当前位置: 仪器信息网 > 行业主题 > >

整体二维电动平移台

仪器信息网整体二维电动平移台专题为您提供2024年最新整体二维电动平移台价格报价、厂家品牌的相关信息, 包括整体二维电动平移台参数、型号等,不管是国产,还是进口品牌的整体二维电动平移台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合整体二维电动平移台相关的耗材配件、试剂标物,还有整体二维电动平移台相关的最新资讯、资料,以及整体二维电动平移台相关的解决方案。

整体二维电动平移台相关的资讯

  • 厦门质谱公司全二维气质联用仪新产品专家评议会召开
    仪器信息网讯 8月25日,厦门质谱仪器仪表有限公司新产品&mdash &mdash &ldquo 全二维气相色谱/快速气相色谱-飞行时间质谱联用仪&rdquo 的专家评议会在厦门大学国家大学科技园召开。评议会由中国仪器仪表学会分析测试分会秘书长刘长宽主持,由中国科学院院士陈洪渊担任评议会组长。参加此次会议的还有中国质谱学会理事长研究员李金英、中科院化学所研究员王光辉、江西省质谱科学与仪器重点实验室主任、教授陈焕文、中国分析测试协会研究员汪正范、中国气象局大气环境研究院研究员徐晓斌、厦门大学环境科学系教授王新红和中国质谱学会领导研究员苏玉兰、副研究员肖国平。   陈洪渊院士、李金英理事长、王光辉研究员等专家进行实地考察   厦门大学机电系教授何坚 做产品研发报告   专家评议组成员合影   评议会专家组首先实地参观考察了厦门质谱公司研发基地,然后听取了该项目的产品研发报告、查新报告、自测报告、用户报告、专利及企业标准,审查了有关技术资料,并进行了现场考查与质询,一致认为厦门质谱仪器仪表有限公司研发的 &ldquo 全二维气相色谱/快速气相色谱-飞行时间质谱联用仪&rdquo ,是国内首款具有自主知识产权的气相色谱-飞行时间质谱联用仪。该仪器设计先进合理,加工和制作精密可靠,测试方法严密有效 仪器的质量范围、分辨率、灵敏度、采谱速度和测试重复性等各项指标均已达到目前国际同类产品的先进水平。专家组建议:继续加大产品的研发投入力度,并积极争取国家支持 加强产品的应用开发 做好市场开发工作,使产品尽早投放市场。   &ldquo 全二维气相色谱/快速气相色谱-飞行时间质谱联用仪&rdquo 的研发成功为打破国外厂家的长期垄断和推动国产质谱的发展具有重要意义。该仪器配备了采集与控制和数据分析两套软件。采用面向对象型和模块化方式开发软件,功能丰富强大,界面简洁直观高效,不仅能完全实现自动化控制和谱图采集,而且能实现数据批量处理 该软件还能与NIST 2014数据库对接,迅速获得相应的图谱和结构信息。仪器的自动调谐和谱图处理等软件算法技术达到国际先进水平。该项目共申请6项发明专利(已授权2项),以及软件著作权6项(已授权1项)。项目产品经用户测试,其检测精度较高,稳定性好,达到了国家产品标准。该仪器可以广泛应用于石油化工、香精香料、烟草酒业、食品安全、环境监测和中药鉴定等领域,对分析复杂样品尤为重要。    GCxGC-TOFMS(iTOFMS-2G)的实物外观图    Fast GC-TOFMS(iTOFMS-1G)的实物外观图 产品介绍   全二维气相色谱-飞行时间质谱联用技术(Comprehensive Two-dimensional Gas Chromatography-Time of Flight Mass Spectrometry, GCxGC TOFMS)是近十年以来,国际上发展最迅猛的色质联用技术之一,是色谱-质谱联用技术发展的一个最新趋势。相比于常规气质联用具有高通量、高分离度和高灵敏度等显著优势,是解决复杂体系中全组分和痕量组分分析的最佳方案,逐渐成为石油化工、香精香料、烟草酒业、食品安全、环境监测和中药鉴定等领域的必备分析仪器。   快速气相色谱-飞行时间质谱联用技术(Fast Gas Chromatography-Time of Flight Mass Spectrometry, Fast GC-TOFMS)是当今最具潜力的气质联用技术之一,并已经得到了广泛的实践证明。与常规气质联用相比,能够提高3~6倍的分析速度(在保证足够的分辨率的条件下,只需十分钟就绝大数中等或中等高度复杂混合物的分离与分析)。不仅极大地提高了工作效率,节约了时间成本,而且对色谱柱的要求低,显著减小了对仪器的污染,降低了维护和使用成本。 研发团队和公司:   何坚教授带领他的研发团队,经过两年多夜以继日的辛勤努力,开发出了中国首款具有完全自主产权的商品化小型台式气相色谱-飞行时间质谱联用仪。它具有高分辨、高灵敏度和高采集速度的优异功能,实现了与全二维气相色谱/快速气相色谱的完美对接。   厦门质谱仪器仪表有限公司(简称厦门质谱公司)成立于2012年,是国内一家专注于飞行时间质谱器技术研发与生产的新兴企业。去年9月成为江苏天瑞仪器股份有限公司(以下简称天瑞仪器)的控股子公司。厦门质谱公司总经理、厦门大学机电系(原科学仪器工程系)何坚教授师从中国质谱先驱季欧教授,多次担任质谱仪研制重大国家项目的技术负责人,曾研发成功国内首台高分辨率电喷雾离子源飞行时间质谱仪(2002年)。厦门大学机电系(原科学仪器工程系)是国内最早(1983年)、也是目前国内非常少的、具有以质谱仪研制为科研方向的工科院系。因此,厦门质谱公司传承了厦门大学三十余年质谱技术的研究经验与成果。   天瑞仪器在2012年一次推出GC-QMS、LC-QMS和ICP-MS三款质谱产品之后时隔2年,质谱仪产品家族又增添新的成员-全二维气相色谱/快速气相色谱-飞行时间质谱联用仪。至此,天瑞仪器在气质联用领域形成了从GC-QMS到GCxGC/Fast GC-TOFMS的高低搭配,形成完整的气质联用解决方案,成为目前国内质谱产品最全的厂家。去年天瑞仪器年报显示GC-QMS销售22台,创下迄今为止国产质谱的年销售最佳成绩。这表明天瑞仪器质谱产品已经逐步被国内用户认可,市场前景良好。
  • 二维磁性材料非线性光学研究取得重要进展
    p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 据悉,近年来,二维磁性材料在国际上成为备受关注的研究热点。它们能将自发磁化保持到单原胞层厚度,为人们理解和调控低维磁性提供了新的研究平台,也为二维磁性与自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面有着重要应用价值。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 尽管二维磁性材料的铁磁性质已有研究,但反铁磁态由于不具有宏观磁化,材料体系整体对外不表现出磁性,加之样品既薄又小,其实验研究是领域内的一大难题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 针对这一问题,近日,复旦大学物理系吴施伟课题组与华盛顿大学许晓栋课题组合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。北京时间8月1日凌晨,相关研究成果以《反铁磁双层三碘化铬中巨大的非互易二次谐波产生》(“Giant nonreciprocal second harmonic generation from antiferromagnetic bilayer CrI3”)为题发表于《自然》(Nature)杂志。 /span /p p style=" text-align: center text-indent: 2em " span style=" font-family: & quot times new roman& quot " img style=" max-width: 100% max-height: 100% width: 400px height: 273px " src=" https://img1.17img.cn/17img/images/201908/uepic/4ab2a45d-ae2c-44ff-a0d7-2d4959a3a9a0.jpg" title=" caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" alt=" caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" width=" 400" height=" 273" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: & quot times new roman& quot font-size: 14px " 双层三碘化铬 图片来自复旦大学物理系网站 /span /p p style=" text-align: justify " strong span style=" font-family: & quot times new roman& quot " 将经典方法引入新领域 开辟广阔研究空间 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究工作中观测到的由层间反铁磁诱导的二次谐波响应让团队成员们非常兴奋,因为他们知道,这在二维材料的研究和非线性光学领域都具有重要的意义。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " “意义首先在于其独特性。”吴施伟介绍,迄今为止二维材料领域所研究的二次谐波大多由晶格结构的对称破缺引起。“对称破缺也就是破坏对称性,例如人的左右手原本是镜面对称的,如果一只手指受伤,那么镜面对称就破缺了。”而这种由磁结构产生的非互易二次谐波和前者有本质区别,从原理上就十分新颖。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 反铁磁材料由于没有宏观的磁矩,对外部的物理激励一般难以产生宏观的可测量的响应,对仅有几个原子层厚的二维反铁磁材料往往无能为力。“过去这个问题就像是灯光照不到的地方,一片黑暗无从下手。然而就是这样的一种‘暗’状态,现在能通过二次谐波的方式变‘亮’。这也是将一种经典的方法引入一个新领域的美妙所在。”吴施伟对此颇有感触。这种二次谐波过程对材料磁结构的对称性高度敏感,为二维磁性材料的研究开辟了广阔的研究空间。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究团队同时发现,双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量级的提升,比常规铁磁界面产生的二次谐波更是高出十个数量级。利用这一强烈的二次谐波信号,团队得以揭示双层三碘化铬的原胞层堆叠结构的对称性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 吴施伟介绍,体材三碘化铬在高温下属于单斜(monoclinic)晶系,在低温下发生结构相变而变为菱形(rhombohedral)晶系,两者的差别在于范德瓦尔斯作用(一种原子或分子之间的相互作用力,相比于化学键的相互作用,范德瓦尔斯相互作用弱得多)的层间平移。但在寡层极限下,低温下的晶格堆叠结构还存在着争议。团队在实验中使用一束偏振光测量了材料在空间不同方向的极化,通过测量偏振极化的二次谐波信号,发现它与单斜晶格的堆叠结构都具备镜面对称性,这与国际上新近发表的理论计算结果一致,为研究二维材料层间堆叠结构与层间铁磁、反铁磁耦合的关联提供了新的实验证据和研究手段。 /span /p p style=" text-align: justify " strong span style=" font-family: & quot times new roman& quot " 创新研发实验系统 实现基础研究突破 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究团队在实验中探测的反铁磁材料仅有两个原胞层厚度(厚度在2nm以下),而在此条件下,中子散射等测量手段很难奏效。针对这一问题,团队基于过去多年在二维材料非线性光学研究领域的积累,运用了光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 光学二次谐波过程对体系的对称性高度敏感,光学二次谐波的探测方法从体系的对称性入手,能够灵敏地探测体系的反铁磁性。与通常探测磁性的实验手段不同,它不依赖于材料的宏观磁性,而取决于微观磁结构造成的对称破缺。双层三碘化铬在反铁磁态下,其磁结构不但打破了时间反演对称性,也同时打破了空间反演对称性,由此产生强烈的非互易二次谐波响应。当体系升至转变温度以上、或施加面外磁场拉为铁磁态后,磁结构的对称性却发生了改变,这一二次谐波信号也随之消失。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 自2017年至今,两年的协力共进浇灌出如今的成果。团队首先利用实验室已有的无液氦可变温显微光学扫描成像系统进行了初步测量,但由于该系统没有磁场,很多关键的实验测量受到了限制。为解决这一问题,课题组成员攻坚克难,利用一套无液氦室温孔超导磁体,自主研发搭建了一套无液氦可变温强磁场显微光学扫描成像系统,并借助新系统实现强磁场下的光学测量,完成了关键数据的探测。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 据了解,该研究工作的合作团队还包括香港大学教授姚望、卡耐基梅隆大学教授肖笛、华盛顿大学教授曹霆、美国橡树岭国家实验室研究员Michael McGuire,以及我系教授刘韡韬、陈张海、高春雷等。吴施伟和许晓栋为文章的通讯作者,我系博士研究生孙泽元和易扬帆为共同第一作者。研究工作得到自然科学基金委、科技部重大研究计划和重点研发专项计划等项目经费的支持。 /span /p p br/ /p
  • 2023 Advanced Science吕宥蓉& 阙居振如何缓解准二维钙钛矿光电二极体效率衰减
    AdvancedScience(IF:20.7)吕宥蓉&阙居振_缓解准二维钙钛矿光电二极体效率衰减的新策略随着全球能源转型的迫切性不断增强,太阳能已成为一种重要的替代能源。在众多可用技术中,特别是钙钛矿光电二极体(PeLEDs)这类太阳能光伏技术已在科学界广受关注。值得注意的是,准二维钙钛矿材料作为PeLEDs的一个子类别,由于量子限制效应和不同n相之间的有效能量传递,展现出良好的光学特性。然而,这些有前途的材料常常受到导电性差、载流子注入不佳以及在高电流密度下效率衰减严重等问题的困扰,限制了它们在太阳能转换中的应用潜力。来自中研院副研究员吕宥蓉与中国台湾大学化工系副教授阙居振等研究学者所共组团队最近发表了一篇研究,该研究旨在改善准二维钙钛矿光电二极体(PeLEDs)的性能。此团队致力于提高亮度、减少陷阱密度以及减缓高电流密度下的效率衰减问题。研究团队提出了一种创新方法,以增强这些准二维PeLEDs的性能,主要集中在提高亮度、减少陷阱密度和降低效率衰减等方面。PeLEDs的概念理解及其限制这项技术的核心在于钙钛矿材料的特性。这些材料通常是混合有机无机铅或锡卤化物,对于光伏应用具有良好的光吸收、载流子迁移率和发射特性等诱人特性,然而当这些材料在PeLEDs的准二维配置中应用时,它们的性能却受到一系列限制因素的限制。然而准二维钙钛矿材料,尽管具有良好的稳定性、可调节能隙和较高的光致发光量子产率,但导电性降低且载流子注入减少,这些问题导致在增加的电流密度下出现显著的效率衰减,降低了亮度和整体器件性能。解决准二维PeLEDs效率衰减问题本研究探索了一种新方法,通过在钙钛矿和电子传输层之间的界面添加一层薄的导电胆碱氧化物来缓解这些缺点。这种创新方法出人意料地并未增强钙钛矿膜中不同准二维相之间的能量传输。相反,它显著改善了钙钛矿界面的电子特性,引入这一额外的层次解决了两个关键难关。首先,它对钙钛矿膜中的表面缺陷进行了去活化处理。其次,它促进了电子注入并限制了界面上的空穴泄漏。结果,经过优化的纯Cs基准二维器件展现出超过70,000cdm&minus 2的亮度、10%以上的最大外部量子效率(EQE)以及在高偏压下显著降低的效率衰减,这些数据与对照组器件相比呈现出明显的改善,显示了所提出技术的有效性。实验方法与材料研究中探索了在准二维钙钛矿中引入导电胆碱氧化物PPT和PPF以减少光电器件效率衰减的潜在优势,重点放在在沉积电子传输层(ETL)之前,在钙钛矿膜上添加PPT或PPF额外层次的应用上,这个过程被认为可以增强载流子注入并去活化表面缺陷,从而抑制非辐射复合。对修改过的钙钛矿膜进行初步研究时,未观察到结晶度或相分布的明显变化。X射线衍射(XRD)和紫外可见吸收光谱(UV-Vis)证实了修改对相分布和膜质量没有影响,此外,PPT和PPF的应用并未显著改变膜的形态,这一点得到了扫描电子显微镜(SEM)的确认。为了了解这些修改对载流子动力学的影响,使用稳态光致发光(PL)光谱和时间分辨光致发光(TRPL)测量。