当前位置: 仪器信息网 > 行业主题 > >

呼吸速率仪

仪器信息网呼吸速率仪专题为您提供2024年最新呼吸速率仪价格报价、厂家品牌的相关信息, 包括呼吸速率仪参数、型号等,不管是国产,还是进口品牌的呼吸速率仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合呼吸速率仪相关的耗材配件、试剂标物,还有呼吸速率仪相关的最新资讯、资料,以及呼吸速率仪相关的解决方案。

呼吸速率仪相关的资讯

  • 什么是果蔬呼吸测定仪?果蔬呼吸速率测定全靠它!
    果蔬呼吸测定仪是一种用于测量植物呼吸作用的仪器,它可以精确地测定果蔬等植物组织的呼吸速率。该仪器对于研究植物生理生态、优化果蔬采后管理、提高果蔬贮藏寿命等方面具有重要应用价值。 产品链接https://www.instrument.com.cn/netshow/SH104275/C519684.htm 一、采后管理优化 在果蔬的采后管理中,呼吸测定仪可以帮助研究人员了解不同果蔬的呼吸特性,从而优化冷藏、气调等保鲜技术。通过调节贮藏环境的氧气和二氧化碳浓度,可以减缓果蔬的呼吸速率,延长保鲜期。 二、农业科学研究 在农业科学研究领域,果蔬呼吸测定仪用于研究植物对环境变化的生理响应,如温度、光照、水分等对呼吸作用的影响。这些研究对于指导农业生产、提高作物产量和质量具有重要意义。 三、食品加工与贮藏 在食品加工与贮藏行业,该仪器可以测定加工过程中果蔬的呼吸速率,为食品的包装、运输和贮藏提供科学依据。通过控制呼吸作用,可以减少营养损失,保持食品的新鲜度和营养价值。 四、生态环境监测 果蔬呼吸测定仪还可以应用于生态环境监测,评估环境污染对植物生长的影响。例如,通过测定污染环境下植物的呼吸速率,可以评估污染物对植物生理功能的影响。 果蔬呼吸测定仪是一种多用途的科研和生产工具,它在果蔬采后管理、农业科学研究、食品加工贮藏以及生态环境监测等领域发挥着重要作用。随着对食品安全和质量要求的提高,果蔬呼吸测定仪将在未来的农业生产和食品工业中扮演更加关键的角色。
  • 果蔬呼吸强度测定仪-一款用于冷藏库中果品呼吸速率测定的仪器2024实时更新
    型号推荐:果蔬呼吸强度测定仪-一款用于冷藏库中果品呼吸速率测定的仪器2024实时更新,在保障果蔬品质和延长储存期方面,准确测定果蔬的呼吸速率至关重要。果蔬呼吸强度测定仪以其高效、精确的特点,为果蔬呼吸速率的测定提供了有力支持。 一、实时监测,精准测量 果蔬呼吸强度测定仪能够实时监测果蔬在呼吸过程中释放的二氧化碳量或消耗的氧气量,从而准确测量其呼吸速率。这种实时监测确保了数据的及时性和准确性,为果蔬储存和运输提供了科学依据。 二、多功能性,适应性强 该仪器不仅可以测量呼吸强度,还可以统计呼吸量、二氧化碳生成量等指标,并可根据果蔬的大小选择不同容积的呼吸室。这种多功能性和适应性强的特点,使得测定仪能够满足不同果蔬在不同储存条件下的测定需求。 三、操作简便,易于使用 果蔬呼吸强度测定仪的操作简便,只需将待测物品放入仪器中,按下开始按钮即可自动测量,并在屏幕上显示结果。同时,该仪器还具有自动校准功能,无需复杂的操作技能,方便用户在不同场合下使用。 四、仪器特点 1、Android安卓操作系统,更便捷的人机交互操作 2、7寸高清触摸屏,操作简单、界面清晰 3、气体流量直接通过仪器设定,可以进行不同流量下果蔬呼吸强度的试验 4、专用动态分析软件,可在安卓显示屏上实时显示实验过程,省去往电脑端拷贝数据,整理分析; 5、可输入试验果品或蔬菜的种类、名称、重量、产地、采摘日期等要素 6、支持wifi、4G联网;数据可无线上传至云平台 果蔬呼吸强度测定仪以其实时监测、精准测量、多功能性和操作简便的特点,为果蔬呼吸速率的测定提供了有力支持。它帮助农业、食品加工和运输行业及时了解果蔬的呼吸状况,为制定科学的储存和运输方案提供了科学依据。
  • 土壤温室气体分析仪-一款测定土壤呼吸速率的仪器2024实时更新
    型号推荐:土壤温室气体分析仪-一款测定土壤呼吸速率的仪器2024实时更新,土壤呼吸作为土壤生态系统碳素循环的关键环节,其速率的测定对于理解土壤健康状态、评估生态系统功能具有重要意义。土壤温室气体分析仪,以其高精度、多功能的特性,为土壤呼吸速率的测定提供了重要帮助。 一、准确监测多种温室气体 土壤温室气体分析仪能够同时显示呼吸室内部的CO₂ 、H₂ O、N₂ O、CH₄ 等多种温室气体的含量,以及温度和湿度的变化。这些数据的准确监测,为土壤呼吸速率的全面评估提供了可靠基础。 二、非破坏性测量与高精度 该仪器采用非破坏性测量方法,避免了对土壤生态系统的干扰。同时,其高精度和重复性高的特点,确保了土壤呼吸速率测量的准确性。通过实时监测和数据处理,研究人员可以迅速获取土壤呼吸速率的动态变化。 三、自动化操作与广泛应用 土壤温室气体分析仪具有自动化程度高、操作简便的特点,大大提高了工作效率。广泛应用于农业生态科研、碳源碳汇研究、全球气候变化等多个领域,为土壤呼吸速率的测定提供了强有力的技术支持。 四、仪器特点1、Android安卓操作系统,更便捷的人机交互操作 2、7寸高清触摸屏,操作简单、界面清晰 3、气体流量可通过仪器设定,可以进行不同流量下土壤呼吸强度的试验 4、专用动态分析软件,可在安卓显示屏上实时显示实验过程,省去往电脑端拷贝数据,整理分析; 5、支持wifi、4G联网;数据可无线上传至云平台 6、存储空间16G,可存储100000+条数据 7、数据可直接通过USB接口导出到U盘 8、检测完成可直接打印并上传检测数据结果 9、支持GPS定位; 土壤温室气体分析仪作为土壤呼吸速率测定的重要工具,其精确监测、非破坏性测量和自动化操作的特点,为土壤健康状态的评估和生态系统功能的理解提供了有力保障。未来,随着技术的不断进步,其在土壤科学研究中的应用将更加广泛和深入。
  • 动态果蔬呼吸速率测定仪DR3020(运输版/气调保鲜库版)
    table width="624" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="491" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"动态果蔬呼吸速率测定仪DR3020(运输版/气调保鲜库版)/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"北京广度漫想科技有限公司/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"邢英豪/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="162" height="25"p style="line-height:150%"a href="mailto:xingyinghao@139.com"span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"xingyinghao@139.com/span/a/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□技术转让 □技术入股 □合作开发 √其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/5e2c9fdc-4088-46d9-8f0c-17a7f3dbd744.jpg" title="20.jpg" style="width: 400px height: 301px " width="400" vspace="0" hspace="0" height="301" border="0"//pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"动态呼吸速率测定仪为广度漫想科技有限公司(北交所股票代码300011)北京大学、中国农业大学和北京农学院硕博士团队开发的新型产品。该产品专门用于水果和蔬菜的动态呼吸速率的研究和冷库、物流运输等的检测。因设备小巧,可直接用于多种环境下的检测,如气调库、运输货车、气调包装等。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"该设备的特点是可以动态的检测果蔬在检测温度下呼吸速率的变化,仪器可以同时显示温度、湿度、CO2浓度、O2浓度或乙烯浓度,与以往的CO2测定仪和CO2浓度和O2浓度联合表示气体浓度相比,具有多功能,高精度,快速,高效,方便的特点,而且最终的以CO2和O2口径呼吸速率实时显示,非常适合于食品、园艺,果品,蔬菜,外贸等各类学校,科研院所,及各公司企业用于各类水果和蔬菜的呼吸测定。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"当前,产品已进入北京市“第六批”新技术新产品名录,销售给中国农科院、北京农学院、天津工商大学、北京沃尔物流有限公司等多家科研机构、高校和企业。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"该产品非常适合于食品、园艺,果品,蔬菜,外贸等各类学校,科研院所等物联网化监测和指标测定。经济效益较好,收益明显。设备突破其他同类设备局限,如放置地点、读取等,市场认可度高。我们这个博士、硕士团队,同时可以提供深度的技术服务,很好的提供技术延伸服务。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"动态果蔬呼吸速率测定仪(201710608937.0)/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"采后生理数据采集软件V1.0(2017SR129628)/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"北京市新技术新产品证书——动态果蔬呼吸速率测定仪(XCP2017NY0015)/span/p/td/tr/tbody/tablepbr//p
  • 新研究阐明微塑料在呼吸道沉积
    研究表明,人类每小时可能会吸入约16.2块微塑料,相当于1周吸入1张信用卡的塑料量。而这些微塑料通常含有有毒污染物和化学物质,吸入后可能会造成严重的健康风险,因此了解它们如何在呼吸系统中传播对于预防和治疗呼吸系统疾病至关重要。据13日发表于《流体物理学》杂志的论文,来自澳大利亚悉尼科技大学、伊朗乌尔米亚大学、孟加拉国科米拉大学等单位的一个国际研究团队开发出一种计算流体动力学模型,分析了微塑料在上呼吸道的传输和沉积特征。团队研究了不同形状(球形、四面体和圆柱形)和大小(直径为1.6、2.56和5.56微米)的微塑料在缓慢和快速呼吸条件下的运动。微塑料往往会聚集在鼻腔、口咽或喉咙后部的热点部位。研究人员解释说,呼吸道的形状复杂且高度不对称,加上鼻腔和口咽部复杂的流动行为,导致微塑料偏离流动路径并沉积在这些区域。流动速度、颗粒的惯性和不对称形状影响微塑料的总体沉积,并增加其在鼻腔和口咽区的沉积浓度。呼吸条件和微塑料大小影响呼吸道内总的微塑料沉积速率。流速越大,沉积越少,最大的(直径5.56微米)微塑料比较小的微塑料更容易沉积在呼吸道中。2022年,科学家首次在人类呼吸道深处发现了微塑料,这引发了人们对严重的呼吸道健康危害的担忧。研究人员强调,人们需要更多地意识到空气中存在微塑料及其对健康的潜在影响。他们希望这一结果能为靶向药物输送系统提供参考,并改善健康风险评估。
  • 呼吸居然有苹果味?其实是疾病征兆
