当前位置: 仪器信息网 > 行业主题 > >

手持倍读数显微镜

仪器信息网手持倍读数显微镜专题为您提供2024年最新手持倍读数显微镜价格报价、厂家品牌的相关信息, 包括手持倍读数显微镜参数、型号等,不管是国产,还是进口品牌的手持倍读数显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合手持倍读数显微镜相关的耗材配件、试剂标物,还有手持倍读数显微镜相关的最新资讯、资料,以及手持倍读数显微镜相关的解决方案。

手持倍读数显微镜相关的论坛

  • 读数显微镜的分类

    按细分的原理不同,读数显微镜通常分为直读式、标线移动式和影象移动式3种。1.直读式读数显微镜:线纹尺上的刻度经物镜局部放大后成象于分划板上,如线纹间距为1毫米,放大至与分划板上100个分度的距离相等,通过目镜(放大)即可读出0.01毫米的分度值。2.标线移动式读数显微镜:测量时转动微动手轮,使可动分划板上的双刻线与线纹尺线纹象对准,从读数鼓轮或其他读数机构读出百分位数和千分位数,从可动分划板上读出十分位数。为了避免微动手轮上的精密螺纹(或其他微动机构)磨损,有的显微镜把可动分划板上的双刻线制成双阿基米德螺旋线(图中c)。双阿基米德螺旋线的螺距等于1/10线纹尺线纹间距乘以物镜放大倍数,而在其内圈又刻有100个等分分度,所以在它对准线纹象后,即可从固定分划板上读出十分位数、从可动  分划板上读出百分位数和千分位数。3.影象移动式读数显微镜:在物镜与分划板之间,加入可动光学元件(例如平面平行玻璃、光楔玻璃或补偿透镜等)。当移动这类光学元件时,线纹尺的线纹象出会移动,在线纹象与固定分划板上的双刻线对准后,即可分别从固定分划板和可动分划板上读出十分位和百分位、千分位的数值。

  • 手持数码显微镜有哪些特点

    手持数码显微镜有哪些特点?手持式数码显微镜也叫便携式数码显微镜,顾名思义是一种小巧便携的微型显微镜产品,显微镜可以将显微镜看到的实物图像通过数模转换,使其成像在显微镜自带的屏幕上或计算机上。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。手持式显微镜深受消费者的喜爱,它的轻巧便捷是其它显微镜无法超越的,相对于传统光学显微镜它可以提供完美的解决方案让检测工作现场化,高效化。那么,手持数码显微镜有哪些特点?第一、体积小,便于携带,特别适合移动检测、现场检测,大小重量只有普通光学显微镜的1/10,突破传统显微镜使用空间的局限性。第二、观测物体可以将显微放大的图像直接显示在屏幕上,便于观察,而且可以实时拍照、录像,记录检测数据,极大的提高了检测效率。第三、在显微图像软件处理上,可以根据使用需求实现画面反色、黑白、倒置、对比等画面调节功能,同时还可以对显微图像进行数据测量(长度、角度、直径等),最高精度达0.001mm。第四、手持式显微镜可以连接多种显示设备(电视、电脑、投影),便于多人同时分享、讨论,数码教学等。第五、提供多种供电选择,电脑USB供电、干电池供电、锂电池供电,真正实现随时随地,现场检测!第六、根据观察物体及使用环境的的不同,可以提供多种光源(荧光、红外等),最大限度满足使用需求!文章转载于网络更多文章资讯:奥林巴斯显微镜(http://www.microimaging.com.cn/)

  • [经验] 显微镜目镜刻度使用方法

    更加精确的测量需使用目镜测微尺。目镜测微尺具有精细的刻度,安装在目镜筒内。目镜测微尺需用镜台测微尺进行校正。镜台测微尺是一种刻有精细刻度的玻片。假设总放大倍数为400×时,1个镜台测微尺单位0.1mm相当于39个目镜测微尺单位。则每一目镜测微尺单位=0.1/39mm=2.56μm。这时,就可用目镜测微尺测量标本。在上例中,目镜测微尺读数乘以2.56即为镜台测微尺的值。此外,也可用100um的线段表示标本中39个目镜测微尺单位的长度。 显微镜的保养 显微镜是高度精密的仪器。操作时要小心,调节各控制部件绝不能用力过猛。除用擦镜纸外不要用其他物品接触玻璃表面。记住,更换任何部件都将是十分昂贵的。 移动显微镜时,一只手持载物台上部的支架,另一只手托住底座。保持显微镜竖立(防止目镜掉落),轻轻放置。 用干净的擦镜纸轻轻擦拭镜头,每块擦镜纸只能用一次。不能用手指触模镜头,因为很难除净含油的指印,不允许任何溶液(包括水)接触镜头,盐水特别有害。

