当前位置: 仪器信息网 > 行业主题 > >

便携水体硬度监测

仪器信息网便携水体硬度监测专题为您提供2024年最新便携水体硬度监测价格报价、厂家品牌的相关信息, 包括便携水体硬度监测参数、型号等,不管是国产,还是进口品牌的便携水体硬度监测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携水体硬度监测相关的耗材配件、试剂标物,还有便携水体硬度监测相关的最新资讯、资料,以及便携水体硬度监测相关的解决方案。

便携水体硬度监测相关的资讯

  • 聚焦水污染:“天瑞仪器水体监测专题”上线
    水,是人类的生命之源。龙年春节后发生的广西龙江水污染、江苏镇江水污染等事件,引发了公众对水源保护的呼吁。作为水源保护的重要基础和技术支撑,水体污染检测与监测被提上日程。 天瑞仪器长期专注于“水体重金属及其他有害元素的检测与监测”技术研究,并已成功面向市场推出囊括“便携式应急检测、实时在线监测、实验室精确分析”在内的数款水质检测或监测产品。 基于强烈的社会责任感,天瑞仪器对各地连续发生的水污染事件保持高度、敏锐、深入的关注和思考。并在此基础上,开设“水污染在线监测”专题。我们期望借此专题,能与更多业内人士交流、探讨水体监测技术,为水污染的防治和监控献上一己之力。 专题内容简介: 水污染事件聚焦:广西龙江镉污染、云南曲靖铬污染等系列水污染事件回顾…… 新政频出防治水污染:频发的水污染事件引起社会聚焦,政府更频出新政防治水源污染…… 水污染的检测与监测:天瑞致力于针对不同的水污染检测需求,推出有效解决方案及产品…… 更多“水污染检测及监测”解决方案,请致电:800-9993-800。 “水环境污染监测”专题页面:http://www.skyray-instrument.com/cn/activity/Water/index.html天瑞仪器:www.skyray-instrument.com
  • 水体中氰化物快速检测解决方案
    水体中氰化物快速检测解决方案 8月12日,天津滨海新区危险化学品仓库发生的爆炸震惊全国,牵动了全国人民的关切之心。此次爆炸事故发生突然,危险品类型复杂,应急处置难度大,后果极其严重。事故发生后,爆炸中心区、爆炸区居民楼周边以及海河等处都受到了严重的氰化物污染,特别是对当地的水体造成了严重的污染。含氰化物的废水可通过呼吸道、食道及皮肤浸入而引起中毒。轻者有粘膜刺激症状,唇舌麻木、气喘、恶心、呕吐、心悸。重者,呼吸不规则,意识逐渐昏迷、大小便失禁、可迅速发生呼吸障碍而死亡。氰化物中毒治愈后还可能发生神经系统后遗症,水的氰化物浓度超过0.03mg/l时,鱼类中毒。因此、如何简单、快速的了解当前水体中氰化物的污染状况尤为重要。 近年来,突发性水体污染污染事件时有发生。在此次污染事件中,默克密理博可提供的氰化物现场检测快速测试条、测试盒、仪器等产品的全面解决方案。可以及时准确的掌握最新的水质污染状况提供了可靠的数据。默克密理博开发的一系列专用于水体污染应急快速检测的定性/半定量测试试纸,半定量测试盒等新产品,主要应用于现场应急快速水质分析,便于使用人员采取及时有效的措施来应对突发事件。在全国各个城市的环境监测中心、水文水利监测中心,都可以看到默克密理博产品的身影。 突发性水体中氰化物快速检测方案: 备注:更多测量参数和测量范围,请联系默克密理博各地办事处或经销商。 (1). 氰化物快速测试条操作简介: (2)便携式氰化物检测仪(10 – 350 μ g/l)操作简介:
  • 哈希便携式水体综合毒性测试系统入选水利部先进实用技术推广目录
    近日从水利部科技推广中心获悉,哈希便携式水体综合毒性测试系统已成功入选至2010年度水利先进实用技术重点推广指导目录。  哈希便携式水体综合毒性测试系统——Eclox水质毒性监测组件是一套专门用于水质综合毒性快速检测的分析设备,可满足环保、水利、卫生疾控以及自来水行业日益增强的对便携式毒性测试仪的需求。由于毒性分析反映的是水体的综合性表现,该分析方法不能用化学分析的方法获得解决。故毒性分析仪在人为投毒监控、有毒有害化学品泄露、突发污染事故监控与处置、以及水源水的预警等方面有着其他分析技术和分析方法不能取代的地位。
  • 中俄跨界水体水质联合监测技术交流会
    中国环境监测总站于2008年12月17-19日在黑龙江省哈尔滨市成功举办了中俄跨界水体水质联合监测技术交流会。  来自俄罗斯哈巴跨地区、滨海边区和赤塔州水文气象及环境监测中心的7位专家和我国黑龙江、内蒙古以及总站参加中俄跨界水体水质联合监测的技术人员和专家们共40多人参加了交流会。  会议由黑龙江省环境监测中心站承办,中国环境监测总站朱建平副站长主持了会议,环境部国际司唐丁丁司长到会致辞,环境部监测司刘舒生处长和黑龙江省环保厅刘森处长也参加了会议。  在友好、坦诚、科学和热烈的气氛中,中俄双方专家讨论交流了中俄跨界水体水质联合监测08年双方的监测结果、双方的水质评价方法、水质评价标准、水质分析方法和双方的质控结果等内容,并将交流内容汇集成册。会议交流后,俄方专家参观了黑龙江省站的实验室,有针对性的进行了现场交流。  会议取得了预期的成果,大家认为双方的交流是必要的,以后要继续加强双方的交流。此次会议增强了双方的互信,为双方今后的联合监测工作的继续开展奠定了良好的基础。
  • 中俄两国开展跨界水体水质联合监测技术交流
    中俄两国边境地区跨界水体联合监测取得良好效果,为两国开展跨界水体环境保护交流合作奠定了良好的基础,中俄两国环境专家在此间召开的中俄跨界水体水质联合监测技术交流会上表示。  中俄跨界水体水质联合监测技术交流会由环境保护部环境监测总站主办,黑龙江省环境监测中心站承办。来自中国环境保护部、国家和地方环境监测部门的专家和俄罗斯哈巴罗夫斯克边疆区、赤塔州、滨海边疆区的专家与会,双方就跨界水体联合监测分析方法、评价标准以及监测数据进行交流、研讨。  根据协议,两国在边境地区的额尔古纳河、黑龙江、乌苏里江、绥芬河和兴凯湖5个跨界水体的9个监测断面开展水质联合监测。  据悉,黑龙江省已经从2002年开始与俄罗斯边境地区开展了对界河黑龙江和乌苏里江的水体水质联合监测合作,为两国间开展跨界水体水质联合监测与保护奠定了良好的基础。
  • 扬州市启动“水体监测船”研发
    对重点河道湖泊的水体环境监测,是一项常态的环境监测工作。常规办法,就是人工岛河道或者湖泊中采样,带回实验室分析,获得相关数据。由于样本少、周期长,监测所得到的数据难以实时反映水体情况。  记者昨从市环保局了解到,扬州市环境监测站启动打造重点实验室计划,联合相关单位开发&ldquo 水体监测船&rdquo ,建立&ldquo 流动的水上实验室&rdquo ,以提升水质监测能力,目前已经进入项目招标阶段。  用&ldquo 船&rdquo 监测水质?相比抽样化验,有何优势?市环境监测中心站工程师孙小平告诉记者:传统的水质监测流程,先去水里进行采样,密封保存送到环保局实验室,经过多项仪器的长时间监测,差不多一个月的时间,才能得到结果。这样的数据,往往已是&ldquo 昨日黄花&rdquo 。  以高邮湖监测为例,目前环境监测,环保工作人员通常在湖边或者湖心采两三个水体样本,这对于水域宽广的高邮湖来说,两三个水体样本,局部采样没有代表性,难以真实反映水体的特征,会存在很大的误差。  扬州正在招标研发的&ldquo 船测&rdquo 技术,可以对高邮湖布点几十个,甚至上百个,装有仪器的船按原先制定好的路线行驶,&ldquo 边走边测&rdquo ,平均每个监测点只需要停留两三分钟,自动取样,而整个监测过程时间,只仅需一两天,却能够及时掌握动态数据。  据了解,&ldquo 水体监测船&rdquo 可配套快速检测设备,大多数项目在半小时内就能得到检测结果,尤其是高密度水质监测设备,将对发现水下暗管排污对水质产生的影响起到很好的监控作用。
  • MS9000-您的黑臭水体在线监测优选搭档
    MS9000-您的黑臭水体在线监测优选搭档哈希公司 安装地点:东莞某地MS9000+X多参数水质监测仪是由采配水单元、预处理单元、分析单元(多参数)、控制单元、数据采集与传输单元、空调、UPS电源等组成。可根据实际测量需求订制pH、溶解氧、电导率、浊度、水温、高锰酸盐指数、氨氮、总磷、总氮、化学需氧量、水中油、叶绿素、蓝绿藻等参数,占地面积小于2平方米。具有相当好的抗污性、稳定性和准确性,能有效满足黑臭水体长时间的在线监测。目前为止我们运维了3个黑臭水体站点,在如此恶劣工况条件下,MS9000连续七天不需要进行维护,系统集成能有效防止水体中淤泥、生活垃圾等的入侵,通过集成的预处理能防止杂质对仪器的损伤和数据的干扰,但又不会过度失真,保持水体原有的本质。系统的自动清洗、自动较准、预诊断等功能又为仪器保驾护航,使仪器尽管在恶劣水质下依然保持着良好的运行状态,减少故障的发生,给业主提供准确可靠的数据。MS9000是您在黑臭水体在线监测中优选搭档。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 中国环境报:先河环保黑臭水体自动监测系统助力打好碧水保卫战
