align: justify text-indent: 2em "从以上列表可以看到,选择大工作距离给测试结果带来的优点比选择小工作距离要多得多,小工作距离仅在极少数情况下具有较好的测试结果。因此个人认为将常规的测试条件放在大工作距离上,是一个明智的选择。/pp style="text-align: justify text-indent: 2em "以个人使用扫描电镜十来年的测试经历来看,绝大部分样品信息都可在大工作距离下获取更好的效果,必需采用小工作距离的情况相对来说比较少。/pp style="text-align: justify text-indent: 2em "下一篇将用更多实例来给大家充分的展示并分析,选用合适的工作距离和探头组合将会带来怎样有利的测试结果?span style="text-indent: 2em " /span/pp style="text-align: justify text-indent: 2em "参考书籍:/pp style="text-align: justify text-indent: 2em "《扫描电镜与能谱仪分析技术》张大同2009年2月1日 span style="text-indent: 2em "华南理工出版社/span/pp style="text-align: justify text-indent: 2em "《微分析物理及其应用》 丁泽军等 2009年1月 span style="text-indent: 2em "中科大出版社/span/pp style="text-align: justify text-indent: 2em "《自然辩证法》 恩格斯 于光远等译 1984年10月 span style="text-indent: 2em "人民出版社 /span/pp style="text-align: justify text-indent: 2em "《显微传》 章效峰 2015年10月 span style="text-indent: 2em "清华大学出版社/span/pp style="text-align: justify text-indent: 2em "日立S-4800冷场发射扫描电镜操作基础和应用介绍 span style="text-indent: 2em "北京天美高新科学仪器有限公司 高敞 2013年6月/span/pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em "作者简介:/span/strongspan style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 75px height: 116px float: left " src="https://img1.17img.cn/17img/images/202006/uepic/c94c8e90-8a70-4116-8cfa-768d11d59f9e.jpg" title="123.jpg" alt="123.jpg" width="75" height="116" border="0" vspace="0"/林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /span/pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em color: rgb(0, 176, 240) " 延伸阅读:/span/strong/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20200515/538555.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8)/span/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20200414/536016.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7) /span/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20200318/534104.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "扫描电镜的探头新解——安徽大学林中清32载经验谈(6)/span/aspan style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " /span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20200218/522167.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)/span/aspan style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " /span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20200114/520618.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)/span/aspan style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " /span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20191224/519513.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3) /span/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20191126/517778.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20191029/515692.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈/span/a/p
  • 新品|助力类器官筛选,兼顾工作距离与成像质量|新一代蔡司箱式成像系统Celldiscoverer 7上市
    近期,蔡司发布全新一代全自动箱式成像系统Celldiscoverer 7,以自动化的工作流程和高质量的成像能力,轻松实现从样品到结果的全链路效率提升。蔡司新一代Celldiscoverer 7(进入在线展位查看详情)更高效:相比上一代产品,新一代CD7成像速度提升最高可达9 倍,大大提升多孔板成像的工作效率更灵活:全新735 nm光源可以覆盖近红外染料,拓宽了染料选择范围,满足更多高质量成像需求更自动:升级版的Experiment Designer模块,为多孔板活细胞成像和非同质化的图像采集需求等高阶需求设置自动化采集流程,让高阶客户也体会到自动化设备的轻松便捷更可靠:通过硬件优化,进一步提升设备稳定性,满足全天候无人值守成像和远程操作的需求能解决以前用户的这些痛点问题:我需要用多孔板做高通量细胞筛选,成像速度决定了我的工作效率;自动化设备用起来是轻松,但只能满足简单成像需求,图像质量一般,高阶需求很难满足;共聚焦成像的高质、自动化设备的高效“我都要”;多孔板活细胞成像,每个孔的荧光标记不一样,实验设置起来很复杂;光源波长无法覆盖近红外染料;做类器官筛选时,样品有点厚,物镜工作距离和成像质量难以兼顾。——会议推荐——探秘类器官与器官芯片进展,共话单细胞技术前沿报名链接及日程二维码https://www.instrument.com.cn/webinar/meetings/icca2024/
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 2017年全球先进显微镜业务及新技术盘点
    p  对于刚刚过去的2017年,先进显微技术领域实现了诸多发展,这些技术包括共聚焦、多光子、光片荧光和其他超分辨率技术等。该领域市场营业额的持续增长得益于创新技术的不断推出以及相关企业新伙伴关系的建立。根据SDI近期报告内容,列举部分近来先进显微领域相关主流企业的技术进展及业务开展情况。/pp style="text-align: center"img style="width: 456px height: 300px " src="http://img1.17img.cn/17img/images/201802/insimg/39d5f273-556a-4f5e-8943-7ee8ba79f3b9.jpg" title="1.jpg" height="300" hspace="0" border="0" vspace="0" width="456"//pp  span style="color: rgb(255, 0, 0) "strong创新技术篇/strong/span/pp  strong布鲁克公司(Bruker)收购Luxendo公司扩大对光学显微镜的投资/strong——2017年5月份,布鲁克公司收购了从欧洲分子生物学实验室(EMBL)中拆分出来的Luxendo公司,该公司开发出了一种基于片光源荧光的低光敏活性系统——单平面照度显微镜(SPIM)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/6c2ce3c4-e09d-4be8-af10-7060acfa67ed.jpg" title="0.jpg"//pp style="text-align: center "  strong低光敏活性技术/strong/pp  SPIM技术配备了两个sCMOS相机,均基于反向光学设置,能够在多达八种不同的波长下定制激光照明。与普通激光扫描共焦显微镜相比,该方法的优点在于大大减少了采样时间和光敏活性,从而减少对活体标本的破坏性的副作用。SPIM显微镜将扩大布鲁克公司现有的扫频共焦显微镜、超分辨率显微镜和多光子荧光显微镜等产品的投资,表明布鲁克将对显微镜产品进行更新换代,对面向活细胞成像和超分辨率显微镜等应用的新型光学技术领域拓展。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/7b3d8b1a-0cf4-4563-904d-373d44f751d4.jpg" title="2.jpg"//pp style="text-align: center " strong Cytation™ 1细胞成像多功能检测系统/strong/pp  strong美国伯腾仪器(BioTek Instruments)推出细胞成像多功能检测系统/strong——Cytation™ 1细胞成像多功能检测系统结合了荧光和高对比度的明场成像,与常规数字显微成像设备相比无需复杂操作,易于维护,是大多数科研实验室预算范围内可以配备的成像检测系统。这种专利技术的设计,可为细胞学研究分析同时提供给大量的细胞表型分析数据以及基于孔板的定量数据。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/2526a30c-da74-476d-b57c-9fcbc6f59c9e.jpg" title="3.jpg"//pp style="text-align: center " strong 微球透镜超分辨成像系统/strong/pp  strongNanopsis公司推出了超分辨率微球放大镜(SMAL)光学纳米镜/strong——SMAL可以作为超分辨率显微镜的低成本替代品,SMAL可将白光光学显微镜的覆盖范围扩大到光的衍射极限(200nm),并达到超分辨率。其微球面透镜专利使白光毫微秒示波器能够解决50nm尺寸的横向特征。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/e6bc2d12-9442-44de-935b-0f0963b5a045.jpg" title="4.jpg"//pp style="text-align: center "strong生物显微镜物镜CFI90 20XC Glyc/strong/pp  strong尼康推出生物显微镜物镜CFI90 20XC Glyc/strong——CFI90 20XC Glyc可支持全脑成像的观察长度:从90mm(大视场)到8.2mm(超长工作距离)。不仅在高分辨率下提供了深度成像功能,而且其大视野也提高了大型组织样品的成像质量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/noimg/faeb6d1d-bc3a-4573-bc1e-61ea5e3d1f40.jpg" title="5.jpg"//pp style="text-align: center "  strong牛津仪器推出高速共聚焦成像平台Dragonfly/strong/pp  strong牛津仪器推出高速共聚焦成像平台Dragonfly/strong——Dragonfly采集速度比普通点扫描共聚焦技术快20倍,并且可以在双波长下操作。 (据SDI报告中的数据,37%的研究人员在科研过程中使用2个激光/波长。)/pp style="text-align: center"img style="width: 582px height: 300px " src="http://img1.17img.cn/17img/images/201802/insimg/30b40c50-e465-4b5a-8eea-c344238c265b.jpg" title="6.jpg" height="300" hspace="0" border="0" vspace="0" width="582"//pp style="text-align: center "  strong徕卡LeicaDM6 M LIBS/strong/pp  strong徕卡推出的DM6 LIBS显微镜/strong——该产品将目视检验和定性化学检验组合在一个工作步骤中,与使用传统 SEM/EDS 检验相比,测定微观结构成分的时间可节省 90%。