当前位置: 仪器信息网 > 行业主题 > >

核酸分子杂交仪

仪器信息网核酸分子杂交仪专题为您提供2024年最新核酸分子杂交仪价格报价、厂家品牌的相关信息, 包括核酸分子杂交仪参数、型号等,不管是国产,还是进口品牌的核酸分子杂交仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合核酸分子杂交仪相关的耗材配件、试剂标物,还有核酸分子杂交仪相关的最新资讯、资料,以及核酸分子杂交仪相关的解决方案。

核酸分子杂交仪相关的论坛

  • 自动分子杂交仪详细说明

    [url=http://www.f-lab.cn/hybridization/traymix-s4.html][b]自动分子杂交仪[/b]traymix-s4[/url]是一种进口[b]分子杂交站[/b]和[b]分子杂交微混合器[/b],采用主动混合中的混沌平流技术 Chaotic Advection technolog实现先进的[b]分子混合杂交仪[/b]。[b]自动分子杂交仪[/b]能够在整个杂交区域(21×60毫米)实现分子的均匀分散,从而得到最好的杂交效果。我们的专利技术-主动混合混沌平流专利技术能够使用 更少样本数量(5皮摩尔),并显著减少杂交时间 大大提高杂交效率,并且可以显著降低背景噪声,提高荧光信号强度,达到最佳杂交效果。我们主动混合混沌平 流专利消除了人为现象,如通常与其他系统一起观察到的死角或气泡,这样可以让使用者一开始就注意到问题,很快在杂交和清洗实验中取得成功,避免浪费时间。[img=自动分子杂交仪]http://www.f-lab.cn/Upload/traymix_s4_5_.jpg[/img][b]自动分子杂交仪[/b]是全自动化分子杂交站,可避免任何错误,能够确保用户获得可重复的结果。自动杂交站具有直观的和方便操作的软件WinTrayMix™ ,非常方便 用户使用,即使是非专业人员经过阅读手册后也可操作。生物学家可以使用一个简单明了的图形用户界面,输入各种的参数和杂交后的步骤:预杂交,杂交和多次清 洗。自动杂交清洗工作站为用户提供了两种操作模式,专家模式和常规模式。其中专家模式允许用户定制自己的方案,具有制定复杂实验进行多级杂交的可能性。这种模式 可用于实验室研究。常规模式可由医院和诊断实验室使用,在他们的诊断检测中的使用可靠的治疗方案。自动化杂交站TrayMix™ S4也可以用于变性操作。[b]自动分子杂交仪[/b]具有显著技术进步 :[list][*]减少微流体混合循环:250μL,以前系统中是513μL。这种减小允许使用更少的试剂和浓度增加的样品,与主动混合技术相结合,提高了杂交精确性(降低背景噪声和更高的斑点强度)。[*]温度调节改进(+/-0.1°C)[*]变性步骤具有可能性[*]与几个温度阶段杂交可在一个简单的方法(专家模式)进行设置。[/list]使用[b][b]自动分子杂交仪[/b][/b]用户可以提高应用的分析结果,如基因表达分析,基因分型,SNP基因分型,染色体异常和遗传性疾病的检测分析 结果,比较基因组杂交(CGH),荧光原位杂交(FISH)蛋白质芯片实验(如DNA /蛋白质相互作用,蛋白质/蛋白质相互作用)。[b][b]自动分子杂交仪[/b]特色[/b]自动化和主动混合 可获得一致和可重复结果减少每次分析的时间和成本[b]自动分子杂交仪[/b]参数外形尺寸:52.6x46.5x21cm重量:19kg处理能力:可单独处理或同时处理4个玻片杂交面积:21x60mm杂交容量: 杂交室60uL 微流体循环:250uL微流体系统: manifold +chamber+caplillaries, 兼容所有常用试剂并具有抗化学腐蚀功能采样量:5uL ~60uL温度范围:25~75°C (+/-0,1°C)编程控制软件:Windows XP, vista, windows7自动分子杂交仪:[url]http://www.f-lab.cn/hybridization/traymix-s4.html[/url]

  • 【转帖】原位杂交组织化学的方法和常用试剂配制!

    原位杂交组织化学的方法和常用试剂配制  一、杂交前准备  (一)DEPC水是经DEPC处理过的灭菌蒸馏水。  DEPC即二乙基焦碳酸酯(diethylprocarbonate),可灭活各种蛋白质,是RNA酶的强抑制剂。原位杂交在杂交及其以前的各步处理中,所有液体试剂都应经DEPC处理。方法是:取市售DEPc 1ml,加入1L待处理水(蒸馏水等)中,经猛烈振摇后,于室温静止数小时,然后高压灭菌,以除去降解DEPC(DEPC分解为CO2和乙醇)。有些试剂可直接加入DEPC,终浓度一般为0.1%~0.4%,原则上在杂交及其以前的步骤中,所有液体试剂均需用DEPC处理,或用DEPC水配制,包括乙醇的稀释。此外,接触标本以及标本有关的空中的洗涤也需DEPC水洗涤。  注意:DEPC是一种潜在的致癌物质,在操作中应尽量在通风的条件下进行,并避免接触皮肤。②含有Tris缓冲液的溶液中,不能加入DEPC。  (二)载玻片的处理  组织原位杂交,常在载玻片上进行,故载玻片的洗涤至关重要,必须保持清洁,并且不能有任何核酸的污染。处理方法如下:  (1)先经洗衣粉浸泡过夜,次日自来水冲洗后,泡酸数小时以上,取出后再用流水冲洗,双蒸水冲洗2~3次,置160℃以上烤箱中烧烤4h以上,或经15磅高压灭菌20min。经以上处理可清除载片上的核酸酶。(2)HCl处理法试剂: 1M HCL, DEPC 水, 95%乙醇步骤: a. 玻片在室温下于1M HCL中浸泡30分钟 b. DEPC水中洗片 c. 95%乙醇中洗片 d. 空气中干燥 e. 重复一遍 a—d. f. 铝箔包好备用.  (三)硅化  【方法1】(1)将一扎新的盖玻片散开,在通风条件下于0.1mol/L的HCI中煮20min,等其冷却后,倒掉盐酸。  (2)用去离子水沉漂洗玻片,竖放在架子上自然干燥。  (3)硅化盖玻片:通风条件下,将单块的盖玻片在二甲二氯硅浣(dimethyldichorsilane,DMDC)液中浸几下,竖入在架子上干燥。  (4)收集干燥的盖玻片于一可耐热的petri氏盘(或培养皿)中,用去离子水漂洗数次,彻底清洗。  (5)用铝箔将装有盖玻片的培养皿包好,于180℃烘烤4h过夜。取出待冷至室温后,即可进行后续处理。附:2%DMDCDMDC 2ml 三氯乙烷 98ml  配制:按比例两者充分混匀,静止待气泡消失即可使用。  用途:硅化玻片(载片、盖片均可)。  【方法2】将经过洗净的玻璃盖片分散开放在一金属网中,并将该网放入一接有真空泵的干燥器中。同时,在干燥器中放一盛有约1m二甲二氯硅浣(dimethyldiorosilane,DMDC)的小烧杯。盖好干燥器(确保密闭),抽真空约5min,然后让空气冲入。取出盛有盖片的金属网架,用锡箔纸包埋,于250℃以上烘烤4h以上,最好过夜。冷却后备用。   本法可用于玻璃及塑料器皿的硅化。塑料器皿只能于60℃烧干。【方法3】APES(氨丙基三乙氧基硅浣)法 试剂: 2%的APES/丙酮(V/V), 丙酮, DEPC水 步骤: 1. 玻片先于室温中在APES液中浸泡10秒2. 丙酮中洗涤3.DEPC水中漂洗4.空气中干燥5.4度保存(最好用铝箔包好,避免污染)