    近日,《中国环境报》对先河环保创新推出的微型水质自动监测系统进行介绍,报道中指出该系统可对地表水水质进行实时、快速监控,并以数字化管理平台为基础,掌握水质变化因子,协助相关部门实现黑臭水体的有效监控。先河环保黑臭水体自动监测系统助力打好碧水保卫战《城市黑臭水体治理攻坚实施方案》明确要求:到2018年底,直辖市、省会城市、计划单列市建成区黑臭水体消除比例高于90%,基本实现长制久清。到2019年底,其他地级城市建成区黑臭水体消除比例显著提高,到2020年底达到90%以上。鼓励京津冀、长三角、珠三角区域城市建成区尽早全面消除黑臭水体。根据住房和城乡建设部、生态环境部“全国城市黑臭水体整治信息发布”监管平台数据,截至2017年10月,全国295个地级及以上城市中,共有224座城市排查确认建成区黑臭水体2100个;同时,各个城镇建成区管理部门主要通过对透明度、溶解氧(DO)、氨氮(NH3-N)、氧化还原电位(ORP)四项指标进行对黑臭水体进行水质监测,以全面掌握辖区内黑臭水体的水质情况,并有效监管黑臭水体的变化情况,防止反弹。为满足黑臭水体对水质自动监测站的需求,先河环保在完成充分调研黑臭水体监测应用现场工况、运行条件、环境协调性要求等工作后,设计开发了具有更强适应能力的用于黑臭水体自动监测的微型水质自动监测站。通过水质自动监测子站和中心站的建设,及时掌握河流断面水质的变化过程,并构建环境监测站水质实时自动监测数字化信息网络,提高数字化水环境管理水平及信息共享水平,为各级部门决策分析提供科学依据。先河环保黑臭水体自动监测系统介绍为满足黑臭水体对水质自动监测站的需求,先河环保在完成充分调研黑臭水体监测应用现场工况、运行条件、环境协调性要求等工作后,设计开发了具有更强适应能力的用于黑臭水体自动监测的微型水质自动监测站。通过水质自动监测子站和中心站的建设,及时掌握河流断面水质的变化过程,并构建环境监测站水质实时自动监测数字化信息网络,提高数字化水环境管理水平及信息共享水平,为各级部门决策分析提供科学依据。先河环保创新推出的微型水质自动监测站,运用现代传感器、自动测量、自动控制、计算机系统集成等组成的一个综合性的在线自动监测体系,对地表水水质进行实时、快速监控,并以数字化管理平台为基础,掌握水质变化因子,协助相关部门实现黑臭水体的有效监控。现场应用照片 图为先河环保水环境实验基地黑臭水体水质自动监测系统现场照片 图为黑臭水体水质自动监测系统现场监控照片应用领域黑臭水体、污水、地表水的监测、预警。优势特点★能连续反映水质变化情况,及时准确地捕捉污染事故排放并发出预警信号。★占地小,不涉及征地问题(不改变土地用途),施工周期短。★安装简单、灵活,无需站房,可整体吊装移址。★免试剂无二次污染,顺应环保要求。★长期稳定、维护量小,其整体建设及运行成本较低。★内部环境智能动态调节,密闭防潮防雨、防冻、防雷电,为监测设备提供优良的工作环境,提高监测精度,降低故障率。★断电保护,来电自动恢复功能。★通过GPRS等通讯方式远程传输数据,可随时随地获得真实的监测数据。
  • 去浊还清丨朗石为汕头市黑臭水体整治工作提供准确水质监测
    2021年2月,汕头市龙湖区委书记林定亮带领区相关领导以及水务、农业、生态环境、鸥汀街道等部门的负责人,开展辖区黑臭水体的巡查,并于关键监测站点现场考察了朗石水质在线监测系统。 汕头市龙湖区委书记林定亮一行现场考察朗石仪器随着“十四五”到来,“基本消除城市黑臭水体”成为水环境防治行动重点任务,各级政府十分重视。黑臭水体的水量不均,水质混杂,朗石全系列水质监测产品具备全球先进的浊度、色度、金属离子、气泡水等抗干扰技术,广泛适用于污染源入河排口、暗涵污等复杂水体实水时在线监测,为政府提供准确、实时的水体质量变化监测数据,为进一步提升黑臭水体改造提供决策依据。汕头市某分散式一体化污水处理厂现场2020年年初,为海南省文昌市改善人居环境添助力,朗石提供全套COD、氨氮、总磷等水质在线监测分析仪,海南省文昌市广播电视台推出的《民生实事看得见》专栏,对朗石水质在线监测系统现场运行情况进行报道。
  • 德国研发出水体细菌快速检测新技术
    淡水和饮用水水体质量检测标准都有相应的法律标准值。但是目前的标准检测程序由于要进行一段时间细菌培养,需要数天时间才能得到检测结果。  为了实现水质量快速检测,更好保障社会公共健康和避免经济损失,德国联邦教育部启动实施了《清洁水和饮用水细菌监测》(SEKT)联合项目。近日,该项目研究团队开发出了水体细菌和微生物快速检测新技术,利用该项新技术只需要不到一个小时的时间就能检测确定水体内细菌和微生物含量。此外,项目还开发出了可直接在现场使用的紧凑型检测设备。  该项新成果基于荧光标识技术,通过显微镜辨别附着在细菌和微生物体上的荧光标识。在检测过程中,先要使用特定的荧光标识剂将被检测水体中的细菌和微生物进行染色,然后将被测样本送到自动显微镜下进行观测。项目组在显微镜内置了高功率LED光源,通过光谱分析即可判断样本中细菌和微生物含量水平。  该项新技术可广泛应用在淡水和饮用水质量检测、饮料、食品和制药行业。此外,在游泳池、温泉、餐厅、酒店等公共场所水质监测方面也有广阔前景。  2012年1月,德国联邦教研部《生命科学领域光学技术倡议》框架下,实施了《清洁水和饮用水细菌监测》(SEKT)联合项目。该项目实施期限3年,总经费为200万欧元。
  • 水体中抗生素的检测及去除方法研究综述
    摘要:抗生素是目前世界上应用最广泛的药物之一。大量抗生素的使用,不可避免地给自然环境造成巨大的压力。由于污水截流不彻底等原因,工业、养殖及医疗活动等进入环境中的抗生素通过各种途径进入饮用水体,对水质安全及人类健康构成威胁。针对抗生素对水环境造成的污染,讨论目前国内外水环境中抗生素检测技术和去除手段的研究情况,主要对水中抗生素的富集方法、仪器检测及臭氧氧化去除技术进行分析,最后对抗生素污染的研究方向进行了展望。相关文献:水体中抗生素的检测及去除方法研究综述.pdf
  • 水体污染物监测溯源如何破?这款鱼毒性仪助力5A级景区提升自动化监测水平
    杭州西溪湿地水质环境监测站是国内首个全智能运维站点,这座站点率先启用了无人值守的监测机器人,并使用了宝怡环境提供的鱼法生物毒性分析仪,实时监测水体污染物,评估水质健康状态,为工作人员应对水环境突发事件提供技术支撑。目前,国内各城市普遍存在水体污染物实时监测难、污染物判断难的问题。在科技日新月异的现代化社会,污染物类型多样,难以实时一一检测。监测站现有水质监测项目有限,而所用化学物质繁多,污染物之间的相互作用关系难以判定。传统化学方法还存在操作复杂、化学药剂废弃物的二次污染问题。“十四五”期间水质监测进一步趋严,生态环境部出台的相关政策对主要污染物监测指标持续扩容,提出了更详细的要求。其中《生态环境监测规划纲要(2020-2035 年)》提出“建立 9+N 自动监测能力要求”,在常规 9 参数基础上,增加了水生态综合毒性等特征指标。《“十四五”生态环境监测规划》中,提出深化全国地表水环境质量监测评价,增加了生物毒性等自动监测试点,提升重点区域流域水质监测预警与水污染溯源能力。为应对污染物监测的难点和政策要求,宝怡环境依托多年的技术和经验,升级了简易鱼毒性仪,这款仪器适用范围广,毒性广谱性好,充分满足河流、水源地、景点保护区以及化工厂园区等对污染物监测的广泛需求。简易鱼毒性仪是一款以鱼作为探测生物,在线式连续对水体的综合毒性进行评估的设备,以确保水质安全,其监测参数包括鱼类活性、顶部覆盖率、特殊活性、水温、流速等信息。设备具备自动验证机制,以确保评估准确性。同时配有自动喂养装置以及可设定喂养量、喂养时间信息,以减少人工工作和增强运行环境的稳定性。简易鱼毒性仪可以选择本地鱼种作为探测生物,适用性和毒性广谱性都比较好。鱼毒性仪适用范围广。在河道流域,能够应对跨界断面毒性污染责任纠纷,为划定毒性污染区域提供支撑。评估应急处理措施和效果。在水源地,可以确保饮用水安全,提升应对突发事件应急能力。在化工厂,可以预警有毒污水排放;评估废水处理效果和对生态环境影响。在景点保护区,能够提升毒性污染物监测能力;实时评估水质健康状态;评估突发事情应急处理终点。目前,鱼毒性仪已经在杭州西溪湿地环境监测站、西昌水厂、北京师范大学珠海分校等单位落地应用,运行稳定,维护简便,获得了客户的肯定。为推动美丽中国建设,深入打好碧水保卫战,水体污染物监测已经成为现代生态环境必要的监测工作。宝怡环境将继续引领技术创新,助力提升环境监测站、景区、工厂园区等污染物监测水平,共同守护生态环境,筑牢美好生活的安全屏障。
  • GB 5750 | 睿科聚焦环境水质,无忧水体异味物质检测
    近年来,水体嗅味问题普遍存在,其主要原因是土臭素(Geosmin,GSM)和2-甲基异崁醇(2-methylisoborneol,MIB或2-MIB)两种藻类分泌物的存在。我国大多数饮用水为地下水,存在土臭素和2-甲基异崁醇的几率非常高,因此对水体中这些物质含量进行测定极为重要。固相微萃取技术是集采样、萃取、浓缩、进样于一体,克服了传统萃取方式的缺点,样品用量少、操作简单、方便、省时省力、使用溶剂少或不使用溶剂。睿科集团针对GB5749《生活饮用水卫生标准》征求意见稿和GB/T5750《生活饮用水标准检验方法》征求意见稿-水质异味物质检测,拥有一系列解决方案,满足客户不同样品前处理的需求。应用案例:水中土臭素和2-甲基异莰醇的测定01前处理-新拓固相微萃取(SPME)02气质联用检测条件土臭素的标准曲线2-甲基异莰醇的标准曲线结论从表中可以看出,2个化合物的回收率均在88%-125%之间,RSD测定结果(纯水):n=6应用标准举例GB5749《生活饮用水卫生标准》征求意见稿GB5750.8《生活应用水标准检验方法第8部分:有机物指标》征求意见稿GB/T32470-2016《生活饮用水臭味物质土臭素和2-甲基异莰醇检测方法》特附征求意见稿原文+解决方案欢迎扫码下载!
