当前位置: 仪器信息网 > 行业主题 > >

植物表型分析测量仪

仪器信息网植物表型分析测量仪专题为您提供2024年最新植物表型分析测量仪价格报价、厂家品牌的相关信息, 包括植物表型分析测量仪参数、型号等,不管是国产,还是进口品牌的植物表型分析测量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合植物表型分析测量仪相关的耗材配件、试剂标物,还有植物表型分析测量仪相关的最新资讯、资料,以及植物表型分析测量仪相关的解决方案。

植物表型分析测量仪相关的仪器

  • PhenoGA植物表型分析测量仪系统Instrument for Measuring plant phenotype — Model PhenoGA一、用途基因型、表型和环境是遗传学研究的铁三角。表型(性状)是基因型和环境共同作用结果,而基因型与表型之间有着多重关系。研究者用测序和基因组重测序来评估等位基因差异定位数量性状等已变得很普遍,但其需大量性状数据来佐证。然而这类分析测量的结果受人员、工具和环境等的干扰很大,还会损伤到植物。高效、准确的万深PhenoGA植物表型分析测量仪实现了可视化的精确数据分析和表型测试,如测试对压力和环境因素的表型反应、生态毒理学测试或萌发测定、遗传育种研究、突变株筛选、植物形态建模、生长研究等。二、主要性能指标1、成像(1)双彩色相机:由顶视和侧视的超大变焦镜头自动对焦2400万像素以上的佳能EOS单反相机直连电脑获取植物顶视和侧视的RGB彩色图。(2)红外光双目3D相机:由顶部的主动红外光的双目3D相机(点云密度1024*1024像素)来获取植物冠层的3D景深伪彩色图和可转换视角的3D重建伪彩色图。(3)拍摄箱:外尺寸200cm高*120cm长*120cm宽,可成像分析植株高可达150cm、可测最大叶冠幅115cm*115cm。2、分析软件(1)常规分析:投影叶面积及其动态变化,外周长,外接圆直径及面积,拟合椭圆主副轴及偏角,凸包内径、面积及周长,植株高、宽,最小外接矩形长、宽,植株紧实度。(2)颜色分析:RGB、LAB颜色值,具有叶片颜色自动矫正特性,可按英国皇家园林协会RHS比色卡2015版来自动比色。可按指定颜色数进行聚类分割,并统计颜色分布及面积占比。(3)骨架分析:骨架长度,端点数(叶片数),分叉数(分枝数、分节数),茎叶夹角等。(4)玉米株形分析:叶片数,叶片长、宽,叶片弯曲度,叶片投影面积,茎秆分节数,分节长、粗,叶片颜色等,并可编辑。(5)生长分析:植株绝对生长、相对生长曲线,相对生长趋势。(6)根系分析:根长,根粗,根尖数等(要求根粗1mm)。(7)考种分析:种粒数,种粒面积,种粒长、宽(种粒直径2mm,不粘连),分析种子形态、果实外观品质、花形和花色。(8)其它:不同生长时期自动批量化处理分析,多植株网格分析,直线、角度等几何测量,各测量结果可编辑修正。3、数据报表(1)可接入条码枪来自动刷入样品编号,具有按条码标识跟踪分析的特性。(2)各项分析数据和标记图片可导出。三、标准配置1、万深PhenoGA植物表型分析测量仪软件U盘及软件锁1套2、超大变焦镜头自动对焦2400万像素以上的佳能EOS单反相机2套3、主动红外光的双目3D相机(深度相机+RGB相机)及适配器1套4、单反相机拍摄支架1套5、含光源的拍摄箱(200cm高*120cm长*120cm宽)1套6、叶色色彩矫正板+尺寸自动标定板及其座板 1套7、可承重25kg盆栽植株的升降台1付8、可承重25kg电动转台1套9、手持式条形码阅读器1付10、超薄背光灯板1付11、掌式便携小背光板1付12、品牌电脑(13代酷睿i5 CPU / 16G内存/ 512G硬盘以上 / 23”彩显/无线网卡,2个USB3.0和3个USB2.0口,运行环境Windows 10或11完整专业版)1台四、可选配硬件1、LA-S手机版叶面积分析软件,可用于野外的方便成像与分析叶面积。2、RootGA根系动态生长监测分析仪,以分析植株根系的胁迫响应等。
    留言咨询
  • 产品简介叶片表型快速分析仪是一款光电一体化设备,可在线获取叶片表型参数。可获取植物叶片平均(最大)叶长、平均(最大)叶宽、平均(最大)叶片周长、平均(最大)叶片面积、叶片数、绿叶总面积、总面积、绿叶面积比、叶色分级等形态参数和颜色参数。数据分析软件可实时进行数据分析并将数据结果实时导入到EXCEL表格中。应用范围广泛应用于水稻、油菜、棉花、玉米、小麦叶片形状提取 主要配置成像单元像素尺寸:14.08μm成像单元类型:单色线阵列CCD相机光源:线阵列LED光源尺寸:1150*600*1200mm(长宽高)电源:单相 220V AC控制装置:WindowsPC,控制机柜软件:在线控制,图像处理,数据分析及存储 主要性能参数可测参数:平均叶长,平均叶宽,平均叶片周长,平均叶片面积,叶片数,绿叶总面积,总面积,绿叶面积比,叶色分级等:平均误差:≤3%效率:60s/株检测方式:在线实时采集数据存储:EXCEL格式自动存储可持续工作时长:20h(每天)工作环境温度:0-50℃额定功率:0.5KW 产品图片叶片表型分析仪、数据分析软件、(a)叶片表型性状测量结果,(b)叶片原始保存图片公司简介谷丰光电(GREENPHENO)致力于植物表型,农业科研和机器视觉系统集成领域,具备核心图形处理、光机电控制、以及系统集成技术,掌握一批自主知识产权。谷丰光电在武汉光电工业技术研究院;华科大鄂州工业技术研究院拥有办公,研发及生产基地。主营业务包含:水稻数字化考种机;玉米在体、离体数字化考种机;全自动银染显影仪;双目视觉谷粒检测仪;叶片表型快速分析仪;水稻穗长测量系统;高通量植物分蘖测量系统;高通量植物表型参数自动提取系统等光机电一体化仪器设备定制,应用软件及算法开发。谷丰光电将立足于高端农业科研仪器、植物表型系统,坚持高科技、高价值、高效益三大目标,打造实力品牌优势、系统优势和价值优势的知名光电企业。
    留言咨询
  • 万深PhenoGA-F田间作物表型分析测量仪Instrument for Measuring plant phenotype — Model PhenoGA-F一、用途基因型、表型和环境是遗传学研究的铁三角。表型(性状)是基因型和环境共同作用结果,而基因型与表型之间有着多重关系。研究者用测序和基因组重测序来评估等位基因差异定位数量性状等已变得很普遍,但其需大量性状数据来佐证。然而这类分析测量的结果受人员、工具和环境等的干扰很大,还会损伤到植物。高效、准确的万深PhenoGA植物表型分析测量仪实现了可视化的精确数据分析和表型测试,如测试对压力和环境因素的表型反应、生态毒理学测试或萌发测定、遗传育种研究、突变株筛选、植物形态建模、生长研究等。二、主要性能指标1、成像1、在明亮的田间环境下,由顶视的超大变焦镜头自动对焦2400万像素以上的佳能EOS单反相机直联电脑获取植物顶视的RGB彩色图。2、拍摄分析范围120cm*80cm,可变焦调小视野至30cm*20cm,适合对各类作物在60cm高度内时的表型分析。2、分析软件(1)常规分析:分析投影外接圆直径及面积,外周长,拟合椭圆主副轴及偏角,凸包内径、面积及周长,植株高、宽,最小外接矩形长、宽,植株紧实度、茎叶夹角或分枝角。(2)顶视的表型分析:叶冠直径、叶冠层面积、叶冠层占空比、叶片分布紧密度等,叶片数、叶片投影面积及其动态变化、投影叶片长,果实外观品质、花形和花色等。(3)颜色分析:RGB、LAB颜色值,具有叶片颜色自动矫正特性,可按英国皇家园林协会RHS比色卡2015版来自动比色。可按指定颜色数进行聚类分割,并统计颜色分布及面积占比。(4)生长分析:作物叶冠绝对生长、相对生长曲线,相对生长趋势。(5)其它:不同生长时期自动批量化处理分析,多植株网格分析,直线、角度等几何测量,各测量结果可编辑修正。3、数据报表(1)可接入条码枪来自动刷入样品编号,具有按条码标识跟踪分析的特性。(2)各项分析数据和标记图片可导出。三、标准配置1、万深PhenoGA-F田间作物表型分析测量仪软件U盘及软件锁1套2、自动对焦2400万像素以上的佳能EOS单反相机1套3、折叠式可拖带的田间表型拍摄架(重12.8kg)1套4、夹持式电脑放置平台(重2.2kg)1套5、叶色色彩矫正板1块6、尺寸自动标定板1块7、标定板升降支撑架1付8、手持式条形码阅读器1付9、掌式便携背光板1付10、测高仪(含激光测距仪、测距仪夹、手机固定夹、2米伸缩杆、横向标示杆及螺钉、反射垫、内六角扳手、便携黑筒、卷尺)1套11、强光遮挡用塑料布1张12、品牌笔记本电脑(酷睿i5 九代以上CPU / 8G内存/ 256G硬盘 / 14”彩显/无线网卡,Windows 完整专业版)1台四、可选配硬件1、红外热成像相机(分辨率 384*288像素,测温范围-20-150℃,测温精度为最大测温范围绝对值的±2%),以测定叶温和叶温分布。2、真正3D成像的手持式扫描仪,以获得植物真3D模型用于全方位视角存档观察。
    留言咨询
  • 一、小麦表型测量仪 小麦表型检测仪产品简介:小麦育种研究中,小麦表型参数至关重要,小麦表型检测仪可用于小麦株高、夹角、基粗、小麦亩穗数、理论产量、穗长、小穗数、总粒数和千粒重等指标的测量,可多点快速取样数据可批量分析并获取平均值。这些表型参数在小麦品种筛选、小麦产量预测、麦穗动态发育、基因定位、功能解析和小麦遗传育种中发挥着至关重要的作用。软件集合多方面功能为一体,一站式解决小麦的表型参数测量问题。广泛适用于各农科院、高校、育种公司、种子站的小麦研究。二、小麦表型测量仪 小麦表型检测仪应用广泛:1、小麦亩穗数检测合适时期: 小麦抽穗期、开花期、灌浆期、成熟前期的小麦。2、麦穗形态测量的时期:室内考种时期:3、小麦夹角测量时期:抽穗期、开花期、灌浆期、乳熟期。4、千粒重测量时期: 室内考种时期。5、小麦株高测量时期: 各个生育时期。三、小麦表型测量仪 小麦表型检测仪技术参数:测量范围和误差:1、小麦亩穗数测量误差: ≤±5%。2、麦穗形态测量范围: 5——20cm。穗长误差: ±2%。小穗数误差: ≤ 3个。3、小麦夹角测量范围: 0-180°。作物粗: 0-5.2cm。夹角测量误差: +5%。4、作物茎粗测量误差: ±1%。5、千粒重测量误差: ±2%。6、株高测量范围: 0.1-1.1m。测量误差: ±1%。1.1 小麦亩穗数测量仪1.1简介小麦亩穗数测量仪也称小麦亩穗数测量系统,采用图像识别技术、深度学习的方法获取数据,可多点快速取样,数据批量分析,且数据互联互通。可以测量小麦的亩穗数、理论产量、种子数量和千粒重指标,为小麦的品种筛选、小麦产量预测、产量基因定位和功能解析发挥着至关重要的作用。小麦产量是由单位面积上的穗数、每穗数(每颖花数)和粒重三个基本因素构成,穗数是小麦产量重要构成要素之一,快速、准确地获取小麦穗数和千粒重对智能测产意义重大。1.2外形尺寸1、小麦亩穗数740mm*740*(620——1500)mm2、标定杆可上下伸缩调节高度3、背光板尺寸: 47cm*35cm*0.8cm4、图像分辨率:1600*7205、摄像头:1300W像素1.3测量误差1、小麦亩穗数误差±5%。2、千粒重误差±2%,修正后可达100%。1.4适用范围1、麦穗检测合适时期:小麦灌浆期至成熟前期的小麦2、千粒重可测量小麦种子的数量和千粒重2.小麦株高测量仪2.2.1简介小麦株高测量仪用于测量小麦的株高。在小麦不同时期测量株高的标准不同。小麦株高一般是指植株基部至主茎顶部即主茎生长点之间的距离。幼苗期:(1)伪茎高度:植株基部(或分粟节处)到最上部展开叶叶鞘顶部(即叶耳处)的距离为伪茎高度(或长度);(2)植株全长:植株基部到最上部展开叶的叶尖的距离做为植株全长。2.苗期:伪茎高度:植株基部(或分粟节处)到最上部展开叶叶鞘顶部(即叶耳处)的距离为伪茎高度(或长度);真茎高度:各节间的总长为真茎高度(或长度);(3)植株全长:植株基部到最上部展开叶的叶尖的距离做为植株全长。3.拔节期:(1)伪茎高度:植株基部(或分粟节处)到最上部展开叶叶鞘顶部(即叶耳处)的距离为伪茎高度(或长度);(2)真茎高度:各节间的总长为真茎高度(或长度);(3)植株全长:植株基部到最上部展开叶的叶尖的距离做为植株全长。4.灌浆期:从植株基部(或分蘖节处)量到穗顶(不包括芒)的距离则为株高。2.2.2技术参数测量杆高度:375mm+375mm+350mm测量精度: 1mm测量范围: 10——1100mm外壳材质: 铝合金软件系统: Android2.2.3小麦表型测量仪 小麦表型检测仪功能特点1、仪器带有数据管理云平台和APP,可通过电脑网页或手机查看数据。由测量杆,手机,识别APP软件组成。2、手机对准测量杆上的刻度,拍照自动识别刻度数据实时传输到手机。3、测量杆带有水平仪,使测量过程更规范,更准确。4、完善识别内容:自动识别结果中显示识别的高度数据,手动录入作物数据(如:品种、生育期等)完善作物信息。首页界面上可显示所有测量结果。5、可根据检测日期,种类,测量人,区组名称进行测量结果查询。6、数据分析管理:分析结果可查看,可将图片和数据excel导出。7、数据上传:自动在wifi/4G网络链接正常下上传至云平台,实现管理、查看、分析数据。平台数据可下载、分析、打印。3.小麦夹角茎粗测量仪3.1仪器简介小麦夹角茎粗测量仪可快速测定和分析小麦夹角、茎粗等作物性状参数,方便开展科学研究和育种分析。也适用于水稻、油菜等作物品种。3.2小麦表型测量仪 小麦表型检测仪技术参数1、支撑材料:不锈钢2、支架材料:黑色塑料3、背景材质:白色树脂4、测量范围:作物夹角:0——180°;作物茎粗:0——6cm5、测量误差:作物夹角±1°;作物茎粗:±1mm3.3功能特点1、超轻便手持式设计,方便田间和室内测量使用;2、大屏幕彩色手触摸屏,安卓系统,1300万像素+200万像素双摄;3、测量速度快,拍照3秒即出结果,可先拍照后批量处理;4、手动修正功能强大,手动触摸屏幕进行修正,使结果更准;5、手机和作物之间可以进行自由距离设置,适合多种植物的测量,适应性强;6、压板和转轴柄一体式连接,方便固定作物茎部,减少风吹草动对作物角度拍摄的影响;7、环境适应性广,无需做遮光处理,可以在离体或活体情况下测量作物夹角和茎粗数据;8、自动调节白平衡,不受天气、光照等环境条件的影响;9、数据查看多样化:拍照分析后即可查看测量结果,可在历史记录中查看数据报表,可导成Excel格式,并可分享至微信、QQ和钉钉;10、自动生成数据列表:测量时间,图片,作物夹角、作物茎粗等信息,节约数据整理时间;11、作物夹角适用的作物:水稻、小麦、油菜;作物茎粗对各种作物的茎粗都能测量。4.麦穗形态测量仪4.1仪器简介麦穗形态测量仪也叫麦穗形态测定仪,基于机器视觉技术,利用手机摄像头获取麦穗的图像,利用图像处理算法现场分析,获取麦穗形态参数,AI智能识别利用透视变化矫正图像、光照补偿算法、距离变化等技术,自动计算出小麦的穗长。麦穗形态测量仪一次测定,可同时获得麦穗穗长、小穗数等多项指标,主要应用于应用于小麦育种、小麦遗传研究等领域,4.2技术参数外形尺寸: 460*320*10mmEVA背板尺寸: 420*295*2mm底板材料: 黑色双面细磨砂亚克力测量范围: 5——20cm测量误差: ±2%图像分辨率: 1600*7204.3功能特点1、超轻便手持式设计: 方便室内和室外测量使用 2、大屏幕彩色手触摸屏: 安卓系统,1300万像素 3、多穗同时测量: 麦形态测量仪一次可以测量10个麦穗长度:4、测量速度快: 拍照3秒即出结果,可先拍照后批量处理 5、比例尺自动标定: 对倾斜拍照的图片可自动进行图片矫正,提高测量的精确度。6、适应性广: 无需做遮光处理,可以在离体或活体情况下测量麦穗形态。7、自动调节白平衡: 不受天气、光照等环境条件的影响 8、存储容量大: 50G存储数据,可看历史记录,相对生长速率等。9、数据查看多样化: 拍照分析后即可滑动查看结果,也可在历史记录中查看数据报表,可导成Excel格式10、自动生成数据列表: 测量时间,图片,GPS位置信息,穗长等信息,节约数据整理时间。小麦表型测量仪 小麦表型检测仪配置清单1、十字标定钢管 *42、伸缩杆 *13、地钉+转接器 *14、麦穗背板装置 *15、小麦夹角手持装置 *16、小麦株高标定杆 *17、小麦株高伸缩架 *18、可调光背光板 *19、超大彩色屏手机(已安装软件) *110、航空箱 *111、使用说明书 *1
