当前位置: 仪器信息网 > 行业主题 > >

照明正置分析显微镜

仪器信息网照明正置分析显微镜专题为您提供2024年最新照明正置分析显微镜价格报价、厂家品牌的相关信息, 包括照明正置分析显微镜参数、型号等,不管是国产,还是进口品牌的照明正置分析显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合照明正置分析显微镜相关的耗材配件、试剂标物,还有照明正置分析显微镜相关的最新资讯、资料,以及照明正置分析显微镜相关的解决方案。

照明正置分析显微镜相关的资讯

  • KOSTER全新设计的生物正置荧光显微镜UMC 800TFL
    全新设计的生物正置荧光显微镜KOSTER UMC 800TFLKOSTER UMC 800TFL正置荧光显微镜专门设计用于科研领域荧光显微成像和透射明视场观察的显微系统.此系统采用无限远光路设计,高效荧光激发光路,大数值孔径平场消色差荧光物镜和大视野目镜,确保光学系统成像清晰、明亮,视野广阔。符合人机工程学要求的机体设计,使您在操作过程中更加舒适与轻松。是生物学、病理学、细胞学、肿瘤学、遗传学、免疫学等研究工作的理想仪器,适合科研、高校、医疗和防疫等部门使用。 产品特点:全新设计的荧光装置, 独家长寿命金属氯化物高效荧光光源,直接连接,无需校准,荧光灯泡寿命1500小时以上,使用寿命是传统高压汞灯荧光光源的7倍以上,使用更方便;宽光谱输出范围达到300nm-800nm,更加适合各种常规荧光染料激发。2. 六位物镜转盘,五位荧光滤片转盘设计,扩展功能强大;各种荧光滤色镜波长范围可选,完美匹配荧光染料DAPI,BFP,eGFP,CY3,TexasRed,FITC等,获得最佳荧光效果。3. 全套高性能荧光物镜荧光物镜采用低短波吸收率光学材料的特殊设计,大大提高了各种激发光(包括UV)的透过率,结合全新的荧光装置,提供了高亮度、高清晰度及高对比度的荧光显微图像。放大倍数数值孔径工作距离焦距分辨率焦深物方视场像方视场4X0.1317.15452.5843.746.252510X0.307.68181.127.822.52520X0.501.9690.672.531.252540X0.850.424.50.450.970.62525100X1.300.151.80.260.270.2522.54. 科研级荧光检测数码摄像头KMC140FL & KMC500FL 通过140万像素的CCD、2/3英寸大面积、24位彩色数码性能的KMC140FL数码成像系统,可以在显微镜明视场、荧光、暗视场、相衬、偏光等条件下,获取超高分辨率、高深度的显微彩色图像。在低光线(照度)的情况下,KMC140FL(科研级)可提供长时间曝光下的超高质量的图像。KMC140FL数码成像系统含用于Windows系统的全新成像控制及KOSTER Image Suite 1.0应用软件。 通过500万像素的CCD、2/3英寸大面积、24位彩色数码性能的KMC500FL数码成像系统,可以在显微镜明视场、荧光、暗视场、相衬、偏光等条件下,获取超高分辨率、高深度的显微彩色图像。在低光线(照度)的情况下,KMC500FL(科研级)可提供长时间曝光下的超高质量的图像。KMC500FL(科研级)数码成像系统含用于Windows系统的全新成像控制及KOSTER Image Suite 1.0应用软件。KOSTER Image Suite 1.0应用软件是匹配KOSTER系列显微镜及摄像头的显微图像软件,采用模块化设计,包括图像预览、采集、分析、处理、共享,多重图像叠加等功能,带给用户最新的图像处理体验。图像软件功能包括:图像采集、图像处理、定时拍摄、形态学参数测量、数据导出等,同时支持TIFF,JPG,BMP等多种图像输出格式,兼容Image J, FIJI等第三方图像处理软件,方便图像数据编辑整理。系统配置表 技术规格目镜大视野 WF10X(视场数Φ22mm) 无限远平场半复消色差荧光物镜 PL FL4X/0.13 工作距离:17.15 mmPL FL10X/0.3 工作距离:7.68 mmPL FL20X/0.5 工作距离:1.96 mmPL FL40X/0.85(弹簧)工作距离:0.42 mm PL 100X/1.3(弹簧,油)工作距离:0.15mm目镜筒三目镜, 30?倾斜,100%/0;0/100%两档分光模式落射荧光照明系统 电源箱 110V/230V可选择长寿命金属氯化物灯75W/DC (1500小时)转盘式荧光落射照明器(包括紫外、紫、蓝、绿光激发滤色片组)紫外(UV)激发波长:320-380nm,发射波长:435nm紫(V)激发波长:380-415nm,发射波长:475nm蓝(B)激发波长:450-490,发射波长:515nm绿(G)激发波长:495-555,发射波长:595nm调焦机构粗微动同轴调焦, 微动格值:2μm,带锁紧和限位装置转换器六孔(内向式滚珠内定位)载物台双层机械移动式(尺寸:210mmX140mm,移动范围:75mmX50mm)透射照明系统 阿贝聚光镜 NA.1.25 可上下升降蓝滤色片和磨砂玻璃 集光器,卤素灯照明适用(内置视场光栏)6V 30W 卤素灯,亮度可调;LED光源可选选配件 目镜分划目镜10X(Φ22mm),WF15X(视场数Φ17mm),WF20X(视场数Φ13mm)高分辨率荧光物镜PLAN FLUOR 10X/0.42 (弹簧)工作距离:2.1 mmPLAN FLUOR 20X/0.75 (弹簧)工作距离:1.8 mmPLAN FLUOR 40X/0.95 (弹簧)工作距离:0.31 mmPLAN FLUOR 100X/1.45 (弹簧)工作距离:0.15 mmCCD接头0.5X、1X、0.5X带分划尺摄像头USB3.0输出:140/500万像素,单色/彩色,2/3英寸科研级摄像头,数码相机接头 CANON(EF) NIKON( F)接口系统示意图摄像头尺寸及光谱示意图_______________________________________________________________________________ 版权所有 翻印必究 设计更改: 因为技术进步, 生产商有权在设计上作出革新, 不再另行通知。
  • 汕头大学医学院预算165万元购买正置荧光显微镜及分析系统
    4月30日,汕头大学医学院附属肿瘤医院公开招标购买1套正置荧光显微镜及分析系统,预算165万元。  项目编号:440001-2021-14983  项目名称:正置荧光显微镜及分析系统  采购方式:公开招标  预算金额:1,650,000.00元  采购需求:  合同包1(正置荧光显微镜及分析系统):  合同包预算金额:1,650,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1医用光学仪器正置荧光显微镜及分析系统1(套)详见采购文件1,650,000.001,650,000.00  本合同包不接受联合体投标  合同履行期限:合同签订后30天内完成交货和安装调试并交付使用。  开标时间:2021年05月21日 09时30分00秒(北京时间)全自动正置荧光显微镜及识别分析系统参数.docx正置荧光显微镜及分析系统招标文件(2021043002).pdf委托代理合同.pdf
  • 见所未见 得见未来 | 光学显微镜在细胞分析中的应用——力显智能新品发布会成功举办
    新元肇始,辞旧迎新,伴随着新年的钟声敲响,宁波力显智能科技有限公司于2022年1月8日成功举办光学显微镜在细胞分析中的应用——力显智能新品发布会,此次会议邀请复旦大学药学院青年研究员王璐老师、中国科学院上海光学精密机械研究所副研究员付国老师以及宁波力显智能科技有限公司张猛博士共同出席,发布会内容包括精彩报告、产品演示等,为各位听者带来了一场学术视听盛宴。在线听众积极互动SESSION1:活细胞生物成像荧光探针首先,王璐老师作了题为“活细胞生物成像荧光探针”的报告,王璐老师表示传统的显微镜很难能对细胞的精细结构进行分辨研究,通过使用荧光探针对想要标记的蛋白进行特异性的标记,即可实现多色、高信噪比、实时、动态的追踪研究。王璐老师根据多年活细胞蛋白免洗标记、超高时空分辨率荧光成像、疾病相关重要代谢分子实时检测等领域研究经验,为我们详细讲述了根据不同的生物分子活性及性质对不同探针的设计策略。SESSION2:PALM/STORM超分辨显微术及生物应用付国老师就“PALM/STORM超分辨显微术及生物应用”展开详细阐述,以PALM/STORM超分辨显微术生物应用为基础进行技术展望,宁波力显iSTORM 3CM已通过软件实现了实时重构,也可以实现纳米级矫正精度,未来智能化、自动化的超分辨成像采集及图像处理软件势必会受到广大科研专家的喜爱。SESSION3:超高分辨显微镜- iSTORM产品介绍张猛博士的精彩演讲,不仅向各位听众展示了宁波力显智能科技有限公司强大的研发实力,同时也介绍了超高分辨率显微成像产品INVIEW iSTORM,作为一款自主知识产权的超高分辨率显微系统,该产品基于2014年诺贝尔化学奖得奖技术,通过应用一系列物理原理、化学机制和算法“突破”了光学衍射极限,把光学显微镜的分辨率提高了十倍,使得人类能在200nm以下以前所未有的视角观察生物微观世界。技术先进,20nm超高分辨率,3D成像采用STORM随机光学重构技术,加入柱面镜设计,在XY轴分辨率达20nm、Z轴分辨率达50nm,具备3D成像功能。多通道同时成像光路设计,稳定性高采用专有的多通道同时成像的光路设计,提供稳定的光路。自主开发的成像分光光路,可保证通道间的光学路径相对独立,使得样品发出的荧光最大效率地被探测器接收,最大限度降低通道间的串扰。并配合以最佳染料方案和最佳成像缓冲液配方,以多通道同时成像的方式,在几分钟到十几分钟的时间范围内实现20nm的超高分辨率成像。物理样品锁定设计,锁定精度1nm采用纳米级实时动态锁定技术,以实时物理补偿方式纠正样品漂移,无需预热,即开即用,操作简便,免受如气流、温度变化、噪音、机械振动等的环境对样品位置的影响,在高楼层、嘈杂、震动、常温常态的环境下也能稳定成像,因而具有高效、简便、对环境适应性好的特性,友好易用。“傻瓜式”操作,易学易用软件集成了多种成像算法,并在采集数据时实时呈现超高分辨图像重构结果和详细参数,“所见即所需”,操作流程化,简单易用。具有拍摄过程简单易用、参数优化实时透明、超分辨图像实时重构、自动化用户数据管理、图像数据后分析功能等五大特点。此外,经过优化的样本制备方案更易于实验人员的掌握和实际操作。即便是技术新手,经过简单的技术讲解,2个小时以内就可操控系统并获得理想的超分辨率成像结果。值得一提的是,INVIEW iSTORM产品还以优异的光路、较低强度的照明、多通道同时成像所支持的较短成像时间等的综合性能,结合合适的荧光探针及根据探针特性调整的探测器拍照频率等,实现活细胞的超高分辨率成像,使得它能够帮助到科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究之外,还能更大程度上帮助到科学家在生物学基本问题与机制上的科学研究。SESSION4:miniview产品重磅发布SESSION5:培养箱中的智能监控助手—miniview产品介绍会议最后,张猛博士代表宁波力显智能科技有限公司,为我们带来了力显智能最新研发的产品——miniview“培养箱中的细胞智能监控助手”这一迷你型显微镜,miniview MN-100是一款用于实时监测细胞生长状态的迷你型科研仪器,可多个放置在培养箱中,以PC端直观、实时方式观测细胞生长状态,提供视频回溯、汇合度分析、生长曲线等分析功能,完美适用于大多数细胞生长研究,为细胞质量控制、监控提供一站式解决方案,无缝衔接后续实验流程。无间断监控,不错过细胞培养的每时每刻24/7无间断定量显示细胞培养状态,实时拟合细胞生长曲线,提供视频回溯功能,并有效避免传统法所造成的污染,降低实验失败风险。智能分析、触线提醒,实验进入“懒人”时代图像分析功能提供汇合度精确定量数据,为实验结果提供可靠支持,并可根据实验需求自定义细胞生长汇合度警戒线,触线邮件提醒功能让实验安排更准确。兼容性高、经济性好,无隐形耗材消费 采用随动定焦技术使得z轴可进行自由对焦,兼容市面上绝大多数常规培养器皿,无专用耗材需求。一机多能、多场景适用,实验“小”帮手支持包括肿瘤细胞功能学监测、细胞体外药物功能学筛查、药代动力学、靶向药物筛选等多实验场景的应用。随着人类对自然的认识向更加微观的时空尺度,传统的显微手段已经不能完全胜任,没有技术先进的仪器,要想做出重大原始创新科研成果困难重重。力显智能科技将乘科研仪器国产化政策的东风,立足具有国际领先性的超高分辨率技术,持续进行超高分辨率显微镜技术研究及相关产品开发,将不断推出新技术、新品,推动高端显微技术在生命科学、医学、药学等领域的产业化和应用,让人类有更全面、更精细的视角来理解生命的基本分子组织及其运行的基本机制,努力为我国的科学研究提供强大助力。
  • 全新奥林巴斯GX53倒置金相显微镜闪亮登场
    更快速进行金属部件质量检测的全新奥林巴斯GX53倒置金相显微镜升级版奥林巴斯Stream图像分析软件 专为观察和检测金属部件而设计的新型奥林巴斯GX53倒置金相显微镜采用具有超长使用寿命和低功耗的LED光源。为了提升观察和报告功能,GX53显微镜还配有最新版本的奥林巴斯Stream图像分析软件(v.2.3)。 倒置金相显微镜能够从下方观察样品,可让用户不必调整样品表面朝向即可检测较厚或较重的样品。该功能让GX53显微镜成为观察汽车及其他金属部件微观结构的实用工具。 GX53具有帮助检测人员更快完成任务的先进功能: 观察细致入微:MIX观察可实现微观结构及其他表面特征的清晰成像编码硬件:保存观察设置,实现更快的检测和更高的生产率。逼真图像:采用具有均一色温的LED照明方式 MIX观察:让难以观察的部位无可遁形作为首个采用MIX观察技术的GX系列产品,GX53显微镜能够获得非常清晰的表面结构图像。MIX技术将暗场与其他观察方法(如明场、荧光或偏光)结合使用,可获得独有的观察图像。MIX观察能够让用户观察使用传统显微镜难以观察的样品。暗场观察所用的环形LED照明设备的定向暗场功能可在特定时间内照明一个或多个象限。这样可以减少样品光晕,对于显示表面纹理非常有用。同时,奥林巴斯Stream图像分析软件的升级版本利用图像合成功能提供具有最低限度光晕的清晰图像,即使观察高反射样品也没有问题。 编码硬件:更快的检测以及更高的生产力配合奥林巴斯Stream软件使用时,GX53倒置金相显微镜可保存观察设置以便后续调用。通过复制常用的观察设置或其他用户设置可提高用户的工作效率,且方便进行检测。 奥林巴斯Stream图像分析软件:更睿智,更灵活奥林巴斯Stream图像分析软件2.3版本为从准备显微镜到观察、分析和报告的每个检测步骤提供支持。最新版本包含可将聚焦整个视场的即时扩展聚焦成像(EFI)功能。软件还增加了对系统电子表格报告功能的改进。
  • 高端显微镜又添新玩家!熵智科技发布超分辨及共聚焦显微镜新品