    中医中有望闻问切,闻诊这种说法,就是通过声音和气味诊断疾病。听着非常邪乎,闻一下怎么就能看病了呢? 中医“闻诊”就是通过声音和气味诊断疾病。随着西医发展至今,才揭示了其背后真正的奥妙——呼出气中含有多种挥发性有机物VOCs(如脂族化合物、醇、醛、酮、胺及卤代化合物),通过对不同疾病相关的生物标志物的检测,辅助疾病的早期诊断,早发现早干预早治疗。案例一:“葡萄状”气味的2-氨基苯乙酮 如感染铜绿假单胞菌的患者呼出气会释放一种“葡萄状”气味分子2-氨基苯乙酮[1]。案例二:“烂苹果味”的丙酮 糖尿病酮症酸中毒的病人呼出气体中常常伴有“烂苹果味”,这其实是呼出气中含有丙酮含量远远高出正常人。丙酮是糖尿病患者呼出气的生物标志物,也是一种VOCs。到底什么是呼出气VOCs?呼出气VOCs是指人体呼出,沸点介于50-260℃之间的挥发性有机化合物,分为外源性VOC和内源性VOC。外源性VOC可以产生于环境大气中,通过呼吸道或皮肤吸入或者吸烟后,同样会产生VOCs。而内源性VOC则产生于身体各个部位细胞的生化反应,反应了身体的新陈代谢,这部分的VOCs主要来源于肺泡,所以肺泡的呼出气中的生物标志物更能反应身体的疾病情况。那怎么才能采集到肺泡部分的挥发性有机物VOCs呢?可以根据不同的呼吸阶段CO2分压值的不同来区分。人呼出的气可以分为不同阶段人正常呼吸的全部气体是呼出混合气,大致可分为三个阶段,第I阶段为呼吸道内的死腔气,基本不含二氧化碳,第II阶段为肺泡和腔的混合气,第III阶段是肺泡气,二氧化碳值较高。所以可根据二氧化碳的分压值,识别呼吸阶段以及控制肺泡取样。(图1中表示:I+II+III 期=呼气期(“混合呼气期”,III 期=肺泡气期。PetCO2=呼气末二氧化碳分压) 图1:不同呼吸阶段的二氧化碳分压值 图来源:Elsevier Science & Technology Journals(2004)由于对呼吸采样标准没有严格要求,目前很多研究使用的仍然是整个呼气的采样(混合呼气)。由于混合呼吸会有污染物的影响,而肺泡气中的VOCs浓度比混合呼出气的高出两倍,污染物的浓度也比混合呼气样低。因此,对呼出气的不同阶段进行取样,不仅可以提高呼气分析的可靠性,还可以帮助确定呼气生物标志物的来源。呼吸气采样的便捷性和非侵入性(Non-Invasive),可以频繁重复检测,对患者和采集样本的工作人员没有任何风险,呼吸VOCs分析有望成为一种新型的无创诊断工具。呼吸采样分析挑战在于如何收集肺泡气 Sampling case-B气体采样器可在护理点进行直接肺泡取样,无需任何额外的采样、储存或预浓缩步骤。采样前,设置CO2阈值,以便区分呼吸周期的吸气期和肺泡期。一旦超过阈值,阀门将会打开,呼出的肺泡气体将被自动收集到一种带填料的捕集针被吸附——Needle trap 动态捕集针。采样原理图如图2,这样可以准确地识别呼吸周期的肺泡期和吸气期。 图2:二氧化碳自动控制动态针捕集呼吸采样装置应用案例:Needle trap动态捕集针技术在护理点呼吸采样实验步骤:● 采样方式:猪肺泡呼吸样本通过手动和自动肺泡采样的两种采样方式。● 动物接受了血管外科手术以研究脊髓缺血的影响。分别从麻醉诱导后、手术准备后、脊髓动脉夹闭后5min取标本。异丙酚诱导维持麻醉。● 样品体积为20毫升,每次取样时用每种取样方法重复两次。在这些实验中只使用了定制的NT,填料为2 cm的甲基丙烯酸和乙二醇二甲基丙烯酸酯共聚物。 图3:手动采样 图4:自动肺泡采样 *结果 图5:手动和自动采样的比较当自动取样时,峰面积要高得多。这些结果表明,自动采样,特别是在高呼吸频率下,比人工采样更有效。(如图5所示)所以,Needle trap动态捕集针技术为气态基质中的痕量分析提供了一种全新的、强有力的样品制备方式。 图6:Needle trap动态捕集针技术 Needle trap动态捕集针技术具有以下优点:● 灵敏度高,适用于痕量级别的气体分析,减少采样时间和体积;● 结合采样器可实现直接肺泡采样,容易储存和运输;● 解析速率快,直接进样口分析,无需冷阱聚焦;● 可复合多种吸附剂,适用不同化合物。参考文献[1] 呼出气分析在肺炎病原体诊断中的研究进展.[2] Microextraction techniques in breath biomarker analysis. Bioanalysis (2014) 6(9), 1275–1291[3] Analytical Chemistry, Vol. 81, No. 14, July 15, 2009[4] Anal Bioanal Chem (2013) 405:3105–3115 DOI 10.1007/s00216-013-6781-9
  • ECHO发布固体在生(回收)燃料生物降解呼吸仪(土壤/堆肥/塑料)新品
    固体在生(回收)燃料生物降解呼吸仪DRI技术使用真实动态呼吸指数(DRI)确定检测固体再生(回收)燃料的当前有氧微生物活动速率。 目前的好氧微生物活动率测量固体再生(回收)燃料的实际化学和物理性质下的生物稳定性。n 固体在生(回收)燃料固体在生(回收)燃料(SRF,也称为“垃圾衍生燃料”- RDF)是由非危险废物准备的固体燃料,用于焚烧或混合焚烧厂的能量再生(回收)。“准备好”在这里意味着加工,均质化和升级到可以在生产者和用户之间交易的质量。它们可以来自家庭垃圾,商业垃圾,工业垃圾和其他可燃垃圾。它们已被用于替代水泥窑,发电站和工业锅炉中的化石燃料。 n 原理固体在生(回收)燃料生物降解呼吸仪DRI测量O2来确定在确定的连续气流和绝热条件下可降解有机物质中微生物的活性。样品在密封的容器(绝热)中测量,产生由欧盟和其他标准确定的受控条件。 n 测试过程和控制该测试包括根据滞后的持续时间将样品保持在动态测试系统中观察1天至4天阶段(如果存在),以小时间隔(RDRI h)获取指数值。此外,如果在第四天结束时,RDRI趋势是恒定的或增长的,则通过获得至少其他24个值(RDRI h)来延长呼吸测量测试。连续气流式有氧装置,包括:l 气密密封的绝热反应器,最小操作体积以升表示,等于或小于以毫米表示且不大于30毫米的平均样品尺寸(例如,对于平均尺寸小于10毫米的样品,反应器体积是10升),反应器结构必须在离开反应器之前迫使输入空气穿过整个样品,避免混入输入空气和排出空气;l 反应堆气密性验证系统;l 曝气系统配有流量调节器和容量计;l 用于抽取废气中氧浓度的系统(%/v);l 数据采集系统以1小时间隔连续记忆测量参数,记忆的数据必须是在所考虑的间隔期间读取的所有值的平均值(至少60)。 n 符合国际/欧洲标准和用途l UNI 11184 - 通过DRI确定生物稳定性,生物稳定性决定了易于生物降解的有机物质分解 的程度。l EN 15590 - 通过DRI确定目前的好氧微生物活动速率,该方法估计了气味产生的潜力,载体吸引等。目前的生物降解速率可以用毫克O2 kg-1 dm h -1表示。l 固体废物降解的其他应用。 n 优点l 多通道系统:3, 或6或12通道, 测量三个相似的不同样本进行统计评估; l 即插即用设计(易于安装,使用和维护);l -每个容器中包含温度传感器;l 自动冷凝水去除系统;l 温度,流量,压力和湿度测量;l 传感器O2:范围0-25%,精度:2%;l 各种尺寸的容器:2l,10l,20l,30l;l 用户友好软件与excel导出文件;l 远程电脑控制;l 气泵;l 无需特殊连接;l 适用于不同领域的各种应用;l 选配传感器,如二氧化碳或甲烷,用于详细过程分析和监控;l 用于容器,控制器和PC的机架(支架); n 技术规格l 尺寸 - 控制器:48 x 40 x 28 cm;重量:17kg;l 尺寸 - 容器支架:140 x 60 x 150 cm;重量:50kg;l 尺寸 - 10升容器:42 x 42 x 45 cm;重量:9kg;l 尺寸 - 2升容器:33 x 33 x 28 cm;重量:5.5kg。 n 亿斯埃欧呼吸仪DRI软件创新点:检测固体再生(回收)燃料的当前有氧微生物活动速率多通道系统:3, 或6或12通道固体在生(回收)燃料生物降解呼吸仪(土壤/堆肥/塑料)
  • 【医学应用】微萃取技术在呼吸生物标志物分析中的应用
    新冠肺炎还未走,支原体肺炎又起!许多企业已经开始纷纷入局呼吸道诊断赛道,尝试通过呼吸物分析能够诊断和监测相关疾病。而前不久,由德国PAS Technology转让到德祥旗下英诺德INNOTEG旗下的技术产品——Needle Trap动态针捕集技术及配套采样装置,在通过呼吸产物分析的诊断与检测应用中具备相当的优势。本文将分享英诺德INNOTEG Needle Trap动态针捕集技术及配套采样装置在临床领域的应用优势。呼吸生物标志物呼气挥发性有机物(VOCs)分析是一种新的医学科学方法,有望成为一种新型的无创诊断工具。呼吸取样与血液或组织分析相反,其无创,并且可以频繁重复检测,对患者和采集样本的工作人员没有任何风险。呼吸 VOCs 的来源可以是作为细胞或微生物的生化产物,也可以是外源污染物或先前吸收。 表1:在人类呼吸中检测到的典型挥发性有机化合物和建议的来源呼吸气体采样一般来说,呼吸周期的不同阶段物质浓度不同,彻 底控制取样是一项关键要求。由于对呼吸采样标准没有严格要求,许多研究使用的是整个呼气的采样(混合呼气)。这就导致了一个问题:混合呼吸会有污染物的影响!该如何解决?解决方案肺泡气中血液中挥发性物质的浓度比混合呼气样高出两倍,污染物的浓度也比混合呼气样低。因此,对呼出气的不同阶段进行取样,不仅可以提高呼气分析的可 靠性,还可以帮助确定呼气生物标志物的来源。 图1:通过二氧化碳示踪识别呼吸阶段和控制肺泡取样。I+II+III 期=呼气期(“混合呼气期”),III 期=肺泡/潮气期。PetCO2=潮汐末二氧化碳分压自动肺泡取样 图2:英诺德INNOTEG Sampling Case 自动采样器英诺德INNOTEG Sampling Case-B,一种新的呼吸气体自动控制取样装置,可在护理点进行直接肺泡取样,无需任何额外的取样或储存步骤。采样前,设置 CO2阈值(通常为 25 和 30 mmHg pCO2),以便区分呼吸周期的吸气期和肺泡期。一旦超过阈值,瓣膜就会打开,肺泡气体可采入一种带填料的捕集针被吸附——英诺德INNOTEG Needletrap 动态捕集针。采样原理图如下,这样可以准确地识别呼吸周期的肺泡期和吸气期: 图3:二氧化碳自动控制动态针捕集微萃取呼吸采样装置结论内源性呼吸生物标志物的浓度变化与肺炎、急性呼吸窘迫综合征(ARDS)等急性肺疾病和哮喘、慢性阻塞性肺疾病(COPD)等慢性疾病有关,因此可以帮助诊断和监测护理。由于细菌在生长过程中会产生VOCs,甚至可能通过呼吸 VOCs识别传染源。NT具备更有针对性的临床应用应用英诺德INNOTEG Needle Trap(动态针捕集微萃取),由于样品体积小以及水的影响小,快速可控的样品制备有利于临床的应用。采样和解吸程序的自动化以及采样稳定性的提高,增强了英诺德INNOTEG Needle Trap作为患者和分析仪器之间的通用接口的潜力,用于筛选以及在临床环境中的有针对性的应用。英诺德INNOTEG 气体采样器Sampling Case 英诺德INNOTEGSampling Case气体采样器是一种采集VOCs样品的便携式自动采样装置,与Needle Trap动态捕集针技术或热吸附管联用,用于挥发性有机物VOCs分析。用户通过设定采样体积,采样流速即可实现自动采集气体样品。 英诺德INNOTEG Sampling Case 气体采样器和Needle Trap动态捕集针相连,采样器自动采集气体样品中的挥发性有机物到动态捕集针或热脱附管中。应用于环境,食品,植物,临床呼吸等不同行业VOCs采样,不仅可用于现场采样和临床采样,还可以便携式带到野外采样。产品优势:1. 便携式设计:可实现实验室和野外采样;2. 取样量:10ml-10L;3. 电子MFC,流速范围: 1-50ml/min或5-250ml/min;4. 控制器:带液晶屏的控制器单元;5. 电源:LiPo-lon锂电池,24V直流,10Ah;6. 充电:110-230V AC,50/60 HZ,2A;7. 多种型号可选,SC-XS和SC-S型号用于常规采集;SC-L型号用于常规采样、静态顶空采样;SC-XL型号用于常规采样、静态/动态顶空采样、外接气源压力控制采样;SC-B型号专门用于呼吸肺泡气采样。型号: 英诺德INNOTEG Needle Trap动态针捕集技术英诺德INNOTEG 新型的动态针捕集装置(Needle Trap),把吸附剂填充在针尖内,可装填多达三种不同商用固体填料,是一种新型的无溶剂微萃取技术,集采样、萃取、浓缩、进样于一体,适于痕量挥发性及半挥发性有机物分析。英诺德INNOTEG Needle Trap动态针捕集技术,为气态基质中的痕量分析提供了一种新的样品制备方式。通过增加吸附剂的量以及复合不同种类的吸附剂在增加吸附能力,尤其是对小分子的吸附。利用样品量少和内部膨胀气流热解析的技术进行快速解析而无需冷凝装置,有利于痕量级别的气体分析,其灵敏度高,检出限低。产品优势:1. 英诺德INNOTEG Needle Trap技术易于操作使用,便捷,可用于现场采样的技术;2. 灵敏度高,填有多种吸附剂的动态针捕集装置分析ppb/ppt级低浓度范围挥发性有机物;3. 英诺德INNOTEG Needle Trap的体积小,需要的样品量少,热解析速率只需30s,一方面不需要冷阱聚焦聚焦来解吸样品并且不会造成拖尾峰,另一方面,投入成本和使用成本大大降低;4. 样品采集和存储稳定性强,针头两端有PTFE堵头密封,易于保存,运输方便。规格:Luer-Lock连接头长度:在50mm至70mm之间直径:三种尺寸可选0.7mm/0.4mm;22号规格 (0.72mm/0.4mm) ;23号规格 (0.64mm/0.35mm) ;针尖形式:圆锥形(侧孔,钝面,或根据需求定制)填料:可根据目标组分选择填充不同种类的吸附剂,增大吸附容量和吸附范围如果您对上述产品感兴趣,欢迎随时联系德祥科技。德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了多个奖项。我们始终秉承诚信经营的理念,致力于成为更好的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!英诺德INNOTEG英诺德INNOTEG是德祥集团旗下自主研发品牌,专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。多年以来,英诺德INNOTEG致力于研发高效的实验室创新设备。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了颇有成效的研究开发工作。此外,英诺德INNOTEG还与各大科研院所、高校合作,积极推进科技成果项目的产业化。英诺德凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 共抗疫情 | 医用口罩是如何实现既能过滤病毒又能轻松呼吸的呢?
