当前位置: 仪器信息网 > 行业主题 > >

过渡信号线

仪器信息网过渡信号线专题为您提供2024年最新过渡信号线价格报价、厂家品牌的相关信息, 包括过渡信号线参数、型号等,不管是国产,还是进口品牌的过渡信号线您都可以在这里找到。 除此之外,仪器信息网还免费为您整合过渡信号线相关的耗材配件、试剂标物,还有过渡信号线相关的最新资讯、资料,以及过渡信号线相关的解决方案。

过渡信号线相关的资讯

  • 《Science》:光谱技术探测神秘的过渡态
    过渡态(transition state)理论是每个化学同仁都非常熟悉的基本概念,这也是化学教科书上的经典内容。它是化学反应动力学中的核心概念。但是一直以来,对于过渡态的实验测量似乎很难实现,以致于其概念主要还停留在理论阶段。  不过近期在《Science》上发表的一篇文章可能会改变这一现状。以麻省理工学院化学系的物理化学大牛Robert Field教授为首的一个研究团队,开发出了一种新技术,可以利用分子振动光谱的测量数据来得到分子反应过渡态的瞬时却又清晰的图像。它可以精确地测量分子从一种形式到另一种形式转变时瞬间的能量状态,而使科学家们发现神秘的化学反应中间体那些前所未见的细节。  “这是一个重大突破,让我们能更好地了解化学变化是如何发生的。”斯坦福大学的另一大牛化学家Richard Zare说。  在化学反应过程中,分子经过一个高能量不稳定的过渡态并迅速变成其最终的产物形式。“过渡态一直被认为是一种并不真正存在的东西,”科罗拉多州大学的Josh Baraban说,他是该文的第一作者。不过,现在Baraban和其同事们的实验证明了这个状态肯定是存在的。  该团队的研究人员在实验中使用了简单的乙炔分子。这个分子由两个碳原子构成,在两侧各有一个氢原子,该分子可以由一个U形的顺式结构变形到反式结构。这种类型的形状转移反应被称为异构化,是非常普遍的化学过程,眼球中感应光的蛋白结构变化以及汽油的制造过程都涉及这一过程。  对于这些反应来说,过渡态的位置都在一个能量的峰顶上。并且这个“山坡”的陡峭程度决定了反应的速率。“这就像在反应物和产物之间有一个山脉,而过渡态就是反应的必经路径,”Baraban说。“这是从反应物到产物之间相对最容易的路径。”  但研究这些分子的过渡态却没那么容易,Robert Field说。当这些分子“爬”能量的“山坡”时,它们的能量分布(energy profile)变得非常复杂,以致于大多数科学家并不想费力去研究,他说。  为了达到观察过渡态分子的目的,Baraban和他的同事小心地利用激光来泵浦能量到喷流状态的乙炔分子上。同时,该实验小组利用激光光谱技术来监测这些分子的振动和转动状态变化。当分子吸收能量达到一定程度,其振动光谱的模式出现转折,这种转折的特点是出乎意料的低振动频率,这是关键的过渡态特征标记,Field说。“当你跨过屏障时,在最高处,你基本上是停止的。”  该研究小组发现,在过渡态下,这些新的振动模式反映了该分子的形状变化时的结构扭曲。对过渡态的完整描述,包括有关分子的能量、结构和运动信息,都和理论预测相符。但之前“从来没有一个独立的方法来研究这个问题,”Baraban说。  由于过渡态是“控制一切过程”的要素,这种研究它的新方法可能提供有关化学反应如何进行的更多信息,耶鲁大学的物理化学家Patrick Vaccaro说。任何揭示过渡态详细信息的新方法都可能“影响我们对化学的基本理解,”他说。
  • 多原子分子反应过渡态光谱研究取得进展
    近日,中国科学院精密测量科学与技术创新研究院理论与计算化学研究组副研究员宋宏伟与美国加利福尼亚大学伯克利分校教授Daniel M. Neumark团队、美国新墨西哥大学教授郭华合作,结合慢光电子速度成像光谱实验和量子动力学理论,获得了多原子分子反应过渡态区域目前最为完整的图像,对于剖析多原子分子反应的反应机理具有重要意义。   化学反应过渡态决定化学反应的基本特性。对于多数化学反应,反应过渡态的寿命非常短,实验观测非常困难,因此,直接观测反应过渡态被认为是化学研究的“圣杯”。共振态是反应体系在过渡态区域形成的具有一定寿命的准束缚态,为探索化学反应在过渡态附近的行为提供契机,因而可以通过研究共振态的结构与动力学揭示化学反应的微观机理。  该研究结合慢光电子速度成像光谱实验和量子动力学理论,观测到多原子分子反应 F + NH3 → HF + NH2过渡态区域的多个振动Feshbach共振峰(图1)。共振波函数表明这些Feshbach共振态位于产物端势阱、过渡态和反应物端势阱等区域(图2),成因于单个或多个反应体系振动模式的激发。由于部分Feshbach共振态的能量高于反应物势能,因而可能影响化学反应的速率和量子态分布。本研究获得了多原子分子反应过渡态目前最完整的图像,表明过渡态光谱方法已具备探究多原子分子反应过渡态区域复杂动力学行为的能力。  Feshbach共振态是特殊的量子动力学现象,其标记依赖精确的量子动力学计算。宋宏伟自2016年开始致力于开发计算五原子分子体系光电谱的理论方法,提出了高精度势能面的构建方法(J. Phys. Chem. A 126, 352 (2022))和精确的量子动力学计算方法(Phys. Chem. Chem. Phys. 23, 22298 (2021)),为标记实验光电子谱和理解多原子分子反应微观机理打下良好的理论基础。  相关研究成果发表在《自然-化学》上。研究得到国家自然科学基金创新研究群体项目和面上项目的支持。实验测量与理论计算的F-NH3光脱附谱F-NH3负离子基态与不同Feshbach共振态波函数的分布
  • 英特尔2025 年工艺路线图
    英特尔或在2025年夺回制程技术领先地位在英特尔的路线图中,该公司在向新制造工艺过渡方面取得了重大进展。Intel 7和Intel 4已经完成,Intel 3、20A 和 18A 将在未来几年推出。Intel 7是该公司的 10nm 工艺,Intel 4是其 7nm 工艺。这些名称可能会产生误导,但芯片中的纳米测量现在大多是营销术语。Intel 4 是近期的趋势,用于 Meteor Lake,它主要采用这种工艺制造。然而,它是第一个使用极紫外光刻技术的处理器,可以实现更高的产量和面积缩放,从而提高能效。Intel 3 是 Intel 4 的后续产品,旨在用于数据中心,预计每瓦性能将提高 18%。Intel 20A 将与 Arrow Lake 处理器一起首次亮相,采用 PowerVia 和 RibbonFET 技术,每瓦性能比 Intel 提高 15%。Intel 18A 是最先进的节点,预计将于 2024 年下半年开始生产,每瓦性能将提升 10%。英特尔去年在 Raptor Lake Refresh 发布会上推出了 Meteor Lake 笔记本电脑处理器,并再次更新了该公司于 2021 年首次发布的制程节点路线图。在那张路线图中,该公司表示希望在四年内实现五个节点,这是多年来其他公司从未实现过的。英特尔自己的路线图指出,它的目标是在 2025 年实现“工艺领先”。按照英特尔的标准,工艺领先意味着每瓦性能最高。在笔者分析英特尔的路线图时发现,Lunar Lake 完全没有被涵盖。它不在路线图之内,原因很简单,Lunar Lake 不是采用英特尔的任何工艺生产的。Lunar Lake 由台积电生产,尽管它应该是第一款采用Intel 18A 生产的芯片。Lunar Lake 本质上是 Meteor Lake 的后续产品,混合了台积电 N3B 和台积电 N6。未来,英特尔将重新采用英特尔的制造工艺,但 Lunar Lake 今年已外包给台积电。英特尔 2025 年前的路线图在上述路线图中,英特尔已完成向Intel 7和Intel 4的过渡,Intel 3、20A 和 18A 将在未来几年内推出。作为参考,Intel 7是该公司对其 10nm 工艺的命名,Intel 4是其对其 7nm 工艺的命名。这些名称的来源(尽管有人可能会认为它们具有误导性),尽管Intel 7是基于 10nm 工艺制造的,但其晶体管密度与台积电的 7nm 非常相似。Intel 4也是如此,WikiChip 实际上得出的结论是,Intel 4的密度很可能略高于台积电的 5nm N5 工艺。话虽如此,20A 和 18A 的情况就变得非常有趣了。据说 20A(该公司的 2nm 工艺)是英特尔实现“工艺平价”的阶段,并将在 Arrow Lake 上首次亮相,这也是该公司首次使用 PowerVia 和 RibbonFET,然后 18A 将是 1.8nm,同时使用 PowerVia 和 RibbonFET。有关更详细的细分,请查看下面制作的图表。英特尔路线图在平面 MOSFET 时代,纳米测量更为重要,因为它们是客观测量,但转向 3D FinFET 技术已将纳米测量变成了单纯的营销术语。Intel 7Intel 7 以前被称为 Intel 10nm Enhanced SuperFin(10 ESF),后来该公司将其更名为 Intel 7,本质上是为了与制造业其他领域的命名惯例保持一致。虽然有人可能会说这是误导,但芯片中的纳米测量目前只不过是一种营销手段,而且这种做法已经持续了很多年。Intel 7 是英特尔使用深紫外光刻 (DUV) 的最后一项工艺。Intel 7 曾用于生产 Alder Lake、Raptor Lake 以及最近宣布的与 Meteor Lake 一起推出的 Raptor Lake Refresh。然而,Meteor Lake 是在 Intel 4 上生产的。Raptor Lake Refresh 很可能是Intel 7的最后一款产品,英特尔承诺未来将转向新的工艺节点。由于 Meteor Lake 搭载在Intel 4上,我们不太可能看到任何在此制造节点上运行的新芯片。Intel 4Meteor Lake大部分都是基于 Intel 4 制造的。Meteor Lake 新 CPU 的计算机 Tile 是基于 Intel 4 制造的,但图形 Tile 是基于 TSMC N3 制造的。这两个 Tile(以及 SoC Tile 和 I/O Tile)使用英特尔的 Foveros 3D 封装技术集成。然而,与Intel 4相比,一个重大变化是,它是英特尔首次利用极紫外光刻技术的制造工艺。这可以实现更高的产量和面积缩放,从而最大限度地提高能效。正如英特尔所说,与Intel 7相比,Intel 4的高性能逻辑库面积缩放是Intel 7的两倍。这是该公司的 7nm 工艺,再次类似于业内其他制造厂所称的 5nm 和 4nm 工艺的能力。到目前为止,Intel 4看起来取得了成功,而 Core Ultra 是英特尔的一大变革……至少在Acer Swift Go 14中是如此。英特尔在这方面的进展将特别有趣,但笔者预计英特尔在 CPU 生产方面可能不再处于劣势。Intel 3Intel 3 是 Intel 4 的后续产品,但预计性能功耗比 Intel 4 提升 18%。它拥有更密集的高性能库,但目前仅针对数据中心使用,包括 Sierra Forest 和 Granite Rapids。目前你不会在任何消费级 CPU 中看到这个。笔者对这个节点了解不多,但考虑到它更注重企业,普通消费者不必太在意它。Intel 20A英特尔知道,在制造工艺方面,它在某种程度上落后于其他行业,并且它计划在 2024 年下半年推出并生产用于其 Arrow Lake 处理器的 Intel 20A。这也将首次推出该公司的 PowerVia 和 RibbonFET,其中 RibbonFET 只是栅极全场效应晶体管 (GAAFET) 的另一个名称(由英特尔起)。台积电正在将其 2nm N2 节点转向 GAAFET,而三星正在将其 3nm 3GAE 工艺节点转向 GAAFET。PowerVia 的特别之处在于它允许在整个芯片中进行背面供电,其中信号线和电源线被分离并分别进行优化。使用正面供电(目前业界的标准)时,由于空间原因,存在很大的瓶颈,同时也可能引发电源完整性和信号干扰等问题。PowerVia 将信号线和电源线分开,理论上可以实现更好的供电。背面供电并不是一个新概念,但多年来它一直是个难题。如果你考虑到 PowerVia 中的晶体管现在处于电源和信号之间的夹层中(晶体管是芯片中最难制造的部分,因为它们最有可能出现缺陷),那么在你已经为其他部分投入资源之后,你正在生产芯片最难的部分。再加上晶体管是 CPU 中产生大部分热量的地方,现在你需要通过一层电源或信号传输来冷却 CPU,你就会明白为什么技术很难做好。据称,该节点的每瓦性能比Intel 3 提高了 15%。据报道,英特尔第 15 代 Arrow Lake 将采用这一工艺制造,这意味着PC电脑应该在今年首次体验到它。英特尔18A英特尔的 18A 是迄今为止最先进的节点,它将于 2024 年下半年开始生产。这将用于生产未来的消费级 Lake CPU 和未来的数据中心 CPU,每瓦性能提升高达 10%。目前还没有太多关于它的细节被分享,它在 RibbonFET 和 PowerVia 上的投入翻了一番。Panther Lake 将以这个工艺节点首次亮相,采用 Cougar Cove P-Cores。自该节点首次亮相以来,唯一的变化是它最初应该使用高 NA EUV 光刻技术,但情况已不再如此。部分原因是英特尔的 18A 节点推出时间略早于最初预期,该公司将其推迟到 2024 年底而不是 2025 年。由于生产 EUV 光刻机的荷兰公司 ASML 仍在 2025 年推出其首款高 NA 扫描仪 (Twinscan EXE:5200),这意味着英特尔必须在 2024 年跳过它。顺便说一句,对于任何 EUV,公司都必须求助于 ASML,所以没有其他选择。英特尔仍有望在 2024 年下半年开始生产 18A。英特尔的路线图雄心勃勃现在您了解了英特尔今年和明年的路线图,可以说它绝对是雄心勃勃的。英特尔自己将其宣传为“四年五个节点”,因为他们知道这有多么令人印象深刻。虽然您可能预料到在此过程中可能会出现一些小问题,但自英特尔于 2021 年首次公布该计划以来,唯一的变化是将Intel 18A提前到更早的发布时间。其他一切都保持不变。此后,该公司宣布将推出 18A-P,随后还将推出英特尔 14A 和 14A-E。其中,P 代表性能改进,E 代表功能扩展。这些都着眼于未来,直到 2027 年,但表明英特尔有宏伟的计划,不仅要赶上,还要主导其余的竞争对手。英特尔是否会继续保持其渐进式的增加还有待观察,但该公司唯一需要做出的改变是比预期更早推出其最先进的节点,这是一个好兆头。虽然目前尚不清楚英特尔在更先进的工艺方面(尤其是当它达到 RibbonFET 时)是否会成为台积电和三星的强大竞争对手。Meteor Lake 是一个良好的开端,大家都迫不及待地想看看英特尔还有什么准备。
  • 南开大学张新星质谱团队成果:揭示大气水中低价过渡金属高丰度的隐藏原因
    高中化学常识告诉我们,在水溶液中,三价铁离子和二价铜离子是稳定的,而二价铁离子和一价铜离子或由于快速氧化,或由于歧化,在水溶液中无法稳定存在。然而,与这个常识截然相反的观察是,在大气水(云水、雾水、雨水)中,低价的铁离子和铜离子通常以较大的丰度存在,很多时候甚至可以高达90%以上。现阶段科学家们认为大气水中的配体螯合以及多种光化学过程使得低价过渡金属可以稳定大量存在。  近日,南开大学张新星研究员团队利用微液滴化学的独特还原性质,在大气中或氛围精确控制的手套箱中(图1a)将三价铁和二价铜以及四种配体(图1b)的水溶液喷出,发现高价过渡金属离子可以自发还原成低价。由于云雾皆为微液滴,这一研究揭示了新的大气水中低价过渡金属高丰度的隐藏成因。该工作发表在近期的Journal of the American Chemical Society 杂志上。  图1. 三价铁离子被微液滴自发还原的质谱学研究  近年来,微液滴化学成为了当下最热门的研究领域之一。现有大量的实验和理论报道为微液滴气液界面存在的极高电场(~109 V/m)提供了证据,该电场可以撕裂氢氧根,生成羟基自由基和自由电子,该电子使微液滴中的物质发生自发的还原反应。以三价铁和草酸根配体为例,喷出微液滴后,质谱发现了大量的二价铁产物(图1c)。该团队共在六个体系中发现了过渡金属从高价自发还原到低价的现象。  值得一提的是,在大气中和在氮气保护的手套箱中的同一实验,在手套箱中展现了五倍丰度的还原产物(图1c),这意味着大气中必然有很多杂质在和过渡金属离子竞争微液滴中的电子。为了回答“微液滴中的电子到底去哪儿了”这一困扰该领域多年的科学问题,该团队通过精确控制手套箱中的气体成分(有无O2、有无CO2、有无NO2),发现空气中的O2、CO2和NO2都在争夺微液滴中的自发电子,分别生成了O2-、HCO2-以及NO2-(图2),有力地证明了:(1)微液滴中确有电子存在 (2)空气中的很多物种均可被该电子还原。  图2. 空气中微液滴内电子的去向研究  南开大学研究生苑旭、张冬梅为本文第一、第二作者,南开大学本科生梁驰予为本文第三作者。南开大学张新星研究员为本文通讯作者。Spontaneous Reduction of Transition Metal Ions by One Electron in Water Microdroplets and the Atmospheric ImplicationsXu Yuan, Dongmei Zhang, Chiyu Liang, and Xinxing Zhang*J. Am. Chem. Soc., 2023, DOI: 10.1021/jacs.3c00037
  • 手套箱过渡舱的奇妙设计与制造:布劳恩的创新之旅
    手套箱过渡舱是手套箱不可分割的一部分,为了不破坏手套箱内的气氛,任何转入或转出手套箱的材料都需要通过过渡舱。在将一个物品从外部放入过渡舱后,通常会有一连串的抽真空/补气过程,将空气从过渡舱中清除,并填充惰性气体。建议在打开手套箱箱体的内舱门之前,至少进行3次抽真空/补气循环。常见的手套箱过渡舱有以下几种:01大过渡舱02小过渡舱03圆柱形T-型过渡舱04方形过渡舱05方形L-型过渡舱06方形T型过渡舱示意图看着比较抽象,实物图来满足你的想象力!大小过渡舱透明盖大过渡舱小过渡舱圆柱形T-型过渡舱方形过渡舱除了标准过渡舱,布劳恩还可以提供定制过渡舱服务,以下是一些定制过渡舱案例:左右滑动查看更多各种形状的过渡舱不仅要求手套箱箱体以各种不同的形式拼接在一起,还需要进行手套箱箱体的定制化设计和制造,这对公司的创新性和专业水平提出了挑战。布劳恩公司具备这种综合实力,能够满足客户个性化的需求。如果您有任何相关的具体问题或需求,布劳恩将提供更详尽的信息或帮助。
  • 基于单层过渡金属硫化物的单光子源研究获进展
    近日,华南师范大学物理与电信工程学院/广东省量子调控工程与材料重点实验室副研究员朱起忠与香港大学博士翟大伟、教授姚望合作,在单层过渡金属硫化物的激子特性方面取得重要研究进展。他们在理论上提出了基于层内激子产生偏振与轨道角动量锁定的单光子源及其阵列的方案。相关研究发表于国际权威学术期刊Nano Letters。  单光子源在量子信息和量子通讯中具有重要的应用价值。近些年来,研究人员发现单层过渡金属硫化物(TMD)中的激子可以作为很好的单光子源,具有高度的可集成性和可调控性,并且莫尔周期外势中的激子普遍被认为可以实现单光子源阵列。这引起了研究人员的广泛兴趣和大量研究。  然而,目前研究的基于TMD的单光子源发出的光子只有偏振自由度,而我们知道光子除了偏振自由度外还有轨道角动量自由度。能否利用TMD中的激子来产生携带轨道角动量以及偏振和轨道角动量纠缠的光子呢?如果可以做到,这将在充分利用TMD中单光子源的优势的基础上提供一个新的产生内部自由度纠缠的单光子源,预期将在领域内引起广泛的兴趣。  最新研究中,研究人员在考虑TMD层内激子的能谷轨道耦合的基础上,发现通过利用将TMD铺在各项同性的纳米泡上产生的各向同性的应力束缚势,应力外势中的激子本征态具有能谷和轨道角动量纠缠的特性。利用光与激子的耦合理论,他们进一步证明了这样得到的能谷和轨道角动量纠缠的激子可以被携带轨道角动量的光子激发,也可以通过激子复合发出偏振和轨道角动量纠缠的单光子。  研究组又进一步提出,基于转角氮化硼衬底产生的大周期莫尔外势,TMD中的带电激子在此基础上可以形成发出偏振和轨道角动量纠缠的单光子源的阵列。  该研究工作提出了基于TMD中的激子产生偏振和轨道角动量纠缠的单光子源及其阵列的一种新方案,对基于TMD的单光子源研究起到了推动作用,具有潜在的应用前景。  上述研究得到了国家自然科学基金和广东省自然科学基金的支持。华南师范大学硕士研究生张迪为该论文第一作者,朱起忠为通讯作者,华南师范大学为第一单位。
  • 网络研讨会|盐雾腐蚀测试中的相对湿度和干湿过渡
    在过去10-15年中,人们发展了更先进的测试方法来评估材料腐蚀表现,许多这样的盐雾腐蚀测试包括了控制相对湿度和精准定义干燥和潮湿之间的过渡要求。在本次网络研讨会中,Q-LAB技术团队将解释为什么测试标准朝这个方向改进。我们将谈到盐的潮解的重要性,以及在一些新的测试方法中它是如何被控制的。这次研讨会会结合具体的案例,这些结果受不同干湿过渡显著影响,包括了ASTM G85 Annex A5 (Prohesion), SAE J2334, and JASO M609的结果。我们将提供几个真实的案例研究,研究各种不同产品(包括油墨、涂料和建筑材料)在耐候性和腐蚀性方面与户外的相关性。点击了解更多关于Q-FOG循环腐蚀盐雾箱产品信息和技术应用盐雾腐蚀测试网络研讨会研讨会时间:2021年10月14日(周四)上午10:00-11:00研讨会主题:Q-LAB免费网络研讨会:盐雾腐蚀测试中的相对湿度和干湿过渡参与方式:网络参与,请扫下方二维码,或点击文章末尾的阅读原文注册!即使您不能参加,只要注册了我们的研讨会,后续会有课件和视频回放可以下载。研讨会费用:免费主办单位美国Q-LAB公司:一家全球性的材料耐久性测试产品供应商。其生产的紫外老化试验机、氙灯试验机、盐雾试验机是目前国际最高端的老化实验仪器,特别是其QUV更是全球使用最广泛的老化试验机。翁开尔公司是Q-LAB在中国及东南亚行业总代理商。翁开尔公司是Q-LAB在中国及东南亚行业指定代理商。全力支持本次研讨会。主讲人瞿华盛(Kobe Qu)美国Q-Lab公司技术经理兼市场经理在耐候老化腐蚀测试领域有多年的工作经验。主要从事材料的耐候老化和腐蚀研究工作,包括测试标准的制修订,发表相关的技术文章等。帮助许多行业正确认识耐候老化和腐蚀测试的意义,建立正确的耐候老化测试方案。参与方式请扫下方二维码,注册成功后,您将受到系统发出的注册成功邮件,邮件里有唯一的参会链接,10月14日(周四)当天上午9:45后,可点击链接进入会场。期待您的参与!