  • 荧光传感监测水体 浙大钱国栋团队获国家自然科学奖二等奖
    遭到重金属污染的水体,如何实现实时检测、分析?荧光传感是科学家提出的一种最新方法——荧光材料遇到水中特定的重金属离子,发光强度就会改变。  浙江大学材料科学与工程学院钱国栋团队开创性地将金属—有机框架材料引入荧光传感研究,设计出的荧光材料灵敏、准确,为荧光传感提供了更为坚实的理论基础。1月9日,“荧光传感金属—有机框架材料结构设计及功能构筑”获得2016年国家自然科学奖二等奖。  新兴材料近年来成为研究热点,金属—有机框架材料受到钱国栋团队关注。获奖团队成员、浙大材料科学与工程学院副教授崔元靖说,他们在国际上率先发现,在金属—有机框架材料中引入含氮的活性位点后,其捕捉特定重金属离子的能力大大增强。“实验表明,水体中的铜离子含量哪怕远低于污染排放标准,这种新型荧光材料也能发出响应。”据此发现撰写的论文发表后,引起国际同行强烈关注与跟进。  荧光传感还可以用来检测温度,它不怕电磁干扰,甚至不用发生接触,相比现在常用的一些探测器,在国防、生物医学领域的优势十分明显。获奖团队创造性地提出使用两种稀土离子,取代单一发光中心,这一设想大大促进了金属—有机框架材料在荧光温度传感中的应用。  钱国栋教授说,团队还为制备具有纳米级尺度、在生理环境中稳定、可用近红外光激发并发光等一系列性质的荧光材料提供了丰富的基础性研究成果。这些研究将推动荧光传感材料早日产业化,走进人们的生活。
  • 水质检测-水体中有机物质分析方法
    水体中的污染物质除无机化合物外,还含有大量的有机物质,它们是以毒性和使水体溶解氧减少的形式对生态系统产生影响。已经查明,绝大多数致癌物质是有毒的有机物质,所以有机物污染指标是水质十分重要的指标。水中所含有机物种类繁多,难以一一分别测定各种组分的定量数值,目前多测定与水中有机物相当的需氧量来间接表征有机物的含量(如CoD、BOD等),或者某一类有机污染物(如酚类、油类、苯系物、有机磷农药等)。但是,上述指标并不能确切反映许多痕量危害性大的有机物污染状况和危害,因此,随着环境科学研究和分析测试技术的发展,必将大大加强对有毒有机物污染的监测和防治。一、化学需氧量(COD)化学需氧量是指水样在一定条件下,氧化1升水样中还原性物质所消耗的氧化剂的量,以氧的m8从表示。水中还原性物质包括有机物和亚硝酸盐、硫化物、亚铁盐等无机物。化学需氧量反映了水中受还原性物质污染的程度。基于水体被有机物污染是很普遍的现象,该指标也作为有机物相对含量的综合指标之一。对废水化学需氧量的测定,我国规定用重铬酸钾法,也可以用与其测定结果一致的库仑滴定法。(一)重铬酸钾法(CODcI)在强酸性溶液中,用重铬酸钾氧化水样中的还原性物质,过量的重铬酸钾以试铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据其用量计算水样中还原性物质消耗氧的量。反应式如下:测定过程见图2&mdash 35。水样20mL(原样或经稀释)于锥形瓶中&darr &larr H8S0&lsquo 0.48(消除口&mdash 干扰)混匀&larr 0.25m01/L(1/6K2Cr20?)100mL&darr &larr 沸石数粒混匀,接上回流装置&darr &larr 自冷凝管上口加入A82S04&mdash H2S0&lsquo 溶液30mL(催化剂)混匀&darr 回流加热2h&darr 冷却&darr &larr 自冷凝管上口加入80mL水于反应液中取下锥形瓶&darr &larr 加试铁灵指示剂3摘用0.1m01从(N氏久Fe(S04)2标液滴定,终点由蓝绿色变成红棕色。图2&mdash 35 CoDcr测定过程重铬酸钾氧化性很强,可将大部分有机物氧化,但吡啶不被氧化,芳香族有机物不易被氧化;挥发性直链脂肪组化合物、苯等存在于蒸气相;不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸钾氧化,并与硫酸银作用生成沉淀;可加入适量硫酸汞缀合之。测定结果按下式计算:式中:V。&mdash &mdash 滴定空白时消耗硫酸亚扶铵标准溶液体积(mL)5&mdash Vl&mdash &mdash 滴定水样消耗硫酸亚铁铵标准溶液体积(mL);V&mdash &mdash 水样体积(mL); &lsquo c&mdash &mdash 硫酸亚铁铵标准溶液浓度(m01儿)t38&mdash &mdash 氧(1/20)的摩尔质量(8/m01)。用o.25m01几的重铬酸钾溶液可测定大于50m8从的COD值;用0.025m01儿重铬酸钾溶液可测定5&mdash 50m8/L的COD值,但准确度较差。(二)恒电流库仑滴定法恒电流库仑滴定法是一种建立在电解基础上的分析方法。其原理为在试液中加入适当物质,以一定强度的恒定电流进行电解,使之在工作电极(阳极或阴极)上电解产生一种试剂(称滴定剂),该试剂与被测物质进行定量反应,反应终点可通过电化学等方法指示。依据电解消耗的电量和法拉第电解定律可计算被测物质的含量。法拉第电解定律的数学表达式为:式中:W&mdash &mdash 电极反应物的质量(8);I&mdash &mdash 电解电流(A);t&mdash &mdash 电解时间(s);96500&mdash &mdash 法拉第常数(C);M&mdash &mdash 电极反应物的摩尔质量(8);n&mdash &mdash 每克分子反应物的电子转移数。库仑式COD测定仪的工作原理示于图2&mdash 36。由库仑滴定池、电路系统和电磁搅拌器等组成。库仑池由工作电极对、指示电极对及电解液组成,其中,工作电极对为双铂片工作阴极和铂丝辅助阳极(置于充3m01几H2SOd,底部具有液络部的玻璃管内),用于电解产生滴定剂;指示电极底部具有液络部的玻璃管中),以其电位的变化指示库仑滴定终点。电解液为10.2m01/L硫酸、重铬酸钾和硫酸铁混合液。电路系统由终点微分电路、电解电流变换电路、频率变换积分电路、数字显示逻辑运算电路等组成,用于控制库仑滴定终点,变换和显示电解电流,将电解电流进行频率转换、积分,并根据电解定律进行逻辑运算,直接显示水样的COD值。使用库仑式COD测定仪测定水样COD值的要点是:在空白溶液(蒸馏水加硫酸)和样品溶液(水样加硫酸)中加入同量的重铬酸钾溶液,分别进行回流消解15分钟,冷却后各加入等量的、硫酸铁溶液,于搅拌状态下进行库仑电解滴定,即Fe&rdquo 在工作阴极上还原为Fe&rdquo (滴定剂)去滴定(还原)CrzOv2&mdash 。库仑滴定空白溶液中CrzOv&rdquo 得到的结果为加入重铬酸钾的总氧化量(以O 2计);库仑滴定样品溶液中CrzO v&rdquo 得到的结果为剩余重铬酸钾的氧化量(以02计)。设前者需电解时间为&lsquo o,后者需&lsquo ,则据法拉第电解定律可得:式中:1r&mdash &mdash 被测物质的重量,即水样消耗的重铬酸钾相当于氧的克数;I=&mdash 电解电流;M&mdash &mdash 氧的分子量(32);n&mdash &mdash 氧的得失电子数(4);96500&mdash &mdash 法拉第常数。设水样coD值为c5(mg儿);水样体积为v(mL),则1y· c2,代入上式,经整理后得:本方法简便、快速、试剂用量少,不需标定滴定溶液,尤其适合于工业废水的控制分析。当用3mI&lsquo o.05mol儿重铬酸钾溶液进行标定值测定时,最低检出浓度为3m8入;测定上限为100m8/L。但是,只有严格控制消解条件一致和注意经常清洗电极,防止沾污,才能获得较好的重现性。二、高锰酸盐指数,以高锰酸钾溶液为氧化剂测得的化学耗氧量,以前称为锰法化学耗氧量。我国新的环境水质标准中,已把该值改称高锰酸盐指数,而仅将酸性重铬酸钾法测得的值称为化学需氧晕。国际标准化组织(1SO)建议高锰酸钾法仅限于测定地表水、饮用水和生活污水。按测定溶液的介质不同,分为酸性高锰酸钾法和碱性高锰酸钾法。因为在碱性条件下高锰酸钾的氧化能力比酸性条件下稍弱,此时不能氧化水中的氯离子,故常用于测定含氯离子浓度较高的水样。酸性高锰酸钾法适用于氯离子含量不超过300m8儿的水样。当高锰酸盐指数超过5mg从时,应少取水样并经稀释后再测定。其测定过程如图2&mdash 37所示。取水样100mL(原样或经稀释)于锥形瓶中&darr &larr (1十3)H:SO&lsquo 5mL &lsquo 混匀&darr &larr o.olmoI儿高锰玻钾标液(十KMn04)10.omL沸水浴30min&darr &larr o.olo omot儿草酸钠标液(专Nasc20&lsquo )lo.oomL退色 &lsquo &darr &larr o.01m01儿高锗酸钾标液回滴终点微红色 :图2&mdash 37 高锗酸盐指数测定过程测定结果按下式计算:1.水样不经稀释高锰酸盐指数式中:Vl&mdash &mdash 滴定水样消耗高锰酸钾标液量(mL);K&mdash &mdash 校正系数(每毫升高锰酸钾标液相当于草酸钠标液的毫升数);M&mdash &mdash 草酸钠标液(1/.2Na2C20d)浓度(nt01从);8&mdash &mdash 氧(1/20)的摩尔质量(8/m01);100&mdash &mdash 取水样体积(mL)。2.水样经稀释高锰酸盐指数式中2V。