    留言咨询
  • 产品介绍台式CT断层扫描仪用于植物根系、茎干、果实、种子、叶片等分析,为研究提供数据和进行数据分析。该系统符合EN规范电气安全线路要求。另外,对特定客户的需求,我们也提供个性化设备配置。比如您需要比技术参数更高的分辨率,或者需要测量的目标尺寸超过了技术参数中的最大尺寸,重量或材料厚度等,我们会针对您的特殊应用来提供解决方案。产品优势无损监测系统适用于不同植物种子、根系等可快速有效扫描种子易于操作使用通过螺旋扫描实现所有体积层的各向分辨率用户友好的控制软件、专有图像处理软件根据特定检测任务精确调节系统,降低成本也适合土壤研究应用领域台式CT断层扫描仪不仅运用于生物学,如植物根系、茎干、果实、种子、叶片等分析,也适用于地质学和考古学的大学或研究机构,也可用于对土壤结构如团粒结构等进行无损检测,分析土壤和根系关系以及结构等。台式CT断层扫描仪提供一种快速可视的物体内外结构三维模式,在生物学、工业无损检测领域里变得越来越重要。种子分析:玉米、小麦等植物生长分析:叶片结构、根系结构等土壤:土壤结构等地理学和考古学:岩石样品等测量技术描述除了X光源以及高分辨率检测器,此易于操作的设备本身还配有精确旋转的操作系统。螺旋功能集成在操作控制软件中,当测试目标旋转360°后,可进行垂直操作。该设计确保了高品质测量结果,不产生无用制品,特别是在检测多层结构目标时。根据样品尺寸(参见技术参数),扫描可一步完成,之后便将测量数据保存以便浏览。系统自带Fraunhofer EZRT研发中心开发的控制软件,直观友好的界面可逐步指导用户进行个性化设置,直至获得所需结果,即便客户没有经验或没有参加培训亦可进行操作。有经验的用户可使用加强版软件界面以对所有部件实现中心控制。在执行测量前,可用备选功能实现模拟测量。技术参数重量:150kg软件:Fraunhofer Volex Fraunhofer VPX-射线检测器分辨率:49.5 μm最大扫描面积:21cmX10cm扫描方式:样品360°转动扫描时间:快速2-10分 高分辨率模式,60 - 80分X-射线检测器表面涂层:Gd2O2S闪烁体材质安全防护:安全线路设计,防辐射设计扫描仪操作电压: 230 V或380 V( 50 Hertz)样品升降操作距离:20cm 像素数(px):2304 x 1300手动定位放大倍数:1.6倍(Φ140 mm)- 35倍(Φ 1 mm)环境条件:操作温度10℃-30 ℃,湿度10-85%,防尘样品操作旋转台:n x 360°利用CT断层扫描仪筛选小麦耐旱耐热性提高小麦对非生物胁迫的耐受性,需要对产量构成因素如粒数、单粒重等进行大规模筛选,这些都是非常费时费力的,而对种子形态的详细分析在视觉上往往是不可能的。计算机断层扫描技术为更快速、更准确地评估产量构成因素提供了机会。通过对种子和穗部形态的详细分析来评估不同胁迫条件下不同品种小麦种子的性状。对203份不同品种小麦的X射线计算机断层扫描分析结果表明,该方法能够以 95-99%的准确率评估小麦结实;大多数暴露在干旱和高温胁迫下的材料都发育出较小的、干瘪的种子,种子表面增加;与干旱相比,干旱和高温叠加作用显著降低了种子重量、穗粒数和单粒大小,测定了干旱和高温联合胁迫下的种子皱缩和胚芽变形等形态性状。CT断层扫描分析方法可以检测小麦、小麦穗甚至单粒种子之间的微小遗传差异,这对于提高粮食产量和生产有韧性的品种至关重要。更重要的是,该方法是易于自动化的,能够以很高的分辨率在短时间内完成大批量小麦麦穗的表型分析。在大规模的遗传研究和育种计划中,每年都要对大量材料进行实地评估,这一分析处理能力与遗传研究和育种计划相适应。参考文献Jessica S, Joelle C , Norbert W, Anja E, Delphine F, Trevor G, Stefan G. (2020). Drought and heat stress tolerance screening in wheat using computed tomography. Plant Methods, 16:15
    留言咨询
  • 产品简介小型植物表型分析系统主要针对于盆栽植物的表型性状提取,通过侧视以及顶视RGB相机获取植物在不同旋转角度下的图像,通过定制化软件分析,可以获取盆栽植物的形态性状参数、纹理性状参数、颜色性状参数以及整株相关表型性状参数。可测参数花形态相关性状参数: 花径、花面积、花分形维数、花投影面积/外接圆面积、花投影面积/外接矩形面积、花投影面积/外接凸包面积、花外接圆面积、花外接矩形面积、花凸包面积等花型参数 花颜色相关性状参数:RGB、HSL分量花纹理相关性状参数:均值、标准差、平滑度、三阶矩、一致性、熵整株相关表型参数: 株高、株宽、长宽比、绿色程度值、标准差、平滑度、三阶矩、一致性、熵整株纹理参数、周长/面积比、绿色投影面积、分形维数、投影面积/外接圆面积、投影面积/外接矩形面积、投影面积/外接凸包面积、外接圆面积、外接矩形面积、凸包面积 系统配置参数侧视RGB系统参数配置:视野面积:1200 mm (height) x 1000mm (width)分辨率:2452 (height) × 2056 (width)镜头焦距:8 mm每株水稻拍摄图像帧数:20物距: 1000mm顶视RGB系统参数配置:视野面积:500mm (height) x 500 mm (width)分辨率:2452 (height) × 2056 (width)镜头焦距:8 mm每株水稻拍摄图像帧数:1物距: 500 mm工作电压:220V交流电工作效率:30秒/株 系统结构图小型植物表型分析系统结构图
    留言咨询
  • PlantScreen SC植物表型成像分析系统 PlantScreen SC移动式植物表型成像分析平台为实验室和温室植物表型分析的理想平台,植物传送系统与成像分析系统内置于一体式紧凑机箱内,有脚轮可以移动,方便大型温室内不同区域间移动使用,极大地提高了载样方便性和使用效率。植物样品放入平台传送带上自动传送至成像单元进行成像分析,最 后自动传送归原位完成一个测量循环。PlantScreen SC包括叶绿素荧光成像测量和RGB 3D成像测量,以提供完备的作物表型形态测量和光合生理测量分析,可选配或客户定制3D激光扫描三角测量、高光谱成像分析、红外热成像分析等其它成像测量单元。标配PlantScreen SC适于最 大高度70cm、冠幅50cm的植物表型分析,可定制其它规格大小。 功能特点l FluorCam叶绿素荧光成像分析l RGB三维成像形态结构与颜色分析l 传送带系统自动传送植物、自动定位成像分析、自动将植物传出l 整套系统有脚轮可以移动l 可选配3D激光扫描,三维形体结构测量并构建3D模型l 可选配高光谱成像、红外热成像、NIR近红外成像l 可选配大型步入式生长室 系统组成1. 传送系统PlantScreen SC配备半自动化的植物装载和识别系统。只需将盛有植物的标准托盘放于传送带上,按下装载按钮,植物即可进入封闭的成像室内进行成像测量,测量完成后自动传送出来。标准托盘上贴有二维码,进入成像室后能够被识读并录入数据库,用于植物的自动编号。传送系统使实验过程变得简单轻松。标准托盘有4种规格:5 × 4(盆,250 mL)、2 x 2(盆,1L)、1 x 2(盆,3L)、1 × 1(盆,5L),适用于拟南芥、草莓、草坪草、烟草及大豆、玉米等作物的幼苗。 2. 测量成像单元测量成像单元包含基本的RGB成像单元和叶绿素荧光成像单元。RGB成像单元包括顶端及侧面多角度的RGB成像,通过高质量RGB图像的采集和专业的图像分析,获得植物的形态参数(如冠层面积、株高、冠幅、形状系数)及颜色分布情况。 叶绿素荧光成像单元采用脉冲调制式叶绿素荧光成像技术,能够对植株的光合生理进行无损、非接触的测量,高灵敏度、高通量检测和评估各类胁迫因子对植株的生理影响。 3. 环境传感器系统包含温湿度等环境传感器,持续记录测量环境的温湿度变化。环境信息数据和测量数据同步存储在数据库中,便于特定实验的相关性分析。4. 软件系统配备的高性能服务器电脑预装了用于系统控制、实验规划、数据自动采集、数据自动分析和数据库管理的全套软件。此外,系统配备了RGB分析和叶绿素荧光成像分析的独立软件,便于数据的再处理。安装案例1. 瓦赫宁根大学Shared Research Facilities,2018年11月安装,是荷兰植物生态-表型中心(Netherlands Plant Eco-phenotyping centre)的第 一台安装完成的设备,面向科研用户和商业伙伴开放使用。 2. 成都某生物技术公司,2020年10月安装,是国内首套由公司购买使用,用于生物农药、植物源生物刺激剂及土壤调理剂研发的大型高通量表型分析系统。 3. 孟加拉国,2020年4月,技术和生物测试完成。 易科泰生态技术公司提供植物/作物表型分析全面技术方案:1) 叶绿素荧光成像分析、多光谱荧光成像分析2) 高光谱成像分析、Thermo-RGB成像分析3) 细胞亚细胞水平显微叶绿素荧光成像、多光谱荧光成像分析4) RhizoTron根系表型分析系统、PhenoTron实验室植物表型成像分析系统5) PlantScreen植物自动传送式、XYZ三维扫描式植物表型分析平台6) SpectraScan样带扫描式、田间机器人式及PhenoUAS无人机遥感植物表型分析平台Ecolab植物表型实验室装备有400-1700nm高光谱成像、FluorCam叶绿素荧光成像、多光谱荧光成像、Thermo-RGB红外热成像等先进表型分析仪器技术,并与中科院植物所PlantScreen表型分析平台合作,提供全面表型分析技术服务与合作研究。
    留言咨询
  • 01产品简介双目视觉是获取目标物体三维几何信息的重要手段之一,双目视觉植物表型分析系统是基于双目视觉技术,可静态快速测量植物表新型参数。以米粒为例,可获取其粒长、粒宽、粒厚,粒周长,粒面积,粒体积,细长度,紧凑度以及颜色等信息。 02应用领域谷粒3D表型性状提取植物3D表型性状提取 03主要配置成像单元像素尺寸:0.07mm成像单元类型:高分辨率RGB可见光光照:顶部尺寸:750*500*900mm(长宽高)电源:单相 220V AC控制装置:WindowsPC软件:图像处理,数据分析 04主要性能参数平均误差:≤3%±0.5%效率:10s/次检测方式:双目相机静态采集数据存储:EXCEL格式自动存储可持续工作时长:20h(每天)工作环境温度:0-50℃额定功率:0.5KW 05产品图片双目视觉植物表型分析系统及数据分析软件。系统获取的粒长、粒宽、粒厚表型参数与人工测量结果的分析。系统测量的谷粒长、宽、厚、周长、面积、体积参数与千粒重之间的相关性分析。06公司简介谷丰光电(GREENPHENO)致力于植物表型,农业科研和机器视觉系统集成领域,具备核心图形处理、光机电控制、以及系统集成技术,掌握一批自主知识产权。主营业务包含:水稻数字化考种机;玉米在体、离体数字化考种机;全自动银染显影仪;双目视觉谷粒检测仪;叶片表型快速分析仪;水稻穗长测量系统;高通量植物分蘖测量系统;高通量植物表型参数自动提取系统等光机电一体化仪器设备定制,应用软件及算法开发。谷丰光电将立足于高端农业科研仪器、植物表型系统,坚持高科技、高价值、高效益三大目标,打造实力品牌优势、系统优势和价值优势的知名光电企业。
    留言咨询
  • 植物冠层分析系统 植物冠层测量仪可广泛应用于农业生产和农业科研,为进行冠层光能资源调查,测量植物冠层中光线的拦截,研究作物的生长发育、产量品质与光能利用间的关系,本仪器用于400nm-700nm波段内的光合有效辐射(PAR)测量、记录,测量值的单位是平方米秒上的微摩尔(μmol㎡/秒)。植物冠层分析系统 植物冠层测量仪功能特点植物冠层测量仪为一体化设计,包括液晶显示屏、操作按键、存储SD卡及测量探杆等。仪器菜单操作简单,体积小,携带方便。存储介质为市场上通用的SD卡,存储容量大,数据管理方便!在功耗上有合理的电源管理方案,测试过程中仪器根据实际情况自动进入待机状态,需要时按唤醒键即可唤醒屏幕,观察实际数据。测量方式分为自动和手动两种。自动测量时间间隔较小1分钟,自动测量次数较大99次,手动测量根据实际需要手动采集即可。植物冠层分析系统 植物冠层测量仪技术参数测量范围:0-2700μmol ㎡/秒 分辨率:1μmol ㎡/秒响应时间:10μs自动采集间隔:1-99分钟自动采集次数:1-99次冠层分析仪数据存储容量:2GB(标配SD卡) 仪器总长度:75 cm 探杆长度:50 cm传感器数量:25个(标配)电源:2节5号电池植物冠层分析系统 植物冠层测量仪工作环境:0°C-60°C;100%相对湿度
    留言咨询
  • 万深SC-K1型自动原位活体植物分枝角测量仪(自动角度测量仪)概述:油菜、树枝等的分枝角、水稻小麦等的茎叶角是作物表型基本参数,其人工测量获取工作繁重。万深SC-K1型植物分支角自动测量仪利用机器视觉智能识别技术来自动批量化获得准确的枝角测量结果,为育种选材提供依据。该仪器由拍照手机、掌式便携背光源、自动角度识别软件、电脑组成,是免培训的批量化智能分析款。主要性能参数:掌式便携背光源放原位活体的枝叉背后,用拍照手机2秒可获取分枝区照片。★软件可按目录来批量化智能测量油菜、树枝等的分枝角或水稻小麦等的茎叶角。★夹角重复测量误差≤ ±1.0°,可测分枝直径≤15mm。具有拍摄面自动矫平和细小杂枝自动剔除特性(不许3个大分枝同在拍照的视野内)。5、抗干扰能力强,使用寿命长,背光源功耗≤5W(2节5号电池可拍约3小时)。 供货清单:掌式便携背光源1个、软件锁1个、软件光盘1张 注:本技术标书中打★款项必须响应,否则为重大偏离。使用需另配拍照手机和电脑(酷睿双核CPU/4G内存/1G独立显卡/无线网卡,Windows 7或10)