  • Bioactive Materials:血管生成的重大突破——基质硬度通过 p-PXN-Rac1-YAP 信号轴调节尖端细胞形成
    【研究背景】血管生成是指从现有血管中内皮细胞生长而生成新的血管,一旦血管开始生成,被称为细胞的特殊内皮细胞就会开始发芽过程。由此,血管芽内皮细胞的长出标志着血管生成的开始,这一过程在生理学和病理生理学过程中至关重要。然而,细胞外基质(ECM)的机械特性如何调节细胞的形成在一定程度上被忽视了。细胞的特性是血管生成和组织工程的关键,它可以定向迁移到无血管区域,对终形成的血管形态起决定作用。迄今为止,各种生化信号分子因素如 MST1-FOXO1等多见报道,然而功能血管的建立需要生化和生物力学信号线索的结合,后者取决于组织工程和再生医学中使用的生物材料的特性。近期,北京大学口腔医学院的郭亚茹博士以作者在Bioactive Materials发表了题为:Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis的研究文章。文章报道了基质硬度通过p-PXN-Rac1-YAP信号轴调节细胞形成,这项工作不仅有助于在组织工程和再生医学中寻找佳材料,也为肿瘤治疗和病理性血管再生提供了新的治疗策略。在生物材料设计和治疗一些病理情况方面具有特殊意义。邓旭亮教授为本文通讯作者。【研究概述】在这项研究中,作者研究了基质硬度对细胞形成的影响,并探索了基础机制。在肝癌细胞的外层发现CD31表达更高,组织硬度也更高。基质的硬度增加可以显著增加血管的生成和细胞富集基因的表达。硬度较大的基质增加了FAK和p-PXN的局灶黏附,提高了活性Rac1的水平,进而导致细胞骨架组织和细胞刚度增加。随后,YAP作为下游的力效应因子被激活并易位入核,上调靶基因的表达,终促进细胞的形成。p-PXN还可以减少细胞间的连接,从而促进细胞的形成。由此表明:基质硬度可通过p-PXN-Rac1-YAP信号轴调节细胞的形成。 【研究结果】硬度的增加还可以促进血管的生成(图1D),从三维(3D)EC球体(图1E)的芽入侵距离增加可证明这一点。与GM60和GM30凝胶(图1F)相比,硬凝胶(GM90)中球体的芽数量增加了2倍。qPCR分析表明,细胞富集基因,包括CD34、VEGFR2、DLL4、CXCR4、EFNB2和IGF2,在GM90基质(图1G)中显著上升。同时,更硬的凝胶中芽的宽度更厚,矩阵中含有更多和长的纤维状体(图1H和I)。由此数据表明,基质硬度增加可以促进血管生成和细胞的形成。图1. 基质硬度增强血管生成和细胞在体外和体内的形成。 在EC球形发芽模型中,从球体中产生的外层细胞和以下细胞分别被定义为细胞和茎细胞。未爬出球体的细胞被定义为密集细胞(图2A)。通过原子力显微镜(AFM),我们检测到每个细胞的16个位置,并制作了典型的力学热图(图2B)。细胞的刚度在数量上是茎细胞的两倍,是咽细胞的四倍(图2C)。此外,免疫荧光染色表明,细胞显示长应力纤维的增强组装,而在茎和密集细胞作用捆绑是相对较短的,并限制在细胞外围(图2D)。研究人员发现细胞中的YAT显示出明显的核定位,而YAT在咽细胞(图2D和E)中成为细胞质。通过免疫荧光、多功能单细胞显微操作系统FluidFM技术和原子力显微镜AFM,发现细胞扩散区域增加(图3A),粘附力(图3B和C)和细胞硬度(图3D),这表明 EC-ECM 连接增加,并通过 ECM 硬化提升细胞机械特性。另外,VP(YEP抑制剂)治疗显著降低了EC球体的延伸次数和芽入侵距离(图2F和G)。细胞富集基因也被VP(图2H)抑制。因此,可以推断基质硬度调节了ECs的细胞机械感知和机械传输,促进了YAC活化,终增强了细胞的形成。图2. 细胞、茎细胞和密集细胞的机械特性差异。图3. FluidFM粘附力检测过程示意图。 在确定了血管生成和细胞形成中EC亚型之间的机械差异后,作者探讨了ECM刚度通过PXN磷化调节细胞的形成,验证了 p-PXN 在硬 ECM 诱导细胞规范中的参与程度,进而推断,通过基质硬化强加的细胞形成需要PXN磷酸化。随后,作者验证了p-PXN-Rac1-YAP激活在ECM僵硬诱导细胞形成和血管生成体内的作用,研究人员通过在裸鼠体内皮下注射 HepG2 细胞创建肿瘤模型,并从 8 天起每天使用 VP 治疗一次(图4F)。4周后,在肿瘤胶囊(图4G)上发现发芽较少的血管,CD31、CD34和VEGF强度(图4H,图4I )。VP治疗减少肿瘤体积(图4J)。这些数据表明p-PXN-Rac1-YAP信号轴与ECM硬化促进的细胞形成和血管生成有很大关系。图4. p-PXN-Rac1 通过激活 YAP 促进细胞的形成和血管生成。 图5. 发芽血管生成受ECM硬度影响的潜在机制的示意图。 综上,基质的硬度增加可以显著增加血管的生长、发芽和细胞富集基因的表达。硬度较大的基质增加了FAK和p-PXN在局灶黏附,提高了活性Rac1的水平,进而导致细胞骨架组织和细胞刚度增加。随后,YAP作为下游的力效应因子被激活并易位入核,上调靶基因的表达,终促进细胞的形成。 【研究意义】本研究加深了我们对细胞形成和血管生成机理的理解,有助于优化组织工程和再生医学的生物材料设计,为一些病理情况提供新的治疗策略。无论是组织工程还是血管再生,都应考虑机械特性,如针对细胞形成的刚度,以设计佳功能生物材料。此外,ECM可以在许多病理状态下变硬,如癌症的发展过程,随着变硬癌周围细胞数量的增加,迫切需要靶向p-PXN、Rac1或YAP的药物来有效防止肿瘤的生长和转移。 【研究利器】——FluidFM技术在生物活性材料领域的创新应用本实验研究人员采用了多功能单细胞显微操作系统——FluidFM技术,实现了单个细胞的分离,单个细胞粘附力的测量。瑞士Cytosurge公司多功能单细胞显微操作系统——FluidFM,是集原子力系统、微流控系统、细胞培养系统为一体的单细胞操作系统。主要功能包括单细胞注射、单细胞提取、单细胞分离、单细胞粘附力的测定、生物3D打印等。实验中FluidFM探针以3 μm/s靠近细胞,设定力为100 nN。当探针连接到到达设定点的细胞时,在探针中施加-650 mbar 的力,并保持5 s,以确保细胞被探针完全抓取。然后,在保持-650 mbar的压力,以1 μm/s的速度将探针抬高至100 μm的高度,从而将细胞从基板上完全分离。FluidFM系统完全记录了每个单细胞的Z轴高度和力距离曲线,并分析其粘附强度。每个条件下至少测量并获得20个力距离曲线。所有细胞粘附测量实验过程都是在 37 °C在5% CO2细胞培养环境下进行。图6. FluidFM进行单细胞分离示意图。 图7. FluidFM进行单细胞力谱测定示意图。 【文末小视频】 本研究实际DEMO视频【联系方式】为了更好的服务客户,Quantum Design中国子公司也为大家提供样品测试、样机体验机会,还在等什么?赶快联系我们吧! 电话:010-85120277/78 邮箱:info@qd-china.com,期待与您的合作!【参考文献】[1] Y. Guo, F. Mei, Y. Huang, S. Ma, Y. Wei, X. Zhang, M. Xu, Y. He, B.C. Heng, L. Chen & X. Deng. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis. (2021) Bioactive Materials.
  • 1077项国标不再强制执行 标签标注有两年过渡期
    p  日前,国家质检总局、国家标准委发布了《关于 水泥包装袋 等1077项强制性国家标准转化为推荐性国家标准的公告》,公告称:自公布之日起,上述标准不再强制执行,标准代号由GB改为GB/T,标准顺序号和年代号不变。!--水泥包装袋--/pp  通知指出:/pp span style="color: rgb(0, 176, 240) " 1、标准编号由GB改为GB/T /span/ppspan style="color: rgb(0, 176, 240) "  2、相关产品的标签标注、标准备案(自我声明公开)等使用的原标准编号,企业可逐步进行修改、调整,自公告之日起过渡期2年 /span/ppspan style="color: rgb(0, 176, 240) "  3、过渡期内,如有新的标准发布,则以新发布标准的实施日期为准。/span/pp  原文如下:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201704/insimg/f5246995-8cc1-485c-a0e5-e2fb218e359c.jpg" style="" title="20170410141621482148.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201704/insimg/d988d65c-11b7-486b-a39a-3ad780b66abe.jpg" style="" title="20170410141621712171.jpg"//ppbr//ppbr//p
  • 气相色谱仪维修手册(堪称最全,没有之一!)
    哎呀,我的气相色谱进样后咋不出色谱峰?咦,怎么气相色谱基线又出现漂移问题了?气相色谱出了小故障,维修工程师不愿来,我这实验数据得马上出,咋办?  &hellip &hellip   各位是不是快被各种莫名其妙的气相色谱故障逼疯了?别发愁了,快来看看这篇《气相色谱仪维修手册》吧。它几乎囊括了气相色谱所有的常见故障,每种故障还列出了5种以上的排除方法;同时还包括N多种图谱分析方法,这可是从事色谱实验室分析工作的同学们必看的&ldquo 红宝书&rdquo 啊!&hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 故障分析方法(一)  ▲故障分析的基础:  组成:由哪些部分组成?  作用:各部分起什么作用?  原理:各部分的工作原理是怎样的?  判别:如何判别工作正常与否?  注意事项:检修过程中哪些方面必须注意?故障分析方法(二)  ▲故障分析的思路:  注意事项:  1.保护人体,安全第一,防止事故发生。  2.保护设备,避免故障扩大、转移。  确定范围:  确定与该故障有关的部分和相关因素。  故障检查:  1.顺序推理法:根据工作原理顺序推理,检查、寻找故障原因。  2.分段排除法:逐个排除,缩小范围,检查、寻找故障原因。  3.经验推断法:根据经验积累,检查、寻找故障原因。  4.比较检查法:参照工作正常的仪器,检查、寻找故障原因。  5.综合法:综合使用上述各种方法,检查、寻找故障原因。故障分析方法(三)  ▲GC故障的种类:  气路部分故障:气体输入不正常、气体品种不对或纯度不够、气路泄漏、气路堵塞、气路污染、气路部件故障、流量设置不正常、色谱柱问题、等等。  主机电路部分故障:启动或初始化不正常、温度控制部分故障、键盘或显示部分故障、开关门不正常、点火不正常、电流设置不正常、量程或衰减设置不正常、其他功能性故障、等等。  检测器输出信号不正常:无信号输出、输出信号零点偏离、输出信号不稳定、输出信号数值不对、等等。  其他故障:气源不正常、电网电压不正常、二次仪表不正常、机械类故障、等等。故障分析方法(四)  ▲故障的判别:  基础:检查、寻找故障原因的基础是掌握故障判别的方法。掌握故障判别方法的基础是熟悉和了解仪器各部分的组成、作用、工作原理。  输入与输出:通常仪器的每个部分、部件、甚至零件都有它的输入和输出,输入一般是指该部分正常工作的前提,输出一般是指该部分所起的作用或功能。  举例:例如FID放大器,它的输入是FID检测器通过离子信号线传送过来的微电流信号、放大器的工作电源、以及放大器的调零电位器,它的输出是经过放大并送到二次仪表的电信号。判别FID放大器是否工作正常的方法是:A.如果输入正常而输出不正常,则放大器故障。B. 如果输入输出均正常,则放大器正常。C.如果输入不正常,则放大器是否正常无法判定。  收集与积累:积极收集、认真记录、不断积累仪器各个部分工作正常与否的各种判别方法,并了解、熟悉、掌握、牢记这些故障判别方法。&hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 故障分析举例(一)  ▲气路部分不正常。  ⊙指气路系统出现堵塞、泄漏、无压力指示、无气体输出等故障。  A.检查气源部分(气瓶、气体发生器等)是否正常。  B.利用输入气体压力表检查气体输入是否正常,否则检查净化器等外部气路及稳压阀等是否正常。  C.如果是载气流路,则可在色谱柱前后检查进样器的气体输出是否正常,否则检查稳压阀至色谱柱这一段。  D.如果是氢气或空气流路,则可利用仪器顶部的气路转接架检查气体输出是否正常,否则检查稳压阀至气路转接架这一段。  E.检查检测器的气体输入、输出是否正常。  F.在气路系统的适当地方进行封堵,并观察相应压力表的指示变化,是检查漏气的常用方法。  G.安全起见,可以利用氮气对氢气流路进行检查。故障分析举例(二)  ▲仪器启动不正常。  ⊙指接通电源后,仪器无反应或初始化不正常。  A.关机并拔下电源插头,检查电网电压以及接地线是否正常。  B.利用万用表检查主机保险丝、变压器及其连接件、电源开关及其连接件、以及其他连接线是否正常。  C.插上电源插头并重新开机,观察仪器是否已经正常。  D.如果启动正常,而初始化不正常,则根据提示进行相应的检查。  E.如果马达运转正常,而显示不正常,则检查键盘/显示部分是否正常。  F.如果显示正常,而马达运转不正常,则检查马达及其变压器、保险丝等是否正常。  G.必要时可拔去一些与初始化无关的部件插头,并进行观察。  H.如果初始化仍不正常,则基本上可确定是微机板故障。故障分析举例(三)  ▲温度控制不正常。  ⊙指不升温或温度不稳定。  A.所有温度均不正常时,先检查电网电压及接地线是否正常。  B.所有温度均不稳定时,可降低柱箱温度,观察进样器和检测器的温度,如果正常,则是电网电压或接地线引起的故障。  C.如果电网电压和接地线正常,则通常是微机板故障,一般来说各路温控的铂电阻或加热丝同时损坏的可能性极下。  D.如果是某一路温控不正常,则检查该路温控的铂电阻、加热丝是否正常。  E.如果是柱箱温控不正常,还要检查相应的继电器、可控硅是否正常。  F.如果铂电阻、加热丝等均正常,则是微机板故障。  G.在上述检查过程中,要注意各零部件的接插件、连接线是否存在断路、短路、以及接触不良的现象。故障分析举例(四)  ▲点火不正常。  ⊙指FID、NPD、FPD检测器不能点火或点火困难。  A.检查载气、氢气、空气是否进入检测器,否则检查气路部分。  B.检查各种气体的流量设置是否正确,否则重新设置。  C.观察点火丝是否发红,否则检查点火丝是否断路或短路、接触不良,以及检查点火丝形状是否正常。  D.点火丝正常的情况下,FID、FPD检测器观察点火继电器吸合是否正常,点火电流是否加到点火丝上,否则检查相应的电路部分。  E.NPD检测器在确认铷珠正常的前提下,观察电流调节是否正常,否则检查相应的电路部分。  F.检查检测器是否存在污染、堵塞现象。  H.检查检测器内部是否存在漏气现象。故障分析举例(五)  ▲出部分反峰:  ⊙指大部分峰为正向出峰,但一部分峰为反向出峰,或基线往负方向偏移。  A.使用空气压缩机时,检查确认反向出峰或基线往负方向偏移是否与空气压缩机的动作(空气压力不足时空气压缩机自动动作)在时间上是否同步。  B.较多水份进入离子化检测器时,火焰的燃烧状态短时间会起变化,伴随出现反峰(这不是异常)。  C.检查各种气体的流量设置是否正常,以及是否存在漏气现象。  D.检查载气的纯度,如果载气里面有微量不纯物,而样品的纯度如果比载气的纯度高,就会出反峰。  E.气路切换时有压力冲击,也会出现反峰,此时气路中应加接稳压装置。  F.使用TCD时,如果载气和样品的热导系数过于接近,也会出现一部分或全部的反峰。故障分析举例(六)  ▲出峰后零点偏移:  ⊙指样品出完溶剂峰等平顶峰后基线不能回到原来的零点。  A.各气体流量是否正常(数值、稳定)。  B.柱箱、检测器的温度是否正常(数值、稳定)。  C.检测器是否被污染,如果污染进行清洗或更换零件  D.必要时在通入载气的情况下,将检测器的温度设置在200℃以上进行数小时的老化。  E.色谱柱是否老化不足,必要时在载气进入色谱柱的情况下,将色谱柱箱的温度设置在色谱柱的最高使用温度下30度左右进行10小时以上的老化,或用程序升温方式进行老化。  F.减少进样量。  G.使用TCD时,如果大量的氧成分注入TCD,会引起TCD钨丝的阻值发生变化,使得基线无法回零,钨丝的寿命也会减短。故障分析举例(七)  ▲基流过大、无法调零(1):  ⊙指对基线进行调零时,发现基流增大,零点与平时相比有偏离或无法调零。  A.将火焰熄灭或关闭电流之后基线还是无法回零时,要考虑是否电路系统的故障或接触不良、绝缘退化等因素:  1).检查检测器和离子信号线是否有接触不良、绝缘退化等现象。  2).检查检测器是否被污染,如果污染请进行清洗。  3).检查检测器温度是否正常,必要时对检测器进行老化。  4).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。  5).使用TCD时,检查TCD钨丝电流的设定是否太大。  B.色谱柱箱温度冷却到室温,调零还是不正常时,要考虑检测器自身的原因:  1).检查各种气体是否污染或流量不正常、漏气。  2).检查检测器是否被污染,如果污染请进行清洗。故障分析举例(八)  ▲基流过大、无法调零(2):  C.降低进样口温度后基始电流也不减少时:  1).检查载气是否污染或流量不正常。  2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。  3).检讨是否色谱柱老化不足,比要时在载气进入色谱柱的情况下对色谱柱进行老化。  D.降低进样器温度后基始电流有缩减少时,可以判定是进样口、进样垫或进样衬管等有污染现象,应对进样器部分进行清洗。故障分析举例(九)  ▲基线扭动(1):  ⊙指基线上下扭摆不停超出标准范围、无法走直稳定。  注意:发现基线扭动时,请先检查电网电源是否有异常波动或突变,特别是在同一电网电源上接有大功率装置时,更要注意。同时检查仪器的接地是否正确并且良好。  A.将火焰熄灭之后基线如果还是扭动:  1).检查检测器是否被污染,如果污染请进行清洗。  2).检查检测器的温度是否正常,必要时检测器进行老化。  3).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。  B.将火焰熄灭之后基线停止扭动,降低色谱柱箱的温度扭动幅度却不变小:  1).检查使用的空气是否有污染现象,注意更换气体过滤器的过滤剂,及对空气压缩机进行放水。  2).检查空气压缩机的起动与基线扭动有没有关系,否则维修空气压缩机。  3).检查检测器是否被污染,如果污染请进行清洗。  4).检查检测器的温度是否正常,必要时检测器进行老化。故障分析举例(十)  ▲基线扭动(2):  C.降低色谱柱温度后基线扭动减少,但降低进样器温度扭动幅度却不变小,则基线扭动的原因与色谱柱或载气有关:  1).检查载气是否污染或流量不正常。  2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。  3).检讨是否色谱柱老化不足,必要时对色谱柱进行老化。  D.降低进样口温度之后基线扭动减少,要考虑是否进样口有污染现象:  1).