    生命科学是从微观层面观察和研究生命过程,从而揭示生命的物质基础和基本现象。显微成像是观察微小物体的重要手段,但其分辨能力受光学成像系统的限制(即衍射极限),无法满足现代生命科学研究要求的更高解析度、更准确的成像需求。熵智科技作为中国原创3D视觉创业公司第一梯队,横跨机器视觉与微纳光学两大领域,深刻认识到微纳光学在生命科学研究领域中的巨大价值。9月23日,熵智科技在西安发布自研的超分辨及共聚焦显微成像分析系统。该系统易用、性价比高,相较于国内外显微成像产品,不仅突破了光学成像系统的限制,轻松实现纳米尺度的2D/3D动态图像解析能力,还将共聚焦+超分辨+后处理分析完美融合,软件结合场景模块化。无论新手用户还是专家用户,只需通过一套界面即可获取一流的超高分辨率图像及分析结果。熵智科技超分辨及共聚焦显微成像分析系统工作原理超分辨显微成像分析系统采用结构光照明显微成像术(英文Structured Illumination Microscopy, 简称SIM),突破传统显微镜的阿贝衍射极限,实现生物组织、细胞、神经元等活动样本的快速超分辨率成像,为生命科学、生物工程等领域提供创新的超分辨率成像技术产品,几乎可集成于任何荧光显微镜。共聚焦显微成像分析系统的软硬件均采用模块化设计,硬件集成SIM超分辨模块、软件支持多种后处理功能,从而提供精确的2D/3D成像,以及动态过程的成像。目前,共聚焦和超分辨光路共用了光源准直部分、物镜部分、聚焦成像部分。主要功能超分辨及共聚焦显微成像分析系统视野超10倍扩展,达1mm,拥有精确的多微细胞结构生物显微影像分析功能,实现双光路同时,宽场、共聚焦、超分辨三种模式自由切换。大视野拼图:多种不同的图像获取方式、可实现500um*500um视场上图片进行拼接。图像增强及处理:可对采集到荧光图像进行增益调节、对比度调节、亮度调节以及色阶调节。反卷积处理:在原有采集到图像基础上,对图像数据做实时清晰度优化,达到消除背景噪声,有用信息表达更精准的作用,处理速度10ms以下,速度快;可进一步结合DNN方法,提高应用场景的鲁棒性。特征统计分析:对于识别出的细胞,对其强度、直径、周长等15个属性做数值量化。特征标记分类:可对细胞的特征进行标记和分类。单细胞定量分析:可以准确分割出相互重叠的细胞,精度更高,在专业单细胞识别的基础上,结合深度学习AI算法,可以精确识别互相挤压重叠的细胞核,而且对于细胞轮廓边界识别更加准确。亚细胞结构分析:可以定位某种蛋白或者某个基因表达产物在细胞的具体存在部位,如细胞核,胞浆内,结合AI图像分析方法,以表格和数据统计输出结果。细胞亚群圈选分析:筛选特定的感兴趣细胞亚群,进行了10余种参数分析。特殊细胞/结构识别:提供特殊细胞如脂肪细胞的识别和数量统计。多重荧光染色:实现细胞核、细胞质、细胞膜的各种形态和染色,精确寻找目的细胞及其结构。细胞寻找及跟踪:实现特定细胞的动态识别和跟踪。核心参数激光共聚焦超分辨显微参数配置普通光纤激光器激光405nm、488nm、561nm、640nm扩展HC-PCF激光器920nm探测器 PMT3个;波长:400-750nm,GaAsP最大拍摄速度8fps@512×512像素;2fps@1024×1024像素;4096×4096最高;更多可配置;扫描方式X-Y, X-Y-Z, X-Y-T分辨率250nm in x, y and 550nm in z 共聚焦120 nm in x, y and 320nm in z (488nm wavelength) 超分辨共焦视场Φ18mm-Φ25mm 内接正方形成像深度100μm灵敏度提升4倍相对信噪比 SNR优良级 50dB显微镜电动显微镜奥林巴斯 倒置IX73显微镜,具备明场、微分干涉、荧光等观察方式物镜奥林巴斯或Mitutoyo平场复消色差物镜(防腐蚀陶瓷表面以及红外色差矫正)选型载物台奥林巴斯 电动IX3-SSU 扫描精度优于0.7μm光学放大1.0X;1.5X;3.2X;20X 适配/转换器共聚焦/超分辨率光路切换(电动)、6位电动物镜转换器荧光装置配荧光光阑*相机(lattice)SCMOS,分辨率2048×2048,100fps@全幅面,位深12bit工作站Windows10 Pro 64 bit;硬盘≥1TB;内存16GB软件控制软件:图像采集及2D/3D/4D处理;共聚焦和超分辨配置;*成像分析:细胞自动识别、单细胞定量分析、亚细胞结构分析、细胞亚群圈选分析等防震台频率范围(5~30Hz):≤30μm/s均方根;频率范围(>30Hz): ≤60μm/s均方根增配双光子成像激光生成组件、高速扫描头、前置补偿单元应用场景超分辨及共聚焦显微成像分析系统可应用于基础生物学、临床医学、病毒学、精准药物筛选等领域,为活细胞超分辨率智能成像提供解决方案。基础生物学:皮肤病例研究、类器官培养观察、微生物形态研究、胚胎发育成像、组织结构三维重构。如通过斑马鱼胚胎发育过程的成像,研究血管疾病和血管药物的新兴模型,从而更好解决人类血管疾病;通过光学切片, 确定其复杂的内部结构与组织功能之间的关系。临床医学:细胞形态结构鉴定、病理显微成像、异常细胞跟踪检测、组织形态学观察。利用计算机进行图像处理, 不仅可观察固定的细胞、组织切片, 还可对活细胞的结构、分子等进行实时动态观察和检测。通过它可以直接观测细胞形态学的组织、细胞之间的相互作用、组织微环境、伤口的愈合等成像,有助于了解病理机制,以开发疾病治疗方法从而促进人体健康有重要的意义。病毒学:植物病毒研究、动物病毒研究、医学病毒研究、环境病毒研究、噬菌体研究。采用超分辨技术,可以实现病毒感染细胞及复制、组装、释放等动态过程的研究。药物筛选:药材显微鉴别、载药微粒结构、药物扩散跟踪、制药成型和释药研究、药理药效研究。通过药物筛选确定干预的潜在治疗方法,加速早期药物的研发和确定疾病的模型。利用显微镜观察植(动)物药材内部的细胞、 组织构造,从而达到鉴定药材的目的。选择合适的药物靶分子,针对高分辨率成像的固定样品及活细胞进行分析,从而满足不同实验的需求。关于熵智科技熵智科技是国家级高新技术企业,拥有底层成像系统和算法开发能力,软硬件一体化,致力于通过高性能的成像技术解决机器人柔性化、微纳级检测与测量等问题。熵智科技自2018年成立至今,先后获得字节跳动、拓金资本、松禾资本、远望资本、华控资本等投资。深圳、武汉、西安三地联合办公,目前研发和工程团队70余人,核心技术人员均硕士及以上学历,博士6人。未来,熵智科技将继续深耕微纳光学领域,以更优的产品与服务回馈广大合作伙伴及客户。
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflection fluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems. McGraw-Hill 1990. ISBN: 0070591741  3. Shribak M, Inoué S. Orientation-independent differential interference contrast microscopy. Collected Works of Shinya Inoue: Microscopes, Living Cells, and Dynamic Molecules. 2008 (Dic):953-962. doi:10.1142/9789812790866_0074  4. Gao G, Jiang YW, Sun W, Wu FG. Fluorescent quantum dots for microbial imaging. Chinese Chem Lett. 2018 29(10):1475-1485. doi:10.1016/j.cclet.2018.07.004  5. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D. Green fluorescent protein as a marker for gene expression. Science. 1994 263(5148):802-805. doi:10.1126/science.8303295  6. Baranov M V., Olea RA, van den Bogaart G. Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol. 2019 29(9):727-739. doi:10.1016/j.tcb.2019.05.006  7. Miller DM, Shakes DC. Chapter 16 Immunofluorescence Microscopy. In: Current Protocols Essential Laboratory Techniques. Vol 10. 1995:365-394. doi:10.1016/S0091-679X(08)61396-5
  • 全新奥林巴斯GX53倒置金相显微镜闪亮登场
    p style="text-align: center "span style="color: rgb(0, 112, 192) "strong更快速进行金属部件质量检测的全新奥林巴斯GX53倒置金相显微镜/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong升级版奥林巴斯Stream图像分析软件 /strong/span/pp /pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/43977c59-bfc7-404b-b46e-e946878f2de8.jpg" title="1.jpg"//pp  专为观察和检测金属部件而设计的新型奥林巴斯GX53倒置金相显微镜采用具有超长使用寿命和低功耗的LED光源。为了提升观察和报告功能,GX53显微镜还配有最新版本的奥林巴斯Stream图像分析软件(v.2.3)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/333b6761-3ad4-4ac7-b62c-eba1db51cc62.jpg" title="3.jpg"//pp  倒置金相显微镜能够从下方观察样品,可让用户不必调整样品表面朝向即可检测较厚或较重的样品。该功能让GX53显微镜成为观察汽车及其他金属部件微观结构的实用工具。/pp /ppGX53具有帮助检测人员更快完成任务的先进功能:/ppstrong1.细致入微:/strongMIX观察可实现微观结构及其他表面特征的清晰成像/ppstrong2.编码硬件:/strong保存观察设置,实现更快的检测和更高的生产率。/ppstrong3.逼真图像:/strong采用具有均一色温的LED照明方式/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/e58e061d-3b22-469f-ae0a-09afa9f3917d.jpg" title="2.jpg"//ppstrongMIX观/strongstrong察:让难以观察的部位无可遁形/strong/pp  作为首个采用MIX观察技术的GX系列产品,GX53显微镜能够获得非常清晰的表面结构图像。MIX技术将暗场与其他观察方法(如明场、荧光或偏光)结合使用,可获得独有的观察图像。MIX观察能够让用户观察使用传统显微镜难以观察的样品。暗场观察所用的环形LED照明设备的定向暗场功能可在特定时间内照明一个或多个象限。这样可以减少样品光晕,对于显示表面纹理非常有用。同时,奥林巴斯Stream® 图像分析软件的升级版本利用图像合成功能提供具有最低限度光晕的清晰图像,即使观察高反射样品也没有问题。/pp /ppstrong编码硬件:更快的检测以及更高的生产力/strong/pp  配合奥林巴斯Stream软件使用时,GX53倒置金相显微镜可保存观察设置以便后续调用。通过复制常用的观察设置或其他用户设置可提高用户的工作效率,且方便进行检测。/pp /pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/b1edeaf7-2814-482c-aeee-1df4980c1cc5.jpg" title="4.jpg"//ppstrong奥林巴斯Stream图像分析软件:更睿智,更灵活/strong/pp  奥林巴斯Stream图像分析软件2.3版本为从准备显微镜到观察、分析和报告的每个检测步骤提供支持。最新版本包含可将聚焦整个视场的即时扩展聚焦成像(EFI)功能。软件还增加了对系统电子表格报告功能的改进。/ppbr//ppspan style="color: rgb(0, 112, 192) "strongGX53倒置金相显微镜(英文版产品资料):/strong/span/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201712/ueattachment/aed4c49e-d6a1-4db1-862e-b8c49fb2d32b.pdf"GX53_en.pdf/a/p
  • 关于数码显微镜最困扰您的 9 个问题