    医用n95口罩通常由三到四层多孔无纺布材料构成,在提供保护的同时又可以轻松呼吸。口罩的关键部分是中间的微孔层(熔喷布)具有静电吸附/过滤功能,可以吸附病毒和其他微小的有害物质。口罩层有防水处理,使水滴不能渗透。内层亲肤设计并对于中间层提供结构支撑。重要的是,口罩在阻挡外界水滴的同时,还要散发内部水蒸气并阻挡脸和口罩间水汽的累积,这就需要通过水分/水蒸气传输率(mvtr或wvtr)来评估水分离开面罩的速率。mocon permatran-w 101k设备对透气材料的水蒸气渗透测试提供精确和可重复的结果,包括医用口罩、外科防护服及其他个人防护用品(ppe)的无纺布面料层。该设备符合astmd6701测试标准:通过无纺布面料和塑料屏障测定水蒸气渗透率(wvtr)的标准测试方法。wvtr渗透率对于测量非常重要,因为它控制使用个人防护用品时将积聚多少水分。使用permatran-w 101k和astm d6701在生产用于医用口罩和防护服、个人防护用品过程中提供品质管控,可以有效保证这些医用品提供舒适及安全的保护。关于阿美特克mocon阿美特克mocon公司总部位于美国明尼阿波利斯, 自1966年成立以来一直是全球包装材料渗透率和包装完整性测试仪器的领导品牌,提供给全球客户全面的包装质量控制和最佳的产品货架期研究解决方案,产品包括氧气/水蒸气渗透率测试仪、map顶空气体分析仪、map气体配混器及泄漏检测仪等。阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 西藏高寒草地生态系统呼吸与甲烷通量的流域尺度格局及控制因素
    生态系统呼吸(Re)和甲烷(CH4)通量是两个重要的土壤-大气碳交换过程,已经在局地尺度上得到充分记录。然而,在流域尺度上,对青藏高原多年冻土区这些过程的空间格局和控制因素尚不清楚。基于此,为了填补研究空白,在本研究中,来自四川大学、中国科学院成都山地灾害与环境研究所、山西农业大学、中国科学院西北生态环境资源研究院和西南民族大学青藏高原研究所的研究团队在青藏高原风火山(34°40′-34°46′ N和92°50′–92°62′ E;4580-5410 m a.s.l.;图1a)测量了两个生长季节(2017年和2018年)不同坡向(北向(阴坡)和南向(阳坡))和不同海拔(低、中和高坡位)的生态系统呼吸(Re)和CH4通量,旨在阐明青藏高原草地流域尺度的Re和CH4通量模式并量化生物和非生物因子调节Re和CH4通量的相对贡献。作者利用LGR UGGA便携式温室气体分析仪+PS-3000便携式土壤呼吸系统(北京理加联合科技有限公司)+SC-11便携式呼吸室(北京理加联合科技有限公司)于2017年和2018年生长季节(6-12月)每30天测量一次Re和CH4通量。同时,还测量了土壤温度、体积含水量、地上生物量和地下生物量、土壤有机质、pH、土壤全氮、土壤容重、溶解性有机碳、微生物量碳、微生物量氮、土壤蔗糖酶活性、NH4+-N和NO3--N浓度。 图1 西藏高寒草地研究区和样地位置。(a)青藏高原植被类型图显示了研究区位置。(b)2个沟谷的2个坡向的3个海拔位置的18个研究地块。(c)山坡上的高寒草甸。(d)阳坡低坡位的高寒沼泽草甸。【结果】微生物因子对高寒草地流域Re空间变异具有控制作用。在高海拔阴坡位置,较低的土壤温度和土壤有机质含量降低了土壤微生物活性,从而抑制了Re的产生。作者发现高寒草地是大气CH4的净汇,流域内平均CH4通量率表现出很大的空间变异性,范围为-1.6~-10.48μg CH4 m-2 h-1。土壤体积含水量的空间变异解释了流域内76%的CH4通量变异。作者认为在高寒草地流域,永冻层对水文状况的影响可能会增加土壤水分(土壤体积含水量和充水孔隙空间)的空间变异性,通常在Re和CH4吸收受到抑制的低坡位形成排水不良的地貌。结果强调了地形和永冻层通过对生物物理化学因子的影响间接影响着Re和CH4通量。作者建议在地球系统模型中应重视青藏高原草地流域尺度上Re和CH4通量的空间变异性,尤其是CH4通量随海拔位置的变异性。 图2 两个生长季节生态系统呼吸(Re)速率(a-c)和CH4通量(d-f)及其范围(g和h)的季节性变化。 图3生态系统呼吸(Re)和生物物理化学因子之间的关系。 图4 变异划分分析(a)和结构方程模型(b)研究了驱动因素对生态系统呼吸(Re)的多变量影响。图(a)中,ST代表土壤温度,SOM代表土壤有机质。图(b)中,实线箭头表示显著相关(P<0.05);虚线箭头表示无显著相关(P>0.05);箭头宽度与关系强度成正比。多层矩形表示土壤有机质和微生物因子的主成分分析的第一成分;土壤有机质包括土壤有机碳(SOC)和土壤全氮(STN),微生物因子包括微生物量碳(MBC),微生物量氮(MBN)和蔗糖酶活性。 图5 CH4通量率和土壤温度(a)、土壤体积含水量(b)、充水孔隙度、NH4+-N(d)和NO3—N(e)之间的关系。【结论】为期两年的西藏高寒草地野外研究发现,由于流域内沟壑斜坡沿线的土壤水分差异,海拔位置显著影响CH4通量。在流域尺度上,生物和微生物因子相互作用影响Re,微生物因子对Re具有直接调控作用。研究结果表明,在山坡水文中永冻层可能会进一步增加土壤水分的空间异质性,这可能会改变高寒草地的碳交换,尤其是考虑到低坡CH4净吸收率弱于其他坡位。这些发现对于估算西藏多年冻土区山地的碳交换具有重要指示意义。山地覆盖了青藏高原约60.58%的区域,忽视流域尺度Re和CH4通量的空间变异性可能会误导对碳交换的评估。因此,作者建议在地球系统模式中应该考虑流域尺度Re和CH4通量的空间变异性,以改进对西藏高寒草地碳交换的评估。请点击如下链接,下载原文:西藏高寒草地生态系统呼吸与甲烷通量的流域尺度格局及控制因素
  • 四方光电标准呼吸模拟器,多重质控满足肺功能检查仪临床检测/计量校准要求
    肺功能检查仪进行检测校准的必要性    慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。肺功能检查作为慢性气道等呼吸疾病诊断的金标准之一,是慢性阻塞性肺疾病防治和检查的关键。肺功能检查仪是检测肺脏吸入、呼出气体容量和速率,从而了解呼吸生理和呼吸功能是否正常的一种设备,主要由肺量计、气体分析器等部件组成。肺功能检查仪对于早期检出肺及气道的病变,诊断病变部位和评估疾病的严重程度具有重要的临床意义。    在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注和认可。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。随着2020年国家基层呼吸系统疾病早期筛查干预能力提升项目在各地的实施落地,以及社区居民对呼吸系统慢性疾病早防早治意识的增强,不同原理类型的肺功能检查仪在全国各地基层医疗卫生机构得到了广泛配置及使用。    但肺功能检查仪的检测结果容易受多方面因素影响。比如不同肺功能检查仪的生产厂家采用的检测原理和设备结构不一样,会导致性能有较大差异,加上仪器设备在使用过程中因磨损或受环境因素而影响其正常使用,将出现检测结果的不准确。所以临床上常见发生同一个患者在不同医院所进行的肺功能测试结果有较大的偏差,给诊断造成很大影响。因此,对肺功能检查仪进行定期检测校准等质量控制、确保其测量的准确性极为重要。    肺功能检查仪检测校准的标准要求    校准是肺功能检查设备质控的关键措施,国际上美国胸腔协会(ATS)、欧洲呼吸协会(ERS) 、英国标准协会(BSI)分别发布的肺功能检查技术指南中,均提出了肺功能检查设备的技术性能标准和质控规范,我国也于2008年颁布了JJF 1213-2008 《肺功能检查仪校准规范》,解决肺功能检查仪的质量控制和量值溯源问题。    对肺功能检查仪肺量计的检测通常采用标准呼吸模拟器进行校准,要求必须能模拟人体器官肺的基本运动模式,标准规范主要参考美国胸腔协会(ATS)肺功能检测标准的内容。该标准对肺功能检查仪性能指标、测定方法、校准装置、BTPS修正、对FVC及PEF等指标检测的操作方法作了具体的要求和说明,并提供了24条标准波形检测肺功能检查仪的FVC指标,26条流量标准波形检测PEF指标。    (表:校准用设备性能表)    肺功能检查仪检测校准质控设备的选择    肺功能检查仪校准用标准呼吸模拟器必须能够精确模拟人体器官肺的运动模式,特别是模拟输出ATS推荐的标准波形,因此普通气体流量计计量标准和肺量计定标筒,不适合用于肺功能检查仪的量值传递。    四方光电呼吸模拟器是一款肺功能检查仪校准专用设备,由气缸、交流伺服电机、伺服电机控制器、专用控制卡和计算机组成。通过计算机控制软件驱动控制卡进而驱动伺服电机转动,推动活塞作往复运动,压出或者吸入气缸中的空气,从而模拟人的平静呼吸、深吸气、用力快速吹气等呼吸动作,为检验肺功能检查仪 VC、FVC、MVV 等测试指标提供了标准方法。    四方光电呼吸模拟器不但可精准输出ATS的24条标准FVC及26条PEF波形曲线,还可用于智能检测分析被校正肺功能检查仪的准确度和频率速度响应情况,有助于医生对肺功能检查仪所测定的病人肺功能状况的数据指标作准确判断。产品符合多重质控标准,满足临床检测/计量校准要求,可为《呼吸学科医疗服务能力指南(2018年版)》、《健康中国行动(2019—2030年)》的实施提供装备支撑。    ■ 设备标准质控    符合美国胸科学会发布的“肺活量测定的标准化”(2005)    符合ISO 23747:2015(ATS)    符合EN ISO 26782:2009    ■ 模拟波形质控    ATS标准24个容量-时间波形    ATS标准26个流量-时间波形    13项波形符合EN ISO 26782:2009附录C要求的标准波形    10项波形符合EN ISO 23747:2009附录C外形A要求的标准波形    用户还可自定义波形    ■ 使用过程质控    为所有类型的呼气曲线提供完整的BTPS模拟    根据ATS全面支持人体差异测试    全自动测试程序可由用户定义,如自定义容量、自定义流速、自定义运行次数    ■ 结果判读质控    所产生波形的参数均可完全溯源至国家标准    根据ATS评估测试结果并进行错误分析    四方光电标准呼吸模拟器应用领域及技术参数     计量院肺功能检查仪年检手段     科研单位呼吸模拟测试研究     肺功能检查仪企业溯源设备    关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。    四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。     在健康医疗领域,四方光电超声波肺功能检查仪是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。同时公司开发的肺功能检查仪定标筒、制氧机用氧气传感器、呼吸机用流量及气体成分传感器、监护仪用红外EtCO2传感器在国内外医疗机构及设备中得到广泛应用。未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
  • 土壤呼吸 | 极端干旱改变土壤微生物功能群丰度来降低土壤异养呼吸
    土壤呼吸 | 极端干旱通过改变高寒泥炭地土壤微生物功能群丰度来降低土壤异养呼吸而非甲烷通量【温室气体】人类活动造成温室气体排放急剧增加,全球地表温度持续上升,显著改变了自然生态系统碳水循环格局。极端气候事件,尤其是极端干旱事件发生的频率和强度不断升高,对土壤含水量、土壤微生物群落结构和功能、土壤异养呼吸(Rh)以及土壤甲烷(CH4)通量具有重要影响。高寒泥炭地拥有巨大的碳储量,对气候变化高度敏感。虽然目前围绕高寒泥炭地碳排放开展了一些研究,但对高寒泥炭地生态系统碳排放对极端干旱响应的微生物机制仍不清楚。若尔盖国家级自然保护区基于此,中国林业科学研究院湿地研究所的研究团队以青藏高原东部若尔盖国家级自然保护区高寒泥炭地(33°47′56.62′′ N,102°57′28.44′′ E,3430 m.a.s.l.)为研究对象,依托模拟极端干旱的野外控制实验平台,通过原位观测和室内试验相结合,旨在解决以下问题:(1)不同植物生长期,极端干旱如何影响Rh和CH4通量?(2)极端干旱如何影响土壤微生物群落结构和功能群?以及(3)驱动Rh和CH4通量变化的主要因素是什么?作者于2019年6月18日至9月25日测量了Rh(PS-9000便携式土壤碳通量自动测量系统(北京理加联合科技有限公司))和CH4通量(一个闭路静态室(0.5×0.5×0.5 m)+ABB LGR便携式温室气体分析仪(UGGA,GLA132-GGA))。试验三个生长期结束时,作者测量了样地0-20 cm土壤的土壤性质,包括总氮(TN)、土壤有机碳(SOC)、有效磷含量(AP)、总磷(P)、pH值、溶解有机碳(DOC)、土壤含水量(SWC)、硝态氮(NO3--N)、铵态氮(NH4+-N)、微生物生物量磷(MBP)、微生物生物量氮(MBN)和微生物生物量碳(MBC)。此外,还进行了新鲜土壤样品的DNA提取、PCR扩增和测序。图1 PS-9000便携式土壤碳通量自动测量系统。【结果】图2 不同植物生长期极端干旱对土壤异养呼吸(a)和甲烷通量(b)的影响。“ED”,“MD”,和“LD”分别代表植物快速生长期、盛花期和植物生长衰退期。图3 不同植物生长期极端干旱对细菌碳循环功能群的影响。图4 驱动因素对土壤微生物呼吸(a)和甲烷通量(b)的相对贡献。【结论】极端干旱导致植物生长衰退期土壤异养呼吸显著降低38.04 mg m−2h−1,但对CH4通量无显著影响。极端干旱显著降低了细菌的α多样性,显著降低了植物快速生长期和衰退期的Rokubacteria和Chloroflexi菌的相对丰度,显著增加了盛花期Actinobacteria菌的相对丰度。在植物快速生长期和盛花期,极端干旱使芳香烃降解功能群(aromatic hydrocarbon degraders)相对丰度分别降低了50.26%和64.37%。在植物生长衰退期,极端干旱显著降低了甲醇氧化(methanol oxidizers)和木质素降解(lignin degraders)功能群的相对丰度,分别为81.63%和82.08%。随机森林模型分析表明,细菌功能群在决定土壤异养呼吸和甲烷排放中起着重要的作用。芳香族化合物降解(aromatic compound degraders)和芳香烃(aromatic hydrocarbon degraders)降解功能群对土壤异养呼吸累计贡献率为11.89%。芳香族化合物降解(aromatic compound degraders)、芳香烃降解(aromatic hydrocarbon degraders)、脂肪族非甲烷烃降解(aliphatic non-methane hydrocarbon degraders)和甲基营养(methylotrophs)功能群对甲烷通量的累计贡献率为13.29%。研究结果强调土壤细菌碳循环功能群对于探索未来极端干旱背景下土壤碳循环可能的微生物响应机制至关重要,为高寒泥炭地应对未来气候变化提供了理论基础和科学依据。【产品简介】PS-9000是一套用于测量土壤CO₂通量的便携式测量系统,采用动态气室法测量,专利设计。具有控制测量、存储和数据处理等功能,可测量呼吸室内CO₂浓度变化,同时结合自身测量的空气温度、大气压、土壤温度等传感器的数据,计算处理得到CO₂通量。PS-9000可通过掌上控制器实现无线操作,实时显示仪器测量的各种参数值,并可现场修改各种设置参数。