  • 【转帖】酵母双杂交系统的发展和应用

    随着对多种重要生物的大规模基因组测序工作的完成,基因工程领域又迎来了一个新的时代---功能基因组时代。它的任务就是对基因组中包含的全部基因的功能加以认识。生物体系的运作与蛋白质之间的互相作用密不可分,例如:DNA合成、基因转录激活、蛋白质翻译、修饰和定位以及信息传导等重要的生物过程均涉及到蛋白质复合体的作用。能够发现和验证在生物体中相互作用的蛋白质与核酸、蛋白质与蛋白质是认识它们生物学功能的第一步。   酵母双杂交技术作为发现和研究在活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,在近几年来得到了广泛运用。酵母双杂交系统是在真核模式生物酵母中进行的,研究活细胞内蛋白质相互作用,对蛋白质之间微弱的、瞬间的作用也能够通过报告基因的表达产物敏感地检测得到,它是一种具有很高灵敏度的研究蛋白质之间关系的技术。大量的研究文献表明,酵母双杂交技术既可以用来研究哺乳动物基因组编码的蛋白质之间的互作,也可以用来研究高等植物基因组编码的蛋白质之间的互作。因此,它在许多的研究领域中有着广泛的应用。本文就酵母双杂交的技术平台和应用加以介绍。  酵母双杂交系统的建立是基于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。反式转录激活因子,例如酵母转录因子GAL4在结构上是组件式的(modular),往往由两个或两个以上结构上可以分开,功能上相互独立的结构域(domain)构成,其中有DNA结合功能域(DNA binding domain,DNA-BD)和转录激活结构域(activation domain,DNA-AD)。这两个结合域将它们分开时仍分别具有功能,但不能激活转录,只有当被分开的两者通过适当的途径在空间上较为接近时,才能重新呈现完整的GAL4转录因子活性,并可激活上游激活序列(upstream activating sequence, UAS)的下游启动子,使启动子下游基因得到转录。  根据这个特性,将编码DNA-BD的基因与已知蛋白质Bait protein的基因构建在同一个表达载体上,在酵母中表达两者的融合蛋白BD-Bait protein。将编码AD的基因和cDNA文库的基因构建在AD-LIBRARY表达载体上。同时将上述两种载体转化改造后的酵母,这种改造后的酵母细胞的基因组中既不能产生GAL4,又不能合成LEU、TRP、HIS、ADE,因此,酵母在缺乏这些营养的培养基上无法正常生长。当上述两种载体所表达的融合蛋白能够相互作用时,功能重建的反式作用因子能够激活酵母基因组中的报告基因HIS、ADE、LACZ、MEL1,从而通过功能互补和显色反应筛选到阳性菌落。将阳性反应的酵母菌株中的AD-LIBRARY载体提取分离出来,从而对载体中插入的文库基因进行测序和分析工作。在酵母双杂交的基础上,又发展出了  酵母单杂交、酵母三杂交和酵母的反向杂交技术。它们被分别用于核酸和文库蛋白之间的研究、三种不同蛋白之间的互作研究和两种蛋白相互作用的结构和位点。  基于酵母双杂交技术平台的特点,它已经被应用在许多研究工作当中。 1、利用酵母双杂交发现新的蛋白质和蛋白质的新功能  酵母双杂交技术已经成为发现新基因的主要途径。当我们将已知基因作为诱饵,在选定的cDNA文库中筛选与诱饵蛋白相互作用的蛋白,从筛选到的阳性酵母菌株中可以分离得到AD-LIBRARY载体,并从载体中进一步克隆得到随机插入的cDNA片段,并对该片段的编码序列在GENEBANK中进行比较,研究与已知基因在生物学功能上的联系。另外,也可作为研究已知基因的新功能或多个筛选到的已知基因之间功能相关的主要方法。例如:Engelender等人以神经末端蛋白alpha-synuclein 蛋白为诱饵蛋白,利用酵母双杂交CLONTECH MATCHMARKER SYSTEM 3为操作平台,从成人脑cDNA文库中发现了与alpha-synuclein相互作用的新蛋白Synphilin-1,并证明了Synphilin-1与alpha-synuclein 之间的相互作用与帕金森病的发病有密切相关。为了研究两个蛋白之间的相互作用的结合位点,找到影响或抑制两个蛋白相互作用的因素,Michael等人又利用酵母双杂交技术和基因修饰证明了alpha-synuclein的1-65个氨基酸残基和Synphilin-1的349-555个氨基酸残基之间是相互作用的位点。研究它们之间的相互作用位点有利于基因治疗药物的开发。  2、利用酵母双杂交在细胞体内研究抗原和抗体的相互作用  利用酶联免疫(ELISA)、免疫共沉淀(CO-IP)技术都是利用抗原和抗体间的免疫反应,可以研究抗原和抗体之间的相互作用,但是,它们都是基于体外非细胞的环境中研究蛋白质与蛋白质的相互作用。而在细胞体内的抗原和抗体的聚积反应则可以通过酵母双杂交进行检测。例如:来源于矮牵牛的黄烷酮醇还原酶DFR与其抗体scFv的反应中,抗体的单链的三个可变区A4、G4、H3与抗原之间作用有强弱的差异。Geert等利用酵母双杂交技术,将DFR作为诱饵蛋白,编码抗体的三个可变区的基因分别被克隆在AD-LIBRARY载体上,将BD-BAIT载体和每种AD-LIBRARY载体分别转化改造后的酵母菌株中,并检测报告基因在克隆的菌落中的表达活性,从而在活细胞的水平上检测抗原和抗体的免疫反应。  3、利用酵母双杂交筛选药物的作用位点以及药 物对蛋白质之间相互作用的影响  酵母双杂交的报告基因能否表达在于诱饵蛋白与靶蛋白之间的相互作用。对于能够引发疾病反应的蛋白互作可以采取药物干扰的方法,阻止它们的相互作用以达到治疗疾病的目的。例如:Dengue病毒能引起黄热病、肝炎等疾病,研究发现它的病毒RNA复制与依赖于RNA的RNA聚合酶(NS5)与拓扑异构酶NS3,以及细胞核转运受体BETA-importin的相互作用有关。研究人员通过酵母双杂交技术找到了这些蛋白之间相互作用的氨基酸序列。如果能找到相应的基因药物阻断这些蛋白之间的相互作用,就可以阻止RNA病毒的复制,从而达到治疗这种疾病的目的。  4、利用酵母双杂交建立基因组蛋白连锁图(Genome Protein Linkage Map)众多的蛋白质之间在许多重要的生命活动中都是彼此协调和控制的。基因组中的编码蛋白质的基因之间存在着功能上的联系。通过基因组的测序和序列分析发现了很多新的基因和EST序列,HUA等人利用酵母双杂交技术,将所有已知基因和EST序列为诱饵,在表达文库中筛选与诱饵相互作用的蛋白,从而找到基因之间的联系,建立基因组蛋白连锁图。对于认识一些重要的生命活动:如信号传导、代谢途径等有重要意义。

  • 分子杂交仪到底是个啥玩意啊?

    分子杂交仪又称“分子杂交炉”或“分子杂交箱”根据不同实验的需要可以选择不同的规格型号的杂交仪。是现代实验室采用杂交技术的理想设备,可替代塑料杂交袋和水浴摇床,并避免杂交袋破损带来污染危险。杂交炉采用微机控温精确,炉内空气循环装置设计独特,升温速度快等特点。  广泛地使用于克隆基因的筛选、酶切图谱的制作、基因组中特定基因序列的定性、定量检测和疾病的诊断等方面。因而它不仅在分子生物学领域中具有广泛地应用,而且在临床诊断上的应用也日趋增多。file:///c:/DOCUME~1/ADMINI~1/APPLIC~1/360se6/USERDA~1/Temp/T0129F~1.JPG感觉就以烘箱有木有?

  • DNA快速杂交--DNA杂交历史性进步

    从传统 的杂交炉,杂交箱里进行的northern杂交和southern杂交。经过方法改进如今,大大缩短了实验时间。(以下将详细说明)DNA导流杂交技术将带你进入杂交次世代。

  • 杂交瘤技术应用、优缺点、常见问题解析

    [font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/hybridoma-technology][b]杂交瘤技术[/b][/url]又称细胞融合技术,是将两个或多个细胞融合成一个。[/font] [font=宋体]融合后形成的杂交瘤细胞承袭了两亲本细胞的特征。[/font] [font=宋体]自发的细胞融合很少发生,当加入一种融合剂,如:聚乙二醇(常用)、仙台病毒或溶血卵磷脂后,两种细胞就可发生融合。[/font] [font=宋体]首先是质膜互相融合,形成具有两个或多个核的异核体,细胞进一步分裂时,核互相融合,形成了杂交细胞。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]杂交瘤技术优缺点:[/font][/b][font=宋体]优点:与传统的免疫动物方法制备抗体相比,利用杂交瘤技术可以制备出高纯度的单抗,并且可以进行单克隆抗体的大量生产。[/font][font=宋体][font=宋体]缺点:[/font][font=Calibri]a.[/font][font=宋体]操作步骤繁琐。[/font][font=Calibri]b.[/font][font=宋体]利用杂交瘤技术生产出的单克隆抗体多为鼠源性,而鼠源性抗体在应用中有诸多问题,例如被人类免疫系统所识别,产生人抗鼠抗体[/font][font=Calibri]( HAMA[/font][font=宋体])反应、在人体循环系统中很快被清除等。[/font][/font][font=宋体] [/font][b][font=宋体]杂交瘤技术应用:[/font][/b][font=宋体] [/font][font=宋体]①诊断应用:单克隆抗体在疾病诊断中发挥了重要作用,其优点在于诊断准确且无交叉反应,例如在乙型肝炎及潜伏的乙型肝炎病毒的诊断中,单克隆抗体能显著减少假阴性的漏诊。[/font][font=宋体]②治疗载体:单克隆抗体也可作为治疗疾病的载体。通过与抗肿瘤药物结合,单克隆抗体能在体内选择性集中攻击肿瘤细胞,具有靶向性,从而减少对正常组织的损伤并减轻抗癌药物的副作用。因此,载药单克隆抗体被誉为“生物导弹”。[/font][font=宋体][font=宋体]③异种蛋白质问题:目前大多数单克隆抗体为鼠[/font][font=Calibri]-[/font][font=宋体]鼠型,对于人体来说属于异种蛋白质,容易引起排异反应,限制了其在治疗中的应用。[/font][/font][font=宋体][font=宋体]④人[/font][font=Calibri]-[/font][font=宋体]人型单克隆抗体的研究:为了解决排异问题,研究者正在努力研发人[/font][font=Calibri]-[/font][font=宋体]人型单克隆抗体,以利于其在治疗中的广泛应用。[/font][/font][font=宋体] [/font][b][font=宋体]杂交瘤技术常见问题解析:[/font][/b][font=宋体] [/font][font=宋体][font=宋体]①电融合和[/font][font=Calibri]PEG[/font][font=宋体]融合的区别?[/font][/font][font=宋体][font=Calibri]PEG[/font][font=宋体]化学融合是利用聚乙二醇分子能够改变细胞膜结构的特性来实现细胞融合的过程。聚乙二醇可以使两个细胞接触点质膜的脂质分子发生疏散和重组,两个细胞接触部位的质膜由于相互亲和以及彼此的表面张力作用,从而发生细胞融合。电融合则是先通过高频交流电压,使细胞成串珠状排列,实现点接触;然后施加方波脉冲,击穿两个细胞接触部位的质膜,质膜脂质分子发生重组,同时由于细胞表面张力作用,完成细胞融合。电融合法比[/font][font=Calibri]PEG[/font][font=宋体]融合法有明显的优点:细胞融合率高,有利于杂交瘤的筛选;电脉冲击穿对细胞的损伤小,有利于融合后细胞的生长增殖;可直接观察融合过程;便于有目的地控制选择融合条件。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②为什么要推荐进行[/font][font=Calibri]2~3[/font][font=宋体]轮有限稀释获得稳定的杂交瘤细胞株?[/font][/font][font=宋体][font=宋体]阳性单克隆细胞的获得通常进行至少[/font][font=Calibri]2[/font][font=宋体]轮有限稀释,原因主要考虑两点。第一,有限稀释过程中,大多数是通过实验者在显微镜下观察细胞团状态来判定是否是单克隆,存在一定的主观经验值,至少进行两轮有限稀释可以增加判断的准确性;第二,杂交瘤细胞由两个细胞融合而成,存在基因的不稳定性,连续[/font][font=Calibri]2[/font][font=宋体]轮有限稀释,客观上增加了筛选中细胞培养时间,有利于淘汰不稳定的杂交瘤细胞株。[/font][/font][font=宋体] [/font][font=宋体]③为什么要使用核酸免疫?[/font][font=宋体]重组蛋白由于免疫靶向明确、剂量可控等优势,通常作为动物免疫阶段的首选免疫原。但有些重组蛋白因为表达纯化困难,很难大量获得并用于动物免疫;另外,重组蛋白与天然样本之间存在或多少的结构差异。而核酸免疫,跳过了蛋白表达纯化的过程,成功避开了蛋白生产的难题,通过核酸体内表达的蛋白结构也更加接近天然蛋白,故而可以作为重组蛋白免疫的有效补充手段。但核酸免疫的免疫剂量很难判断,整体免疫效价也会普遍低于蛋白和多肽免疫。[/font][font=宋体] [/font][font=宋体]④除弗氏佐剂之外,免疫佐剂还有哪些?[/font][font=宋体][font=宋体]免疫佐剂是指那些同抗原一起或预先注入机体内能增强机体对抗原的免疫应答能力或改变免疫应答类型的辅助物质。佐剂的免疫生物学作用是增强免疫原性、增强抗体的滴度、改变抗体产生的类型、引起或增强迟发超敏反应等。除经典的弗氏佐剂外,各类不同功能的佐剂也层出不穷,比较常见的有:[/font][font=Calibri]1[/font][font=宋体])无机佐剂,如磷酸铝佐剂、氢氧化铝佐剂;[/font][font=Calibri]2[/font][font=宋体])生物类佐剂,如以细菌胞壁或产物为主要组成的佐剂;[/font][font=Calibri]3[/font][font=宋体])具有佐剂活性的细胞因子类,如[/font][font=Calibri]GSF[/font][font=宋体]、[/font][font=Calibri]IL1[/font][font=宋体]、[/font][font=Calibri]IL2[/font][font=宋体]、[/font][font=Calibri]IFN -[/font][font=宋体]γ等;[/font][font=Calibri]4[/font][font=宋体])人工合成佐剂,如[/font][font=Calibri]cpG[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]⑤杂交瘤融合后主克隆接种[/font][font=Calibri]96[/font][font=宋体]孔细胞培养板数量通常是多少?[/font][/font][font=宋体][font=宋体]融合后的主克隆细胞接种[/font][font=Calibri]96[/font][font=宋体]孔细胞培养板的数量与融合效率和脾细胞多少有密切关系。[/font][font=Calibri]PEG[/font][font=宋体]化学融合后的主克隆,通常一只小鼠的脾细胞可以接种[/font][font=Calibri]8-15[/font][font=宋体]块[/font][font=Calibri]96[/font][font=宋体]孔细胞培养板;电融合因为融合效率大大提高,通常一只小鼠的脾细胞可以接种[/font][font=Calibri]30~50[/font][font=宋体]块[/font][font=Calibri]96[/font][font=宋体]孔细胞培养板。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/services/platform/hybridoma-development][b]杂交瘤开发平台[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/platform/hybridoma-development[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 杂交试验中用于降低背景的封闭剂