  • 金相显微镜的测量方法

    1、接触法:接触法是利用金相显微镜的标记对和紧靠测件测量点、线、面的万工显附件-----光学测孔器的测头连在一起的双刻线进行瞄准定位的测量方法。测量时将光学测孔器的测头紧靠件(内、外)表面。当测量孔径时,首先使测头与测件内孔接触,取得最大弦长后,使米字线中间刻线被光学测孔器的双套线套在中间,并在金相显微镜读取一数;然后改变测量方向,使测头在另一侧与测件接触,同样使米字线分划板的中间刻线仍被光学测孔器的双套线套在中间,在金相显微镜上读取另一数。两次读数的差,再加上测头直径的实际值,即为测件的内尺寸,如减去测头直径的实际值,即为测件的外尺寸。2、影像法:影像法是利用金相显微镜的标记,对影像法进行瞄准定位的测量方法。测量时,通常是先用(米字线)分划板上的刻线瞄准测件影像的边缘,并在读数显微镜上读出数值,然后移动工作台以同一条刻线瞄准测件影像的另一边,再作第二次读数。两次读数的差,就是被测件的测量值。3、轴切法:轴切法是利用金相显微镜的标记对通过测件轴心线并利用测量刀上的刻线进行瞄准定位的测量方法。金相显微镜测量刀是万工显的附件。其表面有一刻线,刻线至刃口的尺寸为0.3和0.9毫米两种,测量时,把测量刀放在测量刀垫板上,刻线面通过测件的轴线,并使测刀的刃口和被测面紧紧接触,用相应的米字线去瞄准,测量两把测刀刻线间的距离,就间接测得被测件的测量值。为了避免测量中的计算,在中间垂直米字线的两侧刻有两组共四条对称分布的平行线,每组刻线对中心刻线的距离分别为0.9和2.7毫米,它正好是测刀的刃口到刻线间的距离0.3和0.9毫米的3倍。这样用3倍物镜瞄准时,分划板上的0.9和2.7毫米刻线正好压住测刀上的0.3和0.9毫米刻线,这时测刀上的刃口正好被米字线的中间刻线所瞄准。主要用于螺纹中径测量。

  • 便携式生物显微镜特点及应用

    [url=http://www.f-lab.cn/biomicroscopes/goren-bio.html][b]便携式生物显微镜[/b][/url]是专业为野外研究或现场应用而设计的手持便携式显微镜,具有便携而多功能的独特优势,结构紧凑且坚固耐用,是现场观察研究的理想显微镜。[b]便携式生物显微镜特点[/b]便携式设计且具有实验室级显微镜的性能和实惠的价格多功能设计,可以很容易地修改执行为明场,暗场,相衬,或偏振显微镜多样显微镜器件达到实验室显微镜水平:照明元件、调焦机构、子级光学系统,样品台可由电池供电或110V / 240v电源供电。[img=便携式生物显微镜]http://www.f-lab.cn/Upload/Goren-Bio.jpg[/img][b]便携式生物显微镜[/b]应用 地质学、考古学、生物学、教育、司法、地球科学、生物学、医学、Botany、热带疾病,病理学,艺术学,Mineralogy。[b]便携式生物显微镜结果[img=便携式生物显微镜]http://www.f-lab.cn/Upload/Goren-Bio-results.jpg[/img][img=便携式生物显微镜]http://www.f-lab.cn/Upload/goren-application.JPG[/img][/b](A)数组(“涂抹部分”)从Maresha附近的中始新世沉积放射虫、以色列(显微镜放大倍数:40×);(B)场浸渍和光薄片的土从Tsaghkasar、亚美尼亚(100×,正交偏光镜);(C)结核杆菌(600×,油浸);(D)硅藻(舟形藻,200×)。更多生物显微镜官网:[url]http://www.f-lab.cn/biomicroscopes.html[/url]