  • 何念鹏、潘俊等研究人员揭示森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达27篇。 今天与大家分享的是何念鹏、潘俊等研究人员在森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤样品的Rs和Q10,为研究结果提供了有力的数据支撑。 土壤是陆地生态系统中最大的碳库,所含碳量相当于大气和植被的总和。土壤微生物呼吸(Rs)是重要的碳循环过程,控制着陆地生态系统向大气的碳释放。此外,全球变暖会加速土壤中碳的分解,增加大气二氧化碳(CO2)浓度,从而导致土壤碳循环与气候变暖之间的正反馈。这种反馈的方向和强度在很大程度上取决于Rs的温度敏感性(Temperature sensitivity, Q10)。 土地利用变化是当前生物圈碳循环的主要人为驱动因素之一(也是全球变化的重要组成要素),土地利用变化将促进/抑制土壤碳释放到大气中,被认为是仅次于化石燃烧的第二大人为碳源,累计约占人为二氧化碳排放量的12.5%。由于人口的增长和对农产品需求的增加,全球范围内大量森林生态系统已被转化为农业生态系统。这些与农业相关的森林砍伐,不仅会导致生物多样性丧失,改变土壤碳循环过程,还可能削弱生态系统应对气候变化的能力。由于土壤微生物呼吸对温度变化的响应异常敏感,土壤Q10对土地利用变化的潜在响应(提升或压制),可能会对未来气候产生重大影响。因此,为了提高人们关于土地利用变化对土壤碳循环的影响及其对气候变化反馈的认识,确定Q10对土地利用变化响应的生物地理格局及其调控因素至关重要(图1)。图1 不同区域森林转变为农田对土壤微生物呼吸温度敏感性(Q10)潜在影响 为了更好地阐明土地利用变化对土壤Q10的影响及其空间变异机制,研究人员收集了中国东部从热带到温带的19个“森林转变为农田”配对地块的土壤样品,采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统,在5~30 °C进行室内培养,并测量Rs和计算了Q10,此数据的获取为该项研究提供了有力的数据支撑。 图 2 中国东部土壤微生物呼吸Q10的空间变异模式 研究结果表明: 森林土壤Q10的纬度模式主要受到气候因素的驱动。类似的,农田土壤Q10随纬度而升高,气候因素、pH、粘粒和SOC共同调节了耕地土壤Q10的空间变化(图2)。总体而言,森林和耕地之间的Q10值随着纬度的增加趋于一致;DQ10从热带地区(9.23~3.58%)到亚热带地区(0.58~1.93%)和温带地区(–0.97~1.11%)显著下降。DQ10的空间变化受到气候因子、DpH、DMBC及其相互作用的影响。此外,研究还发现森林转变为农田土壤Q10呈现了明显的阈值现象(约1.5),受到pH和MBC的共同调控(图3)。图3 长期的森林转化为农田导致Q10出现不同方向的偏离(阈值约1.5) 预计全球气温升高2.0 °C的情景下,与生物地理可变的Q10相比,使用固定的Q10平均值将导致土壤CO2排放量估算产生偏差:森林为–0.93%~3.66%,农田为–0.71%~2.05%,森林-农田转换的偏差范围为–5.97~2.14%(表1)。表1 中国东部不同生物群落在2.0°C升温情景下表土(0-20 cm)CO2排放预测 总的来说,相关研究结果凸显了与长期土地利用变化相关的生物地理变化对土壤微生物呼吸温度响应的潜在影响,并强调了将长期土地利用对土壤温度敏感性的影响纳入陆地碳循环模型以改进未来碳-气候反馈预测的重要性。 研究论文近期在线发表于土壤学著名期刊《Soil Biology and Biochemistry》。第一作者为北京林业大学博士研究生潘俊、通讯作者为东北林业大学何念鹏教授和北京林业大学的孙建新教授;其他重要的合作作者还包括密歇根州立大学刘远博士、中央民族大学李超博士、中国科学院地理资源所李明旭博士和徐丽博士。该研究受到国家自然科学基金项目(32171544,42141004, 31988102)、中国科学院稳定支持基础研究领域青年团队计划(YSBR-037)等资助。原文链接:Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322. 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.25.Liu YH,Xiong DC,Wu C,et al.Effects of exogenous carbon addition on soil carbon emission in a subtropical evergreen broad-leaf forest[J]. Journal of Forest & Environment, 2023, 43(5).26.Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.27.Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322.
  • 全新升级|果蔬呼吸测定仪专用动态分析软件【新品】
    果蔬呼吸测定仪的使用场景非常广泛,主要包括以下几个方面: 1.农业生产:在农业生产过程中,了解果蔬的呼吸强度可以帮助农民更好地掌握采收时机和储存方法,提高果蔬的品质和产量。 2.食品工业:在食品工业中,了解果蔬的呼吸强度可以帮助企业更好地控制食品加工和储存过程,保证食品的质量和安全。 产品链接→https://www.instrument.com.cn/netshow/SH104275/C519684.htm3.科研机构:科研机构可以利用果蔬呼吸测定仪进行果蔬生理生化方面的研究,探索果蔬呼吸与品质、成熟度等方面的关系,为农业生产、食品加工等领域提供技术支持。 4.质量控制:在果蔬加工和储存过程中,利用果蔬呼吸测定仪可以监测果蔬的新鲜度和质量变化情况,及时发现并处理问题,保证产品的质量和安全。 5.市场营销:果蔬呼吸测定仪可以用于评估果蔬的品质和新鲜度,帮助商家选择合适的储存方法和运输方式,保证果蔬在运输和销售过程中的品质和新鲜度。 总之,果蔬呼吸测定仪的使用场景非常广泛,可以应用于农业生产、食品工业、科研机构、质量控制和市场营销等领域,为人们提供更加准确、便捷的测量方法和手段。
  • 新品研发|果蔬呼吸强度测定仪实时显示实验过程
    果蔬呼吸强度测定仪对果蔬保鲜具有重要的帮助。 首先,果蔬呼吸强度测定仪能够准确测量果蔬的呼吸强度,反映其新鲜度和成熟度。通过实时监测果蔬的呼吸强度,可以及时了解果蔬的新鲜程度,从而采取相应的保鲜措施,延长果蔬的储存时间和保持其品质。 产品链接https://www.instrument.com.cn/netshow/SH104275/C519684.htm 其次,果蔬呼吸强度测定仪可以指导保鲜技术的应用。根据果蔬的呼吸强度,可以判断其是否适合采用低温、气调、辐射等保鲜技术。通过合理的保鲜技术应用,可以抑制果蔬的呼吸作用,减缓其品质下降的速度,延长果蔬的储存期。 此外,果蔬呼吸强度测定仪还可以为果蔬的运输和销售提供参考。在运输过程中,通过实时监测果蔬的呼吸强度,可以判断其是否适合长途运输,以及运输过程中的保鲜措施是否得当。在销售过程中,通过比较不同批次果蔬的呼吸强度,可以了解其新鲜度差异,为消费者提供更好的产品选择。 总之,果蔬呼吸强度测定仪对于果蔬保鲜具有重要的帮助,能够准确测量果蔬的呼吸强度,指导保鲜技术的应用,为果蔬的运输和销售提供参考。通过合理应用果蔬呼吸强度测定仪,可以延长果蔬的储存期,保持其品质,为消费者提供更好的产品。
  • ECHO发布亿斯埃欧生物降解呼吸仪(土壤/堆肥/塑料呼吸仪)新品
    亿斯埃欧生物降解呼吸仪精确检测各种固体或液体样品的耗氧或厌氧的生物降解性。 n 原理l 在控制和气流样品的情况下检测样品的O2和CO2浓度;l 同时也可以检测另外需要的气体,如CH4 和H2S等; n 应用l 固体状态塑料的生物降解性,符合ISO 14855-1,ASTM D 5338; l 在水溶液中塑料的生物降解性,符合ISO 14852;l 符合ASTM D6691和OECD301B等;l 有机废物(固体或液体样品);l 食品生产;l 堆肥生物活性;l 废水;l 生物技术,生物学,生态学和药学方面的研发。 n 优势l 模块化设计(可升级);l 即插即用设计(易于安装,使用和维护);l 实验室或工业用途;l 适用于固体和液体样品;l 耗氧和厌氧测量;l 6,12,24,48或更多通道;l MFC(质量流量控制器)控制每个通道;l 可以选择不同的流量配置(0-200 ml/min,0-1 l/min或更多);l 分别可以为每个通道设置流量;l 可以选配传感器:如CH4, H2S, H2和VOC等;l 温度范围:5°C —70°C;l 自动加湿和冷凝水去除系统;l 温度,流量,压力和湿度测量;l 流量泄漏报警;l 允许各种尺寸的反应器;l 用户友好软件和excel导出文件;l 远程电脑控制;l 实验室空气泵;l 可连接实验室供气系统;l 无需特殊连接;l 12通道系统仅2个多管电缆连接;l 适用于不同领域的各种应用。 n 技术参数l 尺寸 - 控制器:60 x 60 x 60 cm,重量:50 kg;l 尺寸 - 恒温室:60 x 60 x 105 cm,重量:70 kg;l O2和CO2 光学传感器(可根据要求提供选配传感器);l MFC +/- 1.5%,FS:0-200ml/min或0-1l/min;l 2个连接多管电缆;l 用于固体测量的容器 - 2.8l;l 液体测量容器 - 125ml-1000ml;l 带有过程控制的AIO计算机。 n 气体传感器系列l 光学传感器O2:量程0-25%,精度:2%;l 光学传感器CO2:量程0-2000ppm,精度:2%; 量程0-5000ppm,准确度:2%; 量程0-1%,准确度:2%; 量程0-5%,0-10%,0-30%,0-100%,精度:2%;l 光学传感器CH4: 量程0-5%,精度:2%; 量程:0-10%,0-30%,0-100%,100%,精度:2%;l 光学传感器H2S: 量程:0-100ppm至0-1000ppm,精度5%。 n 亿斯埃欧呼吸仪软件ERS12创新点:精确检测各种固体状态塑料的生物降解性6,12,24,48或更多通道亿斯埃欧生物降解呼吸仪(土壤/堆肥/塑料呼吸仪)
  • 全球呼吸机“大作战”:特斯拉跨界Model 3变呼吸机