集成激光光谱功能可在一秒钟内针对显微镜中看到的材料结构提供准确的化学元素图谱。无需进行样品制备和转移。/pp  span style="color: rgb(255, 0, 0) "strong企业合作篇/strong/span/pp  为保证其显微镜业务竞争优势,赛默飞采取了不同的策略。由于2016年收购了FEI,该公司显微镜业务得到迅速发展。分析仪器的收入在2017年第二季度增长46.8%,在第三季度增长32.5%。因此,除了在生命科学仪器领域继续保持强大影响力之外,赛默飞已俨然成为世界十大分析仪器公司之一。另外,去年年底,赛默飞宣布收购台式电镜公司Phenom-World。2017年的最后几个月,形成了战略合作伙伴关系,以推进多项相关研发技术。/pp  DataDirect Networks宣布与Gatan合作,实现双方在数据存储平台和高性能相机方面的强强专业技术结合。/pp  作为世界上最大的显微镜供应商之一,徕卡与加拿大的CHU Sainte-Justine研究中心已合作,并在蒙特利尔建立显微镜工厂。/pp  此外,徕卡、赛默飞和蔡司三家公司将共同为欧洲分子生物学实验室(EMBL)提供相当于1000万欧元的资金,该实验室成像技术中心计划于2021年开放。该中心将致力于先进显微镜,包括相关的光学和电子显微镜,并同时向EMBL和访问科学家开放。/pp  除了EMBL技术中心之外,蔡司还在10月份与Xnovo签署了独家战略合作协议。合作旨在建立并扩展一个从多晶样品中无损获取3D晶体信息的模块系统。/pp  随着先进显微市场的不断发展,科研工作者在品牌和技术方面将拥有比以往更多的选择。然而,一些实力企业仍占据整体市场大部分份额。据SDI报告显示,徕卡和蔡司是先进显微镜领域的主要市场占有者,两者全球整体市场份额超过50%。/pp  正如报告所描述的,显微镜市场仍然是一个技术不断发展的领域。对于显微镜生产商,无论是市场领导者,还是希望拓展更大的市场领域,只要找到市场的增长点所在,发掘如何通过新产品、新技术满足科研工作者未满足的需求,终将有所收获。/p
  • 医用光学显微镜的应用有哪些注意
    首先介绍一下医用光学显微镜,它在很多的校园里用于教学科学研究,它的结构非常的匀称,显微镜的即体非常的稳定和刚性,整体上下是一体化结构,在电压方面,可以自我适应110伏特-220伏特的电压,无限远无应力物镜,提供像质更好,它能够提供给使用者非常清晰非常美观的微观世界。而且它的偏光载物台是专业的金属设置,转动、操作舒适,可以任意旋转,使用是非常方便的。  显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。  (一)、物镜  物镜是决定显微镜性能的zui重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。  1、物镜的分类  物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。  根据放大倍数的不同可分为 低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。  根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。(所谓象差是指所成的像与原物在形状上的差别;色差是指所成的像与原物在颜色上的差别)  (消除色差(当不同波长的光线通过透镜的时候,它们折射的方向略有不同,这导致了成像质量的下降)  2、物镜的主要参数:  物镜主要参数包括:放大倍数、数值孔径和工作距离。  ①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。  显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。  ②、数值孔径也叫镜口率,简写N• A 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为1.25。  ③、工作距离是指当所观察的标本zui清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物镜的工作距离与物镜的焦距有关,物镜的焦距越长,放大倍数越低,其工作距离越长。例:10倍物镜上标有10/0.25和160/0.17,其中10为物镜的放大倍数;0.25为数值孔径;160为镜筒长度(单位mm);0.17为盖玻片的标准厚度(单位 mm)。10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm 。  3、物镜的作用是将标本作*次放大,它是决定显微镜性能的zui重要的部件——分辨力的高低。  分辨力也叫分辨率或分辨本领。分辨力的大小是用分辨距离(所能分辨开的两个物点间的zui小距离)的数值来表示的。在明视距离(25cm)之处,正常人眼所能看清相距0.073mm的两个物点,这个0.073mm的数值,即为正常人眼的分辨距离。显微镜的分辨距离越小,即表示它的分辨力越高,也就是表示它的性能越好。  显微镜的分辨力的大小由物镜的分辨力来决定的,而物镜的分辨力又是由它的数值孔径和照明光线的波长决定的。  那么医用光学显微镜到底在哪些领域有所应用呢?适合电子、地质、矿产、冶金、化工和仪器仪表等行业,在这些行业领域中,用于观察透明、半透明或不透明的物资,例如金属陶瓷、集成块、印刷电路板、液晶板、薄膜、纤维、镀涂层以及其它非鑫属材料,除此之外,也适合医药、农林、*、学校、科研部门作观察分析用。透反射式矿相显微镜不仅能实时观察动态图像,还能将所需要的图片进行编辑、保存和打印。透反射式矿相显微镜广泛应用于生物学、细胞学、组织学、药物化学等研究工作。如果医用光学显微镜物象不在视野中心,可移动玻片,将所要观察的部位调到视野范围内。(注意移动玻片的方向与视野物象移动的方向是相反的)。如果视野内的亮度不合适,可通过调整光圈的大小来调节,如果在调节焦距时,镜台下降已超过工作距离(5.40mm)而未见到物象,说明此次操作失败,则应重新操作,切不可心急而盲目地上升镜台。
  • 胤煌科技发布显微镜不溶性微粒检测仪新品
    YH-MIP-0103型显微镜不溶性微粒检测仪检测介绍药典规定:按照中国药典0903章节的要求,不溶性微粒的检测有两个方法,光阻法不溶性微粒检查和显微镜不溶性微粒检查。随着光阻法收录入药典作为不溶性微粒检查的一个方法以来,由于其操作简单,检测速度快,无需制样等优点深受广大用户的喜爱,也便成了用户偏爱和较高一种的检查方法。而显微镜法不溶性微粒慢慢淡出人们视野。随着药学的发展,尤其是制剂学的飞速进步,各式新的剂型进入临床,如注射用乳剂,常见的有丙泊酚、中长链脂肪乳、三腔袋脂肪乳等,脂质体,混悬剂,滴眼剂,混悬剂,易产生气泡剂型等。此种注射剂剂型的特殊性,无法利用常用的光阻法检测不溶性微粒,因为其样品本身的不透明性、高粘度等原因,使得采用光阻法检测会产生假性结果,因为光阻法会将样品本身和气泡也作为颗粒计入。中国药典CP中规定所有的注射剂都要做不溶性微粒项目检查,故而显微镜法不溶性微粒检查设备是非常重要的选择。常规显微镜不溶性检查的缺陷常规显微镜不溶性微粒检查大家会采用一台简单显微镜,人工进行计数。此种操作的难点是:无法避免人为的原因导致计数的偏差,主观性太强;最重要的是人为计数对实验员眼睛的要求较高,用眼过度会造成视力过早下降,引起一些不必要的眼疾;操作不规范性,测试结果重复性差YH-MIP-0103系列显微镜不溶性微粒检测仪上海胤煌科技有限公司自主研发生产的全自动显微镜不溶性微粒检测仪YH-MIP-0103系列,从样品制备到测试完成有一套完整的方案。1)直接按照药典要求出具报告;2)全自动进行滤膜全扫描,并进行颗粒图片分析;3)可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维;4)按照颗粒性质进行归类分析统计;5)光阻法检测不通过时,作为光阻法不溶性微粒的一个验证;显微镜不溶性微粒检测仪设备构成样品过滤装置,烘干装置,检测分析系统,电脑等。检测分析系统可以根据用户要求配置奥林巴斯体式显微镜、奥利巴斯金相显微镜、徕卡金相显微镜、尼康金相显微镜等。显微镜不溶性微粒检测仪应用领域应用范围:乳剂、脂质体、滴眼剂、混悬剂、易产生气泡剂型、粘度大制剂等执行标准:中国药典CP,美国药典 USP 788、USP 789,欧洲药典 EP,英国药典 BP2013,日本药典JP等YH-MIP-0103系统介绍:组成:显微镜颗粒分析系统既可以观察颗粒形貌,还可以得到粒度分布、数量、大小、平均长径比以及长径比分布等,为科研、生产领域增添了一种新的粒度测试手段;该系统包括光学显微镜、数字CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成;是传统显微测量方法与现代图像处理技术结合的产品;软件:测试软件具有操作员管理系统、测试标准、零件测试模板、图像存储、颗粒追踪、报告输出、清洁度分析等功能;全面自动标准选择、颗粒尺寸设定、颗粒计数,或按用户设定范围计数,自动显示分析结果,并按照相关标准确定产品等级;专业软件控制分析过程,手动对焦,手动光强,自动扫描,自动摄入,自动分析;专用数字摄像机将显微镜的图像拍摄及扫描;全自动膜片扫描系统,无缝拼接, 数字化显微镜分析系统;数据传输:R232 接口数据传输方式将颗粒图像传输到分析系统; 颗粒图像分析软件及平台对图像进行处理与分析;显示器及打印机输出分析结果;特点:直观、形象、准确、测试范围宽以及自动识别、自动统计、自动标定等特点; 避免激光法的产品缺陷,扩展检测范围;YH-MIP-0103系统介绍:胤煌科技为您奉献的专门高性价比实验室显微镜。可以轻松地根据需要进行明场、暗场、相衬、荧光、偏光等多种观察;还可以连接照相机、数码摄像头,与电脑联机工作。1)物镜:独立校正光学系统,物镜拥有更高的数值孔径,成像更加平坦,清晰范围可达视场边缘。5X、10X、20X、30X、40X、50X、80X、100X 等可根据要求选配、经过防霉处理;2)目镜:高眼点,屈光度可调。10X 目镜视场范围有 20mm 和 22mm 两种配置。经过防霉处理;3)阿贝聚光镜:数值孔径 NA1.25,中心可调,带相衬板插孔,配孔径光阑调节装置,聚光镜孔径光阑采用与物镜色圈相同颜色的标记,方便您的使用;4)暗场聚光镜:专门用于暗场观察,安装方便;5)偏光装置:加配起偏器和验片器,您便可以轻松进行简易偏光观察;6)多功能转盘式相衬聚光镜:数值孔径 NA1.25,配置多功能相衬聚光镜,您可以配合 10X-100X 相衬物镜进行相衬观察,配合 10X-40X 物镜进行暗场观察,也可以明场观察;7)内倾式转换器:方便您放置切片,变换物镜进行观察;8)机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm。低位同轴移动手轮;9)无导轨机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm,低位同轴移动手轮,调节手轮可以根据您的用手习惯任意安装在载物台的左手或右手一侧;10)电动载物台:平台行程:大于 80*70mm;行程:2000μm;定位精度:≤±5μm;典型分辨率: 单步 0.625μm;11)观察筒:双目或三目铰链式观察筒;三目分光比 20/80,可以轻松与数码摄像头或照相机连接工作;视场较高可配置到 22mm;有 48-75mm和 52-75mm 两种不同的双目瞳孔,调节距分别适用于亚洲和欧美人士使用,您可以根据自己双目距离作出灵活的选择;12)粗微动手轮高度可调:根据您手形的大小,粗微动手轮高度可调,为您的手臂带来轻松和舒适;13)照明系统:6V/20W、6V/30W 卤素灯或者 LED 多种光源可供选择。抽屉式的灯座设计让您只需简单地拔出、插入便可方便地更换灯泡;14)高效率的独立散热系统:即使在 6V/30W 卤素灯 48 小时不间断照明的环境下,机身也不会烫手,完全解决了长期困扰研究人员的机身发烫问题;15)增高器:果您体型高大,可选配增高器,保证您观察时的坐姿更加舒适;16)搬运把手:保证您移动显微镜时轻松安全;YH-MINP-0103产品配置 显微镜不溶性微粒检测仪技术参数测试范围: 1 μm - 500 μm放大倍数:40X-l000X 倍比较大分辨:0.1 μm显微镜误差:0.02(不包含样品制备因素造成的误差)重复性误差: 5%(不包含样品制备因素造成的误差)数字摄像头(CCD):300 万像素标尺刻度:0.1 μm分析项目:粒度分布、长径比分布、圆形度分布等自动分割速度: 1 秒分割成功率: 93%软件运行环境:Windows 2000、Windows XP接口方式:RS232 或 USB 方式供货期:30 个工作日精 确 度:±3% 典型值;重合精度:10000 粒/mL(5%重合误差);分辨率:95%(按中国药典 2010 版校准)10%(按美国药典、ISO21501 校准)YH-MIP-0103分析过程: YH-MIP-0103系统介绍:美国药典 USP 788、USP 789、USP35-NF30、USP32-NF27;欧洲药典 EP6.0、EP7.0、EP7.8、EP8.0;英国药典 BP2013、BP2012、2010、2009;日本药典 JP16、JP15、JP14;印度药典 IP2010 版;WHO 国际药典 IntPh 第四版;中国药典 2010 年、2015 年;GB8368 输液器具;ISO21510;ISO11171 等。GB/T 11446.9-2013 电子级水中微粒的仪器测试方法。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。 创新点:显微镜不溶性微粒检测仪全自动进行滤膜全扫描,并进行颗粒图片分析,可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维按照颗粒性质进行归类分析统计,检测分析系统可按客户要求配置奥林巴斯体式显微镜、奥林巴斯金相显微镜等显微镜不溶性微粒检测仪
  • 北京积水潭医院4366.35万元采购高压灭菌器,生物显微镜,过氧化氢灭菌,生物安全柜,超净工作台,离...