    留言咨询
  • 美国MultispeQ V2多功能植物测量仪产品简介:多功能植物测量仪MultispeQ V2是由知名光合作用专家DavidM.Kramer教授团队研发的技术。MultispeQ V2通过手机APP控制,野外操作简便,能够对植物或者藻类的光合表型和生物/非生物胁迫进行原位测量,数据实时存储至PhotosynQ云平台,以便进一步查看和存储数据。若为室内试验,也可以通过桌面APP和网页APP进行操作。美国MultispeQ V2多功能植物测量仪功能特性:1.功能强大,1台MultispeQ V2=叶绿素荧光仪+差式吸收+叶绿素仪+光谱仪+气象站2.测量快速,一次典型测量只需15秒3.灵活、开源,创建适于自己的操作流程4.预留额外传感器接口(USB3.0)--通过桌面电脑(PC、Mac或Linux)或安卓手机连接PhotosynQ5.云平台,随时随地管理、分析和共享数据6.改良的PAR传感器,测量更广泛的光质7.5500mAh内置电池,轻松满足全天使用 美国MultispeQ V2多功能植物测量仪测量参数:1.植物和藻类叶绿素荧光参数:ΦII、ΦNPQ、ΦNO、NPQ、qE,、qI、qL、qP、LEF(rETR)、RFd等2.叶绿素相对含量:SPAD3.质子动力势:VH+、GH+、ECSt等4.448nm,530nm,590nm,655nm(2x),730nm,810nm,880nm和950nm(2x)的光吸收5.非接触测量参数:叶片角度、叶片朝向、叶片温度,叶片和环境的温度差6.环境参数:PAR、环境温度、气压、相对湿度、海拔7.改善用户体验,数据采集速度和使用可选泵测量气孔导度的能力。
    留言咨询
  • 温室型高通量植物表型采集分析平台介绍:温室型高通量植物表型采集分析平台是一套针对大中型温室条件下集植物表型图像采集与参数分析功能于一体的高通量平台。平台采用流水线传送形式,将植物传送至成像暗室进行成像和解析,通过植物-传感器-解析的工作模式高效实现了对盆栽植株进行表型采集与解析。该产品可搭载可见光二维、可见光三维、高光谱等多个成像单元,可对突变体进行筛选与鉴定,对植物生长状态进行记录,同时也可以对高温、高盐、病害、虫害等逆境条件下植物的形态、颜色、纹理、长势、组分含量变化进行研究。温室型高通量植物表型采集分析平台适用于遗传育种、分子生物学、植物生理学、植物病理学、生态学、环境科学、植物保护等研究领域。温室型高通量植物表型采集分析平台产品组成:自动化传送单元+多维传感融合图像成像单元+边缘计算与解析单元+数据管理单元温室型高通量植物表型采集分析平台产品特点:1.多场景应用:适用于多种室内场景下的植物高通量的采集与应用;可应用于对温室控制条件下,对实验应用中的植株长势、逆境响应、病害等级分析等多种场景;2.高度集成:系统可集成可见光二维、可见光三维与高光谱成像单元,可全自动、高通量对植物样品进行可见光成像和高光谱成像;3.自动传送系统:系统采用全自动传送装置,配备智能化图像采集模块,系统运行全程自动化,减少人工操作误差;4.数据自动采集:系统支持配套植物样本自动识别码,植株移动到目标位置时自动进行关联,并自动记录对应设备的采集数据;5.样品称重及生物量计算:可选配称重模块,样品传送过程中高精度传感器实现对重量的测定;6.自动化参数解析:系统自动内置作物解析模型算法,根据可见光二维、可见光三维、高光谱等模块直接自动解析多项植株株型、颜色、纹理等参数;全角度多机位图像自动采集,无需手动标定,自动根据植物构建高精度三维模型;7.数据传输与存储管理:系统支持在本地搭建局域网络/公网,实现数据采集端PC端到数据中心服务器的自动化上传、自动化数据存储管理、自动化高效解析。8.数据安全:数据采用安全传输模式,储存空间无限扩容,保障用户需求的同时保障数据安全。温室型高通量植物表型采集分析平台-2维温室型高通量植物表型采集分析平台-3维温室型高通量植物表型采集分析平台-高光谱-玉米叶高光谱图_大豆冠层动图-高光谱图_水稻冠层各成像单元测量参数及应用领域:成像单元测量参数应用领域/场景可见光二维成像单元1、获取植物侧视形态特征2、高清测量植物颜色与真实纹理1、可分析植物基本形态,可用于突变体筛选/品种差异对比等场景2、可测量持绿程度、衰老程度等颜色信息,可应用于分析逆境胁迫响应、植物健康状态,植物病虫害分析等可见光三维成像单元1、基于可见光图像进行三维建模,生成高精度植物三维模型2、分析植物整体形态,基于三维模型准确获取植物冠层高度、冠幅、冠高比等形态参数3、整体分析植物的颜色分布4、整体分析植物的体积、表面积、生物量变化1、对植物株型进行三维结构分析,可应用于株型对产量影响分析、株型与植物健康状态相关性分析、株型突变体筛选等多个方向的研究2、可对植物生物量进行计算,用于分析植物生长状态变化,建立长势模型,记录植物生长与生物量变化过程,用于分析环境对植物生物量影响高光谱成像单元1、植物各部分光谱反射曲线2、叶绿素等成分反射峰值3、主要光谱指数(NDVI、RVI、GVI等)4、冠层叶绿素含量、冠层氮含量等生物学参数1、可通过高光谱成像单元实现对植物基本植被指数的计算,植被指数可以反应植物生长状态、色素含量、营养状态等情况,适用于其产量、育种、胁迫等多种研究工作2、可以获取植物组织的光谱反射率,生成光谱反射曲线。光谱反射曲线趋势可以反映植株不同部位或者不同植株的生长状态差异程度3、内置模型计算植物冠层叶绿素含量和冠层氮含量,可直接反映植物营养状态和健康状态4、可应用于病害研究。病斑部分和健康部分光谱反射曲线发生改变,通过对变化趋势的研究可以对病害发生部分和严重程度进行分析温室型高通量植物表型采集分析平台技术参数:(1)传送系统①传送速度:13m/min,可根据需求调节②定位精度:≤±2mm③电子识别:RFID,用于对每盆植物进行识别定位(2)可见光成像模块成像传感器高分辨率RGB镜头分辨率5120×5120像元尺寸2.5μm×2.5μm成像平台360度旋转平台成像高度支持多段成像,自定义高度照明光源侧面LED均一光源数据传输万兆以太网二维单株分析时间<5s三维单株重构与解析时间<7min (3)高光谱成像模块:成像波长范围400-1000nm照明光源低频闪高光质卤素灯光源像素大小5.86μm×5.86μm光谱分辨率2.5nm光谱带数(波段数)1200个波段图像分辨率1920×1920入射狭缝宽度25μm动态范围12bit成像高度支持自定义高度数据传输USB3.0/千兆以太网(可选)高光谱单株分析时间<5s
    留言咨询
  • 太阳辐射照射到植物叶片上,其中的蓝色波段和红色波段大部分被叶片吸收进行光合作用,另一部分(包括绿色波段、红外波段等)以反射光的形式返回到大气中,少量以荧光的形式发射到大气中,还有部分则以热的形式耗散。通过对叶片反射光成像测量分析(RGB彩色成像、多光谱或高光谱成像等)、多光谱荧光成像测量分析及叶片温度测量分析(红外热成像),可以全面分析植物的性状特征包括外部形态颜色、光合作用效率、气孔动态、次级代谢等形态与生理生态特征,使植物表型数字化、生理生态及功能可视化。模块式植物表型成像分析系统由植物多光谱荧光成像单元、红外热成像单元、RGB彩色成像单元等组成,可全面分析植物叶片及冠层的形态结构、颜色、光合作用、生理状态、气孔动态、生化色素分布、胁迫生理等,是目前市场上配置最灵活、功能最全面、性价比最高的植物表型与生理生态观测分析系统。左图:西葫芦感染病原菌成像分析,其中(a)为RGB彩色成像、(b)为红外热成像、(c)为F520绿色荧光成像、(d)为F520/F680绿红荧光比值成像;右图:向日葵幼苗列当寄生后的多光谱荧光成像主要功能特点与技术指标:1) 植物多光谱荧光成像技术,可以对具有4个特征性波峰的植物荧光光谱进行成像分析,进而可全面分析植物初级代谢(光合效率)、次级代谢、生理生态、胁迫与抗性筛选等2) 可选配UV紫外光、白色LED光源(用于模拟自然光源)、青色LED光源(用于气孔功能研究)、绿色LED光源、红色LED光源、蓝色LED光源等不同激发光源3) 可对UV紫外光激发的4个波峰的荧光进行成像分析,包括兰光440nm(F440)、绿光520nm(F520)、红光690nm(F690)和远红外740nm(F740),其中F440和F520统称为BGF,由表皮及叶肉细胞壁和叶脉发出,F690和F740为叶绿素荧光Chl-F4) 红外热成像分析单元可测量分析叶片温度的异质性分布,并通过选区(ROI)工具得到不同区域的最高温度、最低温度、平均温度、温度分布频率直方图等,依次进一步分析气孔导度、水分胁迫等5) 40倍RGB成像可以对植物形态及颜色进行分析,既可明察秋毫到气孔分布,又可大视野宏观成像分析6) 配置灵活、使用方便,可选配不同单元组合7) 适于植物叶片、植物幼苗及小型全株植物,红外热成像可应用于植物冠层或多株植物成像分析8) 应用于作物遗传育种、遗传组学与表型组学研究、植物生理生态学、植物胁迫生理、抗性筛选等领域技术指标:1 红外热成像单元:1.1 非制冷红外焦平面检测器(uncooled VOx microbolometer),已经过欧盟标注校准,可直接测量温度,包括每个像素点的温度等1.2 分辨率:640x512像素1.3 光谱范围:7.5~13.5μm1.4 温度测量范围:-25~150°C1.5 灵敏度:≤0.03℃(30mK)@ 30℃1.6 帧频:9Hz或30Hz,最大60Hz1.7 数据传输:USB-3或千兆以太网1.8 19mm光学镜头,视野32℃x26℃,可选配13mm镜头或35mm镜头1.9 具备视频模式和快照模式1.10 具备14种调色板供任意选择,可多样化设置热成像假彩色1.11 具备差值功能,可内查图像形成平滑影像以避免像素化1.12 可通过软件设置大气温度、湿度、距离等参数1.13 具备等温模式功能,包括以上、一下、之间、及以下与以上四种等温模式1.14 结果在线报告功能,自动显示热影像、时距图及影像参数如发射率、反射温度、大气温度、湿度、外部光距离、传播等1.15 影像处理软件具备ROI选区功能,包括点、线、折线、矩形等,并可进行分区处理,每个ROI即时显示最小温度、最高温度、平均温度等1.16 热扫描功能及热剖面功能:可在线可视化显示线型ROI温度值、温度剖面图1.17 所有ROI工具的温度值均可显示在时距图中1.18 防护级:IP651.19 工作温度:-15°C~+50°C 1.20 支持GPS信息,可将位置信息显示在谷歌地图上2 植物多光谱荧光成像2.1 成像面积20x20cm2.2 紫外光激发多光谱荧光成像包括F440、F520、F690、F740四个波段的荧光成像2.3 高分辨率CCD镜头,20fps、1360x1024像素,有效像素大小为6.45μm,高速USB 2.0 (480Mbits/sec),可像素叠加(binning)以提高灵敏度(2x2,3x3,4x4);具备视频模式和快照模式2.4 自动测量分析功能(无人值守):可预设1个或2个试验程序,系统可自动测量储存2.5 激发光源包括紫外光、蓝色光源、红橙色光源,通过紫外激发荧光与红光LED激发荧光,可以分析植物类黄酮相对含量等2.6 成像分析软件具Live(实况测试)、Protocol(实验程序选择)、Pre-processing(成像预处理)、Result(成像分析结果)等功能菜单2.7 成像预处理可以自动选区或手动选择不同形状、不同数量、不同位置的区域(Region of interest,ROI),成像分析结果包括高时间解析度荧光动态图、直方图、不同参数成像图、不同ROI的荧光参数列表等2.8 Protocol实验程序可自由编辑,也可利用Protocol菜单中的向导程序模版客户自由创建新的实验程序2.9 多种Protocols供选配和自动运行,包括Fv/Fm、Kautsky诱导效应、叶绿素荧光淬灭曲线、光响应曲线等2.10 具备系统自动重复运行功能,可无人值守自动循环完成选定的实验程序,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机2.11 高度可调,以适应不同高度植株成像分析,最大植株高度50cm,可根据客户需求定制不同高度3. NDVI与PAR吸收成像模块:630nmLED红色光源和740nm LED红外光源,可对PAR(光合有效辐射)吸收及植物光谱反射指数NDVI成像分析 4. 可对绿色荧光蛋白GFP进行成像分析,可选配YFP成像分析5. RGB成像:科研级RGB成像镜头,分辨率2592x1944像素,信噪比54dB,1-40x放大,最小视野6.1x7.9mm(40x),最大视野20.8x25.4;可分析叶面积、长度、宽度、周长、比值、绿度指数、颜色分级分析、频率直方图等 应用案例与近期代表性参考文献: 西葫芦感染软腐病菌(Dickeya dadantii)RGB彩色成像、多光谱荧光成像及红外热成像分析(引自Maria L. Perez-Bueno等,Multicolor Fluorescence Imaging as a Candidate for Disease Detection in Plant Phenotyping. Frontiers in Plant Science, 2016)1) Monica Pineda etc. Detection of Bacterial Infection in Melon Plants by Classification Methods Based on Imaging Data. Frontiers in Plant Science2) Monica Pineda et. Use of multicolour fluorescence imaging for diagnosis of bacterial and fungal infection on zucchini by implementing machine learning. Functional Plant Biology, 20173) Carmen M. Ortiz-Bustos etc. Fluorescence Imaging in the Red and Far-Red Region during Growth of Sunflower Plantlets. Diagnosis of the Early Infection by the Parasite Orobanche Cumana. Frontiers in Plant Science, 2016 4)Maria Luisa Perez-Bueno etc. Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. Physiologia Plantarum, 2015