    p style="text-align: justify text-indent: 2em line-height: 1.75em "新冠疫情在全球暴发,医疗耗材和器械的供应战从口罩、防护服“打到”呼吸机、试剂盒。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4月4日,纽约州州长安德鲁· 科莫(Andrew M. Cuomo)在例行疫情发布会上表示,蔡崇信、马云等向纽约捐助的1000台呼吸机将于当地时间4月4日抵达纽约肯尼迪机场。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "纽约州是美国疫情最严重的地区之一。科莫曾表示在高峰时期纽约需要三万台呼吸机;4月2日,科莫称按照其时的使用和患者情况,纽约州的呼吸机储备只够6天;州政府虽紧急订购了17000台呼吸机,但由于厂商产能不足无法交付,相较之下美国联邦政府的储备大约是10000台。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "随着疫情的蔓延,源源不断的需求一方面促使全球的传统呼吸机厂商开足马力运转,另一方面则促使有相关生产线的公司纷纷“跨界”。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3月30日,医疗器械巨头美敦力公开了其呼吸机的通风设计规范,称此举为“提高全球呼吸机产量”。4月6日,特斯拉官方发布了一则用汽车零部件制造呼吸机的视频,其工程部门讲解如何将已有部件改装成呼吸机,在不消耗医疗物资资源的情况下满足需求。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 337px " src="https://img1.17img.cn/17img/images/202004/uepic/eba177e4-e400-41df-b570-53fcd0e1e281.jpg" title="d499c28b5251895cfd5599f5d3350b9a.jpg" alt="d499c28b5251895cfd5599f5d3350b9a.jpg" width="600" height="337" border="0" vspace="0"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 337px " src="https://img1.17img.cn/17img/images/202004/uepic/686b0a21-a3da-41df-8ebb-e3810c47c7e5.jpg" title="4cf61d008b6a38d951f75fd707e4898b.jpg" alt="4cf61d008b6a38d951f75fd707e4898b.jpg" width="600" height="337" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "在应对完国内疫情之后,国内的呼吸机厂商鱼跃医疗和迈瑞医疗接到全球的呼吸机订单已经排至六七月份,但原材料的供应仍然制约着其提升产能的困境。而“跨界”制造、量产呼吸机面临的困难更加艰巨,除了原材料,还面临生产线转变、技术壁垒、供应链、审批等环节,东兴证券估计从零起步的跨界企业可能要花费18个月才能实现量产。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4月5日国务院联防联控机制举办的新闻发布会上,海关总署综合业务司司长金海出示的数据显示,从3月1日到4月4日,全国共验放出口主要疫情防控物资价值102亿元,主要包括口罩约38.6亿只,价值77.2亿元;防护服3752万件,价值9.1亿元;红外测温仪241万件,价值3.3亿元;呼吸机1.6万台,价值3.1亿元;新型冠状病毒检测试剂284万盒,护目镜841万副。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "产能之困/pp style="text-align: justify text-indent: 2em line-height: 1.75em "治疗重症新冠病毒感染对呼吸机有严重的依赖和需求。呼吸系统严重疾病患者(如新冠病毒感染者)需要在呼吸机的支持下才能维持有效的呼吸功能。患者连接呼吸机后,机器将负责供氧并模拟人体呼吸,从而让人的肺脏得到休息,并逐步恢复正常功能。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在3月30日国务院联防联控机制举办的新闻发布会上,工业和信息化部产业政策与法规司司长许科敏介绍,疫情发生以来,我国呼吸机主要生产企业第一时间都恢复生产。“多地工信部门很快实现其上游853家全国配套商中794家复工复产,及时帮助企业解决零部件短缺、物流运输不畅等问题。截至3月29日,主要呼吸机企业累计向全国供应呼吸机2.7万多台,其中有创呼吸机3000多台。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "国外对有创呼吸机的需求量特别大。目前我国有创呼吸机生产企业共有21家,其中8家的主要产品(周产能约2200台)取得了欧盟强制性CE认证,约占全球产能五分之一。目前已签订单量约2万台,同时,每天还有大量的国际意向订单在洽谈。据不完全统计,3月19日以来十天内,已紧急向国外提供有创呼吸机1700多台,达到了今年以来提供国内总量的一半。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "不断刷新的全球确诊人数让呼吸机的缺口持续放大,但短时间内要满足需求并不容易。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "呼吸机根据应用场景和使用患者的不同主要分为几大类,包括重症和亚重症治疗呼吸机、新生儿呼吸机、转运和急救呼吸机、家用呼吸机等。迈瑞医疗生命信息与支持事业部总经理李新胜在接受21世纪经济报道采访时表示, “家用呼吸机每年市面上的产量超过500万台,拉升产能会更容易一些。但重症和亚重症治疗用的呼吸机,全世界一年的产能也就在10万台左右,现在有几十万台甚至上百万的需求,短时间内快速地拉升产能是不太现实的。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "许科敏指出,“一台呼吸机有上千个零部件,主要的零部件供应商不仅有在国内的,也有一些在国外包括欧洲。在疫情影响下想大规模增产并非易事,全部满足所有需求也是不现实的。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "“全球呼吸机做得比较好的厂商在德国、美国和瑞士。”一位业内人士对21世纪经济报道表示,呼吸机涉及的零部件很多,“比如空气压缩模块,是一个非常特殊的部件,是从国外采购的。制约产能的很大一部分原因就是空气压缩涡轮的产能是有限的。即使找替代的压缩模块,涡轮模块里的核心部件高速电机也需要从瑞士进口。没有高速电机,涡轮是做不好的。而且零部件的供应商要有几十年的积累才能打磨出好部件,里面有很多技术诀窍。所以说很难短时间内把产能拉升上来,不管国内还是国外厂商,都受此制约。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "鱼跃医疗在4月1日公告称其获得了美国食品药品监督管理局FDA对于其无创呼吸机签发的紧急使用授权(EUA),此次批准是用于在COVID-19大流行期间治疗患者的医疗环境中的紧急使用。如果在紧急情况终止后,鱼跃仍希望在美国市场销售该产品,则需要完成已在进行中的相应 FDA 注册工作。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "鱼跃方面称,目前收到了大量的呼吸机海外订单,由于呼吸机产品技术较为复杂、品控要求严格,上游供应商产能爬升需要一定时间,预计呼吸机订单排队情况还将持续,“当前呼吸机产能爬升主要受制于原材料供应,每日产量有一定波动。产能提升有限,前期积累订单仍在消化中,获批FDA EUA对业绩的具体影响还需视实际业务发生情况”。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "跨界之难/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3月30日,美敦力公司宣布公开其PB 560型号的呼吸机设计文件,供各行业评估加快制造呼吸机的可行性。该呼吸机2010年上市,在全球35个国家和地区销售,其产品服务手册、设计文件、制造文件以及电路图现公布在美敦力全球官网上,之后美敦力将提供该呼吸机的软件代码及其他信息。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "这是美敦力在3月18日宣布将自己的呼吸机产能和供应增加一倍之后的一次“开源”行为。美敦力方面对21世纪经济报道称,“开放设计和知识产权朴素的想法就是:大家一起来造。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "“美敦力理解目前对呼吸机的需求远超供给,”美敦力执行副总裁兼微创治疗业务集团总裁Bob White说,“没有一个公司可以单枪匹马满足全球医疗体系的需求。但所有的制造商正在与全球政府、医院和健康组织合作,增加呼吸机产能。通过公开分享PB 560呼吸机的设计,我们希望能够增加全球范围内呼吸机的产量,用以抵抗新冠肺炎。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "同时美敦力方面也称,呼吸机的制造是一个复杂的流程,有赖于高技能的工作人员团队、全球化的供应链,以及经验丰富的临床培训团队。为确保患者安全,呼吸机制造还需要遵守全球各地的监管要求。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "虽然美敦力喊话行业“大家一起来”,但呼吸机不是“谁想造就能造”。除了制约产能的零部件,呼吸机还有其技术壁垒。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "呼吸机的技术壁垒在于信号处理和控制算法技术,“呼吸机所用的部件都是行业内专用的标准件,大家都买得到,如何用同样的部件达到最好的通气控制精度和人机同步效果,就是每家的核心技术所在。目前市场上每个呼吸机厂家产品质量的差异就体现在通气控制技术和人机同步技术上。”李新胜表示,造汽车的、承接生产外包的代工厂等都有很强的生产能力,“但是它的能力很难短时间内转化成生产呼吸机能力。因为这类产品需要在呼吸机行业积淀多年,建立医疗设备质量管理体系、开发生产工装和检测校准工艺、培养专业的人才,这个过程都需要花大量的时间。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "一些政府也已经呼吁非医疗技术制造商转变生产线来制造呼吸机,一些厂商也积极响应。但业界担忧这远低估了呼吸机的复杂性,Evaluate MedTech数据显示,在过去五年中,没有一家全球领先的制造商获批上市的新呼吸机数量超过十种,最多的是Resmed,获批7种,其次为瑞士Hamilton(5)和Hill-Rom(5),另一巨头Philips获批数量为4种,美敦力为3种。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "上市获批数量较少说明呼吸机具有一定技术壁垒,但在当前环境下,更重要的是制造能力,传统大型厂商美敦力和GE Healthcare占据主导地位。但是呼吸机制造商也声称,大量增加产量可能需要三到四个月。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "看上去比较有希望的可能是GE和福特的联合。3月24日,GE Healthcare与福特宣布合作加快和扩大呼吸机的生产。福特将提供其技术和生产专业知识,以简化GE Healthcare现有呼吸机的设计。该新系统将专门为解决新冠肺炎大流行期间的紧急需求而构建,配备安全治疗COVID-19患者所需的基本功能。自COVID-19疫情暴发以来,GE Healthcare称其呼吸机生产能力已翻了一番,并计划在2020年第二季度末再翻一番,以应对前所未有的需求,而无需再与福特合作。/p
  • 共同战疫 | DFS风机在医疗呼吸机中的应用
    疫情COVID-19前后呼吸机市场现状呼吸机原本处于一个垂直而细分的小众医疗器械市场,却被这次疫情推上了风口浪尖。按照世界卫生组织的说法,新冠肺炎患者中有13%的重症患者和6%的危重患者需要给予及时的呼吸机治疗,呼吸机成为生死攸关的战略资源。因此,当3月中下旬疫情在全球爆发时,呼吸机资源紧张的问题开始大范围暴露,至今仍缺口巨大。呼吸机已成为重要的战略供应物资,但各国目前资源不足。市面上对呼吸机的分类为:无创呼吸机和有创呼吸机。(来源中国产业信息网)知名英国家电公司戴森为了应对世界在疫情中呼吸机短缺的问题,已经开始设计并制造了新的呼吸机。此前,通用、福特和特斯拉都宣称将生产呼吸机以解决短缺问题,但现有的呼吸机使用的都是专有技术,汽车制造商调整修改生产线可能要耗费数月的时间,包括终端产品认证资质等。 AMETEK DFS风机在呼吸机上的应用AMETEK DFS风机主要多数应用于无创呼吸机,其工作原理是吸气时呼吸机通过一定的高压力把空气压进人的肺部,呼气时机器给于较低的压力使人把二氧化碳由口或鼻子从面罩上面的排气孔排出体外,来完成一次呼吸。如图:呼吸机考虑到便携性与美观性,趋向于小型化,留给风机的空间越来越小,而风机是呼吸机中提供动力的“灵魂部件”。AMETEK DFS风机在呼吸机设计应用中有着丰富的经验,典型产品系列如下图(风机直径已对应标注),所具备特点:噪音小最小型号68mm直径 体积小巧 节省空间可选12V或24V供电 0-10V或PWM调速长寿命可达3万小时连续运转 免维护高转速 达到5万转/分钟 响应速度快医用设备安规认证联系我们:https://www.instrument.com.cn/netshow/SH102493/关于阿美特克流体解决方案阿美特克流体解决方案(DFS)部门是隶属于阿美特克集团机电设备业务,总部位于美国俄亥俄州,在全球有3个生产制造基地,分别位于中国上海、美国和墨西哥,提供全球领先的提供直流无刷风机、无刷水泵、环形高压鼓风机、高速串励通用电机、永磁式直流电机、绕线磁极式直流电机和直流伺服电机的制造企业。公司所生产的电机和风机产品被广泛用于医疗、印刷商用设备、灭菌、空气采样、半导体除烟除尘设备、各种工业应用、中央吸尘器、商用地面清洁、食物料理机、饮料贩卖机、干手机、电动车、健身器材、液压系统、绞盘、交通运输等。阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 托玛斯配套医疗呼吸机和消毒机,与武汉同呼吸、共命运!