    James DeRose 博士 Georg Schlaffer徕卡显微系统数码显微系统是显微镜学的流行语之一,此外,还有一些非常有用的常识。徕卡显微系统的产品经理 Georg Schlaffer 常常会被客户和同仁问及有关数码显微系统方面的问题。为了答疑解惑,他与科学作家 Jim DeRose 共同合作,对最重要的几个问题进行了全方位解答。到底什么是数码显微系统?数码显微镜属于带数码相机的光学显微镜,无需配备目镜。电子监控器显示屏会直接显示观察和分析的样品图像。数码显微镜还可以是常规体视或复式显微镜,它们同时配备目镜和相机,能够保存显微镜状态和相机设定值的反馈信息。在本文的接下来部分中,我们提到的“数码显微镜”是指不带目镜的显微镜,例如,Leica DVM6、Leica DMS1000,和 Leica DMS300,而不是配备相机的体视或复式显微镜。左:Leica DVM6 数码显微镜右:镀金焊盘,汽车用电子设备,总放大倍率:120:1。图像由 Leica DVM6 获取。哪些应用领域可以使用数码显微镜?在研发、生产和检测、质量控制和保证,以及失效分析过程中,数码显微镜是分析部件和样品并生成检测报告的理想仪器。左:镀金焊盘,汽车用电子设备,总放大倍率:360:1。图像由 Leica DVM6 获取。右:通过 Leica DVM6 倾斜显示屏予以显示。数码显微镜的优势何在?数码显微镜最显著的优势在于仪器的人机工程学设计。由于监控器会直接显示样品图像,用户可以在保持舒适、放松的直立坐姿的同时,还能即时观察样品,并利用软件分析样品图像,保证用户能以舒适的姿态高效地完成工作。在需要处理高通量样品,或每天需要在显微镜上花费较长时间的情况下,数码显微镜的人机工程学设计就显得意义非凡了。此外,很多数码显微镜还提供允许存储多个用户配置文件的软件。在多人共用一台显微镜时,这项功能非常有用,凭借这项功能,每个用户只需选择自己的显微镜配置文件,几乎无需调节显微镜工作台,即可轻松开始工作。左:纸上印刷图案,总放大倍率:750:1,环形光照明。图像由 Leica DVM6 获取。右:纸上印刷图案,总放大倍率:750:1,起偏镜开启时的同轴照明。图像由 Leica DVM6 获取。数码显微镜有哪些限制条件?相比体视或复式显微镜,数码显微镜存在一个明显的限制条件,即需要电源连接,因为数码显微镜未配备目镜,而样品图像却始终需要显示在监控器上。因此,至少需要一根电源线。通常情况下,数码显微镜还需要连接 PC,或至少需要连接显微镜的显示屏。通过传统的显微镜,用户仍可以选择使用目镜获取样品图像。左:Leica DMS1000 数码显微镜右:金属部件上的一个孔;自动更新每项变焦设置比例,实现快速测量。图像由 Leica DMS1000 获取。通过数码显微镜和目镜分别观察到的样品图像相比,结果如何?原则上,图像是相同的。视场角可能存在差别,这主要取决于我们正在讨论的数码相机和目镜的类型。但是,还有一个重要差别:采用体视显微镜的双筒目镜观察样品,将为您带来数码显微镜的二维图像无法达到的深度。左:表壳,通过环形光照明 (Leica LED3000 RL) 和入射光座捕捉。图像由 Leica DMS1000 获取。右:Leica DMS1000 B 图像:利用透射光座捕捉的秀丽隐杆线虫图像;因不断编码变焦,从而保证快速、简单地测量,即使在不配备电脑的单机模式下亦可实现。数码显微镜操作上比带目镜的显微镜要简单吗?尤其对于无经验的用户而言,利用数码显微镜,他们也能够更简单、更快速地获取样品图像。造成上述差别的主要原因是,熟悉设置和调整传统型显微镜,并透过目镜观察样品,这些操作需要花费较长时间。左:果蝇属筛查。图像由 Leica DMS1000 B 获取。右:利用固定在摇臂机架上的 Leica DMS300 观察印刷电路板样品“编码”的含义是什么?当显微镜硬件可直接与计算机软件进行通信,且能够利用图像数据完成对特定参数值的追踪和保存时,表示显微镜已完成“编码”。这些特定参数将得以被设定,并因此被称之为已编码参数值。正常情况下,触摸相关按钮,即可调用这些已编码参数,令重复工作和报告变得更轻松。必须成为显微系统的专家,才能操作数码显微镜吗?当然不需要。无论是显微系统的新手还是专家,都可以轻松使用数码显微镜。徕卡显微系统提供的数码显微镜,其设计宗旨就是简单易用、开箱即用,最大程度地减少培训时间。它们配备已编码的功能,能够轻松生成分析报告,令重复工作更加高效。数码显微镜需要配备哪些部件?所需配件依据应用领域而定。例如,可以根据所需的放大倍率范围,选择物镜透镜。您还可以在一系列主机和照明系统中进行选择。以下这些问题会帮助您决定需要哪些部件或功能: 是否需要快速获取高质量数字图像?如果需要,您可以选择高分辨率数码相机。 是否需要高通量样品的快速、实时图像显示?如果需要,您可以将相机速度设置为每秒 30 帧或更快。 是否需要从不同角度观察样品?如果需要,倾斜显微镜镜头或转动样品载物台,实现工作过程或物体的动态观测。 是否需要定性或定量分析样品?如果需要,必须认真选择软件功能。 是否需要平衡图像,同时清晰展示明亮和暗色部分?如果需要,您可以选择 HDR(高动态范围)功能,它能够为您精确提供所需的图像类型。了解更多:https://www.leica-microsystems.com/?nlc=20191231-SFDC-008340
  • 量子显微镜可详细观察活细胞细节
    显微镜技术取得重大突破!据最新发表在《自然》杂志上的文章,来自澳大利亚昆士兰大学的研究人员发明了一种量子显微镜,可使研究人员在的情况下检查活细胞,看到其他方式无法揭示的生物结构细节。这为生物技术的应用铺平了道路,且有望应用于导航、医学成像等领域。  显微镜由量子纠缠提供动力,爱因斯坦将这种效应描述为“远距离幽灵般的相互作用”。  来自昆士兰大学量子光学实验室和ARC工程量子系统卓越中心(EQUS)的沃里克鲍恩教授说:“这是第一个性能超过现有最佳技术的基于量子纠缠的传感器。”这台量子显微镜的成功首次证明,量子纠缠改变传感范式的潜力。  量子显微镜的一个主要成功之处在于,它能够跨越传统光基显微镜的“硬障碍”。通常,传统的光学显微镜会在被观察的生物样本上聚焦照明光线,更强大的光源使研究人员能够更细致地看到细胞。但这种方法的精确度存在一个根本性限制:在某一时刻,足够明亮的光线会破坏活细胞。  鲍恩和他的同事们已经找到了克服该问题的方法。他们使用了一种带有两个激光光源的显微镜,但通过一种特殊设计的晶体“挤压”了其中一束光线。它通过在光子(激光束中的光粒子)中引入量子纠缠来做到这一点。  光子被耦合成相互关联的对,其中任何具有不同于其他光子能量的光子都被丢弃,而不是被配对。这一过程降低了光束的强度,同时降低了其噪声,从而可以进行更精确的成像。  大约10纳米厚的酵母细胞的细胞壁及其细胞液,即使用最好的非量子显微镜,这两者的成像都是微弱的,用标准显微镜则是完全看不见的,而用量子显微镜则可以看到它们的结构细节,从而帮助我们在最小的尺度上理解生命的基本知识。  英国埃克塞特大学的弗兰克沃尔默表示:“这是光学显微镜领域的一项非常令人兴奋的进展,它为改进最先进的显微镜的工作方式打开了大门,其光强度正好不会破坏生物样本。”  鲍恩说,量子显微镜也将有实际应用。例如,光学显微镜经常被用来确定细胞是否癌变或诊断其他疾病,而量子显微镜可以显著提高这些测试的灵敏度,并加快测试速度。
  • Revolve Generation2正倒置一体电动荧光显微镜震撼来袭,拒绝不清晰
    你想要显微镜拍照像玩手机APP一样简单吗?想要拍出的图片清晰度直接可用于出版吗?想要更智能更时尚的操作和数据传输吗?想要拍照更轻松而不用长时间盯着目镜筒吗?那么Revolve Generation 2正倒置一体电动荧光显微镜来喽,化繁为简,功能升级;隆重推出DIGITAL HAZE REDUCTION(DHR)实时数字化图像处理功能,增加宽场荧光显微镜图像锐度,抑制噪声减少模糊,提高荧光检测分辨率;精确Z-Stacking功能帮您全景深观察样品,较厚样品荧光检测效果出众。这就是我,既有颜又有才!科研小伙伴是否遇到过,使用宽场荧光显微镜荧光拍摄不够清晰?使用共聚焦拍摄速度慢,而且荧光容易淬灭?小编给大家捋捋,看看到底应该怎么选,拒绝焦虑。宽场荧光显微镜与激光共聚焦成像效果区别▷ 激光共聚焦:使用激光点对样品进行逐点扫描,通过共轭聚焦技术,可有效避免邻近点光线干扰,获得更高分辨率。但对于活细胞荧光观察伤害性大,光漂白严重,由于是逐点扫描,所以成像时间长。▷ 宽场荧光显微镜:使用场光源对样本进行全视野照明成像,会出现光噪声、散射和炫光等现象,降低了图像分辨率,针对较厚样本大多只能平面成像。但拍摄速度快,对于活细胞荧光成像伤害性小,可有效避免光漂白。Revolve Generation2是您的不二之选,为什么这么说呢,往下看 ↓☑ 独有的实时DHR数字降噪技术,通过数字化图像处理,在镜下实时显示高分辨图像,清晰展现样本细微结构,颠覆传统成像效果。☑ Z轴高精度自动层扫,配合实时DHR数字降噪技术,在保持高分辨率的同时,对较厚样本进行全景深扫描合成,实现全景深观察。新一代Revolve正倒置一体电动荧光显微镜,拥有最流行的触屏操控方式,配备智能荧光成像系统,将Z-Stacking全景深成像和DHR数字降噪功能有机联合,提升分辨率告别照片模糊,为您打造全新的成像体验。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 我国成功研制高端超分辨光学显微镜
    p  12月26日,由中国科学院苏州生物医学工程技术研究所(简称“苏州医工所”)承担的国家重大科研装备研制项目“超分辨显微光学核心部件及系统研制”通过验收,标志着我国具备了高端超分辨光学显微镜的研制能力。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/f803a627-1300-4f36-923e-c53c4d3ad202.jpg" title="1123909972_15458328762871n_副本.jpg" alt="1123909972_15458328762871n_副本.jpg"//pp style="text-align: center "strong科研人员在用自主研制的激光扫描共聚焦显微镜观察细胞结构。/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/603787a6-59a2-4609-bb37-a8c293834c42.jpg" title="1123909972_15458328763351n_副本.jpg" alt="1123909972_15458328763351n_副本.jpg"//pp style="text-align: center "strong科研人员在用自主研制的双光子-STED显微镜观察亚细胞结构。/strong/pp  在当今生物学和基础医学研究中,高/超分辨光学显微镜发挥着至关重要的作用,10-100nm尺度的超分辨显微光学成像是取得原创性研究成果的重要手段。我国对光学显微镜特别是高端光学显微镜的需求极其旺盛,但基本依赖于进口,这严重制约了我国生物学和基础医学等相关前沿领域的创新。/pp  历时五年攻关,苏州医工所科研人员全面突破大数值孔径物镜、特种光源、新型纳米荧光增强试剂、系统集成与检测等关键技术,已经申请90余项国家发明专利,其中获得授权30余项 研制出激光扫描共聚焦显微镜、双光子显微镜、受激发射损耗(STED)超分辨显微镜、双光子-STED显微镜等高端光学显微镜整机 建成了高端显微光学加工、装调、检测以及显微镜整机技术集成工程化平台,培养出一支具备研制复杂精密高端光学显微镜能力的研发团队,为我国高端光学显微镜的发展提供了系统解决方案。/pp  苏州医工所研制的超分辨显微镜或核心部件已在国内外多家研究机构使用并已取得部分成果。如:中科院动物所利用高端光学显微镜观察发育生物学中的基本现象,研究潜在调控机制。中科院药物所应用高端光学显微镜观察药物胞内靶向定位和输送,加速创新性新药研发。美国斯坦福大学、日本东京大学、陆军军医大学脑科学研究中心等专业实验室利用双光子显微成像技术进行了信息识别、行为控制等脑科学核心问题的研究以及动物在体成像实验,获得了高分辨实时神经元活动成像数据。/pp  目前,显微镜和关键部件已有部分成果实现销售,例如:双光子显微镜已销往德国、以色列、美国等多家国外研究机构。北京大学、中科院神经科学研究所等国内科研机构也使用了该设备。具有自主知识产权的特种LED光源体系具备了国际竞争力,支撑了包括新一代投影、光医疗仪器以及远程照明等新兴产业的快速发展。共聚焦显微镜也已完成工程化,拟进行产业化生产和销售。/pp  该项目的成功实施,极大改善了我国高端光学显微镜基本依赖进口的状况,对满足我国生物医学等前沿基础研究的定制化需求、提升创新能力,以及推动我国光学显微镜行业转型升级具有重要的战略意义。下一步,苏州医工所将结合研究所工程化及成果转化创新模式,实现科技成果在研发平台、工程化平台、产业化平台、市场平台的高效对接,通过系列化、组合化的产品布局,对显微镜系统和核心部件进行工程化、产业化。/p
  • 高速三维动态成像 苏州医工所在结构光照明超分辨显微成像仪器研制方面取得进展
    对于生物医学研究,著名物理学家理查德费曼有句名言:“...很多基础生物学的问题是很容易被回答的;你只是需要看到它们就够了”。这句话一定程度上说明了直接观察的光学显微镜对于细胞生物学、发育生物学、免疫学、病理药理学等生物医学研究的重要性。但是受衍射极限的限制,传统光学显微镜的分辨率理论上只能达到光波长的一半。近20年来,超分辨荧光显微成像技术的出现有效打破了光学衍射极限的束缚。基于单分子定位技术的超分辨显微镜(SMLM)和受激发射损耗显微镜(STED)以及结构光照明超分辨显微镜(SIM)等技术在众多课题组的努力下都得到了长足发展,尤其是结构光照明显微镜由于成像速度快、光毒性小、无需特殊荧光标记等优势,已成为生命科学领域尤其是活细胞成像中最受欢迎的技术手段。近期,苏州医工所李辉课题组围绕着结构光照明超分辨显微成像方法、高保真SIM重构算法、以及国产化的SIM显微镜研制等方面取得了一系列重要进展。   三维成像方法因可以获取到更多的生物样品信息而备受关注。但是现有的三维成像不可避免的带来离焦模糊和时间分辨率差的问题,很难用于对样品的快速三维动态成像。为了实现对厚样品的快速三维成像,李辉课题组发展了基于数字微镜阵列器件(DMD)和液体变焦透镜(ETL)的结构光照明层切显微技术,并开发了基于两张原始图像的层切成像算法。该方法将传统的三维层切成像的速度提高了数倍以上,课题组利用该技术对斑马鱼和大脑血管的心血管系统进行了高速动态成像,清晰地显示了心脏跳动期的收缩-舒张过程以及腹部血管的蠕动特性。相关成果以“Four-dimensional visualization of zebrafish cardiovascular and vessel dynamics by a structured illumination microscope with electrically tunable lens”为题发表在Biomedical Optical Express(2020)上,其中博士生陈冲为论文第一作者。   图1 基于两张正反图像的结构光照明层切算法(左);斑马鱼心脏跳动过程的快速三维成像(右)。   结构光照明超分辨成像技术在多种纳米尺度的亚细胞结构研究中已经得到广泛的应用。但是对于具有大动态范围的样本,例如聚集的细胞囊泡,样品中荧光较强的聚集性区域和亮度较弱的稀疏区域不能同时呈现。现有的SIM方法针对这种样品无法重建出高质量的图像。对此,李辉课题组提出了一种采用多重曝光采集的高动态SIM成像方法HDR-SIM,采集三组不同强度照明的SIM图像然后融合出一帧超分辨图像。用HDR-SIM,强度相差400多倍单个和聚集的荧光小球样本在同一张SIM超分辨图中可以同时观察到,并且对分辨率不会产生影响。在使用本方法观测不同尺度的细胞囊泡结构,单个小囊泡和大的囊泡聚集都可以同时获得清晰的分辨。相关成果以“High Dynamic Range Structured Illumination Microscope Based on Multiple Exposures”为题发表在Frontiers in Physics (2021)上,其中梁永为论文第一作者。   图2 高动态SIM成像原理(左);“聚集-单个”的荧光小球高动态SIM成像(右)。   在结构光照明成像过程中,超分辨图像重建算法尤为关键。SIM重建算法的一些固有缺陷造成超分辨图像中经常出现重构伪影,使得SIM图像的保真度经常受到质疑,并且图像重建时需要完成一系列复杂的参数设定,限制着普通用户对SIM技术应用。李辉课题组开发了一种基于点频谱优化的高保真SIM重建算法。该算法有效克服了常规SIM算法极易产生重构伪影且光学层切能力差的问题,对不同质量原始数据的处理均能获得具有极少伪影和良好光学层切的高质量超分辨图像,有效提高了SIM成像的保真度。同时,该算法对OTF失配和用户自定义参数不敏感,使用生成的理论OTF和较少的参数即可重构高质量SIM图像,降低了SIM成像对实验实施和后处理重构的高要求,提升了算法对普通用户的友好度。相较于几种传统的SIM算法, HiFi-SIM算法对多种不同图像质量、不同样品复杂度、不同图像来源(商用设备/自主搭建SIM系统)的原始数据进行重建, HiFi-SIM均展现出了最少的重建伪影和最优的图像质量。相关成果以“High-fidelity structured illumination microscopy by point-spread-function engineering”为题发表在国际光学类顶级期刊Light: Science & Applications (2021) 上,其中文刚为论文第一作者。   图3 高保真结构光照明超分辨成像重建算法HiFi-SIM(左);细胞结构HiFi-SIM与其他算法重建结果比较(右)。   李辉课题组自2014年以来一直专注SIM成像的技术创新、仪器研发和应用推广,开发了多种形式的结构光照明显微镜系统。最近,基于课题组最新的研究成果,研发了一套可集成于显微镜下层光路的结构光照明插件,具有结构紧凑、方便易用等特点。插件可配置国产倒置荧光显微镜,实现了SIM超分辨成像系统的国产化替代。首台机器已经于近期交付某大学用户进行试用。 图4 插件式结构光照明超分辨成像系统   以上工作得到了国家重点研发计划项目和国家自然科学基金委项目的支持。