    详细信息 [公开]北京积水潭医院新龙泽院区开办费医疗设备采购项目-招标公告 北京市-西城区 状态:公告 更新时间: 2022-09-29 招标文件: 附件1 附件2 [公开]北京积水潭医院新龙泽院区开办费医疗设备采购项目-招标公告 2022-09-29 项目概况 北京积水潭医院新龙泽院区开办费医疗设备采购项目 招标项目的潜在投标人应在北京市政府采购电子交易平台获取招标文件,并于2022-10-20 09:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:11000022210200006633-XM004 项目名称:北京积水潭医院新龙泽院区开办费医疗设备采购项目 预算金额:4366.35 万元(人民币) 采购需求: 包号 品目号 标的名称 采购包预算金额(万元) 数量(台/套) 简要技术需求或服务要求 1 1-1 数字化医用X射线摄影系统(DR) 200 1 最大载重≥200kg等 2 2-1 X线电子计算机断层扫描装置(CT) 400 1 自动螺旋:具备等 3 3-1 智能微剂量X射线骨龄仪 110 1 观察窗具备铅玻璃防护等 3-2 跟骨超声骨密度仪 30 1 具备病人趋势报告图等 3-3 手术器械 120 1批 直角钳≥18cm等 3-4 2.5倍放大镜 2.3 1 放大倍数:≥2.5等 3-5 生物安全型高温高压灭菌器 10 2 具有废弃物灭菌模式等 3-6 气溶胶喷雾器 0.2 1 粒子直径:≤60μm等 3-7 可移动紫外灯车 0.3 6 净重≤6Kg等 3-8 电子血压计 0.6 3 测量位置:上臂等 3-9 空气消毒机 8 10 额定风量≥600m3/h等 3-10 手持脉搏血氧饱和度测定仪 0.4 2 自动关机时间可调节等 3-11 心电图机 3 1 中文输入,可输入患者姓名或医生名等 3-12 生物安全柜1 8 2 照明:≥1000lx等 3-13 生物安全柜2 12 2 照明:≥1000lx等 3-14 生物安全柜3 10 2 照明:≥1000lx等 3-15 红光治疗仪 3 2 预热时间≤5min等 3-16 超低温冰箱 16 2 容积:≥600L等 3-17 医用冰箱1 3.75 5 玻璃门:双层钢化玻璃等 3-18 医用冰箱2 16.2 9 柜内照明: LED照明灯等 3-19 单通道移液器 1.2 8 双控旋钮,可单手操作等 3-20 八通道移液器 3.2 4 可整支高温高压灭菌等 3-21 迷你离心机 0.8 4 净重:≤1.5kg等 3-22 单人净化工作台 0.6 1 紫外灯功率:≥18W等 3-23 储血冰箱 32 4 外部材料:喷涂钢板等 3-24 医用低温保存箱 3 4 环境温度:10℃-32℃等 3-25 倒置摄影显微镜 9.5 1 照明装置: LED光源等 3-26 生物显微镜 3 2 物镜转盘:≥4孔等 3-27 便携式足底压力测量器 15 1 传感点数:≥2200个等 4 4-1 床旁移动式彩超 80 1 整机重量≤6.5kg(含电池)等 5 5-1 便携式彩色多普勒超声诊断仪1 50 2 重量≤5Kg(含电池)等 6 6-1 便携式彩色多普勒超声诊断仪2 50 2 中文操作界面等 7 7-1 普通输液泵 4.9 14 整机重量≤1.5kg,主机自带提手等 7-2 普通注射泵 0.35 1 预置输液总量范围:0.1-9999mL等 7-3 输液监护管理系统 72 6 注射精度:±2%以内等 7-4 中央监护站 6 1 系统报警声音可关闭等 7-5 高档呼吸机 30 1 气动电控呼吸机等 7-6 呼吸机 140 7 潮气量:20ml—4000ml等 7-7 无创呼吸机 60 4 电池电量低报警等 7-8 麻醉机 182 7 环境湿度:15 -95%等 7-9 多参数麻醉监护仪 140 7 支持扩展独立显示屏等 8 8-1 体腔热灌注治疗系统 90 1 水箱容量≥5L等 8-2 无创心排监护仪 35 1 无创血压测试周期可设置等 8-3 心理测评系统 30 1 具备神志病中医古籍检索功能等 8-4 心理评估系统 30 1 具备断点继续功能等 9 9-1 射频消融治疗仪 50 1 脉冲射频设定温度范围:30-95℃等 9-2 医用臭氧治疗仪 50 2 历史记录≥1000条等 9-3 血液透析机 75 5 监测方法:超声波等 10 10-1 血管内断层成像系统 100 1 功率≤25mW等 10-2 超声骨动力系统 160 1 可自动记录手术时间等 10-3 核酸快检设备 60 2 主机净重:≤5kg等 11 11-1 骨科手术机械臂系统 170 2 调节臂调节角度:≥360°等 12 12-1 心电图机 24 2 分析频率:≥1000Hz等 13 13-1 高频电刀 70 7 单极电凝:≥120W等 13-2 氩气刀 30 1 双极切割最大功率: ≥100W等 14 14-1 移动式C型臂 225 3 具备一体化刹车系等 15 15-1 腕关节镜手术牵引吊塔 30 2 上臂上下牵引调节范围:≥13.5cm等 15-2 关节镜系统 115 1 图像信噪比:≥60dB等 16 16-1 电动监护床 105 7 整床安全工作承重≥250Kg等 17 17-1 自动核酸提取仪 28 1 运行噪音:≤65dBA等 18 18-1 耳鼻喉综合治疗台1 70 2 水平方向调节范围:≥360°等 18-2 耳鼻喉综合治疗台2 18 2 水平方向调节范围:≥360°等 18-3 微创血流动力学检测仪 40 1 趋势图显示周期:0.5-24h等 18-4 彩色超声诊断仪 360 2 高分辨率局部图像放大功能等 19 19-1 鼻炎雾化器 1.8 2 雾粒直径小于5um的百分比:≥50%等 19-2 压缩雾化吸入机 1.8 9 平均雾粒5um占比:≥70%等 19-3 一氧化氮检测仪 5 1 测量方式:在线呼气等 19-4 便携式肺功能测试系统 10 1 支持支气管扩张试验等 20 20-1 快速生物阅读器 16 2 具有颜色标识等 20-2 便携式肌力测试与关节活动度计 8 1 可保存≥30个数据档案等 20-3 眼前节测量评估系统 145 1 具备眼前节异常参数快速筛查等 20-4 角膜内皮计 30 1 拍照模式:全自动、手动等 20-5 裂隙灯显微镜 38 1 有效像素:≥500万等 20-6 回弹式眼压计 6.5 1 电源:电池等 20-7 立式视力表 0.18 2 测试距离:2.5米等 20-8 直接眼底镜 1 5 具备防尘盖等 20-9 间接眼底镜 6.8 2 光源: LED光源等 20-10 全自动电脑验光仪 10 1 操作方式:操纵杆等 20-11 瞳距仪 0.25 1 光源:LED光源等 20-12 镜片箱 0.58 1 准确度等级:≤0.01D等 20-13 房角镜 1.9 2 镜高≤20mm等 20-14 视像移位三棱镜 0.68 1 用于小儿眼科临床的常规检查等 20-15 眼球凸出计 0.9 1 测量外眶缘和角膜的顶点等 20-16 HESS屏 2.5 1 测量外眶缘和角膜的顶点等 20-17 立体测试图 5 2 测试距离:3m等 20-18 超声波清洗器 0.28 1 超声功率:≥240W等 20-19 线状镜 0.4 1 用于检查双眼功能状态等 20-20 睑缘清洁治疗仪 1.6 2 具备刷头锁紧功能等 20-21 生物显微镜(螨虫工作站) 6 1 具备防霉技术等 20-22 试镜架 0.4 2 镜片在镜框内围绕光轴旋转度数: 360°等 20-23 遮盖板 0.2 2 适用于各种类型的斜视患者等 20-24 视标 0.72 2 适用范围:18个月—8岁儿童等 20-25 隐斜计 0.36 2 可检查人眼的隐斜视和隐斜的三棱镜度数等 20-26 非接触式眼压计 11 1 具备操作手柄等 21 21-1 骨科牵引手术床 184 2 最大承重量:≥360公斤等 21-2 手术室专用不锈钢器具 36 1 四脚配有橡胶防滑保护套等 21-3 不锈钢台车 3.3 33 整体304不锈钢材质,板材厚度≥0.7mm等 21-4 不锈钢微截流车 1 2 整体采用304不锈钢材质等 21-5 检查床 0.5 5 床脚配有橡胶套等 21-6 危化品柜 0.5 2 柜体具有反光标签等 21-7 抢救车 0.6 2 车体:采用铝合金型材等 21-8 治疗车 0.4 2 侧板、背板采用铝塑板拼装等 21-9 输液车 0.4 2 车体:铝合金专业型材等 21-10 污物车 0.2 2 整体由不锈钢管及不锈钢板经焊接组装而成等 21-11 全不锈钢操作台 20.3 7 表面处理:氩弧焊接,无漏焊、假焊等 21-12 透析用病床 4 5 整体最大承重≥200kg等 合同履行期限:详见第五章《采购需求》中各包技术要求 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 投标产品属于医疗器械的,投标人如为代理商,投标人应具有合法的医疗器械经营资格;投标人如为制造商,使用自身生产的产品投标时,投标人应具有合法的医疗器械生产资格。 三、获取招标文件 时间:2022-09-29 至 2022-10-11 ,每天上午09:00至11:30,下午13:30至16:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台 方式: 供应商持CA数字认证证书登录北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取电子版招标文件。并在中国通用招标网(http://cgci.china-tender.com.cn/)进行免费注册报名。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-10-20 09:30(北京时间) 地点:北京市海淀区闵庄路42号蓝海智谷会议中心一层蓝海厅 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目需要落实的政府采购政策: (1) 鼓励节能、环保政策:依据《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知(财库(2019)9号)》执行。 (2) 扶持中小企业政策:本项目评审时小型和微型企业产品享受10%的价格折扣。监狱企业视同小型、微型企业。残疾人福利性单位视同小型、微型企业。不重复享受政策。 (3) 本项目采购标的接受进口产品情况:本项目是否接受进口产品见第五章《采购需求》。 2.申请人的资格要求补充: (1) 被“信用中国”网站(www.creditchina.gov.cn)列入失信被执行人和重大税收违法案件当事人名单的、被“中国政府采购网”网站(www.ccgp.gov.cn)列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的)的供应商,不得参与本项目的政府采购活动。 (2) 单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一包的投标或者未划分包的同一招标项目的投标。 1)本条所指单位负责人为同一人指单位法定代表人或者法律、行政法规规定代表单位行使职权的主要负责人。 2)本条所指控股关系指单位或股东的控股关系。控股股东指: a.出资额占有限责任公司资本总额百分之五十以上或者其持有的股份占股份有限公司股本总额百分之五十以上的股东; b.出资额或者持有股份的比例不足百分之五十,但其出资额或者持有的股份所享有的表决权已足以对股东会、股东大会的决议产生重大影响的股东。 3)本条所指管理关系指不具有出资持股关系的其他单位之间存在的管理与被管理关系。 注:本条所指的控股、管理关系仅限于直接控股、直接管理关系,不包括间接控股或管理关系。 (3) 为本采购项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商及其附属机构,不得再参加本采购项目的投标活动。 (4) 按照招标公告要求购买了招标文件。 (5) 符合法律、行政法规规定的其他要求。 3.