    杂交试验中用于降低背景的封闭剂试剂用途Denhardt试剂Northern杂交使用RNA探针的杂交单拷贝序列的Southern杂交将DNA固定于尼龙膜上的杂交Denhardt试剂通常配制50×贮存液,过滤后保存于-20℃。可将该贮存液10倍稀释于预杂交液(常为含有0.5%SDS和100μg/ml经变性被打断的鲑精DNA的6×SSC或6×SSPE)中。50×Denhardt液中含5g聚蔗糖(Ficoll,400型,Pharmacia)、5g聚乙烯吡咯烷酮和5g牛血清白蛋白(组分V”Sigmal),加水至终体积为500ml。BLOTTOGrunstein-Hogness杂交Benton-Davis杂交除单拷贝序列Southern杂交以外的所有Southern杂交斑点印迹1×BLOTT(牛乳转移技术优化液,Bovine Lacto Transfer Technique Optimizer),是含5%胶脂奶粉和0.02%叠氮钠的水溶液,应保存于4℃。使用前可用预杂交液稀释25倍。BLOTTO不应与高浓度的SDS并用,因为后者会导致牛奶中蛋白质析出。如果杂交背景不合要求,可在杂交液中加入NP-40至终浓度为1%。BLOTTO不能用作Northern杂交的封闭剂,因为这一封闭剂中可能含有RNA酶,其活性之高使人无法接受。注意:叠氮钠有毒性,取用时需戴手套小心操作。含叠氮钠的溶液应予明确标记。肝素Southern杂交

  • 杂交瘤技术的应用及局限性

    [font=宋体][font=宋体]杂交瘤技术作为生产单克隆抗体的主流方法之一,其在生物医学领域的贡献不可忽视。该技术通过免疫小鼠后分离出能够产生抗体的[/font][font=Calibri]B[/font][font=宋体]淋巴细胞,再与永生性骨髓瘤细胞系融合,形成杂交瘤细胞,进而在实验室中培养这些杂交瘤细胞,以产生针对特定抗原的单克隆抗体。杂交瘤抗体的大量生产,既可通过体内腹水制备方法,也可通过体外摇瓶培养方法。杂交瘤技术之所以在制备单克隆抗体上备受青睐,关键在于其制备的抗体具有高纯度、高灵敏度以及高特异性。[/font][/font][font=Calibri] [/font][b][font=宋体]杂交瘤技术的不同应用[/font][/b][font=Calibri] [/font][font=宋体]一旦得到稳定的杂交瘤细胞系后,[/font][font=Helvetica][color=#060607][font=宋体]该细胞系能够持续且高效地分泌出高度均一化的单克隆抗体[/font][/color][/font][font=宋体]。这种稳定的抗体生产能力不仅确保了抗体的稳定供应,而且显著降低了抗体的生产成本。由于这些抗体能高特异性和高灵敏度地识别目标抗原,因此,杂交瘤技术成为了多个研究领域的重要工具,包括毒理学、动物生物技术、医学、药理学、细胞生物学和分子生物学等。[/font][font=Calibri] [/font][font=宋体]单克隆抗体在诊断、成像和治疗等领域具有广泛的应用。[/font][font=Helvetica][color=#060607][font=宋体]在诊断领域,单克隆抗体因其高度的特异性,常用于免疫组化、酶联免疫吸附试验([/font]ELISA[font=宋体])和流式细胞术等方法中,以检测和识别特定的生物标志物。[/font][/color][/font][font=宋体]在治疗领域,很多抗体药如[/font][font=Helvetica][color=#060607][font=宋体]利妥昔单抗[/font][/color][/font][font=宋体][color=#060607]([/color][/font][font=Helvetica][color=#060607]Rituximab[/color][/font][font=宋体][color=#060607][font=宋体])、曲妥珠单抗[/font] [font=Helvetica](Trastuzumab)[/font][font=宋体]、西妥昔单抗([/font][font=Helvetica]Cetuximab[/font][font=宋体])是[/font][/color][/font][font=宋体]利用杂交瘤技术开发的,用于治疗[/font][font=Helvetica][color=#060607][font=宋体]非霍奇金淋巴瘤[/font][/color][/font][font=宋体][color=#060607]、[/color][/font][font=Helvetica][color=#060607][font=宋体]乳腺癌[/font][/color][/font][font=宋体][color=#060607]、[/color][/font][font=Helvetica][color=#060607][font=宋体]非小细胞肺癌和结肠癌[/font][/color][/font][font=宋体][color=#060607]等癌症。这些抗体药物的成功开发和应用,展示了杂交瘤技术在制备治疗性单克隆抗体方面的重要性,[/color][/font][font=宋体]为癌症等复杂疾病的治疗提供了新的可能性。[/font][font=Calibri] [/font][b][font=宋体]杂交瘤技术的局限性[/font][/b][font=Calibri] [/font][url=https://cn.sinobiological.com/resource/antibody-technical/hybridoma-technology][u][font=宋体][color=#0000ff]杂交瘤技术[/color][/font][/u][/url][font=宋体]目前也面临一些挑战[/font][font=Helvetica][color=#060607][font=宋体],如融合效率低、产生抗体多样性有限以及可能的免疫排斥反应等[/font][/color][/font][font=宋体]。目前,大多数单克隆抗体都是在小鼠或大鼠中产生的,这增加了疾病从动物转移到人类的风险。虽然这些抗体在实验室条件下表现出色,但在实际应用中,特别是在人类疾病的治疗中,可能会引发免疫反应,影响治疗效果。因此,寻找更安全、更有效的抗体生产方法,是当前生物医学领域的重要课题。[/font][font=Calibri] [/font][font=宋体]未来,杂交瘤技术有望在多个方面取得新的突破。一方面,通过优化杂交瘤细胞的培养条件,可以进一步提高抗体的产量和质量。另一方面,利用基因工程技术对杂交瘤细胞进行改造,可以使其产生具有特定功能或特性的抗体,从而满足更多样化的应用需求。此外,随着人工智能和大数据技术的发展,我们有可能对杂交瘤技术的各个环节进行更精准的调控和优化,从而推动其在生物医学领域的更广泛应用。[/font][font=Calibri] [/font][font=宋体]综上所述,杂交瘤技术以其独特的优势在单克隆抗体的制备中占据了重要地位,其产生的抗体在多个领域都发挥着重要作用。然而,该技术也面临一些挑战,需要我们在未来的研究中不断探索和解决。我们有理由相信,随着科学技术的不断进步,杂交瘤技术将在生物医学领域发挥更大的作用,为人类的健康事业作出更大的贡献。[/font][font=Calibri] [/font][font=宋体]本篇文章由义翘神州编辑整理,同时义翘神州提供[/font][url=https://cn.sinobiological.com/services/hybridoma-culture-antibody-production-service][u][font=宋体][color=#0000ff]杂交瘤细胞培养及抗体生产服务[/color][/font][/u][/url][font=宋体],点击了解详情![/font][font=Calibri] [/font][font=Calibri] [/font][font=宋体]参考文献:[/font][font=宋体]Mitra S, Tomar PC. Hybridoma technology advancements, clinical significance, and future aspects. J Genet Eng Biotechnol. 2021 19(1):159. Published 2021 Oct 18. doi:10.1186/s43141-021-00264-6[/font]