在修改后的两个膜中观察到明显的PL熄灭,表明钙钛矿层和PPT/PPF层之间发生了载流子传输。此外,修改后的两个膜中的平均载流子寿命增加,表明有效去活化。作为对这些修改与钙钛矿相互作用的补充,使用核磁共振(NMR)、静电势(ESP)图和X射线光电子能谱(XPS)检测了PPT/PPF和钙钛矿之间的相互作用。这些测试的数据确认了后处理过程中PPT/PPF层成功旋涂到钙钛矿膜上。结果表明,磷酸胆碱氧化物中的P=O基团成功地与表面缺陷和空位协同作用,形成优势的去活化效应。在令人期盼的发现之后,基于修改过的钙钛矿膜制作了PeLEDs并与对照器件进行了比较。PPT和PPF的修改都显著提高了性能,防止了从钙钛矿层向ETL的空穴泄漏,并促进了电子传输。修改后的器件亮度是对照器件的两倍以上,并在高电压下显著降低效率衰减。这些结果突显了在纯Cs基准二维钙钛矿PeLEDs中使用PPT和PPF磷酸胆碱氧化物的潜力。总之,引入导电胆碱氧化物以去活化准二维钙钛矿材料在提高光电器件性能方面提供了令人寄予厚望的策略,未来进一步的研究将有助于优化这些材料在未来器件结构中的应用。在这项研究中,研究团队使用了EnlitechLQ100X-PL光致发光和发光量子产率测试系统,光焱科技这一款PLQY量测设备具有紧凑设计和NIST可追踪性的优势,其设备仅有502.4毫米(长)x322.5毫米(宽)x352毫米(高)的尺寸,提供了一个节省空间的解决方案,与手套箱集成再也不是难题,这种手套箱集成能力对一就实验尤其重要,可以在避免水解或氧化的情况下进行精确测量,避免测试物品的效率因水氧而降低应有的效率。LQ-100X-PL的先进仪器控制软件使其能够进行原位时间光致发光光谱分析并同时生成2D和3D图形。这种能力加速了材料表征过程,快速获得对样品的洞察。此外,LQ-100X-PL的光学设计将光谱波长范围从1000纳米扩展到1700纳米,并且与多种样品类型兼容,包括粉末、溶液和薄膜。这些特点凸显了该系统的多功能性,并在成功完成本研究中发挥了关键作用。本研究总结性地证明了策略性界面工程能够显著提高准二维PeLEDs的性能。通过在钙钛矿/电子传输层界面处引入薄的导电胆碱氧化物层,能够减少表面缺陷并促进载流子动力学的改善。这种增强的电子注入和改善的空穴阻挡效应使得器件亮度提高并在高电流密度下减少效率衰减。这项研究揭示了界面特性在PeLEDs性能中的关键作用,为未来在该领域的研究和开发开辟了新的途径。a)PPT和PPF的化学结构,后处理过程的示意图以及界面工程的插图。b)原始、PPT处理和PPF处理的钙钛矿薄膜的PL发射光谱,c)PLQYs,d)TRPL曲线,其中PLQYs是通过368nm激光测量的。31PNMR谱图,包括a)PPT和b)PPF及其与不同钙钛矿前体成分的混合物。c)PPT分子的ESP图。d)Pb4f信号的XPS谱图,涵盖原始的、PPT修饰的和PPF修饰的钙钛矿薄膜。e)表示PPT在钙钛矿表面的钝化功能的示意图。a)制造的PeLEDs的结构和b)能级图。c)J&minus V&minus L特性,d)归一化EQE电压曲线,e)归一化EQE电流密度曲线和f)制造的器件的EQE亮度曲线。使用可见区域的瞬态吸收(TA)颜色图,分别展现a)原始的、b)PPT修改的和c)PPF修改的钙钛矿薄膜。原始的、PPT修改的和PPF修改的钙钛矿薄膜的超快时间分辨TA谱分别为d)、e)和f)。在505nm的探测波长下,展示了g)原始的、h)PPT修改的和i)PPF修改的钙钛矿薄膜的功率依赖载流子动力学。a)对控制、PPT修饰和PPF修饰器件进行的EIS分析和b)电容-电压曲线。c)原始、PPT修饰、PPF修饰钙钛矿薄膜和TPBi的能级。d)修饰器件中更好的载流子动力学的示意图。
  • 狂发Nature等顶刊!Lake Shore低温探针台,助力超越硅极限的二维晶体管革新
    当今科技迅猛发展,电子器件的小型化和性能提升是科研人员的极致追逐。其中,晶体管是当代电子设备中不可或缺的核心组件,其尺寸微缩和性能提升直接关系到整个电子行业的进步。与此同时,硅基场效应晶体管(FET)的性能逐渐逼近本征物理极限,国际半导体器件与系统路线图(IRDS)预测硅基晶体管的栅长最小可缩短至12 nm,工作电压不低于0.6 V,这决定了未来硅基芯片缩放过程结束时的极限集成密度和功耗。因此,迫切需要发展新型沟道材料来延续摩尔定律。 二维(2D)半导体具备可拓展性、可转移性、原子级层厚和相对较高的载流子迁移率,被视为超越硅基器件的下一代电子器件的理想选择。近年来,先进的半导体制造公司和研究机构,都在对二维材料进行研究。Lake Shore的低温探针台系列产品可容纳最大1英寸(25.4mm)甚至8英寸的样品,可以为二维半导体材料研究提供精准的温度磁场控制及精确可重复的测量,是全球科研工作者的值得信赖的工具。本文我们将结合近期Nature、Nature electronics期刊中的前沿成果,一起领略Lake Shore低温探针台系列产品在二维晶体管革新中的应用吧! 图1. Lake Shore低温探针台1. 探针台电学测量揭秘最快二维晶体管——弹道InSe晶体管 对于二维半导体晶体管的速度和功耗方面的探索,北京大学电子学院彭练矛院士,邱晨光研究员课题组报道了一种以2D硒化铟InSe为沟道材料的高热速度场效应晶体管,首次使得二维晶体管实际性能超过Intel商用10纳米节点的硅基FinFET(鳍式场效应晶体管),并将工作电压下降到0.5V,称为迄今速度最快、能耗最低的二维半导体晶体管。相关研究成功以“Ballistic two-dimensional InSe transistors”为题发表于《Nature》上。 基于Lake Shore 低温探针台完成的电学测试表明,在0.5 V工作电压下,InSe FET具有6 mSμm-1的高跨导和饱和区83%的室温弹道比,超过了任何已报道的硅基晶体管。实现低亚阈值摆幅(SS)为每75 mVdec-1,漏极诱导的势垒降低(DIBL)为22 mVV-1。此外,10nm弹道InSe FET中可靠地提取了62 Ωμm的低接触电阻,可实现更小的固有延迟和更低的能量延迟积(EDP),远低于预测的硅极限。 这项工作首次证实了2D FET可以提供接近理论预测的实际性能,率先在实验上证明了二维器件性能和功效上由于先进硅基技术,为2D FET发展注入信心和活力。2. 探针台光电测量揭示光活性高介电常数栅极电介质——2D钙钛矿氧化物SNO 与2D半导体兼容的高介电常数的栅极电介质,对缩小光电器件尺寸至关重要。然而传统三维电介质由于悬挂键的存在很难与2D材料兼容。为解决以上问题,复旦大学方晓生教授等人进行了大量研究实验,发现通过自上而下方式制备的2D钙钛矿氧化物Sr10Nb3O10(SNO)具有高介电常数(24.6)、适中带隙、分层结构等特点,可通过温和转移的方法,与各种2D沟道材料(包括石墨烯、MoS2,WS2和WSe2)等构建高效能的光电晶体管。文章以“Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric”为题发表在Nature electronics上。图3. 具有SNO顶栅介电层的双栅WS2光电晶体管的电特性和光响应 基于Lake Shore探针台的光电测试表明,SNO作为顶栅介电材料,与多种通道材料兼容, 集成光电晶体管具有卓越的光电性能。MoS2晶体管的开/关比为106,电源电压为2V,亚阈值摆幅为88&thinsp mVdec-1。在可见光或紫外光照射下,WS2光电晶体管的光电流与暗电流比为~106,紫外(UV)响应度为5.5&thinsp ×&thinsp 103&thinsp AW-1,这是由于栅极控制和光活性栅极电介质电荷转移的共同作用。本研究展示了2D钙钛矿氧化物Sr2Nb3O10(SNO)作为光活性高介电常数介质在光电晶体管中的广泛应用潜力。 3. 探针台电学测量探索200毫米晶圆级集成——多晶MoS2晶体管 二维半导体,例如过渡金属硫族化合物(TMDs),是一类很有潜力的沟道材料,然而单器件演示采用的单晶二维薄膜,均匀大规模生长仍具挑战,无法应用于大尺度工业级器件制备。与单晶相比,多晶TMD的较大规模生长就容易很多,具备工业化应用集成的潜力。 有鉴于此,三星电子有限公司Jeehwan Kim和Kyung-Eun Byun 团队提出一种使用金属-有机化学气相沉积(MOCVD)制造大规模多晶硫化钼(MoS2)场效应晶体管阵列的工艺,与工业兼容,在商用200毫米制造设备中进行加工,成品率超过99.9%。文章以“200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors”为题发表在Nature electronics上。 图4. 三种不同接触类型(a常规顶部接触,b多晶MoS2的底部接触,c单层MoS2底部接触)的电学特性和肖特基势垒高度 基于Lake Shore低温探针台CPX-VF的电学测试表明,相比于顶部接触,底部接触可以更好的消除2D FETs阵列中多晶2D/金属界面的肖特基势垒。没有肖特基势垒的多晶MoS2场效应晶体管表现良好,迁移率可达21 cm2V-1s-1,接触电阻可达3.8 kΩµ m,导通电流密度可达120µ Aµ m-1,可比拟单晶晶体管。4. Lake Shore低温探针台系列 美国Lake Shore公司的低温探针台根据制冷方式不同,主要分为无液氦低温探针台和消耗制冷剂低温探针台,其下又因为磁场方向、尺寸大小差别,有更多型号的细分,适用于不同应用场景(电学、磁学、微波、THz、光学等),客户可根据需要,选择不同的温度和磁场配置。客户可以选择自己搭配测试仪表集成各类测试,也可以选择我们的整体测试解决方案,如电输运测试、半导体分析测试、霍尔效应测试、铁电分析测试,集成光学测试等。图5. 低温探针台选型和适用的应用场景Lake Shore低温探针台主要特征☛ 最大±2.5 T磁场☛ 低温至1.6 K,高温至675 K☛ fA级低漏电测量☛ 最高67 GHz高频探针☛ 3 kV 高电压探针(定制) ☛ 大温区低温漂探针☛ 真空腔联用传送样品(定制)☛ <30 nm低振动适用于显微光学测量☛ 无需翻转磁场快速霍尔效应测试☛ 多通道高精度低噪声综合电学测量☛ 光电、CV、铁电、半导体分析测试参考文献:1. J. Jiang, L. Xu, C. Qiu, L.-M. Peng, Ballistic two-dimensional InSe transistors. Nature 616, 470-475 (2023).2. S. Li, X. Liu, H. Yang, H. Zhu, X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nature Electronics 7, 216-224 (2024).3. J. Kwon et al., 200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors. Nature Electronics 7, 356-364 (2024).相关产品1、Lake Shore低温探针台系列
  • 显微镜|Revolve Generation 2正倒置一体电动荧光显微镜——带给你不一样的荧光观察体验
    最近,有不少小伙伴说使用荧光显微镜太麻烦了,需要提前开汞灯进行预热,需要手动更换滤光片,荧光特别容易淬灭,稍微厚一点的样本拍出来的效果特别不好。为什么使用荧光显微镜会如此不方便呢?今天我们就来一探究竟。说到荧光显微镜首先想到的问题就是荧光光源及滤色块。这是为什么呢?所有的一切都要从荧光观察的原理说起。不管是自发荧光还是荧光染料,它们发光的原理是一致的,都是吸收某一波段的光,提高自身的能量,然后再以特定的波段将能量以光的形式对外释放。正是因为荧光成像的特殊性,显微镜荧光成像过程中对光源要求很高,需要通过滤色块对光源进行过滤,这样势必导致光源能量的损失,因此这就对荧光光源的能量有着很高的要求。传统的光源有汞灯、氙灯,它们可以为荧光观察提供足够的能量,正是因为其高能量的特性,必然伴随着很多不可避免的缺陷:1、能量高,功率大,需要预热与预冷。这就极大的增加了使用者的时间成本,同时极高的功率降低了使用寿命,增加了使用成本。2、高能量光源需要在稳定极高电压下被激发,因此光强不能随意调节,需要通过添加挡光片进行调节。这就意味着传统荧光光源强度不能根据需求在任意强度进行调节。3、高能量的状态存在爆炸的可能性,具有一定使用风险,同时容易对观察的样品产生较强的光毒性。随着科技的发展尤其是高能LED的诞生,越来越多的荧光显微镜开始使用高能LED作为显微镜的荧光光源。因为其可以固定发射某一波段的光,所以通过滤色块损失的能量极少。这就意味着LED作为荧光光源,既可以克服传统光源的缺点,又保证了荧光观察所需强度。那么有没有操作便捷的荧光显微镜呢?答案是:必须有的啦。Revolve Generation 2正倒置一体电动荧光显微镜,带你解锁不一样的荧光观察技能。Revolve Generation 2正倒置一体电动荧光显微镜就是采用高能LED光源,开关在毫秒间,可以大大减少样品在光照下的暴露时间。光源一致性好,寿命长,即开即用,光毒性低,对活细胞样品非常友好。针对不同的荧光染料,需要使用合适的滤光片来捕捉荧光信号。在不同荧光通道的切换方面,Revolve Generation 2正倒置一体电动荧光显微镜是一键自动切换。针对需要进行多重荧光观察的样品,为了更加迅速的对脆弱的荧光样品进行捕捉,Revolve Generation 2正倒置一体电动荧光显微镜搭配自动荧光系统,多通道荧光自动切换,自动多通道图像叠加,体验感极佳。最后在图像采集方面,Revolve Generation 2正倒置一体电动荧光显微镜采取双相机模式荧光明场自动切换,荧光样品通过单色相机进行成像,确保了其最佳的采集方式。(关于荧光为何选取单色相机详见本公众号的-如何用显微镜拍出良好的照片。)以上就是Revolve Generation 2正倒置一体电动荧光显微镜对荧光观察的解决方案,简单又实用。你以为这就结束了?不!最好的要留在后面。针对成像条件复杂的样本,Revolve Generation 2正倒置一体电动荧光显微镜也给出了教科书级别的解决方案,简直亮瞎了双眼。通过Z-Stacking软件控制Z轴马达电机对样品进行Z轴层扫,获得不同聚焦平面的图像并自动整合为大景深的立体图像,获得超过二维平面效果的三维立体图像,显著提升较厚样品的图像质量。独有的DIGITAL HAZE REDUCTION实时数字化图像处理功能,增加宽场荧光显微镜图像锐度,抑制噪声减少模糊,提高荧光检测分辨率,清晰展现样本细微结构,颠覆传统成像效果。
  • 南京大学团队在与Micro LED相关的二维半导体领域取得关键突破
    二维半导体材料,以过渡金属硫族化合物(TMDC)为代表,具有极限厚度、高迁移率和后端异质集成等特点,有望延续摩尔定律并实现三维架构的集成电路,因此受到了学术界和工业界的关注。经过近十年的发展,二维电子学已经取得了巨大进步,但在大面积单晶制备、关键器件工艺、与主流半导体技术兼容性等方面仍存在挑战。南京大学电子科学与工程学院王欣然教授课题组聚焦上述问题,研究突破二维半导体单晶制备和异质集成关键技术,为后摩尔时代集成电路的发展提供了新思路。相关研究成果近期连续发表在Nature Nanotechnology上。脚踏实地构筑“原子梯田”,突破二维半导体单晶外延半导体单晶材料是微电子产业的基石。与主流的12寸单晶硅晶圆相比,二维半导体的制备仍停留在小尺寸和多晶阶段,开发大面积、高质量的单晶薄膜,是迈向二维集成电路的第一步。然而,二维材料的生长过程中,数以百万计的微观晶粒随机生成,只有控制所有晶粒保持严格一致的排列方向,才有可能获得整体的单晶材料。蓝宝石是半导体工业界广泛使用的一种衬底,在规模化生产、低成本和工艺兼容性方面具有突出的优势。合作团队提出了一种方案,通过改变蓝宝石表面原子台阶的方向,人工构筑了原子尺度的“梯田”。利用“原子梯田”的定向诱导成核机制,实现了TMDC的定向生长。基于此原理,团队在国际上首次实现了2英寸MoS2单晶薄膜的外延生长。得益于材料质量的提升,基于MoS2单晶制备的场效应晶体管迁移率高达102.6 cm2/Vs,电流密度达到450 μA/μm,是国际上报道的最高综合性能之一。同时,该技术具有良好的普适性,适用于MoSe2等其他材料的单晶制备,该工作为TMDC在集成电路领域的应用奠定了材料基础。仰望星空,二维半导体为未来显示技术带来光明大面积单晶材料的突破使得二维半导体走向应用成为可能。在第二个工作中,电子学院合作团队基于第三代半导体研究的多年积累,结合最新的二维半导体单晶方案,提出了基于MoS2薄膜晶体管驱动电路、单片集成的超高分辨Micro LED显示技术方案。Micro LED是指以微米量级LED为发光像素单元,将其与驱动模块组装形成高密度显示阵列的技术。与当前主流的LCD、OLED等显示技术相比,Micro LED在亮度、分辨率、能耗、使用寿命、响应速度和热稳定性等方面具有跨代优势,是国际公认的下一代显示技术。然而,Micro LED的产业化目前仍面临诸多挑战。首先,小尺寸下高密度显示单元的驱动需求难以匹配。其次,产业界流行的巨量转移技术在成本和良率上难以满足高分辨率显示的发展需求。特别对于AR/VR等超高分辨应用,不仅要求分辨率超过3000PPI,而且还需要显示像元有更快的响应频率。合作团队瞄准高分辨率微显示领域,提出了MoS2 薄膜晶体管驱动电路与GaN基Micro LED显示芯片的3D单片集成的技术方案。团队开发了非“巨量转移”的低温单片异质集成技术,采用近乎无损伤的大尺寸二维半导体TFT制造工艺,实现了1270 PPI的高亮度、高分辨率微显示器,可以满足未来微显示、车载显示、可见光通讯等跨领域应用。其中,相较于传统二维半导体器件工艺,团队研发的新型工艺将薄膜晶体管性能提升超过200%,差异度降低67%,最大驱动电流超过200 μA/μm,优于IGZO、LTPS等商用材料,展示出二维半导体材料在显示驱动产业方面的巨大应用潜力。该工作在国际上首次将高性能二维半导体TFT与Micro LED两个新兴技术融合,为未来Micro LED显示技术发展提供了全新技术路线。上述工作分别以“Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire”(通讯作者为王欣然教授和东南大学王金兰教授)和“Three dimensional monolithic Micro LED display driven by atomically-thin transistor matrix”(通讯作者为王欣然教授、刘斌教授、施毅教授和厦门大学张荣教授)为题,近期在线发表于Nature Nanotechnology。该系列工作得到了江苏省前沿引领技术基础研究专项、国家自然科学基金和国家重点研发计划等项目的支持,合作单位包括南京大学现代工程与应用科学学院、东南大学、南京工业大学、厦门大学、中科院长春光机所、天马微电子股份有限公司、南京浣轩半导体有限公司等。