    留言咨询
  • 产品简介高通量植物荧光表型检测平台可以定制化的对小型样品进行荧光图像采集,通过定制化的数据分析软件连续720小时以上获取各类小型植物荧光图像参数以及动态参数,可用于拟南芥,烟草等小型植物的表型研究。应用领域植物病理研究作物抗病研究植物动态生长发育研究主要配置成像单位像素:14μm成像单元类型:高分辨率CCD相机照明位置:顶部,侧部 照明光源类型:紫外灯(荧光成像光源),日光灯(生长光源)尺寸:2000*2000*2000mm(长宽高)电源:单相 220VAC控制装置:WindowsPC控制机柜软件:在线控制,图像处理,数据分析主要性能参数可测参数:荧光图像亮斑个数,纹理,面积变化趋势,荧光亮度变化趋势等效率:5s/株检测方式:在线实时采集数据存储:JPG格式实存储数据分析:EXCEL格式自动存储系统稳定性:连续工作720h以上工作环境温度:0-50℃产品图片高通量植物荧光检测平台、荧光图像采集软件图、数据分析图(a)为原始荧光图像,(b)为分割伪彩图。公司简介谷丰光电(GREENPHENO)致力于植物表型,农业科研和机器视觉系统集成领域,具备核心图形处理、光机电控制、以及系统集成技术,掌握一批自主知识产权。主营业务包含:水稻数字化考种机;玉米在体、离体数字化考种机;全自动银染显影仪;双目视觉谷粒检测仪;叶片表型快速分析仪;水稻穗长测量系统;高通量植物分蘖测量系统;高通量植物表型参数自动提取系统等光机电一体化仪器设备定制,应用软件及算法开发。谷丰光电将立足于高端农业科研仪器、植物表型系统,坚持高科技、高价值、高效益三大目标,打造实力品牌优势、系统优势和价值优势的知名光电企业。
    留言咨询
  • PlantScreen野外高通量植物表型分析平台——Field-based High-throughput Phenotyping PlatForm 建立对野外生长植物迅速、准确、高通量非损伤多性状表型分析能力,是21世纪作物遗传育种面临的最 大挑战(Andrade-Sanchez et al.2014, Furbank and Tester 2011, Houle et al. 2010)。野外高通量植物表型分析平台对遗传学、生物技术、作物育种,及作物对气候变化、土壤、耕作管理的响应研究监测等,特别是现代农业、智慧农业都具有无比重要的意义。 PlantScreen野外高通量植物表型分析平台集成了自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物高光谱分析、RGB彩色成像分析及互联网+表型大数据平台等现代先进技术,以最 优化的方式实现野外植物原位高通量表型分析测量、植物胁迫响应与作物抗性成像分析测量筛选、植物生长分析测量、性状识别及植物生理生态分析研究等。作为全球第 一家研制生产植物叶绿素荧光成像系统的厂家,PSI公司在植物表型成像分析领域处于全球的技术前列,大面积叶绿素荧光成像分析等成像分析平台使PlantScreen成为植物表型分析与功能成像分析的最为先进的仪器设备。 功能特点:1) 大型多功能成像平台(Multi-functional sensor platform),集成了叶绿素荧光成像、RGB成像、红外热成像、LiDAR、高光谱成像等各种先进高端传感设备,全面分析:a) 结构性状表型分析(RGB成像及LiDAR)b) 功能表型分析(叶绿素荧光成像)c) 形状与生长评估(RGB成像及LiDAR)d) 光合作用表现(叶绿素荧光成像)e) 生物胁迫与非生物胁迫响应(叶绿素荧光成像、高光谱成像、红外热成像)f) 生理生态表现包括光合生理、气孔动态、生化代谢指标等等(叶绿素荧光成像、高光谱成像、红外热成像)2) 全球领 先的FluorCam叶绿素荧光成像技术,是作物生理生态功能性状的必备分析技术,智能LED光源提供调制测量光可以在白天自动成像测量光适应条件下的叶绿素荧光及光合效率;配备独有的高灵敏度叶绿素荧光成像镜头,成像面积达35cm x 35cm(可客户定制80cm x 80cm),是世界上单幅叶绿素荧光成像面积最 大的技术设备3) 可安装在拖拉机上进行移动式自动成像分析,也可安装在专用自动运行平台上沿样带轨道自动运行的同时进行样带全覆盖自动扫描成像和在线分析4) 表型分析大数据平台,包括系统控制、数据采集、数据处理分析与可视化在线显示、数据库等5) PSI表型研究中心专家团队技术支持,每年在美国和欧洲分别组织举办一次世界植物表型研讨会6) 可选配基于无人机技术(UAV-based)的PhenoUAS无人机高通量表型分析平台,使基于地面的表型分析scalling-up到空中大区域快速表型分析7) 可选配土壤气象监测站,全面分析环境条件与表型性状的关系8) 可选配植物生理生态监测系统,同步监测植物光合作用及果实生长等信息9) 可选配自动称重数字化培养盆,进行精确称重、土壤水分监测、自动浇灌等主要技术指标:1. 一体式多功能自动成像分析平台,集成了智能LED光源及叶绿素荧光成像模块、RGB成像分析模块及其它如红外热成像、LiDAR激光扫描、高光谱等选配成像模块,通过操作系统自动运行、自动分类存储、自动在线分析等2. 叶绿素荧光成像分析(标配): a) 3色智能LED激发光源,620nm脉冲测量光、白色光化学光和最 大饱和光闪、735nm红外光用于测量Fo’等b) 可选配蓝色光源与7位滤波轮用于多光谱多波段荧光测量如GFP成像测量c) 独有高灵敏度CCD叶绿素荧光成像传感器,帧频达50fps,有效捕捉叶绿素荧光瞬变,分辨率720x560像素,A/D 12比特,具备视频模式和快照模式;可选配高分辨率CCD,分辨率1360x1024,帧频20fps,A/D 16比特d) 单幅成像面积35x35cme) 成像测量参数:可进行黑夜暗适应测量及白昼光适应测量,测量参数包括Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv/Fm, Fv’/Fm’, Phi_PSII, NPQ, qN, qP, Rfd等叶绿素荧光参数,用于分析植物光合效率、适合度、生物与非生物胁迫及作物抗性、恢复力等f) Fv/Fm、Kautsky诱导效应、荧光淬灭分析等完备自动化测量程序(protocols)与测量参数,如Fv/Fm程序测量时间仅需10sg) 叶绿素荧光数据在线分析,包括柱状图、测量参数图、数据表格等,具备自定义图像分割等功能,可进行不同时间尺度(如日、月、整个生长季节等)的多参数动态分析h) 是真正的二维同步成像,所得叶绿素荧光参数是真正的基于像素点的二维分布参数,避免简单化的“激光诱导成像”(优点是轻便、省电)仅仅是一维成像(点或线)、不能同步化二维成像、易受环境因素影响(如风吹草动即产生严重误差)、成像参数只是模拟参数(根据激光扫描快慢得到的快速测量荧光与慢速测量荧光不是真正的最小荧光和最 大荧光,所得参数“光量子产量”只是模拟光量子产量需要用进行校准后参数才能使用)、测量参数单一(只能得到快速测量荧光和慢速测量荧光及由此计算出的模拟光量子产量或称光量子效率)、技术不成熟(找不到参考文献)等问题i) 是世界上用于植物高通量表型分析应用最广、发表论文最多的技术手段3. RGB成像分析(标配):可对植物的形状、颜色绿度等进行成像分析,分辨率5Mpx,并可自动对植物花朵数量、水稻分蘖等进行统计分析,主要分析测量参数包括:1) 叶面积(Leaf Area: Useful for monitoring growth rate) 及其动态变化2) 植物紧实度/紧密度(Solidity/Compactness. Ratio between the area covered by the plant’s convex hull and the area covered by the actual plant)3) 叶片周长(Leaf Perimeter: Particularly useful for the basic leaf shape and width evaluation (combined with leaf area))4) 偏心率(Eccentricity: Plant shape estimation, scalar number, eccentricity of the ellipse with same second moments as the plant (0...circle, 1...line segment))5) 叶圆度(Roundness: Based on evaluating the ratio between leaf area and perimeter. Gives information about leaf roundness)6) 叶宽指数(Medium Leaf Width Index: Leaf area proportional to the plant skeleton (i.e. reduction of the leaf to line segment))7) 叶片细长度SOL (Slenderness of Leaves)8) 植物圆直径(Circle Diameter. Diameter of a circle with the same area as the plant)9) 凸包面积(Convex Hull Area. Useful for compactness evaluation)10) 植物质心(Centroid. Center of the plant mass position (particularly useful for the eccentricity evaluation))11) 扁平指数(Flattening index)12) 相对生长速率(Relative growth rate)13) 绿度指数与分级分析(暗绿、健康绿、浅绿等)14) 颜色分级与分区分析(Color segmentation for plant fitness evaluation)15) 其它性状与颜色分级动态分析4. 3D激光扫描分析(选配):用于植物结构表型分析,通过点云模型自动分析计算植物结构、生物量、叶片数量、叶面积、叶片倾斜角度、植物高度等各种形态结构参数5. 红外热成像分析(选配):焦平面阵列微测热辐射计,分辨率 640×480 像素,波段7.5-13μm,温度范围 -20 – 120℃,分辨率0.05℃@30℃/50mK,成像面积35x35cm,用于成像植物在光辐射情况下的冠层温度分布,并分析植物的气孔导度动态、干旱胁迫及抗干旱能力评估等,良好的散热可以使植物耐受较长时间的高光辐射或低水条件(干旱)6. 高光谱成像分析(选配):波长范围380-1000nm,光谱带数(波段数)675个波段,可成像并分析归一化指数(Normalized Difference Vegetation Index (NDVI))简单比值指数(Simple Ratio Index, Equation: SR = RNIR / RRED)、改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index (MCARI1), ?Equation: MCARI1 = 1.2 * [2.5 * (R790- R670) - 1.3 * (R790- R550)])、优化土壤调整植被指数(Optimized Soil-Adjusted Vegetation Index (OSAVI)?, Equation: OSAVI = (1 + 0.16) * (R790- R670) / (R790- R670 + 0.16))、光化学植被反射指数(Photochemical Reflectance Index (PRI), Equation: PRI = (R531- R570) / (R531+ R570))等7. 野外移动平台:平台臂12m跨度,多功能成像平台可在移动平台上左右自动扫描成像分析,可自动扫描宽度达10m的样带,每一次扫描成像面积可达10x0.35m(3.5m2),完成一次扫描时间从不足1分钟到几分钟(根据实验测量程序Protocol而定),移动平台可沿轨道自动运行,运行距离原则上不受限制(受轨道长度限制);移动平台高度2.5m,多功能成像平台高度可调节,以适应不同高度作物成像分析;移动平台4个橡胶轮既可在轨道上通过控制系统自动运行并自动扫描成像,还便于在一般地面上移动、拐弯等,对于75x20m的样方,移动平台可以载荷多功能成像平台一次完成75x10m的样带,然后手动拐弯后再自动完成另一半75x10m的成像分析;配备GPS系统精度达2cm,通过软件自动记录测量数据、位置、时间等,可由柴油发电机提供动力驱动整个平台移动8. 可选配环境测量传感器网络,自动监测记录PAR、环境CO2浓度、空气温湿度、降雨量及土壤水分等。9. 系统控制与数据采集分析系统(表型大数据平台):1) 用户友好的图形界面2) GPS定位功能可进行空间分布信息及时空分布格局分析3) 已内置各种成熟的Protocols,具备用户定义、可编辑自动测量程序(protocols),根据用户设定程序自动完成全部实验。数据结果自动存储并分析,分析的数据结果可自动以动态曲线的形式显示4) MySQL数据库管理系统,可以处理拥有上千万条记录的大型数据库,支持多种存储引擎,相关数据自动存储于数据库中的不同表中5) 可用默认程序进行所有测量,也可通过开发工具创建自定义的工作过程,或者手动操作LED光源开启或关闭、RGB扫面成像、叶绿素荧光成像等6) 实验程序(Protocols)具备起始键、终止键、暂停键7) 系统可通过互联网无线远程控制,允许用户通过互联网远程访问,进行数据处理、下载及更改实验设计,具备用户权限分级功能,防止其他人员误操作影响实验产地:欧洲PSI应用案例: 应用FluorCam叶绿素荧光技术,对野外植物进行原位不同季节长期监测,同时监测植物光合作用(CO2同化)A,结果参见下图。FluorCam叶绿素荧光技术采用激发光脉冲调制技术、高灵敏度CCD传感器(采样频率达每秒50次)技术及智能LED光源,可以大面积(标配每帧成像面积35x35cm)植物/作物成像分析,在野外既可在夜间进行暗适应条件下的叶绿素荧光成像分析,还可在环境光适应条件下进行叶绿素荧光成像分析,比简单的激光诱导叶绿素荧光测量(通过一束点状或线型单色激发光源激发叶绿素荧光并进行测量,优点是省电且可以更轻便)相比有诸多功能优势,不仅测量参数多、可以进行各种叶绿素荧光实验程序成像测量分析,而且一次二维成像(真正的成像分析)避免了点状或线型激发光扫描造成的叶绿素荧光测量不同步、野外风吹草动分辨率严重降低等问题。 附:其它野外表型成像分析系统:1) PhenoUAS无人机高通量大田作物表型分析平台2) FluorCam野外移动式叶绿素荧光与RGB成像分析系统3) FluorCam样带扫描式叶绿素荧光与RGB成像分析系统(可选配红外热成像)