如果确认进样器污染,请进行清洗。  2).更换新的进样垫。  3).检查进样器温度是否波动。故障分析举例(十一)  ▲基线漂移过大(1):  ⊙仪器刚启动、色谱柱更换后不久,基线的漂移是正常现象。基线漂移过大是指基线的漂移比正常的标准高很多,并且始终无法稳定下来。  A.将火焰熄灭之后如果基线还是漂移很大,要考虑是否电路系统的故障或接触不良、绝缘退化等因素:  1).检查检测器和离子信号线是否有接触不良、绝缘退化等现象。使用TCD时,检查TCD的钨丝及引线是否接触不良。  2).检查检测器是否被污染,如果污染请进行清洗。  3).检查检测器的温度是否正常,必要时对检测器进行老化。  4).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。  B.将火焰熄灭之后基线不再漂移,降低色谱柱箱的温度漂移幅度却不变小,这种情况是色谱柱之后的部分有问题:  1).检查各种气体是否污染或流量不正常。  2).检查检测器是否被污染,如果污染请进行清洗。  3).检测器的使用温度在350℃以上时,某些毛细管色谱柱外侧的树脂成分可能受热分解引起基线漂移,这种情况请把FID温度降到350℃以下。  4).检查检测器温度是否波动。  5).使用TCD时,检查TCD钨丝电流的设定是否太大。故障分析举例(十二)  ▲基线漂移过大(2):  C.降低色谱柱温度后基线漂移减少,但降低进样口温度漂移幅度却不变小,这种情况基线漂移的原因与色谱柱或载气有关:  1).检查载气是否污染或流量不正常。  2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。  3).是否色谱柱老化不足,必要时对色谱柱进行老化。  4.检查检测器温度是否波动。  D.降低进样口温度之后如果基线漂移减少,要考虑是否进样口有污染现象,请进行下列项目的检查:  1).如果确认进样器污染,请进行清洗。  2).更换新的进样垫。  3).检查进样器温度是否波动。故障分析举例(十三)  ▲进样不出峰(1):  ⊙指进样后没有峰被检测出来,基线只画一条直线。  注意:发现进样不出峰时,首先要考虑载气是否进入仪器(包括色谱柱、检测器),否则可能会造成色谱柱的损伤或检测器的污染。因此发现进样不出峰时,应立即降低色谱柱恒温槽的温度让色谱柱冷却。使用TCD时,必须先将钨丝电流关闭。在确定载气系统正常之后方能进行其他项目的检查。  A.检查检测器的火焰是否熄灭,如果熄灭请重新点火 如果点不着火或者点着后又很容易熄灭时,请进行下列项目的检查:  1).检查点火线圈是否发红,如果不发红应该是点火极部分故障。  2).检查各种气体的流量是否正常,适当加大氢气流量试试。  3).使用TCD时,检查TCD钨丝及钨丝电流的设置是否正常。  B.检查离子信号线与检测器、放大器电路板的连接,以及输出信号线与仪器、积分仪/工作站的连接是否正常可靠。故障分析举例(十四)  ▲进样不出峰(2):  C.调零也不正常时,要考虑是否电路系统的故障,请检查是否信号线的故障、放大器电路板的故障、输出信号线的故障、积分仪的故障。  D.如果进甲烷等常规溶剂还是不出峰或保留时间变慢时,在确认了色谱柱箱的温度降到了室温左右后,请进行下列项目的检查:  1).检查色谱柱是否存在折断现象。  2).检查载气流量是否正常,并进入色谱柱、FID检测器等部分。  E.其他不出峰的原因,请按照下列项目进行检查:  1).注射器不正常。  2).检查色谱柱温度、进样器温度、检测器温度、量程设定等分析条件是否合适。  3).检查样品浓度、样品进样量是否正确。  4).检查样品的取用、色谱柱的选择有没有错误。故障分析举例(十五)  ▲噪声过大(1):  ⊙气相色谱仪启动后不久或色谱柱更换后不久,噪声是不可避免的,这是正常现象。噪声过大是指比正常的标准高得多的噪声或某些不正常的突变。  注意:发现噪声过大时,请先检查气相色谱仪和积分仪使用的电网电源是否有异常波动或突变,特别是在同一电网电源上接有大功率装置时,更要注意。此外,请检查仪器的接地是否正确并且良好。  A.改变量程范围,噪声的大小还是基本不变时,要考虑是否信号线的故障、放大器电路板的故障、输出信号线的故障、积分仪的故障。  B.将火焰熄灭之后噪声如果还是很大,要考虑从检测器到放大器电路板这一段是否存在问题,请进行下列项目的检查:  1).检查检测器的喷嘴、收集极、离子信号线插座、点火线等部分是否固定可靠,请排除接触不良的可能。  2).检查检测器是否被污染,如果污染请进行清洗。  3).要考虑是极化电压、放大器电路板、工作电源的故障。故障分析举例(十六)  ▲噪声过大(2):  C.将火焰熄灭之后噪声如果降低或消失,要考虑是否检测器本身产生过大噪声:  1).检查是否使用的气体纯度太低,请更换气体或使用气体过滤器去除气体中的杂质。  2).检查检测器是否被污染,如果污染请进行清洗。  3).检查空调器等冷暖设备的排风是否正对着气相色谱仪,请改变风向或更换仪器的位置。  D.降低进样口温度后如果噪声变小,要考虑是否进样口有污染现象。  E.降低色谱柱温度后如果噪声变小,要考虑是否载气纯度不够或色谱柱的老化不足,请更换载气或使用气体过滤器去除载气体中的杂质,并对色谱柱进行老化。故障分析举例(十七)  ▲全部出反峰  ⊙指所有样品均反向出峰。  A.检查气相色谱仪相应检测器的信号输出线与积分仪或记录仪、色谱工作站的信号输入端的连接是否正确,将信号输出线的正负两端对换即可。  B.对于具有极性切换功能的检测器,检查其输出信号的正负极性设置是否正确,必要时更改正负极性的设置即可。&hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 维修注意事项(一)  ▲关于人体安全与环境保护:  ⊙在维修仪器的过程中,首先一定要注意安全和注意保护环境。GC维修中可能造成安全事故与环境污染的因素大致如下所述:  A.氢气泄漏造成爆炸、燃烧等安全事故。  B.电子捕获放射源造成人体伤害、环境污染事故。  C.易燃易爆、有毒、腐蚀性等危险性样品造成安全事故、人体伤害、环境污染事故。  D.高电压、大电流造成触电事故。  E.高温造成的烫伤事故。  F.其他说明书上已有描述的相关注意事项。  上述各项在维修仪器的过程中必须认真对待,例如严密仔细地进行氢气的漏气检查;热导检测器用氢气做载气的情况下,未安装色谱柱或未使用热导检测器时必须关闭气源;避免打开电子捕获检测器 按规范取用危险性样品;可以断电检修的部分尽量断电检修,并在检修时将电源插头拔掉;必须通电时应避开高电压、大电流部分;避免接触高温部分或先将温度降低,等等。维修注意事项(二)  ▲关于仪器的保护:  ⊙在维修仪器的过程中,还要注意按规范认真仔细地操作,避免损坏仪器,造成新的故障或将故障扩大。应该注意的内容如下所述:  A.已安装色谱柱的仪器,在通电之前应先通入载气,一般来说,载气对保护仪器是有利的。  B.热导检测器必须先通载气,然后才能加电流,否则可能烧断钨丝。热导检测器还必须防止氧气、空气进入,否则可能造成钨丝氧化。  C.电子捕获检测器必须防止氧气、空气、杂质进入,否则极易污染。  D.热导检测器和氮磷检测器的电流不能加得太大,否则可能烧断钨丝和铷珠。氮磷检测器的氢气也不能开得太大,否则也会烧断铷珠。  E.火焰光度检测器的光电倍增管必须避免长时间的强光照射。  E.检修时,在仪器通电之前,必须仔细确认各个接插件已正确地插好。  F.任何时候都要避免污染仪器的气路系统、进样及检测系统、色谱柱。  G.柱箱温度的设置不得大于色谱柱允许的最高温度。  H.其他说明书上已有描述的相关注意事项。维修注意事项(三)  ▲关于老化。  ⊙在很多情况下,所谓的故障是由于老化不充分引起的,所以在必要的时候(例如一段时间未用或更换色谱柱后)应该进行老化,避免出现不必要的所谓故障。各种老化的方法如下所述:(注:老化时应适当增加载气流量)  A.色谱柱的老化:在载气进入色谱柱的情况下,将柱箱温度设置在色谱柱允许的最高温度以下30℃,或正常使用温度以上30℃,进行十小时以上的恒温老化;或设置3-5℃/min的升温速率, 40~60℃ 的起始温度,色谱柱允许的最高温度以下30℃的终止温度,进行一阶程序升温老化。  B.进样器/检测器的老化:在载气进入进样器/检测器的情况下,将进样器/检测器温度设置在200℃以上进行数小时的老化。  C.电子捕获检测器的老化:在载气进入电子捕获检测器的情况下,将电子捕获检测器温度设置在200℃以上进行十小时以上的老化。  D.热导钨丝的老化:在载气进入热导检测器的情况下,将热导电流设置在使用值以上10-20mA,进行数小时的老化。  E.氮磷检测器铷珠的老化:在载气进入氮磷检测器的情况下,将铷珠电流设置在使用值以下0.4A和0.2A,各进行二十分钟左右的老化。&hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 谱图分析(一)  ▲保留时间重现性差:  ⊙指仪器工作条件和样品分析条件等均没有变化的情况下,保留时间变化较大、重现性较差。  A.色谱柱的一部分是否与柱箱内壁的金属面存在接触现象。  B.进样垫、色谱柱、过渡衬管的安装连接处是否存在漏气现象。  C.载气的输入压力是否正常。  D.载气流量是否正常或出现变化。  E.进样器、柱箱、检测器等的温度是否稳定。  F.如果保留时间与峰高/峰面积的重现性同时变差,则进行了上述检查后再参照[峰高/峰面积重现性差]中的各项进行检查。  注意:如果载气的流量、分流比、色谱柱温度等有变动时,保留时间或峰高/峰面积一定会起变化。谱图分析(二)  ▲峰高/峰面积重现性差:  ⊙指仪器工作条件和样品分析条件等均没有变化的情况下,峰高/峰面积变化较大、重现性较差。  A.注射器的性能是否正常以及进样时是否存在操作失误。  B.样品浓度(特别是挥发性样品)是否因放置时间过长而起变化。  C.各种气体的输入压力是否正常。  D.各种气体的流量是否正常或出现变化。  E.进样器、柱箱、检测器等的温度是否稳定。  F.如果峰高/峰面积与保留时间的重现性同时变差,在进行了上述检查后再参照[保留时间重现性差]中的各项进行检查  注意:如果载气的流量、分流比、色谱柱温度等有变动时,保留时间或峰高/峰面积一定会起变化。谱图分析(三)  ▲出刀形峰:  ⊙指样品出峰时上升缓慢而下降迅速,形如刀状。  A.减少样品的进样量。  B.提高色谱柱箱的温度。  C.改用较大内径的色谱柱。  D.增加固定液的涂层的厚度。  E.选用样品的溶解度较高的固定液。  F.尝试提高进样器的温度,改善峰的形状。谱图分析(四)  ▲出钝峰:  ⊙指所出的样品峰不尖,所有峰或一部分峰的顶部呈不规则形状(平头或园形)。  A.进样量太大使色谱柱或检测器形成饱和,减少进样量或降低样品浓度。  B.进样器是否存在漏气现象或玻璃衬管是否存在破损现象。  C.采用分流进样方式时,检查分流比及分析条件的设置是否正确。  D.采用不分流进样方式时,检查分析条件的设置是否正确。  E.尝试提高进样器、检测器的温度,改善峰的形状。谱图分析(五)  ▲出怪峰:  ⊙指所出的峰与样品的成分不符,出现了不应该有的怪峰。  A.溶剂中是否混入了杂质。  B.注射器或放置样品的容器是否受到了污染。  C.隔膜清洗流量是否正常。  D.载气是否受到污染, 气体过滤器是否进行过保养。  E.如果怪峰是由于高沸点物质的溶出引起的,请提高分析温度或延长分析时间。  F.如果怪峰是由于样品的分解引起的,请降低进样口温度进行分析。  G.如果怪峰是由于进样垫的质量不好引起的,请选用质量较好的进样垫或将进样垫老化后再使用。谱图分析(六)  ▲出开叉峰:  ⊙指单一成分的样品所出的峰上部有开叉现象。  A.进样操作过程是否存在问题,重新进样再试。  B.减少进样量。  C.适当提高进样器温度,保证样品得到充分气化。  D.色谱柱的一部分是否与柱箱内壁的金属面存在接触现象。  E.将毛细管色谱柱的入口端一侧切除1∽2毫米或更换色谱柱。  F.采用不分流进样方式时,如果需要较大的进样量,可在分析色谱柱前加接数米长的缓冲色谱柱。或把样品溶剂换成与色谱柱固定相有较高亲和力的溶剂。  注意:缓冲色谱柱是指经过不活性处理的合金型二氧化硅毛细管,或涂有极薄的与样品溶剂较有亲和力的固定相的毛细管色谱柱。谱图分析(七)  ▲出拖尾峰:  ⊙指样品出峰结束回基线时有拖尾现象。  A.减少样品的进样量。  B.进样器玻璃衬管是否存在破损或污染现象。  C.载气流量和隔膜清洗流量的设置是否正确。  D.进样器温度是否能够保证样品充分气化。  E.尾吹气流量的设置是否正确。  F.适当提高检测器的温度。  G.检测器是否存在污染现象,必要时进行清洗。  H.色谱柱的安装方法是否正确。  I.适当提高色谱柱箱的温度。  J.将毛细管色谱柱的入口端一侧切除1∽2毫米或更换色谱柱。谱图分析(八)  ▲只出溶剂峰  ⊙指溶剂出峰正常,但样品主成份(溶质)不出峰或出峰很小 。  A.增加进样量。分梳进样时降低分流流量(分流比)。  B.提高量程范围或降低衰减倍数,设置较高灵敏度档。  C.重新配制样品,把样品浓度控制在0.02∽10%之间。  D.可能溶质与溶剂的沸点差太小,降低色谱柱箱温度试试。  E.改用与溶质的沸点差较大的溶剂。  F.可能色谱柱对样品主成份(溶质)的保持力太强,提高色谱柱箱温度试试,确认溶质从色谱柱溶出。  G.样品的沸点太高不能直接分析时,需用其他化学方法进行前处理。  H.换用合适的色谱柱。  I.如果样品的热稳定性较差,可能会在进样器内分解或化合,降低进样器温度避免出现这种情况。谱图分析(九)  ▲色谱柱性能迅速退化  ⊙指色谱柱性能迅速退化,导致样品分离效果变差。  A.排除载气的污染、泄漏等现象,检查各种气体的流量设置是否正确。  B.检查是否由于样品中的有害物质引起色谱柱的性能退化。  C.某些色谱柱(例如PLOT)在较大的的压力变化下可能引起性能退化。  D.快速的加热、冷却或较大的进样量可能引起某些没有经过化学结合的毛细管色谱柱的性能退化。  E.检查是否在色谱柱允许的最高使用温度以上的温度条件下进行分析操作。谱图分析(十)  ▲垂直回峰:  ⊙指样品出峰的开始、结束相对基线呈垂直状态,几乎没有曲线部分,而正常的出峰形状应为高斯分布。  A.通常是由于气相色谱仪的调零不适当,气相色谱仪的零点偏离积分仪或记录仪、色谱工作站等的工作范围。  B.一般积分仪或色谱工作站在负方向的输入电压范围较小,有些积分仪或记录仪、色谱工作站自身还具有调零功能,可以进行强制调零。  C.如果气相色谱仪的零点与积分仪或记录仪、色谱工作站自身的零点负向偏离太大,就会出现上述情形,此时请重新对气相色谱仪进行调零之后再进行分析。
  • 科技部、财政部发布过渡期国家重点研发计划管理相关事项
    p style="text-align: center "strong科技部 财政部关于改革过渡期国家重点研发计划组织管理有关事项的通知/strong/pp style="text-align: center "国科发资〔2015〕423号/pp  国务院各部委、各直属机构,各省、自治区、直辖市、计划单列市科技厅(委、局)、财政厅(局),新疆生产建设兵团科技局、财务局,各有关单位:/pp  2014年,国务院印发了《关于改进加强中央财政科研项目和资金管理的若干意见》(国发〔2014〕11号,以下简称11号文)和《关于深化中央财政科技计划(专项、基金等)管理改革的方案》(国发〔2014〕64号,以下简称64号文),对中央财政科技计划以及科研项目和资金管理改革做出了全面部署。/pp  64号文明确要求,将科技部管理的国家重点基础研究发展计划、国家高技术研究发展计划、国家科技支撑计划、国际科技合作与交流专项,发展改革委、工业和信息化部管理的产业技术研究与开发资金,有关部门管理的公益性行业科研专项等整合形成国家重点研发计划,针对事关国计民生的农业、能源资源、生态环境、健康等领域中需要长期演进的重大社会公益性研究,以及事关产业核心竞争力、整体自主创新能力和国家安全的战略性、基础性、前瞻性重大科学问题、重大共性关键技术和产品、重大国际科技合作,按照重点专项组织实施。为推动国家重点研发计划在改革过渡期顺利实施,根据11号文和64号文的要求,现就组织管理有关事项通知如下。/pp  一、重点专项的形成机制/pp  国家重点研发计划根据国民经济和社会发展重大需求以及科技发展优先领域,凝练形成若干目标明确、边界清晰的重点专项,从基础前沿、重大共性关键技术到应用示范进行全链条创新设计,一体化组织实施。重点专项的形成机制如下:/pp  1.根据国家重大发展战略、国家中长期科技发展规划纲要和“十三五”科技创新规划,强化顶层设计,采取自上而下和自下而上相结合的方式,统一组织征集部门、地方、行业等的重大研发任务需求。/pp  2.科技部通过国家科技计划(专项、基金等)管理部际联席会议制度(以下简称联席会议),会同相关部门,按照党中央、国务院的重大战略部署,对需求征集情况进行全面深入分析,研究提出重点任务布局,充分听取战略咨询与综合评审委员会(以下简称咨评委)意见后,提交联席会议全体会议审议。/pp  3.根据联席会议审议通过的重点任务布局,科技部会同相关部门和地方凝练形成重点专项建议,组织编制重点专项实施方案。各重点专项实施方案要围绕国家重大战略部署,聚焦重大科学问题和核心共性关键技术,在体现全链条设计要求的基础上,合理部署不同研发阶段的主要任务 要创新组织实施方式,加强协同,结合目标任务测算经费需求,建立多元化的资金投入体系。/pp  4.咨评委召开专题会议,对重点专项实施方案进行咨询评议,提出修改完善意见,并依据专项部署的紧迫性和实施方案的成熟度,按领域提出排序建议。/pp  5.联席会议召开专题会议,对咨评委的咨询评议意见和排序建议进行研究讨论,形成意见。联席会议专题会议的研究结果应向联席会议全体会议报告 如联席会议专题会议存在重大异议,可再次委托咨评委进行咨询论证后,提交联席会议全体会议审议。/pp  6.联席会议提出的重点专项经国家科技体制改革和创新体系建设领导小组审议后,按程序报国务院,特别重大事项报党中央。/pp  7.按照专业机构管理办法的相关规定,遴选确定承担重点专项具体项目管理工作的专业机构。科技部代表联席会议与专业机构签订重点专项项目管理委托协议。专业机构应针对受托管理的重点专项特点和实施方案,研究制定管理工作方案,与重点专项实施方案一并作为委托协议附件。/pp  8.鼓励地方、行业、大型骨干企业与中央财政共同出资,组织实施重点专项,探索由出资各方共同管理、协同推进的组织实施模式,积极支持专项成果在出资的地方和企业推广应用,促进重大成果转化落地。/pp  二、重点专项的项目立项/pp  重点专项下设项目,项目可根据自身特点和需要下设任务(课题)。具体立项流程如下:/pp  1.专业机构按照《关于中央财政科技计划管理改革过渡期资金管理有关问题的通知》(财教[2015]154号)等有关文件要求,依据重点专项实施方案编制概算。财政部会同科技部共同组织重点专项概算评估,并按程序批复概算。/pp  2.科技部会同实施方案编制工作参与部门及专业机构,共同组织专家编制项目年度指南,统一通过国家科技管理信息系统发布。指南应充分体现从基础研究、共性关键技术研发到典型应用示范的全链条部署,并保证基础研究占适当比例 应当依据实施方案进一步提出细化、明确的主要技术指标,但不得限定具体技术路线和研究方案 应当明确项目承担单位遴选方式(公开择优或定向择优),对于定向择优的项目要明确承担单位资质和能力要求。发布年度指南同时,公布编写专家组名单。