  • 英多家实验室秘密进行人兽杂交胚胎实验

    胚胎干细胞实验虽然具有很高的医疗价值,但也由于伦理问题而饱受争议。英国《每日邮报》7月23日报道,有关英国多家实验室正在进行人兽杂交胚胎干细胞实验的新闻于近日曝光,在政界和学界引起强烈反响。制造150多个杂交胚胎根据《每日邮报》目前掌握的数字,英国多家实验室在过去3年中一直秘密进行人兽杂交胚胎的实验,并且已经制造了150多个同时包含人类和动物基因的杂交胚胎。这些实验都是在《人类受精与胚胎学法案》颁布之后实施的,目的据称是为了通过胚胎干细胞的研究为多种疾病寻找有效的疗法。这一消息曝光后立即引起了英国社会的广泛关注。在英国议会质询会上了解到这一事件的议员阿尔顿勋爵表示,胚胎干细胞实验无论是从伦理上还是科学上都无法成功,而人兽杂交的干细胞胚胎实验更是无法容忍。“科学家对这一实验唯一能给出的解释是:如果你们让我们做下去的话,我们就会向你们证明它的疗效。但我认为这完全是感情上的敲诈。毕竟到目前为止,所有80种干细胞治疗方法全部来自成年人的干细胞,而不是胚胎干细胞。”是否正当引发争议英国公益组织“生殖伦理学评论”的约瑟芬·昆塔瓦莱告诉记者:“为什么他们要躲避公众的视线呢?如果他们所做的是正大光明的事情,我们也就根本不需要通过议会问询的方式才能了解真相了。”很多科学家“为了实验而实验”,这根本不是正确的科学态度。科学界的反应略有不同。罗宾·洛威尔·巴奇教授来自英国医学研究理事会的国家医学研究院,他认为,近期披露的人兽杂交胚胎实验并不足虑,因为根据相关法律,这些胚胎必须在创造后14天内销毁;相反,更值得人们警惕的是那种将人类基因植入动物胚胎体内的实验。2008年颁布的《人类受精与胚胎学法案》使多种杂交物种合法化,并赋予伦敦国王学院、华威大学等3所研究机构进行相关实验的权利。所有实验目前均因为经费不足而终止,但科学家相信这一领域具有光明的未来。(来源:现代快报)

  • 【贴贴图图】杂交花

    【贴贴图图】杂交花

    母本是粉色[img=,690,388]http://ng1.17img.cn/bbsfiles/images/2017/07/201707241123_02_2911392_3.jpg[/img]父本是黄色[img=,690,1224]http://ng1.17img.cn/bbsfiles/images/2017/07/201707241122_01_2911392_3.jpg[/img]杂交后开的变异花[img=,690,388]http://ng1.17img.cn/bbsfiles/images/2017/07/201707241123_01_2911392_3.jpg[/img]

  • 什么是杂交瘤技术?杂交瘤技术的原理及步骤

    [font=宋体][font=宋体]杂交瘤技术([/font][font=Calibri]hybridoma technique[/font][font=宋体])即淋巴细胞杂交瘤技术,又称单克隆抗体技术。它是在体细胞融合技术基础上发展起来的。克勒([/font][font=Calibri]Kohler[/font][font=宋体])和米尔斯坦([/font][font=Calibri]Milstein[/font][font=宋体])([/font][font=Calibri]1975[/font][font=宋体])证明,骨髓瘤细胞与免疫的动物脾细胞融合,形成能分泌针对该抗原的均质的高特异性的抗体——单克隆抗体,这种技术通称为杂交瘤技术。这一技术的基础是细胞融合技术。骨髓瘤细胞在体外可以连续传代,而脾细胞是终末细胞,不能在体外繁殖。如将小鼠的骨髓瘤细胞与分泌某种抗体或因子的淋巴细胞融合,则融合细胞既具有肿瘤细胞无限繁殖的特性,又具有淋巴细胞能分泌特异性抗体或因子的能力,同时也克服了免疫淋巴细胞不能在体外繁殖的缺点,融合的细胞称为淋巴细胞杂交瘤。[/font][/font][b][font=宋体] [/font][font=宋体]杂交瘤技术原理及步骤:[/font][/b][font=宋体][font=宋体]杂交瘤技术的基本原理是通过融合两种细胞而同时保持两者的主要特征。这两种细胞分别是经抗原免疫的小鼠脾细胞和小鼠骨髓瘤细胞。被特异性抗原免疫的小鼠脾细胞([/font][font=Calibri]B[/font][font=宋体]淋巴细胞)的主要特征是它的抗体分泌功能,但不能在体外连续培养,小鼠骨髓瘤细胞则可在培养条件下无限分裂、增殖,即具有所谓永生性。在选择培养基的作用下,只有[/font][font=Calibri]B[/font][font=宋体]细胞与骨髓瘤细胞融合的杂交细胞才能具有持续培养的能力,形成同时具备抗体分泌功能和保持细胞永生性两种特征的细胞克隆。[/font][/font][font=宋体][font=宋体]其原理从下列[/font][font=Calibri]3[/font][font=宋体]个主要步骤阐明。[/font][/font][font=宋体][font=Calibri]([/font][font=宋体]一[/font][font=Calibri])[/font][font=宋体]细胞的选择与融合[/font][/font][font=宋体][font=宋体]建立杂交瘤技术的目的是制备对抗原特异的单克隆抗体,所以融合细胞一方必须选择经过抗原免疫的[/font][font=Calibri]B[/font][font=宋体]细胞,通常来源于免疫动物的脾细胞。脾是[/font][font=Calibri]B[/font][font=宋体]细胞聚集的重要场所,无论以何种免疫方式刺激,脾内皆会出现明显的抗体应答反应。融合细胞的另一方则是为了保持细胞融合后细胞的不断增殖,只有肿瘤细胞才具备这种特性。选择同一体系的细胞可增加融合的成功率。多发性骨髓瘤是[/font][font=Calibri]B[/font][font=宋体]细胞系恶性肿瘤,所以是理想的脾细胞融合伴侣。[/font][/font][font=宋体][font=宋体]使用细胞融合剂造成细胞膜一定程度的损伤,使细胞易于相互粘连而融合在一起。最佳的融合效果应是最低程度的细胞损伤而又产生最高频率的融合。聚乙二醇[/font][font=Calibri](PEG1 000[/font][font=宋体]~[/font][font=Calibri]2 000)[/font][font=宋体]是最常用的细胞融合剂,一般应用浓度为[/font][font=Calibri]40%(W/V)[/font][font=宋体]。[/font][/font][font=宋体][font=Calibri]([/font][font=宋体]二[/font][font=Calibri])[/font][font=宋体]选择培养基的应用[/font][/font][font=宋体][font=宋体]细胞融合是一个随机的物理学过程。在小鼠脾细胞和小鼠骨髓瘤细胞混合细胞悬液中,经融合后细胞将以多种形式出现。如融合的脾细胞和瘤细胞、融合的脾细胞和脾细胞、融合的瘤细胞和瘤细胞、未融合的脾细胞、未融合的瘤细胞以及细胞的多聚体形式等。正常的脾细胞在培养基中仅存活[/font][font=Calibri]5[/font][font=宋体]~[/font][font=Calibri]7d[/font][font=宋体],无需特别筛选;细胞的多聚体形式也容易死去;而未融合的瘤细胞则需进行特别的筛选去除。[/font][/font][font=宋体][font=宋体]细胞[/font][font=Calibri]DNA[/font][font=宋体]合成一般有两条途径。主要途径是由糖和氨基酸合成核苷酸,进而合成[/font][font=Calibri]DNA[/font][font=宋体],叶酸作为重要的辅酶参与这一合成过程。另一辅助途径是在次黄嘌呤和胸腺嘧啶核苷存在的情况下,经次黄嘌呤磷酸核糖转化酶[/font][font=Calibri](HGPRT)[/font][font=宋体]和胸腺嘧啶核苷激酶[/font][font=Calibri](TK)[/font][font=宋体]的催化作用合成[/font][font=Calibri]DNA[/font][font=宋体]。细胞融合的选择培养基中有[/font][font=Calibri]3[/font][font=宋体]种关键成分:次黄嘌呤[/font][font=Calibri](hypoxanthine[/font][font=宋体],[/font][font=Calibri]H)[/font][font=宋体]、甲氨蝶呤[/font][font=Calibri](aminopterin[/font][font=宋体],[/font][font=Calibri]A)[/font][font=宋体]和胸腺嘧啶核苷[/font][font=Calibri](thymidine[/font][font=宋体],[/font][font=Calibri]T)[/font][font=宋体],所以取三者的字头称为[/font][font=Calibri]HAT[/font][font=宋体]培养基。甲氨蝶呤是叶酸的拮抗剂,可阻断瘤细胞利用正常途径合成[/font][font=Calibri]DNA[/font][font=宋体],而融合所用的瘤细胞是经毒性培养基选出的[/font][font=Calibri]HGPRT-[/font][font=宋体]细胞株,所以不能在该培养基中生长。只有融合细胞具有亲代双方的遗传性能,可在[/font][font=Calibri]HAT[/font][font=宋体]培养基中长期存活与繁殖。[/font][/font][font=宋体][font=Calibri]([/font][font=宋体]三[/font][font=Calibri])[/font][font=宋体]有限稀释与抗原特异性选择[/font][/font][font=宋体][font=宋体]在动物免疫中,应选用高纯度抗原。一种抗原往往有多个决定簇,一个动物体在受到抗原刺激后产生的体液免疫应答实质是众多[/font][font=Calibri]B[/font][font=宋体]细胞群的抗体分泌,而针对目标抗原表位的[/font][font=Calibri]B[/font][font=宋体]细胞只占极少部分。由于细胞融合是一个随机的过程,在已经融合的细胞中有相当比例的无关细胞的融合体,需经筛选去除。筛选过程一般分为两步进行:一是融合细胞的抗体筛选,二是在此基础上进行的特异性抗体筛选。将融合的细胞进行充分稀释,使分配到培养板的每一孔中的细胞数在[/font][font=Calibri]0[/font][font=宋体]至数个细胞之间[/font][font=Calibri](30%[/font][font=宋体]的孔为[/font][font=Calibri]0[/font][font=宋体]才能保证每个孔中是单个细胞[/font][font=Calibri])[/font][font=宋体],培养后取上清液用[/font][font=Calibri]ELISA[/font][font=宋体]法选出抗体高分泌性的细胞;这一过程常被习惯地称作克隆化。将这些阳性细胞再进行克隆化,应用特异性抗原包被的[/font][font=Calibri]ELISA[/font][font=宋体]找出针对目标抗原的抗体阳性细胞株,增殖后进行冻存、体外培养或动物腹腔接种培养。[/font][/font][font=宋体] [/font][b][font=宋体] [/font][font=宋体]杂交瘤技术应用:[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、单克隆抗体的重要性和价值[/font][/font][font=宋体]单克隆抗体不仅在生物学和免疫学基础研究中具有重要的价值,而且在实践中的应用范围亦极为广泛。[/font][font=宋体]单克隆抗体在医学诊断中的应用[/font][font=宋体][font=Calibri]2[/font][font=宋体]、在医学中,单克隆抗体已用于疾病的诊断,其优点是诊断准确,无交叉反应。[/font][/font][font=宋体]例如,单克隆抗体诊断乙型肝炎及潜伏的乙型肝炎病毒,则很少发生假阴性的漏诊。[/font][font=宋体][font=Calibri]3[/font][font=宋体]、单克隆抗体作为药物载体的应用[/font][/font][font=宋体]单克隆抗体对靶组织有专一亲和性,故在体内有特异定位分布的特点。[/font][font=宋体]把抗肿瘤药物和抗某种肿瘤的单克隆抗体结合,则可使药物在体内有选择地集中向该肿瘤细胞攻击,只杀灭靶细胞,而不损伤正常组织,大大减轻了抗癌药物的副作用。[/font][font=宋体][font=Calibri]4[/font][font=宋体]、单克隆抗体在治疗中的挑战和未来的发展方向[/font][/font][font=宋体][font=宋体]制做的单克隆抗体多为鼠[/font][font=宋体]——鼠型,对人来说属异种蛋白质,因此难于用于治疗。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以查看[url=https://cn.sinobiological.com/resource/antibody-technical/hybridoma-technology][b]杂交瘤技术[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/hybridoma-technology[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 杂交瘤技术的基本原理及应用