  • 行业应用 | 国仪量子钻石原子力显微镜:打开二维磁性材料新天地
    几个世纪以来,人类探索磁性及其相关现象的脚步从未停歇。在电磁学和量子力学发展的早期,人类很难想象磁石对铁的吸引力,鸟、鱼或昆虫在相隔数千英里的目的地之间的导航能力,这些神奇又有趣的现象具有相同的磁性起源。这些磁性来源于基本粒子的运动电荷与自旋,它和电子一样普遍存在。近年来,二维磁性材料在国际上成为备受关注的研究热点,它们为自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面都有着重要的应用价值。近日,《物理学报》2021年第12期也推出了二维磁性材料专题,从不同的角度描述了二维磁性材料在理论与实验方面的进展。《物理学报》2021年第12期你能想象得到吗?只有几个原子厚度的二维磁性材料就可以为极小的硅电子器件提供基板。这种神奇的材料由成对的超薄层制成,超薄层通过范德瓦耳斯力,即分子间作用力堆叠在一起,同时层内原子以化学键进行连接。虽然只有原子级的厚度,但依然保持着磁学、电学、力学、光学等方面的物理和化学特性。二维磁性材料 图片引用自https://phys.org/news/2018-10-flexy-flat-functional-magnets.html打个有趣的比方,二维磁性材料中的每个电子都像一个微小的罗盘,拥有北极和南极,这些“罗盘针”的方向决定了磁化强度。当这些无穷小的“罗盘针”自发对齐时,磁序就构成物质的基本相位,因此可制备出很多功能性装置,例如发电机和电动机、磁阻存储器和光学阻隔器等。这种神奇的特性也让二维磁性材料变得炙手可热起来,虽然现在集成电路制造工艺在不断提高,但由于器件在不断缩小,已经受到量子效应的限制,微电子行业已经遇到了可靠性低、功耗大等瓶颈,延续了近50年的摩尔定律也不再“吃香”(摩尔定律:集成电路上可以容纳的晶体管数目在大约每经过18个月便会增加一倍)。如果未来二维磁性材料能够在磁传感器、随机存储器等新型自旋电子学器件领域得到应用,说不定有望突破集成电路性能瓶颈。我们已经知道,具有磁性的范德瓦耳斯晶体带有特殊的磁电效应,因此在二维磁性材料的研究过程中,定量的磁性研究是必不可少的步骤。然而,对此类磁体在纳米尺度上磁性响应的定量实验研究依然非常缺乏。现有的一些研究报道了在微米尺度上实现了对晶体磁性的检测,但这些技术不仅还无法提供关于磁化的定量信息,还极容易干扰阻碍超薄样品的磁信号。因此,检测技术的更新对于探测材料纳米尺度上的磁性质是非常紧迫的挑战。国仪量子QDAFM为了解决这一难题,国仪量子提供了一种新的测量途径——量子钻石原子力显微镜(QDAFM)。QDAFM是基于NV色心和AFM扫描成像技术的量子精密测量仪器。通过对钻石中氮—空位(NV)色心发光缺陷的自旋进行量子操控与读出,可实现磁学性质的定量无损成像,具有纳米级的高空间分辨率以及单个自旋的超高探测灵敏度,可用于定量检测范德瓦耳斯磁体的关键磁学性质,并对其磁化、局部缺陷和磁畴进行高空间分辨率的磁成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势,在量子科学,化学与材料科学,以及生物和医疗等研究领域有着广泛的应用前景。二维碘化铬的磁化图引用自Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)下面,为大家介绍QDAFM在微纳磁成像、超导磁成像、细胞原位成像、拓扑磁结构表征等方面的具体应用。01微纳磁成像对于磁性材料,确定其静态自旋分布是凝聚态物理中的重要问题,也是研究新型磁性器件的关键。QDAFM提供了一种新的测量途径,能够实现高空间分辨率的磁性成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势。布洛赫型磁畴壁成像引用自Tetienne, J. P.et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry.Nature Communications6, 6733(2015)02超导磁成像对超导体及其涡旋的微观尺度研究,能够为理解超导机理提供重要信息。利用工作在低温下的QDAFM,可以对超导体的磁涡旋进行定量的成像研究,并扩展到众多低温凝聚态体系的磁性测量。单个磁性涡旋的杂散场定量成像引用自Thiel, L.et al.Quantitativenanoscale vortex imaging using a cryogenic quantum magnetometer. Nature Nanotechnology 11,677- 681 (2016).03细胞原位成像在细胞原位实现纳米级分子成像是生物学研究的重要手段。在众多成像技术中,磁共振成像技术能够快速、无破坏地获取样品体内的自旋分布图像,已经广泛应用在多个科学领域中。特别是在临床医学中,因其对生物体几乎无损伤,对疾病的机理研究、诊断和治疗起着重要的作用。然而,传统的磁共振成像技术使用磁感应线圈作为传感器,空间分辨率极限在微米以上,无法进行细胞内分子尺度的成像。利用QDAFM的高空间分辨率特性,研究人员观测到了细胞内部存在于细胞器中的铁蛋白,分辨率达到了10纳米。细胞原位铁蛋白分子的纳米磁成像引用自Wang, P. et al. Nanoscale magnetic imaging of ferritins in a single cell. Science advances 5, 8038 (2019).04拓扑磁结构表征磁性斯格明子是具有拓扑保护性质的纳米尺度涡旋磁结构。磁性斯格明子展现出丰富新奇的物理学特性,为研究拓扑自旋电子学提供了新的平台,在未来高密度、低能耗、非易失性计算和存储器件中也具有潜在应用。但是室温下单个斯格明子的探测在实验上仍具有挑战性。QDAFM的高灵敏度和高分辨率特点,是解决这一难题的有力工具,通过杂散场测量可重构出斯格明子的磁结构。斯格明子磁场成像引用自Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nature Communications 9, 2712 (2018).参考文献:1.《物理学报》2021年第12期,二维磁性材料专题2.Two-dimensional magnetic crystals and emergent heterostructure devices(Science, 2019, DOI: 10.1126/science.aav4450)3.https://phys.org/news/2018-10-flexy-flat-functional-magnets.html4.Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)
  • 二维半金属—二维超导体之间超流拖拽效应揭示
    15日,记者从中国科学技术大学获悉,该校曾长淦教授、李林副研究员研究团队与北京量子信息科学研究院解宏毅副研究员等合作,通过构筑石墨烯与氧化物界面超导体系的复合结构,揭示了二维半金属和二维超导体之间由于量子涨落诱导的巨幅超流拖拽效应。相关成果日前在线发表于《自然物理》。对于两个空间相近但彼此绝缘的导电层构成的电双层结构,在其中一层(主动层)施加驱动电流,层间载流子之间的耦合会在另一层(被动层)中诱导产生一个开路电压或闭路电流,即产生层间拖拽效应。基于二维电子气之间的拖拽效应,可以探索准粒子的层间长程相互作用,发现如激子超流体等新颖层间关联量子态。由于较强的介电屏蔽效应,拖拽电流耦合比远远小于1。而将其中一层或两层替换成超导材料,将有望产生耦合比显著增强的超流拖拽效应。研究团队构筑了石墨烯与氧化物异质界面组成的二维半金属—超导体电双层结构,并对其层间拖拽行为进行了系统研究。他们发现,在氧化物界面超导转变区间,石墨烯层中施加驱动电流可以在氧化物界面诱导出巨幅拖拽电流,且强度可以通过栅压/外磁场等进行有效调控。特别是在界面超导最优掺杂附近,拖拽电流耦合比达到0.3,即所产生的拖拽电流大小与驱动电流相当。与此前传统普通金属/超导金属体系相比,耦合比提高了两个量级以上。这一结果揭示了宏观量子涨落对于层间准粒子相互作用的显著调制。在应用层面,基于该复合结构将有望制备新型电流或电压高效转换器件,包括超导二极管等量子器件,将推动具有丰富量子物相的更广泛二维电子体系的拖拽效应研究,并发现更多基于层间长程耦合的新颖量子多体效应。
  • 上海天美公布官方公众平台微信二维码
    上海天美官方公众平台微信已完成认证,欢迎各位专家、同行、同事积极订阅!~ 扫描以下 上海天美 二维码,速度关注。 首先准备工具 1、智能手机一部(这个是必须的) 2、手机上装微信(这个也是必须的) 具体操作步骤 1、首先的注册微信客服端 2、扫描二维码:操作方法:打开微信 朋友们 添加朋友扫描二维码 加为好友 关注成功 关于上海天美科学仪器有限公司 上海天美是由创建于1994年的上海天美科学仪器有限公司和2006年成立的上海天美生化仪器设备工程有限公司组成,它们都是天美(控股)有限公司的独资子公司。上海天美在上海、北京、广州、成都、沈阳、西安等地设立分公司。上海天美主要产品包括气相、液相、离子色谱仪、紫外/可见、原子吸收分光光度计、荧光光谱、电化学、酶标/洗板、超微量核酸蛋白测定仪、离心机、生命科学系列以及试剂、耗材和软件等,提供完整的实验室综合解决方案,为各行各业的客户服务。欲了解更多信息,请浏览公司网站:www.techcomp.com.cn 上海天美市场部 2013年06月24日
  • 岛津应用:贻贝中脂质成分的全二维分析方案
    在代谢组学中将对整体脂质进行系统分析称为脂质组学。脂质是生物的能量之源,是生物膜的主要构成成分,也担负着参与生物体内信号传导的重要作用。但是,构成脂肪酸的种类和不饱和度的组合多种多样,因此,在同时检测中很难进行全面的分析。对生物样品进行整体脂质提取后,通常先根据脂质的种类采用正相或HILIC(亲水相互作用色谱)进行分离,再对各部分脂质进行LC/MS分析。该方法的缺点是耗时较长。 全二维液相色谱仪可组合一维和二维不同的分离模式,并根据其分离特性,在各维的单独分析中对难以分离的组分进行高度分离。本文向您介绍使用可有效对多脂质组分进行全分离的岛津Nexera-e系统对贻贝中的脂质进行分离的分析示例。在一维系统使用HILIC色谱柱进行半微量分离,在二维系统进行超快速反相分离,并联用了岛津离子阱飞行时间质谱仪(LCMS-IT-TOF)作为检测器。Nexera-e和LCMS-IT-TOF联用可以得到受外部环境影响而变化的整体脂质的属性信息,从而可以对海洋生物的生物标记物及其脂质组分的变化进行更深层次的分析。 了解详情,敬请点击《Nexera-e 和LCMS-IT-TOF 联用对贻贝中脂质成分进行全二维分析》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • Revolve Generation2正倒置一体电动荧光显微镜震撼来袭,拒绝不清晰
    你想要显微镜拍照像玩手机APP一样简单吗?想要拍出的图片清晰度直接可用于出版吗?想要更智能更时尚的操作和数据传输吗?想要拍照更轻松而不用长时间盯着目镜筒吗?那么Revolve Generation 2正倒置一体电动荧光显微镜来喽,化繁为简,功能升级;隆重推出DIGITAL HAZE REDUCTION(DHR)实时数字化图像处理功能,增加宽场荧光显微镜图像锐度,抑制噪声减少模糊,提高荧光检测分辨率;精确Z-Stacking功能帮您全景深观察样品,较厚样品荧光检测效果出众。这就是我,既有颜又有才!科研小伙伴是否遇到过,使用宽场荧光显微镜荧光拍摄不够清晰?使用共聚焦拍摄速度慢,而且荧光容易淬灭?小编给大家捋捋,看看到底应该怎么选,拒绝焦虑。宽场荧光显微镜与激光共聚焦成像效果区别▷ 激光共聚焦:使用激光点对样品进行逐点扫描,通过共轭聚焦技术,可有效避免邻近点光线干扰,获得更高分辨率。但对于活细胞荧光观察伤害性大,光漂白严重,由于是逐点扫描,所以成像时间长。▷ 宽场荧光显微镜:使用场光源对样本进行全视野照明成像,会出现光噪声、散射和炫光等现象,降低了图像分辨率,针对较厚样本大多只能平面成像。但拍摄速度快,对于活细胞荧光成像伤害性小,可有效避免光漂白。Revolve Generation2是您的不二之选,为什么这么说呢,往下看 ↓☑ 独有的实时DHR数字降噪技术,通过数字化图像处理,在镜下实时显示高分辨图像,清晰展现样本细微结构,颠覆传统成像效果。☑ Z轴高精度自动层扫,配合实时DHR数字降噪技术,在保持高分辨率的同时,对较厚样本进行全景深扫描合成,实现全景深观察。新一代Revolve正倒置一体电动荧光显微镜,拥有最流行的触屏操控方式,配备智能荧光成像系统,将Z-Stacking全景深成像和DHR数字降噪功能有机联合,提升分辨率告别照片模糊,为您打造全新的成像体验。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 台式ALD,Nat. Mater.!二维晶体管介电层集成研究取得重要进展