保密项目要采取定向择优、非公开方式确定承担单位。/pp  指南按项目征集。发布指南时可公布重点专项年度概算,但不先行设定项目预算控制额度。/pp  3.项目申报单位应为具有较强科研能力和条件、运行管理规范、在中国大陆境内注册的、具有独立法人资格的企业、科研院所、高等院校等。专业机构通过国家科技管理信息系统受理项目申报,并负责申报答疑、项目查重、申报材料形式审查等。自项目指南发布日到项目申报受理截止日,原则上不低于50天,以保证科研人员有充足时间申报项目。项目、任务(课题)负责人实行限项管理。/pp  4.专业机构按照项目评估评审相关要求组织项目评估评审,项目评估评审专家从统一的国家科技管理专家库中选取。推行视频评审,合理安排会议答辩评审。项目申报材料应提前请评审专家审阅,确保评审的效果、质量和效率。从受理项目申请到反馈立项结果原则上不超过120个工作日。/pp  项目评审应当以同行专家为主,吸收海外高水平专家参与,评审专家中一线科研人员的比例应当达到75%左右。市场导向类项目评审注重发挥企业专家作用。采用视频或会议方式评审的,评审前公布专家名单,强化专家自律,接受同行质询和社会监督。项目申请人和申请单位不得通过打招呼、托关系等方式干扰评审专家的评审活动,一经发现将终止其申请资格,并纳入不良信用记录,情节严重的计入“黑名单”。/pp  5.专业机构完成评审工作后,提出项目安排方案、总预算和年度预算安排方案,并按相关要求进行公示。项目安排方案按相关要求报科技部,预算安排方案按照预算申报渠道报送财政部。/pp  6.科技部对重点专项立项程序的规范性、立项情况与任务目标和指南的相符性等提出意见,反馈专业机构并抄送财政部。财政部按照预算审核程序和要求,结合科技部意见,下达重点专项预算,并抄送科技部。/pp  7.专业机构根据通过合规性审核的项目和预算安排发布项目立项通知,并与项目牵头单位签订项目任务书(预算书)。任务书(预算书)中要明确项目的总体目标和年度目标、经费补助方式、预算金额和支出内容,各项考核指标要与经评审确认的指标相一致,必须“落地”、细化、具体、可考核,能够真正检验项目实施效果。/pp  三、重点专项的项目管理/pp  1.专业机构是重点专项管理的主体,对实现任务目标负责。专业机构负责拨付项目年度经费、组织中期检查(评估)等过程管理工作。对重点专项内的不同类型项目(如基础科学、共性技术研发、应用示范等)实施分类精细化管理,加强相关项目实施的协调互动和整体推进。/pp  2.建立年度报告制度。项目承担单位每年11月底前,向专业机构报送项目年度执行情况,执行期不足一年的项目可在下一年度一并上报 专业机构每年12月底前,向科技部提交重点专项实施年度报告。/pp  3.根据项目执行情况,任务书签署双方均可提出调整建议,经协商后,由专业机构批复执行。对于可能影响重点专项总体目标实现的重大调整事项,要及时报科技部。/pp  4.项目执行过程中,如遇下列情况之一,应予撤销或终止:经实践证明,研究路线不合理、不可行,或无法实现任务书规定进度,且无改进办法的 执行过程中出现了严重的知识产权问题的 所需资金、原材料、人员、支撑条件等未落实导致无法完成任务的 任务书规定的其他需撤销或终止项目的情况。任务签署双方均可提出撤销或终止建议,经协商后由专业机构批复执行,并及时报科技部。/pp  5.专业机构组织开展项目验收(含业务验收和财务验收)工作,可采取会议验收、视频验收、现场验收、用户和第三方测评等方式进行。项目验收结论分为通过验收、不通过验收和结题三种。其中,按期完成项目目标和任务、经费使用合理的,为通过验收 因主观因素未完成项目的主要目标和任务,或经费使用和管理中存在严重问题的,按不通过验收处理 未在约定时间内完成或因不可抗拒因素未能完成项目主要目标和任务的,按照结题处理。/pp  项目验收工作严格以签订的任务书和批复的调整方案为依据。对于上下游有机衔接的项目群在验收时要有整体设计,强化对一体化实施绩效的考核。验收应于项目到期后6个月内完成,不得无故逾期 项目验收结论及成果要及时向社会公开,并纳入国家科技报告系统和科研信用体系。/pp  四、建立协调保障和监督评估机制/pp  1.重点专项实施方案编制工作参与部门应建立统筹协调和保障机制,在重点专项组织实施以及政策协调、资金配置、典型应用示范等方面发挥积极作用,相关部门、地方加强产业和行业政策、规划、标准等与重点专项的衔接。/pp  2.科技部、财政部组织对重点专项实施绩效、专业机构履职情况进行评估评价和监督检查,会同有关部门对项目和资金管理使用情况开展随机抽查。各有关部门和地方要加强对相关承担单位执行科技计划任务和资金使用管理的监督,加强对相关共性技术应用示范的协调督导。专业机构负责相关项目任务执行和经费使用过程管理和监督。/pp  3.科技部、财政部根据绩效评估和监督检查结果以及相关部门建议,提出重点专项的动态调整建议,经咨评委专题会议咨询后,报联席会议专题会议审议。/pp  五、其他相关管理要求/pp  1.强化承担单位法人责任。项目及其任务(课题)承担单位按照法人管理责任制的要求,对项目任务的实施和资金管理负责。要建立健全科研和财务管理等相结合的内部控制制度,落实配套条件,按照签订的项目任务书(预算书),组织任务实施,完成预定目标。/pp  2.严格专家回避制度。咨评委委员及参与重点专项咨询评议的专家,不能申请本人参与咨询和论证过的重点专项项目 参与重点专项实施方案编制的专家,不能申请和评审相关重点专项项目,参与重点专项年度项目指南编制的专家,不能申请和评审相关重点专项该年度的项目,但可参与项目检查和验收工作。项目评审专家的遴选要严格执行相关回避条件和要求。/pp  3.加强信息公开和反馈。通过国家科技管理信息系统,在形式审查、项目评审、项目立项等计划管理的主要环节及时将进展和结果反馈项目申请者,使立项过程可申诉、可查询、可追溯。除涉密及法律法规另有规定外,立项信息、资金安排情况和验收结果要按规定向社会公开,接受监督。/pp  4.建立信用管理制度。专业机构应当根据相关规定,客观、规范地记录项目管理过程中的各类信用信息,包括项目申请者在申报过程中的信用状况,承担单位和项目负责人在项目实施过程中的信用状况,专家参与项目评审评估、检查和验收过程中的信用状况,并按信用评级实行分类管理。建立黑名单制度,将严重不良信用记录者记入“黑名单”,阶段性或永久性取消其申请中央财政资助项目或参与项目管理的资格。/pp  5.推进知识产权保护、成果转化和资源共享。项目参与单位应通过正式协议约定成果和知识产权归属及权益分配,加强知识产权管理和保护,鼓励知识产权应用和有序扩散,促进技术交易和成果转化。建立项目科技资源共享机制,推动重点专项实施过程中购买的科研仪器、产生的科技成果等信息公开、资源共享。/pp  6.开展国际科技合作和对外开放。鼓励国家重点研发计划项目及其任务(课题)承担单位与境外科研机构开展合作研究 对于重大国际科技合作类重点专项,探索按照对等原则扩大对外开放的合作机制。/pp  7.继续做好在研项目管理。纳入国家重点研发计划整合范围的各类科技计划(专项)在研项目,继续按照任务书和项目批复执行。相关部门要严格按照原有计划管理办法和实施细则的有关要求,加强过程管理和验收,按时拨付项目经费,做好服务支撑与管理监督工作,确保任务顺利实施。/pp  各专业机构依照本通知制定相应的过渡期项目管理实施细则。科技部、财政部将结合过渡期内重点研发计划组织实施情况进行调整完善,再正式发布国家重点研发计划管理办法。/pp style="text-align: right "  科 技 部 财 政 部/pp style="text-align: right "  2015年12月6日br//p
  • Novus助力HIPPO信号通路研究
    Hippo信号通路是近年来在果蝇中研究发现的一个高度保守的生长控制信号通路,其对器官大小及细胞增殖和凋亡都具有关键的调节作用。该通路由多种抑癌基因及一种候选癌基因组成,此通路的失活或者异常表达在动物实验中参与多种疾病的发生。Hippo通路的生物学效应有:调控器官体积,保持细胞增殖凋亡平衡,维持内环境稳定;参与细胞接触性抑制的调节,在细胞培养中,正常细胞因接触性抑制在培养集中呈单层的生长,而某些肿瘤细胞因接触性抑制丧失而相互堆积或呈锚定而非依赖性生长;Hippo通路的失活参与肿瘤的发生:Hpo,Sav,Wts,Mats的失活或YAP的过度表达存在于多种肿瘤中,如肝癌、胃癌、结肠癌、前列腺癌、卵巢癌等。1995年,Hippo信号通路的第一个成员Wts在果蝇中被发现,其编码的一个Dbf-2相关的核家族蛋白激酶,Wts的突变导致组织过度生长,直到2002年,Hippo信号通路的另外几个成员也被发现,包括Salvador(Sav)、Hippo和Mats。Hippo信号通路由核心成分、上游及下游成分组成。核心成分:Lats1和Lats2是Dbf2相关的核蛋白激酶家族成员,其与果蝇中的Wts属于同源物。上游成分:目前已知的几个成员可以作为Hippo和Wts的上游成分,非典型的钙黏蛋白Fat作为一种感受器并参与Hippo信号通路的调节,Fat信号的转导包括一种非传统的肌球蛋白Dachs,Discs激酶的过度生长,包括一个FERM结构域的衔接蛋白Expanded(Ex),Ex位于顶端区域,并和另一个位于顶端区域包括FERM结构域的蛋白Merlin协调。KIBRA是一个WW结构域蛋白,调节Hippo信号通路的活动。下游成分,参与Hippo信号通路的下游基因相对较少,已明确在果蝇中属于几个下游基因作为Yki的目的基因在器官生长方面发挥重要作用,包括miRNA,CyclinB和CyclinE,E2F1,还有凋亡基因Apotposis-1.。人YAP基因与Yki属于同源物,已在一些肿瘤中做为癌基因呗发现,最近研究显示,YAP在哺乳动物的Hippo信号通路中最为最原始的效应器。Hippo信号通路并不是单一地发挥作用,该条通路的相互作用关系有待进一步深入研究。目前已发现,Hippo信号通路参与了多种人类肿瘤的发生,对它所参与的疾病机制的研究有待深入,从而靶向研究相关的治疗措施。Novus公司提供大量高质量的针对Hippo信号通路蛋白的抗体,包括核心成分Last1和Last2、上游成分FAT、DACH、KIBRA、Merlin,下游成分YAP等,帮助您更方便的进行Hippo信号通路研究。欢迎使用Novus Explorer查找Hippo通路有关的基因、疾病及参考文献,请点击: http://www.novusbio.com/explorer?start_mode=prefilled&entity_name=Hippo%20Signaling%20Cascade&entity_type=pathway蛋白名称 目录号 交叉反应性 应用 FAT1 NBP1-84565 Hu IHC-P, IHC FAT4 NBP1-78381 Hu, Mu ICC/IF, IHC-P, IHC DACH1 NBP1-85320 Hu ICC/IF, IHC, IHC-P DACH2 NBP1-89476 Hu ICC/IF, IHC, IHC-P KIBRA NBP1-92052 Hu WB, ICC/IF, IHC, IHC-P KIBRA NBP1-92053 Hu IHC, IHC-P Merlin NBP1-87757 Hu WB, ICC/IF, IHC, IHC-P Merlin NBP1-33531 Hu, Mu, Rt WB, IHC, IHC-P MST1 24480002 Hu WB, ELISA, IHC, IHC-P, IP MST1 NBP1-85330 Hu WB, IHC, IHC-P MST2 NBP1-48017 Hu, Ca, Mk WB, IHC, IHC-P SAV1 H00060485-M02 Hu WB, ELISA, ICC/IF, IP, S-ELISA LATS1 NBP1-62088 Hu, Mu ELISA, IHC, IHC-P LATS2 NB200-199 Hu, Mu WB, IP, PLA YAP1 NB110-58358 Hu, Mu WB, ICC/IF, IHC, IHC-P, IP SAV1 NBP2-13282 Hu WB, IHC, IHC-P TAZ NB110-58359 Hu, Mu, Rt WB, ICC/IF, IP TAZ NBP1-85067 Hu, Mu WB, ICC/IF, IHC, IHC-P TAZ NBP2-01114 Hu WB, FLOW, ICC/IF TAZ NBP1-88511 Hu WB, ICC/IF, IHC, IHC-P 14-3-3 gamma NB100-407 Hu, Mu, Rt, Bv, Ch, Ze WB, ICC/IF RUNX2 NBP1-77461 Hu, Mu ICC/IF, IHC, IHC-P TEAD3 NBP1-83949 Hu ICC/IF, IHC, IHC-P DACH1 NBP1-00136 Hu WB, PEP-ELISA DACH2 NBP1-80001 Hu, Mu, Ca, Ch, Xp, Ze WB DCHS1 NBP2-13901 Hu IHC, IHC-P FAT1 NB100-2693 Dr WB, ELISA, ICC/IF FAT3 NBP1-90642 Hu IHC, IHC-P FRMD6 NBP1-90725 Hu, Mu WB, ICC/IF, IHC, IHC-P LATS1 NBP1-58271 Hu, Mu, Rt WBNote: Hu-Human Mu-Mouse Rt-Rat Bv-Bovine Ch-Chicken Xp-Xenopus Ze-Zebrafish参考文献:1.Buttitta LA, Edgar BA. How size is controlled: from Hippos to Yorkies. Nat Cell Biol. 2007 Nov 9(11):1225-7. [PMID: 17975546]2.Zeng Q, Hong W. The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell. 2008 Mar 13(3):188-92. [PMID: 18328423]3.Badouel C, Garg A, McNeill H. Herding Hippos: regulating growth in flies and man. Curr Opin Cell Biol. 2009 Dec 21(6):837-43. [PMID: 19846288]4.Varelas X, Miller BW, Sopko R, et al. The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell. 2010 Apr 20 18(4):579-91. [PMID: 20412773]5.Bao Y, Hata Y, Ikeda M, Withanage K. Mammalian Hippo pathway: from development to cancer and beyond. J Biochem. 2011 Apr 149(4):361-79. [PMID: 21324984]6.Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011 Aug 1 13(8):877-83. [PMID: 21808241]7.Liu W, Wu J, Xiao L, et al. Regulation of Neuronal Cell Death by c-Abl-Hippo/MST2 Signaling Pathway. PLoS One. 2012 7(5):e36562. [PMID: 22590567]更多HIPPO信号通路相关信息,请关注:http://www.novusbio.com/hippo-pathway.html 阅读原文:http://www.liankebio.com/ProductCenterShow/articleID/2014070020.html
  • GE HC推出用于快速有效在靶细胞中释放腺病毒信号通道传感物的试剂系统
    2005年11月13日华盛顿 DC消息——今天在华盛顿 D.C.的神经科学协会的会议上,通用电气医疗集团(GE Healthcare)宣布推出了Ad-A-Gene Vectors,一种范围广泛,随时可用,经过证实了的腺病毒载体基因释放试剂系统,随着快速开展瞬间细胞信号检测的实现,它为引导化合物分布,药物靶证实和基础研究提供了更多可能性。作为这系统的第一个产品,由于允许研究工作者在各种各样的细胞类型范围内,包括与疾病状态生理学有关的细胞类型中有效地研究细胞信号,所以该系统对二级 筛选和前期药物研发有很大帮助。按照惯例,研究工作者已经创作出了这些明显需要时间和分子生物学工作经验的方法。但是,使用Ad-A-Gene Vectors的话,就不需要有这种工作经验,并且节省时间,因为它提供了一种随时可用的试剂系统用于简单并高效地通过病毒转导将信号通道传感物释放到哺乳动物细胞中。研究工作者们只要简单地将Ad-A-Gene Vectors加进细胞培养基中,并且该转基因将在24小时之内被细胞表达,随时可用于检测。此外,这种随时可用的系统减少了错误并提供可重复的结果, 因为每批Ad-A-Gene Vectors的功能都是经过了证实和检测的。通用电气医疗集团Discovery Systems的产品开发副总裁 Burczak 说道:“由于研究工作所用的相关细胞类型越来越多,Ad-A-Gene Vectors能满足日益增长的,需要有一些方法能提供一种系统生物学的一体化和整体观察的需求。现在,研究工作者们有了一种在细胞内研究根本疾病路径的方便方法。此系统已经能够应用在开展药物治疗以及基础生物学研究中。在该产品的开发中,我们试图使它能用起来更简便,并且能与更多细胞类型兼容。”Ad-A-Gene Vectors既能和广范围的初级细胞也能和转化细胞一起使用,因此,研究工作者们能从有关细胞获得信息数据。该载体同样允许在一个细胞中进行多种路径的访问。这一点在药物靶证实中是特别有用的,因为它能让研究工作者们看到药物是如何能破坏各种路径的。每种复制缺损重组腺病毒制品包括编码一种蛋白质靶的基因或者融合进了EGFP(emerald FP)或者融合进了一种编码一个应答因子的基因中,该应答因子是控制报告基因,硝基还原酶[NTR(nitroreductase)]表达的。在开发Ad-A-Gene Vectors时,通用电气医疗集团获得了McMaster大学病理学和分子医学教授Frank Graham博士的许可,他是全球在分子病毒学领域中,特别是在腺病毒生物学方面最权威的研究者之一。Graham博士说道:“我们非常高兴地看到,我们在腺病毒和基因转移方面的工作促进开发了一批非常高效的用于基因递送的载体。 我深信通用电气医疗集团的技术将为研究工作者提供强有力的研究工具,用于在人工培养的哺乳细胞中有效地转移DNA和高效表达基因。在腺病毒载体的许多优点中,Ad-A-Gene Vectors DNA是不整合进寄主细胞基因组中的,因此传感物的表达和功能活性是不会受任何一种整合过程影响的。”通用电气医疗集团目前正在出售8种Ad-A-Gene Vectors,并预期在今年年底将有50种能大量供货。除试剂系统技术之外,通用电气医疗集团还为高通量细胞分析提供硬件和软件,以使生命科学研究工作者能在细胞内研究根本的疾病路径。
  • 过渡期将结束:玩具六价铬限值更改带来哪些影响?