    [font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/hybridoma-technology][b]杂交瘤技术[/b][/url],作为现代生物技术的瑰宝,自诞生以来便在生物医学领域产生了深远的影响。其基本原理在于利用细胞融合技术,将免疫的[/font][font=Calibri]B[/font][font=宋体]淋巴细胞与骨髓瘤细胞进行融合,从而得到一种新型的杂交细胞——杂交瘤细胞。这种细胞既保留了[/font][font=Calibri]B[/font][font=宋体]淋巴细胞产生特异性抗体的能力,又继承了骨髓瘤细胞无限增殖的特性。通过筛选和克隆,我们可以获得稳定产生特定抗体的杂交瘤细胞系,进而制备出高纯度、高特异性的单克隆抗体。下面是具体的关于杂交瘤技术原理及应用:[/font][/font][font=宋体][b]杂交瘤技术的基于三种关键技术。[/b][/font][font=宋体] [/font][font=宋体]一、动物免疫[/font][font=宋体] [/font][font=宋体][font=宋体]将特定的抗原注射到哺乳动物(如小鼠)体内,在外来抗原刺激下,被免疫动物脾脏内的[/font][font=Calibri]B[/font][font=宋体]淋巴细胞大量增殖并且分泌针对于该抗原的特异性抗体。动物免疫的作用就是用特定外来抗原对动物进行免疫,以刺激能分泌特异性抗体的[/font][font=Calibri]B[/font][font=宋体]淋巴细胞大量增殖。 [/font][/font][font=宋体] [/font][font=宋体][font=宋体]二、细胞融合[/font] [/font][font=宋体] [/font][font=宋体][font=Calibri]B[/font][font=宋体]淋巴细胞受外来抗原刺激后可以分泌抗体,但[/font][font=Calibri]B[/font][font=宋体]淋巴细胞本身是一种终末分化细胞,通常不再进行细胞分裂,存活一段时间(两周)便死亡[/font][font=Calibri]-[/font][font=宋体]短命细胞;而骨髓瘤细胞不分泌抗体,却能在体外无限增殖存活。如果能将这两种细胞的特性结合起来,就能得到既能分泌抗体又能在体外长期存活的细胞,细胞融合杂交瘤细胞中非常关键的一个步骤。 [/font][/font][font=宋体][font=宋体]通常使用的细胞融合技术有生物方法如仙台病毒,化学方法如聚乙二醇([/font][font=Calibri]PEG[/font][font=宋体]),物理方法如电融合。[/font][/font][font=宋体][font=Calibri]B[/font][font=宋体]淋巴细胞和骨髓瘤细胞融合后,能产生五种细胞类型;未融合脾细胞,未融合骨髓瘤细胞,脾细胞[/font][font=Calibri]-[/font][font=宋体]脾细胞融合体,骨髓瘤细胞[/font][font=Calibri]-[/font][font=宋体]骨髓瘤细胞融合体,脾细胞[/font][font=Calibri]-[/font][font=宋体]骨髓瘤细胞杂合体(杂交瘤细胞)。其中,我们需要利用另一个关键技术[/font][font=Calibri]-[/font][font=宋体]杂交瘤细胞筛选[/font][font=Calibri]-[/font][font=宋体]将所需的杂交瘤细胞分离出来。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]三、杂交瘤细胞筛选[/font] [/font][font=宋体][font=宋体]筛选杂交瘤细胞一般使用[/font][font=Calibri]HAT[/font][font=宋体]培养基。[/font][/font][font=宋体][font=Calibri]HAT[/font][font=宋体]培养基筛选方法基本原理:[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]HAT[/font][font=宋体]培养基成分:含有次黄嘌呤[/font][font=Calibri](H)[/font][font=宋体]、氨基喋呤[/font][font=Calibri](A)[/font][font=宋体]和胸腺嘧啶[/font][font=Calibri](T)[/font][font=宋体]三种成分。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]细胞[/font][font=Calibri]DNA[/font][font=宋体]合成途径:主要合成和补救合成途径两种方式。主要合成就是利用糖和氨基酸在二氢叶酸还原酶的催化下来合成[/font][font=Calibri]DNA[/font][font=宋体];而补救合成途径则是通过次嘌呤鸟嘌呤磷酸核糖转移酶[/font][font=Calibri](Hypoxanthine guznine phosphoribosyl transferase[/font][font=宋体], [/font][font=Calibri]HGPRT)[/font][font=宋体]和胸腺嘧啶激酶[/font][font=Calibri](thymidine kinase[/font][font=宋体],[/font][font=Calibri]TK)[/font][font=宋体]将核苷酸前体合成核苷酸以供[/font][font=Calibri]DNA[/font][font=宋体]合成原料。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]HAT[/font][font=宋体]培养基中氯基喋呤是二氢叶酸还原酶的抑制剂,能有效地阻断[/font][font=Calibri]DNA[/font][font=宋体]合成的内源性途径。融合前的骨髓瘤细胞不能产生抗体,并且缺乏次黄嘌呤 – 鸟嘌呤磷酸核糖基转移酶([/font][font=Calibri]HGPRT[/font][font=宋体])基因,使得它们对[/font][font=Calibri]HAT[/font][font=宋体]培养基敏感,阻断了[/font][font=Calibri]DNA[/font][font=宋体]补救合成途径。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]将融合的细胞在[/font][font=Calibri]HAT[/font][font=宋体]培养基中孵育大约[/font][font=Calibri]10[/font][font=宋体]至[/font][font=Calibri]14[/font][font=宋体]天,未融合的以及自身融合的骨髓瘤细胞死亡。这是因为[/font][font=Calibri]HAT[/font][font=宋体]培养基阻断了骨髓瘤细胞两大[/font][font=Calibri]DNA[/font][font=宋体]合成途径。未融合的以及自身融合的[/font][font=Calibri]B[/font][font=宋体]淋巴细胞虽然能够合成[/font][font=Calibri]HGPRT[/font][font=宋体]酶,但其是正常细胞,存活一段时间(两周)也死亡。因此,在[/font][font=Calibri]HAT[/font][font=宋体]养基中,只有[/font][font=Calibri]B[/font][font=宋体]细胞[/font][font=Calibri]-[/font][font=宋体]骨髓瘤杂合体存活,因为杂交瘤细胞继承了[/font][font=Calibri]B[/font][font=宋体]淋巴细胞和骨髓瘤细胞的双重特性,能够合成[/font][font=Calibri]HGPRT[/font][font=宋体]酶和[/font][font=Calibri]TK[/font][font=宋体]酶。这些杂交瘤细胞能够分泌抗体([/font][font=Calibri]B[/font][font=宋体]细胞特性)并且无限增殖(骨髓瘤细胞特性)。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]然后将培养基稀释到多孔板中,使得每个孔仅含有一个杂交瘤细胞。再由这些单细胞克隆生长,最终选出分泌预定特异抗体的杂交细胞株。由于孔中的抗体由相同的[/font][font=Calibri]B[/font][font=宋体]细胞产生,针对相同的抗原表位,所以产生的抗体又被称之为单克隆抗体。[/font][/font][font=宋体] [/font][font=宋体]接下来采用体内或者体外方式对筛选的能分泌特异性抗体的杂交瘤细胞进行扩大培养,最后收集提纯获取单抗。[/font][font=宋体] [/font][font=宋体][b]杂交瘤技术应用:[/b][/font][font=宋体] [/font][font=宋体]①疾病诊断:单克隆抗体在疾病诊断中发挥着重要作用,以其准确且无交叉反应的特点,显著提高了诊断的准确性。例如,在乙型肝炎及潜伏的乙型肝炎病毒的诊断中,单克隆抗体能显著减少假阴性的漏诊。[/font][font=宋体]②治疗载体:单克隆抗体也可以作为治疗疾病的载体。通过与抗肿瘤药物结合,单克隆抗体能在体内选择性集中攻击肿瘤细胞,具有靶向性,从而减少对正常组织的损伤并减轻抗癌药物的副作用。这种载药单克隆抗体被誉为“生物导弹”。[/font][font=宋体][font=宋体]③抗体序列保护:获取抗体基因序列后,可以通过专利对[/font][font=Calibri]CDR[/font][font=宋体]区进行保护,从而保护创新性的抗体序列。[/font][/font][font=宋体]④生产方式备份:由于杂交瘤存在退化转阴的风险,抗体序列可以通过基因工程方式轻松获得抗体样品,为生产方式提供备份。[/font][font=宋体]⑤抗体工程改造:获得的抗体序列可用于抗体人源化、双特异性抗体等抗体工程改造项目,进一步拓展抗体的应用范围和效果。[/font][font=宋体]⑥癌症研究:杂交瘤技术可以制备大量的特异性抗体,用于检测肿瘤标志物、研究癌细胞的生物学特性、筛选分子靶点等。此外,该技术还可以用于检测肿瘤细胞表面的抗原,通过对来自不同患者的癌瘤细胞进行克隆化和筛选,发现不同肿瘤的抗原异质性,为临床肿瘤治疗提供新的思路和策略。[/font][font=宋体]总的来说,杂交瘤技术以其独特的优势在多个领域都有着广泛的应用,为生物医学研究和疾病治疗提供了有力的工具。[/font][font=宋体] [/font][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/hybridoma-sequencing-service][b]杂交瘤细胞抗体基因测序服务[/b][/url]和[url=https://cn.sinobiological.com/services/hybridoma-culture-antibody-production-service][b]杂交瘤细胞培养及抗体生产服务[/b][/url],有需求可以咨询。[/font][font=宋体][font=Calibri]https://cn.sinobiological.com/services/hybridoma-sequencing-service[/font][/font][font=宋体][font=Calibri]https://cn.sinobiological.com/services/hybridoma-culture-antibody-production-service[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 【原创】荧光原位杂交(双色FISH)图片