本项目采用电子化与线下流程结合招标方式,请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册,办理CA认证证书、进行北京市政府采购电子交易平台注册绑定,并认真核实数字认证证书情况确认是否符合本项目电子化采购流程要求。 CA认证证书服务热线 010-58511086 技术支持服务热线 010-86483801 3.1办理CA认证证书 供应商登录北京市政府采购电子交易平台查阅 “用户指南”—“操作指南”—“市场主体CA办理操作流程指引”,按照程序要求办理。 3.2注册 供应商登录北京市政府采购电子交易平台“用户指南”—“操作指南”—“市场主体注册入库操作流程指引”进行自助注册绑定。 3.3驱动、客户端下载 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“招标采购系统文件驱动安装包”下载相关驱动。 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“投标文件编制工具”下载相关客户端。 3.4 获取电子招标文件 供应商持CA数字认证证书登录北京市政府采购电子交易平台获取电子招标文件。未在规定期限内通过北京市政府采购电子交易平台获取招标文件的投标无效。 3.5编制电子投标文件(本项目不适用) 供应商应使用电子投标客户端编制电子投标文件并进行线上投标,供应商电子投标文件需要加密并加盖电子签章,如无法按照要求在电子投标文件中加盖电子签章和加密,请及时通过技术支持服务热线联系技术人员。 3.6提交电子投标文件(本项目不适用) 供应商应于投标截止时间前在北京市政府采购电子交易平台提交电子投标文件,上传电子投标文件过程中请保持与互联网的连接畅通。 3.7电子开标(本项目不适用) 供应商在开标地点使用CA认证证书登录北京市政府采购电子交易平台进行电子开标。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京积水潭医院 地址:北京市西城区新街口东街31号 联系方式:张老师,010-58516897 2.采购代理机构信息 名 称:中技国际招标有限公司 地 址:北京市丰台区西三环中路90号通用技术大厦1101A室 联系方式:张伯涵、孙薇,010-63348683 3.项目联系方式 项目联系人:张伯涵、孙薇 电 话: 010-63348683 招标公告.docx 采购需求.docx × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:高压灭菌器,生物显微镜,过氧化氢灭菌,生物安全柜,超净工作台,离心机,核酸提取仪,超声波清洗器,超低温冰箱,大分子作用仪 开标时间:2022-10-20 09:30 预算金额:4366.35万元 采购单位:北京积水潭医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中技国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开]北京积水潭医院新龙泽院区开办费医疗设备采购项目-招标公告 北京市-西城区 状态:公告 更新时间: 2022-09-29 招标文件: 附件1 附件2 [公开]北京积水潭医院新龙泽院区开办费医疗设备采购项目-招标公告 2022-09-29 项目概况 北京积水潭医院新龙泽院区开办费医疗设备采购项目 招标项目的潜在投标人应在北京市政府采购电子交易平台获取招标文件,并于2022-10-20 09:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:11000022210200006633-XM004 项目名称:北京积水潭医院新龙泽院区开办费医疗设备采购项目 预算金额:4366.35 万元(人民币) 采购需求: 包号 品目号 标的名称 采购包预算金额(万元) 数量(台/套) 简要技术需求或服务要求 1 1-1 数字化医用X射线摄影系统(DR) 200 1 最大载重≥200kg等 2 2-1 X线电子计算机断层扫描装置(CT) 400 1 自动螺旋:具备等 3 3-1 智能微剂量X射线骨龄仪 110 1 观察窗具备铅玻璃防护等 3-2 跟骨超声骨密度仪 30 1 具备病人趋势报告图等 3-3 手术器械 120 1批 直角钳≥18cm等 3-4 2.5倍放大镜 2.3 1 放大倍数:≥2.5等 3-5 生物安全型高温高压灭菌器 10 2 具有废弃物灭菌模式等 3-6 气溶胶喷雾器 0.2 1 粒子直径:≤60μm等 3-7 可移动紫外灯车 0.3 6 净重≤6Kg等 3-8 电子血压计 0.6 3 测量位置:上臂等 3-9 空气消毒机 8 10 额定风量≥600m3/h等 3-10 手持脉搏血氧饱和度测定仪 0.4 2 自动关机时间可调节等 3-11 心电图机 3 1 中文输入,可输入患者姓名或医生名等 3-12 生物安全柜1 8 2 照明:≥1000lx等 3-13 生物安全柜2 12 2 照明:≥1000lx等 3-14 生物安全柜3 10 2 照明:≥1000lx等 3-15 红光治疗仪 3 2 预热时间≤5min等 3-16 超低温冰箱 16 2 容积:≥600L等 3-17 医用冰箱1 3.75 5 玻璃门:双层钢化玻璃等 3-18 医用冰箱2 16.2 9 柜内照明: LED照明灯等 3-19 单通道移液器 1.2 8 双控旋钮,可单手操作等 3-20 八通道移液器 3.2 4 可整支高温高压灭菌等 3-21 迷你离心机 0.8 4 净重:≤1.5kg等 3-22 单人净化工作台 0.6 1 紫外灯功率:≥18W等 3-23 储血冰箱 32 4 外部材料:喷涂钢板等 3-24 医用低温保存箱 3 4 环境温度:10℃-32℃等 3-25 倒置摄影显微镜 9.5 1 照明装置: LED光源等 3-26 生物显微镜 3 2 物镜转盘:≥4孔等 3-27 便携式足底压力测量器 15 1 传感点数:≥2200个等 4 4-1 床旁移动式彩超 80 1 整机重量≤6.5kg(含电池)等 5 5-1 便携式彩色多普勒超声诊断仪1 50 2 重量≤5Kg(含电池)等 6 6-1 便携式彩色多普勒超声诊断仪2 50 2 中文操作界面等 7 7-1 普通输液泵 4.9 14 整机重量≤1.5kg,主机自带提手等 7-2 普通注射泵 0.35 1 预置输液总量范围:0.1-9999mL等 7-3 输液监护管理系统 72 6 注射精度:±2%以内等 7-4 中央监护站 6 1 系统报警声音可关闭等 7-5 高档呼吸机 30 1 气动电控呼吸机等 7-6 呼吸机 140 7 潮气量:20ml—4000ml等 7-7 无创呼吸机 60 4 电池电量低报警等 7-8 麻醉机 182 7 环境湿度:15 -95%等 7-9 多参数麻醉监护仪 140 7 支持扩展独立显示屏等 8 8-1 体腔热灌注治疗系统 90 1 水箱容量≥5L等 8-2 无创心排监护仪 35 1 无创血压测试周期可设置等 8-3 心理测评系统 30 1 具备神志病中医古籍检索功能等 8-4 心理评估系统 30 1 具备断点继续功能等 9 9-1 射频消融治疗仪 50 1 脉冲射频设定温度范围:30-95℃等 9-2 医用臭氧治疗仪 50 2 历史记录≥1000条等 9-3 血液透析机 75 5 监测方法:超声波等 10 10-1 血管内断层成像系统 100 1 功率≤25mW等 10-2 超声骨动力系统 160 1 可自动记录手术时间等 10-3 核酸快检设备 60 2 主机净重:≤5kg等 11 11-1 骨科手术机械臂系统 170 2 调节臂调节角度:≥360°等 12 12-1 心电图机 24 2 分析频率:≥1000Hz等 13 13-1 高频电刀 70 7 单极电凝:≥120W等 13-2 氩气刀 30 1 双极切割最大功率: ≥100W等 14 14-1 移动式C型臂 225 3 具备一体化刹车系等 15 15-1 腕关节镜手术牵引吊塔 30 2 上臂上下牵引调节范围:≥13.5cm等 15-2 关节镜系统 115 1 图像信噪比:≥60dB等 16 16-1 电动监护床 105 7 整床安全工作承重≥250Kg等 17 17-1 自动核酸提取仪 28 1 运行噪音:≤65dBA等 18 18-1 耳鼻喉综合治疗台1 70 2 水平方向调节范围:≥360°等 18-2 耳鼻喉综合治疗台2 18 2 水平方向调节范围:≥360°等 18-3 微创血流动力学检测仪 40 1 趋势图显示周期:0.5-24h等 18-4 彩色超声诊断仪 360 2 高分辨率局部图像放大功能等 19 19-1 鼻炎雾化器 1.8 2 雾粒直径小于5um的百分比:≥50%等 19-2 压缩雾化吸入机 1.8 9 平均雾粒5um占比:≥70%等 19-3 一氧化氮检测仪 5 1 测量方式:在线呼气等 19-4 便携式肺功能测试系统 10 1 支持支气管扩张试验等 20 20-1 快速生物阅读器 16 2 具有颜色标识等 20-2 便携式肌力测试与关节活动度计 8 1 可保存≥30个数据档案等 20-3 眼前节测量评估系统 145 1 具备眼前节异常参数快速筛查等 20-4 角膜内皮计 30 1 拍照模式:全自动、手动等 20-5 裂隙灯显微镜 38 1 有效像素:≥500万等 20-6 回弹式眼压计 6.5 1 电源:电池等 20-7 立式视力表 0.18 2 测试距离:2.5米等 20-8 直接眼底镜 1 5 具备防尘盖等 20-9 间接眼底镜 6.8 2 光源: LED光源等 20-10 全自动电脑验光仪 10 1 操作方式:操纵杆等 20-11 瞳距仪 0.25 1 光源:LED光源等 20-12 镜片箱 0.58 1 准确度等级:≤0.01D等 20-13 房角镜 1.9 2 镜高≤20mm等 20-14 视像移位三棱镜 0.68 1 用于小儿眼科临床的常规检查等 20-15 眼球凸出计 0.9 1 测量外眶缘和角膜的顶点等 20-16 HESS屏 2.5 1 测量外眶缘和角膜的顶点等 20-17 立体测试图 5 2 测试距离:3m等 20-18 超声波清洗器 0.28 1 超声功率:≥240W等 20-19 线状镜 0.4 1 用于检查双眼功能状态等 20-20 睑缘清洁治疗仪 1.6 2 具备刷头锁紧功能等 20-21 生物显微镜(螨虫工作站) 6 1 具备防霉技术等 20-22 试镜架 0.4 2 镜片在镜框内围绕光轴旋转度数: 360°等 20-23 遮盖板 0.2 2 适用于各种类型的斜视患者等 20-24 视标 0.72 2 适用范围:18个月—8岁儿童等 20-25 隐斜计 0.36 2 可检查人眼的隐斜视和隐斜的三棱镜度数等 20-26 非接触式眼压计 11 1 具备操作手柄等 21 21-1 骨科牵引手术床 184 2 最大承重量:≥360公斤等 21-2 手术室专用不锈钢器具 36 1 四脚配有橡胶防滑保护套等 21-3 不锈钢台车 3.3 33 整体304不锈钢材质,板材厚度≥0.7mm等 21-4 不锈钢微截流车 1 2 整体采用304不锈钢材质等 21-5 检查床 0.5 5 床脚配有橡胶套等 21-6 危化品柜 0.5 2 柜体具有反光标签等 21-7 抢救车 0.6 2 车体:采用铝合金型材等 21-8 治疗车 0.4 2 侧板、背板采用铝塑板拼装等 21-9 输液车 0.4 2 车体:铝合金专业型材等 21-10 污物车 0.2 2 整体由不锈钢管及不锈钢板经焊接组装而成等 21-11 全不锈钢操作台 20.3 7 表面处理:氩弧焊接,无漏焊、假焊等 21-12 透析用病床 4 5 整体最大承重≥200kg等 合同履行期限:详见第五章《采购需求》中各包技术要求 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 投标产品属于医疗器械的,投标人如为代理商,投标人应具有合法的医疗器械经营资格;投标人如为制造商,使用自身生产的产品投标时,投标人应具有合法的医疗器械生产资格。 