&mdash &mdash 空白试验中高锰酸钾标液消耗量(mL)Vz&mdash &mdash 分取水样体积(mL);f&mdash &mdash 稀释水样中含稀释水的比值(如10.omL水样稀释至100mL.,Ng/=0.90)l其他项同水样不经稀释计算式。化学需氧量(CODcr)和高锰酸盐指数是采用不同的氧化剂在各自的氧化条件下测定的,难以找出明显的相关关系。一般来说,重铬酸钾法的氧化率可达90%,而高锰酸钾法的氧化率为50%左右,1两者均未达完全氧化,因而都只是一个相对参考数据。三、生化需氧量(BOD)生化需氧量是指在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。同时亦包括如硫化物、亚铁等还原性无机物质氧化所消耗的氧量,但这部分通常占很小比例。有机物在微生物作用下好氧分解大体上分两个阶段。第一阶段称为含破物质氧化阶段,主要是含碳有机物氧化为二氧化碳和水;第二阶段称为硝化阶段,主要是含氮有机化合物在硝化菌的作用下分解为亚硝酸盐和硝酸盐。然而这两个阶段并非截然分开,而是各有主次。对生活污水及性质与其接近的工业废水,硝化阶段大约在5&mdash 7日,甚至10日以后才显著进行,故目前国内外广泛采用的20℃五天培养法(BODs法)测定BOD值一般不包括硝化阶段。BOD是反映水体被有机物污染程度的综合指标,也是研究废水的可生化降解性和生化处理效果,以及生化处理废水工艺设计和动力学研究中的重要参数。(一)五天培养法(20℃)也苏标准稀释法。其测定原理是水样经稀释后,在29土1℃条件下培养5天,求出培养前后水样中溶解氧含量,二者的差值为BOD5。如果水样五日生化需氧量未超过7m8/L,则不必进行稀释,可直接测定。很多较清洁的河水就属于这一类水。对于不合或少含微生物的工业废水,如酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BODs时应进行接种,以引入能降解废水中有机物的微生物。当废水中存在着难被一般生活污水中的微生物以正常速度降解的有机物或有剧毒物质时,应将驯化后的微生物引入水样中进行接种。1.稀释水对于污染的地面水和大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以保证在培养过程中有充足的溶解氧。其稀释程度应使培养中所消耗的溶解氧大于2血8凡,而剩余溶解氧在1m8儿以上。稀释水一般用蒸馏水配制,.先通入经活性炭吸附及水洗处理的空气,曝气2&mdash 8h,使水中溶解氧接近饱和,然后再在20℃下放置数小时。临用前加入少量氯化钙、氯化铁、硫酸镁等营养盐溶液及磷酸盐缓冲溶液,混匀备用。稀释水的pH值应为7.2,BOD5应小于0.2血8儿。高锰酸盐指数 (mg/L)系 数< 55 &mdash 1010 &mdash 20> 200 . 2 、 0 . 30 . 4 、 0 . 60 . 5 、 0 . 7 、1 . 0如水样中无微生物,则应于稀释水中接种微生物,即在每升稀释水中加入生活污水上层清液1&mdash 10mL,或表层土壤浸出液20&mdash 30mL,或河水、湖水10&mdash 100mL。这种水称为接种稀释水。为检查稀释水相接种液的质量,以及化验人员的操作水平,将每升含葡萄糖和谷氨酸各150m8的标准溶液以1:50稀释比稀释后,与水样同步测定BODs,测得值应在180&mdash 230m8儿之间,否则,应检查原因,予以纠正。2.水样稀释倍数水样稀释倍数应根据实践经验进行估算。表2&mdash 13列出地面水稀释倍数估算方法。工业废水的稀释倍数由CODcr值分别乘以系数0.075、o.15、0.25获得。通常同时作三个稀释比的水样。表2&mdash 13 由高锰酸盐指数估算稀释倍数乘以的系数3.测定结果计算对不经稀释直接培养的水样:式中Icl&mdash &mdash 水样在培养前溶解氧的浓度(m8儿);&lsquo :&mdash &mdash 水样经5天培养后,剩余溶解氧浓度(m8儿)。对稀释后培养的水样:式中:Bl&mdash &mdash 稀释水(或接种稀释水)在培养前的溶解氧的浓度(m8儿);Bz&mdash &mdash 稀释水(或接种稀释水)在培养后的溶解氧的浓度(m8儿);f1&mdash &mdash 稀释水(或接种稀释水)在培养液中所占比例;f2&mdash &mdash 水样在培养液中所占比例。水样含有铜、铅、锌、镉、铬、砷、氰等有毒物质时,对微生物活性有抑制,可使用经驯化微生物接种的稀释水,或提高稀释倍数,以减小毒物的影响。如含少量氯,一般放置1&mdash 2h可自行消失;对游离氯短时间不能消散的水样,可加入亚硫酸钠除去之,加入量由实验确定。本方法适用于测定BOD5大于或等于2m8儿,最大不超过6000m8儿的水样;大于6000m8儿,会围稀释带来更大误差。(二)其他方法1.检压库仑式BOD测定仪检压库仑式肋D测定仪的原理示于图2&mdash 38。装在培养瓶中的水样用电磁搅拌器进行搅拌。当水样中的溶解氧因微生物降解有机物被消耗时,则培养瓶内空间中的氧溶解进入水样,生成的二氧化碳从水中选出被置于瓶内的吸附剂吸收,使瓶内的氧分压和总气压下降、用电极式压力计检出下降量,并转换成电信号,经放大送入继电器电路接通恒流电源及同步电机,电解瓶内(装有中性硫酸铜溶液和电解电极)便自动电解产生氧气供给培养瓶,待瓶内气压回升至原压力时,继电器断开,电解电极和同步电机停止工作。此过程反复进行使培养瓶内空间始终保持恒压状态。根据法拉第定律;由恒电流电解所消耗的电量便可计算耗氧量。仪器能自动显示测定结果,记录生化需氧量曲线。2.测压法在密闭培养瓶中,水样中溶解氧由于微生物降解有机物而被消耗,产生与耗氧量相当的COz被吸收后,使密闭系统的压力降低,用压力计测出此压降,即可求出水样的BOD值。在实际测定中,先以标准葡萄糖&mdash 谷氨酸溶液的BOD值和相应的压差作关系曲线,然后以此曲线校准仪器刻度,便可直接读出水样的BOD值。3.微生物电极法微生物电极是一种将微生物技术与电化学检测技术相结合的传感器,其结构如图2&mdash 39所示。主要由溶解氧电极和紧贴其透气膜表面的固定化微生物膜组成。响应BOD物质的原理是当将其插入恒温、溶解氧浓度一定的不含BOD物质的底液时,由于微生物的呼吸活性一定,底液中的溶解氧分子通过微生物膜扩散进入氧电极的速率一定,微生物电极输出一稳态电流;如果将BOD物质加入底液中,则该物质的分子与氧分子一起扩散进入微生物膜,因为膜中的微生物对BOD物质发生同化作用而耗氧,导致进入氧电极的氧分子减少,即扩散进入的速率降低,使电极输出电流减少,并在几分钟内降至新的稳态值。在适宜的BOD物质浓度范围内,电极输出电流降低值与BOD物质浓度之间呈线性关系,而BOD物质浓度又和BOn值之间有定量关系。微生物膜电极BOD测定仪的工作原理示于图2&mdash 40。该测定仪由测量池(装有微生物膜电极、鼓气管及被测水样)、恒温水浴、恒电压源、控温器、鼓气泵及信号转换和测量系统组成。恒电压源输出o.72V电压,加于Ag&mdash A8C1电极(正极)和黄金电极(负极)上。黄金电极因被测溶液BOD物质浓度不周产生的极化电流变化送至阻抗转换和微电流放大电路,经放大的微电流再送至A&mdash D转换电路,改A&mdash V转换电路,转换后的信号进行数字显示或记录仪记录。仪器经用标准BOD物质溶液校准后,可直接显示被测溶液的BOD值,并在20min内完成一个水样的测定①。该仪器适用于多种易降解废水的&rsquo BOD监测。除上述测定方法外,还有活性污泥法、相关估算法等。四、总有机碳(TOC)总有机碳是以碳的含量表示水体中有机物质总量的综合指标。由于TOC的测定采用燃烧法,因此能将有机物全部氧化,它比如Ds或COD更能反映有机物的总量。目前广泛应用的测定TOC的方法是燃烧氧化J4F色散红外吸收法。其测定原理是:将一定量水样注入高温炉内的石英管,在900一950℃温度下,以铂和三氧化钻或三氧化二铬为催化剂,使有机物燃烧裂解转化为二氧化碳,然后用红外线气体分析仪测定C02含量,从而确定水样中碳的含量。因为在高温下,水样中的碳酸盐也分解产生二氧化碳,故上面测得的为水样中的总碳(TC)。。为获得有机碳含量,可采用两种方法:一是将水样预先酸化,通入氮气曝气,驱除各种碳酸盐分解生成的二氧化碳后再注入仪器测定。另一种方法是使用高温炉和低温炉皆有的TOC测定仪。将同一等量水样分别注入高温炉(900℃)和低温炉(150℃),则水样中的有机碳和无机碳均转化为COz,而低温炉的石英管中装有磷酸浸渍的玻璃棉,能使无机碳酸盐在150℃分解为C02,有机物却不能被分解氧化。将高、低温炉中生成的CO:&lsquo 依次导入非色散红外气体分析仪,分别测得总碳(TC)和无机碳(IC),二者之差即为总有机碳(TOC)。测定流程见图2&mdash 41。该方法最低检出浓度为o.5mg/I。五、总需氧量(TOD)总需氧量是指水中能被氧化的物质,主要是有机物质在燃烧中变成稳定的氧化物时所需要的氧量,结果以02的m8儿表示。用TOD测定仪测定ToD的原理是将一定量水样注入装有铂催化剂的石英燃烧管,通入含已知氧浓度的载气(氮气)作为原料气,则水样中的还原性物质在900℃下被瞬间燃烧氧化。测定燃烧前后原料气中氧浓度的减少量,便可求得水样的总需氧量值。TOD值能反映几乎全部有机物质经燃烧后变成C02、H20、N0、S02&hellip 所需要的氧量。它比BoD、CoD和高锰酸盐指数更接近于理论需氧量值。但它们之间也没有固定的相关关系。