    背景:  欧盟玩具安全指令2009/48/EC附件II第三部分的六价铬迁移限值调整,且最晚在2019年10月31日前取代原标准EN71-3:2013+A3:2018。欧盟玩具安全新指令2009/48/EC:欧盟玩具安全新指令系指欧盟法规编号为2009/48/EC的关于玩具安全的指令,全称“DIRECTIVE2009/48/ECoftheEuropeanparliamentandofthecouncilof18June2009onthesafetyoftoys”。该指令于2009年6月30日在欧盟官方公报上发布,并于2009年7月20日生效。发布废除了当时适用的玩具安全旧指令——88/378/EEC,故统称为玩具安全新指令。2009/48/EC被认为是目前“国际上要求最为严格的玩具安全技术法规”,其规定了玩具的安全质量要求和合格评定程序,所有进入欧盟的玩具无一例外地要首先满足该指令要求。欧盟玩具安全指令的管控范围:  2009/48/EC将“玩具”定义为,设计或目的是供14岁以下儿童玩耍使用的产品。欧盟玩具安全指令2009/48/EC更新动态:2019年4月欧洲标准化委员会(CEN)发布了最新的玩具安全标准EN71第3部分:特定元素的迁移2019版(EN71-3:2019),用于替代EN71-3:2013+A3:2018。该新版本将被赋予欧盟各国国家标准的地位,与其冲突的国家标准将最晚在2019年10月31日前被取代。EN71-3:2019在样品处理和检测方法上做出一定修订,其中在六价铬的限量要求和检测方法方面变更最大。欧盟委员会提议做出以上修订原因在于,此前六价铬迁移量的制定依据是美国加利福尼亚州环境保护署的环境健康危害评估办公室(OEHHA)提议的每日耐受量(TDI)已不合适,根据2015年最新评估的数据,欧盟健康和环境风险科学委员会(SCHER)更新了TDI数据,并考虑到当前的检测技术手段,提议将六价铬的迁移限量修订为目前标准规定的检测方法能检测的最低浓度(0.053mg/kg)。表1.玩具材料中各元素的迁移限量元素迁移限量第I类mg/kg第II类mg/kg第III类mg/kg铝5625140670000锑4511.3560砷3.80.947钡150037518750硼120030015000镉1.30.317三价铬37.59.4460六价铬0.020.0050.2/0.053钴10.52.6130铜622.51567700铅2.00.523锰120030015000汞7.51.994镍7518.8930硒37.59.4460锶4500112556000锡150003750180000有机锡0.90.212锌375093846000  欧盟对第三类玩具的监管力度更强:  第三类玩具中六价铬的限量由原来0.2mg/kg更改为0.053mg/kg。第三类可刮取材质涉及玩具中常用的油漆涂层、塑料和面料等大量材质,因而欧盟对玩具监督力度的继续加强。  EN71-3:2019六价铬检测方法变更:旧指令六价铬分析方法:新指令六价铬分析方法:修订后的方法关注六价铬,将三价铬的计算方法改为由总铬浓度中减去六价铬浓度。且新标准方法能够满足所有类别材料限量,检出限可达0.00075mg/kg。相比于旧指令中六价铬推荐方法(LC-ICPMS),EN71-3:2019中六价铬检测方法改善了方法检出限及检测成本。  表2本标准与前一版本之间的主要技术变化章节/段落/表/图变化内容3新增了样品和实验室样品的术语和定义,删除了检出限、定量限和其他材料(无论可否浸染色)的术语和定义。4修改了表2中第III类材料的六价铬限量,以便和新的法定限量保持一致。6修改了试剂和仪器清单7为了便于标准的使用,修改并重新编写了取样和样品制备程序,特别是取消了筛分的要求,同时删除了关于试验筛要求的附录(前一版本附录C)。此外,还对除蜡程序进行了修订。8修改了迁移程序,引入了迁移前后均须进行pH值检查的详细流程。9修改了迁移溶液的稳定性。将测试方法(包括附录E、附录F和附录G)的附录性质改为规范性。引入了修改附录中的规范性方法和使用代替方法的性能要求。10修改了计算方法,特别是三价铬的计算方法改为由总铬浓度中减去六价铬浓度。11根据测试方法的确认结果,特别是实验室间比对的结果,引入了方法性能数据。附录B新引入了一个含有方法开发信息的资料性附录。附录C新增了一个含有再现性评估数据的资料性附录。附录D新增了一个关于使用目视粒径比较材料的附录。附录E对常规元素的测试方法作了细微修改。附录F修订了六价铬的测试方法,铬(III)和铬(IV)的测试方法提供了LC-ICPMS、IC-ICPMS等方法,可以满足所有材料类别的六价铬限量要求。附录G修改了有机锡的测试方法。附录H修改了关于原理的多项内容,新增了取样和除蜡的原理。新标准方法色谱条件:面对新标准中大范围限量的变更,对于进口欧盟市场的玩具厂商将是一个更大的挑战,相关企业应及时关注玩具中六价铬迁移量,留意过渡期截止日期,确保产品合规出口。详情可点击下文链接查看应对新标准的检测仪器专场:离子色谱仪专场:https://www.instrument.com.cn/zc/24.html液相色谱仪专场:https://www.instrument.com.cn/zc/23.html电感耦合等离子体质谱仪专场:https://www.instrument.com.cn/zc/293.html附件为:EN71-3:2019BSEN71-3-2019SafetytoysPart3Migrationcertainelements.pdf
  • 卫生部禁用面粉增白剂公开征民意 设一年过渡期
    禁用面粉增白剂 公开征民意  拟明年12月1日起撤销使用 粮食主管部门称已无添加必要  12月15日,卫生部监督局网站对是否禁止使用面粉增白剂―――过氧化苯甲酰和过氧化钙公开征求意见。这也使“面粉增白剂”存废之争将有结果。  现有工艺易造成超标  过氧化苯甲酰俗称“面粉增白剂”,一直处于存废的争论之中。主禁派分别从是否有使用必要、是否安全等方面对其进行质疑,但是“主存派”则认为过氧化苯甲酰没有安全问题。  今年9月,在《食品安全国家标准食品添加剂使用标准》(征求意见稿)中,“面粉增白剂”依然被列入面粉处理剂,本报对此事进行了关注报道。  监督局出具的情况说明显示,随着小麦品种改良和面粉加工工艺水平的提高,现有的加工工艺能够满足面粉白度的需要,很多面粉加工企业已不再使用过氧化苯甲酰。  粮食主管部门经过调查研究,提出面粉加工业已无使用过氧化苯甲酰的必要,消费者也普遍要求小麦粉能保持其原有的色、香、味和营养成分,尽量减少化学物质的摄入,普遍不接受含有过氧化苯甲酰的小麦粉。  同时,在国家标准规定的添加限量下,现有加工工艺很难将其添加均匀,容易造成含量超标,带来质量安全隐患。  情况说明称,尽管过氧化苯甲酰按规定使用未发现安全性问题,但由于面粉加工业已无使用过氧化苯甲酰的技术必要性,因此建议撤销食品添加剂过氧化苯甲酰。  拟设一年过渡期  根据征求意见的公告稿显示,自2011年12月1日起,禁止在面粉生产中使用过氧化苯甲酰和过氧化钙。  此前按照相关标准使用过氧化苯甲酰和过氧化钙的面粉及其制品,可以销售至产品保质期结束。对面粉中违法使用过氧化苯甲酰和过氧化钙的,要予以查处。  情况说明称,为尽可能降低撤销过氧化苯甲酰对产业影响,将设置1年左右的政策调整实施时间,主要考虑面粉生产、销售以及进口周期等情况,同时允许在政策调整日期前生产的、添加了过氧化苯甲酰的食品继续在保质期内销售。  另外,对于同样作为面粉增白剂的“过氧化钙”,鉴于已无技术必要性,拟一并撤销。
  • 吉林大学材料学院能源化学研究综述:MOFs衍生的过渡金属单原子电催化剂用于高效氧还原反应
    电化学储存与转换系统主要包括金属离子电池、双离子电池、超级电容器、金属-空气电池和燃料电池等。后两种是清洁、安全、可靠的能源装置,具有环境友好、能量密度高、原料来源丰富、工作时间长等优点。氧还原反应(ORR)作为燃料电池的阴极反应,具有缓慢的反应动力学。因此,需要电催化剂来增强反应过程。近年来,过渡金属单原子电催化剂(TM-SACs)因其优异的催化活性(FeCoMnCuNi)、低成本和优异的稳定性而蓬勃发展。由于单原子在制备过程中容易团聚,因此载体材料的选择对于TM-SACs的形成尤为重要。载体也会影响催化反应中的电子输运和物质输运过程。MOFs具有结构可调、改性方法多样等优点,在TM-SACs的制备方面具有很大的潜力。图1. 基于MOFs的TM-SACs的制备策略和表征方法02成果展示金属有机骨架材料(Metal-organic frameworks, MOFs)由于其独特的结构和组成,在燃料电池和金属-空气电池的氧还原反应中得到了广泛的应用。近年来,以MOFs为前驱体或模板制备过渡金属单原子电催化剂(TM-SACs)的研究取得了很大进展。近期,吉林大学材料科学与工程学院郑伟涛团队对MOFs衍生的TM-SACs的制备方法和表征手段进行概述,并在此基础上归纳了TM-SACs的结构与性能的关系 (图1)。该综述旨在阐明大量的最新研究进展,来指导高活性、高负载量、高稳定性的TM-SACs的实现。第一作者为吉林大学材料科学与工程学院硕士生宋可心,通讯作者为张伟教授和郑伟涛教授。03图文导读1.ORR反应机制与优化原则ORR的反应过程如图2所示。由于反应条件的不同,导致酸性和碱性条件下的反应机制存在一定的差异。研究表明,酸性条件下较差的ORR性能主要是由于反应过程中吡啶-N质子化为吡啶-N-H结构,所以可以通过以下方式改善酸性条件下的ORR性能:1)防止质子和吡啶-N在酸性环境中快速结合;2) 增加本征活性和活性位点的数量。然而,在碱性条件下,大多数研究证明吡啶-N在催化过程中起着积极的作用。因此,增加吡啶-N的含量和增加金属活性中心数量是改善碱性条件下ORR性能的重要手段。此外,O2分子在活性位点上的吸附方式主要分为以下三种:Griffiths模式、Pauling模式和Yeager模式。不同的吸附模式也对催化机制产生一定的影响。图2.(a)酸性条件下ORR反应示意图。(b)碱性条件下ORR反应示意图。(c)O2在金属活性位点的三种吸附模式示意图2. 单原子催化剂的表征手段由于SACs的金属的尺寸很小,对表征技术提出了更高的要求。电镜技术和谱学技术的有效结合可以实现SACs的定性和定量分析。球差电镜利用其超高的空间分辨率可以直接观察到单原子的存在。结合EELS和EDS可以准确地确定材料的元素分布,有利于结构分析和物相识别。谱学技术,如(原位)X射线精细结构分析、穆斯堡尔光谱、红外光谱、原位拉曼光谱和原位漫反射红外傅里叶变换光谱(DRIFTS),有助于准确表征SACs并探究催化机理。这些表征技术从不同角度证实了SACs的存在,形成了完整的SACs表征体系。表征技术如图所示:图3.(a)FeSAC@FeSAC-N-C的不同放大倍数的像差校正STEM图像和EDS图像。(b)Co-pyridinic N-C的不同放大倍率的像差校正STEM图像和EELS光谱。(c) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像。(d) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像图4.(a)不同电位下Au L3边和Cu K边的XANES光谱和EXAFS拟合分析.(b)不同电位下的Pt1-N/C的XANES光谱和EXAFS拟合分析3. 基于MOFs制备TM-SACs的五大策略由于MOFs独特的空间结构,是制备TM-SACs的良好前驱体。在这一部分中,详细总结了使用MOFs制备TM-SACs的五种策略,并探讨了TM-SACs的结构特征和性能之间的相关性。所有这些策略都集中于如何保护过渡金属原子在热解过程中不发生团聚。由于MOFs后处理的方式不同,保护机制也存在一些差异。根据保护机制的不同,本部分将其分为以下五种策略:1) 表面限域策略:由于MOFs提供高度分散的金属位点,是制备TM-SACs的理想前驱体或模板。通过使用牺牲金属(SMs)的“空间栅栏”效应,可以调整过渡金属之间的距离,从而有效地避免高温下过渡金属原子的聚集。因为SMs的熔点相对较低,它们在热解过程中挥发。根据过渡金属的掺杂数量,主要可分为以下几类:1)单金属掺杂;2) 双/多金属掺杂。图5.(a)Fe掺杂ZIF-8衍生催化剂的合成过程示意图和不同粒径的Fe掺杂ZIF-8的SEM图像。(b)ZIF-8前驱体中Fe掺杂量对催化剂结构和活性影响示意图。(c)NC吸附铁离子的模型催化剂示意图及反应路径图。(d)通过调节Zn/Co的摩尔比制备Co-SAC/N-C的示意图。(e)负压热解法制备三维石墨烯骨架上的SACs示意图2) 空腔限域策略:利用MOFs独特的空腔结构优势,对金属前驱体进行封装。这种封装效应可以最大程度地减少热解过程中金属前驱体的聚集。对于ZIF结构,ZIF-8是一个具有菱形十二面体结构的三维空间纳米笼,由锌离子和二甲基咪唑配体组装而成。其具有孔径为3.4Å、空腔直径为11Å的空腔结构,金属前驱体可封装在里面来实现金属前驱体的空间隔离。高温碳化后,ZIF-8变成氮掺杂碳骨架,为金属位点的负载提供了载体。常见的金属前驱体可分为以下几类:1)金属无机化合物,如金属盐和金属氢氧化物;2) 金属有机化合物,如乙酰丙酮化合物和二茂铁;3) 金属大环化合物,如酞菁、卟啉和菲咯啉。图6.(a)Mn-SAS/CN催化剂的制备示意图和原位XANES光谱。(b)基于Kirkendall效应制备的(Fe,Co)/N-C催化剂示意图。(c)基于ZIF-8前驱体制备C-Cu(OH)2@ZIF-8-10%-1000的原理图。(d)Fe-ISA/CN催化剂制备示意图。(e)微孔限制和配体交换法制备Co(mIm)-NC催化剂示意图3) 外层保护策略:对MOFs的外层采取一些保护措施,以避免在热解过程中结构坍塌和金属原子的聚集。未热解MOFs表面的金属离子呈现高度分散的单原子态。但是在热解后由于单个原子的高比表面能,会发生团聚,这大大降低了金属活性位点的利用效率。此外,高温热解后,MOFs的孔结构坍塌,不利于催化剂传质过程和更多活性位点的暴露。因此,应采取措施对MOFs的外层进行保护,以促进高密度TM-SACs的形成,并保持热解后结构的稳定性。常用的保护策略主要分为以下两类:1)有机化合物(如表面活性剂、酶和聚合物)的保护策略;2) 主客体策略。图7. (a)原位约束热解法制备核壳结构的Co-N-C@surfactants催化剂示意图。CoN2+2活性位点构型和反应自由能演化图。(b)酚醛树脂辅助策略制备核壳结构1.0-ZIF-67@AF催化剂示意图。(c) CoNi-SAs/NC催化剂制备示意图。(d)配体交换策略制备C-AFC© ZIF-8催化剂示意图。(e) Fe-SAs/NPS-HC催化剂制备示意图4)相扩散策略:湿化学合成法通常用于制备以MOFs为前驱体的TM-SACs,即金属前驱体的合成在溶剂中完成。此外,由于单原子与其载体之间的弱相互作用,单原子在随后的制备和催化反应过程中不可避免地会团聚。如果使用MOFs衍生的碳载体作为前驱体,金属原子在高温下的扩散特性将被捕获并在碳载体上还原。这种强烈的相互作用可以提高催化剂的高温稳定性,也为TM-SACs的制备提供了一条新的途径。相扩散策略主要分为以下两种方法:1)球磨法(固相扩散法);2) 气相扩散法。图8.(a)固相合成法制备Fe掺杂ZIF-8的原理图。(b) M15-FeNC-NH3催化剂制备示意图。(c) Fe-N/C催化剂制备的示意图及ORR性能曲线。(d)气相扩散法制备Cu-SAs /N-C催化剂示意图。(e)金属氧化物热扩散法制备Cu ISA/NC催化剂原理图和Cu-N3-C、Cu-N3-V自由能演化图5)双模板策略:模板策略可以通过模板本身的空间约束效应来控制合成材料的形态、结构和几何尺寸。MOFs是合成TM-SACs的最佳前驱体或模板。外来模板的引入可以对MOFs的形态和尺寸进行一定的限制。三维骨架上的金属原子可以得到很好的保护,有效地避免了热解过程中单个原子的团聚。根据热解后是否需要额外繁琐的步骤去除外来模板,这种双模板策略主要分为以下两类:1)一步模板法:PS和盐模板法;2) 多步骤模板法:介孔SiO2、SiOX和有序介孔硅。图 9.(a)利用KCl模板制备了SCoNC催化剂的制备图和不同放大率的HAADF-STEM图像。(b)PS模板法制备具有分级多孔结构的FeN4/HOPC催化剂的制备示意图。(c)PS模板法制备Fe/Ni-NX-OC催化剂示意图04小结MOFs材料的优异特性为高负载量、高稳定性、高催化活性的单原子催化剂的制备提供了丰富的平台。目前还有许多需要解决的问题,主要包括以下几个方面:1)充分发挥MOF材料的结构多样性的优势,探索一些新的策略来制备TM-SACs。目前主要以ZIF结构为主来制备TM-SACs,可以充分挖掘其他结构的MOF材料来进行制备。2)TM-SACs的单原子活性位点通常以TM-N4为主,这种配位结构被认为具有良好的ORR活性。对活性中心的配位结构进行调整,可以使得它们的活性得到进一步提高。目前已有的调整方式主要包括构建双原子活性中心、引入非金属(S,P,B)、纳米粒子与单原子协同催化、构建客体基团等。3)提高过渡金属单原子的负载量。催化剂的活性与催化位点数目和本征活性息息相关。对于TM-SACs,在合成过程中最大程度地避免单原子的聚集,提高过渡金属的利用效率,将MOF前驱体中的金属位点最大程度地转变为TM-NX结构。 4)实现TM-SACs的大规模制备和通用策略制备。金属浓度过高会导致单原子催化剂在制备过程中极易发生团聚, 并且由于不同种类的金属的配位环境和物理化学性质不同,难以实现制备策略的通用化。因此,开发一种新的策略去实现TM-SACs的大规模制备和通用化制备显得尤为重要。5)利用先进的表征手段和原位技术,在原子水平上对催化剂的结构进行剖析,从而探究结构与性能的关系。这些技术为MOF材料为目标明确的TM-SACs的设计提供了指导。6)结合理论计算去探究TM-SACs的氧还原反应动力学和最佳反应路径,确定催化剂的真实活性位点和反应过程的决速步。这为催化剂的结构设计提供了理论支撑,从而更好地提高TM-SACs的性能。
  • 四川省住房和城乡建设厅关于调整建设工程质量检测机构新旧资质标准过渡期起始时间的通知
    各市(州)住房城乡建设行政主管部门,有关检测机构,有关单位:为做好我省建设工程质量检测机构新旧资质标准过渡工作,维护行政相对人合法权益,保障有关建设工程项目有序实施,经研究,决定调整我省建设工程质量检测机构新旧资质标准过渡期起始时间。现将有关事项通知如下。一、依据《住房和城乡建设部关于印发〈建设工程质量检测机构资质标准〉的通知》(建质规〔2023〕1号)文件印发日期,将我省建设工程质量检测机构新旧资质标准过渡期起始时间由2023年4月19日调整为2023年3月31日,调整后我省建设工程质量检测机构新旧资质标准过渡期为2023年3月31日至2024年7月31日。二、按照我厅《关于延长建设工程企业资质有效期的通告》(川建通告〔2022〕191号)有关规定,建设工程质量检测机构资质证书于2023年3月31日到期的,纳入检测机构新旧资质标准过渡期管理,相关证书有效期在四川省建筑市场监管公共服务平台自动延期至2024年7月31日并标注“因过渡期调整政策延期”,原有资质证书继续有效,检测机构可继续从事检测活动。三、我厅《关于做好建设工程质量检测机构新旧资质标准过渡工作的通知》(川建审函〔2023〕1323号)文件中关于过渡期的其它政策不变。四、各级住房城乡建设行政主管部门要按照全省工程质量检测行业突出问题系统治理巩固提升工作的要求,加强对本地区因过渡期调整政策延期的工程质量检测机构的监管。对相关人员、仪器设备、检测场所、质量保证体系等方面达不到资质标准、不具备相应检测能力的检测机构,应责令其限期整改,整改合格前出具的检测报告不得作为工程质量验收资料。四川省住房和城乡建设厅2023年7月7日
  • ASML2023年营收276亿欧元 CEO称半导体行业已有积极信号