    台式三维原子层沉积系统-ALD体积小巧,可放在实验桌上多片4,6,8 英寸样品同时沉积厚度均匀性高于99%适合复杂/ 掺杂薄膜沉积二维半导体表面沉积利器...... 随着现代半导体行业的发展,基于硅半导体的场效应晶体管(FET)的尺寸不断缩小,目前已经接近其物理极限。在新兴材料中,二维半导体可达到原子级厚度且保持高载流子迁移率,理论上可实现优异的栅极控制,因而被认为是用于下一代场效应晶体管的理想沟道材料。然而,由于二维半导体表面无悬挂键,很难在其表面集成高质量的介电层,这是目前该领域的重大难题。 为解决上述问题,华中科技大学翟天佑团队以无机分子晶体Sb2O3作为缓冲层,发明了一种在二维材料表面集成超薄高k介电层的普适性方法。利用该缓冲层法制备的HfO2/Sb2O3复合介电层可实现0.67 nm的等效氧化层厚度(EOT),是目前报道的二维晶体管介电层中zui低的。高质量的界面降低了界面态密度,由单层MoS2沟道和HfO2/Sb2O3复合介电层构成的FET在0.4 V的超低工作电压下即可获得超过106的开关比,其栅极控制效率优于目前报道的其他所有FET。该项成果以“Scalable integrationof hybrid high-κ dielectric materials on two-dimensional semiconductors”为题发表于国际高水平期刊Nature Materials。 Sb2O3缓冲层的作用机理如下:一方面,Sb2O3可与二维半导体间形成高质量的范德华界面;另一方面,Sb2O3覆盖了二维材料原有的疏水表面,提供了高度亲水的表面,提升了与传统原子层沉积(ALD)工艺的相容性,便于集成超薄高k介电层。图1a展示了在MoS2二维半导体表面集成HfO2/Sb2O3复合介电层的过程。作者利用热蒸镀法制备了Sb2O3缓冲层,随后使用美国Arradiance公司的GEMStar系列台式原子层沉积(ALD)系统制备了致密均匀的HfO2层(图1b)。此外,作者还利用该台式ALD设备在MoS2/Sb2O3上生长了常见介电层Al2O3和ZrO2(图1c, 1d),证明了该方法的普适性。图1. (a)在MoS2二维半导体表面集成HfO2/Sb2O3复合介电层的过程,(b)-(c)样品的AFM图像。 随后,作者用第一性原理计算研究了Sb2O3缓冲层对ALD过程的促进原理。如图2a-2b所示,H2O分子在MoS2表面的吸附距离为约3&angst ,在Sb2O3表面的吸附距离减小至约2&angst ,接近于水中氢键的长度。同时,H2O分子在Sb2O3表面的吸附能大幅高于在MoS2表面的吸附能(图2c)。上述结果表明Sb2O3缓冲层可促进ALD过程中的前驱体吸附,有助于介电层的生长。图2. H2O分子在(a)MoS2和(b)Sb2O3表面的吸附构型,(c)H2O分子在MoS2和Sb2O3表面的吸附能。 本文所使用的美国Arradiance公司的GEMStar系列台式原子层沉积系统如图3所示,在小巧的机身(78 * 56 * 28 cm)中集成了原子层沉积所需的所有功能,可容纳9片8英寸基片同时沉积。全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计,使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅可在8英寸基体上实现厚度均匀的膜沉积(其厚度均匀性高于99%),而且适合对具有超高长径比孔径的3D结构进行均匀薄膜覆盖,在高达1500:1长径比微纳深孔内部也可均匀沉积。此外,该设备还具有节约前驱体原料,制备效率高,性价比高等优点。该设备已帮助国内外用户取得大量Nature、Science级别的研究成果。图3. 美国Arradiance公司生产的GEMStar系列台式三维原子层沉积系统参考文献:[1]. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater., 2023, DOI:10.1038/s41563-023-01626-w
  • 邀请函 | 锂电池样品制样前处理及表征整体解决方案交流会
    锂电池样品制样前处理及表征整体解决方案交流会会议时间2023年2月28日 09:00-15:30地址:广东省广州市番禺区番禺大道北555号天安科技园总部6号楼2栋会议内容 锂离子电池是一种新型和高性能的电池,广泛应用于汽车、电力储能、备用电源、电动工具和模型等领域。锂离子电池产业已被列入国家“863计划”和“793计划”,是政府大力支持和发展的新能源产业之一。 作为新兴的绿色优质能源,锂离子电池的制造工艺要求非常高,关键材料的性能对电池的整体性能(如电池容量、安全性能、使用寿命等)影响非常巨大,需要完善的质量监控手段严格控制制造过程。本次会议将针对锂离子电池的制样前处理和表征手段进行方案介绍和案例分享,希望本次交流能给大家提供有益的帮助!会议议程抽奖礼品一等奖:京东购物卡500元 1名二等奖:电动牙刷套装 5名三等奖:保温杯 10名*凡参会者均可获得精美笔记本+英雄金属中性笔+鼠标垫各一份,本次会议免费参与,提供午餐,其他自理。识别上方二维码报名参会
  • 二维微机电(MEMS)阵列为移动光谱分析仪打下基础
    近日,德州仪器 (TI) DLP® 产品部的业务拓展经理 Mike Walker和 Optecks 的首席技术官 Hakki Refai 博士发表文章:二维微机电(MEMS)阵列为移动光谱分析仪打下基础,如下是文章全文。  在近红外 (NIR) 光谱分析领域中,一个将便携性与高性能实验室系统的准确性和功能性组合在一起的系统将极大地改进实时分析。由一块电池供电的小型手持式光谱分析仪的开发可以实现对工业过程、或食品成熟度的评估在现场进行更有效的监控。  大多数色散光谱分析测量在一开始采用的都是同样的方式。被分析的光通过一个小狭缝 这个狭缝与一个光栅组合在一起,共同控制这个仪器的分辨率。这个衍射光栅专门设计用于以已知的角度反射不同波长的光。这个波长的空间分离使得其它系统可以根据波长来测量光强度。  传统光谱测量架构的主要不同之处在于散射光的测量方式。两种常见的方法有(1)与散射光物理扫描组合在一起的单元素(或单点)探测器,以及(2)将散射光在一组探测器上成像。  使用 MEMS 技术的方法  使用具有一个单点探测器、基于光学微机电系统 (MEMS) 阵列技术的全新方法可以克服传统光谱分析方法中的很多限制。在基于单点探测器的系统中,一个固态光学 MEMS 阵列用简单、空间波长滤波器取代了传统的电动光栅。这个方法可以在消除精细控制电动系统中问题的同时,利用单点探测器的性能优势。近些年,此类系统已经投入生产,其中,扫描光栅被取代,并且 MEMS 器件过滤每一个特定波长进入单点探测器。这个方法在实现更加小巧和稳健耐用光谱分析仪的同时,也表现出很高的性能。  相对于线性阵列探测器架构,光学 MEMS 阵列的使用具有数个优势。首先,可以使用更大的单元素探测器,以提高采光量,并极大降低系统成本和复杂度,这对于红外系统更是如此。此外,由于不使用阵列探测器,像素到像素噪声被消除了,而这可以极大地提升信噪比 (SNR) 性能。SNR 性能的提高可以在更短时间内获得更加准确的测量结果。  在一个使用 MEMS 技术的光谱分析系统中,衍射光栅和聚焦元件的功能与之前一样,但来自聚焦元件的光在 MEMS 阵列上成像。要选择一个用于分析的波长,一个特定的光谱响应波段被激活,这样的话,就可以将光引入到单点探测器中进行采集和测量。  如果 MEMS 器件高度可靠,能够生成可预计的滤波器响应,并且在不同的时间和温度下保持恒定,那么这些优势就可以实现。  将一个 DLP® 芯片或数字微镜器件 (DMD) 用作一个空间光调制器,并且在一个光谱分析仪系统架构中将其用作 MEMS 器件的话,可以克服数个难题。首先,使用一组铝制微镜来接通和关闭进入单点探测器的光,这在广泛的波长范围内是光学有效的。其次,数字微镜的打开和关闭状态由机械止动装置和互补金属氧化物半导体 (CMOS) 静止随机访问存储器 (SRAM) 单元的锁存电路控制,从而提供固定的电压镜控制。这个固定电压、静止控制意味着这个系统不需要机械扫描或模拟控制环路,并且能够简化校准。它还使得光谱分析仪设计更能免受温度、老化或振动等错误源的影响。  DMD 的可编程属性具有很多优势。其中某项优势会在进行光谱分析仪架构设计时显现 -- 如果以被用作滤波器的微镜的寻址列为基础。由于 DMD 分辨率通常高于所需的光谱,DMD 区域会出现欠填充的情况,并且会对光谱过采样。这使得波长选择完全可编程,并且在光引擎出现极端机械位移的情况下,将额外微镜用作重新校准列。  此外,DMD 是一个二维可编程阵列,这为用户提供高度的灵活性。通过选择不同的列数量,可以调节分辨率和吞吐量。扫描时间可动态调整,如此一来,用户可对所需波长进行更长时间、更加详细的检查,从而更好地使用仪器时间和功能。此外,相对于固定滤波器器具1,诸如采用的 Hadamard 图形等高级孔径编码技术,可实现高度的灵活性和更高性能。  总之,与目前的光谱分析系统相比,使用 DMD 的光谱分析器件可实现更高分辨率、更高灵活性、更加稳健耐用、更小的外形尺寸和更低的成本,从而使得它们对于广泛的商业和工业应用更有吸引力。  单探测器架构消除噪声  目前基于线性阵列的光谱分析仪主要受到两个因素的限制。首先,探测器的波长选择受到像素孔径的限制。探测器的尺寸决定了采集到的光量,从而影响SNR。诸如Hamamatsu G9203-256的常见磷化砷镓铟 (InGaAs) 256像素线性阵列的尺寸为50微米 x 500微米。相反地,一个数字微镜阵列是一个完全可编程的矩阵,可以针对应用来配置列的数量和扫描技术。这可以将更大的信号呈现给通常与DMD一同使用的更大的1毫米或2毫米的单点探测器。将窄带光过滤到一个线性阵列中 -- 通常是50微米宽像素 -- 也许会出现串扰的问题。像素到像素干扰会成为读取过程中产生噪声的主要原因。这些干扰可通过单探测器架构消除。此外, 通过利用1kHz至4kHz的数字微镜扫描速度,单点探测器可以达到与平行多点采样相类似的驻留时间。对于基于MEMS -- 或基于DMD -- 的紧凑型光谱分析仪引擎,结果显示SNR的范围大于10000:1。  对于超级移动光谱分析仪十分关键的小型、高分辨率2D MEMS阵列  为了尽可能地提高性能,用户需要考虑可被用于将光线反射至探测器的MEMS总面积。然后,将这个面积与可用单点探测器孔径尺寸仔细匹配。  一个采用5.4微米微镜的DMD具有超过40万个可用像素,并且可以针对700纳米至2500纳米的波长进行优化。该款DMD是DLP2010NIR,它采用一个被称为TRP的全新像素架构。如图1中所见,这个像素提供17度的倾斜角。DLP2010NIR在一个评估模块中运行 这个评估模块提供针对光谱分析应用场景的独特光学架构。一个利用17度接通和关闭角度的光学路径可以用一个尽可能减少散射光的小巧引擎实现高性能感测分辨率。  图2中显示了这个针对光谱分析使用情况的独特光学引擎。这个系统优化了整个光路径中光学信号。来自样本的响应在DMD上成像,从而实现对每个波长的空间控制。这个评估模块的目的在于,通过将高效MEMS用作光谱分析中的高速2D滤波器,来获得设计优势。它是一款小巧、结实耐用且高度自适应系统,能够使光谱分析走出实验室,直接应用于现场测量或含光源测量。与传统光谱分析仪相比,同一个器件中的透射和反射测量头互换功能可以实现性能基准测试。  一个利用DLP2010NIR芯片的光谱分析光引擎有数个照明模块,并且每个模块的工作方式稍有不同。在一个传输模块中,光源、比色皿支架、高精度比色皿和和其它安装硬件被用于完成透射样本的吸收量和散射属性的测量。NIR透射测量值可用于液体样本,诸如果汁的水含量或出现的气体特征。这些数据能够提供与果汁原产地有关的很多信息。在固体样本中,NIR透射可以测量塑料管的不透光度,而这是观察气体和液体在传送线路中流动的重要参数。线路内的透射测量也被用于分析黄油在生产过程中的水含量,这样可以及时调整黄油制作工艺,从而节省了时间、尽可能降低成本,并且增加最终产品的质量。  或者,在样本无需与光谱分析仪窗口接触的测量中,反射模块是一个选择。它可以在几厘米的距离之外灵活地执行扫描操作,比如肉品被包装在塑料薄膜后监测肉品质量。诸如血糖预测等健康应用方面,也可以使用皮肤的漫反射来成为NIR区域内特色应用。  最后,在光纤耦合模块中,不论是透射测量,还是反射测量,它们都是通过光纤实现。这样可以在光谱分析仪与样本无法直接接触时实现测量。此类采样示例包括监视工业过程、测量导管中流动的液体、分析鸡肉、牛肉和猪肉中的湿度、脂肪和蛋白质含量。这些模块极大地扩展了应用范围,并且提供更高的测量性能。Optecks具有能够实现所有这些采样方法的照明模块解决方案。  正如之前讨论过的那样,使用DMD的光谱分析器件将功能拓展至对多个物质的分析、测试和测量。它们为实现更加准确的性能、更高分辨率、更大灵活性、更好的稳健耐用性和更小外形尺寸光感侧解决方案提供一个途径。此外,使用DMD的光谱分析仪还带来了更高的测量可靠性,而这在之前使用的传统光谱分析系统中,这也许是无法实现的。不论用户是打算用它测量农田中的庄稼需要的灌溉量,或是想要预测食物中的腐败程度,光谱分析都在不断成为准确、实时分析的强大方法。  参考书目  1 Pruett, E.,“德州仪器 (TI) DLP® 近红外光谱分析仪的最新发展可实现下一代嵌入式小巧、便携式系统”SPIE 9482-13 2015年4月  作者简介  Mike Walker先生是德州仪器 (TI) DLP® 产品部的业务拓展经理,负责这个部门的光谱分析业务。在过去几年中,Walker始终致力于将这项突破性架构引入到IR感测领域。在此之前30年间,Mike领导了TI的多个技术和业务团队。  Hakki Refai博士是Optecks的首席技术官。他在针对基于DLP系统的光学、电子和软件系统的设计和开发方面拥有10几年的经验。Refai博士在先进电子设备的设计、生产和分销方面具有5年多的领导经验。
  • Science: 扫描探针显微镜控制器在二维磁性材料研究中的突破性应用进展
    导读:自2017年来,二维磁性在单层材料中的实现使得二维磁性材料受到了大的关注。范德瓦尔斯磁体让我们对二维限下的磁性有了更进一步的了解,不同磁结构的范德瓦尔斯磁体使得实验上探究二维下的磁学模型成为可能。例如,在单层CrI3中发现Ising铁磁,而XY模型的NiPS3在单层限下的磁性会被抑制。除了这些,有着变磁行为的范德瓦尔斯磁体更为有趣,比如在少层CrCl3中由于奇数层存在着未补偿磁矩,使得奇数层存在着spin-flop转变,而偶数层则没有。目前,现存的二维磁性材料非常稀少,这意味着新范德瓦尔斯磁体的发现,不仅仅有助于二维磁性的研究,更是为二维自旋电子学器件的应用提供了材料基础[1]。相比于传统的三维空间结构,二维层状磁性材料因其原子层间较弱的范德华尔斯作用力,能够人为操控其层间堆叠方式,进而有可能影响其磁耦合特性,为新型二维自旋器件的研制提供新思路。然而,堆叠方式与磁耦合间的关联机制仍不甚明晰,需要借助先进的扫描探针技术才能实现在原子层面的直接实验观测。美国RHK公司所提供的先进R9plus扫描探针显微镜控制器可以有效结合课题组自主研发的扫描探针设备,同时给予高效率的扫描控制,从而可以针对二维磁性材料应用领域展开更为深入的研究。本文重点介绍国内课题组灵活运用RHK公司扫描探针控制器,配合自主研发设计的扫描探针设备所开展的一系列国际前沿性二维材料领域的研究工作,其中各研究工作当前已在国际SCI核心学术期刊发表。科学成果的突破,离不开实验技术的不断攻坚克难。复旦大学物理学系教授高春雷、吴施伟团队通过团队自主研发搭建的扫描探针设备创造性地将原位化合物分子束外延生长技术和自旋化扫描隧道显微镜相结合,在原子层面彻底厘清了双层二维磁性半导体溴化铬(CrBr3)的层间堆叠和磁耦合间的关联,为二维磁性的调控指出了新的维度。相关研究成果以 《范德华尔斯堆叠依赖的层间磁耦合的直接观测》(“Direct observation of van der Waals stacking dependent interlayer magnetism”)为题发表于《科学》(Science)主刊,其中复旦大学物理学系博士后陈维炯为作者[2]。图中所示为陈博士与RHK技术总监进行深入的技术探讨,现场摸索优化测试信号,并详细沟通具体的测量细节,为后续高效率提取高质量大数据做准备。 课题组运用自主研制的自旋化扫描隧道显微镜测量技术,结合RHK公司先进的扫描探针显微镜控制器对自主研发实验设备实现测量调控,团队进一步在原子分辨下获取了样品磁化方向的相对变化,从而实现了实验突破,揭秘材料堆叠方式与磁耦合之间的直接关联性。团队以CrBr3双层膜作为主要研究对象和潜在突破口。双层CrBr3间较弱的范德瓦尔斯力赋予层间发生相对转动和平移的“自由”,从而使堆叠方式多样化成为可能。确实,在实验中获得的CrBr3双层膜具有两种不同的转动堆叠结构(H型和R型),分别对应迥异的结构对称性。其中,R型堆叠结构中,双层膜上下两层间同向平行排列,且沿晶体镜面方向作一定平移;H型堆叠结构中,双层膜上下两层之间旋转了180度,反向平行交错排列。这两种结构均是在相应的体材料中从未发现过的全新堆叠结构。至此,团队率先在原子尺度阐明了CrBr3堆叠结构与层间铁磁、反铁磁耦合的直接关联,为理解三卤化铬家族CrX3中不同成员的迥异磁耦合提供了指导。H型和R型堆叠的CrBr3双层膜自旋化扫描隧道显微镜测量 更多精彩案例: 《Nature》子刊:中国科大扭转双层石墨烯重要进展! 范德瓦尔斯堆叠的双层石墨烯具有一系列新奇的电学性质(例如,电场可调控的能隙、随扭转转角变化的范霍夫奇点以及一维拓扑边界态等)。当双层石墨烯的扭转转角减小到一系列特定的值(魔角)时,体系的费米面附近出现平带,电子在能量空间高度局域,电子-电子相互作用显著增强,出现莫特缘体和反常超导量子物态。另一方面,这些新奇的性质与双层石墨烯体系的扭转角度有着严格的依赖关系,体系层间相互作用随着转角减小会逐渐增强,因此探寻和研究这种层间耦合对理解扭转双层石墨烯的电子结构和物理性质至关重要。中国科学技术大学合肥微尺度物质科学研究中心国际功能材料量子设计中心(ICQD)物理系秦胜勇教授与武汉大学袁声军教授及其他国内外同行合作,利用扫描隧道显微镜和扫描隧道谱,次在双层转角石墨烯体系中发现了本征赝磁场存在的重要证据,结合大尺度理论计算指出该赝磁场来源于层间相互作用导致的非均匀晶格重构。相关研究成果以“Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene”为题,于2020年发表于《自然通讯》(Nature Communications 2020,11,371)上[3]。图:小角度双层石墨烯中本征赝磁场的发现。对于转角为0.48度的双层石墨烯,在不加外磁场情况下,实验发现了贋朗道能(图b),理论计算进一步验证了这种贋磁场行为(图c),并估算出贋磁场值大约为6特斯拉(图e)。 