有的研究者指出,BODs/TOD=0.1&mdash 0,6;CoD/TOD=0.5&mdash 0.9,具体比值取决于废水的性质。TOD和TOC的比例关系可粗略判断有机物的种类。对于含碳化合物,因为一个碳原子消耗注⑦ 参阅孙裕生等,《分析仪器》,(1),1992年两个氧原子,即Oz/C=2.67,因此从理论上说,TOD=2.67TOC。若某水样的TOD/TOC为2.67左右,可认为主要是含碳有机物j若TOD/TOC>4.o,则应考虑水中有较大量含S、P的有机物存在;若TOD/TOC<2.6,就应考虑水样中硝酸盐和亚硝酸盐可能含量较大,它们在高温和催化条件下分解放出氧,使TOD测定呈现负误差。六、挥发酚类根据酚类能否与水蒸气一起蒸出,分为挥发酚与不挥发酚。通常认为沸点在230℃以下的为挥发酚(屑一元酚);而沸点在2助℃以上的为不挥发酚。酚屑高毒物质,人体摄入一定量会出现急性中毒症状;长期饮用被酚污染的水,可引起头昏、骚痒、贫血及神经系统障碍。当水中含酚大于5m8/L时,就会使鱼中毒死亡。酚的主要污染源是炼油、焦化、煤气发生站,木材防腐及某些化工(如酚醛树脂>等工业废水。酚的主要分析方法有容量法、分光光度法、色谱法等。目前各国普遍采用的是4&mdash 氨基安替吡林分光光度法;高浓度含酚废水可采用溴化容量法。无论溴化容量法还是分光光度法,当水样中存在氧化剂、还原剂、油类及某些金属离子时,均应设法消除并进行预蒸馏。如对游离氯加入硫酸亚铁还原;对硫化物加入硫酸铜使之沉淀,或者在酸性条件下使其以硫化氢形式逸出;对油类用有机溶剂萃取除去等。蒸馏的作用有二,一是分离出挥发酚,二是消除颜色、浑浊和金属离子等的干扰。(一)4&mdash 氨基安替比林分光光度法酚类化合物于pHl0.0土o.2的介质中,在铁氰化钾的存在下,与4&mdash 氨基安替比林(4&mdash AAP)反应,生成橙红色的p5l噪酚安替比林染料,在510nm波长处有最大吸收,用比色法定量。反应式如下:显色反应受酚环上取代基的种类、位置、数目等影响,如对位被烷基、芳香基、酯、硝基、苯酰、亚硝基或醛基取代,而邻位未被取代的酚类,与4&mdash 氨基安替比林不产生显色反应。这是因为上述基团阻止酚类氧化成醌型结构所致,但对位被卤素、磺酸、羟基或甲氧基所取代的酚类与4&mdash 氨基安替比林发生显色反应。邻位硝基酚和间位硝基酚与4&mdash 氨基安替比林发生的反应又不相同,前者反应无色,后者反应有点颜色。所以本法测定的酚类不是总酚,而仅仅是与4&mdash 氨基安替比林显色的酚,并以苯酚为标准,结果以苯酚计算含量。用20m2d比色皿测定,方法最低检出浓度为o.12n8/L。如果显色后用三氯甲烷萃取,于460n2n波长处测定,其最低检出浓度可达o.o02m8/L;测定上限为0.12m8从。此外,在直接光度法中,有色络合物不够稳定,应立即测定;氯仿萃取法有色络合物可稳定3小时。(二)溴化滴定法在含过量溴(由溴酸钾和溴化钾产生)的溶液中,酚与镇反应生成三溴酚,并进一步生成溴代三溴酚。剩余的溴与碘化钾作用释放出游离碘,与此同时溴代三溴酚也与碘化钾反应置换出游离碘。用硫代硫酸钠标准溶液涵定释出的游离碘,并根据其消耗计算出以苯酚计曲捅发酚含量。反应式如下:结果按下式计算:挥发酚式中:认&mdash &mdash 空白(以蒸馏水代替水样加D同体积溴酸钾&mdash 溴化钾溶液)试验滴定时硫代硫酸钠标、&mdash 液用量(mL)6y2&mdash &mdash 水样滴定时硫代硫酸钠标液用量(mL);&mdash c&mdash &mdash 硫代硫酸钠标液的浓度(tpol儿)一V&mdash &mdash 水样体积(mL);15.68&mdash &mdash 苯酚(1/6C eHsOH)摩尔质量(8/m01)。七、矿物油.水中的矿物油来自工业废水和生活污水;工业废水中石油类(各种烃类的混合物)污染物主要来自原油开采、加工及各种炼制油的使用部门。矿物油漂浮在水体表面,影响空气与水体界面间的氧交换;分散于水中的油可被微生物氧化分解,消耗水中的溶解氧,使水质恶化。矿物油中还含有毒性大的芳烃类。测定矿物油的方法有重量法、非色散红外法、紫外分光光度法、荧光法、比浊法等。(一)重量法重量法是常用的方法,它不受油品种的限制,但操作繁琐,灵敏度低,只适用于测定10m8儿以上的含油水样。方法测定原理是以硫酸酸化水样,用石油醚萃取矿物油,然后蒸发除去石油醚,称量残渣重,计算矿物油含量。该法是指水中可被石油醚萃取的物质总量,可能含有较重的石油成分不能被萃取。蒸发除去溶剂时,也会造成轻质油的损失。(二)非色散红外法本法系利用石油类物质的甲基(&mdash CH:)、亚甲基(&mdash 吧Hz一)在近红外区(3.4f4m)有特征吸收,作为测定水样中油含量的基础。标准油可采用受污染地点水中石油醚萃取物。根据我国原油组分特点,也可采用混合石油烃作为标准油;其组成为:十六烷:异辛烷:苯z 65:25:10(y/y)。测定时,先用硫酸将水样酸化,加氯化钠破乳化,再用三氯三氟乙烷萃取,萃取液经无水硫酸钠层过滤、定容,注入红外分析仪测其含量。所有含甲基、亚甲基的有机物质都将产生干扰。如水样中有动、植物性油脂以及脂肪酸物质应预先将其分离。此外,石油中有些较重的组分不镕于三氯三氟乙烷,致使测定结果偏低(三)紫外分光光度法石油及其产品在紫外光区有特征吸收。带有苯环的芳香族化合物的主要吸收波长为250一260nm;带有共扼双键的化合物主要吸收波长为215&mdash 230ngl。一般原油的两个吸收峰波长为225nm和254nm;轻质油及炼油厂的油品可选225nm。水样用硫酸酸化,加氯化纳破乳化,然后用石油醚萃取,脱水,定容后测定。标准油用受污染地点水样石油醚萃取物。 不同油品特征吸收峰不同,如难以确定测定波长时,可用标准油样在波长215&mdash 300nm之间的吸收光谱,采用其最大吸收峰的位置。一般在220一225nm之间。八、其他有机污染物质根据水体污染的不同情况,常常还需要测定阴离子洗涤剂、有机磷农药、有机氯农药、苯系物、氯苯类化合物、苯并(a)花、多环芳烃、甲醛、三氯乙醛、苯胺类、硝基苯类等。· 这些物质除阴离子洗涤剂外。其他均为主要环境优先污染物,其监测方法多用气相色谱法和分光光度法。对于大分子量的多环芳烃、苯并(a)芘等要用液相色谱法或荧光分光光度法。其详细内容参阅本教材后附的有关水质分析方面的文献。
  • 志愿者检测河流水质 70%黑臭水体地方环保部门未公开
    黑臭水体是公众反映最为强烈的环境生态问题之一,但全国有多少黑臭水体地方环保部门还没有晒出来?今天下午,“我为家乡测河流”之大学生黑臭水体调查发布会在北京举行,发布会上发布的大学生检测、调查样本显示,至少有三分之二黑臭水体地方环保部门未公开,同时地方政府黑臭水体治理进度缓慢,在治理方式上存在“治标不治本”的问题。  “我为家乡测河流” 是由北京科技报社旗下“北科智库”主办的环保实践活动,2016年夏天,75名大学生志愿者按照环保部《城市黑臭水体整治工作指南》的要求,检测了全国24个省市的83条河流(湖泊),取得700多张调查问卷,800多个检测记录,检出至少20多条地方环保部门未公布的黑臭水体。  发布会现场,项目负责人北京科技报记者洪广玉对检测、调查结果进行了深度解读。项目报告显示,根据仪器检测结果,所有记录中轻度黑臭和重度黑臭的总计有30份,占比达到了35.2%,总体上也符合公众对于河流生态的印象。而在71份问卷中,显示为 “黑臭”的有47份,占比约为66.2% 为“无黑臭”的24份,占比约为33.8% 这意味着如果以群众感受为评价标准,黑臭水体的情况将会多出一倍。  如果将这些数据和地方环保部门公开水体数据进行比对,仪器检测显示为“黑臭”的30份记录、28个水体中,已经被公示为黑臭水体的有8个,占比约为28.5% 问卷调查显示为黑臭的47处,已经被公示的有11处,约为23.4% 检测和问卷均显示为 “黑臭”23处记录中,已经被公示的有7处。也就是说,以本次调查的样本来看,无论哪种对比方式,地方环保部门所公示的黑臭水体都占比不到三分之一。  洪广玉在发布会上表示,“黑臭水体”不仅影响城市景观,给群众生产生活带来不便,而且滋生细菌、蚊蝇,危害周边居民健康。发表在《环境科学》上的一项研究显示,城市黑臭水体离岸20 m 范围内存在微生物浓度聚集现象,离岸200 m 范围内存在明显的细菌和真菌污染,而离岸100m 范围内的长居人群存在明显的微生物健康风险。2015年4月2日,国务院发布《水污染防治行动计划》,对黑臭水体治理提出明确要求,“到2020年,我国地级及以上城市建成区黑臭水体均控制在10%以内 到2030年,城市建成区黑臭水体总体得到消除。”  发布会上,中国农大志愿者杨艺涵,北京林业大学志愿者魏连雪、马嘉苑分享了她们参加活动的见闻和感受,并结合自己的专业提出了治理黑臭水体、改善河流生态的建议。国家城市环境污染控制技术研究中心彭应登研究员对本次活动的价值、对大学生志愿者的表现给予了肯定,并针对检测、调查的诸多问题进行了延伸解读 北京师范大学水科学研究院教授丁爱中则对黑臭河流的评价、治理等进行了点评分析。
  • 水体溶解甲烷检测灵敏度提升超500倍