    p  让好多医疗设备客户在长假期间就纷纷向托玛斯(Thomas)订购Nexus压缩机。托玛斯(Thomas)无锡工厂迅速从原先海外客户的订单中,调拨了300余台Nexus压缩机,支援抗疫所需。/pp  新冠肺炎重症患者会出现比较严重的呼吸衰竭症状,防疫专家倡导不仅要观察患者心率,血压特别是血氧的变化,还特别要加强呼吸支持的力度,对有创呼吸的力度要关口前移,积极开展有创呼吸机的机械通气支持。作为此次疫情中心的武汉,医疗资源短缺导致许多重症患者只能在临时的ICU里进行救治。这使得可以连接集中供气也可单独连接气源的呼吸机成为广大新冠肺炎重症患者的生命机,而托玛斯(Thomas)压缩机恰恰是呼吸机配套空压机模块的心脏部件,是各大临时医院ICU的必须配置。/pp  托玛斯(Thomas)Nexus系列压缩机是托玛斯(Thomas)压缩机系列中的旗舰产品,该系列产品所运用的Wob-L摇摆活塞泵技术早在1976年就获得了美国专利。目前Wob-L摇摆活塞泵技术已经成为医疗设备配套压缩机的标杆技术。同该项专利一道获批的一体式头盖设计杜绝了气体泄漏,确保托玛斯(Thomas)Nexus压缩机可以在无油的环境中,高效率工作。它的长寿命,免维护和低震动等特性受到广大呼吸机和医疗设备厂商的青睐。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/32b7070d-661e-423a-9c1c-c9b524d5f83b.jpg" title="图片2_副本.png" alt="图片2_副本.png"//pp style="text-align: center "strong配备在呼吸机空压机模块中的托玛斯(Thomas)Nexus压缩机/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/453840ca-0704-421d-b9ed-fe2eec7c406d.jpg" title="图片1_副本1.png" alt="图片1_副本1.png"//pp style="text-align: center "strongWob-L早在1976年就获得了美国专利/strong/pp  为了确保托玛斯(Thomas)无锡工厂能够顺利复工,Thomas核心管理团队根据无锡当地的复工指导政策,进行了周密的计划和部署,从2月1日起就根据每一个员工的春节长假轨迹,进行了每日汇报,并上报相关主管部门。Thomas呼吸机客户也在第一时间通过深圳市工信部,把其空压机模块生产配套需求上报国务院。这次跨省协调很快启动,经深圳和无锡两市工信局对接,托玛斯(Thomas)无锡工厂顺利成为国务院疫情联控机制医疗物资保障组首批核准的保障呼吸机装备配套生产企业,并于2020年2月10日顺利复工。未来一个月有近千台配套托玛斯(Thomas)压缩机的呼吸机可以第一时间发往武汉。/pp  过氧化氢消毒机因其可以通过压缩过氧化氢,大大提高病房的灭菌消毒效率,最近被列入国家工信部《疫情防控重点保障物资(医疗应急)清单》名录。2月10日复工以来,许多制氧机和消毒灭菌厂商也来订购托玛斯(Thomas)Nexus压缩机。近期,还会有近千台配备托玛斯(Thomas)Nexus压缩机的过氧化氢消毒机在武汉火神山医院,武汉协和医院,武汉金银潭医院和各省市疾病预防控制中心医院投放使用。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/07744898-8e96-4de7-b96f-05234c6aa41d.jpg" title="图片3_副本1.png" alt="图片3_副本1.png"//pp style="text-align: center "strong过氧化氢消毒机配套的托玛斯(Thomas)压缩机/strong/pp  在这个特别困难时期,托玛斯(Thomas)无疑是国内外呼吸机、制氧机、灭菌设备值得信赖的压缩机解决方案合作伙伴。对于托玛斯(Thomas)无锡工厂来说,复工只是此次新冠肺炎抗疫战役的起点。在未来的日子里,托玛斯(Thomas)将和广大医疗设备客户一起并肩奋斗,排除万难、共克时艰。武汉加油!中国加油!/p
  • 果蔬呼吸测定仪平衡多久检测一次
    果蔬呼吸测定仪平衡多久检测一次,果蔬呼吸测定仪的平衡时间和检测频率取决于多种因素,包括果蔬的种类、储存条件、仪器的性能等。以下是对果蔬呼吸测定仪平衡时间和检测频率的清晰归纳:平衡时间仪器特点:果蔬呼吸测定仪通常可以根据果蔬的大小来选择不同体积的呼吸室,以加快平衡和测定时间。具体时间:文中未直接提及具体的平衡时间,但一般来说,平衡时间可能因呼吸室的大小、果蔬的种类和数量、环境条件(如温度、湿度)等因素而异。检测频率常规检测:在常规储存条件下(如常温、冷藏库、气调库、超市冷柜等),果蔬呼吸测定仪可用于定期检测果蔬的呼吸强度,以了解其健康状况和新鲜度。频率建议:对于需要长期储存的果蔬,建议定期(如每天或每周)进行检测,以确保储存条件的稳定性和果蔬的品质。在特殊情况下(如温度、湿度等环境条件发生显著变化时),可能需要增加检测频率,以便及时发现问题并采取措施。注意事项环境因素:储存环境的温度、湿度、气体成分等因素对果蔬的呼吸强度有很大影响,因此在进行检测时需要考虑这些因素的影响。仪器校准:为了确保检测结果的准确性,需要定期对果蔬呼吸测定仪进行校准和维护。果蔬呼吸测定仪的平衡时间和检测频率因具体情况而异。在常规储存条件下,建议定期进行检测以了解果蔬的呼吸强度和品质。同时,需要注意环境因素对检测结果的影响,并定期对仪器进行校准和维护。
  • 测量“城市呼吸”,助力“双碳”目标
    近日,黄建平团队在《环境科学与技术》杂志发表了题为《工业重镇氧气观测揭示“城市呼吸”》的封面文章,在国际上率先开展“城市呼吸”研究,从观测的角度提供了城市氧气浓度下降的有力证据,开拓了氧循环城市健康效应研究的新领域。  国内首个高精度观测平台 作为地球上几乎所有生物生存的必需品,氧气是大气中最关键的气体成分之一。人口众多且密集的城市地区仅占全球土地的2%,却居住着全球56%以上的人口,并消耗了全球70%的化石燃料。近几十年来,随着越来越多的人口涌入城市,城市地区在适应和减缓气候变化方面面临严峻挑战。现有观测资料表明,过去30年中,大气中二氧化碳占比快速上升,氧气下降的速度是二氧化碳上升速度的两倍左右。  针对这一现象,研究人员选取了兰州市进行实地测量。兰州市地处中国西北部半干旱地区,作为甘肃省省会,其总人口超过440万,由于两山夹一河的独特地形,以及少风少雨的气候特点,大气扩散受到抑制,导致了流域内污染物的稳定积累。  “我们看到兰州市中心的地形十分独特,南北最窄处仅1公里左右。考虑到大量人口在如此狭窄的区域聚集,人类的呼吸过程势必会影响大气中的氧浓度,因此我们希望对这个问题进行深入探索。”论文第一作者、兰州大学大气科学学院2020级气候学专业博士研究生刘晓岳说。  基于上述考虑,黄建平团队提出了“城市呼吸”的新概念,用来衡量城市空气的健康状态。  目前,针对“城市呼吸”中二氧化碳、污染物、能源等要素的研究在国际上已经比较全面,但是针对氧气的研究几乎是空白状态。  “这主要有两个原因,一是没有意识到氧气减少的危害,现在越来越多的研究表明,氧气浓度降低与人体健康特别是心血管健康密切相关;二是氧气浓度实时观测对仪器精度要求很高,一般仪器无法测量。”黄建平介绍。  目前,国内外已有一些研究团队在全球设立了大气氧气定期观测站点,探究全球大气氧气浓度的长期趋势。这些观测通常是使用密封瓶进行大气采样分析,密封瓶采样受实验条件的限制,数据的时空分辨率有限,因此还需对大气氧气进行连续观测来提高对大气传输和混合过程的认识。虽然近年已有一些站点开始连续观测,但是大多数氧气观测站点都设在人烟稀少、远离人类活动的区域。  在大的自然背景下探测微小的氧气变化相当具有挑战性。“大气中氧气变化信号以百万分之一计,这种探测犹如探讨一滴水对于整个海平面的影响,因此,对氧气监测分析仪器的精度和漂移有严格的要求。”团队负责技术的工程师王莉说。  2017年,黄建平团队在兰州大学城关校区一栋22层建筑的顶楼建立了国内首个高精度大气氧气观测平台。空气采样的采气口正对着兰州市最繁忙的街道——天水路。这条路有双向10车道,毗邻火车站,路段交通发达,受人为活动影响比较显著。  氧气观测平台采用气相色谱热导检测器(GC-TCD)技术测定大气氧含量,该技术已经使用了20多年,可以较准确地量化大气氧气的变化。团队利用气相色谱仪直接测量的是氧氮比,这是因为大气中氮气的变化比氧气的变化小得多,可忽略不计,因此氧氮比的变化可以被认为是氧气造成的。  “在氧气观测平台建设初期,我们克服了一系列技术难题,包括仪器调试、定标以及后期数据处理,构建了适用于平台的大气氧观测数据的订正方法等。经过团队的不懈努力,我们的观测资料最终得到了国际同行的认可。”黄建平介绍。  定量估算氧气浓度变化  城市中居民呼吸和化石燃料燃烧是两个独立的过程,因此很难直接将上述两个过程的影响分别从大气氧气观测资料中分离出来。但值得注意的是,居民呼吸是不排放污染物的,而化石燃料在燃烧过程中不仅排放了二氧化碳,同时也排放了包括氮氧化物、一氧化碳、二氧化硫在内的各类污染物。因此,在观测到的氧气浓度变化信号中,有一部分是和污染物相关的信号,指示着化石燃料燃烧消耗的氧气,另一部分和污染物无关的信号,则指示着居民呼吸过程消耗的氧气。将现有的氧气浓度和污染物浓度的观测资料进行对比,就可以从氧气浓度变化的信号中分离出化石燃料燃烧信号和居民呼吸信号。  黄建平团队将城市氧气浓度观测数据分为两组。在空气质量较好的情景中,大气扩散条件较好,工业、交通活动等消耗的氧气能够较快补充,兰州市氧气浓度整体较高。这种情景下人类呼吸占氧气亏损的33.08%,化石燃料燃烧占比66.92%。此外,大气传输模型也显示,扩散条件较好时,有利于工业区污染气团远距离传输至兰州市中心城区,因此排放二氧化硫、一氧化氮等污染物的过程对氧气的消耗占比有所上升。这种情景下,大气充分混合,各类耗氧过程对兰州氧气浓度的影响较为均衡,对人体健康影响较小。  在氧气浓度较低、污染严重的情境下,化石燃料燃烧对氧气的消耗占比升高到72.5%,居民呼吸对氧气损耗的占比降低。高精度的大气传输模型显示该情景下耗氧过程主要发生在中心城区,氮氧化物和PM1排放过程的耗氧量明显增加,对应机动车尾气排放过程消耗的氧气显著增加。  植物光合作用是氧气的主要来源,兰州市耗氧量是产氧量的500倍以上,其缺口主要来自周边植被的支援。这种情况不仅发生在兰州,全球人口超过100万的大城市中,有75%的大城市耗氧量和产氧量的比值超过100。  黄建平团队曾做过测算,如果化石燃料燃烧稳定在一定水平不下降,会发生持续的氧气浓度下降,26世纪将降至20.0%以下,并在29世纪初将降至19.5%,可能会对地球上部分生物的生存造成威胁。  下一步,团队希望对全世界大城市的“呼吸指数”进行估算,通过城市耗氧和产氧的具体数据呼吁国际社会关注氧浓度问题,进一步评估不同情景下城市氧气浓度变化带来的健康风险,为制订因地制宜的、与产业结构相协调的“双碳”路径提供科学依据。  “这是一个前瞻性的研究,更长远来说,我们希望推动一个关于‘城市呼吸’的大科学计划,呼吁全世界更多的城市关注这个问题,因为它不仅是一个科学问题,也对每个城市、国家、地区的可持续发展都至关重要。”黄建平说。
  • 原子间“呼吸”成量子技术新基石
    美国华盛顿大学的研究人员发现,通过观察原子在激光刺激下发出的光的类型,他们可以检测到原子的“呼吸”,即两层原子间的机械振动。这种原子“呼吸”的声音可帮助研究人员编码和传输量子信息。研究人员还开发了一种设备作为量子技术的新型构建块。研究成果发表在6月1日的《自然纳米技术》杂志上。研究人员研究激子试图创造一个单光子发射器,或称“量子发射器”,这是基于光和光学的量子技术的关键部件。为了做到这一点,研究小组将两层薄薄的钨和硒原子放在一起,形成二硒化钨。研究小组发现,二硒化钨原子会发射另一种称为声子的准粒子。声子是原子振动的产物,类似于呼吸。二硒化钨的两个原子层就像相互振动的微小鼓膜,产生了声子。这是第一次在这种类型的二维原子系统中观察到单光子发射器中的声子。当研究人员测量发射光的光谱时,他们注意到几个等间距的峰。激子发出的每一个光子都与一个或多个声子耦合。这有点类似于一级一级地攀登量子能量阶梯,在光谱上,这些能量尖峰由等间距的峰直观地表示。施加电压后,研究人员发现可改变相关声子和发射光子的相互作用能量。这些变化是可测量和可控的,与将量子信息编码为单光子发射有关。研究团队希望能够控制多个量子发射体及其相关的声子态,而不是一次只控制一个量子发射体。这将使量子发射器能够相互对话,从而为量子电路的建立打下坚实的基础。
  • 吸烟对心、脑血管和呼吸道的影响
    对心、脑血管的影响 许多研究认为,吸烟是许多心、脑血管疾病的主要危险因素,吸烟者的冠心病、高血压病、脑血管病及周围血管病的发病率均明显升高。统计资料表明,冠心病和高血压病患者中75%有吸烟史。冠心病发病率吸烟者较不吸烟者高3.5倍,冠心病病死率前者较后者高6倍,心肌梗塞发病率前者较后者高2~6倍,病理解剖也发现,冠状动脉粥样硬化病变前者较后者广泛而 严重。高血压、高胆固醇及吸烟三项具备者冠心病发病率增加9~12倍。心血管疾病死亡人数中的30%~40%由吸烟引起,死亡率的增长与吸烟量成正比。烟雾中的尼古丁和一氧化碳是公认的引起冠状动脉粥样硬化的主要有害因素,但其确切机理尚未完全明了。多数学者认为,血脂变化、血小板功能及血液流变异常起着重要作用。高密度脂蛋白胆固醇(HDL-C)可刺激血管内皮细胞前列环素(PGI2)的生成,PGI2是最有效的血管扩张和抑制血小板聚集的物质。吸烟可损伤血管内皮细胞,并引起血清HDL-C降低,胆固醇升高,PGI2水平降低,从而引起周围血管及冠状动脉收缩、管壁变厚、管腔狭窄和血流减慢,造成心肌缺氧。尼古丁又可促使血小板聚集。烟雾中的一氧化碳与血红蛋白结合形成碳氧血红蛋白,影响红细胞的携氧能力,造成组织缺氧,从而诱发冠状动脉痉挛。由于组织缺氧,造成代偿性红细胞增多症,使血粘滞度增高。此外,吸烟可使血浆纤维蛋白原水平增加,导致凝血系统功能紊乱;吸烟还可影响花生四烯酸的代谢,使PGI2生成减少,血栓素A2相对增加,从而使血管收缩,血小板聚集性增加。以上这些都可能促进冠心病的发生和发展。由于心肌缺氧,使心肌应激性增强,心室颤动阈值下降,所以有冠心病的吸烟者更易发生心律不齐,发生猝死的危险性增高。 据报告,吸烟者发生中风的危险是不吸烟者的2~3.5倍;如果吸烟和高血压同时存在,中风的危险性就会升高近20倍。此外,吸烟者易患闭塞性动脉硬化症和闭塞性血栓性动脉炎。吸烟可引起慢性阻塞性肺病(简称COPD),最终导致肺原性心脏病。对呼吸道的影响 吸烟是慢性支气管炎、肺气肿和慢性气道阻塞的主要诱因之一。实验研究发现,长期吸烟可使支气管粘膜的纤毛受损、变短,影响纤毛的清除功能。此外,粘膜下腺体增生、肥大,粘液分泌增多,成分也有改变,容易阻塞细支气管。在狗实验中,接触大量的烟尘可引起肺气肿性改变。中国医科大学呼吸疾病研究所的一项研究发现,吸烟者下呼吸道巨噬细胞(AM)、嗜中性粒细胞(PMN)和弹性蛋白酶较非吸烟者明显增多,其机制可能是由于烟粒及有害气体的刺激,下呼吸道单核巨噬细胞系统被激活,活化的AM除能释放弹性蛋白酶外,同时又释放PMN趋化因子,使PMN从毛细血管移动到肺。激活的AM还释放巨噬细胞生长因子,吸引成纤维细胞;以及PMN释放大量的毒性氧自由基和包括弹性硬蛋白酶、胶原酶在内的蛋白水解酶,作用于肺的弹性蛋白、多粘蛋白、基底膜和胶原纤维,从而导致肺泡壁间隔的破坏和间质纤维化。据报导,1986年美国患COPD者近1300万人,1991年死亡9万多人,吸烟是其主要病因。吸烟者患慢性气管炎较不吸烟者高2~4倍,且与吸烟量和吸烟年限成正比例,患者往往有慢性咳嗽、咯痰和活动时呼吸困难。肺功能检查显示呼吸道阻塞,肺顺应性、通气功能和弥散功能降低及动脉血氧分压下降。即使年轻的无症状的吸烟者也有轻度肺功能减退。COPD易致自发性气胸。吸烟者常患有慢性咽炎和声带炎。