    1月24日,光刻机巨头ASML(阿斯麦)公布了2023年Q4以及全年的财报。ASML第四季度营收达到72.37亿欧元,毛利率约为51.4%,净利润达20.48亿欧元。第四季度的新增订单金额为91.86亿欧元,其中56亿欧元的增长来自EUV光刻机订单。而从2023年全年来看,ASML营收达到275.59亿欧元,同比增长30.16%,毛利率约为51.3%;净利润为78.39亿欧元,同比增长39.38%,全年新增订单金额约为200.40亿欧元。尽管半导体行业在低谷徘徊,ASML仍交出了亮眼业绩。但是2024年将进入过渡调整阶段,对于今年的业绩展望,ASML预计2024年的营收将与2023年基本持平,其中,2024年第一季度的公司营收在50亿至55亿欧元,毛利率约为48%至49%。ASML总裁兼首席执行官Peter Wennink指出,2023年第四季度的营收与毛利率均超越了预期,ASML也在2023年末向客户交付了第一台高数值孔径极紫外光刻系统(High NA EUV)——EXE:5000的部分组件。谈及行业景气度,他表示:“半导体行业当前仍处于周期性底部,但一些积极信号已清晰可见——行业终端市场库存水平持续改善,光刻设备的利用率也始见提升。此外,我们在2023年第四季度的强劲订单增长也显示了未来的市场需求。”2024年调整、2025年增长ASML首席财务官Roger Dassen进一步谈道,尽管清晰地看到客户正在度过周期低谷,但不确定性依旧,市场复苏的态势和速度都还是未知数。不过终端市场库存水平的明显改善,以及2023年第四季度收到的近92亿欧元的新增订单,都是市场向好发展的积极信号。他也从多方面预测了2024年ASML的发展趋势。从市场分类来看,存储芯片市场将在2024迎来增长,这主要是由于制程节点的转变,以满足日益增长的先进存储需求;而逻辑芯片市场2024年将出现小幅下滑,因为将主要消化2023年的新增产能而非继续增加产能。从业务划分来看,2024年EUV业务将出现增长;而非EUV部分会小幅下滑,主要因为浸润式光刻机的销售预计将少于2023年,装机管理销售额预计与2023年持平。Roger Dassen表示,综合来看,现在改变对全年的预期还为时太早,因此公司仍预计2024年业绩将与2023年持平,并且ASML认为2024年会是一个调整年,这一年将努力扩充产能,为2025年的大幅增长打好基础。他也预期2024年的毛利率会略低于2023年的51.3%,因为浸润式光刻系统的销售会下降,同时ASML还将投资扩大产能。但2025年的毛利率预期为54%-56%,主要因为更高的EUV收入和2024年投资产能所获得的回报。2025年被认为是市场需求与业绩将共同增长的一个重要年份。SEMI发布的《年终总半导体设备预测报告》预计半导体制造设备将在2024年恢复增长,在前端和后端市场的推动下,2025年的销售额预计将达到1240亿美元的新高。Roger Dassen也指出,2025年将是强劲增长的一年,原因在于半导体行业的长期发展趋势,AI、电气化、能源转型等,都需要大量芯片的支持。其次2025年将是上行周期,处于景气阶段;再次诸多晶圆厂计划在2025年开工,将需要大量光刻设备。中国市场将如何变化根据SEMI的报告数据,原始设备制造商的半导体制造设备全球总销售额预计将在2023年达到1000亿美元,比2022年创下的1074亿美元的行业记录收缩6.1%。而ASML仍然逆势增长。2023年ASML的业绩增长有一部分来源于中国市场,Roger Dassen表示,2023年中国市场的业绩表现确实非常强劲,主要是因为交付给中国的大部分设备是基于2022年甚至更早之前的订单,中国地区的交付量增加但其他地区的在减少,因此份额明显上升;其次中国的客户订单主要是成熟制程设备,这部分的市场需求比较稳定。自2023年美国发布出口管制新规定,进一步收紧对中国的芯片制造设备出口后,ASML作为芯片核心设备制造商也受到一定影响,2024年1月1日,ASML对外公告称,荷兰撤销了部分光刻机出口许可证,将对在中国的个别客户产生影响。Roger Dassen也指出,可以预计2024年ASML将不会获得向中国发运NXT:2000i及以上浸润式设备的出口许可证,此外,个别中国先进芯片制造晶圆厂将无法获得发运NXT:1970i 和NXT:1980i 浸润式设备的许可证。此前在第三季度时,ASML就预计出口管制会影响中国市场10%-15%的销售额,如今ASML也维持原先的判断。“截至目前,出口管制规则生效后,我们依然认为2024年中国市场受到的影响为10%-15%(以2023在中国的销售额为基准),然而我们仍可以看到终端市场中成熟制程市场的需求依旧旺盛。”Roger Dassen表示。虽然遭遇了一定的出口限制,但中国仍是半导体设备的重要买家。SEMI预测数据也显示,预计2023年,运往中国大陆的设备出货金额将超过创纪录的300亿美元。对于整体半导体市场的走势,SEMI总裁兼首席执行官Ajit Manocha表示:“由于半导体市场的周期性,我们预计2023年会出现暂时的收缩,2024年将是过渡年。我们预计,在产能扩张、新晶圆厂项目以及前端和后端对先进技术和解决方案的高需求的推动下,2025年将出现强劲反弹。”
  • 中国合格评定国家认可委员会关于CNAS-RL02:2023《能力验证规则》发布实施和过渡政策的通知
    各有关机构及人员:为更好地适应认可工作发展与合格评定机构的能力验证需求,根据国际实验室认可合作组织( ILAC)的最新要求及国际相关政策文件的变化情况,中国合格评定国家认可委员会(CNAS)秘书处对CNAS-RL02:2018《能力验证规则》进行了修订。CNAS-RLO2:2023《能力验证规则》于2023年9月30日发布实施。为保证新旧版本文件的顺利过渡,经CNAS秘书处研究决定,现将CNAS-RLO2:2023《能力验证规则》的过渡政策安排通知如下:一、2023年9月30日至2024年9月30日为文件过渡期。二、过渡期间,新旧版规则可以同时使用。三、2024年10月1日前提交的初次和扩项申请,CNAS仍可按CNAS-RLO2:2018的要求受理合格评定机构的认可申请。自2024年10月1日起,CNAS将按照CNAS-RLO2:2023的规定受理合格评定机构的认可申请。CNAS-RLO2:2023《能力验证规则》可在CNAS网站“认可规范-实验室认可-认可规则”栏目下载。中国合格评定国家认可委员会秘书处2023年9月20日 关于CNAS-RL02:2023《能力验证规则》发布实施和过渡政策的通知 认可规范文件(CNAS-RL02:2018与CNAS-RL02:2023)修订内容差异对照表
  • 过度X射线照射有害 美"裸检仪"或致皮肤癌
    一些美国科学家说,为加强机场安全引入的“裸体”扫描、即全身扫描设备或许会危害接受扫描者的身体健康。美国航空公司飞行员工会“联合飞行员协会”主席戴维贝茨呼吁,美航飞行员应礼貌拒绝“裸体”扫描,更换其他抽检方式。  过度X射线照射有害  美国约翰霍普金斯大学生物物理学学者洛夫说,全身扫描设备需要借助X射线完成扫描成像,而过度X射线照射对人体有害。  法新社12日援引洛夫的话报道:“他们说风险小,但从统计学上说,人们可能因为这些X射线照射罹患皮肤癌。”“暴露在X射线下从不是有益的,”他说,“我们知道X射线有害,但在机场,人们都想快点上飞机,因而拿自己的生命冒险,接受扫描。”  美国运输安全管理局2007年开始在美国机场引入全身扫描设备。去年12月25日,尼日利亚青年奥马尔法鲁克阿卜杜勒穆塔拉布将爆炸物藏在内裤中,躲过机场安全检查,成功登上美国西北航空公司飞往美国底特律的班机,试图引爆爆炸物时遭同机乘客制伏。  美国国土安全部和运输安全管理局为加强安保,大力推广全身扫描设备。  这种全身扫描设备X射线安检仪俗称“裸检仪”,因其可以呈现被扫描者完全身体影像,包括隐私部位以及身上携带的任何物品。美国运输安全管理局2007年起在美国机场开始启用这种安检仪。根据运输安全管理局数字,美国65个机场现在设有大约315台“裸检仪”,可能还准备增设450台。  在美国机场,乘客、空乘人员甚至机长都有可能随机分配到“裸检仪”受检,他们有权拒绝接受,但结果是接受强化人工搜查。  老年人更易受到影响  本周早些时候,白宫科学和技术政策办公室发表声明,称全身扫描设备安全,理由是“(联邦机构)对这一话题已深入研究多年”。  不过,美国加利福尼亚大学圣弗朗西斯科分校生物化学教授约翰塞达特说,白宫所作辩护存在“许多误解”。他及其团队将针对这些误解认真作出答复,指出错误。  塞达特说,全身扫描设备X射线的全部能量集中在皮肤和皮下组织上。  “如果能量分散至全身各个部分,这种射线强度是安全的,”他说,“但这种强度对皮肤而言高得危险。”  塞达特认为,超过65岁的旅客最易受到全身扫描设备“X射线诱变因素”的影响。另外,癌症患者,艾滋病病毒携带者、儿童、孕妇和成年男性都属于易受影响人群。  一些科学家认为,男性生殖器官周边皮肤较薄,暴露在X射线下有导致精子诱变的风险。  另外,X射线可以穿透角膜,过度照射会对眼睛造成危害。  宁可失身份不要裸检  按照美国相关规定,旅客和包括飞行员在内的空乘人员都会接到抽检要求。当然,并不是所有人都愿意接受这种暴露自己隐私部位的“裸体”安检。作为替代,他们需要接受“深度拍身检查”。  “深度拍身检查”指安检人员用手指、而非手背接触被检查者的隐私部位,以确定后者没有携带违禁物品。  “联合飞行员协会”主席贝茨呼吁美航飞行员不要接受“裸体”扫描。  “美航飞行员接受由全身扫描设备造成的不必要隐私侵犯和健康风险不应存在,”贝茨说。  他认为,飞行员应礼貌拒绝“暴露”要求,转换其他检查方式,哪怕“‘深度拍身检查’是一次有损‘身份’的经历”。
  • 科研人员首次探测到单个原子的X射线信号
    新华社北京6月2日电 美国科研人员首次探测到了单个原子在X射线作用下产生的信号,据此分析出元素种类和原子的化学状态,这个成果可望为材料检测技术带来革新。这项研究由美国俄亥俄大学、阿尔贡国家实验室等机构进行,分别探测到了嵌在分子框架中的单个铁原子和单个铽原子的X射线信号。相关论文日前发表在英国《自然》杂志上。X射线广泛应用于医疗、环境、安全等领域的检测,随着技术进步,检测所需材料样本数量目前已经减少到1万个原子的级别。但单个原子产生的X射线信号非常微弱,传统手段难以探测,新方法将帮助大幅提高检测精度。这项研究使用的观测手段称为同步辐射X射线-扫描隧道显微镜(SX-STM),结合了粒子加速器产生的高质量X射线源和能对单个原子进行观察的扫描隧道显微镜技术。研究人员使用特制金属探针,控制探针尖端停留在待检测样本上方约0.5纳米处,用X射线照射样本。样本原子中靠近原子核的内层电子被X射线激发出来,通过量子隧穿效应“穿越”到探针尖端。这些电子带有独特印记,分析它们产生的隧穿电流就可确定元素种类,还能检测出原子的化学状态。观察显示,铽原子在分子里非常“孤僻”,铁原子则与附近的原子发生强烈的相互作用。
  • 福建省市场监管局关于做好《电梯监督检验和定期检验规则》《电梯自行检测规则》过渡期有关工作的通知
    各设区市、平潭综合实验区市场监管局,省特检院,各有关单位:今年4月2日,市场监管总局发布《电梯监督检验和定期检验规则》(TSG T7001-2023,下称新版检规)《电梯自行检测规则》(TSG T7008-2023,下称检测规则),新版检规和检测规则自发布之日起施行,过渡期为1年。为平稳有序做好电梯监督检验、定期检验、自行检测工作,现将有关事项通知如下:一、关于监督检验有关要求过渡期内,根据电梯施工单位的申请,检验机构可以选择新版检规或者原有的《电梯监督检验和定期检验规则》(TSG T7001~TSG T7006,下称旧版检规)进行监督检验;过渡期满后,严格依据新版检规进行监督检验。2023年4月2日(不含)之前签订供货合同,或者已经通过公开招投标确定中标,并且需要在过渡期满后实施安装监督检验的电梯,由电梯制造单位或其委托的安装单位在2023年7月1日前填写《需在过渡期满后实施安装监督检验的电梯清单》(附件1),连同相关见证材料向项目所在地的设区市市场监管局(含平潭综合实验区市场监管局,下称地市市场监管局)办理告知,地市市场监管局负责抄告检验机构。此类电梯安装监督检验时,新版检规附件A1.2.2.7、A1.3.3可以按照旧版检规的要求进行检验,新版检规附件A1.2.4.3(1)、A1.3.12.1、A1.3.12.3可以不检验;其后的定期检验、自行检测的相应项目也按照相应要求进行。二、关于定期检验和自行检测有关要求结合前期调整电梯检验检测方式试点情况和当前电梯检测供给能力,积极稳妥推进电梯定期检验、自行检测分离工作。过渡期内,自2023年7月1日起,地市市场监管局要以县(区、市)行政区划为单位,按照《电梯检验检测分离推进表》(附件2)要求,分步推进电梯定期检验、自行检测分离工作;地市市场监管局需调整行政区划的,应提前向省市场监管局报备,做好相关衔接工作。过渡期满后,按照新版检规和检测规则进行定期检验和自行检测。(一)规范定期检验工作。过渡期内,实施定期检验、自行检测分离的电梯,按照新版检规确定的定期检验周期开展定期检验,定期检验项目、内容仍执行旧版检规要求;其它电梯,按照旧版检规要求开展定期检验。定期检验还应贯彻落实《福建省市场监管局办公室关于做好电梯远程监测装置等配置和检验检测工作的通知》(闽市监办〔2023〕12号,下称12号文)规定。检验机构不得在同一设区市同时承担电梯检验任务和电梯自行检测服务。(二)推动自行检测工作。以依法依规、合于实际、保证质量、有效监管、确保安全为原则,围绕检测周期计算、检测单位条件、检测告知、检测对接与认领、检测实施、检测信息传输与公示等环节,建立完善自行检测工作机制。1.检测周期计算。检测年份确定:以安装监督检验合格所在的年份(按照新版检规进行改造监督检验的,以该改造监督检验合格的年份)为基准,按新版检规规定实施定期检验之外的年份,每年进行一次自行检测;停用一年以上的电梯,在重新启用前应当进行定期检验,当年不再实施自行检测,其后仍按新版检规确定的年份执行定期检验和自行检测。对于无法确定安装监督检验合格日期的,以电梯制造(出厂)日期、使用登记日期、投入使用日期中较早者所在的年份为基准计算。检验(检测)月份确定:对在用电梯,以最近一次定期检验的月份为基准;对新安装、改造、重大修理的电梯,以监督检验合格日期所在月份为基准;对停用1年以上的电梯,以其启用时定期检验合格日期所在月份为基准,确定下次检验(检测)的月份。电梯定期检验和自行检测年份及周期的调整,应在2023年6月25日前完成。其中:检验平台数据调整,由福建省特检院和厦门市特检院分别负责;福建省特种设备动态监管平台数据调整,由省特检院做好技术支撑。2.检测单位条件。电梯自行检测单位包含电梯使用管理单位、电梯维护保养单位、电梯检测机构和甲类特种设备检验机构。电梯自行检测单位应符合检测规则有关要求,并满足《电梯自行检测单位基本条件》要求(见附件3)。3.检测告知。首次在我省开展检测前,电梯自行检测单位应向市场监管部门告知。电梯使用管理单位开展检测的,应在动态监管平台上传《电梯使用管理单位自行检测告知单》(附件4)及相关证明材料;维保单位开展检测的,应在动态监管平台上传《电梯维保单位自行检测告知单》(附件5)及相关证明材料,由电梯所在地的地市市场监管局在动态监管平台上对使用管理单位和维保单位告知的材料进行核实确认。电梯检测机构或甲类特种设备检验机构开展检测的,应持检验检测核准证向省市场监管局申请开通动态监管平台账号,并上传《电梯检验检测机构自行检测告知单》(附件6)及相关证明材料,由省市场监管局予以核实确认。电梯自行检测单位的检测人员发生变动后,应及时在动态监管平台上自行维护,确保检测人员信息准确。4.检测对接与认领。在完成检测告知后,电梯自行检测单位应将本单位检测信息管理系统与动态监管平台进行对接。实施检测前,电梯自行检测单位应在动态监管平台认领拟检测的电梯,由电梯使用管理单位进行确认。5.检测实施。自行检测依据检测规则执行,同时还应执行12号文规定。参照新版检规相关规定,现场检测至少由2名具有电梯检验员及以上资格的人员进行。检测时,检测人员应登录“闽政通—企业服务—电梯扫码检测”模块进行身份验证,扫描电梯使用标志上的二维码进行签到(系统将确认检验人员、电梯认领信息、电梯地理位置等信息),检测结束时扫码签退。(待开通后实行)检测时,检测人员应对包括试验项目和检测关键点位在内的检测过程进行录像,录像视频应当清晰可见(分辨率不低于1080P,帧速率不少于24帧/秒),并能有效识别检测人员身份、所检电梯信息、检测项目内容、检测时长等信息,且保存期限不小于报告有效期。录像视频应有防止篡改甄别措施和能在线调阅,在向市场监管部门提供的电梯检测信息中,应包含电梯检测录像视频的互联网访问地址及视频数据的数字签名(使用国密SM3杂凑算法),以便在线调阅与查证。6.检测信息传输与公示。电梯自行检测单位应在出具《电梯自行检测报告》后的3个工作日内,将检测信息上传至动态监管平台,存在严重事故隐患的报送属地市场监管部门,列入重要事项管理并落实整改闭环。发现的问题整改应经电梯自行检测单位确认后,由电梯使用管理单位将《电梯自行检测备忘录》以及整改情况公示在便于乘客阅知的位置,公示期不少于15日。三、关于使用标志要求自2023年7月1日起,承担电梯监督检验和定期检验的检验机构,在完成检验报告批准后的1个工作日内将检验信息上传至动态监管平台,经检验机构确认后,确定下次检验或检测日期,在线生成《电梯使用标志》。电梯自行检测单位出具合格检测报告后的5个工作日内将《电梯自行检测符合性声明》上传至动态监管平台,由最近一次实施电梯检验的机构在1个工作日内对《电梯自行检测符合性声明》进行确认,确定下次检验或检测日期,并在线生成《电梯使用标志》。电梯使用管理单位应通过福建省市场智慧监管一体化平台特种设备监管系统自行下载打印《电梯使用标志》,并及时张贴在电梯轿厢(或者自动扶梯、人行道出入口)易于乘客看见的部位。对确有困难无法自行下载打印《电梯使用标志》的使用管理单位,可委托检验机构邮寄或自行领取《电梯使用标志》。四、有关工作要求电梯新版检规和检测规则的发布是国家对电梯检验检测政策的新一轮调整,也是更好保障电梯运行安全的一项重要举措。各级市场监管部门和电梯使用维保单位、检验检测机构要统一思想认识,强化责任担当,周密安排部署,确保新版检规和检测规则有序实施、落地落好。(一)加强组织领导。各级市场监管部门要牢固树立改革意识、大局意识、责任意识,细化措施、统筹推进,确保实效。一是要对电梯使用维保单位、检验检测机构相关负责人进行新版检规和检测规则的专业解读,部署我省工作要求和推进措施。二是通过维保单位、检验检测机构向电梯使用管理单位宣贯新版检规和检测规则以及我省的有关要求,稳步推进电梯定期检验和自行检测分离。三是结合《特种设备使用单位落实使用安全主体责任监督管理规定》(市场监管总局令第74号)要求,推动电梯使用管理单位配备安全总监和安全员,制定电梯安全风险管控清单,建立完善“日管控、周排查、月调度”工作机制,切实落实使用管理单位安全主体责任。同时,电梯使用维保单位、检验检测机构要认真组织检验检测人员学习培训,全面掌握新版检规和检测规则实质内容,要及时依据新版检规或检测规则修订完善检验检测质量保证体系和作业指导书,切实提高电梯检验、检测质量。(二)加强监督检查。各级市场监管部门要依据《特种设备安全监督检查办法》,采取“双随机、一公开”和重点抽查等方式,加大对电梯使用、检验、检测等环节的监督检查力度。发现使用到期未检测或检测发现严重不符合运行条件的电梯,要下达《特种设备安全监察指令书》,逾期未整改的依法查处;发现在电梯检验检测过程中存在缺项、漏项和出具虚假检验检测报告等违法违规行为,依法查处并追究相关单位和人员责任,并严格落实淘汰退出机制。(三)加强宣传引导。各级市场监管部门要充分利用好“安全生产月”“质量月”“电梯安全宣传周”等重点时段,通过广泛的媒介途径和多样的宣传方式,宣传电梯检验检测调整内容和工作要求,要发挥行业自律约束作用,坚决杜绝低价竞争、恶性竞争和虚假检测等现象发生。各地在贯彻落实新版检规和检测规则过程中遇到问题,请及时报告省市场监管局特种设备处。联系人:郑志良,电话:0591-87859712;监管平台联系人:李伟程,电话:0591-87580672。附件:1.需在过渡期满后实施安装监督检验的电梯清单2.电梯检验检测分离推进表3.电梯自行检测单位基本条件4.电梯使用管理单位自行检测告知单5.电梯维保单位自行检测告知单6.电梯检验检测机构自行检测告知单福建省市场监督管理局2023年6月16日(此件主动公开)附件下载 附件1:需在过渡期满后实施安装监督检验的电梯清单.doc 附件2:电梯检验检测分离推进表.doc 附件3:电梯自行检测单位基本条件.doc 附件4:电梯使用管理单位自行检测告知单.doc 附件5:电梯维保单位自行检测告知单.doc 附件6:电梯检验检测机构自行检测告知单.doc
  • 世界最强X射线激光破解细胞信号传导密码
    p  中科院上海药物研究所徐华强研究员领衔的国际交叉团队经过联合攻关,成功解析了磷酸化视紫红质(Rhodopsin)与阻遏蛋白(Arrestin)复合物的晶体结构,并破解了负责关闭GPCR传导信号的磷酸化密码。7月27日,相关研究成果以封面文章发表于《细胞》杂志。/pp  生命的功能是依靠信号传导密码来体现或来执行的。G蛋白偶联受体(GPCR)是人体内最大的细胞膜表面受体家族,通过G蛋白和阻遏蛋白这两条主要信号通路,承担着细胞信号转导的“信号兵”的职责。当受到外界信号刺激,GPCR激活G蛋白发出“开放”信号。而“关闭”信号的则来自于磷酸化密码——GPCR尾部一旦被磷酸化,随即将激活阻遏蛋白并与之形成紧密结合为复合物,从而关闭传导信号。因此鉴定与解释GPCR磷酸化密码是当今细胞信号传导领域的重要科学问题。/pp  据悉,徐华强领衔的交叉团队在2015年成功解析GPCR与阻遏蛋白复合物的完整复合体结构的基础上,对于该结构的尾部高分辨率结构与磷酸化机制展开攻关。/pp  “我们利用世界上最强X射线激光,看清楚了复合晶体的尾部结构信息,并从中解析了其尾部磷酸化招募并与阻遏蛋白结合的过程。”徐华强将研究过程比喻为生命密码的层层解密,“为了验证磷酸化密码的普适性,我们试验了96%的GPCR蛋白,发现70%-80%GPCR的“关闭”信号都由磷酸化密码控制。”最后通过一系列验证生物学功能验证,GPCR招募阻遏蛋白的磷酸化密码就此破解——GPCR通过其尾部氨基酸的磷酸化招募并与阻遏蛋白结合,同时发现该密码对整个GPCR蛋白组具有普遍性。/pp  据了解,结构生物学的重大突破往往与同步辐射光源+X射线自由电子激光的组合密切相关。目前全球已有6个这样的组合,分别位于德国、美国、日本、韩国、瑞士和意大利。 “我们非常期待我国自有的重大科技基础设施,如正在建设与推进中的软X射线与硬X射线自由电子激光装置。”徐华强表示,“这些大科学平台能够为科学家提供更先进、丰富的综合实验手段。”/pp  据介绍,这项研究获得国家“重大新药创制”重大专项、973、先导专项以及国际项目等基金的资助。合作研究机构包括加拿大多伦多大学、斯克利普斯研究所、德国Desy自由电子激光科学中心、德国汉堡超快成像中心、加州大学洛杉矶分校、南加州大学、上海科技大学和范德堡大学等。/p