三、获取招标文件 时间:2022-09-29 至 2022-10-11 ,每天上午09:00至11:30,下午13:30至16:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台 方式: 供应商持CA数字认证证书登录北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取电子版招标文件。并在中国通用招标网(http://cgci.china-tender.com.cn/)进行免费注册报名。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-10-20 09:30(北京时间) 地点:北京市海淀区闵庄路42号蓝海智谷会议中心一层蓝海厅 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目需要落实的政府采购政策: (1) 鼓励节能、环保政策:依据《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知(财库(2019)9号)》执行。 (2) 扶持中小企业政策:本项目评审时小型和微型企业产品享受10%的价格折扣。监狱企业视同小型、微型企业。残疾人福利性单位视同小型、微型企业。不重复享受政策。 (3) 本项目采购标的接受进口产品情况:本项目是否接受进口产品见第五章《采购需求》。 2.申请人的资格要求补充: (1) 被“信用中国”网站(www.creditchina.gov.cn)列入失信被执行人和重大税收违法案件当事人名单的、被“中国政府采购网”网站(www.ccgp.gov.cn)列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的)的供应商,不得参与本项目的政府采购活动。 (2) 单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一包的投标或者未划分包的同一招标项目的投标。 1)本条所指单位负责人为同一人指单位法定代表人或者法律、行政法规规定代表单位行使职权的主要负责人。 2)本条所指控股关系指单位或股东的控股关系。控股股东指: a.出资额占有限责任公司资本总额百分之五十以上或者其持有的股份占股份有限公司股本总额百分之五十以上的股东; b.出资额或者持有股份的比例不足百分之五十,但其出资额或者持有的股份所享有的表决权已足以对股东会、股东大会的决议产生重大影响的股东。 3)本条所指管理关系指不具有出资持股关系的其他单位之间存在的管理与被管理关系。 注:本条所指的控股、管理关系仅限于直接控股、直接管理关系,不包括间接控股或管理关系。 (3) 为本采购项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商及其附属机构,不得再参加本采购项目的投标活动。 (4) 按照招标公告要求购买了招标文件。 (5) 符合法律、行政法规规定的其他要求。 3.本项目采用电子化与线下流程结合招标方式,请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册,办理CA认证证书、进行北京市政府采购电子交易平台注册绑定,并认真核实数字认证证书情况确认是否符合本项目电子化采购流程要求。 CA认证证书服务热线 010-58511086 技术支持服务热线 010-86483801 3.1办理CA认证证书 供应商登录北京市政府采购电子交易平台查阅 “用户指南”—“操作指南”—“市场主体CA办理操作流程指引”,按照程序要求办理。 3.2注册 供应商登录北京市政府采购电子交易平台“用户指南”—“操作指南”—“市场主体注册入库操作流程指引”进行自助注册绑定。 3.3驱动、客户端下载 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“招标采购系统文件驱动安装包”下载相关驱动。 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“投标文件编制工具”下载相关客户端。 3.4 获取电子招标文件 供应商持CA数字认证证书登录北京市政府采购电子交易平台获取电子招标文件。未在规定期限内通过北京市政府采购电子交易平台获取招标文件的投标无效。 3.5编制电子投标文件(本项目不适用) 供应商应使用电子投标客户端编制电子投标文件并进行线上投标,供应商电子投标文件需要加密并加盖电子签章,如无法按照要求在电子投标文件中加盖电子签章和加密,请及时通过技术支持服务热线联系技术人员。 3.6提交电子投标文件(本项目不适用) 供应商应于投标截止时间前在北京市政府采购电子交易平台提交电子投标文件,上传电子投标文件过程中请保持与互联网的连接畅通。 3.7电子开标(本项目不适用) 供应商在开标地点使用CA认证证书登录北京市政府采购电子交易平台进行电子开标。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京积水潭医院 地址:北京市西城区新街口东街31号 联系方式:张老师,010-58516897 2.采购代理机构信息 名 称:中技国际招标有限公司 地 址:北京市丰台区西三环中路90号通用技术大厦1101A室 联系方式:张伯涵、孙薇,010-63348683 3.项目联系方式 项目联系人:张伯涵、孙薇 电 话: 010-63348683 招标公告.docx 采购需求.docx
  • 如何选择一台适合自己的显微镜——显微镜的种类选择
    2022年的春节已接近尾声,科研的小伙伴已经开始忙碌起来了,对于新学期是不是也有新的计划,发一篇sci的文章顺利毕业,脱单flag,头发多一点点,细胞养好,科研项目进展顺利,老师能给买台心仪已久的显微镜;你想知道选择什么种类的显微镜,正置还是倒置,宽场显微镜、超高分辨率显微镜、激光共焦显微镜等等,小本本备好,我们开始了。1不同成像原理,不同分辨率的显微镜如何选择显微镜作为生命科学领域研究的必须工具,其结构复杂,配置繁多,根据不同的配置和结构,相应的价格有很大的差异。那很多用户在实际采购过程中,看到长串的配置不知如何去选择,怎么用合理的价格去买到一个完全能够满足自己实验需求的显微镜呢?从今天这期推文开始,将会着重介绍选择显微镜的几个关键核心问题,目的是让用户能够在自己的预算范围内选择出符合自己实验需求的显微镜。首先要知道显微镜从开始诞生发展到现在,主要通过分辨率来划分,分为宽场显微镜、超高分辨率显微镜、激光共焦显微镜以及电镜。这一系列显微镜的分辨率从光镜的200纳米到超高与共聚焦的100多到几十纳米再到电镜的0.2纳米。并不是说显微镜的分辨率越高,就越适合我们的研究。分辨率越高,意味着其价格和操作的难度系数是逐级增长的。那我们如何去选择一个适合我们的显微镜呢?要根据老师和用户自己样品的大小去选择。2不同机型的选择我们在根据样品的大小和观察的实验需求,确定了某一类型的显微镜之后。我们需要根据实验样品去选择相对应的合适机型。显微镜的主要机型,根据其光路设计的不同,主要分为体视显微镜、正置显微镜和倒置显微镜。体视显微镜:体视显微镜,是一种具有正像立体感的显微镜,被广泛应用于材料宏观表面观察、失效分析、断口分析等工业领域。以及生物学、医学、农林、工业及海洋生物各部门。因为体视显微镜的光路设计,符合人体眼睛夹角的偏角,所以通过体视显微镜观察物体时,类似于我们眼睛的成像光路,这样会让我们看到立体的图像呈现。正是由于此设计,体视显微镜的分辨率要远低于传统的正置或倒置显微镜。体视显微镜更多的是观察小物体的宏观表象,而不是更为精细的细节。正置显微镜:正置显微镜作为最早诞生的机型它更多的是要配合玻片来对样品实现显微观察。如何来定义正置显微镜呢?显微镜物镜朝下,观察的样品在物镜的下方,这样的显微镜我们称之为正置显微镜。一般适用于的观察样品为:透明样品、薄的样片、生物切片、涂片等。但由于正置显微镜的机械设计,样品位于载物台与物镜中间。低倍物镜齐焦时,与载物台之间的距离大约为三厘米左右。像无法切割的厚样品,类似矿石、零件或者是在孔板、培养皿、培养瓶中培养的细胞,就无法在正置显微镜下进行观察,那由此人们设计了倒置显微镜。倒置显微镜:顾名思义,倒置显微镜与正置显微镜正好相反,那么定义也是相反的,物镜朝上,要观察的样品在物镜的上方,此类显微镜我们称之为倒置显微镜。我们可以看到倒置显微镜,物镜和载物台之间不再放观察的样品,样品是放于载物台的上面,所以样品的厚度就不会受到载物台与物镜之间距离的限制。因此倒置显微镜主要用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察。介绍了三种不同形式的显微镜,相信我们的老师和用户对自己的样品适用于什么类型的显微镜已经有了一个大体的判断。当我们更多的去观察样品的立体结构,对细节和分辨率没有更高追求的时候,我们通常会选择体视显微镜。当我们的样品无法制成玻片或者不能放在玻片上时,我们就去选择倒置显微镜。如果能制成玻片就选择正置。为什么说能制成玻片就去选择正置呢?因为对于倒置显微镜来说,正置显微镜的高倍数观察更方便,比如60X和100X的油镜。同时,因为它的光路要比倒置更短,搭配高分辨率聚光器后分辨率更高,对比度更好。通过我们这期推文的介绍,老师对于选择哪种分辨率水平的显微镜,以及什么类型的显微镜会有一个较为清楚的了解。这些只是我们采购或选择显微镜的第一步,就是我们确定显微镜的类型。针对不同的观察样品,又会有其更为适应的观察方式,又有不同的光源,不同品质的物镜,供我们去选择。欲知后事如何,且听下回分解。|申请试用|ECHO 显微镜可以申请试用哦!关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 贝拓科学发布CVRam显微拉曼光谱仪新品
    CVRam是整体化设计的785nm激光显微拉曼光谱仪,结合了显微镜及拉曼光谱仪两者的优点,同时克服了光纤耦合光损失过大的问题,利用高性能小型光谱仪就可以获得高灵敏度。CVRam具备对微小区域实时成像及拉曼光谱采集的能力。一体化的设计为显微拉曼系统提供高灵敏度及稳定性。是一款可以满足分析及科研所用的高性能、操作简易、便携式的高性价比显微拉曼光谱仪。 产品特点1)空间光路,非光纤耦合,灵敏度高;2)一体化设计,稳定性好;3)自带屏蔽门,杂散光少。 应用领域仪器可广泛应用于材料科学、生命科学、医学、药学、文物宝石、矿物、有害物品鉴定等领域。 光谱范围:100cm-1-3000cm-1波长稳定性:0.01nm/℃(标准)激发波长:785±0.5nm,线宽≤0.1nm激光器输出功率:100mW激光功率稳定性:≤0.01 nm/°C 电源电压:100-240VAC@50/60Hz输出功率:100mW可调相机分辨率:130万像素照明光源:白光LED光源物镜:无限远长工作距平场消色差金相物镜10X 20X 50X 100X可选载物台:双层机械移动平台,低手位X、Y方向同轴调节;平台面积130mm×180mm,移动范围:76mm×42mm。整机尺寸:400×354×452 mm整机重量:15kg使用环境要求工作/储存温度:0-45℃工作/储存湿度:5%-80%创新点:CVRam是整体化设计的785nm激光显微拉曼光谱仪,结合了显微镜及拉曼光谱仪两者的优点,同时克服了光纤耦合光损失过大的问题,利用高性能小型光谱仪就可以获得高灵敏度。CVRam具备对微小区域实时成像及拉曼光谱采集的能力。一体化的设计为显微拉曼系统提供了优秀的灵敏度及稳定性。是一款可以满足分析及科研所用的高性能、操作简易、便携式的高性价比显微拉曼光谱仪。CVRam显微拉曼光谱仪
  • 体视显微镜的创新点及在大健康市场领域的应用