  • 徕卡法医学比对显微镜---助力得出科学的鉴定结论
    法医学比对显微镜介绍:徕卡FS C、FS M和FS CB系列法医学比对显微镜可用于检测弹道、工具痕迹、毛发、纤维和其他司法鉴定证据,并将提取的证据与所有物中发现的蛛丝马迹进行比对。徕卡FS系列法医学比对显微镜优点 一、便于记录配备高性能相机和软件应用,便于记录、测量、注释和存档精确测量样本,从不同角度观察,可以在案例报告上添加注释利用软件拼接功能,轻松记录超大视野利用高分辨率相机,记录微小的细节 二、多样化的比对方法利用多功能比对桥,支持多种高精度比对利用可调节分割线,轻松改变比对方法,协助您的鉴证工作;全部到左边,全部到右边,或者相互叠加以0.1%的放大精度比对右侧和左侧的图像,确保对结果充满信心。适应变形样本,+/- 4%的变焦放大调整(FS C,FS CB)三、可靠比对 利用高规格光学器件,得出可靠的比对结果对于远心目标,必须以正确角度观察通过物镜复消色差校正和单独虹膜控制,准确观察并记录证据精确的校准和测量,采用固定放大物镜和带编码的物镜转换器(适用于FS C以及搭配带编码显微镜的FS CB)四、采用多种人体工学组件 长时间工作依然舒适人体工学工作台,高度可电动调节,确保坐感舒适可调节观察角度,确保全天保持正确坐姿载物台、焦距和照明控制均触手可及,尽可能减少重复性手动操作。 五、提供多种照明选项,可清晰检测各种样本使用光纤光导、独立聚光,或多段环形光源,观察表面结构 利用同轴照明很容易观察到高反射表面利用透光分析半透明样本的内部结构 使用标准显微镜的所有对比技术,如荧光、相衬、偏振光、微分干涉对比(徕卡CFS CB比对桥可用于常规和高级显微镜平台)进行复杂结构的对比徕卡法医学比对显微镜应用介绍:法医学实验室将现场的弹壳与发射的进行比对分析破坏锁具的工具痕迹,并将其与所有物中发现的工具进行比对调查证件是否伪造将车祸中的毛发、纤维和油漆与“肇事逃逸"的车辆进行比对 凭借精确可靠的功能,助力得出科学的鉴定结论 :配备高性能相机和软件模块,便于记录、测量、注释和存档利用多功能比对桥,支持多种高精度比对利用高规格光学器件,得出可靠的比对结果采用多种人体工学组件,即使长时间工作也不会感到疲劳提供多种照明选项,可清晰检测各种样本。 堪称是取证实验室的理想选择 徕卡FS C / FS M / FS CB法医学比对显微镜的技术:特殊比对桥设计 采用特殊比对桥设计技术,确保可以持续观察利用比对桥中的颜色中性棱镜,精确重现色彩凭借比对桥的精密机械和光学结构,对左右视野进行精确比对。 相关产品:FS CFS MFS CB比对桥
  • 体视显微镜的创新点及在大健康市场领域的应用
    体视显微镜显微镜有很多种,体视显微镜是其中的一种,比如还有生物显微镜、金相显微镜等。体视显微镜,又叫实体显微镜、立体显微镜或解剖镜。体视显微镜是一种常用的显微镜,具有正像立体感的目视仪器,不需要专门进行加工制作样品,可以直接放在体视显微镜镜头下进行观察,它能够通过放大和放映图像,使我们能够观察和研究微小的物体和细胞结构,从不同角度观察物体,使双眼引起立体感觉的双目显微镜,工作效率极高。体视显微镜创新点:1、双目镜筒中的左右两束光不是平行的,而是具有一定夹角的,一般为12度到15度,这个角称为体视角。因此成像会有三维立体感。观察者可以更加真实地感受到样品的立体形态,更好地理解样品的结构和特性。2、由于体视显微镜的棱镜把图像倒转过来,使观察者看到的图像是直立的,便于操作。3、虽然放大倍率不及其它光学显微镜的倍率大(如生物显微镜和金相显微镜的放大倍率可达1000倍甚至更大),但体视显微镜优点就是工作距离长,视场直径大。景深大,便于观察物体的全貌。4、体视显微镜操作简单,放大倍数一般在7X~45X、7X~63X。其他更高端科研级体视显微镜型号NSZ818,变焦倍率比达到 1:18 ,10X目镜能够实现7.5-135X的放大倍数。果蝇转基因 转基因育种体视显微镜用途上也最为广泛,主要用途如下:1、动物学、植物学、昆虫学、组织学、矿物学、考古学、地质学和皮肤病学等的研究。2、在纺织工业中,用于原料及棉毛织物的检验。3、在电子工业中,作为元器件检查,焊点检查等操作工具。4、各种材料的裂缝构成,气孔形状腐蚀情况等表面现象的检查。5、在制造小型精密零件时,用于机床工具的装置、工作过程的观察、精密零件的检查以及装配工具。MHZ-101/MHZ-201体视显微镜可将微小物体放大并形成正的立体像,具有工作距离长,成像清晰而平稳、视场宽阔、清晰度高、倍率连续可调和操作方便等特点。根据人机工程学要求设计,45度倾斜观察,长时间工作而不感觉颈肩不适。特别适用于科研、高教、农林地质、珠宝、医学卫生、公安部门作观察分析、生物解剖。近年来还广泛应用于电子工业和仪器仪表等行业作细小精密零件的检验、装配修理用。MHZ-201体视显微镜MHZ-201体视显微镜技术参数表:◆放大倍数: 标准配置:7X~63X 选配目镜及辅助物镜,连续变倍◆物镜: 标准配置:连续变倍物镜 变倍比9:1 确保像面齐焦性◆观察头: 45°倾斜,360°旋转◆目镜: 标准配置: 10X/20mm,宽视野,广角,高眼点,为佩带眼镜的观察者提供方便◆可选目镜: 10X、15X、 20X 、25X◆工作距离:标准配置110mm(有效距离)◆可选辅助物镜:0.5X工作距离165mm/1.5X/2X ◆显微镜摄像头:C接口的USB2.0和USB3.0相机可选◆荧光照明器:LED落射荧光照明器/环形荧光照明器NSZ818科研级平行光体视显微镜NSZ818科研级平行光体视显微镜在大健康市场领域的主要应用:1、用于蛋白质结晶过程和晶体的高对比度观察和成像。2、作为分子生物学、细胞生物学、神经生物学、发育生物学、胚胎学、系统生物学、结构生物学的从宏观到微观高分辨观察与成像研究工具。3、用于斑马鱼、小鼠、线虫等模式生物和各种透明样本、微观细胞组织、亚细胞结构的明场、浮雕相衬;可升级为荧光观察和成像系统。4、数码体视显微镜作文书纸币的真假判辨,大样品上的颜料残留物分析和鉴定,区分轻微的结构偏差和真实的色彩。5、广泛应用于纺织制品、化工化学、塑料制品、电子制造、机械制造、医药制造、食品加工、印刷业、高等院校、考古研究等众多领域。体视显微镜NSZ818技术参数:◆光学系统:平行光(伽利略型)复消色差光学系统◆变倍比:1:18,变倍范围0.75-13.5X◆物镜:PLAN APO 1X(NA 0.15, WD 60mm)◆放大率:7.5-135X◆目镜(F.O.V.mm):三目 20°固定倾角镜筒 可变倾角三目镜筒,范围为 0-30°◆可选目镜:10X(23) 10X(22)15X(16) 20X(12)◆底座:LED 立体照明底座(OIC 内置照明器)◆支持观察方式:明场,荧光,斜照明,简易偏光,暗场
  • 中科院科研装备研制项目 “非线性结构光照明超分辨显微成像系统”顺利验收
    p  6月1日,中国科学院条件保障与财务局组织专家在中国科学院生物物理研究所对中科院科研装备研制项目“非线性结构光照明超分辨显微成像系统”进行了验收。/pp  该项目由中科院苏州生物医学工程技术研究所与生物物理所在2014年联合申报,其中苏州医工所作为研制单位,生物物理所作为用户单位。研制工作由苏州医工所研究员李辉课题组具体组织实施,2016年9月李辉课题组将研制的非线性SIM超分辨显微镜送至生物物理所进行测试试用。在本套系统中,课题组提出了基于结构光激活+结构光激发的弱光非线性结构光照明超分辨成像方法,并采用铁电液晶空间光调制器替代机械光栅,结合FPGA并行同步控制系统,实现了更灵活的成像方式和更快的成像速度。同时课题组开发了能够适用于弱信号样品的SIM/NL-SIM超分辨图像重建算法和软件。利用该设备对荧光微球、细胞内质网、线粒体、细胞核以及细胞骨架等生物样品进行观测,实现了线性SIM模式下100nm横向分辨率,非线性SIM模式下62nm横向分辨率。/pp  专家组听取了项目工作报告、财务报告、用户使用报告,并进行了现场测试验收。经过现场测试并充分讨论后,专家组认为,项目各项技术指标均达到或优于实施方案要求,满足生物医学成像超分辨观测应用需求,一致同意“非线性结构光照明超分辨显微成像系统”通过验收。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/20efc081-6105-4bed-8fdd-1ed50217c97b.jpg" title="W020170606426930859631.png"/  /pp style="text-align: center "中科院科研装备研制项目“非线性结构光照明超分辨显微成像系统”通过验收br//ppbr//p
  • 浅谈 | 激光共聚焦显微镜特点及应用
    激光扫描共聚焦显微镜(LSCM)是基于共轭焦点技术设计的显微镜类型,即为使激光光源、被测样品和探测器都处于彼此的共轭位置上。基本原理在一般的显微镜中通过将物镜的焦平面与探测器重合使得观测的像平面与相邻的轴平面隔离开来,而在共聚焦显微镜中通过使用衍射受限的光点照亮样品,并在该光点共轭焦点处的收集光路径中使用针孔来过滤杂散光达到产生这种隔离效果从而提高分辨率。激光共聚焦显微镜原理图成像特点—不同的焦平面上生成“z叠层”图像—上图所示结构中,只有在共轭的样品层反射回的光可以通过收集光路径中的小孔,其余无关的样品层反射被小孔阻隔。这可以得到显著的分辨率的提升。如下图所示的是同一厚样品的多维荧光显微镜和共聚焦显微镜的并排比较。当在不同的焦平面上拍摄一系列图像时,可以生成通常被称为“z叠层”的图像,这一图像显示了共聚焦显微镜提供的分辨率和对比度增益以及这些增益的根本原因。可以看到在成像平面位于组织上方的堆栈顶部检查图像可以发现荧光图像中带有大量的散射光,而共聚焦显微镜的图像则显示为黑色。这种轴向上的PSF的减少直接导致了z叠层中间光学界面上观察到的分辨率差异。同一厚样品多维荧光显微镜和共聚焦显微镜成像比较成像特点—光学切片扫描成像—激光扫描共聚焦显微镜的另一个特点是它是一种扫描成像技术,传统的宽场照明技术是将整个样品都照亮,因此可以图像可以直接被肉眼或探测器捕捉,但是LSCM采用一束或多束聚焦光束穿过样品扫描成像,这样得到的图像被称为光学切片,下所示即为传统的宽场照明方式与激光扫描共聚焦照明方式的区别。传统宽场显微镜和激光扫描共聚焦显微镜照明方式区别因此现代共聚焦显微镜的一种实际的工作方式如下图所示,激光发出的激发光通过二向色镜,通过一对振镜在样品x方向和y方向进行扫描,样品激发(或反射)的光通过针孔进入PMT检测器被记录,记录下的扫描图像通过计算机重构出实际的样品图像。一种实际的激光扫描共聚焦显微镜示意图成像特点—分辨率对比宽场照明大幅提升—在荧光显微镜中,单点发射的光强度由点扩散函数(PSF)描述,其图案就是一个艾里斑,荧光系统的分辨率可以由艾里斑的半径来描述,艾里斑的半径可以由物镜的数值孔径和激发光的波长决定:另一种荧光系统分辨率测量方式是半高宽最大值,即强度下降到峰值50%的值,此时宽场荧光照明的横向分辨率为:激光扫描共聚焦显微镜的分辨率为:这表明,共聚焦显微镜的理论最大分辨率比宽场照明提高了倍。下图表示了宽场显微镜与共聚焦显微镜的对比,左图为宽场显微镜得到的图像,右图为共聚焦显微镜得到的图像。宽场显微镜与共聚焦显微镜成像对比主要应用领域—医疗领域—Li 等人通过LSCM技术对31位虹膜粘连但角膜透明的病人进行了检查,观察到类树干状结构、树枝/灌木状结构、果实特征结构、上皮状结构等一些可能的结构变异,同时发现颜料粒子的减少可能会导致廷德尔积极现象[1]。主要应用领域—生物学领域—L. Cortes等人通过将抗钙结合蛋白(Alexa-568)和抗胶质纤维酸性蛋白(Alexa-488)对小鼠的小脑进行标记得到的图像。并且通过快速获取小鼠大脑的室管膜组织块上荧光标记的运动纤毛的概览,记录下了运动纤毛的确切位置,揭示了运动纤毛的作用机制。小鼠大脑图像小鼠大脑运动纤毛图像德国马克斯普朗克生物物理化学研究所的A. Politi、J. Jakobi以及P. Lenart等人通过Hoechst 44432对海拉细胞的DNA染色,使用微管蛋白抗体Alexa 488对微管染色以及鬼笔环肽Abberior STAR Red对F-肌动蛋白染色,使用LSCM得到了高效、超高分辨率的大视察视野的海拉细胞图像,帮助更好的了解了海拉细胞的结构以及发展变化。Dr. Gerry Apodaca等人通过用iDISCO对透明化的小鼠膀胱进行成像,获得了清晰且完整的小鼠膀胱图,有助于揭示小鼠膀胱内部运动的机理。小鼠膀胱主要应用领域—高分子化学领域—Deng等通过两种 N-硫代羧基内酸酐(MeSPG-NTA和Sar-NTA)的顺序分段投料聚合合成两亲性嵌段共聚物。通过纳米沉淀法、双乳液法等自组装方法,PMeSPG-b-PSar能分别形成纳米和微米尺度的聚类肽囊泡。在LSCM的表征下,由双乳液法获得的微米囊泡在 H2O2刺激下随时间逐渐崩解的过程被完整记录下来。将一种疏水的光敏剂四苯基卟啉(TPP)引入到 PMeSPG-b-PSar囊泡体系中,TPP可通过疏水相互作用附着在囊泡膜上,在光刺激下会引起囊泡崩解[2]。主要应用领域—表面粗糙度领域—Ibáñez等人通过LSCM对收割不同谷物在镰刀上产生的光泽进行测量,并测试了八种不同的加工材料(骨头、鹿角、木材、新鲜皮、干皮、野生谷物、驯化谷物和芦苇)产生的光泽,并通过分析软件建立预测模型数据库,首次证明了基于LSCM对使用磨损光泽的定量分析可以有效地识别用于加工不同接触材料的工具[3]。NCF950激光共聚焦显微镜配置更加灵活,售后通道更加方便,不输于进口成像的国产激光共聚焦显微系统。无级变速小孔控制单层图像景深,获取更佳图像质量。四荧光通道同时或分时成像,提高效率&消除串色。Z序列层扫,定量分析更轻松准确。20nm步进精度,还原厚样本空间结构。4096×4096图像一键生成,支持大图拼接,软件操作便捷。光强度只有汞灯1/1000,长时间实验观察不损伤样本。Nexcope 激光共聚焦成像图展示更多 Nexcope NCF950 成像图请访问:47.114.153.52:8080/novel.html