    留言咨询
  • 多功能植物测量仪MultispeQ 多功能植物测量仪MultispeQ 集合了叶绿素荧光仪、差示吸收仪、叶绿素仪和气象站等功能于一身,小巧轻便,是一款野外便携且性价比高的多功能植物测量仪!多功能植物测量仪MultispeQ产品简介:多功能植物测量仪MultispeQ是由知名光合作用专家DavidM.Kramer教授团队研发的创新性技术。MultispeQ 通过手机APP控制,野外操作简便,能够对植物或者藻类的光合表型和生物/非生物胁迫进行原位测量,数据实时存储至PhotosynQ云平台,以便进一步查看和存储数据。若为室内试验,也可以通过桌面APP和网页APP进行操作。Kramer教授是非常知名的光合作用专家,其论文总引用次数11100+次,h指数59,i10指数135,其2004年发表在PhotosynthesisResearch上提出qL、ΦNPQ和ΦNO参数的文章已被引用900+次。(GoogleScholar数据,截止2018年10月)。 PhotosynQ平台PhotosynQ平台使用高质量、低成本的MultispeQ传感器和手机在实验室、温室以及野外试验田测量收集作物生理数据。数据上传到PhotosynQ平台,将数据与项目连接起来,您和协作者可以在其中聚合、可视化、映射和分析结果。使用工具管理1 - 1000名合作者的项目,确保数据的可比性、一致性和有效性。PhotosynQ平台数据分析做图示例: 功能特性:1.功能强大,1台MultispeQ V2=叶绿素荧光仪+差式吸收+叶绿素仪+气象站2.测量快速,一次典型测量只需15秒3.灵活、开源,创建适于自己的操作流程4.预留额外传感器接口(USB3.0)--通过桌面电脑(PC、Mac或Linux)或安卓手机连接PhotosynQ5.云平台,随时随地管理、分析和共享数据6.改良的PAR传感器,测量更广泛的光质7.5500mAh内置电池,轻松满足全天使用 测量参数:1.植物和藻类叶绿素荧光参数:Fo、 Fm、 Fs、 Fo’、 Fm’、Fv/Fm、ΦII、ΦNPQ、ΦNO、NPQt、qE,、qI、qL、qP、LEF(rETR)、RFd等2.叶绿素相对含量:SPAD3.质子动力势:VH+、GH+、ECSt等4.非接触测量参数:叶片角度、叶片朝向、叶片温度,叶片和环境的温度差5.环境参数:PAR、环境温度、气压、相对湿度、海拔技术参数:1.LED光源:448nm,530nm,590nm,655nm(2x),730nm,810nm,880nm和950nm(2x)2.检测器:400-700nm,700-1150nm3.自动存储田间位置信息和时间信息4.环境温度:±0.5℃5.非接触叶片温度:±0.1℃(30℃到40℃之间)6.相对湿度:±3%7.气压:±0.25%8.测定叶片角度(萎蔫)和朝向9.外置传感器连接器10.内置电池:5500mAh11.手机APP操控,云平台存储数据代表用户部分参考文献Takano H K, Beffa R, Preston C, et al. A novel insight into the mode of action of glufosinate: how reactive oxygen species are formed[J]. Photosynthesis Research, 2020, 144(3): 361-372.Carmody N, Go?i O, ?angowski ?, et al. Ascophyllum nodosum extract biostimulant processing and its impact on enhancing heat stress tolerance during tomato fruit set[J]. Frontiers in Plant Science, 2020, 11: 807.Souza-Alonso P, Lechuga-Lago Y, Guisande-Collazo A, et al. Drifting away. Seawater survival and stochastic transport of the invasive Carpobrotus edulis[J]. Science of the Total Environment, 2020, 712: 135518.Ibrahimova U, Zivcak M, Gasparovic K, et al. Electron and proton transport in wheat exposed to salt stress: is the increase of the thylakoid membrane proton conductivity responsible for decreasing the photosynthetic activity in sensitive genotypes?[J]. Photosynthesis research, 2021, 150(1): 195-211.Deva C R, Urban M O, Challinor A J, et al. Enhanced leaf cooling is a pathway to heat tolerance in common bean[J]. Frontiers in plant science, 2020, 11: 19.Colorado J D, Cera-Bornacelli N, Caldas J S, et al. Estimation of nitrogen in rice crops from UAV-captured images[J]. Remote Sensing, 2020, 12(20): 3396.Susi? N, ?ibrat U, Sinkovi? L, et al. From genome to field—observation of the multimodal nematicidal and plant growth-promoting effects of Bacillus firmus I-1582 on tomatoes using hyperspectral remote sensing[J]. Plants, 2020, 9(5): 592.Zavafer A, Labeeuw L, Mancilla C. Global trends of usage of chlorophyll fluorescence and projections for the next decade[J]. Plant Phenomics, 2020, 2020. 想了解更多内容,获取相关资料请扫码联系联系人:张经理 186 1389 8130
    留言咨询
  • Entoscan X、Y、Z三轴自动定位 植物表型成像分析平台Entoscan植物表型成像系统(X Y Z 三轴自动定位)是由台湾海博特公司研发制造,整合了Hipoint智能环控系统(包含温湿度、CO2、水份、EC、PH、气象)高光谱LED光谱模拟系统,叶绿素萤光成像测量分析,植物热成像分析,植物近红外线成像分析,植物高光谱分析,RGB色彩成像及射频,条码管理系统等多项先进技术结合;以最(分割线)优化的方式实现在精(分割线)准环控条件进行高通量数据集成。提供阿拉伯芥(拟南芥)、玉米、甜椒、大豆、小麦、到各种其他植物的全面性形态构型、光谱资讯、叶绿素荧光等表型分析研究最(分割线)佳解决方案,透过高通量植物表形分析量测,协助研究人员快速、完整、全方位进行植物性状识别、植物生理、植物病理学、植物育种、目标成份、植物生态分析等尖(分割线)端研究。同时搭载Hipoint首(分割线)创发明案例结合环境分析探头自动化设备结合,成功利用精(分割线)准环控条件并模拟24节气各纬度光谱模拟条件,达到进行植物活体全方位律动及环境反馈研究。Entoscan X、Y、Z三轴自动定位 植物表型成像分析平台
    留言咨询
  • 空间集约型植物根系表型高通量移动测量系统空间集约型植物根系表型高通量移动测量系统是针对作物根系生长特性和根系表型图像采集需要,研发的可用于根系生长可视化动态监测系统。该根系表型系统空间利用率高,且基于CIS扫描仪设计了适用于根系表型图像采集的专用传感器,可实现作物根系表型图像的无畸变、高分辨率及高质量采集,同时可选配搭载AI视觉机械臂的全方位智能自主移动机器人,进行植物根系的全自动高频次采集。广泛应用于小麦、水稻、玉米、大豆、棉花和油菜等作物,可测量根系条数、最大根长、总长度、根夹角、表面积、根系分布范围、体积、根系生物量等。主要参数主要配置&bull 成像单元类型:CIS根系图像扫描仪&bull 尺寸:400*400*2000mm(长宽高)&bull 软件:原始图像数据储存、基于深度学习算法的web端根系图像表型数据自动处理,数据分析及存储&bull 扁根盒数量:单套45个主要性能参数通量:10s/个工作温度:-10℃~60℃;数据格式:jpg等图像格式; 分辨率(可选):600 DPI 应用案例使用该设备进行大规模小麦群体全生育期的根系表型监测,探究全生育期范围内根系表型对干旱、渍水等非生物胁迫的动态响应。产地与厂家:中国Eco-mind
    留言咨询
  • 用途:凭借数十年植物科学研究的经验而设计出的PlantScreen植物表型成像分析系统,可用于高通量植物表型监测、植物构架量化以及在自然环境、温室和野外条件下高精度控制测量。 PlantScreen植物表型成像分析系统整合了叶绿素荧光动力学成像、植物形态学和RGB真彩3D成像、植物热成像、植物高光谱成像、植物近红外成像、自动条形码识别管理、植物图像控制软件和植物表型数据分析等系统,通过外接传感器和软件系统可测量光合有效辐射、空气温湿度、CO2、风速等环境因子,用于植物高通量表型成像分析测量、植物胁迫响应分析测量、植物生长分析测量、植物生态毒理学研究、性状识别及植物生理生态分析研究等。 特点:专业定制,根据用户实验需求量身定制;测量参数多样,有热成像、RGB成像、叶绿素荧光成像、高光谱成像、近红外成像等全方位测量参数;适用于多种类型的研究对象,拟南芥、水稻、小麦、玉米等;成像面积大,单幅成像达40cm x40cm;成像分析平台尺寸大,宽10m,高度可调至2.5m,样带轨迹长度100m;可外接环境气象因子传感器,综合分析环境因素的影响;用户可编辑测量程序(protocols),满足特殊实验需求。 技术规格:系统主体成像分析平台宽10m,高度可调,最大2.5m,可沿10m宽样带移动成像,样带轨迹长度100m外接传感器外接传感器和软件可采集PAR、CO2、空气温湿度、风速GPS带GPS精准定位系统实验程序预设常用实验程序(Protocols),用户可自定义、编辑实验程序叶绿素荧光成像系统测量和计算的参数Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv/Fm, Fv’/Fm’, Phi_PSII, NPQ, qN, qP, Rfd等几十个叶绿素荧光参数成像面积40cm x 40cm测量光橙色620nm光化学橙色和白色双色光饱和光白色或蓝色,最大光强3600μmol.m-2 .s-1镜头分辨率1024 x 768像素,7位滤波轮RGB成像测量参数叶面积、植物紧实度、叶片周长、偏心率、叶圆度、叶宽指数、叶片细长度SOL、植物圆直径、凸包面积、植物质心、节间距、生长高度、植物三维最大高度和宽度、相对生长速率、叶倾角、节叶片数量、其他用于植物适合度估算的颜色定量分级、绿度指数成像位置顶部及侧面全方位成像分辨率500万像素高光谱成像测量参数归一化指数、简单比值指数、改进的叶绿素吸收反射指数、最优化土壤调整植被指数、绿度指数、改进的叶绿素吸收反射指数、转换类胡萝卜素指数、三角植被指数、ZMI指数、简单比值色素指数、归一化脱镁作用指数、光化学植被反射指数、归一化叶绿素指数、Carter指数、Lichtenthaler指数、SIPI指数、Gitelson-Merzlyak指数光谱范围380-1000nm光源LED,光强50-1000μmol/m2s热成像分辨率640x480nm温度范围20-120°C灵敏度NETD0.05°C@30°C/50mK成像面积35x35cm近红外成像波长范围1450-1600nm RGB成像 叶绿素荧光成像 高光谱成像 近红外成像 热成像 控制软件 产地:捷克
    留言咨询