    体视显微镜显微镜有很多种,体视显微镜是其中的一种,比如还有生物显微镜、金相显微镜等。体视显微镜,又叫实体显微镜、立体显微镜或解剖镜。体视显微镜是一种常用的显微镜,具有正像立体感的目视仪器,不需要专门进行加工制作样品,可以直接放在体视显微镜镜头下进行观察,它能够通过放大和放映图像,使我们能够观察和研究微小的物体和细胞结构,从不同角度观察物体,使双眼引起立体感觉的双目显微镜,工作效率极高。体视显微镜创新点:1、双目镜筒中的左右两束光不是平行的,而是具有一定夹角的,一般为12度到15度,这个角称为体视角。因此成像会有三维立体感。观察者可以更加真实地感受到样品的立体形态,更好地理解样品的结构和特性。2、由于体视显微镜的棱镜把图像倒转过来,使观察者看到的图像是直立的,便于操作。3、虽然放大倍率不及其它光学显微镜的倍率大(如生物显微镜和金相显微镜的放大倍率可达1000倍甚至更大),但体视显微镜优点就是工作距离长,视场直径大。景深大,便于观察物体的全貌。4、体视显微镜操作简单,放大倍数一般在7X~45X、7X~63X。其他更高端科研级体视显微镜型号NSZ818,变焦倍率比达到 1:18 ,10X目镜能够实现7.5-135X的放大倍数。果蝇转基因 转基因育种体视显微镜用途上也最为广泛,主要用途如下:1、动物学、植物学、昆虫学、组织学、矿物学、考古学、地质学和皮肤病学等的研究。2、在纺织工业中,用于原料及棉毛织物的检验。3、在电子工业中,作为元器件检查,焊点检查等操作工具。4、各种材料的裂缝构成,气孔形状腐蚀情况等表面现象的检查。5、在制造小型精密零件时,用于机床工具的装置、工作过程的观察、精密零件的检查以及装配工具。MHZ-101/MHZ-201体视显微镜可将微小物体放大并形成正的立体像,具有工作距离长,成像清晰而平稳、视场宽阔、清晰度高、倍率连续可调和操作方便等特点。根据人机工程学要求设计,45度倾斜观察,长时间工作而不感觉颈肩不适。特别适用于科研、高教、农林地质、珠宝、医学卫生、公安部门作观察分析、生物解剖。近年来还广泛应用于电子工业和仪器仪表等行业作细小精密零件的检验、装配修理用。MHZ-201体视显微镜MHZ-201体视显微镜技术参数表:◆放大倍数: 标准配置:7X~63X 选配目镜及辅助物镜,连续变倍◆物镜: 标准配置:连续变倍物镜 变倍比9:1 确保像面齐焦性◆观察头: 45°倾斜,360°旋转◆目镜: 标准配置: 10X/20mm,宽视野,广角,高眼点,为佩带眼镜的观察者提供方便◆可选目镜: 10X、15X、 20X 、25X◆工作距离:标准配置110mm(有效距离)◆可选辅助物镜:0.5X工作距离165mm/1.5X/2X ◆显微镜摄像头:C接口的USB2.0和USB3.0相机可选◆荧光照明器:LED落射荧光照明器/环形荧光照明器NSZ818科研级平行光体视显微镜NSZ818科研级平行光体视显微镜在大健康市场领域的主要应用:1、用于蛋白质结晶过程和晶体的高对比度观察和成像。2、作为分子生物学、细胞生物学、神经生物学、发育生物学、胚胎学、系统生物学、结构生物学的从宏观到微观高分辨观察与成像研究工具。3、用于斑马鱼、小鼠、线虫等模式生物和各种透明样本、微观细胞组织、亚细胞结构的明场、浮雕相衬;可升级为荧光观察和成像系统。4、数码体视显微镜作文书纸币的真假判辨,大样品上的颜料残留物分析和鉴定,区分轻微的结构偏差和真实的色彩。5、广泛应用于纺织制品、化工化学、塑料制品、电子制造、机械制造、医药制造、食品加工、印刷业、高等院校、考古研究等众多领域。体视显微镜NSZ818技术参数:◆光学系统:平行光(伽利略型)复消色差光学系统◆变倍比:1:18,变倍范围0.75-13.5X◆物镜:PLAN APO 1X(NA 0.15, WD 60mm)◆放大率:7.5-135X◆目镜(F.O.V.mm):三目 20°固定倾角镜筒 可变倾角三目镜筒,范围为 0-30°◆可选目镜:10X(23) 10X(22)15X(16) 20X(12)◆底座:LED 立体照明底座(OIC 内置照明器)◆支持观察方式:明场,荧光,斜照明,简易偏光,暗场
  • 如海光电发布显微拉曼光谱仪 MR系列新品
    1. 产品简介显微拉曼测量系统,由光纤光谱仪、拉曼稳谱激光器、拉曼探头、LED光源、金相显微镜等部分构成,通过把光谱模块集成到显微镜上,实现拉曼光谱信息的测量。系统自由灵活,具备对微小区域实时成像和采集该区域物体拉曼光谱的能力,帮助用户快速对样品微观结构,微观光谱信息的测试和分析;相比于传统的拉曼光谱仪,MR拉曼光谱仪具有重现性好,测量速度快,灵敏度高等特点;适用于固体、粉末和液体等样品。主要应用领域为生物医疗、宝石鉴定、纳米材料、高分子材料、细胞探测等。2. 产品外观 3. 产品特点l空间分辨率和光谱分辨率高;l稳定性好;l耦合效率高。4. 产品参数物理参数MR532MR785整机尺寸300×200×62 mm整机重量3.7kg(不含显微镜)光谱范围200-4000cm-1200-3200cm-1波长分辨率18cm-1@25μm slit10cm-1@25μm slit波长稳定性0.01nm/℃(标准)激发波长532±1nm,线宽≤0.2nm785±0.5nm,线宽≤0.08nm激光功率稳定性≤2%RMS(@2hrs)激光器寿命5000hrs10000hrs电源电压100-240V AC@50/60Hz输出功率0-80mW可调滤光片激光截止深度OD8物镜无限远长工作距平场消色差金相物镜10X 20X 50X转换器内定位5孔转换器CCD成像可成像工作温度0-45℃工作湿度5%-80%机架、照明反射机架,低手位粗微同轴调焦机构。粗调行程28mm,带平台位置上下调节机构。最大样品高度78mm,微调精度0.002mm。带有防止下滑的调节松紧装置和随机上限位装置。内置100-240VAC 50/60Hz宽电压系统。反(落)射照明器,柯拉照明系统,带视场光阑与孔径光阑,中心可调。带斜照明装置。100-240V宽电压,单颗大功率5W LED,暖色载物台双层机械移动平台,低手位X、Y方向同轴调节;平台面积175mm×145mm,移动范围:76mm×42mm。透反射玻璃载物台板 5. 应用领域l生物医疗l生物细胞检测l石油化工l材料分析l光学实验教学l纳米材料表征l宝石鉴定6. 操作步骤?显微成像操作步骤:1) 使用HDMI连线连接相机和显示屏,连接相机DC 5V电源 2) 连接显微镜底座背部220V电源,显微镜底部左右两端分别为透射和反射的照明光源开关,依据所选应用选择照明开关和光照亮度;3) 旋转转换器选择合适倍率物镜;4) 调节三维平台,聚焦物体使目标成清晰像。?拉曼测量操作步骤: 1) 在计算机上安装UspectralPro软件,软件安装过程中,会自动安装光谱仪驱动程序; 2) 电源接口连接5V/2A电源, 用USB数据线将光谱仪与计算机连接; 3) 打开UspectralPro软件进行激光器、光谱仪参数控制(使用说明详见UspectralPro软件使用说明书); 4) 给探头安装好需要的采样附件后,将探头对准样品,操作UspectralPro软件对需检测的样品进行数据采集; 5) 采集完数据后,可用UspectralPro软件进行数据处理。 创新点:显微拉曼测量系统,由光纤光谱仪、拉曼稳谱激光器、拉曼探头、LED光源、金相显微镜等部分构成,通过把光谱模块集成到显微镜上,实现拉曼光谱信息的测量。系统自由灵活,具备对微小区域实时成像和采集该区域物体拉曼光谱的能力,帮助用户快速对样品微观结构,微观光谱信息的测试和分析;相比于传统的拉曼光谱仪,MR拉曼光谱仪具有重现性好,测量速度快,灵敏度高等特点;适用于固体、粉末和液体等样品。主要应用领域为生物医疗、宝石鉴定、纳米材料、高分子材料、细胞探测等。显微拉曼光谱仪 MR系列
  • 上海科技大学李晓明博士:较厚样品成像策略
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网近期特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇由上海科技大学生命学院分子影像平台主任李晓明博士撰写,她根据多年工作经验,总结并分享了较厚样品成像策略。以下为供稿内容:导语:技术是科学发展的重要推动力,这点在生命研究中也越来越得到凸显。但是在实际研究中我们需要注意一个基本原则:平台技术人员需要为样品寻找合适的成像方法或仪器,而非为某些方法或仪器寻找合适的研究样品。我们这次以较厚生物样品为例来说明生命科学工作者们的多样化和多层次的需求,同时也期待仪器研发者们向应用型更强的方向发展。由于具有非侵入无损、可进行多色特异性成像等特点,光学成像技术一直在生命研究中具有广泛的应用。随着现代荧光成像技术的发展,共聚焦显微镜和各种超高分辨率显微镜已经成为各大生物实验室的必备工具。常见的生物成像技术主要针对贴壁细胞或较薄组织切片(≤50μm)而设计,研究人员可以非常容易地使用这些主流显微镜的常规配置半自动地实现实验目的。表1 典型生物样品和厚样品对成像需求的次序比较随着研究的深入,研究者们发现体外培养的贴壁细胞无法较好地表现复杂的体内细胞应答和相互作用等重要生物机制,而较薄的切片也经常会破坏一些完整的细胞或组织结构。最近几年越来越多的科学家不再满足于研究上述常规样品,将研究延展到类器官、小模式动物、包含更多完整结构的生物器官或其较厚切片样品等领域。研究者们发现使用主流显微镜的常规配置对这些样品进行观察成像时,结果很多时候都不尽如人意。在这类成像实验中我们经常会面临三个层次的难题:(1)看不见较深部位的信号;(2)拍照时间太长导致必须舍弃某些位置的成像;(3)无法拍摄活样品成像。我们先从第一个问题出发,讨论如何才能观察到样品较深部位将的信号,将生物研究者的需求拆解为对成像设备的需求。信号如何才能被看到?这个问题在荧光成像中其实是一个复合题,它包括几个方面:首先待检测荧光素可以被激发和检测,即激发光和检测光波长范围要与所选仪器适配;其次,仪器的信号检测能力要够深,即使用的物镜工作距离要足以检测到信号所在的深度;然后,信号也要够亮,足够的信噪比是所有信号和背景能够区分的前提;最后,深层的信号要突出出来,不能被其他层可能存在的或明或暗的信号所掩盖。所以,如果想要对较厚组织进行清晰成像确实比较复杂,相当于在深山老林中去摘一棵指定的大树上的指定颜色的树叶。1. 工作距离图1 物镜的工作距离决定了显微镜的成像深度(a);(b)示意图为不同工作距离的物镜对成像深度的限制在载物台空间足够的前提下,对于足够透明的、信号足够稀疏的理想样品而言,物镜的成像深度主要取决于其工作距离。物镜的工作距离指物镜聚焦时,物镜前透镜到样品最近表面的垂直距离,而在实际操作中还需要考虑盖玻片、支持胶等样品于物镜之间其他材料的厚度。生命科学中使用的物镜工作距离范围从用于体视显微镜物镜的 50 mm到用于高功率油浸物镜的小于 0.1 mm。它通常随着放大倍率、数值孔径(高数值孔径代表高分辨率和高信号亮度)的增加而降低,相应的结果是长工作距离的物镜通常需要牺牲检测灵敏度和分辨率。即使对于相同放大倍率的物镜,工作距离也会因制造商或者产品系列的不同而不同。与传统物镜相比,长工作距离物镜可校正由于距离较长而发生的像差,是专为在更长的工作距离下聚焦而设计的专用物镜,它们工作距离通常是常规数值孔径可比物镜工作距离的两到三倍。但是这类物镜通常无法做到复消色差,即紫外光与其他常用荧光可能会出现色差。应用于光片显微镜和双光子显微镜的特殊物镜具有更长的工作距离及更高的数值孔径,但是这种物镜的净身长度与常规显微镜主机并不匹配。另外,对于不够透明的样品而言,由于球差畸变产生的光散射影响,实际的工作距离会受到影响。对于大多数应用而言,用户需要在工作距离和其他参数之间做出这种选择。2. 信号亮度/信噪比样品的信号强度和信噪比当然首先和样品本身的特点和制备标记方法有关,但是在实际成像过程中,不同仪器的配置也有不同效果。高灵敏度的检测系统对于较大样品信号采集来说也相当实用,一方面检测系统的较高灵敏度会较大地提高图像采集速度,另一方面也可以产生较低的光毒性和光漂白效果从而保护样品。在常规的图像采集过程中,影响成像设备灵敏度的配置主要是物镜和检测器(当然层切效果也会影响信号亮度,这部分下个小节来讨论)。数值孔径是物镜选择中最重要的参数,它指的是物镜与样品之间介质的折射率(n)和孔径角(2α)半数的正弦之乘积。数值孔径越大,收集到的信号越多 ,分辨率也越高。而在荧光成像中,物镜或其他变倍器的放大倍数越大,收集到的信号越少。荧光信号检测亮度与物镜的关系也可以简单描述为Brightness ∝ (NA2/M)2,即荧光信号亮度与数值孔径的四次方成正比,与放大倍数的平方成反比。下面表格中展示的是不同参数的物镜对应的明场和荧光的信号亮度。