  • 显微镜发明者

    显微镜是人类各个时期最伟大的发明物之一。在它发明出来之前,人类关于周围世界的观念局限在用肉眼,或者靠手持透镜帮助肉眼所看到的东西。 显微镜把一个全新的世界展现在人类的视野里。人们第一次看到了数以百计的“新的”微小动物和植物,以及从人体到植物纤维等各种东西的内部构造。显微镜还有助于科学家发现新物种,有助于医生治疗疾病。上图:这是17世纪英国科学家罗伯特·胡克的显微镜。它有一根内装透镜的简易皮管,安放在一个可调整的架子上。灌满水的玻璃球用来把光聚焦到物体上。 最早的显微镜是16世纪末期在荷兰制造出来的。发明者可能是一个叫做札恰里亚斯·詹森的荷兰眼镜商,或者另一位荷兰科学家汉斯·利珀希,他们用两片透镜制作了简易的显微镜,但并没有用这些仪器做过任何重要的观察。 后来有两个人开始在科学上使用显微镜。第一个是意大利科学家伽利略。他通过显微镜观察到一种昆虫后,第一次对它的复眼进行了描述。第二个是荷兰亚麻织品商人安东尼·凡·列文虎克(1632年-1723年),他自己学会了磨制透镜。他第一次描述了许多肉眼所看不见的微小植物和动物。 1931年,恩斯特·鲁斯卡通过研制电子显微镜,使生物学发生了一场革命。这使得科学家能观察到像百万分之一毫米那样小的物体。1986年他被授予诺贝尔奖。

  • 关于显微镜的放大倍数及选择方法推荐

    显微镜包括两组透镜——物镜和目镜。显微镜的的放大倍数主要通过物镜来保证,物镜的最高放大倍数可达100倍,目镜的放大倍数可达25倍。物镜的放大倍数可由下式得出:M物=L/F1式中:L——显微镜的光学筒长度(即物镜后焦点与目镜前焦点的距离);F1——物镜焦距。而A′B′再经目镜放大后的放大倍数则可由以下公式计算:M目=D/F2式中:D——人眼明视距离(250mm); F2——目镜焦距。显微镜的总放大倍数应为物镜与目镜放大倍数的乘积,即:M总=M物×M目=250L/F1*F2在使用中如选用另一台显微镜的物镜时,其机械镜筒长度必须相同,这时倍数才有效。否则,显微镜的放大倍数应予以修正,应为:M=M物×M目×C式中:C——为修正系数。修正系数可用物镜测微尺和目镜测微尺度量出来。放大倍数用符号“×”表示,例如物镜的放大倍数为25×,目镜的放大倍数为10×,则显微镜的放大倍数为25×10=250×。放大倍数均分别标注在物镜与目镜的镜筒上。在使用显微镜观察物体时,应根据其组织的粗细情况,选择适当的放大倍数。以细节部分观察得清晰为准,盲目追求过高的放大倍数,会带来许多缺陷。因为放大倍数与透镜的焦距有关,放大倍数越大,焦距必须越小,同时所看到物体的区域也越小。

  • 显微镜放大倍数的计算方法

    对于我们这些刚刚入行的检测人员来说,操作水平提高得动手练,数据处理就得多动脑子总结,所以今天分享一个常常困扰我们的问题—显微镜的倍数,到底总放大倍数是怎么计算的,所得到的拍摄的照片又是放大了多少倍。===============================================================总放大倍数有两种概念,一种是光学放大倍数,一种是数码放大倍数(只有连接成像设备时才会涉及到数码放大倍数)。 1.光学放大倍数。是指我们从显微镜目镜中观测到物体被放大后的倍数。光学放大倍数的计算方式比较简单,即物镜倍数*目镜倍数。例如:体视显微镜的放大倍数计算,连续变倍体视显微镜的物镜通常是0.7-4.5倍,那在10倍目镜的情况下,这台显微镜的总放大倍数为7-45倍;生物显微镜、金相显微镜的计算则更为简单,一般的物镜配置是4倍、10倍、40倍、100倍,目镜常规配置是10倍,另外还有16倍、20倍等,只要将目镜和物镜的倍数分别相乘就可得到总放大倍数。 2.数码放大倍数。数码放大是指外接设备后,显示到图像上的放大倍数,目前市场上较多的是用三目显微镜,通过CCD设备连接至电脑、监视器或者电视机上进行成像观察,以减轻眼睛的疲劳,同时也便于与他人分享。但是显示到图像上的物体到底是放大了多少倍呢?现向大家推荐两种计算数码放大的方法。 (1)直接对图像进行测量。将测微尺放到显微镜下,然后拿直尺直接测量显示器上测微尺的长度,将显示器上一格的测量结果 /测微尺每格的实际长度(一般在测微尺上都会直接标有每格的长度)=物体被放大的倍数。物体被放大的倍数/当前物镜的倍数=数码放大倍数。通常情况下,会在图像中加比例尺来表示改物体被放大的倍数。 注:如果没有测微尺,可以用直尺代替,同时在计算时可以多测量几格,以减少误差。 (2)通过公式计算实际的放大倍数。 数码放大倍数=物镜倍数**适配器的放大倍数,如果系统放大倍数,还需要乘以系统放大倍数。 注: 1:物镜倍数指的是您现在使用的显微镜的物镜镜头的倍数,如20倍; 2:适配器的放大倍数:指的显微镜与成像设备连接部分的放大倍数,通常为1倍,也有0.35、0.5、0.63倍的; 3:25.4*屏幕尺寸(英寸):这里是把屏幕尺寸换算成毫米计算,1英寸=25.4mm; 4:CCD对角线的长度:指的是CCD的芯片尺寸,常有的是1/3英寸、1/2英寸、2/3英寸的,相对应的长度分别为6mm;8mm;11mm,这个是行业内统一规范的。