该团队系统研究了小角度下(RHK公司提供的R9plus扫描探针显微镜强有力的为国内自主研发技术提供有力保障,除了在科研领域内重点关注的二维材料发挥重要作用以外,也对国内其它相关扫描探针设备研发领域课题组提供技术支持。中国科学技术大学陆轻铀教授团队与中国科学院强磁场科学中心、新加坡国立大学等单位合作,利用扫描探针控制器实现了高精度的磁力显微镜观察表征,报告了在超薄BaTiO3/SrRuO3 (BTO/SRO)双层异质结构中发现铁电体(FE)驱动的、高度可调谐的磁性斯格明子。在BTO中,FE驱动的离子位移可以穿过异质界面,并继续为多个单元进入SRO。这种所谓的FE邻近效应已经在不同的FE/金属氧化物异质界面中得到了预测和证实。在BTO/SRO异质结构中,这种效应可以诱导相当大的DMI,从而稳定强大的磁性物质。此外,通过利用BTO覆盖层的FE化,可以实现对斯格明子性质的局部、可逆和非易失性控制。这种铁电可调的斯格明子系统为设计具有高集成性和可寻址性的基于斯格明子的功能设备提供了一个潜在的方向。相关成果以题为“Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures”发表在了Nat. Mater.上[4]。B20S5样品中磁性斯格明子的磁力显微镜表征 除此之外该课题组也对二维过渡金属硫化物材料MoTe2温度依赖的表面STM图像、电子结构、晶格动力学和拓扑性质进行了研究。研究结果以Uniaxial negative thermal expansion and band renormalization in monolayer Td-MoTe2 at low temperature为题,发表在美国物理学会杂志《物理评论B》上。该工作为二维过渡金属硫化物材料MX2的低温研究、实验制备和器件开发提供了直接的理论支持,其揭示的MoTe2低温下反常物性的内在物理机制对其它具有内在MX2八面体结构畸变的二维材料同样具有参考价值[5]。学术工作之外,该课题组在仪器设备研发方面也取得了优异的成果,课题组在国际上次研制成功混合磁体端条件下原子分辨扫描隧道显微镜(STM),相关研究成果发表在显微镜领域著名期刊Ultramicroscopy和著名仪器刊物Review of Scientific Instruments上。此工作利用混合磁体搭配RHK公司扫描探针设备开展原子分辨成像研究,对于突破当前超强磁场下只能开展输运等宏观平均效果测量的瓶颈,进入到广阔的物性微观起源探索领域,具有标志性意义。同时,课题组又针对超强磁场下的生物分子高分辨成像,搭建了一套室温大气环境下的分体式STM。该系统将一段螺纹密封式胶囊腔体通过一根长弹簧悬吊于混合磁体中心,并将STM核心镜体悬吊于胶囊腔体内用以减弱声音振动干扰。经测试,该STM在27.5特斯拉超强磁场下依然保持原子分辨。由于没有真空、低温环境的保护,搭建混合磁体超强磁场、超强振动和声音环境下的室温大气STM难度更大。此前,国际上还未曾报道过水冷磁体或混合磁体中的室温大气STM[6]。混合磁体STM系统:(a)混合磁体照片;(b)混合磁体STM系统简图;(c)STM镜体;(i-iv)分别为0T、21.3T、28.3T、30.1T磁场强度下石墨的原子分辨STM图像。 参考文献:1. Peng, Y., et al., A Quaternary van der Waals Ferromagnetic Semiconductor AgVP2Se6. Advanced Functional Materials, 2020. 30(34): p. 1910036.2. Chen, W., et al., Direct observation of van der Waals stacking-dependent interlayer magnetism. Science, 2019. 366(6468): p. 983-987.3. Shi, H., et al., Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat Commun, 2020. 11(1): p. 371.4. Wang, L., et al., Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat Mater, 2018. 17(12): p. 1087-1094.5. Ge, Y., et al., Uniaxial negative thermal expansion and band renormalization in monolayer Td?MoTe2 at low temperature. Physical Review B, 2020. 101(10).6. Meng, W., et al., 30 T scanning tunnelling microscope in a hybrid magnet with essentially non-metallic design. Ultramicroscopy, 2020. 212: p. 112975.
  • 乌尔姆大学电镜组《自然通讯》:二维聚合物透射电镜高分辨成像分辨率突破2埃!
    1.透射电镜(TEM)成像挑战透射电镜高分辨成像是新材料结构研究不可或缺的技术之一,尤其是发展得欣欣向荣的二维材料界, 得益于它们易于剥离或者生长成薄膜的性质, TEM在二维材料成像上可谓所向披靡。近年来二位聚合物是潜力无限的新兴二维材料,我们可以用乐高来想象二维聚合物,不同的积木结构(单体monomers)通过在水和气体界面聚合搭出一个二维的网格,每层网格之间再通过范德华力结合。各式单体带来了材料结构和性能的无限可能[1],与此同时结构的解析是发展新二位聚合物过程中不可或缺的一环。在TEM的成像的过程中,高速电子如同密集的子弹穿透研究材料,和材料进行碰撞并传递能量,一方面电子携带了结构的信息,同时这种强力轰击又破坏了材料的结构,连锁反应导致大面积的积木的轰然倒塌。这意味着我们只能用非常少量的电子来获得结构信息,否则材料就会被打乱成无序状态。然而电子少信息也少,只能得到低清的图像,缺乏高清细节。因此TEM表征二维聚合物以及所有对电子轰击敏感的材料是电镜领域的一大挑战。图1,辐照损伤黑魔法(图1左作者 J. S. Pailly, 来源, 中右来源:depositphotos)2.优化电压,突破2 埃[2]!乌尔姆大学的Kaiser教授电镜组的研究人员梁宝坤和戚浩远博士接受了这个挑战。重要的第一步,就是研究如何降低电子对于材料的损伤。进而提高成像的分辨率,看到二维聚合物里前所未见的细节。在TEM中,电子发射的速度是影响着电子对材料杀伤力的重要条件之一。研究人员在高分辨成像使用的电压范围内 (80-300 kV), 通过电子衍射量化测量了二维聚亚胺能收受的总最大电子轰击量。然而这里我们需要注意的是,由于电子和材料结构相比如此微小,不少电子在分子积木搭建的二维结构间隙中穿过,因此使用的电子总量高并不代表能获得更多结构信息,我们还需要得到其中递信息的电子的比例。在图表中,可以看到这两个变量相对电压有着相反的变化趋势。结合两个变量,我们得到电子利用的最高效率在120 kV 达到顶峰。图2 二维聚亚胺结构图示。材料可承受电子量,结构信息比例和电子利用效率不同电压的量化分析。最优电压和相差矫正的强强联手,研究人员终于看到了高清版的二维聚亚胺结构,成像分辨率首次达到了2 埃以内,细节历历在目!图3 2D-PI-BPDA 和2D-PI-DhTPA的高分辨图像以及图像模拟。FFT显示出图像分辨率突破 2 埃。3.首次呈现间隙缺陷表活引导的界面二维聚合物合成方法,实现了晶圆尺寸级别的高结晶度的薄膜自下而上的生长[3][4]。样品晶区之间的晶界结构以及晶体缺陷材料非常重要的特征。通过优化TEM成像条件,清晰的视野使更多结构细节得以浮现,二维聚亚胺的单体卟啉中心4埃直径的孔道清晰可见。然而在某些区域,图像上的‘异象‘让研究者一时以为自己眼花了。2D-PI-BPDA 的孔洞的四个角出现神秘亮点,2D-PI-DhTPA里发现的则是半月形的弧线。通过文献分析和密度泛函(DFTB)的计算的帮助,终于解密了这些神奇的图案来自于卟啉分子在规整的二位聚合物网格中形成的间隙缺陷。研究人员解释这种缺陷产生的动力来自于被酸性环境质子化之后带正电荷的分子间产生的静电排斥作用。就如同乐高积木上突然长出了一些新的凸起点,导致它们无法完美堆叠在一起。然而当他们扭转或者平移之后,对抗解除,就可以继续堆叠,从而构成了类似统计模型中展示的结构。图4 2D-PI-BPDA 和2D-PI-DhTPA的间隙缺陷图,DFTB计算结构以及图像模拟。4.分辨单体侧边官能团得益于分辨的提高,单体侧边的官能团能够被直接分辨。单体DhTPA 的苯环上2,5对位各链接了一个氢氧根,研究人员通过对比图像上单体宽度的半峰宽惊喜地发现在目前in-focus成像条件下,官能团的氢氧根侧链能被轻松分辨。这对理解二维聚合物的通道环境对材料性质的影响有重要意义。图5 2D-PI-BPDA 和2D-PI-DhTPA 链接单体的结构,以及其高分辨图像宽度测量。5.应用展望研究人员继续对半无序状态下的亚胺进行了成像和分析, 从图可见,原本六边形的网格结构被许多五边和七边的结构取代。为了量化分析,研究人员利用了神经网络的方法来分析结构中多边形的配比,以及单体间距的长短角度。这个新工具可以帮助电镜研究人员进一步提高数据分析的效率,跨学科联合,事半功倍。图6 a-PI 高分辨成像以及神经网络图片分析结果。参考文献:[1] Feng X and Schlüter A D 2018 Towards Macroscopic Crystalline 2D Polymers Angew. Chemie - Int. Ed.5713748–63[2] Liang B, Zhang Y, Leist C, Ou Z, Položij M, Wang Z, Mücke D, Dong R, Zheng Z, Heine T, Feng X, Kaiser U and Qi H 2022 Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films Submitted[3] Ou Z, Liang B, Liang Z, Tan F, Dong X, Gong L, Zhao P, Wang H, Zou Y, Xia Y, Chen X, Liu W, Qi H, Kaiser U and Zheng Z 2022 Oriented growth of thin films of covalent organic frameworks with large single-crystalline domains on the water surfac J. Am. Chem. Soc.[4] Sahabudeen H, Qi H, Glatz B A, Tranca D, Dong R, Hou Y, Zhang T, Kuttner C, Lehnert T, Seifert G, Kaiser U and Fery A 2016 Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness Hafeesudeen Nat. Commun.71–8
  • 拓新产品架构 磐诺推出全二维气相色谱新品
    仪器信息网讯 近日,磐诺推出了全新全二维气相色谱产品GC1212,气相色谱家族再添一员,应用领域布局进一步完善。全二维气相色谱技术是一种多维色谱分离技术,利用两种极性不同的毛细管色谱柱,通过调制器串联形成二维气相色谱系统对样品组分进行分析。与常规一维气相色谱相比,全二维气相色谱具有分辨率高、峰容量大、灵敏度好、谱图分布规律性强等优点,是实现复杂样品分离鉴定的有力工具,在石油化工、环境、食品等领域有着很强的应用前景。常州磐诺仪器有限公司(以下简称:磐诺)是国内知名的色谱仪器厂家,一直专注于气相色谱及相关技术的研发和创新。为了深入了解该新产品,本网特别与磐诺就GC 1212全二维气相色谱仪产品相关话题进行了探讨。磐诺:着力推动全二维气相色谱普及化仪器信息网:请介绍磐诺推出全二维气相色谱产品的背景及其市场定位。磐诺:技术创新是一家科技企业,特别是仪器科技企业的灵魂和基石。对于气相色谱这项比较成熟的技术而言,是否能够再创新、在哪些方面进行创新、如何创新,是磐诺一直在考虑的问题。最近几年,全二维气相色谱技术凭借其远超常规一维色谱的分离能力,在石化、环境、食品、代谢等领域获得了越来越广泛的应用,被称为继毛细色谱柱以后气相色谱最具革命性的技术。但到目前为止,全二维技术还大多集中在高端科研实验室,在常规分析领域的渗透不足,在标准化方面的工作也缺乏亮点。更先进便利的分析工具亟待推广和应用,在市场广泛需求的推动、国家和行业政策的助力下,让技术转化为产品,产品服务于市场,进而真正惠及用户,是磐诺有责任也有能力去做的事。磐诺希望借助传统气相色谱技术的积累,能够为全二维色谱技术的推广贡献力量。全二维气相色谱产品GC1212磐诺作为国内领先的色谱厂家,依靠成熟的色谱研发、生产、市场和销售能力,再加上具有多年产品和应用开发的全二维技术专家团队,首次推出全新全二维气相色谱产品GC1212。要实现全二维技术的普及,就不能只聚焦于科研领域,我们希望能将该技术推广到常规应用实验室中,成为一种标准化的分析工具和手段。今后,我们将持续进行产品研发和升级,尽量减少客户的转换门槛,开发更多行业应用方案和前瞻性应用研究。并与相关的行业单位深度合作,建立示范合作点,共同推进方案和标准落地。另外,除了实验室色谱,磐诺全二维技术还可以整合到在线或便携式气相色谱产品中,进一步拓展产品线和应用场景。新品GC1212:一体化+专用软件仪器信息网:新品GC1212有哪些显著创新?磐诺:GC1212全二维气相色谱仪的创新主要有以下几点:第一、设备的整体性。之前几乎所有的全二维气相色谱都是在现有GC或GC-MS平台上加装一个全二维调制器来实现的,可以说,没有一家全二维厂家是基于自有GC产品,而现有的GC都只是为一维色谱分离而设计制造的,并没有考虑到全二维的功能需求。这样的组合产品在整体功能上就存在天生欠缺,最多只能做到信号通讯同步以及参数编辑整合。磐诺作为深耕GC技术的厂家,依托专精技术优势,可以更好地将全二维功能有机整合到GC平台中,从底层设计开始嵌入全二维模块,具有更好的功能兼容性和用户体验感。第二、在软件上实现了完全统一。使用一套软件实现仪器控制、状态监控、方法优化、数据采集和处理以及定制方案,不需要下载使用多套不同厂家的软件来编辑不同设备的对应设备方法;方法编辑更高效,错误率大大减少。软件还配有针对全二维气相色谱的流量计算和方法优化工具,方便用户进行系统配置和参数选择。在采集数据的同时,实时显示一维及全二维谱图,第一时间了解样品组成情况,方便提前进行计划调整和结果估算。第三、灵活定制方案。磐诺全二维GC产品主要针对科研及常规分析应用,对于某些专用分析需求,内置特定方法包:包括专用色谱柱系统、色谱参数方法、定制标样、定制化数据处理流程等,提供一整套完整的“交钥匙”解决方案。同时,对于科研用户,我们专业的技术团队提供从色谱柱配置、方法开发、数据处理到系统维护、方案定制等一系列全面的技术支持和服务。新手操作友好,对于初步接受全二维技术的用户,可以尽快上手使用,节省调试和方法开发,及数据处理的时间,以最快速度最小成本享受到全二维色谱技术带来的效果提升。着重石油化工等领域应用仪器信息网:磐诺的全二维气相色谱产品着力解决哪些实际应用问题?针对特殊领域应用是否推出新的解决方案?磐诺:全二维色谱主要解决复杂样品和复杂基质中的分离难题。我们推出的全二维GC产品也主要聚焦这个方向,特别在化工、环境和食品等行业推出针对性的分析方案,着力解决原有一维分析方案中分析时间长、需要大量预处理和预分离过程、以及设备要求高使用不便等问题。我们已经开发的方案包括:柴油中多环芳烃、航煤中烃组成、凝析油分析、蜡油及润滑油等重油中族组成和含氧化合物、环境中恶臭气体、食品中矿物油、香精香料等分析方案,也和国内一些分析机构进行合作,满足一些行业特定的分析需求。仪器信息网:对于新品的市场表现预期如何?磐诺:任何一种革命性的技术从开始出现到引领市场,都需要很长的一段时间,期间需要技术人员、配套材料、整体方案以及实际需求等各方面要素逐渐完善。我们现在习以为常的色谱技术,不管是毛细管色谱柱,还是色谱质谱联用,无一不是经过十几年甚至几十年的发展,才最终被市场接受。对于这款全二维GC新品,磐诺已做好充分准备,戒骄戒躁,砥砺前行,真正在产品设计和应用开发上下功夫,打造出具有国际领先水平的国产设备和自有方案。当然,我们也充满信心,在磐诺集团强大的研发生产和市场推广能力的保障下,同时得益于国家对高新技术的大力支持,以及各行业对国产新技术的旺盛需求,全二维GC产品会以比较快的速度推进,并得到客户和市场的认可。磐诺对新技术应用前景保有信心,未来全二维色谱系统会在相应应用领域分析工具数据中获得可观份额。
  • 研究揭示二维半导体中本征极化子的原子级操纵