    【原创】荧光原位杂交(双色FISH)图片

    http://ng1.17img.cn/bbsfiles/images/2010/12/201012141626_266970_2215024_3.jpghttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141627_266972_2215024_3.jpg最近拍了一些原位杂交的图片,虽然原位杂交信号很弱,但拍摄系统的捕捉能力还是非常不错的。。。。

  • 探针杂交试验

    1mg/ml的质粒(氯化钠制剂)稀释2倍后,做探针杂交,印记反而弥散开来,求大神指点(膜左边是样品原液和稀释2倍后的样品,右边是标准品)[img]http://ng1.17img.cn/bbsfiles/images/2018/08/201808010916534804_4574_3452368_3.jpeg[/img]

  • 袁隆平称未来超级杂交水稻高度可能达2米

    袁隆平称未来超级杂交水稻高度可能达2米中国工程院院士、国家杂交水稻工程技术中心主任袁隆平提出,超级杂交稻未来株型将走“超模”路线,身高将长到1.8米,甚至2米,三年内大面积超级稻亩产将实现超过1000公斤的目标。这是袁隆平院士第五次来印度推广杂交水稻,他向来自美国、越南、菲律宾、马达加斯加等近40个国家的农业官员和专家介绍超级杂交稻未来变化的趋势,以及超高产最新研究成果。两个月前,袁隆平院士在国家杂交水稻工程技术中心的一次专家研讨会上,将超级杂交稻的发展战略交给其科研团队讨论,其中的一个重要内容就是,超级杂交稻未来株型将达到1.8米甚至2米。9月23日晚,国家杂交水稻工程技术中心谭炎宁博士告诉记者,现在育种实行的是半低秆,也就是株高约1.2米到1.3米,高秆将是超级杂交稻发展的战略。根据“稻谷产量=生物学产量(植株全部干重)×经济系数(经济产量占生物产量的比重)”的公式,要进一步提高水稻产量,需要保持在经济系数不变的前提下,提高生物学产量;适当增加株高,可能是提高生物学产量的理想途径。对于近2米株高的水稻,稻谷品质会不会改变、稻田下杂草是不是茂盛、如何施肥、是否影响收割等系列问题,谭炎宁认为,只要模式成立的话(保持经济系数不变),这些问题都可以解决。袁隆平院士很多年前就做过“禾下乘凉梦”,也就是水稻长得像高粱一样高,稻穗像扫帚,谷粒如花生米,他就坐在像瀑布一样的稻谷下乘凉。看来,袁隆平院士这次是想让梦想成为现实。

  • 【转帖】《自然—遗传学》:中美科学家揭示玉米杂交机制

    《自然—遗传学》:中美科学家揭示玉米杂交机制 作者:刘传书 来源:科技日报由中国农业大学玉米中心、华大基因研究院、美国爱荷华大学、明尼苏达大学等单位合作的研究成果“基因丢失与获得的多态变化揭示玉米中的杂交优势的机制”近日在国际著名杂志《自然—遗传学》上发表。该研究报道了中国重要玉米骨干亲本的全基因组的单核苷酸多态性、插入/缺失多态性以及基因获得和缺失变异图谱,为玉米的遗传学研究和分子育种提供了宝贵资源。该研究对6个中国重要玉米杂交组合骨干亲本进行全基因组重测序,发现了100多万个单核苷酸多态性位点(SNPs)和3万多个插入缺失多态性位点(IDPs),建立了高密度分子标记基因图谱;同时研究还发现了101个低序列多态性区段,在这些区段中含有大量在选择过程中与玉米性状改良有关的候选基因。此外,通过将玉米自交系Mo17及其他自交系的基因序列与玉米自交系B73的基因序列比对,研究人员对玉米自交系中基因丢失与获得的多态性进行了研究,发现在不同的自交系中存在不用数量的基因丢失与获得性变异;利用SAOPdenovo软件对在其他自交系中存在而在B73中缺失的序列进行组装,研究人员发现了很多目前公布的B73参考基因组序列中丢失的基因。这些发现不仅为高产杂交玉米育种骨干亲本的培育提高了重要的多态性标记,同时也补充了玉米基因数据集,为进一步挖掘玉米基因组和遗传资源提供了大量数据。玉米具有非常显著的杂交优势,利用该优势是提高产量的主要手段之一。研究人员选择了中国历史上和目前广泛流行的高产杂交组合骨干亲本,并根据多态性追踪了这些骨干亲本育成过程中基因组的变化方式。该研究还发现这些骨干亲本组合基因组的组合可弥补另一方功能元件的缺失,此种基因丢失与获得的多态变化和其他无义突变的互补作用可能与杂种优势有关。

  • 杂交瘤技术原理及优缺点介绍

    [font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/hybridoma-technology][b]杂交瘤技术[/b][/url]是指建立杂交瘤细胞系的技术,其用于产生大量单克隆抗体,所以又称单克隆抗体技术。其是在细胞融合技术上发展起来的:将[/font][font=Calibri]B[/font][font=宋体]淋巴细胞和骨髓细胞融合,即可形成在体外长期存活并分泌免疫蛋白的杂交瘤细胞。通过克隆化可得到来自单个杂交瘤细胞的单克隆系,即杂交瘤细胞系,它所产生的抗体是针对同一抗原结合位点的抗体,即单克隆抗体([/font][font=Calibri]monoclonal antibody[/font][font=宋体]),简称单抗。单克隆抗体具有高度专一性,一种单克隆抗体只能识别一种特定的抗原决定簇。正是由于其特异性强,因此被广泛应用于生物学,药学,医学等领域,具有极其远大的应用前景,因此用于制备单克隆抗体的杂交瘤技术也变得越来越重要。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]杂交瘤技术原理:[/font][/font][font=宋体]杂交瘤技术基于三种关键技术。[/font][font=宋体][b]一、动物免疫[/b][/font][font=宋体] [/font][font=宋体][font=宋体]将特定的抗原注射到哺乳动物(如小鼠)体内,在外来抗原刺激下,被免疫动物脾脏内的[/font][font=Calibri]B[/font][font=宋体]淋巴细胞大量增殖并且分泌针对于该抗原的特异性抗体。动物免疫的作用就是用特定外来抗原对动物进行免疫,以刺激能分泌特异性抗体的[/font][font=Calibri]B[/font][font=宋体]淋巴细胞大量增殖。 [/font][/font][font=宋体] [/font][font=宋体][font=宋体][b]二、细胞融合[/b][/font] [/font][font=宋体] [/font][font=宋体][font=Calibri]B[/font][font=宋体]淋巴细胞受外来抗原刺激后可以分泌抗体,但[/font][font=Calibri]B[/font][font=宋体]淋巴细胞本身是一种终末分化细胞,通常不再进行细胞分裂,存活一段时间(两周)便死亡[/font][font=Calibri]-[/font][font=宋体]短命细胞;而骨髓瘤细胞不分泌抗体,却能在体外无限增殖存活。如果能将这两种细胞的特性结合起来,就能得到既能分泌抗体又能在体外长期存活的细胞,细胞融合杂交瘤细胞中非常关键的一个步骤。 [/font][/font][font=宋体][font=宋体]通常使用的细胞融合技术有生物方法如仙台病毒,化学方法如聚乙二醇([/font][font=Calibri]PEG[/font][font=宋体]),物理方法如电融合。[/font][/font][font=宋体][font=Calibri]B[/font][font=宋体]淋巴细胞和骨髓瘤细胞融合后,能产生五种细胞类型;未融合脾细胞,未融合骨髓瘤细胞,脾细胞[/font][font=Calibri]-[/font][font=宋体]脾细胞融合体,骨髓瘤细胞[/font][font=Calibri]-[/font][font=宋体]骨髓瘤细胞融合体,脾细胞[/font][font=Calibri]-[/font][font=宋体]骨髓瘤细胞杂合体(杂交瘤细胞)。其中,我们需要利用另一个关键技术[/font][font=Calibri]-[/font][font=宋体]杂交瘤细胞筛选[/font][font=Calibri]-[/font][font=宋体]将所需的杂交瘤细胞分离出来。[/font][/font][font=宋体] [/font][font=宋体][font=宋体][b]三、杂交瘤细胞筛选[/b][/font] [/font][font=宋体] [/font][font=宋体][font=宋体]筛选杂交瘤细胞一般使用[/font][font=Calibri]HAT[/font][font=宋体]培养基。[/font][/font][font=宋体][font=Calibri]HAT[/font][font=宋体]培养基筛选方法基本原理:[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]HAT[/font][font=宋体]培养基成分:含有次黄嘌呤[/font][font=Calibri](H)[/font][font=宋体]、氨基喋呤[/font][font=Calibri](A)[/font][font=宋体]和胸腺嘧啶[/font][font=Calibri](T)[/font][font=宋体]三种成分。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]细胞[/font][font=Calibri]DNA[/font][font=宋体]合成途径:主要合成和补救合成途径两种方式。主要合成就是利用糖和氨基酸在二氢叶酸还原酶的催化下来合成[/font][font=Calibri]DNA[/font][font=宋体];而补救合成途径则是通过次嘌呤鸟嘌呤磷酸核糖转移酶[/font][font=Calibri](Hypoxanthine guznine phosphoribosyl transferase[/font][font=宋体], [/font][font=Calibri]HGPRT)[/font][font=宋体]和胸腺嘧啶激酶[/font][font=Calibri](thymidine kinase[/font][font=宋体],[/font][font=Calibri]TK)[/font][font=宋体]将核苷酸前体合成核苷酸以供[/font][font=Calibri]DNA[/font][font=宋体]合成原料。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]HAT[/font][font=宋体]培养基中氯基喋呤是二氢叶酸还原酶的抑制剂,能有效地阻断[/font][font=Calibri]DNA[/font][font=宋体]合成的内源性途径。融合前的骨髓瘤细胞不能产生抗体,并且缺乏次黄嘌呤 – 鸟嘌呤磷酸核糖基转移酶([/font][font=Calibri]HGPRT[/font][font=宋体])基因,使得它们对[/font][font=Calibri]HAT[/font][font=宋体]培养基敏感,阻断了[/font][font=Calibri]DNA[/font][font=宋体]补救合成途径。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]将融合的细胞在[/font][font=Calibri]HAT[/font][font=宋体]培养基中孵育大约[/font][font=Calibri]10[/font][font=宋体]至[/font][font=Calibri]14[/font][font=宋体]天,未融合的以及自身融合的骨髓瘤细胞死亡。这是因为[/font][font=Calibri]HAT[/font][font=宋体]培养基阻断了骨髓瘤细胞两大[/font][font=Calibri]DNA[/font][font=宋体]合成途径。未融合的以及自身融合的[/font][font=Calibri]B[/font][font=宋体]淋巴细胞虽然能够合成[/font][font=Calibri]HGPRT[/font][font=宋体]酶,但其是正常细胞,存活一段时间(两周)也死亡。因此,在[/font][font=Calibri]HAT[/font][font=宋体]养基中,只有[/font][font=Calibri]B[/font][font=宋体]细胞[/font][font=Calibri]-[/font][font=宋体]骨髓瘤杂合体存活,因为杂交瘤细胞继承了[/font][font=Calibri]B[/font][font=宋体]淋巴细胞和骨髓瘤细胞的双重特性,能够合成[/font][font=Calibri]HGPRT[/font][font=宋体]酶和[/font][font=Calibri]TK[/font][font=宋体]酶。这些杂交瘤细胞能够分泌抗体([/font][font=Calibri]B[/font][font=宋体]细胞特性)并且无限增殖(骨髓瘤细胞特性)。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]然后将培养基稀释到多孔板中,使得每个孔仅含有一个杂交瘤细胞。再由这些单细胞克隆生长,最终选出分泌预定特异抗体的杂交细胞株。由于孔中的抗体由相同的[/font][font=Calibri]B[/font][font=宋体]细胞产生,针对相同的抗原表位,所以产生的抗体又被称之为单克隆抗体。[/font][/font][font=宋体] [/font][font=宋体]接下来采用体内或者体外方式对筛选的能分泌特异性抗体的杂交瘤细胞进行扩大培养,最后收集提纯获取单抗。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]杂交瘤技术的优缺点介绍:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、优点:与传统的免疫动物方法制备抗体相比,利用杂交瘤技术可以制备出高纯度的单抗,并且可以进行单克隆抗体的大量生产。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、缺点:[/font][/font][font=宋体][font=Calibri]a.[/font][font=宋体]操作步骤繁琐。[/font][/font][font=宋体][font=Calibri]b.[/font][font=宋体]利用杂交瘤技术生产出的单克隆抗体多为鼠源性,而鼠源性抗体在应用中有诸多问题,例如被人类免疫系统所识别,产生人抗鼠抗体[/font][font=Calibri](HAMA[/font][font=宋体])反应、在人体循环系统中很快被清除等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]目前义翘神州提供[url=https://cn.sinobiological.com/services/hybridoma-culture-antibody-production-service][b]杂交瘤细胞培养及抗体生产服务[/b][/url],服务内容从细胞复苏[/font][font=宋体]→细胞驯化→生产及纯化→[/font][font=Calibri]QC[/font][font=宋体]分析→交付内容 义翘神州都有严格的质量把控,更多详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/services/hybridoma-culture-antibody-production-service[/font][/font]