表2 不同参数的物镜对应的明场和荧光的信号亮度:数值孔径和放大倍数对物镜的检测能力的影响[1]荧光检测器的进步是近些年光学成像技术发展的重要一环,适合扫描共聚焦和双光子显微镜等设备的点检测器和适合转盘共聚焦、光片显微镜、荧光显微镜等设备的面检测器都取得了很大的进展。商业化产品中常见的点检测器主要有PMT、GaAsP、APD、HyD系列等,生物学家不必了解其背后的光电原理,但是与其匹配实验需求:即在所需的波长范围内检测器是否灵敏、是否有足够用的动态范围。这些参数在同一商家的同一系列的检测器下都可能不一样,比如PMT和HyD都有不同的子类可选。在常规的可见荧光检测部分,一般来说,GaAsP和HyD系列灵敏度表现更好,量子效率可达到40~60%,但是动态范围比常规PMT稍差,量子效率仅为20~30%。图2 不同类型检测器在不同波长的量子效率和光子检测效率对比[2,3]面检测器的种类繁多,生物成像中常用的主要是CCD、EMCCD、前照式sCMOS和背照式sCMOS等相机。在不同波段的量子效率也是衡量这些相机检测灵敏性的重要参数,图中所示为不同灵敏度相机在相同曝光时间内所得图像对比。一般来说EMCCD和背照式sCMOS具有较高的灵敏性,我们一般选择大于95%的相机做高灵敏度荧光成像。图3 不同量子效率的相机在信号检测中的效果对比[4]3. 层切效果虽然客观存在的细胞、组织、器官甚至生物体都是三维的,但是生物学家在很早的时候就意识到,薄切片中比厚样品中更容易看到其中的细致结构。切片机也是生物样品制备中常用的工具,经典的光学成像样品切片通常在100μm以下。然而近年来的研究趋势要求生物学家研究的不仅仅是截面,更要研究三维的结构。但是这类要求对样品制备和成像技术而言都有相当大的挑战。 图4 光切片示意图[5]在生物研究中,大多数实际样品并不是只有稀疏的信号,样品中不同深度的信号经常对其他层的成像造成干扰,较强的自发荧光也会影响成像。光学切片是适当设计的显微镜可以在厚样品深处产生清晰焦平面图像的过程,光学科学家们设计了几种显微镜技术来提高光学切片的质量。这在一定程度减少了使用切片机等仪器进行薄切片的需要,从而使较厚样品的活细胞成像和获得更加完整的生物结构成为了现实。图5 不同光切片技术的实现方式对比在传统的宽场荧光显微镜成像过程中,光切片的效果主要受物镜的景深(焦深)和信号的密集程度影响。物镜景深由最近的聚焦物体平面到同时聚焦的最远平面的距离决定,也可以理解为物镜的z轴分辨率,由物镜的数值孔径决定。高数值孔径物镜比低数值孔径物镜具有更小的景深,即光切片层更薄。但是数值孔径大的物镜一般工作距离较小,即同类物镜的数值孔径越大,可观察样品厚度越薄但z轴分辨率越高(信号亮度也更亮)。另外,对于信号较密集厚样品而言,由于不同层信号的相互干扰,实际的可检测深度和层切效果会比理论值差一些。总之,宽场显微镜的层切厚度较厚,且容易受其他位置或层面的信号干扰。共聚焦显微镜通过用点光源和针孔的配合,将在物镜焦平面上方和下方的点处发生的与针孔不共焦的大量发射荧光挡掉,从而形成层切效果,再通过不断移动Z轴实现对样品的三维层切并通过三维重构获得样品精确的三维信息。共聚焦一般只能配置常规的物镜,无法使用数值孔径和工作距离俱佳的特殊长工作距离物镜,成像深度和灵敏度无法兼顾。另外,共聚焦在折射率相对均一的样品中层切效果较好,在不均一样品中,针孔有时会去掉一些错误信息,从而使层切效果变差。双光子显微镜在光束最聚焦的地方,光子密度才足够高,从而可以使得荧光分子同时吸收2个光子,发射出一个较短波长的荧光。由于信号在在光密度不够高的地方不会被激发,所以双光子显微镜不需要针孔就可以实现层切效果。而这种层切效果受样品折射率影响相对共聚焦要小很多,适配样品更多。另外,大多数双光子的配置比较灵活,支持更好效果的长工作距离物镜,也更有利于这类成像的实现。如果不考虑扫描速度,双光子显微镜的成像深度、检测灵敏度和分辨率之间的平衡是最佳的。图6 共聚焦和双光子显微镜在三维成像中的对比[6]光片显微镜的特别之处在于它的激发光照射方式,与传统显微镜不同,它的照明光是与检测光路垂直的片层光,只有焦平面被照亮,样品其他部分不受影响。光片显微镜的设计较为自由,支持成像效果好的长工作距离物镜和快速拍照的相机,可以进行非常理想的厚样品成像。但是目前光片显微镜的配套机械化部件还在起步阶段,无法很好的提供活细胞培养的条件和稳定的位置重现,大多数也不支持高通量、多条件的筛药培养容器。另外,每种光片适合的样品大小和分辨率范围都是相对固定的,没有通用型仪器,很有必要针对实际需求去做仪器选择。表3 常见光学显微镜的成像深度、速度和灵敏性对比总结和讨论其实,厚样品的概念是相对的。对于研究者而言,所有在所需分辨率的成像模式下(深度)看不到信号的样品都是厚样品。除了上述对绝对意义上的较大成像的方法之外,我们在实际研究中还有一些其他策略。比如,选择工作距离足够但分辨率和信号亮度略缺的传统长工作距离物镜进行荧光显微镜或者共聚焦成像,然后进行反卷积或者一定程度的图像深度学习处理,可以得到相对较为清晰的图像;而选择结构光照明或其他超高分辨率手段也是提高低数值孔径(通常具有更长工作距离)成像分辨率和层切效果的一种重要方式,在大样品成像中广泛应用(比如fMOST、Aptome等)。一旦可以检测到较深信号,研究者们通常希望可以在较短时间内实现大样品的三维结构成像。鉴于拍照速度,快速成像往往使用面检测器,而适合的面成像检测器往往需要灵敏的检测效率和快速的快门时间,因此大多数此类研究选择的是背照式、高灵敏度的sCMOS。而使用的仪器也以匹配sCMOS的转盘共聚焦和光片显微镜为主。另外,当相机快门速度足够的时候,用户也必须考虑样品的移动速度,在Z轴方向上选择压电陶瓷驱动是有必要的。而对于需要拼图的样品,机械控制的精确度和稳定性也及其重要。当然机械和环境控制的稳定性和拍照速度在大样品活细胞成像中也非常重要,目前很多应用还在摸索中。除了上述硬件选择之外,样品制备和数据处理也经常是大样品成像中的重要组成部分,大家可以参考光片显微镜专家的文字部分。参考文献:1. https://www.microscopyu.com/microscopy-basics/image-brightness2. https://www.olympus-lifescience.com/zh/laser-scanning/fv3000/high-sensitivity-spectral-detector/3. Schweikhard V, Alvarez L A J, Steinmetz I, et al. The Power HyD family of detectors for confocal microscopy[J]. NATURE METHODS, 2020.4. http://www.photomet.com.cn/Prime_95B.html5. Jia Qian, Ming Lei*, Dan Dan, Baoli Yao, Xing Zhou, Yanlong Yang, Shaohui Yan, Junwei Min, Xianghua Yu, “Full-color structured illumination optical sectioning microscopy”, Scientific Reports, Vol. 5, pp. 14513-1-10, 2015.6. Dekkers J F, Alieva M, Wellens L M, et al. High-resolution 3D imaging of fixed and cleared organoids[J]. Nature protocols, 2019, 14(6): 1756-1771.关于上海科技大学生命学院分子影像平台上海科技大学生命学院分子影像平台于2016年建立,旨在建成国内设备先进、仪器使用率高和产出效率高的公共实验室。目前主要为上海科技大学及辐射范围内其他研究单位或高科技产业的科研技术工作者提供高效率、高质量的光学显微镜技术支撑服务,为广大用户提供生物成像相关的技术和软件培训等服务。平台已配备多台高级成像设备,主要包括Leica STED受激辐射超高分辨率显微镜、Zeiss LSM 980 Airyscan2超高分辨率显微镜、Zeiss Lattice SIM晶格结构光照明超高分辨率显微镜、Nikon CSU W1 SoRa转盘共聚焦显微镜、Zeiss Lightsheet光片显微镜、Olympus VS120快速切片扫描仪、Zeiss GeminiSEM460扫描电镜、连续超薄切片机等。本成像平台目前可提供多种成像技术,具体如下:(1)固定标本或活体的高分辨率光学成像或超高分辨率光学成像。(2)光切片成像、三维重建和拼图。(3)长时间活细胞、厚样品序列成像。(4)FRET、FRAP、FLIM、光激活和细胞内重要离子浓度检测等。(5)细胞团、单细胞及活细胞等微小样本的切割和捕获。(6)整张Slide彩色或荧光成像,并进行自动无缝式拼图。(7)配备ET-SE、ESB、aBSD和aSTEM检测器的发射扫描电镜成像。(8)图像处理和分析:反卷积、共定位分析、颗粒追踪和计数等。先进的平台需要先进的技术服务人员,分子影像平台的人员配置如下:李晓明博士,高级工程师,2013年毕业于中科院上海应用物理研究所,自研究生以来便专注于光学成像在生物中的应用。2016年加入上海科技大学,并负责分子影像平台的组建工作,主要擅长超高分辨率显微镜、活细胞成像技术、高级图像分析等。杨紫薇博士,高级工程师,2017年毕业于华南农业大学,熟练使用各种超高分辨率显微镜、全内反射显微镜、激光片层显微镜等高端成像设备。范承玉,工程师,2015年在北京林业大学取得硕士学位,她熟练进行活细胞和大样品成像,擅长生物制图,为学院的论文配图提供了培训和支持。王瑞,工程师,2020年在上海科技大学取得硕士学位,她熟练使用平台大多数仪器,在类器官成像领域经验丰富,也负责平台的电镜工作。图像处理软件培训照片点击进入话题 看更多技术分享
  • KOSTER全新设计的生物正置荧光显微镜UMC 800TFL
    全新设计的生物正置荧光显微镜KOSTER UMC 800TFLKOSTER UMC 800TFL正置荧光显微镜专门设计用于科研领域荧光显微成像和透射明视场观察的显微系统.此系统采用无限远光路设计,高效荧光激发光路,大数值孔径平场消色差荧光物镜和大视野目镜,确保光学系统成像清晰、明亮,视野广阔。符合人机工程学要求的机体设计,使您在操作过程中更加舒适与轻松。是生物学、病理学、细胞学、肿瘤学、遗传学、免疫学等研究工作的理想仪器,适合科研、高校、医疗和防疫等部门使用。 产品特点:全新设计的荧光装置, 独家长寿命金属氯化物高效荧光光源,直接连接,无需校准,荧光灯泡寿命1500小时以上,使用寿命是传统高压汞灯荧光光源的7倍以上,使用更方便;宽光谱输出范围达到300nm-800nm,更加适合各种常规荧光染料激发。2. 六位物镜转盘,五位荧光滤片转盘设计,扩展功能强大;各种荧光滤色镜波长范围可选,完美匹配荧光染料DAPI,BFP,eGFP,CY3,TexasRed,FITC等,获得最佳荧光效果。3. 全套高性能荧光物镜荧光物镜采用低短波吸收率光学材料的特殊设计,大大提高了各种激发光(包括UV)的透过率,结合全新的荧光装置,提供了高亮度、高清晰度及高对比度的荧光显微图像。放大倍数数值孔径工作距离焦距分辨率焦深物方视场像方视场4X0.1317.15452.5843.746.252510X0.307.68181.127.822.52520X0.501.9690.672.531.252540X0.850.424.50.450.970.62525100X1.300.151.80.260.270.2522.54. 科研级荧光检测数码摄像头KMC140FL & KMC500FL 通过140万像素的CCD、2/3英寸大面积、24位彩色数码性能的KMC140FL数码成像系统,可以在显微镜明视场、荧光、暗视场、相衬、偏光等条件下,获取超高分辨率、高深度的显微彩色图像。在低光线(照度)的情况下,KMC140FL(科研级)可提供长时间曝光下的超高质量的图像。KMC140FL数码成像系统含用于Windows系统的全新成像控制及KOSTER Image Suite 1.0应用软件。 