    极化子是半导体或绝缘体中的一种基本物理现象,是由材料体内的额外电荷(电子或空穴)在电声耦合作用下被束缚在局域晶格畸变处而构成的复合准粒子,对材料的输运特性、表面催化、磁性甚至超导性表现出重要影响。在原子尺度下对极化子的表征和操纵有助于了解极化子的基本物理机制,乃至材料的基本物理特性。然而,自极化子概念提出以来,研究发现具有极化子的材料体系中,额外电荷往往来自于晶格缺陷如空位、掺杂或吸附原子等,因而极化子在实空间中被束缚在缺陷附近,若要实现对极化子的人工操纵就需要克服晶格缺陷的影响,这阻碍了对极化子本征特性的观测和操控。   中国科学院物理研究所/北京凝聚态物理国家研究中心表面国家重点实验室SF09组研究员吴克辉和陈岚长期关注表面低维体系的生长制备和新奇物性表征及操控,特别是在单原子和分子尺度下对表面局域结构特征(表面缺陷或吸附分子等)操纵方向。近日,该团队与中国科学技术大学教授赵瑾课题组合作,在二维半导体中本征极化子表征与操纵方面取得了突破,基于扫描隧道显微镜(STM)技术直接在二维材料的完整晶格中实现了高度可逆的单个本征极化子操纵。   物理所利用分子束外延技术在高定向热解石墨(HOPG)表面制备获得了高质量大面积的单层二维半导体薄膜CoCl2。利用STM针尖的隧穿电子注入原理,研究在完整的原子晶格任意位点处构造出与晶格缺陷无关的两种本征极化子,并实现对单个极化子的可逆写入、擦除、转换和横向迁移等一系列操纵过程。中国科大从第一性原理计算出发进一步在能量上佐证了该体系中两种不同空间构型的本征极化子稳定性,并证实了及其转变和迁移过程的可行性。   该工作首次在二维材料体系中发现了与晶体缺陷无关的本征极化子,解释了其形成机制,并实现了对单个本征极化子的原子尺度操纵。该体系为本征极化子的特性研究提供了极佳的平台,更在微纳信息存储领域表现出潜在的应用价值。相关研究成果发表在《自然-通讯》【Nature Communications 14, 3690 (2023)】。研究工作得到科学技术部、国家自然科学基金委员会和中国科学院的支持。
  • 高性能二维钙钛矿太阳电池制备成功
    近日,中科院大连化学物理研究所研究员刘生忠团队与陕西师范大学教授赵奎合作,在二维Dion—Jacobson(DJ)钙钛矿成膜控制研究中取得新进展,制备出高效率芳香族二维DJ钙钛矿太阳电池。相关研究发表在Advanced Energy Materials上。近年来,二维有机—无机杂化钙钛矿半导体材料凭借其高的环境稳定性和结构多样性,受到研究界广泛关注。该研究中,合作团队利用原位表征手段,实时追踪二维DJ钙钛矿前驱体溶液反应形成固态薄膜的结晶过程,以及其对量子阱生长、电荷传输、太阳电池性能的影响。研究发现,溶液处理过程中,快速提取溶剂可以加快钙钛矿相的成核和生长,避免从中间相到钙钛矿相的间接转变。因此,通过提升薄膜质量、优化量子阱的厚度分布,有利于提高二维钙钛矿太阳电池的电荷传输效率、载流子寿命和迁移率,最终改善电池的短路电流和开路电压,制备出效率为15.81%的器件。据了解,这是目前文献可查的芳香族二维DJ钙钛矿太阳电池的最高效率。该研究对指导DJ钙钛矿实现更加优化的光电性能和器件性能具有重要意义。相关论文信息:https://doi.org/10.1002/aenm.202002733
  • 全二维气相色谱热调制技术的发展与最新进展
    热调制技术是全二维气相色谱中使用较多的一种调制方式,在第一根色谱柱和第二根色谱柱之间以固定频率反复施加高温和低温,使一维的馏出物在该段位置产生周期性的冷聚和释放,从而实现对一维峰的调制过程。热调制技术相对于气流调制,调制效果更好,分辨率更高,而且载气流量保持不变,适合连接质谱检测器,另外冷聚过程中可以对分析物进行浓缩,灵敏度也有所提高。热调制技术已经成为应用最广泛的一种全二维气相色谱调制方法。  目前的热调制技术经历了一系列的技术革新。John Philips和Zaiyou Liu最先于1991年提出热调制技术并申请了专利。当时是在一根石英毛细柱上利用导电涂料的电阻加热和自然冷却来完成调制过程。由于导电涂料反复加热后容易剥落,而且自然冷却速度较慢,这种阻热式的调制方式被淘汰,但它却奠定了当今经典的两级热调制的技术基础。  上世纪90年代末,澳大利亚的Phillip Marriott教授发明了纵向调制冷却系统(Longitudinally Modulated Cryogenic System, LMCS)。LMCS将一个移动的冷阱(Cryo Trap)套在需要调制的色谱柱上,冷阱内可用液态二氧化碳对局部色谱柱进行制冷,冷阱套以外的色谱柱放置在色谱仪的炉膛内部,被炉膛加热。通过冷阱套的上下移动,对不同部位的色谱柱进行反复加热制冷从而完成调制(图1)。这种方式加热和制冷都十分快速有效,能产生非常理想的调制峰宽,大大增加了全二维气相色谱的实用性。LMCS的出现让众多色谱学者开始应用全二维气相色谱技术,发表了大量以此技术为基础的分析应用,对全二维气相色谱的发展产生了深远的影响。不过,由于LMCS的运动部件自外向内伸入炉膛,其两端存在很大的温差,因此易产生变形和失效,其长期稳定性一直存在问题,最终也没有商业化。不过随后发展的商业调制器均沿袭了这种思路,采用色谱仪炉膛直接加热,相比于阻热式调制器,这种方法简单稳定,可靠性大大加强,但为了在加热的炉膛内实现快速冷却,必须大量使用液态制冷剂,所以被称为制冷式热调制器。  图1. LMCS热调制器技术原理示意图  经过一系列探索与改进后,采用固定冷热喷嘴的调制器开始慢慢盛行,例如ZOEX公司的环形调制器,LECO公司的四喷嘴调制器,和Thermo Scientific公司的双喷嘴调制器。这些调制器利用喷嘴喷出的冷热气体对调制柱进行加热冷却(图2),温度变化速率快,可靠性高,该技术现已实现商品化,成为目前学术界和工业界大量使用的主流热调制器。    图2. 冷热喷嘴调制器技术原理示意图  与此同时,随着不锈钢毛细色谱柱的问世和商业化,已经消失很久的阻热式调制技术在几年前重新获得发展。其代表是美国密西根大学Richard Sacks教授的研究团队和加拿大滑铁卢大学的Tadeusz Gorécki教授的研究团队。其共同特点就是长期将调制柱放置在低温环境中,以周期性的电流直接加热需要调制的不锈钢毛细柱。这种方式利用不锈钢的导电性质,不用依赖导电涂料,稳定性显著提高。而且电加热方式简单灵活,可以产生非常窄的脉冲,实现快速释放。他们两个团队在冷却系统上稍有区别。  密西根大学的调制器核心部件安装于色谱仪炉膛内,将金属毛细管浸泡在被一个制冷机循环冷却的聚乙二醇液态腔体里来完成调制全过程。密西根大学首创的这种通过制冷机形成充足冷量的技术方案被ZOEX等公司随后纷纷采用和改进,并形成了商业化的不使用液氮的喷嘴式热调制器。但是,这些调制器仍然需要消耗大量的用于热交换的干燥的氮气或空气,并没有将全二维色谱技术真正从高端实验室或研究机构中解放出来。  滑铁卢大学的调制器核心部件最初安装于炉膛之外,并利用蜗旋管冷却技术来完成调制。蜗旋管需要消耗大量的压缩空气,因此一般也只能在实验室中使用。近年来,改进的调制器核心部件重新安装于炉膛之内,并利用一端伸出炉膛的导热铜块来实现风冷降温。这项改进终于让人看到了不消耗任何制冷剂的曙光。但是,它也牺牲了一定的调制范围,尤其是在低沸点化合物一端。  无论哪种方案,只要采用不锈钢色谱柱作为调制柱,必须同时解决电的良好接触和避免在接触点产生冷点,这样才能保证正常的色谱过程。然而。这两点往往是矛盾的。因此可以看到上述两个团队最终还是选择了直接或间接在炉膛内完成调制全过程,并由此在其它方面做出了牺牲。另外,不锈钢本身比熔融石英的热质量大了近四倍,因此在没有强制冷的条件下,降温速度很慢,例如滑铁卢大学的调制器,调制周期无法做到4秒以下 然而,目前全二维色谱的运行趋势是将调制周期优化在2秒到4秒之间,从而更好地保持第一维的色谱分离效果和节省整体分析时间。最后,不锈钢色谱调制柱必须具有不同膜厚的内部固定相才能完成对相应沸点范围化合物的调制,但是因其固定方式对良好电接触的要求,更换起来并不灵活。综上所述,采用不锈钢色谱柱电阻加热的调制器目前还有很多技术问题没有解决,在短期内难有大的突破,目前只停留在研究阶段,尚未实现商业化。  随着本世纪初微加工工艺和微机电系统(MEMS)的兴起,第一个微型固态热调制器在美国密西根大学诞生。它在一片硅晶片上集成了微色谱柱和金属丝线,利用后者脉冲式电阻加热和一块半导体制冷元件的持续冷却完成对微色谱柱的调制(图3)。这项发明由于整体设备的热质量非常微小,从而省去了制冷剂的使用,极大简化了日常操作。但是由于其微机电系统和外部宏观尺寸的设备难以实现完美的无缝连接,实际性能并不理想。此外由于分析测试市场规模比较小,不足于降低微系统的开发制造成本。经过多年的研发,该技术始终不能商业化。  图3. 基于MEMS的微型热调制器技术原理示意图  借鉴了LMCS移动式系统和微型热调制器的优势后,Guan和Xu将它们以崭新的方式结合起来,发明一种不依赖微加工工艺但又能成功使用半导体制冷的固态热调制器。这种调制器在整体上摈弃了业界一直流行的对色谱仪炉膛加热的依赖,构建了独立的冷却与加热环节以实现炉膛外的完全调制。由于不再需要大量的制冷以抵消炉膛的加热,另外冷却与加热区域进一步在空间上相互隔绝,大大增加了制冷效率。这样只依靠半导体制冷就能实现优异的调制效果,完全避免了制冷剂的使用(图4)。这种技术目前已经成功商业化。  图4. 无需制冷剂的商业化固态热调制器
  • 二维半导体材料制备工艺新突破,助力柔性电子器件应用
    p style=" margin-top: 0px margin-bottom: 0px padding: 0px line-height: 24px color: rgb(51, 51, 51) text-align: justify font-family: arial white-space: normal background-color: rgb(255, 255, 255) text-indent: 2em user-select: text !important " span class=" bjh-p" style=" user-select: text !important " 在半导体器件不断小型化以及柔性化的主流趋势下,以二硫化钼(MoS2)等过渡金属硫属化合物(TMDC)为代表的二维半导体材料显示出独特的优势。国际半导体联盟在2015年的技术路线图(International Technology Roadmap for Semiconductors, ITRS)中明确地指出它是下一代半导体器件的关键材料。二维半导体材料具有超薄厚度(单原子层或少原子层),优异的电学、光学、机械性能及多自由度可调控性,使其在未来的更轻、更薄、更快、更灵敏的电子学器件中具有优势。 /span /p p style=" margin-top: 22px margin-bottom: 0px padding: 0px line-height: 24px color: rgb(51, 51, 51) text-align: justify font-family: arial white-space: normal background-color: rgb(255, 255, 255) text-indent: 2em user-select: text !important " span class=" bjh-p" style=" user-select: text !important " 然而,现阶段以器件应用为背景的单层二硫化钼研究仍然存在以下两个关键的科学问题:(1)材料制备,如何获得高质量大尺度的二硫化钼晶圆;(2) 器件工艺,如何实现高密度、高性能、大面积均一的器件加工。这是新型半导体材料从实验室走向市场要经历的共性问题,如能解决其高质量规模化制备和集成器件性能调控的关键科学障碍,必将有力推动二维半导体材料的应用发展进程,给柔性电子产业注入新的发展动力。 /span /p p style=" margin-top: 22px margin-bottom: 0px padding: 0px line-height: 24px color: rgb(51, 51, 51) text-align: justify font-family: arial white-space: normal background-color: rgb(255, 255, 255) text-indent: 2em user-select: text !important " span class=" bjh-p" style=" user-select: text !important " 松山湖材料实验室张广宇副主任带领的二维材料团队,在过去十多年一直致力于高质量二维材料的外延、能带调控、复杂结构叠层、功能电子器件和光电器件的研究。近期,团队利用自主设计搭建的四英寸多源化学气相沉积设备,采用立式生长方法在蓝宝石衬底上成功外延制备了四英寸高质量连续单层二硫化钼晶圆,所外延的高质量薄膜由高定向(0° 和60° )的大晶粒(平均晶粒尺寸大于100 μm)拼接而成。在这种高定向的薄膜中,高分辨透射电子显微镜观测到了近乎完美的4|4E型晶界。得益于独特的多源设计,所制备的晶圆具有目前国际上报道中最高的电子学质量。相关工作发表在近期的Nano Letters 2020上。 /span /p p style=" margin-top: 22px margin-bottom: 0px padding: 0px line-height: 24px color: rgb(51, 51, 51) text-align: center font-family: arial white-space: normal background-color: rgb(255, 255, 255) text-indent: 0em user-select: text !important " span class=" bjh-p" style=" user-select: text !important " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/d61f3a56-f685-4c35-b5f6-c26a3ec32821.jpg" title=" 4a36acaf2edda3cc9bd4902a0de55106213f929f.jpeg" alt=" 4a36acaf2edda3cc9bd4902a0de55106213f929f.jpeg" / /span /p div class=" img-container" style=" margin-top: 30px font-family: arial font-size: 12px white-space: normal background-color: rgb(255, 255, 255) user-select: text !important " span class=" bjh-image-caption" style=" user-select: text !important font-size: 13px color: rgb(153, 153, 153) display: block margin-top: 11px text-align: center " 四英寸高定向单层二硫化钼外延晶圆 /span /div p style=" margin-top: 26px margin-bottom: 0px padding: 0px line-height: 24px color: rgb(51, 51, 51) text-align: justify font-family: arial white-space: normal background-color: rgb(255, 255, 255) text-indent: 2em user-select: text !important " span class=" bjh-p" style=" user-select: text !important " 在此基础之上,团队进行了一系列器件加工工艺的优化,包括:(1)采用兼容的微加工工艺,逐层制作器件,保证了器件层与层之间的洁净,实现了器件阵列加工的大面积均一性;(2)采用独特的物理吸附与化学反应相结合的原子层沉积方法,提高了器件绝缘层质量;(3)采用金/钛/金多层结构作为接触电极,有效降低了器件的接触电阻。 /span /p p style=" margin-top: 22px margin-bottom: 0px padding: 0px line-height: 24px color: rgb(51, 51, 51) text-align: justify font-family: arial white-space: normal background-color: rgb(255, 255, 255) text-indent: 2em user-select: text !important " span class=" bjh-p" style=" user-select: text !important " 通过这些优化手段,成功实现了大面积二硫化钼柔性晶体管以及逻辑器件(如反相器、或非门、与非门、与门、静态随机存储器以及五环振荡器等)的制作,器件表现出优异的功能特性。