  • 虎龙杂交斑良种培育及养殖技术(下)

    题目:虎龙杂交斑良种培育及养殖技术(下)作者:张海发 杨宇晴 吴锦辉 刘苏 黄培卫 甘松永 黄锦雄期刊:科学养鱼链接:http://www.cqvip.com/QK/92435X/202402/7111671752.html

  • 杂交瘤技术制备单克隆抗体:详细流程与常见问题解析

    [font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/hybridoma-technology][b]杂交瘤技术[/b][/url]是一种将[/font][font=Calibri]B[/font][font=宋体]淋巴细胞与骨髓瘤细胞融合生产单克隆抗体的传统方法。该技术通过将动物脾细胞与骨髓瘤细胞融合,产生永生化杂交瘤细胞系,然后筛选其上清液中的抗原特异性克隆,并进一步循环亚克隆以产生严格的单克隆抗体。[/font][/font][font=宋体][font=宋体][b]利用杂交瘤技术制备单克隆抗体通常操作流程为[/b]:抗原制备、抗原免疫动物、杂交瘤细胞制备、融合细胞的筛选、培养杂交瘤细胞制备抗体。(详细实验流程:杂交瘤单克隆抗体制备[/font][font=Calibri]SOP[/font][font=宋体])在单克隆抗体制备过程中,常常会遇到细胞污染,细胞融合后不生长、亚克隆后的细胞株不分泌抗体以及细胞难以克隆等问题,本文将详细分析以上常见问题的产生原因以及解决该问题的方法。[/font][/font][font=宋体] [/font][font=宋体]一、微生物污染[/font][font=宋体] [/font][font=宋体][font=宋体]①细菌、真菌污染主要是由于实验人员操作不当或者消毒不到位引起的。人身上可能携带各种孢子,如果操作不当,或者是未能及时到位的消杀,就有可能会引入污染。除此之外,还须注意平时使用的一些消毒剂,比如[/font][font=Calibri]84[/font][font=宋体]消毒液或者[/font][font=Calibri]75%[/font][font=宋体]酒精,要确认它的纯度以及质量。如果是因为这些问题导致的消毒不到位,是非常不容易发现的。[/font][/font][font=宋体][font=宋体]②支原体污染则可能由血清制品、关键试剂材料或实验人员带入。正常的[/font][font=Calibri]SP2/0[/font][font=宋体]细胞圆润透亮,当被支原体污染后,短期内细胞没有明显的变化,当污染严重后,细胞生长会变得极为缓慢,生长周期变长,细胞形态多样。可通过加入商品化的清除支原体试剂,或者通过将污染的杂交瘤细胞注射进小鼠腹腔,待产生实体瘤后或产生腹水后,无菌分离重新获得杂交瘤细胞。[/font][/font][font=宋体]③原生生物污染主要是大家比较头疼的黑胶虫,污染后会陆续出现多少不等的小黑点。[/font][font=宋体] [/font][font=宋体]二、融合后细胞不生长[/font][font=宋体][font=宋体]①融合后细胞不生长可能是因为融合试剂有毒性,部分毒性试剂作用时间过长引起的。如[/font][font=Calibri]PEG[/font][font=宋体]在[/font][font=Calibri]10%~60%[/font][font=宋体]都可以进行融合,但浓度越高毒性越大。[/font][/font][font=宋体]②也有可能是使用血清质量比较差,推荐使用胎牛血清。[/font][font=宋体][font=宋体]③还有可能是因为添加的[/font][font=Calibri]HAT[/font][font=宋体]试剂中氨基喋呤([/font][font=Calibri]A[/font][font=宋体])含量过高或[/font][font=Calibri]HT[/font][font=宋体](次黄嘌呤和胸腺嘧啶核苷)含量过低。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体]三、杂交瘤细胞不分泌抗体或者停止分泌抗体[/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、杂交瘤细胞不分泌抗体,可能的原因有以下几种:[/font][/font][font=宋体][font=Calibri]a.[/font][font=宋体]抗原免疫原性弱,免疫效果不好,可以通过多方案检测血清效价进行进一步评估;[/font][/font][font=宋体][font=Calibri]b.[/font][font=宋体]操作过程中脾细胞损伤较多,抗原特异性淋巴母细胞大量死亡;[/font][/font][font=宋体][font=Calibri]2[/font][font=宋体]、杂交瘤细胞前期有抗体分泌,后期在克隆化过程中抗体分泌量减少或停止分泌抗体,可能的原因有以下几种:[/font][/font][font=宋体][font=Calibri]a.HAT[/font][font=宋体]试剂中氨基喋呤([/font][font=Calibri]A[/font][font=宋体])失效,骨髓瘤细胞增殖抑制杂交瘤细胞的生长;[/font][/font][font=宋体][font=Calibri]b.[/font][font=宋体]未及时克隆,不分泌抗体的杂交瘤大量生长挤占生存空间;[/font][/font][font=宋体][font=Calibri]c.[/font][font=宋体]骨髓瘤细胞返祖化,抵抗氨基喋呤([/font][font=Calibri]A[/font][font=宋体])的选择;[/font][/font][font=宋体][font=Calibri]d.[/font][font=宋体]梁色体丢失(突变)[/font][font=Calibri] [/font][/font][font=宋体][font=Calibri]e.[/font][font=宋体]支原体污染。[/font][/font][font=宋体]解决方法有三种:第一,及时进行细胞建库;第二,高频次检查细胞状态和是否污染;第三,定期进行抗原筛选。[/font][font=宋体] [/font][font=宋体]四、杂交瘤细胞难以克隆化[/font][font=宋体] [/font][font=宋体]一旦确认有分泌抗体的杂交瘤细胞,就应尽快进行克隆化。克隆化的目的是为了获得单一细胞系的群体,反复克隆化后可获得稳定的杂交瘤细胞株。杂交瘤细胞若难以克隆化,可以尝试以下解决方法:[/font][font=宋体] [/font][font=宋体]①使用已有杂交瘤细胞株对血清进行筛选,确定最佳批次的血清和使用浓度;[/font][font=宋体][font=宋体]②融合后第一次克隆(一亚)仍需采用含[/font][font=Calibri]HT[/font][font=宋体]的条件培养;[/font][/font][font=宋体][font=宋体]③在培养体系中加入白细胞介素[/font][font=Calibri]6[/font][font=宋体]([/font][font=Calibri]IL6[/font][font=宋体]),一般商品化的杂交瘤因子都含有[/font][font=Calibri]IL6[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体]义翘神州提供杂交瘤测序服务和杂交瘤细胞培养及抗体生产服务,具体关于杂交瘤相关问题详情可以参看[/font][font=宋体][font=宋体]杂交瘤技术:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/hybridoma-technology[/font][/font][font=宋体][font=宋体]杂交瘤细胞培养及抗体生产服务:[/font][font=Calibri]https://cn.sinobiological.com/services/hybridoma-culture-antibody-production-service[/font][/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/services/hybridoma-sequencing-service][b]杂交瘤测序服务[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/services/hybridoma-sequencing-service[/font][/font]

  • 多阵列杂交工作站特色及工作参数

    [url=http://www.f-lab.cn/hybridization/hybmix-s4.html][b]多阵列杂交工作站[/b][/url]是[b]微阵列玻片杂交[/b]和[b]多阵列玻片杂交[/b]的理想高效[b]杂交仪[/b],具有高效的杂交振荡系统和精确的杂交温度控制系统,是微阵列玻片和多个子阵列(多阵列玻片)杂交成功的有力[b]杂交工作站[/b]。集成了轨道振荡器,提供从300至900rmp的可调转速控制,有效提高杂交和结合反应成功率。[b]多阵列杂交工作站[/b]采用国际一流的用户友好界面,操作方便 用户可以设置温度,杂交持续时间和振荡速度。温度,时间和振荡速度显示于仪器前方的宽屏显示屏上,用户可以在任何时间调整参数。[img=多阵列杂交工作站]http://www.f-lab.cn/Upload/hybmix_.jpg[/img][b]多阵列杂交工作站特色[/b]Peltier温度控制技术精确控制温度精确温度调节集成了轨道振荡系统前部具有显示和控制面板用户友好的操作界面[b]多阵列杂交工作站参数[/b]温度范围:室温到105摄氏度加热/制冷系统:温控Peltier技术,温度分辨率 0.1 °C振荡系统:轨道振荡器速度300-1500RPM可调用户界面:高级荧光显示屏VFD, 8个编程控制操作键尺寸(LxDxH): 29.5 x 26.5 x 17.0 cm电力要求: 220 V, 50/60 Hz, 125 W重量:8.5kg更多分子杂交仪请浏览官网:[url]http://www.f-lab.cn/hybridization.html[/url]