  • 显微镜的放放大倍数

    各路英豪,谁知道显微镜的放大倍数的具体算法,请指教!利用摄像头拍摄照片的大小和实际的倍数关系。能举例说明更好!

  • 德国研制出超薄显微镜

    德国夫琅禾费应用光学与精密工程研究所最近研制出一种厚度仅5.3毫米、分辨率达5微米的超薄显微镜,其未来用途可包括皮肤癌变检查和鉴别文件真伪。这家研究所日前发表的新闻公报说,达到同样分辨率的传统显微镜要么只能一次观察一片很小的区域,要么就是对观察对象进行多次扫描,最后组合成图像,费时费力。这种新型显微镜可以对火柴盒大小的观察面积一次成像,成像速度快到即使医生手持这种超薄显微镜,其观察到的影像也不会模糊,对于观察皮肤病变非常实用。

  • 【讨论】这样理解显微镜的放大倍率对吗?

    对于体视显微镜来说,其光学的物镜最多也就是5x,目镜为10x;则人眼通过目镜看到的——总放大倍率=物镜放大×目镜放大=50x然后如果物镜再添个辅助物镜2x,则最大放大100x。对于电脑总的放大倍率来讲,和目镜没有关系,只和物镜和ccd的放大有关:总放大倍数 = 物镜放大倍数 * 数字放大倍数 如果常用的1/2''ccd镜头,其对角线长度为8mm则通过计算机(14''显示器)看到的——总放大倍率=物镜的放大倍数*(电脑屏幕的对角线/ccd或者cmos的靶面尺寸)=5×(14×24.5÷8)=210倍【【【请问大侠:这样计算对吗?也就是说,按照目前的体视显微镜来物镜最大五倍的前提来说,经过摄像头的放大,一般也就是200多倍!囧的是市场上的体视显微镜四五百倍、甚至上千倍是咋计算的呢?谢谢指教】】】】ps 1英寸—靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。   2/3英寸—靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。   1/2英寸—靶面尺寸为宽6.4mm*高4.8mm,对角线8mm。   1/3英寸—靶面尺寸为宽4.8mm*高3.6mm,对角线6mm。   1/4英寸—靶面尺寸为宽3.2mm*高2.4mm,对角线4mm。

  • 【求助】关于金相显微镜倍数(精度)问题?

    各位大侠,请问怎么检查金相显微镜的倍数有无误差?就是说,若我们用400倍检验,但我们怎么去确定目前的400倍就是准确的,是否存在误差呢?有误差又怎么去解决呢? 最近我们在做试验室认可,要编写本专业设备运行检查办法。设备就是洛氏硬度计、维氏硬度计、金相显微镜这方面的,所以发帖请教有无这方面好的建议或模板?感谢