通过500万像素的CCD、2/3英寸大面积、24位彩色数码性能的KMC500FL数码成像系统,可以在显微镜明视场、荧光、暗视场、相衬、偏光等条件下,获取超高分辨率、高深度的显微彩色图像。在低光线(照度)的情况下,KMC500FL(科研级)可提供长时间曝光下的超高质量的图像。KMC500FL(科研级)数码成像系统含用于Windows系统的全新成像控制及KOSTER Image Suite 1.0应用软件。KOSTER Image Suite 1.0应用软件是匹配KOSTER系列显微镜及摄像头的显微图像软件,采用模块化设计,包括图像预览、采集、分析、处理、共享,多重图像叠加等功能,带给用户最新的图像处理体验。图像软件功能包括:图像采集、图像处理、定时拍摄、形态学参数测量、数据导出等,同时支持TIFF,JPG,BMP等多种图像输出格式,兼容Image J, FIJI等第三方图像处理软件,方便图像数据编辑整理。系统配置表 技术规格目镜大视野 WF10X(视场数Φ22mm) 无限远平场半复消色差荧光物镜 PL FL4X/0.13 工作距离:17.15 mmPL FL10X/0.3 工作距离:7.68 mmPL FL20X/0.5 工作距离:1.96 mmPL FL40X/0.85(弹簧)工作距离:0.42 mm PL 100X/1.3(弹簧,油)工作距离:0.15mm目镜筒三目镜, 30?倾斜,100%/0;0/100%两档分光模式落射荧光照明系统 电源箱 110V/230V可选择长寿命金属氯化物灯75W/DC (1500小时)转盘式荧光落射照明器(包括紫外、紫、蓝、绿光激发滤色片组)紫外(UV)激发波长:320-380nm,发射波长:435nm紫(V)激发波长:380-415nm,发射波长:475nm蓝(B)激发波长:450-490,发射波长:515nm绿(G)激发波长:495-555,发射波长:595nm调焦机构粗微动同轴调焦, 微动格值:2μm,带锁紧和限位装置转换器六孔(内向式滚珠内定位)载物台双层机械移动式(尺寸:210mmX140mm,移动范围:75mmX50mm)透射照明系统 阿贝聚光镜 NA.1.25 可上下升降蓝滤色片和磨砂玻璃 集光器,卤素灯照明适用(内置视场光栏)6V 30W 卤素灯,亮度可调;LED光源可选选配件 目镜分划目镜10X(Φ22mm),WF15X(视场数Φ17mm),WF20X(视场数Φ13mm)高分辨率荧光物镜PLAN FLUOR 10X/0.42 (弹簧)工作距离:2.1 mmPLAN FLUOR 20X/0.75 (弹簧)工作距离:1.8 mmPLAN FLUOR 40X/0.95 (弹簧)工作距离:0.31 mmPLAN FLUOR 100X/1.45 (弹簧)工作距离:0.15 mmCCD接头0.5X、1X、0.5X带分划尺摄像头USB3.0输出:140/500万像素,单色/彩色,2/3英寸科研级摄像头,数码相机接头 CANON(EF) NIKON( F)接口系统示意图摄像头尺寸及光谱示意图_______________________________________________________________________________ 版权所有 翻印必究 设计更改: 因为技术进步, 生产商有权在设计上作出革新, 不再另行通知。
  • 观察者---显微镜下的空间与时间
    从古至今,人类一直在追寻更高更远的真相,从远洋航行到太空探索,人们不断征服一个个宏伟的目标,但是人们肉眼所见的宏观世界不是世界的全部,还有人眼无法看清的微观世界,它同样也吸引着无数人去探索和追寻。无论宏观还是微观事物,我们的观测都是基于三维空间的属性,即XYZ三维,而对事物形态变化的观察则需要再引入一个衡量因素--时间T,因此对事物观察的最完备方式一定是XYZT的同时记录,即形态+时间的长时间摄影,这也是显微镜的终极功能。经过三百多年的发展,现代显微镜提出分辨率、景深、视野等概念,并不断提出解决方案,显微镜已经初步满足我们对微观世界观察的需求,帮助我们记录下微观世界的空间和时间。微观世界观察最重要的是细节的分辨,分辨率的概念便由此诞生,分辨率是指人眼可以区分的两个点之间的最小距离,只在XY维度有效,根据瑞利判据,Rayleigh Criterion,正常人能分辨的极限是明视距离25cm处0.2mm的两个点,当我们使用显微镜后,我们可以看清更小距离的两个点,这便提升了我们观察的分辨率。随着现代研究的不断深入,人们对分辨率的要求也在不断提高,而科学家们也在不断的提升显微镜的分辨率,如电子显微镜将分辨率提升至纳米级别,实现了对病毒的观察,超高显微成像技术,将显微镜的分辨率从200纳米提升到几十纳米,实现了对活细胞细胞器的观察。分辨率的提升也带来了新的问题,即视野和景深的减小,当用普通中央照明法(使光线均匀地透过标本的明视照明法)时,显微镜的分辨距离为d=0.61λ/NA,可见光波长范围为400—700nm,取其平均波长550nm,波长是固定常量,因此,增大NA数值,即可得到更小的D值,也就是可以分辨的两点之间的距离更小,可以让人眼看清楚更小的物体。NA值即数值孔径,描述了透镜收光锥角的大小,NA = n * sinα,即透镜与被检物体之间介质的折射率(n)和孔径角(2α)半数的正弦之乘积。n为物镜与样本之间介质的光折射率,当显微镜物方介质为空气时,折射率n = 1 , 采用折射率高于空气的介质,可以显著提高NA值,水浸介质是蒸馏水,折射率为1.33;油浸物镜介质是香柏油或其它透明油,其折射率一般在1.52左右,接近透镜和载玻片的折射率,因此,油镜的NA值高于空气镜。孔径角又称“镜口角”,是透镜光轴上的物体点与物镜前透镜的有效直径所形成的角度,增大镜口角,可以提高正弦值,其实际上限约为72度(正弦值为0.95),乘以香柏油折射率1.52,可以得出最大NA值为1.45左右,代入分辨率计算公式,可以得出常规显微镜极限XY平面分辨率为0.2um左右。NA值还会直接影响显微镜的视野亮度(B)。由公式B∝N.A.2/ M2 我们可以推出,亮度随数值孔径(N.A.)的增大或者物镜倍率(M)的降低而增加。从理论上来说,我们应该追求尽可能高的NA值,以获得更好的XY平面分辨率和视野亮度。然而凡事都有两面性,XY平面分辨率的提升,会带来Z轴景深和观察视野的减小。显微镜一般都是垂直向下取景的,通过视场直径内观察到的物体表面凸起的位置与凹下的位置都能够看的很清楚时,那么凸点与凹点之间的高度差就是景深了,对于显微镜来说景深越大越好,景深越大在观察高低不平整的物体表面时,能够得到更好更立体的清晰度画面,大景深有助于我们对微观世界进行垂直方向形态的观察,也就是XYZ三维形态中的Z轴信息。景深就是象平面上清晰的象所对应物平面的前后空间的深度:dtot=(λ*n)/NA + n/(M∗NA) * e,dtot:景深,NA :数值孔径,M :总放大率,λ:光波波长, (通常λ=0.55um),n: 试样与物镜之间介质的折射率(空气: n=1、油: n=1.52)根据这个公式,我们可以知道,Z轴景深与XY平面NA值成反比。除了景深外,视野也受到NA值的影响,通过仪器固定注视一点时所能看见的空间范围即视野,它的计算与物镜的放大倍数直接相关,观察所看到的实际视野直径等于视场直径除以物镜的放大倍数,目镜会表明对应视场数,如10/18,即放大倍数10倍,视场直径18mm,因此当目镜确定后,放大倍数越大则观察的视野越小。XY平面分辨率是对局部细节的解析,而视野则决定了我们对样本的观察范围,视野必然是越大越好,但受限于当前的技术,我们必须采用高倍物镜,才可以得到良好的NA值,因此,视野和NA值有间接的负相关系。当我们需要观察的样本大于我们的视野时,每次观察只能看到一个局部,为了解决这个问题,拼图技术便应运而生。通过在XY方向移动样本,连续拍下不同位置的图像,最后拼接在一起,就可以得到一张全视野的图像。▲镜下局部视野▲拼接后全视野▲手动拼接▲自动拼接(图源:Echo显微镜)拼接分为手动和自动两种,手动拼图成本低廉,但是对人员的操作水平,经验要求很高,如上图,操作人员稍有不慎,就会出现图片接缝问题,同时手动拼图速度慢,不适合大批量,高通量样本处理,比如医院病理科日均上百病理切片观察,手动拼图方式无法满足要求。自动拼图的核心部件是全自动载物台,结合软件,可自动实现全自动,大范围全视野拍摄,结合自动Z轴对焦补偿,即可得到全视野的清晰图像。Echo Revolution 全自动荧光显微镜Echo Revolution全自动荧光显微镜,将XYZ三轴全部实现电动化,从而实现自动完成多图拼接的大视野高分辨率成像,而电动化的Z轴可以帮助用户实现自动聚焦、自动定焦和Z-Stacking 多层扫描大景深成像。Echo Revolution全自动荧光显微镜还添加了延时摄影功能,可以帮助用户实现长时间观察和时间回溯,使用户可以进行更全面的观察实验。
  • 奥林巴斯发布DSX1000新品
    您只需要一台 DSX1000 显微镜就可满足各种观察和分析需要,改善检验的工作流程。镜头数量增加至 15 个,涵盖20-7,000X的放大倍率。用户还可以利用该显微镜的六种观察方法,对各种样品进行观察与测量。比如突出显示样品表面的不规则和轮廓形貌。显微镜头部和载物台可以分别进行± 90°的自由角度调节,从而满足对各种复杂外形样品的任意角度观察。另外,新开发的算法可以实现更快的 3D 图像采集,与奥林巴斯传统数码显微镜相比,速度快了近十倍。最后,我们将根据每位用户的工作环境校准显微镜,以帮助用户实现精确、高效的观察和测量。新 品 首 发NEW ARRIVAL主要特点放大倍率范围 20–7,000X,可旋转式载物台。可迅速切换物镜和六种观察方式。远心光学系统保证了在整个放大范围内的测量准确度。 放大倍率范围 20–7,000X,可旋转式载物台DSX1000 数码显微镜新增了 5 个物镜,物镜总数达到 15 个。20-7,000X 的放大倍率范围实现了精确观察,而长工作距离物镜则实现了对不规则样品的观察,例如电路板和机加工零件。显微镜头部和载物台都可以旋转± 90°,更易于观察和分析薄样品,如晶圆,或大型样品,如汽车部件。 可调节的头部和载物台显微镜头部和载物台可以分别旋转± 90°使用高分辨率长工作距离的物镜长工作距离使用户能够观察不规则形状的电子基板。 20–7,000X 放大倍率下的晶圆图像对比 可迅速切换物镜和六种观察方式显微镜的电动变焦光路结合了先进的观察功能,可实现六种观察方法和对比度增强功能:明场、暗场、MIX、偏光、简易偏振和微分干涉。偏光观察和对比度增强功能可以突出样品表面的不规则和轮廓形貌。例如,此功能可用于在观察晶圆表面较大的不规则形状与细微破损和划痕之间快速切换。从而用户可以观察到使用其他方法难以检测到的对象。太阳能电池图像对比(左图:明场观察,右图:偏光观察)单侧光线照射突出了表面的不规则形状。该项技术适用于观察不规则形状、扭曲的样品和槽口。集成电路 (IC) 芯片图像对比(左图:常规;右图:带对比度增强功能)色彩清晰明亮的图像替代了明暗图像。 远心光学系统保证了在整个放大范围内的测量精确性。*汽车制造商、精密设备和其他产品制造商必须精确测量和分析产品的规格,以证明产品的安全性。DSX1000 数码显微镜使用远心光学系统,在整个放大范围内图像失真极低,实现了有保证的准确度和重复性的高精度测量。为了确保准确度,在完成 DSX1000 显微镜的安装后,奥林巴斯的技术人员将根据客户使用环境对每台显微镜进行校准。 远心光学系统和非远心光学系统的图像采集对比图改变聚焦位置不会改变图像大小。 创新点:您只需要一台 DSX1000 显微镜就可满足各种观察和分析需要,改善检验的工作流程。镜头数量增加至 15 个,涵盖20-7,000X的放大倍率。用户还可以利用该显微镜的六种观察方法,对各种样品进行观察与测量。比如突出显示样品表面的不规则和轮廓形貌。显微镜头部和载物台可以分别进行± 90° 的自由角度调节,从而满足对各种复杂外形样品的任意角度观察。另外,新开发的算法可以实现更快的 3D 图像采集,与奥林巴斯传统数码显微镜相比,速度快了近十倍。最后,我们将根据每位用户的工作环境校准显微镜,以帮助用户实现精确、高效的观察和测量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制