  • 原位杂交操作规程

    (一)、仪器设备 医用微波炉; 水浴锅。 (二)、试剂 0.2mol/L HCl:HCl 8.2ml,H20 定容0.5L。0.1mol/L三乙醇胺(pH8.0):三乙醇胺 5.33ml,H20 定容0.4L。.5ml/L醋酸-2.5ml/L醋酸酐:三乙醇胺 13.2ml,NaCl 5g,浓HCl 4ml,H20 定容0.98L,醋酸酐 (用前加)2.5ml。20×SSC(pH7.0):NaCl 175.3g,枸橼酸钠 88.2g,H20 定容1L。100×Denhardt's:Ficoll 1g,PVP 1g,BSA 1g,H20 定容50ml。杂交液:Formamide 5ml,20×SSC 2.5ml,Dextran sulfate 1g,100×Denhardt's 0.5ml,10%SDS 0.5ml,10g/L sperm DNA 0.1ml,H20 1.4L。BufferⅠ(pH7.5):0.1mol/L ris·Cl,0.15mol/L NaCl。BufferⅢ(pH9.5):0.1mol/L Tris·Cl,0.1mol/L NaCl,0.05mol/L MgCl2。BufferⅣ(pH8.0):10mmol/L Tris·Cl,1mmol/L EDTA。

  • 荧光标记DNA探针在细胞核混悬液杂交中的应用

    (1)细胞核的分离: 将培养的细胞制成细胞混悬液,或以胰蛋白酶消化法于培养盖上收集培养细胞。应用MgSO4染色分离方法分离细胞核(Van den Engh et al 1986, 在Traok和Van Den Engh 34章 )。细胞混悬液浓度为5×106/ml。利用RNA酶消化后,使核从细胞分离,细胞核混悬液浓度为4~5×106细胞核/ml。(2)细胞固定和酸的处理:在5 ml试管内加冷的100%酒精不断旋转以达到满意的固定。在冰上停留10 min。在4 ℃离心(×150 g)10 min。重复加三次冷的100%酒精入试管内,离心,倾去。置于冰上10 min,再离心。然后加入相当核悬液1/2量的0.1 n HCl , 0.5% Triton X-100。室温停留10 min。加入IBM-0.25%Triton X-100(IBM配方:50 mmol/l KCl, 10 mmol/L MgSO4, 5 mmol/L HEPES pH8.0)。再离心,重复IBM漂洗(这时细胞核可在不染色情况下,以荧光显微镜观察)后,以2×SSC-0.1%Tween漂洗1×3min,继之加入等量2%的多聚甲醛在1×PBS-5 mmol/l MgSO4。在室温静置站立10min。倾去上清液,加IBm -Triton X-100漂洗,离心,使细胞核混悬液最终浓度为108/ml,(可用IBM-Triton X-100稀释约50倍,在血球计数器计数),混悬液镜检应含单个,完整的细胞核。(3)细胞核混悬液杂交①配制杂交混合液:甲酰胺5份,20×SSC1份,50%硫酸葡聚糖2份,pH调至7.0。此原液(stock solution)可贮存在4 ℃冰箱内。应用时加1份10 mg/ml鲱鱼精子DNA(herring sperm DNA)。②混合1 μl的细胞核混悬液(108/ml)与18μl的杂交混合液,充分混匀。将此19 μl混合液移入1.5 ml容积的Eppendorf 管中(核含量约为105)。③加入100 ng/每管的AAF标记DNA探针(如为生物素标记DNA探针浓度为20~40 ng/每管)。④置70 ℃10min使DNA探针和核DNA变性。⑤和组织切片与DNA探针杂交方法相较,不同的是在加热变性后切勿置冰上迅速冷却以终止反应,而应迅速转入37 ℃孵育过夜。(4)杂交后漂洗在每管中加入1.25 ml 50%甲酰胺-2×SSC(pH7.0),在42 ℃静置10~15min。偶尔旋转以助混匀。冷却至室温。加100 μl经dimethylsuberimidate(DEMS)处理的血细胞(107/ml)混匀,离心,室温,10min,轻弹试管使沉淀的小块散开,加入1.25 ml 2×SSC(pH7.0),42 ℃,继之,静置于室温10~15min,如前离心,再加1.25 ml IBM-Triton X-100,室温静置5min,离心。注:DEMS处理红细胞方法:经漂洗并离心去除白细胞和血清的红细胞在盐液如PBS中,细胞含量为108/ml,以K2CO3和DEMS溶液处理3次,第1次:K2CO3为20 mmol/L,DEMS为3 mmol/L,以后2次:K2CO3依然为20 mmol/L,而DEMS为10 mmol/L。在应用前将K2CO3和DEMS液混合加入红细胞混悬液中。在最后2次漂洗液中,应用100 mmol/l K2CO3将pH调至9~10。在25 ℃,15min后,加入50 μl,100 mmol/l 的柠檬酸(citric acid)/每ml细胞混悬液的浓度以达固定红细胞的目的。固定的红细胞离心倾去上清液后,用2×SSC稀释到108/ml,加0.1%叠氮钠可在4 ℃保存至少1年。(5)AFF标记的荧光显示:加200 μl的PBS含0.05%Tween和2%正常血清(NGS),轻轻振荡混匀,室温静置10min,加20 μl 1:100的单克隆抗AFF抗体,37 ℃孵育45min,加1.25 ml的PBS-Tween,室温静置10min,加20间歇性振荡,离心,倾去上清液,加200 μlPBS含0.05%Tween –2%NGS,振荡,室温静置10min,加20 μl的羊抗小鼠–FITC荧光标记抗血清,稀释度1:100~1:300。孵育于37 ℃ 45min,加1.25 ml PBS –Tween,室温静置10min,离心,倾去上清液。(6)生物素标记探针的荧光显示:加200 μl 4×SSC含0.1%Trion X-100 和5%BSA。室温静置10 min后,加20 μl抗生物素标记FITC抗血清15 μg/ml,孵育在37 ℃ 30min,以1.5 ml 4×SSc –0.1% Trion X-100洗1次,加入1.25 ml IBm –Triton X-100,室温静置10~15min,间歇振荡、离心。(7)荧光显微镜观察:将细胞核混悬液稀释于250 μl的IBM-Trion X-100中,轻加振荡混匀。为抗荧光褪色可加等量的抗褪色溶液至载片上的细胞核涂片上,选择适当的激发波长观察。(8)流式细胞计:将750 μl的细胞核混悬液通过流式细胞仪(Flow cytometry, FCM),DEMS处理过的红细胞作为对照(Df 530/30nm, Omega ·Optical Inc, Brattleboro, VT)。

  • 有6个父母的“杂交”猴在美诞生

    http://www.biomart.cn//upload/userfiles/image/2012/01/1325747024.jpg美国俄勒冈健康与科学大学的科学家们从6只猕猴的胚胎中提取出细胞并将其放入一个胚胎内,随后,将该胚胎移入一只代孕母猴的体内。多次流产后,代孕母猴终于诞下了健康的雄性双胞胎罗库(Roku)和赫克丝(Hex)。这两个名字分别来源于日语和希腊语,都是“六”的意思,表明这对“猴哥”有6个父母。研究将发表在1月20日出版的《细胞》杂志在线版上。据英国《每日邮报》1月5日报道,美国科学家利用6只猴子的基因,培育出了两只“怪异”的猴子。进行此项研究的科学家们表示,最新研究将有助于他们更深入地了解试管受精(IVF)和受孕过程;开展与干细胞有关的研究等;批评人士则认为此举不合伦理。俄勒冈健康与科学大学的科学家们从6只猕猴的胚胎中提取出细胞并将其放入一个胚胎内,随后,将该胚胎移入一只代孕母猴的体内。多次流产后,代孕母猴终于诞下了健康的雄性双胞胎罗库(Roku)和赫克丝(Hex)。这两个名字分别来源于日语和希腊语,都是“六”的意思,表明这对“猴哥”有6个父母。研究将发表在1月20日出版的《细胞》杂志在线版上。该研究的领导者、俄勒冈国家灵长动物研究中心的沙乌科莱特-米塔利波夫表示,罗库和赫克丝很健康,它们的出生也将为科学界开启更多的可能性,因为猴子的智力和生理属性更接近人类。这项技术将有助于科学家们更深入地了解试管受精(IVF)和受孕过程以及制造出人类器官等。“这些源于不同动物的细胞不会交融在一起,而是齐心协力制造出猴子的组织和器官,这会给科学界带来很多可能性。”科学家们刚开始试图使用实验室培育而成的胚胎干细胞在猴子的胚胎内培育―制造“杂交”老鼠采用的就是这种方法,但他们失败了。米塔利波夫解释道,显然,灵长类动物的胚胎能够阻止实验室培育而成的胚胎干细胞同它们整合在一起。这也说明,在实验室培育而成的灵长类和人类的胚胎干细胞(有些已在实验室呆了20年)可能并不如活体胚胎中的胚胎干细胞那么“给力”。这也将有助于胚胎干细胞领域的研究。米塔利波夫指出:“我们不能总是以老鼠为模型,如果我们想在干细胞领域继续取得进步,并让其从实验室走向临床实践领域,我们需要理解灵长类动物细胞的能力。”但是,这些“怪异”猴子的出世也引发了一些伦理争议,批评人士控诉科学家们罔顾动物的尊严,而且,他们也对该研究可能导致的后果深表担忧。比如,英国禁止活体解剖联盟(BUAV)就认为,这项研究“令人非常不安”。该组织的科学顾问捷若德-贝利表示:“尽管有些经过遗传修改的动物展示出了‘我们所期望’的特性,但实验会导致很多动物的死亡。这些猴子也确实展示出了‘令人感兴趣的’特征,然而,其也会在实验中遭遇严重的伤害。这是我们不愿看到的。”

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制