  • 生物显微镜和工具显微镜的原理

    生物显微镜和工具显微镜又称工具制造用显微镜,是一种工具制造时所用高精度的二次元坐标测量仪。生物显微镜工具显微镜是利用光学原理将工件成像经物镜投射至目镜,即借着光线将工件放大成虚像,再利用装物台与目镜网线(eyepiece reticle)等辅助,以作为尺寸、角度和形状等测量工作,可作为检验非金属光泽的工件表面。生物显微镜工具显微镜仪器在立柱上装有一显微镜,放大倍率从10倍至100倍间等数种倍率,工具显微镜的测量系统光源( 灯炮 ) 通电后,光线依次经过二个透镜滤热镜 ( 片)、镜径薄膜、透镜、反射镜、装物台、物镜、反射镜、目镜等,工件与物镜间的距离,随着放大倍率和工件厚薄,可利用对焦旋钮调至理想位置。1、 生物显微镜工具显微镜将人眼瞄准,采集元素的个别点坐标,改为CCD摄像机自动采集元素图像,采集信息量增大,减少人工干预,操作效率提高。 2、生物显微镜工具显微镜软件数据处理结果除以数据表示外,增加了图形信息窗,处理的点、线、图、弧等元素展现在屏幕上,形象直观,条理清晰,避免出错,并且可以输出到AUTOCAD形成工程图。3、引进先进的英国RENISHAW钢带反射光栅系统代替原有的玻璃光栅系统,该系统信号优良,安装间隙大,外形小巧,发热量小,安装调试简单,抗污染,抗腐蚀能力强,耐震性好等众多优点,大大提高了系统的可靠性,是当今国际最先进的光栅系统之一。4、 生物显微镜和工具显微镜生物显微镜工具显微镜除X、Y坐标数字显示外,将测高坐标和分度头角度坐标也改成数显,实现了四坐标全数显化,这一改进对凸轮轴测量十分有益。5、用半导体激光器作为指向器,红色光点打在工件表面,用于快速确定测量部位,避免了因CCD视场面积小带来的找象困难,解决了目前图像系统的通病。引用:www.bsdgx.com

  • 【转帖】金相显微镜和生物显微镜的区别

    生物显微镜与金相显微镜的区别主要是在照明方式与物镜上面: 1、生物显微镜用的是透射照明,一般用来观察透时和半透明的样本,不能用来观察不透明物体,而金相显微镜主要是落射照明方式(也叫同轴照明),光源从物镜射出,主要用于观察不透明样本的表面,当然也有附带透射照明装置的较高级金相显微镜,可同时用于观察透明样本。 2、从物镜来看,生物显微镜的高倍物镜都有考虑盖玻片厚度(0.17)和载玻片、培养器皿厚度(1.2),所以其物镜是通常标有 /0.17(正置显微镜)、 /1.2(倒置显微镜),正置生物显微镜10倍以下物镜则是 /-,也就是可以不考虑,这是为了校正玻璃对于光折射的影响,而金相显微镜的物镜通常标有/0 。

  • 【转帖】显微镜锦之堂显微镜常识--光学显微镜的组成结构和分类

    本文来自显微镜之家转贴显微镜之家融合了各种进口国产显微镜的集中展示,集显微镜知识/咨询/动态等于一体的显微镜之家 http://goldroom.zhan.cn.yahoo.com/登陆指导!光学显微镜一般由载物台、聚光照相系统物镜、目镜和调焦机构组成。载物台用于承放被观察的物体,利用调焦旋扭可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成像,它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。物镜位于被观察物体附近,是实现第一级放大的镜头,在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。物镜是显微镜对成像质量优劣起决定性作用的光学元件,常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍,按照所说的所能看到的视场大小,目镜可分为视场较小的普通目镜和视场较大的大视场目镜(或称广角目镜)两类。载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像.用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距,分辨率和放大倍率是两个不同的但又有联系的概念。当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廊虽大但细节不清的图像。聚光照明系统对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明,聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中没有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微调结构。

  • 为什么金相显微镜一般最大倍率只能达到1500倍

    金相显微镜的放大倍数取决于它所采用的观察波的波长,所采用的波的波长越短,能放大的倍数就越大,光是一种电磁波,可见光波长一般在380-780nm之间, 所以金相显微镜的放大倍数就有个上限,也就是1500倍。 18世纪70年代,德国物理学家恩斯特?阿贝发现,可见光由于其波动特性会发生衍射,因而光束不能无限聚焦。根据这个阿贝定律,可见光能聚焦的最小直径是光波波长的三分之一,也就是200纳米。一个多世纪以来,200纳米的“阿贝极限”一直被认为是光学显微镜理论上的分辨率极限,小于这个尺寸的物体必须借助电子显微镜或隧道扫描显微镜才能观察。 除了我们在金相分析用的金相显微镜,根据德布罗意提出的物质波假说,任何实物粒子都有波动性,且有具体的计算公式,根据计算,构成自然万物的电子的波动波长会短到10的负几十次方那么小,于是,人们设计并制造了电子显微镜,也就是今天能看到原子的神奇的显微镜了。