    日前,中国科学院合肥物质科学研究院智能所陈池来研究员团队王晗等研究人员在深海探测领域取得新突破——在前期深海质谱研究基础上,将水体溶解甲烷检测灵敏度提升500多倍,达到海洋及湖泊本底溶解甲烷检测水平,实现了从溶解甲烷异常事件监测到背景甲烷长期监测的跨越。甲烷作为仅次于二氧化碳的第二大温室气体,其排放对全球气候变化具有重要影响。每年从海洋、湖泊等水生态系统中排放的甲烷约占全球总量的53%,因此,有效监测海洋甲烷向大气的排放通量至关重要。此外,甲烷还是天然气水合物的主要成分,这种新型清洁能源被视为21世纪最具潜力的能源之一。因此,海洋甲烷监测对于海洋环境感知、甲烷异常区域发现、海洋能源勘探、海洋科学研究等均具有重要价值。由于海洋中的甲烷浓度低、变化大等特点,当前对海洋溶解甲烷的检测数据仍然很少,对海洋甲烷通量的估计还存在很大不确定性。深海质谱仪是实现海洋溶解气快速检测的重要海洋装备,因其检测灵敏度有限,也只能对特定区域或异常事件进行检测。2023年,陈池来研究员团队成功研制“智微号”深海质谱仪,并在南海某海域顺利完成多次海试,获得了海洋廓线重要溶解气信息。在前期工作基础上,为进一步提高检测灵敏度,团队针对样本水气高、检测仪器空间有限等问题,研制出小体积、低功耗的在线除水系统,同时优化进样气路设计,成功将其集成安装于深海质谱仪中。这一改进在维持目标检测气体高渗透通量的同时,将质谱仪的真空度提升超过2个数量级,将甲烷的检测灵敏度提升了超500倍,达到深海及湖泊等水域甲烷本底信号检测水平,有望实现海洋溶解甲烷的无差别监测,将为进一步实现甲烷通量计算、全球气候研究、冷泉发现等提供重要技术基础。
  • 便携式多参数水质分析仪促销2个月/水质多参数监测仪特价优惠2个月/多参数水质监测仪特惠出售/便携式水质监测仪特价销售
    作为英国AQUARead公司中国总代理,为了更好的提供品牌知名度和市场占有率,本公司对AQUARead便携式多参数水质分析仪,手持式多参数水质监测仪,水体水中叶绿素荧光仪。水质叶绿素A蓝绿藻监测仪,便携式藻红蛋白荧光计,便携式水体蓝绿藻监测仪,蓝绿藻多参数水质监测仪等设备将在7月份特价销售,一直特价销售到9月中旬,在此期间只有购买AP-2000、AP-5000,AP-7000系列便携式多参数水质监测仪可以免费保修2年,包括传感器、主机、显示器、电缆 英国AQUARead便携式多参数水质监测仪中国总代理南京铭奥仪器设备有限公司联系人:张先生 18913964277电话:025-87163873英国AQUAREAD便携式野外水质监测仪,野外长期水质监测系统,多参数水质野外监测仪仪器特点:与Aquameter组合可进行手持式测量,现场读取数据,简单方便。自带GPS,可将测量地点导入google地图。含抗生物污染组件和自清洗系统,无需定期清洁和维护,配合logger用于水质长期定点监测。可连接电脑实时显示数据,也可根据设定自动存储数据并进行远程无线传输,还可以通过短信实时给用户发送数据异常信息。最多可安装高达12个传感器。标准配置为光学溶解氧、pH、ORP、EC、深度和温度传感器,同时还有额外六个接口可用于连接任意六个ISE和光学传感器(具体传感器参数见后面)。智能软件,具备完整的数据处理功能。可现场查看数据,也可远程采集多路数采信号。内置可充电电池,能支持长达一周的连续测量。8G存储卡,满足大容量数据存储。
  • 海洋一所研发世界最灵敏水体放射性监测仪
    “我们刚制造的新仪器,检测海洋放射性的灵敏度,要比世界上最好的同类仪器还高100倍。”国家海洋局第一海洋研究所(简称海洋一所)党委副书记孙永福,在近日举办的“2016高校博士团走向海洋”活动上透露说。  日本福岛核泄漏事故后,西太平洋和我国近海检测放射物任务量大增。传统监测方法,需要船舶在海域大量收集海水。海水样本装进大桶,搬运到陆地实验室,再富集检测,这样成本高、出结果慢。  海洋一所的董振芳研究员团队,为此研发了一款水体放射性快速监测仪,今年制造实验成功。现在,这款仪器被放进大海,随着拖曳船的行进,船上即时得到了放射性数据,且只需一个人就可完成操作。  孙永福说,这款灵敏度超越世界水平两个数量级的仪器,是董振芳潜心研发的成果,为此董振芳三年未从事任何其他工作,也未发表论文。  孙永福还介绍道,目前在海洋设备和仪器方面中国有很多空白需填补。一些尖端装备还需要从挪威、德国等海工强国进口。孙永福期望参加活动的博士生能够积极加入海洋科技队伍。  据了解,“2016高校博士团走向海洋”考察活动为期一周,来自清华、北大和中国地质大学的60名博士生在青岛和天津近距离接触各种海洋尖端科研项目,包括“油指纹”检测、海况预报、海洋生态模拟系统等。该活动由国家海洋局人事司主办,国家海洋局宣教中心承办。
  • 姊妹篇!TOC在三类水体检测中的“妙用”
    4月26日,仪器信息网举办了首届TOC 检测技术及应用主题网络研讨会,超过500位专业听众参与了本次直播,共同探讨了TOC仪在废污水、土壤有机物检测方面的应用。干货详情可点击文章:TOC检测标准及技术重难点!看这一篇就够了!应听众要求,TOC检测“姊妹篇”来了!6月28日,仪器信息网网络讲堂将举办TOC在水体检测中的应用进展专场网络研讨会,聚焦饮用水、海水、地表水、电厂水等多类水体。届时将围绕TOC仪、TOC指标在科学研究中的应用等方面,邀请行业内大咖进行干货分享!点链接,免费报名:https://www.instrument.com.cn/webinar/meetings/toc20220628/会议日程:(报名失败,联系助教微信:13260310733)报告时间报告方向报告嘉宾09:30--10:00饮用水中总有机碳检测技术要点解析向华上海市供水调度监测中心水质监测站 原高级工程师、质量控制室主任10:00--10:30小身材,大作用:岛津TOC-1000e在水质检测中的应用胡猷浩岛津企业管理(中国)有限公司 分析计测事业部 市场部10:30--11:00TOC在水质检测中的应用进展陈耀君赛莱默 应用专家11:00--11:30海水总有机碳原位监测技术马然山东省科学院海洋仪器仪表研究所 副研究员11:30--12:00TOC仪在核电厂水检测中的应用于淼上海核工程研究设计院 高级工程师
  • 海诚高科成功签约“海岸带水体环境的在线监测技术集成与规范”项目
    2011年9月7日上午,烟台海诚高科技有限公司与中国科学烟台海岸带研究所、国家海洋局烟台海洋环境监测中心站共同申请的“海岸带水体环境的在线监测技术集成与示范”项目在烟台正式启动。来自国家海洋局北海分局党委书记刘建成、烟台市常务副市长赵强、中科院烟台海洋带研究所所长施平、党委书记高玲瑜、烟台海诚高科技有限公司董事长赵君才、北海分局海洋科学技术处、预报减灾处、北海海洋技术保障中心以及威海市、烟台市、潍坊市、东营市、滨州市等海洋与渔业行政主管部门有关领导出席了启动仪式。 烟台海诚高科技有限公司赵君才董事长发言 国家海洋局烟台海洋环境监测中心站站长 陈平 (左) 中科院烟台海洋带研究所所长 施平 (中) 烟台海诚高科技有限公司董事长 赵君才(右)国家海洋局北海分局党委书记刘建成(中)参观海诚高科与海岸带所联合研发中心 烟台海诚高科技有限公司自从实施战略转型,投资2000万元与中科院烟台海岸带研究所成立研发中心以来,在海洋环境监测领域取得了很多创新的成果。在“产学研”合作方面走出了一条新路。此次项目合作启动仪式,是海诚高科前期“产学研”合作模式的进一步丰富完善,是“产学研用”的合作新模式。该模式以应用为中心,为用户提供最佳服务方案。 据了解,该项目是以国家海洋环境安全战略需求为导向,面向世界环境科学技术前沿,在海洋环境监测科技领域,开展以应用基础为导向的高技术创新研究,意在现有海洋环境监测和观测站的基础上,发展自主知识产权的海洋观测装备。建立起以海洋定位浮标为平台,高质量的、连续的、实时的多参数监测装备,并利用远程无线通讯传输技术,建设区域性长期立体观测系统,以满足我国海洋环境监测多参数实时监测与预警安全需求。海诚高科将会以此次合作为契机,大力推进海洋环境监测技术的研发与产业化,提供世界领先的水环境安全技术及应用解决方案。公司目前已针对渤海湾的漏油污染,利用微生物降解修复技术,能够有效降解石油污染和其他重金属污染。 该项目目前已通过科技部“十二五”国家科技项目入库评审,总经费额度陆仟万元。烟台海诚高科技有限公司主要负责该项目仪器设备的组装、生产和产业化操作。这个项目形成的科研、中试应用、经营于一体的新型合作模式,既加快了科研项目的产业化进程,也通过科研、中试应用、经营三方合作,发挥了各自优势,搭建了优势互补、互利共赢、务实高效的合作平台。
  • 借力表面增强拉曼 中科院实现对水体中Hg(II)免标记定量检测