  • 医用光学显微镜的应用有哪些注意
    首先介绍一下医用光学显微镜,它在很多的校园里用于教学科学研究,它的结构非常的匀称,显微镜的即体非常的稳定和刚性,整体上下是一体化结构,在电压方面,可以自我适应110伏特-220伏特的电压,无限远无应力物镜,提供像质更好,它能够提供给使用者非常清晰非常美观的微观世界。而且它的偏光载物台是专业的金属设置,转动、操作舒适,可以任意旋转,使用是非常方便的。  显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。  (一)、物镜  物镜是决定显微镜性能的zui重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。  1、物镜的分类  物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。  根据放大倍数的不同可分为 低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。  根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。(所谓象差是指所成的像与原物在形状上的差别;色差是指所成的像与原物在颜色上的差别)  (消除色差(当不同波长的光线通过透镜的时候,它们折射的方向略有不同,这导致了成像质量的下降)  2、物镜的主要参数:  物镜主要参数包括:放大倍数、数值孔径和工作距离。  ①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。  显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。  ②、数值孔径也叫镜口率,简写N• A 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为1.25。  ③、工作距离是指当所观察的标本zui清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物镜的工作距离与物镜的焦距有关,物镜的焦距越长,放大倍数越低,其工作距离越长。例:10倍物镜上标有10/0.25和160/0.17,其中10为物镜的放大倍数;0.25为数值孔径;160为镜筒长度(单位mm);0.17为盖玻片的标准厚度(单位 mm)。10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm 。  3、物镜的作用是将标本作*次放大,它是决定显微镜性能的zui重要的部件——分辨力的高低。  分辨力也叫分辨率或分辨本领。分辨力的大小是用分辨距离(所能分辨开的两个物点间的zui小距离)的数值来表示的。在明视距离(25cm)之处,正常人眼所能看清相距0.073mm的两个物点,这个0.073mm的数值,即为正常人眼的分辨距离。显微镜的分辨距离越小,即表示它的分辨力越高,也就是表示它的性能越好。  显微镜的分辨力的大小由物镜的分辨力来决定的,而物镜的分辨力又是由它的数值孔径和照明光线的波长决定的。  那么医用光学显微镜到底在哪些领域有所应用呢?适合电子、地质、矿产、冶金、化工和仪器仪表等行业,在这些行业领域中,用于观察透明、半透明或不透明的物资,例如金属陶瓷、集成块、印刷电路板、液晶板、薄膜、纤维、镀涂层以及其它非鑫属材料,除此之外,也适合医药、农林、*、学校、科研部门作观察分析用。透反射式矿相显微镜不仅能实时观察动态图像,还能将所需要的图片进行编辑、保存和打印。透反射式矿相显微镜广泛应用于生物学、细胞学、组织学、药物化学等研究工作。如果医用光学显微镜物象不在视野中心,可移动玻片,将所要观察的部位调到视野范围内。(注意移动玻片的方向与视野物象移动的方向是相反的)。如果视野内的亮度不合适,可通过调整光圈的大小来调节,如果在调节焦距时,镜台下降已超过工作距离(5.40mm)而未见到物象,说明此次操作失败,则应重新操作,切不可心急而盲目地上升镜台。
  • 如何延长金相显微镜的使用寿命及维护
    金相显微镜关键运用于金相学,金相学关键指依靠金相显微镜和金相显微镜等对原材料显微镜机构、高倍机构和断裂面机构等开展剖析科学研究和定性分析的原材料课程支系,既包括原材料显微镜机构的显像以及判定、定量分析定性分析,亦包括必需的试品制取、提前准备和取样方法。其关键体现和定性分析组成原材料的相和机构构成物、晶体(亦包含很有可能存有的亚晶)、非金属材料参杂物甚至一些晶体缺陷(比如位错)的总数、外貌、尺寸、遍布、趋向、室内空间排列情况等。  一、增加金相显微镜的使用期  1、持镜时务必是左手握臂、右手托座的姿态,不能一只手获取,以防零件掉下来或撞击到其他地区。  2、轻拿小心轻放,不能把数码科技金相显微镜置放在试验台的边沿,以防碰翻落地式。  3、维持数码科技金相显微镜的清理,电子光学和照明灯具一部分只有用擦镜纸擦洗,切勿口吹手抹或拿布擦,机械设备一部分拿布擦洗。  4、水珠、乙醇或其他药物切忌触碰摄像镜头和台镜,假如脏污应该马上洗净。  5、置放装片标本采集时要指向通光线的孔子中间,且不可以反放装片,避免压烂装片或撞坏物镜。  6、要培养双眼另外挣开的习惯性,以右眼观查视线,左眼用于制图。  7、不必随便取下目镜,以避免灰尘掉入物镜,也不必随意拆装各种各样零件,防止毁坏。  8、数码科技金相显微镜应用结束后,务必还原才可以放回镜箱内  二、维护保养方式  1、标准批准状况下,建议的实验室应具有三防标准:抗震(杜绝地震源)、防水(应用中央空调、空气干燥器)、防污(路面铺平木地板);开关电源:380V±10%,50HZ;溫度:0°C-40°C。  2、对焦时留意不必使物镜遇到试件,以防刮伤物镜。  3、当载物台密封垫圆洞管理中心的部位杜绝物镜管理中心部位时不必转换物镜,以防刮伤物镜。  4、亮度调整切勿忽大忽小,也不用过亮,危害电灯泡的使用期,另外也不利于眼睛视力。  5、全部(作用)转换,姿势要轻,要及时。  6、关闭设备要将色度调到最少。  7、外行工作人员不必调节照明灯具系统软件(钨丝位置灯),以防危害显像品质。  8、拆换卤素灯时要留意高溫,以防烧灼;留意不必用力直接接触卤素灯的玻璃体。  9、待机不应用时,将物镜根据对焦机构调整到最少情况。  10、待机不应用时,不必马上该盖防尘套,待制冷后再盖,留意防火安全。
  • 岛津在日推出全新分析装置—成像质量显微镜iMScope
    对以光学显微镜观察到的样品可以直接实施质谱分析- 应用于疾患相关物质发现与生物体机能阐明 -成像质量显微镜 iMScope 岛津制作所现已推出融合了光学显微镜与质谱分析仪技术的全新分析检测装置&mdash 成像质量显微镜『iMScope』。『iMScope』采用本公司独有的高聚焦激光光学系统与高精度样品移动系统,能够以5微米以下的领先世界水平的高分辨率下,取得生物体样品的质谱分析图像,观察分子的分布状态。实现了大气压下的质谱分析,可以分析更接近与活体状态的组织。通过重合、解析从光学图像获得的形态信息与从质谱分析图像获得的分子分布状态,期待应用于疾患相关标记物发现、药物动力学观察等领域。 *作为应用基质辅助激光解吸电离(MALDI)法的市售成像质谱分析装置,具有领先世界的高分辨率(据2013年4月本公司调查) 本产品将与自动前处理装置iMLayer共同出展5月14日在韩国举办的生物化学分子生物学会(KSBMB)以及6月10日在北美举办的美国质谱分析学会(ASMS)。 【开发背景】 传统的质谱分析法是将生物体组织样品破碎等后、提取物质得到的混合液体,然后使用液相色谱仪等进行分离,测定目的分子。因此,无法得知某一分子在样品的什么部位高浓度存在或在样品中感兴趣的部位有什么样的分子高浓度存在。研究人员渴望有一种分析装置可以对见到的物质、见到的部位中所含的分子直接实施质谱分析,实现研究人员愿望的装置便是成像质量显微镜『iMScope』。 举例来说,『iMScope』对诸如生物体组织切片这样的平板状样品照射激光,电离所含分子并检测。并且按规定的间隔移动激光,连续检测样品上的离子。通过将激光照射位置信息与其位置上含有的离子量进行二维图像化,可以获知特定分子的分布状态。比如,即使在组织上极小的局部存在作为疾病指标的分子时,也可以将其分布以图像方式检出。并且,通过比较多个样品的结果,诸如组织差异所造成的含有分子或医药品和其代谢物的分布差异等,也可以以图像方式进行测定、比较。 具有光学显微镜并可以在大气压下实施成像质谱分析的全新分析装置iMScope是可以应用于广泛领域的划时代的新解析工具,引起研究人员的高度期待,可以在各个领域最为尖端的研究开发中发挥威力,比如,特定癌干细胞中高浓度存在的分子,并将此分子作为标记物的癌早期诊断法的开发;阐明医药品代谢、聚集过程的药物动力学观察;解明食品中有助于增进健康的有效成分的分布;以增加有效成分量为目的的农作物品种改良;电路板、化成品材料的缺陷解析等,不胜枚举。 『iMScope』是将科学技术振兴机构(JST)尖端计测分析技术?仪器开发计划所获成果实施产品化的产物。以浜松医科大学为中心开发了样机后,以岛津制作所为中心开发出来了实用装置。在实用化的过程中,庆应义塾大学也参与了开发工作。基于上述机构的高见充实了必要的功能,使之成为方便使用的产品,最终开发成功了『iMScope』。 【本产品的特长】1. 高分辨率:实现领先世界水平的5微米高分辨率采用本公司独有技术高聚焦激光光学系统与实现高精度样品位置移动的三维样品台驱动系统,作为成像质谱分析装置,成功获得了5微米以下的领先世界水平的高分辨率的质谱分析图像。即使诸如视网膜等具有10微米左右大小的微细结构的组织,也可以观察其内部的分子分布状态。另外,利用同时推出的自动前处理装置iMLayer,能够以简便的操作准备适于高分辨率成像质谱分析的样品。2. 采用大气压MALDI,可以直接分析光学显微镜观察到的样品离子源采用可以在大气压下进行离子化的大气压MALDI,可以直接对观察到的样品进行质谱分析。与真空MALDI法相比,不仅装置是启动时间短、测定时间快,更可以分析挥发性分子或接近活体状态的组织。使用iMScope专用软件Imaging MS Solution,可以在光学显微镜图像上设置成像质谱分析条件,并且还备有若干已预先设置分析条件的文件,无需进行繁琐的条件设置,能够以观测光学显微镜的感觉进行成像质谱分析。3. 高速分析:高于传统分析100倍以上的高速成像iMScope的独有技术,以质谱分析仪保持使用1kHz的高速Nd:YAG激光进行多次激光照射而离子化的离子,一同进行质谱分析,与传统的质谱分析装置相比,实现了100倍以上(本公司内部比较)的高速成像。例如,对2.5mm见方的样品以10微米分辨率进行成像质谱分析时,使用传统装置约花费10天的时间,但使用iMScope分析,则约3小时便可完成分析。将正常细胞与癌细胞进行比较等时,需要获取2张质谱分析图像,即便如此,iMScope只需约6小时即可完成,即如果在白天调制样品,夜晚进行分析,第二天一早便可获得检测结果,大幅加快了研究开发速度。※『iMScope』源自Imaging Mass Scope的新词。鼠视网膜脂质的分布。仅在10&mu m分辨率的图像上可以识别脂质多重层,也可观察视网膜色素上皮层(10&mu m)。*分辨率20&mu m、50&mu m、100&mu m的图像是根据分辨率10&mu m的质谱分析图像使用软件模拟制作而成 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 共聚焦和光片显微镜将继续成为光学显微技术基石——牛津仪器ANDOR谈高端光镜
    光学显微镜已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,为了满足蓬勃发展的生命科学领域不断产生的新的需求,光学显微镜在成像速度、成像深度、克服光毒性等许多方面也不断发展出新的技术。仪器信息网特别关注高端光学显微镜的技术发展和在生命科学领域的应用进展,并广泛向国内外高端光学显微镜企业约稿(投稿邮箱:lizk@instrument.com.cn),帮助广大用户了解相关技术与应用进展。本篇为牛津仪器ANDOR供稿,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,在生命科学等领域被广泛应用;2009年,联合推出sCMOS相机,被广泛应用于生命科学、材料科学、物理科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功;近日,ANDOR又推出了BC43台式共聚焦显微镜新产品,操作简便可帮助用户提高工作效率。跟随本文,全面了解这家成立32年的公司,其“一步一个脚印”的发展历程、他们对当前光学显微镜技术和应用现状的解读以及技术未来发展趋势的展望。仪器信息网:请回顾一下贵公司光学显微镜技术的发展历程。1989年的一个下午,爱尔兰岛东北部的贝尔法斯特女王大学物理系的Donal Denvir发现当时任何一款相机都无法满足实验检测的需求,他下定决心开始研制一台全真空密封的相机来支持自己的研究应用。新研制的相机经过Andor创始团队不断精心改进,成功应用于各种成像与光谱研究。Andor对显微镜技术的重大贡献是2002年推出了第一台EMCCD(电子倍增电荷耦合器件)相机iXon,这种超灵敏的相机带来了新的契机,能够检测在显微镜下观察的样品中的单分子荧光信号。2005年,ANDOR推出的Revolution活细胞成像系统,iXon与转盘技术的强大组合,大大改善了转盘共聚焦在高对比度活细胞显微成像中的效用,以及对活体样品进行三维成像的能力,赢得了行业用户的广泛关注。2012年,ANDOR将EMCCD现有帧率提升3倍,显著提高了产品性能,并帮助研究人员更多地了解生物样本的快速动态事件。2009年,ANDOR推出sCMOS相机Neo, 此后sCMOS成为使用最广泛的科学相机技术,并且广泛应用于显微镜领域。sCMOS提供了比之前更高的分辨率和更快的帧速率,因此促进了对细胞,特别是细胞内动态和细节的更深入了解。 这种sCMOS技术与EMCCD技术相辅相成,同一台显微镜下可以兼顾灵敏度或者分辨率和速度。同年,ANDOR在显微系列产品组合中增加了两个光刺激模块Mosaic和MicroPoint。Mosaic基于DMD方法,可以在亚细胞或更高分辨率下实现多个照明区域的精确定义。这个工具被用来对显微镜下观察的样品进行光活化、转换或漂白。 这些方法是进行亚细胞实验和了解蛋白质、亚细胞分隔和细胞器的时空行为的有力方法,或者在更大的范围内跟踪大群体中的单个细胞。 该技术发明之前,显微镜只是一种被动观察的工具,但现在可以在显微镜下主动研究细胞和系统生物学。 最近有研究显示,Mosaic与光遗传学相结合,可以成为一种特别有用的工具,这种方法可以促进信号和其他通路的特定光控制。 MicroPoint具有类似的优势,但可用于:(a) 炎症、伤口和愈合与发育的消融研究;(b) DNA损伤,创造DNA断裂的模型,这是细胞可能成为癌症的早期触发因素。这个模型被用来理解DNA修复如何在治疗中发挥作用。2010年,ANDOR收购了Bitplane,将高端三维图像可视化和分析软件Imaris纳入显微产品组合。 