  • Nature子刊!国仪量子EPR助力纳米自旋传感器研究
    成果简报基于量子特性,电子自旋传感器具有高灵敏度,可以广泛应用于探测各种物理化学性质,如电场、磁场、分子或蛋白质动力学以及核或其他粒子等。这些独特的优势和潜在应用场景,使基于自旋的传感器成为当前热点的研究方向。Sc3C2@C80具有由碳笼保护的高度稳定的电子自旋,适用于多孔材料内的气体吸附检测。Py-COF是一种最近出现的具有独特吸附性能的多孔有机框架材料,它使用具有甲酰基和氨基的自缩合构建块制备,其理论孔径为1.38 nm。因此,一种金属富勒烯Sc3C2@C80单元(尺寸约0.8 nm)可以进入Py-COF的一个纳米孔。中国科学院化学研究所王太山研究员开发了一种基于金属富勒烯的纳米自旋传感器,用于探测多孔有机框架内的气体吸附情况。将顺磁性金属富勒烯,Sc3C2@C80嵌入基于芘基的共价有机框架(Py-COF)的纳米孔中。使用EPR技术(国仪量子EPR200-Plus)记录嵌入Sc3C2@C80自旋探针的Py-COF内吸附的N2、CO、CH4、CO2、C3H6和C3H8。研究表明,嵌入Sc3C2@C80的EPR信号有规律地随Py-COF的气体吸附性能有关。研究结果以“Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks”为题,发表在Nature Communications上。利用 Sc3C2@C80 的分子自旋探测 Py-COF 的气体吸附性能在研究中,作者使用一种具有顺磁性金属富勒烯,Sc3C2@C80(尺寸约0.8 nm)作为自旋探针嵌入到基于芘基的COF(Py-COF)的一个纳米孔,检测Py-COF内的气体吸附。然后,通过记录嵌入的Sc3C2@C80 EPR信号,研究了Py-COF对N2、CO、CH4、CO2、C3H6和C3H8气体的吸附性能。研究表明,Sc3C2@C80的EPR信号有规律地随Py-COF的气体吸附性能有关。并且与传统的吸附等温线测量不同,这种可植入的纳米自旋传感器可以通过原位实时监测来探测气体的吸附和解吸。所提出的纳米自旋传感器还用于探测金属-有机框架(MOF-177)的气体吸附性能,证明了其多功能性。气体吸附性能与EPR信号的关系气压对EPR信号的影响EPR信号线宽分析用Sc3C2@C80的分子自旋法探讨MOF-177的气体吸附过程摘要Nature Communications:嵌入式纳米自旋传感器用于原位探测多孔有机框架内气体吸附Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks. Nature Communications (2023)自旋传感器因其高灵敏度而备受关注。在此,我们开发了一种基于金属富勒烯的纳米自旋传感器,用于探测多孔有机框架内的气体吸附情况。为此,我们选择了顺磁性金属富勒烯Sc3C2@C80,并将其嵌入芘基共价有机框架(Py-COF)的纳米孔中。使用电子顺磁共振波谱(EPR)技术检测了Sc3C2@C80在Py-COF中吸附N2、CO、CH4、CO2、C3H6和C3H8后的信号。结果表明,嵌入Sc3C2@C80后EPR信号有规律变化,这与Py-COF的气体吸附性能有关。与传统的吸附等温线测量方法不同,这种植入式纳米自旋传感器可以对气体的吸附和解吸进行原位实时监测。所提出的纳米自旋传感器还被用于探测金属有机框架(MOF-177)的气体吸附性能、证明了它的多功能性。因此,该纳米自旋传感器适用于量子传感和精密测量。国仪量子EPR用户奖励政策细则1.IF 5.0(影响因子取最近的影响因子)的SCI、EI期刊,每篇奖励200元现金红包;2.5.0≤IF<10的SCI期刊,每篇奖励500元现金红包;3.IF≥10的SCI期刊,每篇奖励1000元现金红包;4.如论文发表于Nature、Science或Cell期刊正刊,每篇奖励 5000元现金红包。提及国仪量子仪器型号的方法:要求在实验方法中提及仪器品牌型号:国仪量子EPR200-Plus,国仪量子EPR200M等,英文参考如下:Electron paramagnetic resonance spectroscopy spectra were measured on Chinainstru&Quantumtech (Hefei) EPR200-Plus with continues-wave X band frequency.奖励实施流程:1.用户申请:需为测试申请者及文章作者,直接联系CIQTEK应用中心应用专家、登录CIQTEK官方网址http://www.ciqtek.com、拨打CIQTEK官方服务热线400-0606-976;2.资格审核:身份审核、对相应文章发表情况、提及仪器情况及影响因子进行审核(提供相应证明:发表论文的接收函及论文原文,或已发表论文的网上版本链接);3.审核通过后由公司统一发放奖励,发放形式协商确定。奖励申请说明:1.奖励后我司内部备注,每篇文章原则上只奖励一次;2.作品获得奖励后,即默认为作者授权主办方可以使用作者名及成果名称进行宣传推广活动,包括但不限于媒体宣传、现场展示、网络推广等;3.本政策有效期自2023年6月30日至2023年12月31日(如有变化会另行通知);4.本奖励政策最终解释权归国仪量子(合肥)技术有限公司所有。国仪量子电子顺磁共振波谱仪近年来,国家大力支持国产高端科学仪器发展,推进高水平科技成果自立自强,国产高端科学仪器迎来了长足进步。国仪量子电子顺磁共振波谱仪为直接检测顺磁性物质提供了一种非破坏性的分析方法。可研究磁性分子、过渡金属离子、稀土离子、离子团簇、掺杂材料、缺陷材料、自由基、金属蛋白等含有未成对电子物质的组成、结构以及动力学等信息,能够提供原位和无损的电子自旋、轨道和原子核等微观尺度的信息。在物理、化学、生物、材料、工业等领域具有广泛的应用。国仪量子EPR系列
  • Life tech最新Akt信号通路研究工具及文献
    通路聚焦:Akt信号通路产品聚集Akt磷酸化蛋白和总蛋白定量了解更多新型磷酸化Akt苏氨酸308 ABfinity™ 抗体了解更多PDGF介导的Akt信号通路的激活了解更多肿瘤发生中的Akt和ROS之间的相互作用研究了解更多 研究工具细胞染色模拟工具——使用多种标记Molecular Probes染料对您的细胞进行虚拟染色。立即对您的细胞进行染色免疫测定选择指南新品!——利用我们的新型在线搜索和过滤工具即可轻松找出合适的免疫测定方法。立即搜索免疫测定3D Cell iPhone™ App——利用我们的新型三维细胞工具了解细胞及其结构,甚至观看活细胞视频。了解有关3D Cell iPhone™ App的更多详情新鲜出炉——Chang, W., et al.(2011) Jurkat T细胞中对氨基酚诱导的细胞毒性:2(RS)-n-丙基噻唑烷-4(R)-羧酸的保护作用。J Biochem Mol Toxicol. doi:10.1002/jbt.20402 [电子版]。了解更多Setshedi, M., et al.(2011) 酒精诱导的脂肪肝实验模型中N-乙酰半胱氨酸对肝脏胰岛素抵抗的有限治疗功效。Alcohol Clin Exp Res.35(12):2139-2151.了解更多 Life Technologies 中国区办事处销售服务信箱:sales-cn@lifetech.com技术服务信箱:cntechsupport@lifetech.com客户服务热线:800-820-8982400-820-8982www.lifetechnologies.com FOR RESEARCH USE ONLY. NOT INTENDED FOR ANY ANIMAL OR HUMAN THERAPEUTIC OR DIAGNOSTIC USE, UNLESS OTHERWISE STATED.© 2011 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. In compliance with federal regulations, we hereby disclose that this email communication is for commercial purposes.View the Life Technologies privacy policy.Follow Life Technologies
  • 内毒素信号转导分子诱导性改变的介绍
    (一)TLR4分子表达下调将小鼠腹腔巨噬细胞用内毒素预先处理后,再次用内毒素攻击,则此时细胞因子的分泌显著减少,表现出时间和剂量依赖性的特点。在耐受的巨噬细胞中证实,依赖于TLR4-MyD88信号途径的近侧信号转导分子受到影响。用小剂量内毒素刺激巨噬细胞后数小时内,TLR4 mRNA表达显著下调,24h后才恢复正常水平,而膜表面上TLR4分子在1h开始表现出渐进式下降,其抑制性状态持续超过24h。此时的细胞因子分泌下降与TLR4表达下调有关,也是内毒素耐受的发生机制之一。在内毒素耐受中,TLR4的基本调控因子PU.1和干扰素基因序列结合蛋白(interferon consensus sequence binding protein,ICSBP)是如何相互作用影响Tlr4基因转录的目前还不清楚。(二)IRAK分子改变IRAK为IL-1受体的信号转导分子,现证实其也参与TLR家族的信号转导。过量表达IRAK的显性失活形式能抑制LPS的信号转导,而且在lRAK基因缺陷的293细胞中转染野生型IRAK能使细胞对LPS发生反应。Li等对THP-1细胞进行内毒素攻击时,发现内源性IRAK能够被快速激活,初次内毒素刺激时,LPS可促使IRAK与MyD88迅速结合;在内毒素耐受的THP-1细胞中发现,IRAK表达数量显著下降,只有正常水平的20%,在再次内毒素攻击时,无法诱导出IRAK的酶学活性;同时,IRAK与MyD88发生分离不能结合,无法转导LPS的跨膜信号。可见,IRAK从量和质的两个方面下调内毒素的激活效应。(三)NF-κB复合物分子组成的改变内毒素耐受细胞若再次受到内毒素刺激,则不能有效激活NF-κB。未激活的巨噬细胞、NF-κB组成异源二聚体(p50和p65)形式,并与抑制性IκB结合,滞留在胞质内。当细胞初次受到内毒素刺激后,IκB迅速被IκB激酶(IKK)磷酸化,并经泛蛋白-蛋白质酶体的途径降解。在内毒素耐受细胞中,NF-κB复合物主要为p50/p50,后者缺乏反式转录活性,并能抑制基因表达。p50的前体蛋白为p105,经过酶切生成。在内毒素耐受细胞中,由于p105合成显著增加,p50与p50形成二聚体,而p65 mRNA无改变,故不能诱导p65蛋白表达增加,所以p50/p50占优势,p65/ p50比例下降,并抑制相关基因表达。(四)IκB激酶的改变内毒素耐受的细胞中IKK不能被激活,结果IκB无法降解,持续与NF-κB结合,而NF-κB复合物不能从胞质转位进入胞核内使其调控基因表达。可见,IκB激酶也参与了内毒素耐受的发生。(五)蛋白激酶C的改变内毒素可以激活不同的致分裂原活化蛋白激酶(rmitogen-activated protein kinase,MAPK)的级联反应,包括细胞外信号调节蛋白激酶、JNK(c-Jun N-terminal kinase),p38MAPK/反应激酶途径(p38 MAPK/reactivating kinase pathway)。MAPK可以使下游分子的丝氨酸/苏氨酸发生磷酸化。有活性的细胞外信号调节蛋白激酶使下游分子磷酸化并调节其活性,其中包括其他蛋白激酶、细胞骨架、磷脂酶A2和核转录因子(如Elk1/TCF及c-Jun),调节即刻早期基因的表达。内毒素可激活PI-3K,后者分解膜上的脂质后产生DAG和IP3,IPs进一步激活PKC,并发生多种效应。在内毒素耐受细胞中,使用PKC的激活剂如佛波酯,能恢复细胞因子的合成和分泌,可见PKC也参与内毒素耐受效应。(六)G蛋白与内毒素的耐受用百日咳毒素使巨噬细胞G蛋白亚单位Gi的近C端Cys残基发生核糖基化,修饰后的Gi对受体介导的信号转导无反应而处于持久失活状态,此时用内毒素进行刺激可显著降低细胞因子的合成和分泌。可见G蛋白也参与了机体对内毒素反应的调节。总之,在天然内毒素耐受之外,宿主作为一个整体,其中有多种成分共同参与内毒素耐受的发生,而并非某一个成分单独发挥作用,这也表现出了机体反应的协调性。一旦某个成分逃脱抑制的束缚,则会破坏整个耐受的平衡状态,使耐受现象消失,并摆脱原有的耐受状态,继而下传LPS信号转导,对机体产生效应。
  • 太原市人民医院165.00万元采购辐射仪
    详细信息 太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购招标公告 山西省-太原市-晋源区 状态:公告 更新时间: 2022-10-01 招标文件: 附件1 太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购招标公告 发布时间:2022100109 1.招标条件 本招标项目太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购(项目编号:2022WHG101),招标人为太原市人民医院,招标项目资金来自财政资金,出资比例为100%。该项目已具备招标条件,现进行公开招标。 2.项目概况与招标范围 项目概况:太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统 招标范围:太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统采购项目相关材料货物的供货、运输装卸、与总包及其他施工单位协调配合安装、运行调试、验收、培训、售后服务及其他相关服务等工作。 预算金额:1650000元 设备清单: 序号 名称 技术规格及要求 数量 单位 单价(元) 合计金额(元) 1 废液处理控制终端系统 1、显示:≥7寸触摸屏。2、实时显示:液位高度,存放时间,及报警信息提示。3、参数设置:池体液位高度上限和下限阈值,废水存放时间阈值,取样测量活度阈值等参数。4、信息查询:报警记录,排放记录,取样记录。5、操作模式:具有手动和自动操作选择功能。6、权限管理:涉及参数修改等操作,需输入授权密码才可进入。7、报警提示:提供现场预警信息的声音和灯光报警信号。8、供电输入:DC24V 2A。9、安装方式:可以壁挂安装,也可以至于桌面。10、通讯方式:TCP/IP。11、工作环境:-30℃~50℃。 1 套 110000 110000 2 远程托管维保系统 1、访问终端:通过互联网访,可在电脑和手机端访问托管系统;2、系统功能:通过互联网,在任何时间,任何地点,实时查看放射性废液处理系统运行过程,历史预警信息记录,以及可以远程进行系统参数设置,系统程序升级维护。并可通过短信或微信消息形式,自动推送系统运行异常信息。3、通讯方式:以太网或4G无线网络;4、设备监控:提供组态图形化界面,实时监控放射性废液处理系统运行过程;5、数据监控:提供实时监测数据显示,数据动态曲线以及历史数据曲线查询;6、预警监控:可提供实时报警信息弹窗显示,历史报警信息的查询,以及报警信息的手机推送;7、远程维保:通过托管维保系统,可在系统实现维护申请,维保计划制定,维保记录查询。 1 套 65000 65000 3 放射性废液控制柜 1、PLC控制器。2、控制面板:电源指示,手动/自动模式切换开关,各水泵及电动阀控制开关。3、连接系统:液位监测预警系统,自动取样测量系统,阀组 泵组系统,给排水控制系统。4、输出信号:电动阀门的控制信号,水泵回路继电器的控制信号,机械排放装置的控制信号。5、供电要求:3项五芯,380V ≥15KW。6、网络要求:医院内网和外围端口网线或物联网。7、通讯方式: TCP/IP。8、工作环境:-30℃~50℃。9、工作环境:温度:-40℃~50℃,湿度:≤98%。 1 套 88000 88000 4 溢流监测预警系统 1、衰变池池体具有溢流管道设计,废水溢流进入缓冲池(集水坑)。2、系统可自动识别是否发生废水溢流事故,并在可视终端显示预警信息。 1 套 39000 39000 5 液位监测及预警系统 1、每个池体安装双连续液位计,实时显示衰变池,集水坑液位高度。2、池体安装极限液位计,保障连续液位计故障失效,触发预警系统。3、连续液位计:DC 24V ,0~5米量程;4、带正反逻辑信号,连续液位计数量:不少于8个。输出信号:RS485,接液材质SUS316,膜片材质,316L,防护等级:IP68,连接方式:法兰连接。5、带正反逻辑信号,极限液位计数量:不少于8个。输出信号:SPDT(一组常开常闭),接液材质UPVC。防护等级:IP65,连接方式:法兰连接。6、介质:放射性医用废水/生活污水。7、信号输入PLC控制系统,系统自动识别并执行指定动作并发出报警提示。 8 套 9000 72000 6 废液辐射剂量监测系统 1、探测器:闪烁体探测器。2、相对误差:≤±15%。3、能量范围:20keV-3MeV 4、测量范围:0.01uSv/h-1000uSv/h。5、探测器具有探测效率自动校正功能,可自适应温差环境变化。6、配置数量:1套。长衰变跟短衰出水共用一套。7、防水等级:可在水下 5 米以内工作;8、连续监测,实时显示,全程智能化。9、具有耐酸碱抗腐蚀性,良好的防水抗压能力,性能稳定使用寿命长。10、系统控制:可在可视终端系显示测量结果.11、测量方式:直接感应读数。12、工作电压:AC220V13、数据通讯:RS485 6 套 13000 78000 7 环境辐射监测系统 在环境辐射监测系统由固定式辐射报警仪构成。用于实现区域环境环辐射,监测。固定式辐射报警仪实时监测环境场所辐射水平,就地显示测量数据,并提供超阈值报警提示。1、安装位置:在衰变池室内区域辐射监测仪。2、探测器:集成式探测器。3、配置数量:不少于1套。4、测量范围:0.01uSv/h~500uSv/h。5、能量范围:40keV~3MeV。6、相对误差:≤x15%。7、能量响应:≤±15%(相对Cs-137)。8、工作电压:DC12V 1A。 9、报警功能:可设置报警阈值,超阈值可提供声光报警提示。10、可手动关闭报警蜂鸣器。11、工作环境:-30℃~50℃,湿度<90%。 1 套 15000 15000 8 给排水管道工程系统 1、进水管1.1材质:upvc。1.2管径:DN50;或根据现场情况配置。长度约50m。2、出水管2.1材质:upvc。2.2管径:DN50;或根据现场情况配置。长度约200m。3、其余辅助管道3.1材质:upvc。3.2管径:DN50或DN25;或根据现场情况配置。长度50m。4、切割潜污泵:4.1规格:DN50,扬程≥10米,流量≥ 10m3/h,工作电压:380V。4.2自耦装置 铸铁材质,方便后续泵维修更换,法兰连接。4.3数量4台,2备2用。5、自吸式排污泵:5.1、规格:DN50,扬程≥15米,流量≥10m3/h,工作电压:380V。5.2、自耦装置 铸铁材质,方便后续泵维修更换,法兰连接。5.3、数量4台,2备2用。6、 电动阀: 6.1、工作电压:AC 220V。6.2、 材质:铸钢材质带执行器。6.3、 DN50,PI16等级,法兰连接,四氟乙烯垫片,485信号发聩。7、旋启式止回阀:7.1、功能:控制水流方向。7.2、配置数量: 4个。7.3、材质:upvc。7.4、PI16等级,法兰连接,四氟乙烯垫片.8、手动阀:8.1、功能:手动控制管道流通和关闭,用于系统检修。8.2、配置数量: 14台。8.3、材质:upvc8.4、PI16等级,法兰连接,四氟乙烯垫片.9、橡胶软管:9.1、材质:三元乙丙烯。长度≥20m。9.2、污水 DN100,DN50 常温 压力 1.6mpa;9.3、pvc法兰连接9.4、配置数量: 4台。10、其余配件:10.1、材质:upvc。10.2、弯头、三通、法兰、变径等;10.3、pvc连接,长度50m。 1 套 230000 230000 9 控制电路及线路 1、按照PLC原理图,控制线路图,进行现场接线,桥架,整理布线。