  • 【分享】德国研制出超薄显微镜

    新华社柏林5月3日电(记者班玮)德国夫琅禾费应用光学与精密工程研究所最近研制出一种厚度仅5.3毫米、分辨率达5微米的超薄显微镜,其未来用途可包括皮肤癌变检查和鉴别文件真伪。   这家研究所日前发表的新闻公报说,达到同样分辨率的传统显微镜要么只能一次观察一片很小的区域,要么就是对观察对象进行多次扫描,最后组合成图像,费时费力。这种新型显微镜可以对火柴盒大小的观察面积一次成像,成像速度快到即使医生手持这种超薄显微镜,其观察到的影像也不会模糊,对于观察皮肤病变非常实用。  达到这种观察效果的奥秘在于该显微镜用于成像的部分由无数紧密排列的微小透镜组成,每个透镜仅对观察对象的局部成像,每个局部的面积只有0.09平方毫米,与此同时显微镜内的软件能将这些微小局部组合成整体图像。这些微小透镜由特殊模具对高分子材料加工制成,可以批量生产,因而成本相对低廉。  目前德国研究人员已研制出这种超薄显微镜的样品,但批量生产至少还需一两年时间。

  • LEICA显微镜-思贝舒专业销售LEICA显微镜

    Leica拥有160年显微镜生产历史,以高质量光学系统而闻名。Leica一贯注重产品研发和最新技术应用,其产品质量一直走在显微镜技术前列。Leica显微镜拥有多项专利和世界首创技术。作为显微系统领域的开拓者和先驱,Leica光学系统赢得多项荣誉。一、LEICA显微镜的应用领域作为显微系统的高端产品,Leica一直牢牢占据高校、研究所、科研机构、大型企业、跨国公司等市场,服务于钢铁、冶金、机械、航空航天、汽车、轮船、、仪器仪表、电力、地质、石油、石化、陶瓷、医院、生命科学等领域。二、LEICA立体显微镜有如下5大特点:1.双目镜筒中的左右两光束不是平行,而是具有一定的夹角——体视角(一般为12度---15度),因此成像具有三维立体感;2.像是直立的,便于操作和解剖,这是由于在目镜下方的棱镜把像倒转过来的缘故;3.虽然放大率不如常规显微镜,但其工作距离很长4.焦深大,便于观察被检物体的全层。5.视场直径大。三、LEICA显微镜的机械维护使用防尘罩是保证显微镜处于良好机械和物理状态的最重要的因素。显微镜的外壳如有污迹,能用乙醇或肥皂水来清洁(无用其他有机溶剂来清洁),但切勿让这些清洗液渗入显微镜内部,造成显微镜内部电子部件的短路或烧毁。保持显微镜使用场地的干燥,尽管每台徕卡系列显微镜均采用了特殊的防霉处理工艺,但当显微镜长期工作在湿度较大的环境中,还是容易增加霉变的几率,因此如显微镜不得不工作在这些湿度较大的环境中,建议使用除湿机。四、使用LEICA显微镜的建议采取下列措施,或许能更好的延长您的显微镜使用时间并使之保持良好的工作状态。(1)每次关闭显微镜电源前,请将显微镜灯光调至最暗。(2)关闭显微镜电源后,请等灯箱完全冷却后(约15分钟后),再罩上显微镜防尘罩。(3)开启显微镜电源后,若暂时不使用,可以将显微镜灯光调至最暗,而无需频繁开关显微镜电源。显微镜工作一年后,宜每年至少做一次专业的维护保养。本文转自:***

  • 新电子显微镜可放大2500万倍观察分子结构

    科技日报 2012年03月17日 星期六 本报讯 日本京都大学化学研究所的一个研究小组对电子显微镜进行了改进,使其对碳、氮等含有有机结晶的分子的观察倍率达到2500万倍,能够清晰地观察到以前无法确认的分子。 电子显微镜使用电子束照射物体,通过透过物体的电子束强弱和形状在计算机上变换成为图像,电子束越细微地震动就越能形成高倍率和鲜明的图像。但有机结晶容易被电子束破坏,迄今为止电子显微镜观察有机结晶的界限是600万倍。研究小组使用一半的电子束宽度,同时开发出使其更为细微震动的技术,从而不会破坏分子结构,达到高倍率显微观察效果。该研究发表在美国《科学》杂志上。 研究小组负责人仓田称:“这是迄今为止首次清晰地观测到有机结晶的结构。今后将对其进行详细解析。”(陈超)