Imaris提供广泛的工具来分析一些研究领域的三维图像数据,包括细胞和发育生物学、神经科学、癌症研究和组织分析。2016年,ANDOR推出 Dragonfly,这是为研究人员提供的完整的显微成像解决方案。荣获行业大奖的Dragonfly 500通过转盘设计的改进(详见下文),并结合(a)TIRF(全内反射荧光显微镜),这是一种专门用于细胞膜成像的强大技术(如受体周转和囊泡对接);(b)基于激光的宽视场显微镜,用于微弱光的荧光成像;(c)用于超分辨率成像的光学器件(包含3D成像)。 Dragonfly使研究人员有能力在一台显微镜上对细胞进行比以往更详细的研究。Dragonfly在以下几个方面对现有的转盘技术进行了重大改进:(1)引入Borealis专利照明技术,在基于微透镜的转盘共聚焦显微镜中提供交叉视野照明。这使研究人员在更准确的图像分析、更高质量的大面积和样品拼接的蒙太奇成像中受益。(2)更好的信噪比,实现更高的对比度成像:使用价格较低的低功率激光器,或为dSTORM和DNA-PAINT超分辨率成像或基于图像的单细胞原位转录组学等技术提供更多功率。(3)更稳定的照明源,维护费用低。• 实时样品体积渲染,用户能够快速了解他们的实验进展,并对修改方案做出早期决定和结论。• 更低的仪器本底噪音使研究者能检测到更弱的荧光信号,观察到更细致的生物学现象。• 独特的转盘设计,在保持高速采集速度的同时,可以对样品进行更深入的成像(从数百微米到毫米尺度)。这也意味着转盘技术可以对大型固定样品进行成像,因此为组织成像以及斑马鱼和果蝇等大型模式生物的成像提供了一个高产的解决方案。2017年,ANDOR推出了SRRF-Stream+ ,这是一种超分辨率技术,可以轻松地添加到现有的相机中,或与Dragonfly等显微成像解决方案一起使用。这项技术打破了光学显微镜系统的自然分辨率限制,从200纳米下降到50纳米。现在,研究人员可以观察到他们以前看不到的结构,可以从图像中了解更多信息。 此外,SRRF-Stream+ 无需专门的光学设备或方法来执行,并且可以与几种不同的成像技术一起使用,因此,它可以为更多研究团体所用。2021年,岁末当下,ANDOR推出了BC43台式共聚焦显微镜。一个完整的转盘共聚焦解决方案被整合在如此一个不透光的小设备里。BC43操作非常直观和简单,即便是显微镜新手也能轻松掌握。BC43可以放在普通的实验台上,成为高效实验室工作流程的一部分。简单的操作流程和较少的维护需求使这款设备能够给用户带来非常高的工作效率。此外,BC43内含Dragonfly中的Borealis照明和一些新技术包括内置的一个新激光引擎以实现更小的占地面积。仪器信息网:当前贵公司主推的产品和技术有哪些。贵公司在高端光学显微镜方面有哪些独具优势的技术?我们公司目前推广和之前描述的显微成像产品是• 用于显微镜的灵敏科学相机EMCCD 和 sCMOS• Dragonfly系统• BC43台式转盘共聚焦显微镜• 激光耦合器• 用于显微镜的光刺激设备Mosaic和MicroPoint• 显微镜用的光谱仪和显微制冷机• 三维可视化分析软件Imaris• 超分辨技术SRRF-Stream+ (技术优势参考上述内容)仪器信息网:贵公司高端光学显微镜在生命科学研究中有哪些应用?目前Andor的转盘共聚焦显微镜灵敏度高、成像速度快、分辨率好,可进行3D+动态立体信息探索,在细胞生物学、发育生物学、肿瘤生物学、疾病与免疫学、微生物学、神经生物学、生物物理学等不同领域均表现卓越。细胞生物学家们借助Dragonfly探究细胞内精细的亚细胞结构如线粒体成像、细胞膜动态、细胞周期与分裂、微管动力学、胞内运输、囊泡运动。同时,作为研究发育和厚组织的利器,Dragonfly可以观测受精卵及早期胚胎发育、肢体形成、模式生物如(果蝇、线虫、斑马鱼)的完整生物体成像、类器官发育分化、血管及血流变化;在神经生物学和植物学等方向,借助高速特点可以进行单分子和钙成像,对于透明脑、体外培养的活组织及切片,三维成像和活体培养极为关键;肿瘤或疾病免疫方向的固定的大组织切片、石蜡切片、透明化组织、病原宿主的互作、受体循环与定位等;以及蛋白互作、单分子运动、内吞外排、膨胀显微镜、空间转录组多维成像等。仪器信息网:从整个行业的角度,对于目前的高端光学显微技术,您比较看好哪些?还有哪些问题亟待解决?未来光学显微镜的技术发展趋势如何?我们相信,任何有利于更快、更深、高对比度成像的技术都是可以看到需求继续增长的关键领域。 因此,共聚焦和光片显微镜将继续成为受欢迎的显微技术基石。我们将看到越来越多的研究会引入光操纵,从而更好地了解细胞内信号通路,以及细胞群体间(如神经细胞)如何相互沟通。Andor有几十年丰富的基础生物学研究,现在正是将这些知识转化为未来临床和社会经济相关问题解决方案的基础,包括植物生物学和动物生物学。这需要进行重大调整,将细胞层面的基础研究纳入多细胞、器官和整个生物体的范畴。未来显微镜在光学能力和提高生产力方面都需要扩大规模。为了支持对样品进行更深入的成像,特别是自从透明化组织的技术出现后,存在着补偿由于折射率不匹配而产生的光学畸变的挑战,以及其他来自样品的光学限制。这方面的潜在解决方案之一是使用自适应光学技术。目前有一些想法已经发表,但还有很多东西需要开发,并使之成为一个光学上高效和紧凑的解决方案,以获得良好的商业解决方案。此外,显微镜需要从 "专家 "技术转变为科学界更广泛、普适的技术。它可以为特定主题(如癌症)完整研究的一部分提供强大的支持。我们看到,对于越来越多的研究人员而言显微镜的使用是其工作流程和发表论文的关键环节。基于对此理解,我们历时达五年之久设计了一键成像的台式共聚焦BC43,将3D+成像融入到普通实验室的日常工作,减除了复杂操作和仪器放置的种种烦扰和顾虑。我们认为应该对图像采集和分析协同结合有所期待,分析可以用来帮助复杂的显微实验的自动化,使显微镜操作步骤实时适应正在研究的样品中发生的情况。通过Dragonfly及BC43结合Fusion和Imaris可以实现从样品图像采集到分析的无缝衔接,这种捕捉-分析相结合的工作流程将促进易用性,使更多的研究人员能够运用高级的显微成像方法。未来如果对一些典型的生物医药应用案例的参数进行提取优化,结合人机交互和机器学习的先进算法,帮助研究者进行实时获取批量数据特征,在观测过程中及时优化调整。疫情以来,越来越多的研究工作者采用线上办公形式,此外,设备过度占用日常科研本就繁忙用户或管理员的时间,亟需各种长时程高频使用的设备包括显微成像及分析趋向于在线自动化远程监测、控制。智能化的人机交互及不同端口多界面控制、物联网设备的稳定运转及报告反馈的联网尤为重要。利用AR、VR及远程全息投影等方式,也可针对设备使用、培训、考核进行更多方案的优化。Dragonfly作为某些平台中心和课题组的成像利器,常年全日无休稳定运转,也给了我们信心未来可以在无人值守及远程控制上进一步探索。如今,随着采集大量图像数据能力的提高,所有研究机构和公司,都面临的一个至关重要的问题:采集的数据在进行转移、存储和分析方面均存在瓶颈,耗费过多的金钱、时间、人力成本。此外,确保分析软件包能加载导入数据并进行有效地分析是一个需要持续关注的问题,需要开发团队对大数据有深层的理解并不懈改善算法和架构。对于大数据分析而言,存储和算力的高要求,不断优化系统配置可能难以覆盖爆炸式的增长,业内伙伴和用户的共同努力,有望能建立云端强大的数据转移、存储、分析体系,以分配更适合终端需求的相应资源,安全、高效、灵活的解决不同需求。在此过程中,如何更好的促进共享、保护隐私值得关注和讨论。仪器信息网:从整个行业的角度,您如何评价目前高端光学显微镜的应用情况?应用过程中还有哪些亟待解决的问题?未来光学显微镜应用将会如何发展?基于对学术设计及对概念验证的大力投入,高端光学显微技术目前发展迅速,挑战在于如何将其精炼成易于商业化的、强大易用的解决方案,从而有助于探索一系列的科学问题和不同应用。这些解决方案的范围包括现有技术的持续进步,如用于体外实验用到的共聚焦和光片,也有越来越多的人需要使用当下这些技术和其他尚未建立的光学技术,以进一步提升对体内或在体实验模型的成像,后者是药物发现和其他疾病治疗转化医学领域的重要环节,需要实验设计和成像设备选型上在NIRⅠ、Ⅱ区的标记、照明、检测上有更多适配。应用方面,先进的科学研究机构、CRO公司和医学院基于平台和服务商的稳定支持,能够基于现有技术对系统进行改造,可以支撑更复杂的需求,如微流控装置或一些电磁场刺激及重力场变化。未来我们相信,更多涉及人类幸福健康的行业团队包括生命科学、医学、化学、材料学、半导体、农业、太空科学将利用光镜发现、验证自己的理论,并结合先进的技术如精细力学控制、3D打印等对目标物进行观测、改造。仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距?国产光学显微镜在中低端显微镜市场占领份额较多,如江西凤凰、麦克奥迪、永新光学等品牌,或作为高端品牌的元器件代工厂,厚积薄发,未来一定为国内光镜行业的发展奠定基础。目前主流的高端光镜主要依赖进口,欧美日品牌进入市场较早,占市场主导,国内高端显微镜目前在蓬勃发展,很多高等研究机构如清北、中科院生物物理所、苏州医工所、西安交大等和初创企业(多集中在粤港澳和江浙地区)都在进行研究及转化的突破创新,组建的成像系统多处于实验室技术打磨阶段或迈入市场不久,fMOST、LBS、 HiS-SIM已经开始被市场逐步接受,但其零部件还是进口为主,国产替代之路尚需长期努力和紧密合作。Andor也期望和国内外业内伙伴有更多合作,不论是元器件模块、显微成像系统、数据分析软件都可以多方协作,作为整体解决方案应对市场需求。对于商业化的显微镜而言,稳定、易用的高性能体验及使用场景的匹配是整个行业要不断精益求精的重要方向,自然会有市场越来越多的认可。仪器信息网:您认为,未来几年高端光学显微镜的热点市场需求有哪些?在未来几年,我们认为对高端光学显微镜的最热需求将集中在多维活细胞高速动态成像、超分辨成像、类器官研究、大型组织成像(透明化组织、活体组织体外培养)、单细胞原位空间转录组学领域、动物活体深层成像。基于应用的定制化显微成像系统开发将为学术研究、产业、商业提供绝佳的资源并富有成效进行循环利用。这些需求基于多维时空动态成像,联合先进的流式分析分选、高内涵、质谱成像和单细胞及转录组测序技术对物质代谢、基因和蛋白等的时空表达变化图谱进行同步解析,能够给研究工作带来前所未有的海量信息,透过更多跨领域合作和大数据共享分析,打破认知边界和信息壁垒,服务生命健康。不论是高端光学显微成像或其他高精度检测设备都需要合适的高速高灵敏度的CCD/sCMOS检测器,牛津仪器Andor作为科学相机厂家,已经在生命科学、物理科学的深耕多年,未来一定能够帮助更多的客户及合作伙伴们在光学显微及其他先进成像应用提供高质量的产品和全方位的服务。
  • 新光学显微镜技术揭示活细胞生物过程
    来自美国霍华德休斯医学研究所,Janelia研究园的科学家们,借助其发展的新光学超分辨率成像技术,在前所未有的高分辨率条件下研究了活体细胞内的动态生物过程。他们的新方法显著的提高了结构光照明显微镜(structuredilluminationmicroscopy,SIM)的分辨率,一种最适合活体超分辨成像的技术。     新技术所拍摄的视频生动地展现了细胞内蛋白质的运动和相互作用。它们帮助生物学家理解细胞是怎样改变它们之间的依存结构,以及重整细胞膜结构使得细胞外的分子可以被吸收到细胞内。来自Janelia研究园的研究员EricBetzig博士,李栋博士后*和他们的同事们基于原有的SIM显微镜原理新发展了两种新的超分辨率成像技术。超分辨率光学显微成像技术能够跨越理论的分辨率极限,在极高的分辨率下展现细胞内的精细结构。但是,到目前为止,超分辨率显微镜技术却依然不能进行有效的活体细胞成像。  “这些方法设立了超分辨率光学显微镜的成像速度和非侵入特性的新标准,它们使得超分辨率活体细胞成像成为现实。”Betzig博士说道。在传统的SIM显微镜中,物镜下的物体被非均匀的结构光(类似于条纹码)所照明。在实验中,几束不同的结构光用来照明物体,它们和物体在不同角度混频所产生的摩尔条纹被相机依次采集。然后计算机提取摩尔条纹编码的信息并将其解码生成三维的高分辨率图像。最终重建的SIM图像具有高于传统显微镜图像2倍的空间分辨率。  Betzig博士和其他两位科学家因为发展超分辨率荧光显微镜而被授予2014年诺贝尔化学奖。他说道,SIM显微镜技术之所以没有得到像其它方法那样多的关注,是因为其它技术能够提供比两倍更高的分辨率改进效果。但是,他强调SIM拥有两大其它的超分辨率方法所没有的优势。这些其它方法包括了两种去年获得诺贝尔奖表彰的技术:他和同事HaraldHess博士于2006年开发的光激活定位显微镜(photoactivatedlocalizationmicroscopy,PALM),和受激辐射耗尽(stimulatedemissiondepletion,STED)显微镜。但是,这两种技术都需要过多或过强的光来照明样品,以至于荧光蛋白很快被漂白,细胞样品很快被损害,从而不可能长时间进行成像。然而,SIM在这些方面不一样,“我爱上了SIM,因为它的速度很快,而且它所需的照明光强度远远小于其它方法。”Betzig博士说道。  Betzig博士在2011年MatsGustafsson博士去世后不久开始与SIM相关的研究。Gustafsson博士是SIM技术的先驱之一,生前也是Janelia的研究员。Betzig博士那时已经深信SIM有潜力为解析细胞内部的工作机理提供重要的见解,如果SIM的空间分辨率可以被提高,它对于生物研究的可用性将被大大增强。  在生前,Gustafsson博士和博士生HesperRego发展了一种利用饱和耗尽(saturateddepletion)的非线性SIM技术,但这种技术在改进分辨率的同时需要使用很多的光照并且散失了SIM成像速度快的优势。Betzig博士想到了一种可以避免这些缺陷的方法。  饱和耗尽非线性SIM利用光可反复开关的荧光蛋白和其在开关过程中的饱和耗尽效应来提高分辨率。它产生图像的过程是,首先把所有的荧光蛋白分子激活到可发光的状态(亮态),然后用一束结构光把大部份的亮态分子反激活到暗态。通过结构光反激活之后,仅有少数处于结构光最弱区域的分子仍然保持在亮态。这些光调控过程提供了物体的高空间频率信息,从而让图像更加清晰。这一过程需要重复25或更多次才能产生最终的高分辨率图像。Betzig博士说道,这一原理非常类似于STED或另一种与其相关的叫做RESOLFT的超分辨率技术的原理。  这一技术并不适合于活体成像,因为激活和反激活荧光蛋白需要很长的时间。另外,反复的光照明会对细胞和荧光蛋白本身造成损伤。Betzig博士说道,“这一技术的问题在于你首先用光激活了所有的荧光蛋白分子,然后你马上又用另一束光反激活了大部份分子。这些被反激活的分子对最终的图像没有任何贡献,但却被你用光“油炸”了两次。你让分子承受了很大“压力”,并且花了很多你并没有的时间,因为这段时间内细胞在运动。”  解决方法其实很简单,Betzig博士说道:“没有必要激活所有的分子。”在Betzig研究小组新发展的结构光激活非线性SIM的技术中,一开始用结构光只激活样品里的一部分荧光蛋白分子。