    p  近日,中国科学院合肥物质科学研究院技术生物与农业工程研究所研究员黄青课题组,利用表面增强拉曼光谱(SERS)技术,实现了对水体中汞离子的选择性、免标记、半定量的检测。该项成果对实现实际水样中重金属离子的高选择性及准确检测具有一定的科学意义和实用价值,相关成果在线发表在Sensors and Actuators B: Chemical上。/pp  表面增强拉曼光谱(SERS:surface enhanced Raman spectroscopy)作为一种正在快速发展的技术,因其快速、无损和痕量检测等特点,得到广泛关注并开始走向实际应用。汞是一种毒性极强的重金属,对人体及生物体有很大危害。Hg(II)作为汞在环境中的一种常见的存在形式,对其进行快速、可靠、有效测量具有必要性和迫切性,但基于SERS技术对其特异性和相对定量检测存在一定难度。为此,黄青等设计了能够有效的捕捉水样中的汞离子并产生拉曼散射增强效应的纳米粒子——适配体复合检测体系。研究人员在SiO2@Au纳米粒子表面修饰上能有效捕获汞离子的DNA适配体,利用DNA分子中T碱基和Hg(II)形成T-Hg2+-T结构的特性,能够高效捕获Hg2+,并产生SERS信号改变。实验结果表明,在加入Hg(II)后,设计DNA分子中的腺嘌呤(A)产生736cm-1SERS信号与鸟嘌呤(G)产生的位于660cm-1的SERS信号的峰强的比值会随检测Hg(II)浓度增加而减小,并出现一些特征新峰,如550cm-1。计算表明,它来源于汞离子取代了T上的H在两个DNA分子间形成N-Hg-N结构而发生的伸缩振动。利用这些变化,可以对Hg(II)的进行快速、特异性和半定量的痕量检测。/pp  研究工作得到国家自然科学基金、国家重点基础研究发展计划等的支持。/pp  论文题目:A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles/pp style="text-align: center "img title="001.png" src="http://img1.17img.cn/17img/images/201712/insimg/ca52438b-c746-4230-bd80-e8cad9d9affa.jpg"//pp style="text-align: center "strong合肥研究院实现对水体中Hg(II)高选择性、免标记的定量检测/strong/pp /p
  • 便携式水污染物监测设备的使用方法和适用范围
    便携式水污染物监测设备是一种用于现场快速监测水体中污染物浓度的仪器。它具有便携性、操作简便、快速响应等特点,适用于各种水体环境中的污染物监测。使用方法如下:准备工作:确保设备已经充电或安装好电池,并检查设备的传感器和探头是否完好。校准和预热:根据设备的说明书进行校准,确保测量结果的准确性。同时,根据设备的要求进行预热,通常需要一定的时间来使设备稳定。测量操作:将设备的传感器或探头浸入待测水体中,确保传感器与水体充分接触。等待一定时间,让设备稳定并记录测量结果。数据记录和分析:根据设备的功能,可以将测量结果直接显示在设备屏幕上,也可以通过连接到计算机或移动设备上进行数据记录和分析。适用范围包括但不限于:水源地监测:用于监测水源地的水质状况,包括河流、湖泊、水库等。污水处理厂监测:用于监测污水处理厂的出水水质,确保达到排放标准。工业废水排放监测:用于监测工业企业的废水排放情况,确保符合环保要求。水环境调查和应急监测:用于对水环境进行调查和应急监测,快速获取水质信息。需要注意的是,不同的便携式水污染物监测设备可能具有不同的测量项目和测量范围,使用前应仔细阅读设备的说明书,并按照要求进行操作和维护。
  • 中国仪器仪表行业协会发布《水体浮游动物在线监测仪》等5项团体标准
    按照《中国仪器仪表行业协会团体标准管理办法(2020年修订版)》和《中国仪器仪表行业协会团体标准制定工作细则(2020年修订版》,中国仪器仪表行业协会已组织有关单位完成《水体浮游动物在线监测仪》等5项团体标准的制定工作,现批准发布,详见附表。特此公告。
  • “大气及水体挥发性有机物连续在线监测设备开发及应用示范”项目启动会在京召开
    2012年12月3日,环境保护部在北京召开“国家重大科学仪器设备开发专项”2011年项目年度进展汇报暨2012年立项项目启动会,标志着2012年度环保领域中的4项国家科学仪器设备开发专项项目全面正式开始。武汉市天虹仪表公司“国家重大科学仪器设备开发专项牵头“大气及水体挥发性有机物连续在线监测设备开发及应用示范”项目,和参与“环境大气中细粒子(PM2.5)监测设备开发与应用”,任务十分艰巨而又光荣。武汉市天虹仪表公司董事长兼总经理李虹杰、副总经理范新峰、北京公司总经理王澎蛟及课题组其他人员都参加了会议。  启动会上,董事长兼总经理李虹杰作为项目负责人汇报了我公司承担的 “大气及水体挥发性有机物连续在线监测设备开发及应用示范”项目的实施方案和工作计划。此项目有8项分解任务,主要参加单位有:北京大学、广州市环境保护科学研究院、聚光科技(杭州)股份有限公司、中日友好环境保护中心、武汉市环境监测中心站、常州市环境监测中心和中国疾病预防控制中心环境与健康相关产品安全所。项目的立项充分体现了我公司的科研创新实力和项目组织管理能力。项目的实施将提升我公司高端环境科学仪器的研制能力和水平,促进和带动我国环境科学仪器产业发展,提高改善环境质量及环境应急与处置的科技支撑能力,并将产生良好的经济效益、社会效益和环境效益。    科技部条财司副司长吴学梯、环保部科技标准司刘志全副司长等领导作出了重要指示,要求各项目承担单位要深刻理解“十八”精神,协同创新、资源整合,实行创新驱动发展战略,加强组织、认真实施、严格经费使用、严格质量控制,以市场为导向,将重大仪器专项打造成精品工程,并就项目实施过程中的每个关键环节均提出了详细的要求。
  • 钢的淬透性硬度检测 | 乔米尼 | JOMINY
    淬透性硬度检测乔米尼 | Jominy乔米尼 | Jominy硬度检测前言淬透性是衡量淬火能力的一种以试验为依据的指标,指在规定条件下用试样淬透层深度和硬度分布来表征的材料特征,它主要取决于材料的临界淬火冷速的大小。钢材淬透性好与差,常用淬硬层深度来表示。钢材的可淬透性及其稳定性决定了钢材的主要热处理工艺性能。淬透性好的钢材,可使钢件整个截面获得均匀一致的力学性能以及可选用钢件淬火应力小的淬火剂,以减少变形和开裂。影响钢材淬透性的主要因素有:钢材的化学成分、淬火加热温度、冷却介质的特性、冷却的方式方法、零件的外形尺寸以及加热方式等。淬透性乔米尼末端淬火钢的淬透性是由奥氏体在淬火期间分解为铁素体,珠光体、贝氏体以及马氏体的不同冷却速度所决定的。淬透性通常采用顶端淬火试验测定(或称Jominy试验)。1938年,乔米尼(Jominy) 和伯格霍尔德(Boegehold) 首先用渗碳钢做了乔米尼末端淬火试验。不久之后,乔米尼末端淬火试验形成了标准,即1S0642、ASTM A255 和 SAE J406,我国是GB225,即“钢的淬透性末端淬火试验法”。顶端淬火时冷却速度由淬火端沿试棒逐渐减小,组织和硬度随之相应地变化,由此得到的硬度变化曲线称为淬透性曲线或Jominy曲线。试验圆棒的尺寸通常是:直径25mm,长 100mm, 一端带有法兰。有时根据需要,试验圆棒的尺寸会有所改变。乔米尼硬度的测定和准备试样准备在平行于试样轴线方向上磨制出两个相互平行的平面,磨削深度应为0.4mm~0.5mm。磨制硬度测试平面时,应采用能供充足冷却液的细砂轮进行加工,以防止任何可能的加热而引起试样组织发生变化。硬度检测应采取措施以保证在测试硬度期间试样和支座之间良好的刚性周定。硬度计上试样的移动装置应能准确对准硬度测试平面的中心线,并使压痕位置精度在土0.1mm以内。硬度压痕点应沿平面的中心线分布。可用GB/T4340.1的维氏硬度HV30测量结果来代替HRC硬度测试。应保证在第一个平面上的硬度压痕的凸起边缘不会影响第二个平面的测试。硬度测量点为绘制表示硬度变化曲线的有两种检测法:1)通常测量离开淬火端面1.5mm、3mm、5mm、7mm、9mm、11mm、13mm、15mm前8个测量点和以后间距为5mm的硬度值(如上图所示)。2)测量低淬透性钢硬度时,第一个测量点应在距淬火端面1.0mm处;从淬火端面至11mm的距离内的其他各测量点以1mm为间距。最后5个测量点距淬火端面的距离应分别13mm、15mm、20mm、25mm和30mm。淬透性的表示方法淬透性通常采用J HRC-d的表示方法,其中:J为Jominy的首字母,d为测试点至水冷端的距离,HRC为测试点处的硬度。如:J43-3表示距水冷端3mm距离处的硬度为43HRC。淬透性全自动硬度测试荷兰INNOVATEST轶诺全自动洛氏硬度计NEMESIS 6200, 全线性加载系统,工件固定区域,测试头升降,消除在深度测试过程中可能会出现的不必要公差。采用力传感器,闭环力反馈系统,全自动伺服电机驱动。适用于测试碳素钢、合金钢工具钢工、模具钢、轴承钢、 冷硬铸铁、钛铝铜等合金,也适用于表面淬火钢、表面热处理、镀锌镀铬镀锡等化学处理层等材料的硬度测定。结合轶诺集团自行研发的IMPRESSIONS 工作流程系统,以及自动工作台,可实现自动硬度测试,尤其适合淬透性硬度试验|乔米尼|JOMINY.IMPRESSIONS软件基本功能该软件功能包括对所有测试标尺的自动测试、文件存储、图像存储、报告打印、以及其它更多高级功能。对于直接测量出来的数据,IMPRESSIONS可以根据ISO/ASTM的规定内容,同步地转换出多种不同硬度标尺(和强度)。可视图表化模板编辑器模板编辑器可供客户利用多种不同的设置来新建任意数量的测试模式。新建测试模式更为精确也更为方便。在预览模式下,可浏览多种操作设置,可从一个是试样上拖、放测试模板到另一个试样上。在同一个测试任务中,可以混合使用不同的测试模板甚至可以应用不同的力值,并使他们全自动运行。所有测试点都可单独定义或根据用户参数定义。这个标签将会在测试结果列表中或测试结果预览中显示,并能够直接打印。用户自定义程序对于重复任务,可利用 IMPRESSIONS软件设置并储存自定义测试程序。对于每个测试任务,均可新建一个“工作表任务”。所有测试程序的具体参数,如硬度标尺、试验力、保荷时间、测试模板、硬度转换和报告模板等都储存在同一程序中。综上所述,全自动洛氏硬度计NEMESIS 6200,智能化操作、简单方便、界面显示直观,可以把多个端淬棒放在一个夹具上,工作效率高效。