其中,柔性场效应晶体管器件密度可达1518个/平方厘米,产量高达97%,是目前已报道结果中最高指标。此外,单个器件还表现出优异的电学性能和柔韧性,开关比达到1010,平均迁移率达到55 cm2 V-1s-1,平均电流密度为35 μA μm-1。相关结果发表在近期的Nature Electronics 2020上。 /span /p div class=" img-container" style=" margin-top: 30px font-family: arial font-size: 12px white-space: normal background-color: rgb(255, 255, 255) user-select: text !important text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/b5c1c60c-854b-4a68-ac68-4f2091e8ec2f.jpg" title=" 2.jpeg" alt=" 2.jpeg" / span class=" bjh-image-caption" style=" user-select: text !important font-size: 13px color: rgb(153, 153, 153) display: block margin-top: 11px text-align: center " 大面积二硫化钼柔性晶体管与柔性逻辑器 /span /div div class=" img-container" style=" margin-top: 30px font-family: arial font-size: 12px white-space: normal background-color: rgb(255, 255, 255) user-select: text !important text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/d6d7193c-438b-4de1-8723-953def3c6f33.jpg" title=" 3.jpeg" alt=" 3.jpeg" / /div p style=" margin-top: 26px margin-bottom: 0px padding: 0px line-height: 24px color: rgb(51, 51, 51) text-align: center font-family: arial white-space: normal background-color: rgb(255, 255, 255) text-indent: 0em user-select: text !important " span style=" font-size: 12px user-select: text !important " 二硫化钼柔性反相器、或非门、与非门、与门、静态随机存储器以及五环振荡器 /span /p p style=" margin-top: 22px margin-bottom: 0px padding: 0px line-height: 24px color: rgb(51, 51, 51) text-align: justify font-family: arial white-space: normal background-color: rgb(255, 255, 255) text-indent: 2em user-select: text !important " span class=" bjh-p" style=" user-select: text !important " 这两项工作突破了晶圆级高质量二硫化钼薄膜的外延技术,实现了二硫化钼柔性晶体管器件及逻辑器件的高密度集成,为大面积柔性电子器件的发展提供了新的思路与技术基础,预期可以有效推动二维半导体材料在柔性显示屏、智能可穿戴器件方面的应用。 /span /p p style=" margin-top: 22px margin-bottom: 0px padding: 0px line-height: 24px color: rgb(51, 51, 51) text-align: justify font-family: arial white-space: normal background-color: rgb(255, 255, 255) text-indent: 2em user-select: text !important " 该系列工作由松山湖材料实验室与中国科学院物理研究所联合完成,并得到了国家自然科学基金、国家重点研发计划、中科院B类先导专项、中科院青促会等项目的资助。 /p
  • 中科大在二维材料固态自旋色心研究中取得新进展
    中国科学院院士、中国科学技术大学教授郭光灿团队在二维范德瓦尔斯材料固态自旋色心领域取得重要进展。该团队李传锋、唐建顺研究组与匈牙利魏格纳物理研究中心教授AdamGali等合作,实验研究并理论解释了六方氮化硼(hexagonalboronnitride,hBN)中带负电硼空位(VB-)色心受磁场调制的自旋相干动力学行为,揭示了hBN中VB-色心电子自旋与核自旋之间的相干耦合和弛豫机制,这对发展基于二维范德瓦尔斯材料的相干自旋系统及低维量子器件具有重要意义。9月29日,相关研究成果发表在《自然-通讯》(Nature Communications)上。 近年来,研究发现,宽禁带范德瓦尔斯材料hBN是室温自旋色心的优秀宿主。范德瓦尔斯材料通过简单的机械剥离便可制备为原子厚度的二维结构,且可与多种微纳结构相耦合,在低维量子器件制备和近场传感探测等方面比三维体材料具有天然优势,因而hBN中的自旋色心成为固态自旋色心领域的研究热点。目前,研究最广泛的hBN自旋色心为VB-色心,且集中于VB-的电子自旋,而对VB-电子自旋周围的核自旋缺乏深入研究及观测。由于色心周围的核自旋是固态自旋维度扩展的主要途径之一,且是造成固态自旋弛豫的主要因素。因此,VB-色心的电子自旋与周围核自旋耦合形成的多自旋体系的相干动力学研究,对推动基于范德瓦尔斯材料的固态量子自旋技术至关重要。本工作中,研究组使用中子辐照技术在hBN中制备出高浓度的VB-色心样品,并利用ODMR(optical probing magnetic resonance)技术探测VB-自旋能级结构,观测到VB-色心中电子自旋与3个最近邻14N核自旋相互作用产生的超精细劈裂以及14N核自旋偏振随磁场增强的极化现象。同时,研究组对VB-进行多项室温相干操控和探测,包括Rabi振荡、自旋回波、Ramsey干涉探测等。探测结果表明,VB-自旋受到明显的核自旋相干调制,且核自旋调制效应会随磁场增加而变强。为进一步揭示相关现象的内在动力学机制,研究组理论构建了VB-电子与最近邻14N核自旋组成的4自旋系统,并对该4自旋系统的多种动力学性质进行无参数(parameterfree)的理论模拟。结合实验与模拟结果,研究组发现VB-色心中存在较强的电子与核自旋相互作用,同时最近邻14N核自旋极化也受到显著的驱动微波动态调制。此外,研究组还在理论模拟中引入了包含127个14N和11B的多体核自旋环境,并模拟了与之相互作用的开放4自旋VB-系统的动力学行为。通过对照实验和理论结果,研究组发现11B核自旋环境主导了VB-色心的自旋弛豫,而磁场能够减弱核自旋环境的弛豫效应并增强VB-电子与最近邻14N的相干耦合。(a)VB-色心的原子结构示意图;(b)VB-色心的电子自旋能级结构;(c)不同磁场下VB-色心的ODMR信号;(d)不同磁场下VB-色心的Rabi振荡信号。该研究从实验和理论上揭示了VB-色心中存在显著的电子和最近邻14N核自旋相干耦合,以及多体11B核自旋环境导致的VB-色心自旋弛豫。该工作为将VB-相干操控自旋拓展至核自旋以及发展相关低维固态量子系统奠定了基础。研究工作得到科技部、国家自然科学基金、中科院和合肥国家实验室等的支持。
  • 复旦大学包文中课题组又发一篇Nature子刊,小型台式无掩膜光刻机助力晶圆级二维半导体的集成电路工艺
    期刊:Nature communication IF 14.92文章DOI:https://doi.org/10.1038/s41467-021-26230-x 【引言】石墨烯的发现为人类打开了二维材料的大门,经历十多年的研究,二维材料表现出的各种优良性能越来越吸引科研学者。然而,在工业上大规模应用二维材料仍然存在着很多问题,所制成的器件不能符合工业标准。 【成果简介】近日,复旦大学包文中教授课题组利用机器学习 (ML) 算法优化了二维半导体(MoS2)栅场效应晶体管 (FET)的制备工艺,并采用工业标准设计流程和工艺进行了晶圆器件与电路的制造和测试。文章以《Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning》为题发表于Nature Communications。本文中,晶圆尺寸器件制备的优化是先利用机器学习指导制造过程,随后使用小型台式无掩膜光刻机MicroWriter ML3进行制备,优化了迁移率、阈值电压和亚阈值摆幅等性能。 【图文导读】图1. 制备MoS2 FETs的总流程图。(a)CVD法制备晶圆尺寸的MoS2。(b)MoS2场效应管的各种截面图。(c)晶体管的表现和各类参数的关系。(d)从材料制备到芯片制备和测试的优化反馈循环。图2. MoS2 FETs的逻辑电路图。(a),(b),(c)和(d)各类电压对器件的影响。(e)使用MicroWriter ML3无掩膜激光直写机制备的正反器和(f)相应实验结果(g)使用MicroWriter ML3无掩膜激光直写机制备的加法器和(h)相应的实验结果。图3. 利用MoS2 FETs制备的模拟,储存器和光电电路。(a)使用无掩膜光刻机制备的环形振荡器和(b)相应的实验结果。(c)基于MoS2 FETs制备的存储阵列和(d-f)相应的实验结果。(g)利用MicroWriter ML3制备的光电电路和(h-i)相应的表现结果。图4. 使用MicroWriter ML3无掩膜激光直写机在晶圆上制备MoS2场效应管。(a)在两寸晶圆上制备的基于MoS2场效应管的加法器。(b),(c)和(d)在晶圆上制备加法器的运算结果。 【结论】随着二维材料的应用和人工智能在各领域的迅速发展,如何快速开发出符合实验设计的原型芯片结构变得十分重要。由于实验过程中需要及时修改相应的参数,得到优化的实验结果,所以十分依赖灵活多变的光刻手段。从上文中可以看出,小型台式无掩膜光刻机MicroWriter ML3可以帮助用户快速实现各类逻辑结构的开发,助力微电子相关领域的研究。鉴于1套小型台式无掩膜光刻机ML3系统的优良性能和高成果产出,课题组相关研究团队继续紧追热点,把握时机再添置一套英国DMO公司新款小型台式无掩膜光刻机-ML3 Pro+0.4 μm专业版系统,力争更优的器件性能,图中所示是目前已交付正常使用的全新版系统。希望能够助力研究团队取得重要进展!
  • 复旦大学包文中课题组又发一篇Nature子刊,小型台式无掩膜光刻机助力晶圆级二维半导体的集成电路工艺
    期刊:Nature communication IF 14.92文章DOI:https://doi.org/10.1038/s41467-021-26230-x 【引言】 石墨烯的发现为人类打开了二维材料的大门,经历十多年的研究,二维材料表现出的各种优良性能越来越吸引科研学者。然而,在工业上大规模应用二维材料仍然存在着很多问题,所制成的器件不能符合工业标准。 【成果简介】 近日,复旦大学包文中教授课题组利用机器学习 (ML) 算法优化了二维半导体(MoS2)栅场效应晶体管 (FET)的制备工艺,并采用工业标准设计流程和工艺进行了晶圆器件与电路的制造和测试。文章以《Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning》为题发表于Nature Communications。本文中,晶圆尺寸器件制备的优化是先利用机器学习指导制造过程,随后使用小型台式无掩膜光刻机MicroWriter ML3进行制备,优化了迁移率、阈值电压和亚阈值摆幅等性能。 【图文导读】图1. 制备MoS2 FETs的总流程图。(a)CVD法制备晶圆尺寸的MoS2。(b)MoS2场效应管的各种截面图。(c)晶体管的表现和各类参数的关系。(d)从材料制备到芯片制备和测试的优化反馈循环。图2. MoS2 FETs的逻辑电路图。(a),(b),(c)和(d)各类电压对器件的影响。(e)使用MicroWriter ML3无掩膜激光直写机制备的正反器和(f)相应实验结果(g)使用MicroWriter ML3无掩膜激光直写机制备的加法器和(h)相应的实验结果。图3. 利用MoS2 FETs制备的模拟,储存器和光电电路。(a)使用无掩膜光刻机制备的环形振荡器和(b)相应的实验结果。(c)基于MoS2 FETs制备的存储阵列和(d-f)相应的实验结果。(g)利用MicroWriter ML3制备的光电电路和(h-i)相应的表现结果。图4. 使用MicroWriter ML3无掩膜激光直写机在晶圆上制备MoS2场效应管。(a)在两寸晶圆上制备的基于MoS2场效应管的加法器。(b),(c)和(d)在晶圆上制备加法器的运算结果。 【结论】 随着二维材料的应用和人工智能在各领域的迅速发展,如何快速开发出符合实验设计的原型芯片结构变得十分重要。由于实验过程中需要及时修改相应的参数,得到优化的实验结果,所以十分依赖灵活多变的光刻手段。从上文中可以看出,小型台式无掩膜光刻机MicroWriter ML3可以帮助用户快速实现各类逻辑结构的开发,助力微电子相关领域的研究。 鉴于1套小型台式无掩膜光刻机ML3系统的优良性能和高成果产出,课题组相关研究团队继续紧追热点,把握时机再添置一套英国DMO公司新款小型台式无掩膜光刻机-ML3 Pro+0.4 μm专业版系统,力争更优的器件性能,图中所示是目前已交付正常使用的全新版系统。希望能够助力研究团队取得重要进展!
  • 柔性二维碳化钒基表面增强拉曼散射检测平台问世
    安徽理工大学力学与光电物理学院青年教师蓝雷雷与东南大学物理学院邱腾课题组合作,制备出两种类型的二维碳化钒(V4C3和V2C)MXenes材料,并证明这种材料可以作为性能优异的表面增强拉曼散射(SERS)平台,其中V4C3作为SERS活性材料首次报道。相关研究成果发表于《美国化学会-应用材料与界面》。柔性二维碳化钒MXene基滤膜的SERS增强效果示意图 安徽理工大学供图表面增强拉曼散射作为一种具有高灵敏度、分子指纹识别和快速无损测量的表面光谱分析技术,将检测灵敏度提升了百万倍以上,已广泛应用于生命科学、物理、化学、材料学、地质学、考古和艺术品鉴定等领域。“比如将SERS技术应用于患者呼出物、血清液、脱氧核糖核酸的检测,为早期患者的疾病诊断提供一种有力分析手段;应用于海洋微塑料、大气有毒有害气体、水体有机污染物和土壤重金属的微量检测,实现对环境中有害物质的监测;还可实现对危害公共安全的爆炸物质和疑似吸毒人员体液毛发中含毒品物质的快检。” 蓝雷雷向《中国科学报》介绍。近年来,一些MXenes材料表现出相当强的SERS活性,为SERS活性材料发展开辟了新前景。但其瓶颈在于灵敏度不足,无法满足实际应用需求。因此,将MXene材料的灵敏度推向更高水平仍然具有挑战性。此次研究中,蓝雷雷等提出了一种新的增强策略,通过结合二维裁剪和分子富集来设计高灵敏度的柔性MXene基SERS衬底,成功制备出两种类型的二维碳化钒MXenes材料。“我们研究发现,与块状MXene材料相比,二维裁剪赋予碳化钒MXenes费米能级附近更为丰富的态密度,促进了光致诱导电荷转移,增加了多达2个数量级的检测灵敏度。”蓝雷雷说。进一步,研究人员采用了一种分子富集方法,实现了2分钟内超快速分子富集、超高分子截留率和更低的检测限,从而获得了超灵敏的SERS检测。蓝雷雷说,“这项研究有助于设计和开发出高性能的新型MXene基SERS基底,可用于食品安全、疾病诊断、反恐搜爆、毒品稽查、环境监测和病毒检测等领域。”审稿人认为:作者将二维裁剪策略与分子富集效应相结合,这是一项有趣的研究工作,新型碳化钒基底的SERS增强效果显著,其中V4C3作为SERS基底在这之前未曾报道过。通过简单抽滤的分析物富集概念为实现超灵敏的SERS检测提供了一种有效的策略。相关论文信息:https://doi.org/10.1021/acsami.2c10800
  • 仪器情报,科学家利用多种表征揭示新型二维有机-无机异质结构的创新应用!