  • 大鼠气管狭窄对能量代谢和呼吸的影响
    -大鼠气管狭窄对能量代谢和呼吸的影响-关键词:塔望科技,动物能量代谢监测系统,全身体积描记系统,阻塞性睡眠呼吸暂停,气道阻塞,导致内分泌类疾病,肥胖症,糖尿病,代谢类疾病,大小鼠能量代谢监测系统...论文摘要阻塞性睡眠呼吸暂停(OSA)病人,经过治疗后,代谢生理健康还是不能恢复。在成功移除大鼠气管阻塞物(OR)后,维持呼吸稳态的同时,伴随有体温调节和能量代谢的异常。本研究比较了气道阻塞(AO)和轻度气道阻塞(mAO)移除后的呼吸稳态与能量代谢。结果显示,移除气管堵塞物后大鼠进食量永久性增加。同时,血清胃饥饿素、下丘脑促生长素受体1a(GHSR1a))和磷酸化Akt比率升高。 其中PI3K/Akt 通路与正常代谢密切相关,该通路异常会导致过度肥胖、胰岛素耐受和II型糖尿病。研究表明,为达到代谢健康状态,阻塞性睡眠呼吸暂停(OSA)患者需要终生注重饮食和内分泌健康。实验计划实验结果图A和B气管直径,对照组C:1.81±0.1mm,气道阻塞组AO:1.04±0.1mm,轻度气道阻塞组mAO:1.19±0.12mm,阻塞物移除组OR:1.87±0.11mm图C气道阻力,AO和mAO组气道阻力分别增加71%和35%。图D呼吸频率。图E潮气量。图F分钟通气量,在室内空气呼吸,AO和mAO组分钟通气量分别增加294%和64%,而OR组与对照组没有明显差别。图G二氧化碳敏感性,AO和mAO组二氧化碳敏感性分别增加59%和25.5%,而OR组与对照组没有明显差别。图A,相对对照组,AO、mAO和OR组的进食量分别增加50.9%、20%和10.7%图B,AO和mAO组白天和黑夜进食量均增加,OR只是在黑夜进食量增加。图C图D图E图F,只有AO组每次进食量增加,进食次数差异均不明显。进食量增加主要是由于每次进食时间延长,再加上夜间“微进餐”(micro meals)图G和图H,AO、mAO和OR组的血清胃饥饿素和GHSR-1a明显增加图I:AO、mAO和OR组的p-AKT/AKT比率分别上升25%、16%和15%图A和D,AO组和mAO组的能量消耗分别增加26.5%和10.2%。图B和C,能量消耗增加与氧气消耗量和二氧化碳产生量增加有关。图E图F和图G,AO组的活动量和体温明显降低。参考文献Yael Segev , Haiat Nujedat1, EdenArazi , Mohammad H.Assadi & ArielTarasiuk.”Changes in energy metabolism and respiration in diferent tracheal narrowing in rats” [J].Scientifc Reports. (2021) 11:19166塔望科技提供的相关仪器方案 大鼠全身体积描记系统可对清醒自由活动动物呼吸参数进行测量,如呼吸频率,潮气量,气道高反应性测试(Airway hyperresponsiveness,AHR)等。测试过程中,动物可以处于清醒自由状态,避免了创伤性气管切开及麻醉的影响,使实验过程更加简便,用于呼吸系统模型动物对药物等反应性研究,呼吸性药物的药理和毒理学研究,特别适合于大批量动物快速初筛试验,适合长期跟踪研究和重复性筛查。动物能量代谢监测系统主要用于实时监测和记录小动物代谢运动相关指标,定性定量测量分析动物行为活动及其与呼吸代谢的相互关系,广泛应用于营养、肥胖、糖尿病、心血管等代谢相关性疾病研究。可选择参数包括能量消耗,食物和水分摄取,取食和饮水模式,空间位置,总的活动量和转轮次数,体重,心率,体温及自动化的行为分析等,所有数据都可同步化储存到计算机内小动物麻醉机吸入式动物气体麻醉机,将挥发性麻醉剂或具有麻醉性的气体,途经动物的呼吸道进入体内产生麻醉效果。其麻醉起效快并且复苏快、深度易控制、动物的发病和死亡率低、已被全球科研工作者和宠物临床医师广泛认可和应用。END
  • 2020年全球呼吸机厂商TOP 10
    p style="text-align: justify text-indent: 2em "医用呼吸机是医院的必备物品,呼吸机是一种能够替代、控制或改变正常生理呼吸、增加肺通气、改善呼吸功能、降低呼吸能量消耗、节省心脏储备能力的装置。/pp style="text-align: justify text-indent: 2em "同时,家用呼吸机目前是治疗睡眠呼吸暂停征的主要方法,在国外已经发展了有30多年了。随着时代的发展,越来越多的人从呼吸机的治疗中受益了,而且由于经济的发展,人们观念的转变,很多人开始在旅行出差时也佩戴呼吸机。由于传统的家用呼吸机较为笨重,所以就应运而生了一个细分类别:旅行呼吸机。/pp style="text-align: justify text-indent: 2em "目前旅行呼吸机正在国外形成一个新的产业热点,先前是几家小型的呼吸机厂家在此领域,近几年来几大巨头厂商也加入了旅行呼吸机的研发中。/pp style="text-align: justify text-indent: 2em "近日,2020呼吸机十大品牌排行榜出炉!我们一起来看看目前世界上最好的呼吸机品牌。(排名不分先后)/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) font-size: 18px "strong1、ResMed 瑞思迈 /strong/span/pp style="text-align: justify text-indent: 2em "ResMed创立于1989年澳大利亚,是睡眠呼吸设备专业制造公司,大型呼吸系统疾病医疗解决方案开发商,在全球极具影响力。/pp style="text-align: justify text-indent: 2em "ResMed致力于提供好的治疗帮助患者早日康复,让他们过上更健康的高品质生活。公司的云连接医疗设备改变了睡眠呼吸暂停、COPD和其他慢性疾病患者的护理方式。/pp style="text-align: justify text-indent: 2em "公司完善的医院外软件平台可为专业人士及护理人员提供支持,让他们帮助患者选择在家中或医疗保健服务机构享受健康生活。通过实现更好的护理,公司改善了120多个国家和地区人们的生活质量,减少了慢性疾病的影响,并降低了消费者及医疗保健系统的成本。/pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strongspan style="color: rgb(0, 112, 192) "2、飞利浦伟康 /span/strong/span/pp style="text-align: justify text-indent: 2em "飞利浦伟康创立于1976年美国,前身是美国伟康公司,全球睡眠紊乱和呼吸系统医疗设备市场创新型解决方案知名企业。/pp style="text-align: justify text-indent: 2em "美国伟康公司,成立于1976年,总部位于美国宾夕法尼亚的匹兹堡,2007年12月被飞利浦集团收购,伟康现隶属于荷兰飞利浦公司医疗事业部,改称“飞利浦伟康”。对飞利浦伟康来说,创新的传统和结合预见市场需求的能力是至关重要的。/pp style="text-align: justify text-indent: 2em "飞利浦伟康的成功可部分归功于它预测其所服务的市场的需求的能力,并且能提供一系列解决方案来应对市场的挑战。公司被认为是睡眠和呼吸核心领域的专家,并非常积极地开发有前途的机会,比如通过呼吸途径给药,寻找办法帮助“问题睡眠患者”,以及展开教育项目帮助新生儿重症护理中心的护理人员来照顾早产儿和新生儿患者。/pp style="text-align: justify text-indent: 2em "飞利浦伟康在组织结构上可分为三组:睡眠和家庭呼吸组、医院组、和国际组。这种权利下放的商业结构有助于保障公司的资源能够有效地满足特定的市场需求。每一组都有对他们的市场的综合的理解—从当前的健康护理商业挑战到将来的显露出的技术上的机遇,以及超越传统的对睡眠和呼吸市场的探索。在每一组内,都有三个独立的营业单位,每一个单位都有特定的任务,或者是扩展现存的业务,或者发展新的和正在出现的市场。每个营业单位都被赋予创新和解决问题的能力,通过提供给其所服务的全球市场的广泛的解决方案,为增强公司的实力贡献了一份力量。/pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strongspan style="color: rgb(0, 112, 192) "3、费雪派克(Fisher& Paykel)/span/strong/span/pp style="text-align: justify text-indent: 2em "费雪派克始于1930年,呼吸湿化/重症监护及治疗阻塞性睡眠呼吸暂停综合症用产品及系统领域享有较高声誉的企业。/pp style="text-align: justify text-indent: 2em "费雪派克是集设计、生产、销售于一体的综合性公司。它的产品和系统在全球120多个国家和地区销售。在大多数主要市场上,我们通过营业部直销,同时我们也建立了完善的经销商网络,将产品经销到医院、家庭治疗产品代理商和其他医疗设备制造商。/pp style="text-align: justify text-indent: 2em "费雪派克于1971年研发出一款独特的用于重症治疗的呼吸湿化系统,进入呼吸治疗市场。现在,我们为呼吸湿化、重症监护及治疗阻塞性睡眠呼吸暂停综合症(OSA)提供全系列、多类型的产品和系统。/pp style="text-align: justify text-indent: 2em "费雪派克主要有两个产品系列:呼吸治疗与重症监护,及阻塞性睡眠呼吸暂停综合症治疗。/pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strongspan style="color: rgb(0, 112, 192) "4、MAQUET迈柯唯/span/strong/span/pp style="text-align: justify text-indent: 2em "MAQUET迈柯唯始于1838年德国,瑞典GETINGEAB集团旗下,全球领先的医疗设备提供商,拥有外科系统部/重症系统部/心血管外科部/麻醉系统部四个专业部门。/pp style="text-align: justify text-indent: 2em "在2010年,集团一年中230亿欧元的营业额近一半是由MAQUET迈柯唯公司创造的。集团全球拥有12200员工,其中MAQUET迈柯唯公司拥有5100名员工分布全球36个销售和服务机构,其中包含超过250名的销售代表。/pp style="text-align: justify text-indent: 2em "MAQUET迈柯唯公司有四个专业的部门:外科系统部产品包括手术床、手术灯、手术室吊塔、ICU吊塔、数字化手术室、预制手术室等;重症系统部产品包括呼吸机及相关附件以及高标准临床应用服务;心血管外科部为医院提供心脏外科、血管外科、体外循环以及心肺支持等设备以及一次性耗材;麻醉系统部为医院提供划时代新结构的具有较强肺保护功能的麻醉工作站。/pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strongspan style="color: rgb(0, 112, 192) "5、Drä ger德尔格/span/strong/span/pp style="text-align: justify text-indent: 2em "德尔格始于1889年德国,医疗和安全技术领域的国际企业,致力于保护/支持和拯救生命,提供完整的危害管理解决方案,涵盖防护用品/救援逃生/监护监测等安全用品。/pp style="text-align: justify text-indent: 2em "“生命的技术”是德尔格的基本准则和使命。无论技术运用在哪里–临床环境、工业、采矿或紧急服务–德尔格的产品都在保护、支持和拯救生命。/pp style="text-align: justify text-indent: 2em "在安全技术领域,德尔格给客户提供完整的危害管理解决方案,重点关注人生安全和保护生产设施。安全分公司现有安全产品组合包含:固定式和移动式气体检测系统、呼吸防护、消防设备、专业潜水设备以及酒精和毒品检测仪。/pp style="text-align: justify text-indent: 2em "德尔格在全球拥有超过14,000位员工,遍及世界190多个国家。集团在50多个国家设有销售和服务机构。其研发和生产基地位于德国,智利,中国,捷克,印度,挪威,南非,瑞典,英国和美国。/pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strongspan style="color: rgb(0, 112, 192) "6、Devilbiss德百世/span/strong/span/pp style="text-align: justify text-indent: 2em "Devilbiss创立于1888年,全球知名的呼吸医疗设备制造商,从事睡眠呼吸产品/呼吸机/雾化器/制氧机/吸痰器等专业器械研发/生产/销售的企业。/pp style="text-align: justify text-indent: 2em "德百世医疗(DevilbissHealthcare)是在设计、制造、和营销医用和家用呼吸产品方面处于世界领先地位。主要产品线包括呼吸机、雾化器、制氧机、吸痰器等专业器械。/pp style="text-align: justify text-indent: 2em "1888年,艾伦.德百世(AllenDeVilbiss)医生在俄亥俄州的托莱多市创建了德百世医疗公司,研发出了第一台喷雾器,使用这种喷雾器,可以将药物直接喷到病人的喉咙里,为患者带来更为舒适的治疗方法。