  • 公开征求意见|《农村黑臭水体治理工作指南(征求意见稿)》
    为改善农村人居环境,深入打好农业农村污染治理攻坚战,指导各地组织开展农村黑臭水体治理工作,解决农村突出水环境问题,推动工作取得实效,编制本指南。本指南适用于农村黑臭水体的排查识别、系统治理、长效管护与成效验收等工作。本指南主要对农村黑臭水体定义和识别、排查与清单编制、成因分析、治理措施、长效管护、成效验收等方面进行详细说明。本指南对进一步明确农村黑臭水体识别的具体要求、增加水体监管级别划定的有关内容、进一步完善治理思路和健全社会公众监督的有关规定等重要问题进行说明。本指南在农村黑臭水体水质监测要求的监测方法中,规定监测分析方法参见《水和废水监测分析方法(第四版)》用电化学探头法,便携式溶解氧测定仪技术要求、性能指标等满足《便携式溶解氧测定仪技术要求及检测方法》(HJ 925-2017);氨氮推荐纳氏试剂分光光度法、水杨酸—次氯酸盐分光光度法。透明度和溶解氧指标须采用现场原位测定。附件:农村黑臭水体治理工作指南(征求意见稿).pdf《农村黑臭水体治理工作指南(征求意见稿)》修订说明.pdf
  • 水体中检测结果显示 抗生素污染是新的健康隐患
    p style="line-height: 1.5em " 研究表明,生活污水、医疗废水和农业径流中包含了各种抗菌物质,天然细菌群落与一同排出的耐药细菌直接接触后,会推动细菌进化,产生更多耐药菌株。/pp style="line-height: 1.5em "  最近,热映的现实题材电影《我不是药神》和刷爆朋友圈的“问题疫苗”事件,引发了公众对健康问题的强烈担忧。在去年联合国环境大会期间,联合国环境规划署发布报告指出,因药物和特定化学品排放到环境中而导致的抗生素耐药性日益增加,是当前最令人担忧的健康威胁之一,环境在抗生素耐药性的产生和蔓延方面起了推波助澜的作用。/pp style="line-height: 1.5em "  1928年,英国细菌学家弗莱明偶然发现青霉素,这是第一种被发现的抗生素,也是20世纪科学史上最伟大的发现之一。至此,人类与疾病的对抗进入了新的阶段。/pp style="line-height: 1.5em "  抗生素是指由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其他活性的一类次级代谢产物,能干扰其他生活细胞发育功能的化学物质。抗生素对病原微生物具有抑制或杀灭作用,是防治感染性疾病、抗肿瘤以及杀虫除草的重要药物。现在已知的天然抗生素超过万种,但绝大多数毒性太强,仅有近百种适合作为治疗人类或牲畜传染病的药品,人们主要通过化学合成及微生物培养等途径获得常用抗生素。/pp style="line-height: 1.5em "  抗生素的杀菌作用主要源于“细菌有而其他主要生命体没有”的机制,包括抑制细菌细胞壁的合成、与细胞膜相互作用、干扰蛋白质的合成以及抑制核酸的转录和复制抑制等四大作用机理。/pp style="line-height: 1.5em "  适度适量、合理规范地使用抗生素,可以造福人类。但如果把抗生素当“药神”,滥用抗生素的话,不仅会威胁使用者的健康,还会加剧细菌的耐药性。耐药性指细菌、病毒、寄生虫和真菌对以前能有效治愈它们的药物产生抵抗性,进化为能够抵抗抗生素的新菌种,这会明显降低抗生素的抗菌作用。/pp style="line-height: 1.5em "  道高一尺,魔高一丈。当细菌面临各种抗生素的灭杀时,自己也在不断进化,苦练金钟罩铁布衫,越来越不害怕抗生素。细菌进化的速度远远快于人类研发新抗生素的速度,当耐药性不断加剧,终有一天将进化成刀枪不入的“超级细菌”,人类将陷入无药可医的困境,恐怕只能寻找相应的噬菌体。由于现有的抗生素及抗感染药物不能有效杀死耐药性病原体,导致全球每年约有70万人死于耐药性细菌感染。/pp style="line-height: 1.5em "  早在杭州G20峰会期间,《二十国集团领导人杭州峰会公报》就将抗生素耐药性与英国脱欧、气候变化、难民、恐怖主义等5项内容列为影响世界经济的其他重大全球性挑战因素,明确指出“抗生素耐药性严重威胁公共健康、经济增长和全球经济稳定”。/pp style="line-height: 1.5em "  我国是生产和使用抗生素的第一大国,年产抗生素原料约21万吨,自用18万吨,其中48%用于医治疾病,52%用于畜牧养殖业。我国抗生素人均年使用量为138克,是美国的10倍 畜牧养殖业年消耗抗生素9.7 万吨,是美国的9至10倍,是欧盟的25倍。/pp style="line-height: 1.5em "  抗菌药是我国第一大用药,门诊约有75%的感冒患者使用抗生素药物,外科手术使用抗生素药物的则高达95%,青霉素、四环素等抗生素药物在老百姓的家里也随处可见。为控制抗生素的使用,国务院于2012年颁布了《抗菌药物临床应用管理办法》,各地也陆续出台了实施细则。/pp style="line-height: 1.5em "  近年来,自然水体中检测出抗生素的相关消息络绎不绝,抗生素污染成为公众新的关注焦点。自然水体中的抗生素,主要源自规模化养殖场、医院、抗生素生产厂和居民生活污水,其中规模化养殖场和医院是主要源头,这与抗生素的治疗疾病和畜牧养殖两大主要用途密切相关。/pp style="line-height: 1.5em "  研究表明,生活污水、医疗废水和农业径流中包含了各种抗菌物质,天然细菌群落与一同排出的耐药细菌直接接触后,会推动细菌进化,产生更多耐药菌株。/pp style="line-height: 1.5em "  抗生素是新出现的水污染物,尚未得到足够重视,虽然具备相应检测手段,但缺乏相关的标准及法律法规依据。我国的《地表水环境质量监测》《生活饮用水卫生标准》等相关标准中,均不含有对抗生素的监测指标,而部分抗生素的可降解性、抗生素种类的庞杂程度,都加大了标准制定的难度,现有的水处理工艺流程也无法对抗生素进行完全处理。/pp style="line-height: 1.5em "  中国供应了全球90%的抗生素原料药,但抗生素原料生产企业偷排漏排抗生素污水、将未经处理的抗生素药渣倾倒入河等违法行为时有发生,多次被环保部门处罚。美国的调查报告显示,辉瑞、葛兰素史克、拜耳等知名医药品牌的抗生素原料药供应厂商,曾多次发生严重的污染事件,其中包括山东鲁抗、华北制药、石药集团等众多国内知名企业。这些问题引起了我国政府部门的高度重视,并出台了《制药工业水污染物排放标准》。/pp style="line-height: 1.5em "  对于我们个人来讲,别随意把抗生素当“药神”,使用抗生素一定要谨遵医嘱,常见病尽量不要使用,避免加剧体内细菌的耐药性,也不要一见效就停药,更不要频繁更换抗生素。/ppbr//p
  • 国内首创硬度检测设备在鞍钢投用,检测水平领跑钢铁行业
    经过多半年的试运行,近日,两台专用检测设备—自动布氏硬度计和洛布维一体硬度计在鞍钢股份质检计量中心成品检验一室正式投入应用。这两台自动化硬度计由鞍钢股份质检计量中心按照生产实际需求与国外设备厂家联合研发的,属于国内首创。硬度计采用国际通用的布氏和洛布维硬度检测法,检测过程实现自动化且精准高效,其硬度检验水平领跑国内钢铁行业。目前,两台设备相关设计已经申请国家专利。
  • 应用案例|盛奥华便携式水质检测仪助力水产养殖行业
    行业背景 行业话:“养鱼先养水”。鱼病的发生往往是水质突变造成的,因此水体中生物平衡是非常关键的,池塘的水好比一个生物圈,鱼类、藻类、虫类、菌类是维持水体平衡的生力军。水质的好坏直接关系到水产品的生长发育以及品质,进而影响到养殖户的经济效益。养殖户需要经常检测养殖水质情况,并以此为依据进行池塘水质调控。 案例详情 本案例为江苏扬州某渔业用户,采购水质检测设备主要用于检测养殖河塘的水质情况,以提升整个渔业养殖的产量和效益。 — 用户鱼塘现场 —使用仪器SH-9007型便携式多参数水质检测仪PHB-9型便携式pH计检测项目水温、pH、氨氮、总磷、总氮、亚硝酸盐、悬浮物、高锰酸盐指数等应用现场盛奥华技术工程师给用户详细地介绍了两款仪器的性能特点,现场实地取来水样进行了检测,手把手指导用户如何操作使用仪器,并着重说明了仪器使用过程中的注意事项。用户对仪器的使用和检测结果表示满意。 用户现场操作使用仪器 仪器亮点1、一机多用,测量广泛SH-9007型便携式多参数检测仪,主要检测指标:氨氮、总磷、总氮、亚硝酸盐、悬浮物、高锰酸盐指数等。PHB-9便携式pH计,主要检测指标:pH、温度。2、便携设计,携带方便两款仪器都自带手提箱,材质坚固,即拎即用。3、检测快速,准确度高SH-9007型便携式多参数检测仪采用比色管比色测定方式,配套预制试剂,检测快速便捷。PHB-9型便携式pH计采用的电化学法测量,电极直接测定读数,自带温度补偿。 总结选择合适的分析仪器准确掌握水质情况十分重要,可以科学有效地指导生产,提高水产品的质量和产量,最终实现科学养殖、增产增收。盛奥华研发生产的各类水质检测仪产品,已经深入生活污水、医疗污水、工业废水处理、城市排水、河道水等水质检测领域。未来,盛奥华也将不断贴切客户需求,切实为客户解决难题,以专业的产品、周到的服务赢得广大新老用户的信赖和支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制