  • PhenoTron-YZ植物表型与种质资源成像分析系统,是由易科泰生态技术公司最新推出的一款基于光谱成像与机器视觉技术的多功能、高通量实验室表型性状分析系统,采用国际先进的光谱成像传感器技术和易科泰光谱成像与无人机遥感研究中心设计研发的STP(Sensor-To-Plant)全自动作物表型XYZ扫描成像分析平台技术,可用于实验室高通量植物表型成像分析、作物种质资源检测鉴定、作物遗传育种、作物胁迫与抗性筛选、高通量考种等。系统采用STP技术,由主机系统和光谱成像系统组成,主机系统包括主机箱、控制单元、触摸显示屏、数据处理服务器等组成;光谱成像系统由光谱成像传感器、光源系统、自动扫描Y轴及Z轴同步升降双轴系统等组成。主要技术特点:1) 标配400-1000nm高光谱成像,或400-1000与900-1700nm双镜头高光谱成像,可选配1000-2500nm高光谱成像2) 选配Thermo-RGB红外热成像与RGB成像分析3) 选配叶绿素荧光成像分析4) 选配3D激光扫描5) 称重式360度旋转平台(选配),可实现植株顶部和侧面(Z轴)全方位成像分析6) 全自动样带式扫描(Y轴)成像,可同时对多盆植株成像分析,还可对样品盘内的根系、叶片、果实、种子进行高通量成像分析7) 模块式结构,主机系统采用5G通信技术,星型组网物联网模块,可任意扩展增加传感器和控制模块如光源、秤重、旋转平台、温湿度监测等8) 可远程控制、自动运行数据采集存储等功能9) 系统自动保护功能,发生短路、过载、欠压时自动紧急断电,避免设备损坏10) 系统平台具万向脚轮,方便移动主要技术指标:1) 控制单元为嵌入式操作系统,全中文触控屏,方便系统调试、试运行等2) 用户可通过PC端全中文GUI软件实现远程操控相机及平台3) 10英寸触摸显示屏,集移动扫描、同步升降、相机控制、光源开关、快门触发、一键秤重及显示于一体4) 支持组合命令:最高可设置10条命令,实现无人值守工作5) 模块式结构,5G无线通信技术,传感器及控制单元星型组网,具备强大的扩展功能6) Y轴自动移动扫描行程1.2m,Z轴同步升降行程60cm,安全负载高达40kg7) 移动速度与精度:1-40mm/s可调,移动及定位精度1mm8) 有效扫描成像范围:120cm×60cm9) VNIR高光谱成像:a) 波段范围:400-1000nmb) 波段数:224通道c) 光谱分辨率:FWHM 5.5nmd) 空间分辨率:不低于1024×1024e) 信噪比600:1f) 分析参数:可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、健康指数、覆盖度、胁迫等20多个参数10) SWIR近红外高光谱成像:a) 波段范围:900-1700nmb) 波段数:224通道c) 光谱分辨率:FWHM 8nmd) 空间分辨率:不低于640×640e) 信噪比:1000:1f) 分析参数:可成像测量分析NDNI归一化N指数、NDWI归一化水指数、MSI水分胁迫指数等 11) 红外热成像:a) 分辨率:640×512像素b) 测量温度范围:-25℃-150℃c) 灵敏度:0.03℃(30mK)@30℃d) 光谱范围:7.5-13.5μme) 传感器:非制冷红外焦平面感应器,已多点校准(具校准证书)f) 1-14倍数码变焦g) 软件具备调色板(自然、彩虹、灰度、梯度等14种颜色组合)、差值技术、温度范围设置(以改变颜色分布或突出选择范围等)、等温线模式、选区分析(点、线、多边形等)、温度扫描(显示所选线的温度分布曲线等)、剖面温度、时间图等;可显示图片信息;具备报告模式等;可进行控制设置12) RGB彩色成像:高分辨率 RGB 成像,分辨率达 18MPixels,10 倍光学变焦,可选配其它分辨率镜头,配备专业形态测量与颜色分析软件13) 叶绿素荧光成像单元(选配):a) 专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720x×560像素,像素大小8.6×8.3μmb) 光化学光最大1000μmol.m-2. s-1可调,饱和脉冲3900μmol.m-2. s-1c) 可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocolsd) 50多个叶绿素荧光自动测量分析参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图e) 自动同步显示叶绿素荧光参数及参数图、叶绿素荧光动态曲线、叶绿素荧光参数频率直方图14) 可选配ENVIS环境因子监测模块,如空气温湿度监测及CO监测等15) 系统平台规格:标配约190cm×170cm×60cm(长×宽×高)
    留言咨询
  • Videometer Lite采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer Lite可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。田间Videometer多光谱植物表型功能分析系统主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer Lite可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab Lite的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab Lite便携式种子表型多光谱成像系统通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 图1 叶片正面严重度症状图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 µ m。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割。结果图6:133个基因型的平均严重程度(%)分布表1手工以及基于多光谱表型成像的藜麦霜霉病互作
    留言咨询
  • WIWAM植物表型成像系统由比利时SMO公司与Ghent大学VIB研究所研制生产,我们提供的Conveyor版本、Line 版本、XY版本、Box版本仅仅是我们WIWAM植物表型成像系统的基础版本,如果您有较多需求,请与我们联系,为您量身打造个性化表型成像系统。WIWAM植物表型成像定制系统背景介绍SMO是欧洲先进的机械设备制造与设计工程公司,在机械自动化以及机器视觉成像领域拥有丰富的设计和实践经验,为欧洲先进客户提供机械解决方案,SMO公司将机械领域的先进理念带入了植物表型研究领域,所采用的配件均为工业界广泛认可的高品质配件,耐受苛刻环境,另外表型设备领域的好多自动化配件,均由SMO公司自主设计,例如WIWAM系统的高精度称重浇水工作站,专有的高精度相机定位系统等等,鉴于工业领域的丰富经验,可针对不同客户需求,提供真正快速定制化的解决方案。因公司拥有较为强大的工程师团队,一般数周左右就可以提供较复杂表型成像系统的解决方案。由于采用开放式框架结构,目前WIWAM可以集成目前市面上所有的相机传感器模块,如RGB相机、叶绿素荧光成像模块、高光谱相机模块、近红外相机模块、3D激光扫描模块、多光谱模块、CT成像模块等,是目前上表型成像领域整合能力先进的公司,这也顺应了植物表型组织提出的标准化的潮流,提供设备涉及到室内表型、田间表型、根系表型、种子表型等领域。在该领域较突出的一点,SMO公司是目前所有表型设备提供商里不多见的进行自主机械、控制系统设计和生产的公司,因自有长期的机械工程人员和自己的生产场地,能应对表型领域客户的较为多样化的需求。VIB所:比利时VIB生物研究所是较先进的植物科学研究所之一,大名鼎鼎的蒙塔古教授(CropDesign公司创始人)、 Dirk Inzé,均来自该所,主要科研人员和创始人来自比利时VIB所的CropDesign首先成功研制出自用的称为TraitMill的技术平台。VIB所作为WIWAM系统开发者,在率先使用高通量植物表型识别系统WIWAM鉴定出农作物产量性状的关键基因,目前相关文章发表在Nature Biotechnology等先进期刊上。SMO公司与VIB合作,将工业自动化、机械视觉、人工智能以及生物学技术等相结合,设备开发人员包括自动化工 程师、机械视觉专家、植物遗传学家,生态生理学家,发育生物学家,农艺学家,气候研究员,土壤学家,生物信息学家和生物学家,植物发育、生理过程和气候情景建模相关的其他相关领域的科学家,传感技术开发者等,目前先进客户有根特大学、拜耳公司等等。定制案例1.水果蔬菜分析系统定制的WIWAM平台是为番茄、黄瓜和辣椒等水果的表型研究而建立的。通过扫描代码和选择水果类型来初始化新一批水果。之后,操作员可以在运行的传送带上逐个放置水果,首先,水果被运送到一个带有专用照明的成像舱,在这个成像舱里,俯视和侧视RGB相机会自动触发。然后,在运输过程中记录单个水果的重量。在传送带的末端,水果被收集起来,或者可以倾倒在一个集装箱里。这个系统可以在不到一个小时的时间内对数百种水果进行准确的分型。PIPPA软件管理表型数据,并集成颜色、形状和大小特征的分析。
    留言咨询
  • 全球首款移动式(Mobile)PlantScreen植物表型分析平台在荷兰植物生态表型中心(NPEC)安装运行,这是该中心成立后安装运行的首套植物表型分析系统,整个平台采用可移动式设计,有轮子可以方便在温室内移动,被称为“可移动的高通量植物表型成像分析平台”。 该表型平台包括3个功能模块:自动叶绿素荧光成像测量、3D激光三角测量、RGB 3D成像测量。Automated Chlorophyll Fluorescence, 3D laser triangulation and RGB imaging. The data looks promising !主要功能特点? 自动叶绿素荧光成像:PSI于上世纪90年代首次将叶绿素荧光脉冲调制技术(PAM)与CCD技术结合,研制成功叶绿素荧光成像技术并商业化生产(FluorCam)(Ladislav Nedbal, etc. Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynthesis Research, 2000),开创了叶绿素荧光技术的二维甚至三维时代,FluorCam叶绿素荧光成像技术成为植物生理性状表型分析的必选技术,也是目前灵敏度高、应用广泛、发表论文多的植物生理生态与表型分析技术,脉冲调制叶绿素荧光成像技术是目前被学术界广泛认可和应用的植物生理性状表型分析技术(Henning Tschiersch, etc. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. Plant Methods, 2017),适用于从拟南芥、种苗(种子萌发幼苗)到水稻、小麦等中型作物及玉米等大型作物(可高达300cm)的光合作用效率、胁迫与抗胁迫等生理性状表型高通量分析与筛选。 ? 3D激光扫描成像测量:可对植株进行 3D建模;并自动获得叶面积、植株总叶面积、叶片投影面积、植株叶片投影总面积、叶面积指数、植株总叶面积指数、叶片紧实度、植株紧实度、株高、数字生物量、茎秆高度、茎秆长度、分枝数量等形态学参数。并可将叶绿素荧光成像、高光谱成像、红外热成像等在激光3D模型上进行投射,生成叶绿素荧光、高光谱、温度3D图像,实现真正的3D表型成像分析。? RGB 3D成像:对植株进行形态结构分析测量和颜色分割测量并计算相应参数指数等。独有的叶片生长追踪分析技术(leaf tracking protocol)和RGB“面具”功能,可为其它叶绿素荧光成像、高光谱成像、热成像等设置精准的ROI或者定义边界。 运行leaf tracking protocol叶片追踪分析功能、叶片分割分析功能、颜色分析? 可选配VNIR高光谱(光谱范围350-900nm或400-950nm)或SWIR高光谱(900-1700nm或1000-2350nm)成像分析单元,在线分析归一化指数NDVI、简单比值指数SR、改进的叶绿素吸收反射指数MCARI、改进的叶绿素吸收反射指数1MCARI1、优化土壤调整植被指数OSAVI、绿度指数G、转换类胡罗卜素指数TCARI、三角植被指数TVI、ZMI指数、简单比值色素指数SRPI、归一化脱镁作用指数NPQI、光化学植被反射指数PRI、归一化叶绿素指数NPCI、Carter指数、Lichtenthaler指数、SIPI指数、Gitelson-Merzlyak指数、花青素反射指数等 ? 可选配标配版红外热成像(分辨率640x480像素,灵敏度0.03摄氏度)或高分辨率高灵敏度红外热成像分析单元(分辨率1024x768像素,灵敏度0.02摄氏度)? 可选配3D NIR红外热成像单元,以研究分析植物水分分布情况,波段范围900-1700nm,分辨率638x500像素? 可选配可移动(集装箱式)生长舱/气候舱(Growth Capsule)。该生长舱/气候舱采用集装箱式设计,可方便移动运输,由一个独立的单元或两个单元组成其主要技术特点:1) 每个单元可独立调节环境条件,温度、湿度、光照及CO2调控并在线监测显示在触摸屏上2) 光照调控采用智能多通道LED光源,可选配冷白光、RGB三色光源、近红外等多色光源,不同波段光源可按不同比例搭配组成不同光质条件,可模拟昼夜节律、有云天气等,具备day/night、dawn/dusk、cloudy/sky等protocols3) 温度控制范围:-5~40摄氏度或10~40摄氏度(不受光照影响)4) 湿度控制范围:40%~80%5) 大小(双座):12.2m(L) x 2.45m(W) x 2.9m(H)6) 可遥控、远程数据下载7) 应用于植物培养监测:可选配叶绿素荧光、植物生理生态、光合作用监测8) 应用于植物表型分析:可选配XYZ三维扫描式PlantScreen植物表型成像分析系统 易科泰生态技术公司为您提供植物表型分析全面解决方案:? 手持式或便携式叶绿素荧光测量与成像技术? 手持式或便携式植物光谱与高光谱成像测量技术? 手持式或便携式红外热成像技术 ? FluorCam叶绿素荧光成像全面解决方案? FluorCam多光谱荧光成像技术全面解决方案? FKM多光谱荧光动态显微成像技术方案——细胞亚细胞水平分析植物性状? Specim高光谱成像技术全面解决方案? PlantScreen高通量植物表型成像分析技术? 叶绿素荧光成像、高光谱成像、红外热成像、多光谱成像、RGB成像综合集成技术方案
    留言咨询