2、将动力电源(380V,15KW)接入衰变池设备间各个元器件;3、电器柜与控制终端直接与连接6类网线,控制终端建议放置在护士站。4、控制终端须有220V电源插座以及网线,方便用电与连接网路。5、所有潜污泵的动力线与信号线缆连接。6、所有带电动阀的电源线与信号线线缆连接。7、所有带压力传感器电源线与信号线线缆连接。8、所有元器件电源与信号线缆接入电器柜。9、所有线缆走线布线,桥架架设。10、控制终端电源与网线或物联网连接。11、各种类型控制电线长度约500m。12、桥架,长度约50m。13、控制终端电脑 1 套 65000 65000 10 衰变池池体 1、材质:SUS304不锈钢,模压成型板块,含槽钢底座,含爬梯,含人行孔。内置自耦装置。2、标准:材料满足ASTM2403、承压2000kg/㎡,试漏检测。4、规格:6000x2000x3500mm=42m3,1个。 内分3个14m3池体。5、规格:3000x1000x1000mm=3m3,1个。内分3个1m3池体。6、呼吸阀:不锈钢材质,衰变池内部调节气压使用,数量6个。 1 套 260000 260000 11 除臭系统 1、除臭装置设备1台。1.1、排风口均需用高效过滤风口。1.2、配置标准:UV灯分解废气功能、双重活性炭过滤、漏电保护功能、能量回收、压力传感功能。1.3、风机风量:≥3000 m3。1.4、尺寸:1100x1300x1500。1.5、功率:1.8KW。2、排风装置2.1、排风管:pvc材质,直径250mm,长度≥20m。含弯头、三通、法兰、变径等辅助材料。2.2、所有线缆走线布线,桥架,开关控制器。 1 套 98000 98000 12 废水处理间放射防护 1、 防护门1套,规格厚度。2、 材质:6mm纯铅板防护层、新型覆膜钢板面层。3、废水处理间及废水管道防护当量≥6mmpb。 1 项 530000 530000 交货期:合同签订后90日历天内完成 交货地点:太原市人民医院(晋源区人民医院)迁建项目,晋源区晋祠镇花塔村 3.投标人资格要求 3.1本次招标要求投标人须具备独立法人资格、环保工程专业承包叁级及以上资质,并具有与本招标项目相应的供货能力。 3.2本次招标不接受)联合体投标。 3.3一个制造商对同一品牌同一型号的设备,仅能委托一个代理商参加投标。 4.招标文件的获取 4.1凡有意参加投标者,请于2022年10月1日9时00分至2022年10月12日17时00分登录全国公共资源交易平台(山西省﹒太原市)(ggzy.xzspglj.taiyuan.gov.cn),凭机构数字证书通过【政府采购】-【投标人/供应商】入口下载招标文件及相关资料。 4.2招标文件免费获取。 5.投标文件的递交、开标时间、地点、方式 5.1 投标文件递交截止时间、开标时间:2022年10月21日9时30分。 5.2 地点:太原市公共资源交易中心开标厅 5.3方式:登录全国公共资源交易平台(山西省﹒太原市)(ggzy.xzspglj.taiyuan.gov.cn),通过【政府采购】-【投标人/供应商】入口上传投标文件并打印“网上提交投标文件回执”。投标截止时间前未完成提交的,将拒收投标文件。 开标时登录“网上开标大厅”在规定时间内解密电子投标文件,解密设备(具备IE11及以上的浏览器和数字证书驱动)及网络环境由投标人自行准备。 6、发布公告的媒介 本次招标公告同时在山西省招标投标公共服务平台、全国公共资源交易平台(山西省﹒太原市)上发布。 7.联系方式 招标人:太原市人民医院 地址:太原市杏花岭街6号 联系人:柴红霞 电话:13994299290 招标代理机构:太原市公共资源交易中心 地址:太原市万柏林区南屯路1号太原市为民服务中心四层 联系人:刘勇、才贺涛 联系电话:0351-2377118/2377108 采购文件(此文件仅用于查看,如参与该项目,请及时通过 【投标人/供应商】入口登录系统后下载招标(采购)文件(文件格式:*.ZCZBJ)) 附件: 序号 文件名 创建时间 1 招标文件.pdf 2022-09-30 10:09:38 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:辐射仪 开标时间:2022-10-21 09:30 预算金额:165.00万元 采购单位:太原市人民医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:太原市公共资源交易中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购招标公告 山西省-太原市-晋源区 状态:公告 更新时间: 2022-10-01 招标文件: 附件1 太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购招标公告 发布时间:2022100109 1.招标条件 本招标项目太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购(项目编号:2022WHG101),招标人为太原市人民医院,招标项目资金来自财政资金,出资比例为100%。该项目已具备招标条件,现进行公开招标。 2.项目概况与招标范围 项目概况:太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统 招标范围:太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统采购项目相关材料货物的供货、运输装卸、与总包及其他施工单位协调配合安装、运行调试、验收、培训、售后服务及其他相关服务等工作。 预算金额:1650000元 设备清单: 序号 名称 技术规格及要求 数量 单位 单价(元) 合计金额(元) 1 废液处理控制终端系统 1、显示:≥7寸触摸屏。2、实时显示:液位高度,存放时间,及报警信息提示。3、参数设置:池体液位高度上限和下限阈值,废水存放时间阈值,取样测量活度阈值等参数。4、信息查询:报警记录,排放记录,取样记录。5、操作模式:具有手动和自动操作选择功能。6、权限管理:涉及参数修改等操作,需输入授权密码才可进入。7、报警提示:提供现场预警信息的声音和灯光报警信号。8、供电输入:DC24V 2A。9、安装方式:可以壁挂安装,也可以至于桌面。10、通讯方式:TCP/IP。11、工作环境:-30℃~50℃。 1 套 110000 110000 2 远程托管维保系统 1、访问终端:通过互联网访,可在电脑和手机端访问托管系统;2、系统功能:通过互联网,在任何时间,任何地点,实时查看放射性废液处理系统运行过程,历史预警信息记录,以及可以远程进行系统参数设置,系统程序升级维护。并可通过短信或微信消息形式,自动推送系统运行异常信息。3、通讯方式:以太网或4G无线网络;4、设备监控:提供组态图形化界面,实时监控放射性废液处理系统运行过程;5、数据监控:提供实时监测数据显示,数据动态曲线以及历史数据曲线查询;6、预警监控:可提供实时报警信息弹窗显示,历史报警信息的查询,以及报警信息的手机推送;7、远程维保:通过托管维保系统,可在系统实现维护申请,维保计划制定,维保记录查询。 1 套 65000 65000 3 放射性废液控制柜 1、PLC控制器。2、控制面板:电源指示,手动/自动模式切换开关,各水泵及电动阀控制开关。3、连接系统:液位监测预警系统,自动取样测量系统,阀组 泵组系统,给排水控制系统。4、输出信号:电动阀门的控制信号,水泵回路继电器的控制信号,机械排放装置的控制信号。5、供电要求:3项五芯,380V ≥15KW。6、网络要求:医院内网和外围端口网线或物联网。7、通讯方式: TCP/IP。8、工作环境:-30℃~50℃。9、工作环境:温度:-40℃~50℃,湿度:≤98%。 1 套 88000 88000 4 溢流监测预警系统 1、衰变池池体具有溢流管道设计,废水溢流进入缓冲池(集水坑)。2、系统可自动识别是否发生废水溢流事故,并在可视终端显示预警信息。 1 套 39000 39000 5 液位监测及预警系统 1、每个池体安装双连续液位计,实时显示衰变池,集水坑液位高度。2、池体安装极限液位计,保障连续液位计故障失效,触发预警系统。3、连续液位计:DC 24V ,0~5米量程;4、带正反逻辑信号,连续液位计数量:不少于8个。输出信号:RS485,接液材质SUS316,膜片材质,316L,防护等级:IP68,连接方式:法兰连接。5、带正反逻辑信号,极限液位计数量:不少于8个。输出信号:SPDT(一组常开常闭),接液材质UPVC。防护等级:IP65,连接方式:法兰连接。6、介质:放射性医用废水/生活污水。7、信号输入PLC控制系统,系统自动识别并执行指定动作并发出报警提示。 8 套 9000 72000 6 废液辐射剂量监测系统 1、探测器:闪烁体探测器。2、相对误差:≤±15%。3、能量范围:20keV-3MeV 4、测量范围:0.01uSv/h-1000uSv/h。5、探测器具有探测效率自动校正功能,可自适应温差环境变化。6、配置数量:1套。长衰变跟短衰出水共用一套。7、防水等级:可在水下 5 米以内工作;8、连续监测,实时显示,全程智能化。9、具有耐酸碱抗腐蚀性,良好的防水抗压能力,性能稳定使用寿命长。10、系统控制:可在可视终端系显示测量结果.11、测量方式:直接感应读数。12、工作电压:AC220V13、数据通讯:RS485 6 套 13000 78000 7 环境辐射监测系统 在环境辐射监测系统由固定式辐射报警仪构成。用于实现区域环境环辐射,监测。固定式辐射报警仪实时监测环境场所辐射水平,就地显示测量数据,并提供超阈值报警提示。1、安装位置:在衰变池室内区域辐射监测仪。2、探测器:集成式探测器。3、配置数量:不少于1套。4、测量范围:0.01uSv/h~500uSv/h。5、能量范围:40keV~3MeV。6、相对误差:≤x15%。7、能量响应:≤±15%(相对Cs-137)。8、工作电压:DC12V 1A。 9、报警功能:可设置报警阈值,超阈值可提供声光报警提示。10、可手动关闭报警蜂鸣器。11、工作环境:-30℃~50℃,湿度<90%。 1 套 15000 15000 8 给排水管道工程系统 1、进水管1.1材质:upvc。1.2管径:DN50;或根据现场情况配置。长度约50m。2、出水管2.1材质:upvc。2.2管径:DN50;或根据现场情况配置。长度约200m。3、其余辅助管道3.1材质:upvc。3.2管径:DN50或DN25;或根据现场情况配置。长度50m。4、切割潜污泵:4.1规格:DN50,扬程≥10米,流量≥ 10m3/h,工作电压:380V。4.2自耦装置 铸铁材质,方便后续泵维修更换,法兰连接。4.3数量4台,2备2用。5、自吸式排污泵:5.1、规格:DN50,扬程≥15米,流量≥10m3/h,工作电压:380V。5.2、自耦装置 铸铁材质,方便后续泵维修更换,法兰连接。5.3、数量4台,2备2用。6、 电动阀: 6.1、工作电压:AC 220V。6.2、 材质:铸钢材质带执行器。6.3、 DN50,PI16等级,法兰连接,四氟乙烯垫片,485信号发聩。7、旋启式止回阀:7.1、功能:控制水流方向。7.2、配置数量: 4个。7.3、材质:upvc。7.4、PI16等级,法兰连接,四氟乙烯垫片.8、手动阀:8.1、功能:手动控制管道流通和关闭,用于系统检修。8.2、配置数量: 14台。8.3、材质:upvc8.4、PI16等级,法兰连接,四氟乙烯垫片.9、橡胶软管:9.1、材质:三元乙丙烯。长度≥20m。9.2、污水 DN100,DN50 常温 压力 1.6mpa;9.3、pvc法兰连接9.4、配置数量: 4台。10、其余配件:10.1、材质:upvc。10.2、弯头、三通、法兰、变径等;10.3、pvc连接,长度50m。 1 套 230000 230000 9 控制电路及线路 1、按照PLC原理图,控制线路图,进行现场接线,桥架,整理布线。2、将动力电源(380V,15KW)接入衰变池设备间各个元器件;3、电器柜与控制终端直接与连接6类网线,控制终端建议放置在护士站。4、控制终端须有220V电源插座以及网线,方便用电与连接网路。5、所有潜污泵的动力线与信号线缆连接。6、所有带电动阀的电源线与信号线线缆连接。7、所有带压力传感器电源线与信号线线缆连接。8、所有元器件电源与信号线缆接入电器柜。9、所有线缆走线布线,桥架架设。10、控制终端电源与网线或物联网连接。11、各种类型控制电线长度约500m。12、桥架,长度约50m。13、控制终端电脑 1 套 65000 65000 10 衰变池池体 1、材质:SUS304不锈钢,模压成型板块,含槽钢底座,含爬梯,含人行孔。内置自耦装置。2、标准:材料满足ASTM2403、承压2000kg/㎡,试漏检测。4、规格:6000x2000x3500mm=42m3,1个。 内分3个14m3池体。5、规格:3000x1000x1000mm=3m3,1个。内分3个1m3池体。6、呼吸阀:不锈钢材质,衰变池内部调节气压使用,数量6个。 1 套 260000 260000 11 除臭系统 1、除臭装置设备1台。1.1、排风口均需用高效过滤风口。1.2、配置标准:UV灯分解废气功能、双重活性炭过滤、漏电保护功能、能量回收、压力传感功能。1.3、风机风量:≥3000 m3。1.4、尺寸:1100x1300x1500。1.5、功率:1.8KW。2、排风装置2.1、排风管:pvc材质,直径250mm,长度≥20m。含弯头、三通、法兰、变径等辅助材料。2.2、所有线缆走线布线,桥架,开关控制器。 1 套 98000 98000 12 废水处理间放射防护 1、 防护门1套,规格厚度。2、 材质:6mm纯铅板防护层、新型覆膜钢板面层。3、废水处理间及废水管道防护当量≥6mmpb。 1 项 530000 530000 交货期:合同签订后90日历天内完成 交货地点:太原市人民医院(晋源区人民医院)迁建项目,晋源区晋祠镇花塔村 3.投标人资格要求 3.1本次招标要求投标人须具备独立法人资格、环保工程专业承包叁级及以上资质,并具有与本招标项目相应的供货能力。 3.2本次招标不接受)联合体投标。 3.3一个制造商对同一品牌同一型号的设备,仅能委托一个代理商参加投标。 4.招标文件的获取 4.1凡有意参加投标者,请于2022年10月1日9时00分至2022年10月12日17时00分登录全国公共资源交易平台(山西省﹒太原市)(ggzy.xzspglj.taiyuan.gov.cn),凭机构数字证书通过【政府采购】-【投标人/供应商】入口下载招标文件及相关资料。 4.2招标文件免费获取。 5.投标文件的递交、开标时间、地点、方式 5.1 投标文件递交截止时间、开标时间:2022年10月21日9时30分。 5.2 地点:太原市公共资源交易中心开标厅 5.3方式:登录全国公共资源交易平台(山西省﹒太原市)(ggzy.xzspglj.taiyuan.gov.cn),通过【政府采购】-【投标人/供应商】入口上传投标文件并打印“网上提交投标文件回执”。投标截止时间前未完成提交的,将拒收投标文件。 开标时登录“网上开标大厅”在规定时间内解密电子投标文件,解密设备(具备IE11及以上的浏览器和数字证书驱动)及网络环境由投标人自行准备。 6、发布公告的媒介 本次招标公告同时在山西省招标投标公共服务平台、全国公共资源交易平台(山西省﹒太原市)上发布。 7.联系方式 招标人:太原市人民医院 地址:太原市杏花岭街6号 联系人:柴红霞 电话:13994299290 招标代理机构:太原市公共资源交易中心 地址:太原市万柏林区南屯路1号太原市为民服务中心四层 联系人:刘勇、才贺涛 联系电话:0351-2377118/2377108 采购文件(此文件仅用于查看,如参与该项目,请及时通过 【投标人/供应商】入口登录系统后下载招标(采购)文件(文件格式:*.ZCZBJ)) 附件: 序号 文件名 创建时间 1 招标文件.pdf 2022-09-30 10:09:38
  • Defender3000电子台秤安装方法的探究!
    通过理念与技术的创新,奥豪斯重磅推出的新一代Defender3000电子台秤,可应用于商业和工业称重领域,在需要频繁拆装的使用需求下,新一代Defender3000电子台秤如何做到5分钟快捷安装呢?传感器和仪表接线使用航空接头连接,快速、准确? 传统接线方法 传统接线方法,操作人员需要专用工具和技能,不仅需要打开仪表后盖、接线、安装仪表后盖,繁琐且耗费人力,在嘈杂、阴暗潮湿的工业环境,易出现人为失误,如接线不正确、螺丝未固定紧等。? 接线方法研究与确定基于对客户需求的准确理解与判断,奥豪斯研发人员经过不断探索、研究,仔细对比多种信号线,通过实验,奥豪斯资深研发工程师最终选择了配备航空接头的信号线用于连接仪表和秤体。? 使用配备航空接头的信号线连接秤体和仪表的优点安装操作简单、准确,手工即可完成仪表和秤体的安装。 使信号传输的更加稳定和准确,避免外界电磁环境的干扰。奥豪斯研发工程师在Defender3000电子台秤中不仅使用了高大上的航空接头,而且对仪表支架和立柱安装方法进行简化,简化后的安装方法为用户带来哪些便利呢?立柱简单快速,避免用户寻找配件的烦恼新Defender3000台秤立柱使用圆筒套装方式进行安装,十分简便快捷。减少螺钉数量,降低安装工时。 仪表支架安装配件更少,旋转极为灵活仪表安装大幅减少零配件的数量,尤其是大量减少螺钉的使用数量。仪表支架使用圆筒套装和快拧组合安装形式,简便快捷,不易出错。 仪表的旋转使用一个螺旋控制,旋转仪表的操作极为灵活、快速。通过奥豪斯研发工程师的不断创新,使Dender3000的安装时间由20分钟左右大幅减少至5分钟左右,安装简便、快捷、准确,节约用户大量的时间。同时,仪表的显示屏也非常人性化,使用白色背光LED显示屏,在光线不佳的环境下也可提供清晰明亮的读数。最后,奥豪斯将继续开拓创新,为客户提供更优质、稳定的产品,通过不断创新,为客户带来全新的称量体验,详情请拨打4008-217-188或访问www.ohaus.com了解Defender3000电子台秤的详细信息。
  • 【技术知识】在线溶解氧分析仪的注意事项及电极维护方法
    在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。使用注意事项1、继电器与标准伏设备连接时需使用交流接触器。2、首次使用或更换电极时需要对仪器进行校正,且以后每规定时间进行一次校正(根据使用环境而定)。3、仪表与电极安装地点应尽量避开变频器、标准伏电机等干扰源,若有干扰应做好屏蔽工作。4、仪表与电极之间必须使用屏蔽线且不能剪断,信号线长度不能超过标准限定长度,若要延长或剪断信号线必需安装前置信号放大器。电极维护方法1如发现整个测量系统响应时间长、膜破裂、无氧介质中电流增大等等,就需要进行更换膜头、添加电解液的维护工作。2仪器测量值的正确与否,与测量电极有关系,因此,在整个测量系统中,溶解氧电极的维护是个重点。3更换膜、添加电解液的维护工作每六个月左右一次,每次换膜或添加电解液后,电极需重新极化和校准。4电极膜表面清洗:可用纱布沾少量稀洗涤剂轻轻檫洗,或安装喷水流清洗装置,自动定时对溶解氧测量电极膜表面进行清洗。5金阴极的处理:氧电极使用一段时间后,金阴极表面如出现少量褐色,须取下膜架,蒸馏水清洗擦干后用标准号以上金相砂纸轻轻磨擦黄金表面,进行抛光处理。6抛光后,用蒸馏水冲洗干净安装膜架(没有蒸馏水可以用纯净水替代)。相关仪器B2100在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。
  • 日立高新等开发出利用近红外光的非侵袭式脑活动测量计
    日立高新技术与日立国际八木解决方案公司开发出了戴在头部,利用近红外光的非侵袭式脑活动测量计“可穿戴式光Topography”系列的新产品“WOT-HS”,有头发亦可测量。设想在日常环境下测量脑活动,用于分析脑功能等研究用途。  新产品开发了内置信号处理器和传感器等的小型胶囊单元,并使其可逐个处理,从而大幅削减了信号线缆的使用量。由此,将传感器数量由原机型的16个增至35个,不但扩大了测量范围,重量也减轻了约25%。并且,最大限度抑制了头戴式设备表面的信号线缆暴露,采用完全不使用光纤的结构,佩戴方便性提高。  小型胶囊单元采用雪崩光电二极管接收近红外光。提高了受光灵敏度,使得头发部位也可测量。除了与原机型相同的前额部位以外,在有头发的侧头部也配置了小型胶囊单元,可以测量与听觉等有关的脑活动。  另外,测量方式可以切换为能降低皮肤血流等人体噪声的多距离(Multi-Distance)方式。此外,导入了利用小型胶囊单元上部设置的LED,显示头戴式设备佩戴状态的功能,提高了用户的便利性。  日立高新技术预定2016年度中期开始供货该产品。并将在2016年3月7~8日于京都大学桂校区(京都府京都市)举行的“第18届人脑功能Mapping学会”上展示。日立高新技术与日立国际八木解决方案称,今后计划开发除前额部和侧头部外,还可测量头顶部位的装置。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制