“这一结构光激活过程已经给你一些高分辨率的信息了。”Betzig博士解释道。另外一束结构光用于反激活分子,额外的信息可以在反激活的过程中同时被读出。两个结构光叠加的效应给与最终图像62纳米的分辨率,这一结果好于原始的SIM,并且把由光波长决定的传统分辨率极限改进了三倍。  “我们能够做到快速地超高分辨率成像。”Betzig博士说道。这很重要,他补充道,因为对于动态过程,单纯提高空间分辨率而没有相应地提高成像速度是没有意义的。“如果细胞内部有的结构以1微米每秒的速度运动,并且我有1微米的分辨率,那么我需要在一秒内采集图像。但如果我有1/10微米的分辨率,那么我就必需在1/10秒内采集图像,不然图像将变得模糊。”Betzig博士解释道。  结构光激活非线性SIM可在1/3秒内采集25幅原始图像,并从中重建出一幅高分辨率图像。它的图像采集很高效,只需用较低的照明光强,并且收集每一个亮态荧光蛋白分子所携带的信息。从而有效地保护了荧光分子,使得显微镜能够进行更长时间的成像,让科学家们可以观测到更多的动态活动。  Betzig博士的团队利用结构光激活非线性SIM获得了在细胞运动和改变形状的过程中骨架蛋白的解体和自身再组装过程,以及在细胞膜表面的叫做caveolae的微小内吞体动态过程的影像。  在Science论文里,Betzig博士的团队也利用了已经商业化的高数值孔径物镜将传统SIM的空间分辨率提高到84纳米。高数值孔径限制了被光照明的样品范围,从而降低了光对细胞以及荧光蛋白分子的损伤。这一方法可以同时对多个颜色通道进行成像,使得科学家们可以同时跟踪几种不同蛋白质的活动。  通过高数值孔径的方法,Betzig博士的团队观测了多个骨架蛋白质在形成粘着斑(链接细胞内外的物理链)过程中的运动和相互作用。他们也追踪了clathrin修饰的内吞体的成长和内吞过程(内吞体将细胞外的分子转移到细胞内)。他们的定量分析回答了几个不能被以往的成像技术所解决的问题,例如,内吞体的分布,以及内吞体尺寸和寿命之间的关系。最后,通过结合高数值孔径方法和结构光激活非线性SIM,Betzig博士和他的同事可以在超高分辨率条件同时追踪两种蛋白质的活动。  Betzig博士的团队在进一步提高他们的SIM技术。他们也急切地盼望和生物学家一起探索潜在的应用并进一步改进这一技术的可用性。  现在,科学家们可以通过现在,科学家们可以通过JaneliaJanelia的高级成像中心利用这些新的的高级成像中心利用这些新的SIMSIM技术,这个中心提供免费使用前沿的显微镜技术的机会。最后,技术,这个中心提供免费使用前沿的显微镜技术的机会。最后,BetzigBetzig博士说道,使得博士说道,使得SIMSIM成为能够被其他实验室获得并能够承担的技术应该是比较直接的事。“大部份的‘魔术’在于软件而不是硬件。”成为能够被其他实验室获得并能够承担的技术应该是比较直接的事。“大部份的‘魔术’在于软件而不是硬件。”
  • 【GE最强音】超高分辨显微镜演示研讨会来袭
    【GE最强音】超高分辨显微镜演示研讨会来袭看到更多,了解更多,发现更多------超高分辨率显微镜演示邀请函超高分辨显微技术的发明,帮助了科研工作者更好地理解生命过程和疾病发生机理,观察到细胞内器官等细微结构的精确定位和分布,阐明蛋白等生物大分子如何组成细胞的基本结构,重要的活性因子如何调节细胞的主要生命活动等,2014年的诺贝尔化学奖授予了三位率先突破光学极限的科学家。现在,200nm已经不再是光学显微镜所能达到的极限,人们对细胞的认识从未像现在这么清晰。GE医疗生命科学部的DeltaVision OMX采用结构照明显微成像技术,既提供3D-SIM,也提供超快速的宽场成像,这使活细胞超高分辨率成像成为现实,显著提高成像的时间分辨率和空间分辨率。我们将近距离介绍和展示超高分辨率显微镜OMX,我们诚挚欢迎您的光临!研讨会时间2015年5月7日,星期四研讨会地点青松城大酒店三楼,杏山厅(上海东安路8号)研讨会日程联系人朱兴平 13916119237詹怿婕 13918381242GE医疗生命科学电话:800-810-9118,400-810-9118邮箱:lifesciences@ge.com官网:www.gelifesciences.com.cn官方微信:
  • 481万!福建农林大学正置荧光显微镜等设备采购项目
    项目编号:[3500]FJYS[GK]2022165 项目名称:福建农林大学正置荧光显微镜等设备采购项目 采购方式:公开招标 预算金额:4816000元 包1: 采购包预算金额:1660000元 采购包最高限价:1660000元 投标保证金:16600元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02100301-显微镜正置荧光显微镜2(台/套)否详见附件300000工业1-2A02100301-显微镜倒置荧光显微镜3(台/套)否详见附件600000工业1-3A021099-其他仪器仪表超声波细胞破碎仪1(台/套)否详见附件100000工业1-4A021099-其他仪器仪表活细胞动态成像及分析仪1(台/套)否详见附件200000工业1-5A021099-其他仪器仪表厌氧工作站1(台/套)否详见附件100000工业1-6A021099-其他仪器仪表灭菌器2(台/套)否详见附件120000工业1-7A021099-其他仪器仪表电泳系统2(台/套)否详见附件120000工业1-8A021099-其他仪器仪表制冰机2(台/套)否详见附件120000工业 合同履行期限: 详见招标文件。 本采购包:不接受联合体投标 包2: 采购包预算金额:3156000元 采购包最高限价:3156000元 投标保证金:31560元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业2-1A021099-其他仪器仪表小型台式冷冻离心机2(台/套)否详见附件100000工业2-2A021099-其他仪器仪表大容量台式冷冻离心机2(台/套)否详见附件420000工业2-3A021099-其他仪器仪表高速冷冻落地式离心机2(台/套)否详见附件256000工业2-4A021099-其他仪器仪表原位冷冻干燥机1(台/套)否详见附件150000工业2-5A021099-其他仪器仪表质构仪1(台/套)否详见附件250000工业2-6A021099-其他仪器仪表傅立叶变换红外光谱仪1(台/套)否详见附件250000工业2-7A021099-其他仪器仪表冷冻研磨仪2(台/套)否详见附件120000工业2-8A021099-其他仪器仪表二氧化碳培养箱4(台/套)否详见附件220000工业2-9A021099-其他仪器仪表旋转蒸发仪2(台/套)否详见附件100000工业2-10A021099-其他仪器仪表冻干机2(台/套)否详见附件100000工业2-11A021099-其他仪器仪表组合型分子杂交仪2(台/套)否详见附件120000工业2-12A021099-其他仪器仪表荧光及化学发光成像系统3(台/套)否详见附件450000工业2-13A021099-其他仪器仪表凯氏定氮仪1(台/套)否详见附件200000工业2-14A02100408-色谱仪超高效液相色谱仪1(台/套)否详见附件420000工业 合同履行期限: 详见招标文件。 本采购包:不接受联合体投标
  • 奥林巴斯推出新一代工业显微镜BX53M
    高级的显微观察 便捷的显微操作奥林巴斯推出新一代工业显微镜BX53M 1.为工业和材料学应用而设计 BX3M系列采用了模块化设计,为广泛的材料学和工业应用提供了多样化的解决方案。BX3M改进了与奥林巴斯Stream软件的集成性,从而为常规显微镜检查和数码成像用户提供了从观察到报告创建的无缝工作流程。BX53根据工业和材料学的不用应用,可以组合成反射显微镜、透反射显微镜、红外显微镜、偏光显微镜等多种应用的显微镜。 反射显微镜 透反射显微镜 红外显微镜 偏光显微镜2.直观的显微镜控制舒适而便于使用 显微检查任务常常需要用很长的时间来调节显微镜设置、获取图像,以及进行必要的测量,从而得到令人满意的报告。BX3M通过其优良的设计和便捷的控制功能,简化了复杂的显微检查任务。用户不需要长时间的培训即可掌握显微镜的大多数功能。BX3M方便而舒适的操作还改善了图像的再现性,最大程度减少了人为错误。2.1 编码硬件:很容易恢复显微镜设置BX3M采用了新的编码功能,将显微镜的硬件设置与奥林巴斯Stream图像分析软件整合在一起。观察方法、照明强度和物镜位置全都记录在软件和/或手动控制器里。编码功能使显微镜设置能够与每幅图像一起自动保存,从而使此后还原设置,以及为报表提供文档记录更加方便。既节省了操作者的时间,又最大程度减小了使用不正确设置的概率。当前的观察设置总是清晰地显示在手动控制器和软件上。 2.2 智能光强管理:一致的照明在初始安装时,可以调节照明强度,使其与编码照明器和/或编码物镜转换器的特定硬件配置匹配。 2.3 方便而人性化的操作简单的手动开关,使用户能够把时间专注于样品本身和所需实施的检查。 3.先进的成像BX3M保留了常规显微镜检查的传统衬度对比法,比如明场、暗场、偏光和微分干涉。随着新材料的发展,现在可以使用先进的显微镜检查技术来进行更精确和更可靠的检查,从而解决了以往很多使用传统衬度对比法检查时遇到的缺陷检测方面的困难。3.1 MIX组合式观察:让以往看不见的图像显示出来BX3M的MIX组合式观察技术组合了明场和暗场照明方法。MIX组合式照明滑块中的LED光源,以定向暗场光线照射样品,这种方式类似于传统暗场照明,但又具有更大的灵活性。这种明场与定向暗场的组合称为MIX组合式照明,对突出显示缺陷和区分隆起与凹陷表面很有用处。 3.2 即时拼图(MIA):轻松地移动载物台,即可进行全景摄影现在仅仅移动手动载物台上的XY旋钮即可方便而快捷地拼接图像,不再需要电动载物台。奥林巴斯Stream软件采用图案识别来生成全景图像,为用户提供了比单一画面更宽的视野。 3.3 轻松实现超景深图像(EFI)奥林巴斯Stream软件的景深扩展成像(EFI)功能能够获取高度超过物镜焦深的样品图像,并把它们叠加在一起,创建出一幅超景深图像. 4. 尖端光学技术的悠久历史奥林巴斯公司拥有高品质光学仪器研发的悠久历史,创造了多项光学质量的记录,保证了显微镜优异的测量精度。4.1 LED照明BX3M为反射光和透射光照明提供了高强度的白光LED光源。无论强度是多少,LED都保持着一致的色温。LED提供了高效而长寿命的照明,是材料学检测应用的理想工具。 4.2 自动校准类似于数码显微镜,使用奥林巴斯Stream软件时也能够实施自动校准。自动校准消除了校准过程中的人为变化因素,能够获得更可靠的测量结果。 奥林巴斯公司为材料学和工业显微镜检查提供了丰富的产品系列。有关DSX系列光学数码显微镜和LEXT 3D测量激光扫描共聚焦显微镜的更多信息,请查阅我们的网站,www.olympus-ims.com/zh/microscope。
  • 科技创新: 超高分辨率显微镜行业春林初盛
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。 我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’” 专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为宁波力显智能科技有限公司供稿,公司主要产品为INVIEW iSTORM超高分辨率显微镜,其采用的STORM技术是目前国内鲜少有的超分辨技术类型。撰稿人:宁波力显智能科技有限公司副总经理张猛博士人类的历史,也是一部工具的历史。人类发展的历程就是关于如何对世界了解的更多,将人类生活变的更好更先进的历程。从旧石器时代,原始人拿起第一块石头当作工具开始,就开启了用工具进行未知世界探索和创造性改变的历程。从古至今,人类都是工具发明和使用的种族,新工具的问世也反哺人类的成长和进步,让人类一次次突破原有认知边界看到更多的未知,解决更多的问题,取得更多的成就。显微镜,正是一项帮助人类认识微观世界从而改变世界的革命性工具,也是人类探索微观世界不可缺少的工具。显微镜问世之前,人类仅可用感官来把握世界,所能认识到最小世界就是“目所能及”的常规世界,人的肉眼仅能分辨约0.1毫米尺度的物体,因而相关科学的发展缓慢。当罗伯特胡克使用显微镜观察到软木塞上的“小室”,并将其命名为细胞时,可能还没有意识到他这次实践将为人类开启微观世界的大门。人类对未知领域无限的好奇心是推动科学技术前进的动力之一,为了解析关乎生命基本结构,回答有关物质与生命等基本问题,为此人类不断开发出更为精密、分辨率更高的显微镜来探寻这些问题的答案。经过400多年的发展,近几年国际上出现了超高分辨率显微镜这一工具,一经面世就引起了众多科学家的关注和极大兴趣。那么什么是超高分辨率显微镜,为什么它能让科学家如此感兴趣呢?我们一起往下看。超高分辨率显微镜的诞生,是生命科学史上的一座里程碑简单的讲,超高分辨率显微技术是通过应用一系列物理原理、化学机制和算法“突破”了光学衍射极限,把光学显微镜的分辨率提高了几十倍,使得人类能在200nm以下以前所未有的视角观察生物微观世界的技术,具有超高分辨成像技术和实现超高分辨率成像能力的显微镜就是“超高分辨率显微镜”。那么什么是光学衍射极限呢?所谓光学衍射极限,是1873年德国科学家恩斯特阿贝提出的,由于光是一种电磁波,存在衍射,一个被观测的点经过光学系统成像后,不可能得到理想的点,而是一个衍射像,每个物点就像一个弥散的斑,如果这两个点靠得很近(小于可见光波长大约一半,约200nm),弥散斑就叠加在一起,看到的就只能是一团模糊的图像,也就无法清晰观测到衍射极限以下物体的微观空间结构。并且光学衍射极限此前长期被认为是限制光学显微镜技术通向更微观的“拦路虎”和“绊脚石”,甚至被科学界一度认为是无法突破或绕开的。直到2000年,几位世界知名科学家先后发明了几种不同技术路线的的超高分辨率显微技术。其中,Stefan Hell、Eric Betzig和W.E. Moerner三位科学家就是因其在超高分辨率显微成像技术领域的突出贡献,获得了2014年诺贝尔化学奖。至此,人类才得以突破光学衍射极限这一横亘在前、不可逾越的“大山”,实现了200nm以下超高分辨率显微成像,以光学的方法观测到纳米尺度世界的真实样貌。超高分辨率显微镜可用来研究分子定位与空间分布、分子相互作用、分子复合物的构成,并可实现分子的计数。除具有200nm以下卓越分辨率性能外,对生命样品结构也可进行精准成像定位,还具备对活体细胞进行微观观察的可能性,对于生物、生命科学、医药、医学等的领域都有着重要意义,因此吸引了全球科学家的持续研究和关注。通常来说,超高分辨率显微镜主要有两大类技术策略,一类是通过特定模式照明对分子受激荧光差异化调制实现超高分辨率成像。代表产品有受激发射光耗损显微镜(Stimulated Emission Depletion, STED)和结构光照明显微镜(Structured Illumination Microscopy, SIM)。另一类,是利用荧光分子的“开关”特性,使其随机闪烁,从而能够对单个分子分别记录,实现超高分辨率成像。