  • PlantScreen植物表型成像分析系统(植物自动传送版) PlantScreen植物表型成像系统由捷克PSI公司研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、自动条码识别管理、RGB真彩3D成像、自动称重与浇灌系统等多项先进技术,以最优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。作为全球第一家研制生产植物叶绿素荧光成像系统的厂家,PSI公司在植物表型成像分析领域处于全球的技术前列,大面积叶绿素荧光成像分析功能使PlantScreen成为植物表型分析与功能成像分析的最为先进的仪器设备,使植物生长、胁迫响应等测量参数达100多个。左图为整套PlantScreen系统,中图为成像室,右图为成像室中的玉米PlantScreen系统包括如下成像分析功能: 1. 叶绿素荧光成像分析:单幅成像面积35x35cm,成像测量参数包括Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv/Fm, Fv’/Fm’, Phi_PSII, NPQ, qN, qP, Rfd等几十个叶绿素荧光参数2. RGB成像分析:成像测量参数包括:1) 叶面积(Leaf Area: Useful for monitoring growth rate)2) 植物紧实度/紧密度(Solidity/Compactness. Ratio between the area covered by the plant’s convex hull and the area covered by the actual plant)3) 叶片周长(Leaf Perimeter: Particularly useful for the basic leaf shape and width evaluation (combined with leaf area))4) 偏心率(Eccentricity: Plant shape estimation, scalar number, eccentricity of the ellipse with same second moments as the plant (0...circle, 1...line segment))5) 叶圆度(Roundness: Based on evaluating the ratio between leaf area and perimeter. Gives information about leaf roundness)6) 叶宽指数(Medium Leaf Width Index: Leaf area proportional to the plant skeleton (i.e. reduction of the leaf to line segment))7) 叶片细长度SOL (Slenderness of Leaves)8) 植物圆直径(Circle Diameter. Diameter of a circle with the same area as the plant)9) 凸包面积(Convex Hull Area. Useful for compactness evaluation)10) 植物质心(Centroid. Center of the plant mass position (particularly useful for the eccentricity evaluation))11) 节间距(Internodal Distances)12) 生长高度(Growth Height)13) 植物三维最大高度和宽度(Maximum Height and Width of Plant in 3 Dimensions)14) 相对生长速率(Relative growth rate)15) 叶倾角(Leaf Angle)16) 节叶片数量(Leaf Number at Nodes)17) 其它参数如用于植物适合度估算的颜色定量分级、绿度指数(Other parameters such as color segmentation for plant fitness evaluation, greening index and others)3. 高光谱成像分析(选配),可成像并分析如下参数:1) 归一化指数(Normalized Difference Vegetation Index (NDVI))2) 简单比值指数(Simple Ratio Index, Equation: SR = RNIR / RRED)3) 改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index (MCARI1), ?Equation: MCARI1 = 1.2 * [2.5 * (R790- R670) - 1.3 * (R790- R550)])4) 最优化土壤调整植被指数(Optimized Soil-Adjusted Vegetation Index (OSAVI)?, Equation: OSAVI = (1 + 0.16) * (R790- R670) / (R790- R670 + 0.16))5) 绿度指数(Greenness Index (G), Equation: G = R554 / R677)6) 改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index (MCARI), ?Equation: MCARI = [(R700- R670) - 0.2 * (R700- R550)] * (R700/ R670))7) 转换类胡罗卜素指数(Transformed CAR Index (TCARI)?, Equation: TSARI = 3 * [(R700- R670) - 0.2 * (R700- R550) * (R700/ R670)])8) 三角植被指数(Triangular Vegetation Index (TVI)?, ?Equation: TVI = 0.5 * [120 * (R750- R550) - 200 * (R670- R550)])9) ZMI指数(Zarco-Tejada & Miller Index (ZMI), Equation: ZMI = R750 / R710)10) 简单比值色素指数(Simple Ratio Pigment Index (SRPI), Equation: SRPI = R430 / R680)11) 归一化脱镁作用指数(Normalized Phaeophytinization Index (NPQI), Equation: NPQI = (R415- R435) / (R415+ R435))12) 光化学植被反射指数(Photochemical Reflectance Index (PRI), Equation: PRI = (R531- R570) / (R531+ R570))13) 归一化叶绿素指数(Normalized Pigment Chlorophyll Index (NPCI), NPCI = (R680- R430) / (R680+ R430))14) Carter指数(Carter Indices?, Equation: Ctr1 = R695 / R420 Ctr2 = R695 / R760)15) Lichtenthaler指数(Lichtenthaler Indices?, Equation: Lic1 = (R790 - R680) / (R790 + R680) Lic2 = R440 / R690)16) SIPI指数(Structure Intensive Pigment Index (SIPI), Equation: SIPI = (R790- R450) / (R790+ R650))17) Gitelson-Merzlyak指数(Gitelson and Merzlyak Indices?, ?Equation: GM1 = R750/ R550 GM2 = R750/ R700)4. 热成像分析(选配):用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐射或低水条件(干旱)5. 近红外成像分析(选配):用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。 系统配置与工作原理: 整套系统由自动化植物传送系统、光适应室、RGB成像、FluorCam叶绿素荧光成像、高光谱成像、植物热成像、植物近红外成像、自动浇灌施肥与称重系统、植物标识系统等组成,光适应室内的植物可由传送带传送到成像室进行成像分析等。 技术指标: 1. 自动装载与卸载植物样品,通过条形码或RFID标签识别跟踪样品2. 光适应室:用于光照适应或植物培养,LED光源光照强度达1000μmol/m2.s,无热效应,强度0-100%可调,可通过实验程序预设光照周期变化,可选配通用型或专用型如水稻生长观测室等,还可选配三维扫瞄成像分析功能(包括XYZ三维扫瞄成像系统和软件)3. 标配托盘架30x30cm,用于安放盆栽植物或可以盛放多个小花盆的托盘4. 自动传送系统由光适应室到成像室形成一个环形传送通道,传送带采用具变速器的三相异步马达,200-1000W,传送带宽320mm,负载力130kg,速度9m/min5. 移动控制系统中央处理单元:CJ2M-CPU33;数字I/O:最大2560点;PLC通讯:通过以太网100Mb/s高端PC;OMRON MECHATROLINK-II 最大16轴精确定位6. 植物成像测量室:150cm(长)x150cm(宽)x220cm(高),与环境光隔离(light-isolated),快速自动开启关闭门,开启关闭周期小于3秒,传送带入口具光幕传感系统、条码识别器和RFID读取器7. RFID读取器辨识距离:2-20cm;通讯:RS485;条码识别器可读取1维、2维和QR码,具LED光源便于弱光下辨识,RS485通讯8. F3EM2光幕系统,精确测量植物高度和宽度以便进入成像测量室后摄像头自动精确定位,测量范围150cm,分辨率5mm9. 叶绿素荧光成像:包括光隔离成像室、自动开启与关闭门、传送带、PLC控制自动上下移动聚焦系统、4个LED光源板、8位绿波轮等,单幅成像面积35x35cm,测量光橙色620nm,橙色和白色双波长光化学光,饱和光闪为白色或蓝色10. 自动灌溉与称重,可同时对5个植物种植盆进行浇灌和称重,精确度±1g;称重后精确浇灌,可通过实验程序(protocol)预设浇灌过程(regime)或干旱胁迫状态,还可选配营养供给系统随浇灌定量供给植物营养(如氮肥等);称重前自动零校准,还可通过已知重量(如砝码)物品自动进行再校准;防护级别:IP6611. 称重系统由4个称重单元组成,安全承载限:150% Ln;温度补偿:-10-40°C,标配测量范围7kg,可选配10kg、15kg或20kg12. RGB成像:顶部和侧面三维成像(3个摄像头),每个摄像头各自拥有独立的控制面盘以设置曝光时间、增益、白平衡等,通过控制面盘的快照键可即时拍照并显示分辨率等信息,还可通过自动模式自动成像并存储至数据库,每次扫瞄成像时间小于10秒13. RGB成像系统包括成像室(光隔离)、传送带及位置传感器、3个摄像头、光源及成像分析软件,标配成像范围150cm(长)x150cm(宽)x150cm(高),LED冷白光源(不对植物产生热效应)14. 标配USB以太网摄像头,有效像素4008x2672,像素大小9.0μm,比特分辨率12比特,光量子效率:蓝光峰值465nm,绿色峰值540nm,红色峰值610nm;28mm光学镜头,口径43.2mm,光圈范围2.8-F1615. NIR近红外成像单元:可成像采集1450-1600nm水吸收波段,以反映植物水分状况,在供水充沛情况下表现出高NIR吸收值,干旱胁迫情况下则表现出高NIR反射,NIR假彩色成像可以通过软件反映和分析植物水分状况16. 高光谱成像单元包括光隔离成像测量室、自动开启关闭门、传送带、PLC控制自动移动聚焦镜头包括SWIR和VNIR镜头、光源、成像分析系统等,VNIR镜头波段380nm-1000nm,光圈F/0.2,缝隙宽度25μm,缝隙长度18mm,帧速12-236 fps;SWIR镜头波段900-2500nm,光圈F/0.2,缝隙宽度25μm,缝隙长度18mm,帧速60或100 fps,视野150x100cm17. 用户可通过实验程序选择SWIR成像、VNIR成像或两个镜头全波段成像,每个镜头成像时间分别为15秒18. 热成像单元:分辨率640x480像素,温度范围20-120°C,灵敏度NETD0.05°C@30°C/50mK,成像面积可达150x150cm19. 可选配人工气候室,植物生长面积9.5m2,生长高度2.0m,温度稳定性±1°C,430nm-730nm白色和IR LED 光源,1000μmol/m2/s(距离植物100cm高度的光强),可预设自动光照周期动态,20. 系统控制与数据采集分析系统:? 用户友好的图形界面? 用户定义、可编辑自动测量程序(protocols)? MySQL数据库管理系统,可以处理拥有上千万条记录的大型数据库,支持多种存储引擎,相关数据自动存储于数据库中的不同表中? 植物编码注册功能:包括植物识别码、所在托盘的识别码等存储在数据库中,测量时自动提取自动读取条形码或RFID标签? 触摸屏操作界面,在线显示植物托盘数量、光线强度、分析测量状态及结果等,轻松通过软件完全控制所有的机械部件和成像工作站? 可用默认程序进行所有测量,也可通过开发工具创建自定义的工作过程,或者手动操作LED光源开启或关闭、RGB扫面成像、叶绿素荧光成像、称重及浇灌等? 实验程序(Protocols)具备起始键、终止键、暂停键? 可根据实验需求自动控制植物样品的移动和单一成像站的激活? 可提供3个相机视角的RGB数字生长分析,包含阈值分析和颜色分析? 对于叶绿素荧光成像图片,软件可批量进行淬灭参数分析,包含了在背景去除图像上用户感兴趣区域和像素值的平均。分析数据以原始图像和分析数据的形式存储在数据库中。? 对FIR热成像图,16位图可直接导出到MATLAB或通过软件生成温度分布的假彩图像。 部分用户: 1. 国际水稻研究所(菲律宾)The International Rice Research Institute, Los Banos Philippines 2. 澳大利亚联邦科学与工业研究组织植物表型组学中心The CSIRO Plant Phenomics Center, Canberra, Australia 3. 澳大利亚国立大学The Australian National University, Canberra. Australia 4. 孟山都公司(美国)Monsanto Corporation, St. Louis, USA. 5. 杜邦先锋国际良种公司Pioneer-Dupont, Des Moines, Iowa 6. 巴斯夫公司Metanomics(柏林)Metanomics (BASF), Berlin, GDR 7. 巴斯夫公司CropDesign(比利时)CropDesign (BASF), Nevele, Belgium 8. 美国合成基因公司Synthetic Genomics, La Jolla, USA 9. Palacky 大学Palacky University Olomouc, Czech Republic10. Masaryk 大学Masaryk University Brno, Czech Republic 产地:欧洲
    留言咨询