  • 电子显微镜和数码显微镜的区别

    ①照明源不同。电镜所用的照明源是电子枪发出的电子流,而光镜的照明源是可见光(日光或灯光),由于电子流的波长远短于光波波长,故电镜的放大及分辨率显著地高于光镜。   ②透镜不同。电镜中起放大作用的物镜是电磁透镜(能在中央部位产生磁场的环形电磁线圈),而光镜的物镜则是玻璃磨制而成的光学透镜。电镜中的电磁透镜共有三组,分别与光镜中聚光镜、物镜和目镜的功能相当。   ③成像原理不同。在电镜中,作用于被检样品的电子束经电磁透镜放大后打到荧光屏上成像或作用于感光胶片成像。其电子浓淡的差别产生的机理是,电子束作用于被检样品时,入射电子与物质的原子发生碰撞产生散射,由于样品不同部位对电子有不同散射度,故样品电子像以浓淡呈现。而光镜中样品的物像以亮度差呈现,它是由被检样品的不同结构吸收光线多少的不同所造成的。   ④所用标本制备方式不同,电镜观察所用组织细胞标本的制备程序较复杂,技术难度和费用都较高,在取材、固定、脱水和包埋等环节上需要特殊的试剂和操作,最后还需将包埋好的组织块放人超薄切片机切成50~100nm厚的超薄标本片。而光镜观察的标本则一般置于载玻片上,如普通组织切片标本、细胞涂片标本、组织压片标本和细胞滴片标本等。   电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替。光子“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。   光学显微镜的分辨率与光波的波长有关。对于接近和小于光波波长的物体光学显微镜就无能为力了。电子运动的波长比光波波长短的多,就可以看到更细小的物体。光学显微镜是由一组光学镜头组成的放大成像系统,而电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替光子,这样就可以看到比光学系统能看到的更小的物体。   所谓“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。