    【科学背景】随着二维材料研究的不断深入,二维有机-无机异质结的发展引起了广泛关注。这些异质结结合了有机和无机材料的优势,旨在实现新型器件和应用。然而,传统构建这些异质结的方法,如湿化学处理或机械剥离转移,往往伴随着界面污染、晶体质量差和尺寸受限等问题。因此,迫切需要一种新的策略来实现大规模、高质量的二维有机-无机异质结构。为了填补这一知识空白,陕西师范大学物理学与信息技术学院高健智教授、 国科学院苏州纳米技术与纳米仿生研究所李坊森、华中科技大学物理学院潘明虎教授、美国犹他大学刘锋教授合作在“Nature Communications”期刊上发表了题为“Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands”的最新论文。他们开发了一种基于自下而上的制备方法。本研究以自组装的方式在高度定向热解石墨基底上形成了单层1,3,5-三(4-羟基苯基)苯(THPB)氢键有机框架(HOF),并通过强层间耦合实现了顶层石墨烯的自提升。这一过程在超高真空环境中进行,保证了界面的干净度和异质结构的高结晶性。通过原位高分辨率扫描隧道显微镜/光谱(STM/STS)和角分辨光电子能谱(ARPES),研究人员详细表征了THPB-HOF的晶格结构和电子能带结构。他们观察到了THPB-HOF具有缺陷和无缺陷半部分的蜂窝结构,以及石墨烯层上的Dirac能带和THPB-HOF内的窄带。这项研究的成果不仅展示了自提升效应在制备大规模二维有机-无机异质结构中的有效性,还揭示了这些异质结构在电子性质和结构特征上的独特之处。【科学亮点】(1)实验首次采用自下而上的方法,成功合成了大规模漂浮的二维有机-无机异质结构,具有干净的界面和高结晶性。这种异质结构由单层THPB氢键有机框架(HOF)和自提升的石墨烯层组成,展示了优越的结构特性。(2)通过在超高真空(UHV)环境中进行有机气相生长,获得了高质量的THPB-HOF晶格,其呈现出蜂窝状的特征,包含缺陷和无缺陷的半部分,类似于分子“石墨烯”。实验结果显示,石墨烯层的Dirac能带位于费米能级(EF)附近,表明其优良的电学性能。(3)采用原位高分辨率扫描隧道显微镜(STM)和角分辨光电子能谱(ARPES)技术,观察到THPB-HOF的窄带和Dirac能带的共存。这些窄带位于更深的能量层面,显示了THPB-HOF的独特电子结构,符合DFT计算的拓扑平带特征。(4)研究还发现,在隧道谱中出现的局部自旋态是由于π共轭THPB体系中pz轨道的去除,这为进一步探索材料的磁性特性提供了线索。(5)该研究表明,自提升效应可以有效地构建二维有机-无机异质结构,具有大规模均匀性和长程有序性。这种方法不仅适用于THPB-HOF,也可扩展到其他范德瓦尔斯材料,为新型电子器件的开发开辟了新的方向。【科学图文】图1:大规模二维有机/石墨烯异质结构的自下而上制造。图2:THPB-HOF的STM表征和第一性原理DFT计算。图3:THPB-HOF/石墨烯能带的ARPES观测。图4:在THPB-HOF上测量的隧道谱。【科学结论】本文通过自下而上的方法在超高真空环境中实现了高质量的异质结构,展示了控制材料界面和晶体质量的重要性。这一策略有效避免了传统湿化学和剥离转移过程中常见的污染问题,提示我们在材料合成中关注环境的影响,特别是微观界面的清洁度。其次,实验结果表明,良序的氢键有机框架(HOF)与石墨烯的有效结合,不仅保持了各自的优异电子特性,还使得材料的性能得到了显著提升。这启示我们在设计新型复合材料时,应考虑不同材料间的相互作用,探索如何通过界面耦合增强整体性能。此外,研究中观察到的Dirac能带和窄带的共存,为我们理解二维材料的电子特性提供了新的视角。特别是局部自旋态的发现,提示我们可以通过调整材料的化学环境和结构,诱导出新的量子态,从而拓展材料的应用潜力。这为未来在量子计算、传感器等领域的研究提供了新的方向。原文详情:Zhang, X., Li, X., Cheng, Z. et al. Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands. Nat Commun 15, 5934 (2024). https://doi.org/10.1038/s41467-024-50211-5
  • 迄今速度最快能耗最低二维晶体管问世
    北京大学电子学院彭练矛教授-邱晨光研究员课题组日前制备出10纳米超短沟道弹道二维硒化铟晶体管,首次使得二维晶体管实际性能超过Intel商用10纳米节点的硅基鳍型晶体管,并将二维晶体管的工作电压降到0.5V,这也是世界上迄今速度最快能耗最低的二维半导体晶体管。该研究成果以《二维硒化铟弹道晶体管》为题日前在线发表于《自然》。芯片为大数据和人工智能的发展提供源源不断的动力,芯片速度的提升得益于晶体管的微缩,然而当前传统硅基场效应晶体管的性能逐渐接近其本征物理极限。受限于接触、栅介质和材料等方面的瓶颈,迄今为止,所有二维晶体管所实现的性能均不能媲美业界先进硅基晶体管,其实验结果远落后于理论预测。对此,团队在研发过程中实现了三方面技术革新:一是采用高载流子热速度(更小有效质量)的三层硒化铟作沟道,实现了室温弹道率高达83%,为目前场效应晶体管的最高值,远高于硅基晶体管的弹道率(小于60%);二是解决了二维材料表面生长超薄氧化层的难题,制备出2.6纳米超薄双栅氧化铪,将器件跨导提升到6毫西微米,超过所有二维器件一个数量级;三是开创了掺杂诱导二维相变技术,克服了二维器件领域金半接触的国际难题,将总电阻刷新至124欧姆微米。研究团队表示,这项工作突破了长期以来阻碍二维电子学发展的关键科学瓶颈,将n型二维半导体晶体管的性能首次推近理论极限,率先在实验上证明出二维器件性能和功耗上优于先进硅基技术,为推动二维半导体技术的发展注入了强有力的信心和活力。
  • 岛津推出二维液质杂质鉴定系统
    制药企业QA/QC 部门的液相检测方法中会经常使用非挥发性缓冲盐流动相(如磷酸盐缓冲溶液),但当进行液质联用分析时,流动相必须转换为适合于ESI(APCI)的挥发性流动相。而改变流动相很多时候会使得杂质峰的保留时间发生变化,甚至湮没在主峰中,因此,需要耗时耗力摸索新的分析方法。 为解决上述问题,近日,岛津公司在中国市场推出了岛津独有的LCMS-IT-TOF 的新应用系统&mdash &mdash 二维液质杂质鉴定系统。通过使用岛津二维液质杂质鉴定系统,无需改变原先的流动相分离条件,就可以将目标杂质从一维色谱中收集下来,在二维色谱中直接使用挥发性流动相进行MS 分析。如果同时配备IT-TOF,则可以通过多级高分辨质谱进行精确定性分析。 2D LC/MS 杂质鉴定系统流路图 二维液质杂质鉴定系统是基于Prominence 设计、用于LCMS-IT-TOF 前端的应用系统,配置包括LCMS-IT-TOF,Prominence 系列液相单元以及 &ldquo 二维液质杂质鉴定系统启动包&rdquo 。启动包中包括二维液相色谱质谱联用的控制软件及整套连接管路。 本系统特长 1)无需改变分析方法 无需改变原有分析方法,系统就可以通过一维色谱分离,将目标杂质组分导入样品环;然后,二维色谱分离目标杂质,并通过提供准确和多级(n³ 2)的质谱数据来达到鉴别杂质的目的。 2) 二维方式实现全自动切换 当液相色谱分析使用非挥发性盐流动相(如磷酸盐缓冲液),转换为液质联用分析时,需将流动相转换为挥发性流动相(不使用缓冲盐或使用挥发性缓冲盐)以适应大气压离子源。而本系统允许在一维分析中使用非挥发性盐流动相,在二维液质分析中使用挥发性流动相,自动实现流动相的在线改变。 3)可通过专用软件轻松使用该系统 二维色谱分析通常需要复杂的指令程序来控制切换阀以收集目标杂质。在此系统中,通过简单的输入杂质保留时间,即可以自动创建时间程序来实现阀的切换等动作。当杂质的保留时间未知或者因为分析条件变化而改变时,也可手动控制阀来实现切换。 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312 · 浦西分公司 (021) 2201-3888 · 广州分公司 (020) 8710-8661 · 四川分公司 (028) 8619-8421 · 沈阳分公司(024) 2341-4778 · 西安分公司(029) 8838-6350 · 乌鲁木齐分公司(0991) 230-6271 · 昆明分公司(0871) 315-2986 · 南京分公司(025) 8689-0258 · 重庆分公司(023) 6380-6068 · 深圳分公司(0755) 8287-7677 · 武汉分公司(027) 8555-7910 · 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 基于垂直架构的新型二维半导体/铁电多值存储器研究获进展
    二维层状半导体材料得益于原子级薄的厚度,受到静电场屏蔽效应减弱,利用门电压可对其电学性能进行有效调控。利用二维层状半导体材料构建的多端忆阻晶体管(Memtransistor)可以模拟人脑中复杂的突触活动,有望应用于未来非冯架构的神经形态计算等。此外,相比于平面构型,二维纳米功能材料通常具有开放且洁净的界面,使其能够进行任意垂直组装,可实现硅基半导体工艺所不能兼容的多层向上集成范式,从而在单位面积内沿z轴获得更高密度集成。因此,基于垂直架构的二维纳米电子学器件,已成为当前延续摩尔定律的重要研究方向之一。迄今为止,针对铁电二维材料忆阻晶体管的研究仍然匮乏,尤其缺失具有垂直构型的门电压可调的忆阻器件的研究,主要原因在于传统基于隧穿架构的二维忆阻器难以在垂直方向兼具更高性能和有效栅极调控特性。   近日,中国科学院金属研究所沈阳材料科学国家研究中心与国内多家单位合作,设计二维半导体与二维铁电材料的特殊能带对齐方式,将金属氧化物半导体场效应晶体管(MOSFET)与非隧穿型的铁电忆阻器垂直组装,首次构筑了基于垂直架构的门电压可编程的二维铁电存储器。11月17日,相关研究成果以A gate programmable van der Waals metal-ferroelectric-semiconductor vertical heterojunction memory为题,在线发表在《先进材料》(Advanced Materials)上。   科研团队使用二维层状材料CuInP2S6作为铁电绝缘体层,利用二维层状半导体材料MoS2和多层石墨烯分别作为铁电忆阻器的上、下电极层,形成金属/铁电体/半导体(M-FE-S)架构的忆阻器;在顶部半导体层上方通过堆叠多层h-BN作为栅极介电层引入了MOSFET架构。底部M-FE-S忆阻器件开关比超过105,具有长期数据存储能力,且阻变行为与CuInP2S6层的铁电性存在较强耦合(图1)。此外,研究通过制备3×4的阵列结构展示了该型铁电忆阻器件应用于存储交叉阵列【crossbar array,实现随机存取存储器(RAM)的关键结构】的可行性(图2)。进一步,研究在上方MOSFET施加栅极电压,有效调控了二维半导体层MoS2的载流子浓度(或费米能级),从而对下方M-FE-S忆阻器的存储性能进行操控(图3)。基于上述成果,科研人员展示了该型器件的门电压可调多阻态的存储特性(图4)。   本研究展示的门电压可编程的铁电忆阻器有望在未来人工突触等神经形态计算系统中发挥重要作用,并或推动基于二维铁电材料制备多功能器件的开发。此外,该工作提出的MOSFET与忆阻器垂直集成的架构可进一步扩展到其他二维材料体系,从而获得性能更加优异的新型存储器。   研究工作得到国家重点研发计划“青年科学家项目”、国家自然科学基金青年科学基金项目/面上项目/联合基金项目、沈阳材料科学国家研究中心等的支持。图1.器件结构设计及两端铁电忆阻器的存储性能。a、器件结构示意图;b、器件的阻变行为;c、少层CuInP2S6的压电力显微镜相位和幅值图;d、器件在不同温度下的输运行为;e、存储器的数据保持能力测试;f、存储器开关比统计图。图2.铁电忆阻器存储阵列演示。a、二维铁电RAM结构示意图;b、CuInP2S6/MoS2界面的HAADF-STEM照片;c、3×4阵列的SEM图像;d、局部放大图;e、3×4阵列的光学照片;f-g、通过读取3×4阵列中每个交叉点的高阻态和低阻态编码的“I”“M”“R”的简化字母。图3.器件的可编程存储特性。a、器件结构示意图;b、MoS2层的转移特性曲线;c-d、异质结的能带结构图;e-f、通过施加门电压实现了对存储窗口从有到无的调控。图4.门电压可编程存储器的多阻态存储特性。a-d、器件在不同门电压下的存储窗口;e、器件的多阻态存储性能演示;f、栅极调控的耐疲劳特性。
  • Nature、Science! mK极低温纳米精度位移台在二维材料、石墨烯等领域的前沿应用进展
    nature:二维磁性材料的磁结构与相关特性研究关键词:二维铁磁材料;低温纳米精度位移台;反铁磁态;二次谐波 近年来,二维磁性材料在国际上成为备受关注的研究热点。近日,中国与美国的研究团队合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。同时,研究团队发现双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量的提升,比常规铁磁界面产生的二次谐波更是高出十个数量。利用这一强烈的二次谐波信号,团队成功揭示双层三碘化铬的原胞层堆叠结构的对称性。图一 双层三碘化铬的二次谐波光学显微图 运用光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性是此实验的关键。团队利用自主研发搭建的无液氦可变温强磁场显微光学扫描成像系统,完成了关键数据的探测。值得指出的是,该无液氦可变温强磁场显微光学扫描成像系统采用德国attocube公司的低温强磁场纳米精度位移台和低温扫描台来实现样品的位移和扫描。德国attocube公司是上著名的端环境纳米精度位移器制造商。公司已为全科学家生产了4000多套位移系统,用户遍及全球著名的研究所和大学。它生产的位移器设计紧凑,体积小,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和纳米精度扫描器。图二 attocube低温强磁场位移器、扫描器attocube低温位移台技术特点如下:参考文献:Sun, Z., Yi, Y., Song, T. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019). nature:石墨烯摩尔超晶格可调超导特性研究关键词:石墨烯 超晶格 高温超导高温超导性机制是凝聚态物理领域世纪性的课题。这种超导性被认为会在以Hubbard模型描述的掺杂莫特缘体中出现。近期,美国和中国的国际科研团队合作在nature上报道了在ABC-三层石墨烯(TLG)以及六方氮化硼(hBN)摩尔超晶格中发现可调超导性特征。研究人员通过施加垂直位移场,发现ABC-TLG/hBN超晶格在20K的温度下表现出莫特缘态。进一步通过冷却操作发现,在温度低于1K时,该异质结的超导特特性开始出现。通过进一步调控垂直位移场,研究人员还成功实现了超导体-莫特缘体-金属相的转变。 图1.德国attocube公司低温mK纳米旋转台电学输运工作的测量是在进行仔细的信号筛选后,本底温度为40mK的稀释制冷机内进行的。值得指出的是,样品的面内测量需要保证样品方向与磁场方向平行,这必须要求能够在低温(40mK)环境下实现良好且工作的旋转台来移动样品,确保样品与磁场方向平行。实验中使用了德国attocube公司的mK纳米精度旋转台(如图1所示)。Attocube公司可提供水平和竖直方向的旋转台,使样品与单轴线管的超导磁场方向的夹角调整为任意角度。通过电学输运结果,证实了样品中存在超导体-莫特缘体-金属相的转变(结果如图2所示),为三层石墨烯/氮化硼的超晶格超导理论模型(Habbard model)以及与之相关的反常超导性质和新奇电子态的研究提供了模型系统。 图2. ABC-TLG/hBN的超导性图左低温双轴旋转台;图右下:石墨烯/氮化硼异质节的超导性测量测试结果,样品通过attocube的mK适用旋转台旋转后方向与磁场方向平行参考文献:Guorui CHEN et al, Signatures of tunable superconductivity in a trilayer graphene moiré superlattice, Nature, 572, 215-219 (2019) nature:分数量子霍尔效应区的非线性光学研究关键词:量子霍尔效应 四波混频 化激元设计光学光子之间的强相互作用是量子科学的一项重要挑战。来自瑞士苏黎世联邦理工学院(Institute of Quantum Electronics, ETH Zürich, Zürich,)的研究团队在光学腔中嵌入一个二维电子系统的时间分辨四波混频实验,证明当电子初始处于分数量子霍尔态时,化激元间的相互作用会显著增强。此外,激子-电子相互作用导致化子-化激元的生成,还对增强系统非线性光学响应发挥重要作用。该研究有助于促进强相互作用光子系统的实现。值得指出的是,该实验在温度低于100mK的环境下进行,使用德国attocube公司的低温mK环境纳米精度位移台来实现物镜的移动和聚焦。参考文献:Knüppel, P., Ravets, S., Kroner, M. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019). Science:NV center在加压凝聚态系统中的量子传感研究关键词:NV色心 量子传感器压力引起的影响包括平面内部性质变化与量子力学相转变。由于高压仪器内产生巨大的压力梯度,例如金刚石腔,常用的光谱测量技术受到限制。为了解决这一难题,巴黎十一大学,香港中文大学和加州伯克利大学的研究团队研发了一款新型纳米尺度传感器。研究者把量子自旋缺陷集成到金刚石压腔中来探测端压力和温度下的微小信号,这样空间分辨率不会受到衍射限限制。为此加州伯克利大学团队采用了德国attocube公司的与光学平台高度集成的闭循环低温恒温器- attoDRY800来进行试验,其中包含了attocube公司的低温纳米精度位移台,以此来实现快速并且控制金刚石压强的移动以及测量实验。参考文献:[1] S. Hsieh et al., Science, Vol. 366, Issue 6471, pp. 1349-1354 (2019) [2] M. Lesik, et al., Science, Vol. 366, Issue 6471, pp. 1359-1362 (2019)[3] K. Yau Yip et al., Science, Vol. 366, Issue 6471, pp. 1355-1359 (2019)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制