随机光学重构显微镜(Stochastic Optical Reconstruction Microscopy, STORM)就是这类技术路线的代表。第一大类中,STED及其衍生都是利用“甜甜圈”状的空心光束来修饰位于中间激发光的点扩散函数(Point Spread Function, PSF),从而达到直接超分辨成像的目的。而SIM则是利用了结构光照明,以获得包含样本的结构信息的干涉图案“摩尔条纹”,加上后期的图像重构,达到超分辨成像的目的。第二大类中,STORM是利用了荧光染料分子“光控开关”(photo-switchable)性质,达到在一个衍射极限空间内(200~300 nm)随机“点亮”单个荧光分子并进行高精度定位的目的。既然叫超高分辨率显微镜,最为重要的就是对空间分辨率的提升。其实无论哪一类技术,理论上空间分辨率都是可以实现无穷小,但是受限于样本、荧光染料特性、标记密度、激发光效率等原因,实际拍摄中能实现的空间分辨率是几十纳米。从遍地洋货到国货崛起众所周知,高端显微镜市场被“洋货”所长期垄断,不仅在国外如此,在中国也是如此,国货“芳踪难觅”,这对于我们这样一个大国来说可算是“一言难尽”。当然,也有令人感到振奋的信息,那就是在超高分辨率显微镜这个细分领域,除了“洋货”最近也已见到了国货产品的身影。宁波力显智能科技有限公司(INVIEW)的超高分辨率显微镜产品INVIEW iSTORM就是一款国产超高分辨率显微产品。宁波力显智能科技有限公司是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖得奖技术产业化,推出了INVIEW iSTORM超高分辨率显微产品,以帮助人类以前所未有的视角观察微观世界,突破极限,见所未见。INVIEW iSTORM超高分辨率显微镜产品采用dSTORM技术路线,具有20nm超高分辨率、2-3通道同时成像、界面友好、简单易用、系统稳定性好、环境适应性高等的特点。技术先进,20nm超高分辨率,3D成像采用STORM随机光学重构技术,加入柱面镜设计,在XY轴分辨率达20nm、Z轴分辨率达50nm,具备3D成像功能。多通道同时成像光路设计,稳定性高采用专有的多通道同时成像的光路设计,提供稳定的光路。自主开发的成像分光光路,可保证通道间的光学路径相对独立,使得样品发出的荧光最大效率地被探测器接收,最大限度降低通道间的串扰。并配合以最佳染料方案和最佳成像缓冲液配方,以多通道同时成像的方式,在几秒到十几分钟的时间范围内实现20nm的超高分辨率成像。物理样品锁定设计,锁定精度1nm采用纳米级实时动态锁定技术,以实时物理补偿方式纠正样品漂移,无需预热,即开即用,操作简便,免受如气流、温度变化、噪音、机械振动等的环对样品位置的影响,在高楼层、嘈杂、震动、常温常态的环境下也能稳定成像,因而具有高效、简便、对环境适应性好的特性,友好易用。 “傻瓜式”操作,易学易用软件集成了多种成像算法,并在采集数据时实时呈现超高分辨图像重构结果和详细参数,“所见即所需”,操作流程化,简单易用。具有拍摄过程简单易用、参数优化实时透明、超分辨图像实时重构、自动化用户数据管理、图像数据后分析功能等五大特点。此外,经过优化的样本制备方案更易于实验人员的掌握和实际操作。即便是技术新手,经过简单的技术讲解,2个小时以内就可操控系统并获得理想的超分辨率成像结果。以上,INVIEW iSTORM超高分辨率显微产品所具备的综合特点和优势,使得它能够帮助到更多科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究。另外,值得一提的是,INVIEW iSTORM产品还以优异的光路、较低强度的照明、多通道同时成像所支持的较短成像时间等的综合性能,结合合适的荧光探针及根据探针特性调整的探测器拍照频率等,实现活细胞的超高分辨率成像,这将更大程度上帮助到科学家在生物学基本问题与机制上的科学研究。随着人类对自然的认识向更加微观的时空尺度,传统的科研手段已经不能完全胜任,没有高端科研仪器,要想做出重大原始创新科研成果很困难。力显智能科技将继续立足于超高分辨率显微镜技术研究及产品开发,不断推出新技术、新品,从而推动高端显微技术在中国的产业化和应用,努力为我国生命科学、医学、药学等领域的科学研究提供强大助力。INVIEW iSTORM超高分辨率显微产品超高分辨率显微技术的未来可期作为一种新兴荧光显微成像技术,超高分辨率显微成像正受到科学家们的广泛关注,实验室中不断产生着振奋人心的数据。围绕着超高分辨率核心,主要研究方向为不断提高显微镜成像性能,使其分辨率更高,成像速度更快,成像深度更深,视野范围更大,及更低的光毒性光漂白。而我们也可以清晰的看到,由于不同的超高分辨率成像技术提升分辨率的技术路径差异,很难有“面面俱到”的技术可以满足差异化样品的全部成像需求,“精准成像”,也就是针对不同的样品特点,而选择最适合这类样品的显微成像技术,是进行生命科学等领域研究的最优解,这也促使生物,光学,算法,图像处理等领域的研究人员不断深入跨学科合作,共同探索生命的奥秘。即便有了更快、更高、更深、范围更大,更低光毒性光漂白的超高分辨率显微镜,扩展应用仍有诸多挑战。细胞内有成千上万的转录本,有数以万计的蛋白分子。超高分辨率显微镜能否用来实现组学水平的多分子检测?能够找到或开发出足够多样的荧光染料以匹配更多分子吗?或者能找到奇方妙法可以实现多重、多轮检测吗? 能否开发出新型的荧光染料,使其具有更高的光子预算,更好的光稳定性、光激活、光开关以及转换速率等特性;研制更快更灵敏的光子探测器、输出功率更高的激光器;更稳定、高效、智能的光学系统;更加高效的算法以及不同超高技术路线的联合应用;开发组学水平的多重检测方法等等,正有许多的科学家、研究者们正在进行着有益的尝试。相信未来超高分辨率技术应可应用于实现细胞内的原位测序、原位转录组与蛋白质组分析,并最终获得全景的、多组学、全时空细胞全部分子组织及相互作用图像,真正实现分子生物学与细胞生物学的新融合,让人类有更全面、更精细的视角来理解生命的基本分子组织及其运行的基本机制!超高分辨率技术和产品应用前景巨大,未来可期,令人振奋!
  • 南理工发明三维显微镜 成本8万或打破垄断
    p  屏幕上圆形立体的巨噬细胞正在慢慢地伸出“触角”,吞噬着周围的残骸,看上去有几分触目惊心……这一画面来自于南京理工大学电光学院研究生们发明的一种新型三维显微镜。由于彻底改变显微镜现有成像方式,该作品近日在第十四届“挑战杯”全国大学生课外学术科技作品决赛中一举夺得特等奖。/pp style="text-align: center "img title="OArg-fxkwuwk9559544.jpg" src="http://img1.17img.cn/17img/images/201511/noimg/6b5403c5-f630-42cf-8980-f2f4542441e1.jpg"//pp  strong真实的巨噬细胞像个怪物/strong/pp  记者昨天在现场看到,随着工作人员的操作,显微镜看到的影像显示在屏幕上,只见一个“张牙舞爪”的圆形家伙正在吞噬着周围的“杂物”,像极了卡通片里的怪物。“这就是巨噬细胞的真实模样,它是我们身体的护卫者,遇到细菌病毒就会消灭它们。”电光学院研二的林飞指着屏幕说。/pp  这种新型显微镜叫SCscope。乍看之下,它和传统显微镜在外形上并没有太大区别。仔细观察才发现,原来它的照明光源与成像焦距都是可以通过软件灵活操控的。“显微镜通过可编程照明产生不同的光线照射样品,并采用电控变焦透镜快速扫描物体不同的焦面,配合软件中的图像重构算法,便可完成视野内所有细胞的同时三维成像。”/pp  林飞告诉记者,传统显微镜成像是平面的,而通过三维显微镜,任一细胞的厚度、尺寸都可以随着鼠标的选取精确地获得。/pp  strong千人合影可以看清脸上的痣/strong/pp  “显微镜经过四百多年的发展,仍然没有摆脱‘可见即所得’的传统成像模式,而我们的作品革命性地采用‘计算成像’的全新概念,这为显微镜的功能与性能带来了跨越式的提升。”林飞说。/pp  据了解,目前常用的细胞显微镜观测需要对细胞进行染色或标记,或通过外界激发光源对细胞成像进行分析,但这些标记以及长时间的曝光往往对细胞有一定的伤害,甚至导致细胞的死亡,无法获知细胞真实长生状况。/pp  而SCscope显微镜不但不用把活细胞染色,而且可以看到三维立体的细胞,并且在任意视角观察,“可以生成高达2.8亿像素的‘全视场、高分辨’图像,这就好比在一张千人大合影中,可以看清每个人脸上的痣。”/pp  值得注意的是,这个新型显微镜还在同一系统中集成了明场显微镜、暗场显微镜、相衬显微镜、微分干涉显微镜等现有多种专用显微镜的成像功能,且可以做到“一键切换”,使得显微镜功能更加多样,成本更加低廉。/ppstrong  打破国外光学显微镜的垄断/strong/pp  林飞说,这款显微镜成本8万多元,相当于现用显微镜的三分之一,可大大降低医疗检测的门槛。目前,已经在南京部分医院进行试用。/pp  指导老师左超副教授说,SCscope改变了传统显微成像系统获取信息方式,提升其获取信息能力,有望在生物医学、材料科学、工业检测、科研教学等众多领域得到广泛应用。相关核心技术已申请国家发明专利4项。目前国内已有多家单位前来洽谈合作,如果该作品投入生产并在相关行业大力推广应用,将有望推动我国显微镜产业的技术革新,将打破国外高端光学显微仪器的长期垄断地位。/pp/p
  • 布鲁克收购生命科学荧光显微镜制造商Prairie
    布鲁克公司宣布已经收购Prairie Technologies公司(Prairie) ,Prairie是一家生命科学荧光显微镜产品供应商。布鲁克纳米表面分析部门现的有生命科学原子力显微镜(生物AFM )系统,再加上此次收购,将进一步增强布鲁克在生命科学仪器市场中的地位。  Prairie总部位于威斯康星州麦迪逊附近,是多光子荧光显微镜的先驱。其业界领先的多光子产品已帮助研究人员在神经生物学和细胞生物学领域实现了革命性的发现。Prairie的产品,据估计每年有1.5亿美元的市场。Prairie的加入将使布鲁克进入荧光显微镜市场,它的产品包括了多点扫描、单光子共聚焦和多光子产品。Prairie在全球拥有约30名员工,2012年的收入约为1100万美元。布鲁克打算将Prairie作为威斯康星州麦迪逊地区的一个业务单元,并计划利用布鲁克纳米表面分析部门在全球市场营销,销售和服务资源来销售Prairie的产品。  &ldquo Prairie引领着多光子荧光显微镜产品的发展。他们的产品和创新令人印象深刻,客户已经用他们的产品实现了突破性的成果。&rdquo 布鲁克MAT集团总裁Mark R. Munch说道。&ldquo 他们的Ultima双光子显微镜产品线和新Opterra扫场多点扫描共聚焦荧光产品线为布鲁克提供了令人兴奋的新领域,这将与我们的生物AFM产品形成显著的协同效应。&rdquo   &ldquo 在超过十七年的时间里,Prairie一直致力于为神经生物学和细胞生物学的研究人员,提供领先的光学仪器设计和丰富的软件功能。&rdquo Prairie创始人和总裁Mike Szulczewski说:&ldquo 我们非常高兴能够加入布鲁克,并期待加入布鲁克后能持续创新,以及加强全球分销和为我们的客户服务的能力。&rdquo   关于Prairie Technologies, Inc.  Prairie Technologies, Inc.成立于1996年,致力于为生命科学研究人员提供先进的光学荧光显微镜。Prairie Technologies可提供双光子显微镜,多点扫描共聚焦显微镜,激光照明光源,光敏,光刺激和光烧蚀配件,同步软件和分析软件。欲了解更多信息,请访问www.prairie-technologies.com.编译:秦丽娟
  • 超分辨显微镜/共聚焦显微镜等在生命科学领域的前沿应用
    1873年,德国物理学家恩斯特阿贝(Ernst Abbe)提出光学显微镜存在分辨率极限,约为200nm。2014年的诺贝尔化学奖同时授予了三位科学家,他们在突破了“阿贝极限”,在超分辨荧光成像技术领域做出重要成绩,将光学显微技术带入到纳米尺度。近些年来,超分辨显微技术得到了快速发展,当前主要的超分辨技术有结构光照明(SIM)、受激发射损耗(STED)、光激活定位显微(PALM)、随机光学重构(STORM),相关技术陆续实现商业化,并且产品在不断完善。我国在超分辨显微镜的发展上也紧跟步伐,不仅传统光学显微镜厂商开始转向这一领域(永新光学今年已经发布超分辨显微镜),许多科研单位在相关技术上不断取得突破,并且落地成果,成立企业将相关技术产业化,如超视计、纳析光电、艾锐科技等。12月20-22日,仪器信息网将举办第四届先进生物显微技术及前沿应用网络会议(点击报名),21日上午,超视计、纳析光电、艾锐科技的创始人,同时也分别是北京大学和中科院生物物理所的PI,将分享相关技术和产业化进展。同一会场,清华大学蛋白质研究技术中心细胞影像平台和尼康生物影像中心平台主管王文娟博士将分享共聚焦显微镜在生命科学领域的高级应用,中科院细胞科学卓越创新中心的单琳博士(陈玲玲研究员课题组)讲分享她在科研工作中多种超高分辨率成像技术的应用;显微镜“四大家”之一徕卡的童昕老师将分享徕卡多模式智能显微技术在生命科学领域的应用。点击图片也可免费报名
  • 明美倒置荧光显微镜助力南方科技大学药物研发
    微球(microspheres)是指药物分散或被吸附在高分子聚合物基质中而形成的微小球状实体,由于微球制剂具有长效缓释或靶向作用,可以大大提升患者用药的方便性、依从性,在临床上已突显优势,近年来已成为药物研发的热点。近日,南方科技大学电子工程系针对药物研发需求对制备微球进行观察,找到我司销售工程师购置了倒置荧光显微镜MF52搭配科研级显微镜相机MSX2进行制备微球材料荧光观察,荧光下观察很清晰,成像质量得到高度认可。倒置荧光显微镜MF52是由LED落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。落射荧光显微系统采用模块化设计理念,可以安全、快揵地调整照明系统,切换荧光滤色片组件。多应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微观察。
  • 光学显微镜在地质及矿物分析中的应用
    矿产资源是自然资源的重要组成部分,是经济发展和科技进步的重要物质基础。运用现代分析测试技术能够获取详实准确的矿石和矿物数据信息,掌握区域内矿石和矿物的分布情况,阐明岩石矿物的经济价值和应用价值,进而为矿产资源的开发和利用提供科学决策,为保障国家能源安全和实施新一轮找矿突破战略行动提供技术支撑。 为促进学术交流和思想碰撞,国家地质实验测试中心主办期刊《岩矿测试》携手仪器信息网于2023年8月24日组织召开新一期“现代地质及矿物分析测试技术与应用”网络研讨会。期间,徕卡显微系统应用工程师姚永朋将分享报告,从徕卡体视显微镜、数码显微镜、偏光显微镜、徕卡光学观测+元素分析二合一LIBS系统等方面,介绍光学显微镜在地质矿物分析中的应用。欢迎大家报名听会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制