  • 【资料】金相显微镜

    显微镜的结构性能及使用显微镜的好坏除了本身质量问题主要看放大倍数与可调节性,下附说明: (一)显微镜的主要构造 普通光学显微镜的构造主要分为三部分:机械部分、照明部分和光学部分。 1.机械部分 (1)镜座:是显微镜的底座,用以支持整个镜体。 (2)镜柱:是镜座上面直立的部分,用以连接镜座和镜臂。 (3)镜臂:一端连于镜柱,一端连于镜筒,是取放显微镜时手握部位。 (4)镜筒:连在镜臂的前上方,镜筒上端装有目镜,下端装有物镜转换器。 (5)物镜转换器(旋转器):接于棱镜壳的下方,可自由转动,盘上有3-4个圆孔,是安装物镜部位,转动转换器,可以调换不同倍数的物镜,当听到碰叩声时,方可进行观察,此时物镜光轴恰好对准通光孔中心,光路接通。 (6)镜台(载物台):在镜筒下方,形状有方、圆两种,用以放置玻片标本,中央有一通光孔,我们所用的显微镜其镜台上装有玻片标本推进器(推片器),推进器左侧有弹簧夹,用以夹持玻片标本,镜台下有推进器调节轮,可使玻片标本作左右、前后方向的移动。 (7)调节器:是装在镜柱上的大小两种螺旋,调节时使镜台作上下方向的移动。 ①粗调节器(粗螺旋):大螺旋称粗调节器,移动时可使镜台作快速和较大辐度的升降,所以能迅速调节物镜和标本之间的距离使物象呈现于视野中,通常在使用低倍镜时,先用粗调节器迅速找到物象。 ②细调节器(细螺旋):小螺旋称细调节器,移动时可使镜台缓慢地升降,多在运用高倍镜时使用,从而得到更清晰的物象,并借以观察标本的不同层次和不同深度的结构。 2.照明部分 装在镜台下方,包括反光镜,集光器。 (1)反光镜:装在镜座上面,可向任意方向转动,它有平、凹两面,其作用是将光源光线反射到聚光器上,再经通光孔照明标本,凹面镜聚光作用强,适于光线较弱的时候使用,平面镜聚光作用弱,适于光线较强时使用。 (2)集光器(聚光器)位于镜台下方的集光器架上,由聚光镜和光圈组成,其作用是把光线集中到所要观察的标本上。 ①聚光镜:由一片或数片透镜组成,起汇聚光线的作用,加强对标本的照明,并使光线射入物镜内,镜柱旁有一调节螺旋,转动它可升降聚光器,以调节视野中光亮度的强弱。 ②光圈(虹彩光圈):在聚光镜下方,由十几张金属薄片组成,其外侧伸出一柄,推动它可调节其开孔的大小,以调节光量。 3.光学部分 (1)目镜:装在镜筒的上端,通常备有2-3个,上面刻有5×、10×或15×符号以表示其放大倍数,一般装的是10×的目镜。 (2)物镜:装在镜筒下端的旋转器上,一般有3-4个物镜,其中最短的刻有“10×”符号的为低倍镜,较长的刻有“40×”符号的为高倍镜,最长的刻有“100×”符号的为油镜,此外,在高倍镜和油镜上还常加有一圈不同颜色的线,以示区别。 显微镜的放大倍数是物镜的放大倍数与目镜的放大倍数的乘积,如物镜为10×,目镜为10×,其放大倍数就为10×10=100。 (二)显微镜的使用方法 1.低倍镜的使用方法 (1)取镜和放置:显微镜平时存放在柜或箱中,用时从柜中取出,右手紧握镜臂,左一手托住镜座,将显微镜放在自己左肩前方的实验台上,镜座后端距桌边1-2寸为宜,便于坐着操作。 (2)对光:用拇指和中指移动旋转器(切忌手持物镜移动),使低倍镜对准镜台的通光孔(当转动听到碰叩声时,说明物镜光轴已对准镜筒中心)。打开光圈,上升集光器,并将反光镜转向光源,以左眼在目镜上观察(右眼睁开),同时调节反光镜方向,直到视野内的光线均匀明亮为止。 (3)放置玻片标本:取一玻片标本放在镜台上,一定使有盖玻片的一面朝上,切不可放反,用推片器弹簧夹夹住,然后旋转推片器螺旋,将所要观察的部位调到通光孔的正中。 (4)调节焦距:以左手按逆时针方向转动粗调节器,使镜台缓慢地上升至物镜距标本片约5毫米处,应注意在上升镜台时,切勿在目镜上观察。一定要从右侧看着镜台上升,以免上升过多,造成镜头或标本片的损坏。然后,两眼同时睁开,用左眼在目镜上观察,左手顺时针方向缓慢转动粗调节器,使镜台缓慢下降,直到视野中出现清晰的物象为止。 如果物象不在视野中心,可调节推片器将其调到中心(注意移动玻片的方向与视野物象移动的方向是相反的)。如果视野内的亮度不合适,可通过升降集光器的位置或开闭光圈的大小来调节,如果在调节焦距时,镜台下降已超过工作距离(5.40mm)而未见到物象,说明此次操作失败,则应重新操作,切不可心急而盲目地上升镜台。 2.高倍镜的使用方法 (1)选好目标:一定要先在低倍镜下把需进一步观察的部位调到中心,同时把物象调节到最清晰的程度,才能进行高倍镜的观察。 (2)转动转换器,调换上高倍镜头,转换高倍镜时转动速度要慢,并从侧面进行观察(防止高倍镜头碰撞玻片),如高倍镜头碰到玻片,说明低倍镜的焦距没有调好,应重新操作。 (3)调节焦距:转换好高倍镜后,用左眼在目镜上观察,此时一般能见到一个不太清楚的物象,可将细调节器的螺旋逆时针移动约0.5-1圈,即可获得清晰的物象(切勿用粗调节器!) 如果视野的亮度不合适,可用集光器和光圈加以调节,如果需要更换玻片标本时,必须顺时针(切勿转错方向)转动粗调节器使镜台下降,方可取下玻片标本。 (三)显微镜使用的注意事项 1.持镜时必须是右手握臂、左手托座的姿势,不可单手提取,以免零件脱落或碰撞到其它地方。 2.轻拿轻放,不可把显微镜放置在实验台的边缘,以免碰翻落地。 3.保持显微镜的清洁,光学和照明部分只能用擦镜纸擦拭,切忌口吹手抹或用布擦,机械部分用布擦拭。 4.水滴、酒精或其它药品切勿接触镜头和镜台,如果沾污应立即擦净。 5.放置玻片标本时要对准通光孔中央,且不能反放玻片,防止压坏玻片或碰坏物镜。 6.要养成两眼同时睁开的习惯,以左眼观察视野,右眼用以绘图。 7.不要随意取下目镜,以防止尘土落入物镜,也不要任意拆卸各种零件,以防损坏。 8.使用完毕后,必须复原才能放回镜箱内,其步骤是:取下标本片,转动旋转器使镜头离开通光孔,下降镜台,平放反光镜,下降集光器(但不要接触反光镜)、关闭光圈,推片器回位,盖上绸布和外罩,放回实验台柜内。最后填写使用登记表。(注:反光镜通常应垂直放,但有时因集光器没提至应有高度,镜台下降时会碰坏光圈,所以这里改为平放)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制