  • Videometer MiniLab采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer MiniLab可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。便携式多光谱表型成像系统主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中 产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer MiniLab可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab MiniLab的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab MiniLab便携式种子表型多光谱成像系统通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。 田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 图1 叶片正面严重度症状图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 μm。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,首次转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • 盆栽植物三维数字表型采集分析系统介绍:盆栽植物三维数字表型采集分析系统是适用于实验室、人工气候室等室内环境的植物表型测量与解析设备。系统在顶部和侧面分别设置可见光成像单元,结合旋转台装置,全方位获取植物的表型信息。产品可对盆栽植株进行表型采集与解析,并通过人工智能算法实现对植物高精度三维立体模型构建,可对突变体进行筛选与鉴定,对植物生长状态进行记录,同时也可以对高温、高盐等逆境条件下植物的形态、颜色与纹理变化进行研究。盆栽植物三维数字表型采集分析系统适用于遗传育种、分子生物学、植物生理学、生态学、环境科学、植物保护等研究领域。盆栽植物三维数字表型采集分析系统应用方向:使用立体视觉、多视图(MVS)重构技术等,自动重构生成植物高精度三维模型,计算植物株型结构、冠层结构、颜色分布、体积等表型性状并分析植物生长状况、长势动态变化等;主要应用于植物形态分析(筛选突变株、逆境处理下筛选抗逆种质)、植物长势分析(分析突变体或特殊处理条件下植物生长状态变化)。1.3D植物表型分析:基于构建的高精度3D模型,全方位提取并解析植物体积、表面积等关键因子数据,也可全方位对植株高度、宽度、紧凑度、对称性等形态结构参数及植物颜色等关键性状进行分析;2.植株长势可视化记录:可适用于植物生长过程可视化动态记录,分析植物长势变化;3.差异可视化呈现:可适用于突变体形态、颜色、生物量的差异识别与差异量化;4.多类型逆境实验:高精度快速成像,即时记录植物细微变化,适用于植物对高温、冷害、盐碱、干旱等各类型逆境试验,进行响应程度量化与抗性鉴定;5.多类型植物测量:数据解析采用人工智能算法,适用于禾本科、茄科、十字花科、豆科等多种类型植物表型测量。盆栽植物三维数字表型采集分析系统产品特点:1.可见光三维技术:主要基于三维图像重构与解析技术,对实验室多类型植物实现智能化、自动化、无损化表型鉴定;2.高效采集与解析:采集时间最快可达60秒/株;重构与解析时间3分钟/株;3.360度成像:顶部和侧面配备多个高清工业摄像头,搭配360度旋转台,支持对实验植物进行全方位图像采集;4.高精度重构技术:结合多个视角的超高分辨率图像序列,采用先进的计算机视觉技术,通过特征提取匹配、深度图融合等恢复三维结构,得到逼真的植物模型;5.样品数据联动管理:支持通过扫描样品二维码实现实验样品与表型分析相关联,便于样品数据管理;6.软件一体化设计:界面简洁友好,一键执行数据采集、重构、解析全流程操作,最大程度提升分析速度、节约分析时间;7.全彩触控交互界面:用户能够直观、高效地控制设备,调节灯光亮度、转台位置等并能实时查看采集进程;8.可移动设计: 集成化箱体,支持室内任意位置摆放及移动。盆栽植物三维数字表型采集分析系统技术参数:成像单元分辨率:5120×5120光源:均匀漫散射LED面光源整机功率: 1KW(约500W)箱体尺寸:1400mm×950mm×1840mm
    留言咨询
  • PhenoPlot 轻便型作物/植物表型成像分析系统由轻便型表型扫描成像台架、表型光谱成像传感器及分析软件等构成,采用STP(sensor-to-plant)技术,成像单元可沿台架横轴左右自动定位成像(样带式),高度可调。可用于野外原位(in-situ)植物/作物表型成像分析、盆栽植物或蒸渗仪系统植物/作物表型成像分析及植物-土壤光谱成像分析等。主要功能特点: 1.模块式快速拆装结构,轻便、可折叠、可扩展,单人即可拿到大田内对 Plot 样地作物/植物进行表型成像测量分析,或对基于Soiltron蒸渗仪专利技术的iPOT培养盆、miniPlot样方进行扫描成像分析2.标配400-1000nm高光谱成像、900-1700nm高光谱成像,可选配其它波段高光谱成像、RGB 成像、多光谱成像、红外热成像、Thermo-RGB融合成像、叶绿素荧光成像等不同作物表型成像传感器3.标配为单轴样带式扫描成像分析,高度可调,可客户定制XY双轴表型成像分析平台4.采用星型组网物联网技术,兼容5G通讯技术,可实现远程控制等功能5.内置温湿度、光照度、GPS、时钟(时钟可根据GPS信息自动校准),可扩展增加传感器如土壤水分、土壤温度、空气CO2、太阳辐射、冠层温度等6.支持组合命令(Protocols),实现自动运行protocols7.内置大容量锂电,双路并联,可野外运行8小时以上8.可选配侧面(垂直)光谱成像分析,还可选配旋转式高光谱扫描成像平台9.应用于植物/作物表型监测分析、植物/作物生理生态测量研究、作物胁迫与抗性评估、种质资源研究检测、N含量评估等 主要技术指标: 1.单轴(X轴)标配跨度(扫描幅度)1.5m,可选配2m跨度,扫描定位精度 1cm ?2.标配最大高度180cm,高度80-180cm可调整3.支持组合命令,可设置10条命令protocols,实现系统自动运行4.高分辨率 RGB 成像(选配),分辨率达 18MPixels,10 倍光学变焦 可选配同等分辨率多光谱 NDVI 成像镜头5.科研级红外热成像(选配):分辨率 640x512 像素,温度范围-25~150摄氏度,温度分辨率 0.03 摄氏度具视频模式和快照模式NUC功能以获得高质量高稳定性热成像图,插值功能可形成平滑热成像图(除去马赛克效果)具备热成像自动分级分级功能14种调色板,可随意选配不同假彩成像USB-3接口或网络接口多点温度及黑体校准并具校准证书专业温度分析软件,可形成温度分布曲线、IOR点线区域温度分析、频率直方图、3D温度分布图等6.Thermo-RGB红外热成像与RGB真彩成像融合技术(选配),可测量阳光照射叶片的温度和覆盖度等,以精确反映作物气孔导度动态,使作物冠层温度测量精准区分阳光照射叶片、阴影叶片及土壤背景,并可进行ROI选区分析、频率直方图分析显示等7.VNIR 高光谱成像分析单元波段范围400-1000nm,波段数224光谱分辨率 FWHM:5.5nm空间分辨率:1024像素视野38度,信噪比600:1可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、健康指数、覆盖度、胁迫等20多个参数8.SWIR高光谱成像分析单元波段范围900-1700nm,波段数224光谱分辨率 FWHM:8nm空间分辨率:640像素视野38度信噪比1000:1可成像分析评估作物N素含量、水分含量指标与水分胁迫等9.内置空气温湿度、光照度、GPS、时钟,可选配扩展PAR、土壤水分、土壤温度等传感器10.内置大容量可充电电池,不低于14000mAh,可在野外运行8小时以上11.可选配植物生理生态监测(客户定制):包括叶面温度、叶面湿度、茎流、茎杆生长、果实生长、叶片叶绿素荧光监测及光合作用监测等
    留言咨询
  • 盆栽植物二维数字表型采集分析系统介绍:盆栽植物数字表型采集分析系统是适用于盆栽植物的表型测量与解析设备。本系统在顶部和侧面分别设置可见光成像单元,结合旋转台装置,能够多个角度获取盆栽植物的表型信息。产品可对盆栽植株进行表型采集与解析,可对突变体进行筛选与鉴定,同时也可以对高温、高盐、病害、虫害等逆境条件下植物的形态、颜色与纹理变化进行研究。盆栽植物二维数字表型采集分析系统适用于遗传育种、分子生物学、植物生理学、植物病理学、生态学、环境科学、植物保护等研究领域。盆栽植物二维数字表型采集分析系统应用方向:内置人工智能算法,自动进行图像预处理与分割计算,计算植物株型结构、颜色分布、纹理特征等表型性状并分析植物生长状况、健康状态等。主要用于植物形态分析(筛选突变株、逆境处理下筛选抗逆种质)、叶片病斑识别(感病处理下筛选抗病种质)。1.多性状分析:通过图像预处理技术和特征提取技术,可分析植物的多种性状包括高度、宽度、紧凑度、对称性等形态结构参数,以及植物颜色与纹理特征等;2.差异可视化呈现:可适用于突变体形态、颜色差异的识别与差异量化;3.多类型逆境实验:高精度快速成像,即时记录植物细微变化,适用于植物对高温、冷害、盐碱、干旱、病虫害试验等各类型逆境试验,进行响应程度量化与抗性鉴定;4.多类型植物测量:数据解析采用人工智能算法,适用于禾本科、茄科、十字花科、豆科等多种类型植物表型测量。盆栽植物二维数字表型采集分析系统产品特点:1.可见光二维技术:主要基于二维图像解析技术对盆栽类植物实现智能化、自动化、无损化表型鉴定;2.高效采集与解析:采集时间最快可达50秒/株;解析时间可达10秒/株;3.多角度成像:顶部和侧面配备高清工业摄像头,搭配360度旋转台,支持对盆栽植物进行可见光顶部及侧面成像;4.样品数据联动管理:支持通过扫描样品二维码实现实验样品与表型分析相关联,便于样品数据管理;5.软件一体化设计:界面简洁友好,一键执行数据采集、解析全流程操作,最大程度提升分析速度、节约分析时间;6.全彩触控交互界面:用户能够直观、高效地控制设备,调节灯光亮度、转台位置等并能实时查看采集进程;7.可移动设计: 集成化箱体,支持室内任意位置摆放及移动。盆栽植物二维数字表型采集分析系统技术参数:成像单元分辨率:5120×5120光源:均匀漫散射LED面光源整机功率:1KW(约500W)箱体尺寸:1400mm(长)×950mm(宽)×1840mm(高)
    留言咨询
  • 欧洲知名植物表型分析技术公司PSI与荷兰植物生态表型中心(NPEC)合作,隆重推出PlantScreen全自动高通量琼脂培养植物表型成像分析平台。PlantScreen全自动高通量琼脂培养植物表型成像分析平台是一套新型高通量、自动化的植物表型成像系统。植物样品种植于专门设计的方形琼脂培养皿中。该平台是一个开创性的解决方案,重新定义了植物表型的研究方法。全自动高通量琼脂培养植物表型成像分析平台为全自动机器人操作,包括倾倒琼脂、播种、层积催芽、接种、成像分析全自动运行。可容纳2160个特制培养皿的全自动全流程(倾倒琼脂、播种、培养、成像分析)高通量表型分析。该平台由具备GMO(转基因生物)控制区的环控室(可选配)、操作台、培养柜(包括层积催芽柜)、机器人及成像工作站等组成,可进行根系形态成像分析、GFP等荧光蛋白成像分析、叶绿素荧光成像分析、多光谱成像分析、高光谱成像(透射光)分析及香豆素荧光高光谱成像分析等。 系统组成:1. 植物(琼脂)培养柜2. 层积催芽柜3. 培养皿操作台4. 用户缓冲区5. 液体操作台6. 叶绿素荧光与多光谱荧光成像工作站7. VNIR高光谱成像工作站8. 机器人主要模块功能:§ 培养皿操作台:准备培养介质、自动浇注培养皿、机器人自动播种 § 层积催芽柜:精确控温5℃、暗培养、容量2×360培养皿§ 植物(琼脂)培养柜:多通道LED培养光源(白光/红光/远红光)、最大光强400µ mol/m² .s、可调控红光/远红光比例模拟光调控条件§ 表型成像工作站:根系形态、叶绿素荧光(光合表型)、荧光蛋白、多光谱荧光(次生代谢)、高光谱等表型成像分析§ 液体操作台:自动化液体操作、生物安全柜、机器人自动细菌接种 § 机器人:高精度SCARA机器人,完成培养皿在各功能模块间的全部自动化转运作业 技术指标:§ 植物(琼脂)培养柜布局:共3个培养柜,4培养架/柜,9培养盒/架,20培养皿/盒§ 系统通量:2160专用培养皿§ 样品托盘类型:专用培养皿,129×129×16.5mm§ 培养光源:每层培养架上均配备光源,每个培养架和LED通道均可独立调控§ 光质:配备冷白光、红光和远红光,红光/远红光比例调控范围:0.5-0.82§ 光强:距离光源30cm处最大光强400µ mol/m² .s § 层积催芽柜:精确控温5℃、暗培养、容量2×360培养皿§ 培养皿操作台容量:1500培养皿§ 无菌处理:HEPA高效空气过滤,UV-C紫外杀菌§ 成像站:2台叶绿素荧光与多光谱荧光成像站、形态成像站、VNIR高光谱成像站 § 成像传感器:&Yuml 传感器类型:CMOS &Yuml 分辨率:4112×3006,12.36MP;binning模式2056×1503,3.09MP&Yuml 位深度:12bit&Yuml 传感器尺寸:1.1”&Yuml 快门:全域快门&Yuml 自由运行模式最大fps:2&Yuml 像素尺寸:3.45µ m;binning模式6.9µ m&Yuml 通讯接口:GigE千兆以太网§ 叶绿素荧光测量光源:620nm红橙光、5700K冷白光、735nm远红光§ 多光谱荧光与荧光蛋白测量光源:365nm紫外光,445nm品蓝光,470nm蓝光,505nm青光,530nm绿光,590nm琥珀色光§ 形态测量光源:5700K冷白光§ 叶绿素荧光成像参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm, Fv', Ft, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数§ 荧光蛋白成像:GFP、YFP、RFP、BFP等§ 滤波器:F469、F483、F513、F565、F586、F593、F520、F635、glass等(选配)§ VNIR高光谱成像&Yuml 光谱范围:350-900nm&Yuml 谱带尺寸:520nm&Yuml 入射狭缝宽度:50μm&Yuml 像素色散:0.28nm/pixel&Yuml 波长分辨率:2nm FWHM&Yuml 光谱分辨率:480 pixels&Yuml 空间分辨率:500 pixels&Yuml 帧频:45fps&Yuml 传感器类型:CMOS &Yuml 图像分辨率:1920×1000&Yuml 位深度:12bit&Yuml 像素尺寸:5.86µ m&Yuml 动态范围:67dB&Yuml 光源:反射模式:白光;荧光模式:紫外光&Yuml 控制与数据接口:GigE千兆以太网安装实例:荷兰植物生态表型中心NPEC已与PSI公司合作建设了多套PlantScreen植物表型成像系统,应用于拟南芥、烟草、番茄、藜麦等植物的表型研究。PlantScreen全自动高通量琼脂培养植物表型成像分析平台是他们的最新合作成果,于2023年刚刚建设完成。产地:欧洲
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制