和德百世许多其他早期发明一样,在今天,他们仍然是德百世医疗公司产品系列中的一部分。/pp style="text-align: justify text-indent: 2em "德百世医疗公司已经成为全球性呼吸医疗设备制造商和销售商,依靠优良的产品性能和高质量的售后服务在业界赢得了良好的声誉。/pp style="text-align: justify text-indent: 2em "通过与商业合作伙伴,医疗诊所和患者的紧密合作,德百世医疗公司在制氧机和雾化器市场上坚持开发可靠优质的产品,并提供高质量售后服务,更在睡眠医疗方面设计和制造了革命性创新产品-睡眠魔方,拓展了新的行业和市场。/pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strongspan style="color: rgb(0, 112, 192) "7、Weinmann万曼/span/strong/span/pp style="text-align: justify text-indent: 2em "万曼创立于1874年德国,是一家拥有140多年历史的德国企业,制造了欧洲较早无创通气设备。140年来,它在睡眠诊断/睡眠治疗/通气治疗/患者面罩等重要医疗领域,为医生与患者提供高品质的医疗设备与系统解决方案。/pp style="text-align: justify text-indent: 2em "目前德国万曼医疗的产品已行销全球超过70个国家和地区,我们在当地拥有完善的咨询、物流和售后服务网络,随时准备为客户提供任何帮助。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "8、GE医疗/span/strong/pp style="text-align: justify text-indent: 2em "GE医疗始于1892年美国,是通用电气公司旗下医疗技术和服务业务,全球知名的提供医疗诊断技术和设备的高科技集团,提供综合医疗解决方案。/pp style="text-align: justify text-indent: 2em "GE医疗集团志在提供革新性的医疗技术和服务,以满足需求,使全世界更多的人能以更可负担的成本获得更好的医疗服务。在医学成像、软件和信息技术、患者监护和诊断、药物研发、生物制药技术解决方案等多个领域,助力专业医务人员为患者提供优质的医疗服务。/pp style="text-align: justify text-indent: 2em "其中,GE医疗集团从1979年开始在中国开展业务,于1986年在北京成立了办事处。1991年,航卫通用电气医疗系统有限公司在北京成立,成为GE在中国的合资企业。目前,GE医疗在中国建立了包括独资和合资企业在内的多个经营实体,拥有员工7,000多名。GE医疗在中国共拥有几大全球生产基地:在北京建有CT扫描系统、磁共振成像系统和X光成像系统工厂,在上海有生命科学基地,在无锡建有超声和患者监护仪设备工厂,在桐庐建有滤纸生产基地。此外,主要生产磁共振磁体的天津生产基地正在建设中。/pp style="text-align: justify text-indent: 2em "GE医疗在中国业务范围广泛,包括研发、设计、采购、生产、销售、营销和服务等各个领域,涵盖集团在全球提供的所有技术与服务。基于GE中国研发中心和GE全球其他研发中心的基础性研究,由在华的1,000多名工程师组成的GE医疗技术研发团队,正为中国和全世界开发医疗产品与技术。/pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strongspan style="color: rgb(0, 112, 192) "9、新松医疗SYSMED/span/strong/span/pp style="text-align: justify text-indent: 2em "新松医疗SYSMED是中科院直属企业,由研究机构中国科学院沈阳自动化研究所、大连化学物理研究所等共同投资组建。其双水平呼吸机/OT系列和Y系列医疗级氧气机享誉界内,医疗级制氧机专业制造商。/pp style="text-align: justify text-indent: 2em "新松医疗专注于制氧工艺以及控制系统等核心技术的自主创新,已成功研发、制造医用氧气机、分体式氧气机、车载氧气机、分布式制氧系统、医院集中供氧系统等五大系列20多种制氧设备。/pp style="text-align: justify text-indent: 2em "凭借专业品质,新松已成功计入欧洲,南美,中东,东南亚,澳大利亚等46个国家及地区的氧疗设备市场,为无数患者减轻了疾患,改善了生命质量。/pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strongspan style="color: rgb(0, 112, 192) "10、瑞迈特RESmart(BMC)/span/strong/span/pp style="text-align: justify text-indent: 2em "瑞迈特RESmart成立于2001年,是专业睡眠呼吸疾病诊断和治疗产品的制造商,提供涵盖睡眠呼吸障碍及相关疾病诊疗设备和呼吸慢病管理解决方案。/pp style="text-align: justify text-indent: 2em "BMC总部位于北京。BMC通过自主创新为全球用户提供涵盖睡眠呼吸障碍及相关疾病诊疗设备和呼吸慢病管理解决方案,当前主要产品包括睡眠监测仪、无创呼吸机、面罩等三大产品以及BMC+呼吸健康管理云平台。公司通过了ISO13485国际医疗器械质量管理体系认证,先后取得了包括中国CFDA、欧盟CE和美国FDA认证在内的五十多个国家的市场准入认证。/pp style="text-align: justify text-indent: 2em "BMC在全国多地设有研发中心,平均每年投入逾千万元进行产品研发和技术创新,所有产品均拥有独立的知识产权。截止2018年6月,拥有的专利数已经有两百多个,公司在2014年推出了第二代呼吸机产品RESmartGII,开创性地融入了血氧监测和治疗数据远程监测功能,并在次年推出了BMC+呼吸健康管理云——国内较早为无创呼吸机用户量身定制的专业互联网远程医疗服务平台,目前合作医院超过三百家。/pp style="text-align: justify text-indent: 2em "BMC已在全国主要城市设立了50余家呼吸机体验中心,并仍在继续铺设。 /pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em color: rgb(127, 127, 127) "原文链接:https://www.sensorexpert.com.cn/article/6257.html /spanbr//p
  • 众瑞仪器发布ZR-1211型 口罩呼吸阻力检测仪新品
    ZR-1211型 口罩呼吸阻力检测仪产品简介ZR-1211型 口罩呼吸阻力检测仪用于测定口罩在规定条件下的吸气和呼气阻力。同时兼容多个流量点,适用于口罩生产厂、国家劳动防护用品检验机构对口罩产品进行相关的检测和检验。符合标准GB 2626-2019 呼吸防护用品 自吸过滤式防颗粒物呼吸器技术特点7寸高清晰触摸显示屏;电子流量计,流量控制精度高; 自动恒流控制,兼容多个流量点;可设置呼气、吸气两种检测模式,自动判定样品是否合格;大容量数据存储,实时保存检测数据; 可通过U盘导出或热敏打印机打印历史数据;样品合格判定压力值、样品编号等参数可设置;故障检测自动保护。创新点:1.ZR-1211型 口罩呼吸阻力检测仪用于测定口罩在规定条件下的吸气和呼气阻力,自动恒流控制,兼容多个流量点。2.符合标准 GB 2626-2019 呼吸防护用品 自吸过滤式防颗粒物呼吸器。3.可设置呼气、吸气两种检测模式,自动判定样品是否合格。4.样品合格判定压力值、样品编号等参数可设置。ZR-1211型 口罩呼吸阻力检测仪
  • 远离雾霾,自由呼吸——芯硅谷口罩专题
    雾霾来袭近年来,我国雾霾情况越发严重,雾霾已经成为时下热门话题,关于雾霾你了解多少?雾霾天里我们应该如何应对?什么又是雾霾呢? 雾霾,是雾和霾的组合词。雾霾常见于城市。 雾霾是特定气候条件与人类活动相互作用的结果。高密度人口的经济及社会活动必然会排放大量细颗粒物(PM 2.5),一旦排放超过大气循环能力和承载度,细颗粒物浓度将持续积聚,此时如果受静稳天气等影响,极易出现大范围的雾霾。 芯硅谷的产品优势芯硅谷蚌型高效过滤防尘口罩 ,采用双层抗压技术,耐热耐潮,低呼吸阻力设计便于使用和佩戴.耐用的橡胶带,可调节的鼻夹及柔软的鼻梁海绵条,便于使用者更舒适地佩戴 呼吸阀的安装减少热空气形成,在湿热空气中易于呼吸 夹层活性炭有效阻挡外界灰尘。 芯硅谷 四层活性炭口罩 ,四层构造,内外层分别采用水刺布、活性炭布、过滤纸和无纺布制成,可减少纤维脱落现象及增加佩戴的舒适度,有效过滤细菌和颗粒物.可调节鼻梁夹设计可依据不同脸型做最舒适的调整,获得最佳舒适度.广泛应用于用于电子制造业、学校、医院、制药、工厂、喷油、化工厂、家具厂、电子厂、油漆厂、公共场合等。选择芯硅谷防雾霾口罩,让您自强不&ldquo 吸&rdquo 。 产品列表&mdash &mdash 芯硅谷口罩系列项目号品名详细参数包装F1597-06FFP2蚌型高效过滤防尘口罩(单只装),带呼吸阀,带活性炭,防雾霾类型:耳挂式,带呼吸阀,带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:海绵鼻梁条,塑料夹,橡胶捆带 颜色:灰色 过滤级别:FFP2 过滤效率:94%10EAF1597-07FFP2蚌型高效过滤防尘口罩(单只装),防雾霾类型:耳挂式,不带呼吸阀,不带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:海绵鼻梁条,塑料夹,橡胶捆带 颜色:白色 过滤级别:FFP2 过滤效率:94%20EAF1597-08FFP2蚌型高效过滤防尘口罩(单只装),带呼吸阀,防雾霾类型:耳挂式,带呼吸阀,不带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:海绵鼻梁条,塑料夹,橡胶捆带 颜色:白色 过滤级别:FFP2 过滤效率:94%10EAF1597-09FFP3蚌型带阀高效过滤防尘口罩,带呼吸阀,防雾霾类型:耳挂式,带呼吸阀,不带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:PVC密封,塑料夹,橡胶捆带 颜色:白色 过滤级别:FFP3 过滤效率:99%10EAF5952-01四层活性炭口罩层数:4 材料:25gPP无纺布+45g活性炭+25g过滤纸+35g水刺布 尺寸:175× 95mm50EAF5952-02四层活性炭口罩(单片装)层数:4 材料:25gPP无纺布+45g活性炭+25g过滤纸+35g水刺布 尺寸:175× 95mm50EAP1590-09FFP2杯型高效过滤防尘口罩,带呼吸阀,带活性炭,防雾霾类型:头带式,带呼吸阀,带活性炭 层数:四层(涤纶槽+熔喷材料+活性炭+PP纺粘布) 材质:PVC环形密封圈,塑料夹,高密度带 颜色:灰色 过滤级别:FFP2 过滤效率:94%10EAP1590-10FFP2杯型高效过滤防尘口罩,带呼吸阀,带活性炭,防雾霾类型:头带式,带呼吸阀,带活性炭,翘角 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC鼻梁垫和高密度带 颜色:浅灰色 过滤级别:FFP2 过滤效率:94%10EAP1590-11FFP2杯型高效过滤防尘口罩,防雾霾类型:头带式,不带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:黑色海绵条和氨纶焊带 颜色:白色 过滤级别:FFP2 过滤效率:94%20EAP1590-12FFP2杯型高效过滤防尘口罩,带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:黑色海绵条和氨纶焊带 颜色:白色 过滤级别:FFP2 过滤效率:94%10EAP1590-13FFP3杯型高效过滤防尘口罩,带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC环形密封圈,塑料夹,高密度带 颜色:白色 过滤级别:FFP3 过滤效率:99%5EAP1590-14FFP2杯型高效过滤防尘口罩,防雾霾类型:头带式,不带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC鼻梁垫和高密度带 颜色:白色 过滤级别:FFP2 过滤效率:94%20EAP1590-15FFP2杯型高效过滤防尘口罩,带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭,翘角 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC鼻梁垫和高密度带 颜色:白色 过滤级别:FFP2 过滤效率:94%10EAP1590-16FFP3杯型高效过滤防尘口罩(单只装),带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭,翘角 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC环形密封圈和翘角 颜色:白色 过滤级别:FFP3 过滤效率:99%10EAT5944-01三层无纺布口罩层数:3 材料:25gPP无纺布+25g过滤纸+35g水刺布 尺寸:175× 95mm50EAT5944-02三层无纺布口罩(单片装)层数:3 材料:25gPP无纺布+25g过滤纸+35g水刺布 尺寸:175× 95mm50EA更多产品信息请点击这里
  • TSI又发布了一款新尺寸的用于检测泄露的呼吸器密合度测试仪
    MITA8120,一套用于PortaCount呼吸器密合度测试的配件,是用来进行包括自给式呼吸器,过滤式呼吸器以及核生化面罩在内的各种全面式呼吸器的密合度测试.  伦敦,2013年2月14日-每一个用到呼吸器的用户都需要最高级别的防护.对于面罩服务中心,生产商或者类似军事,生产设施救护队的组织,以及在危险环境中工作的工人,测试这些呼吸装备是否符合最高级别的标准是非常必要的.有了 PortaCount呼吸器密合度测试仪,TSI公司能够提供一套综合性的定量进行呼吸器密合度测试的工具.现在有了MITA, PortaCount呼吸器密合度测试仪的附件,TSI完成了一个进行面具完整性和密合度测试的安全解决方案.面罩完整性测试附件(MITA)8120MITA和PortaCount呼吸器密合度测试仪一起串联使用以测试全面式呼吸防护面罩是否漏气并且确保他们和设计的一样正常工作.  通过进行气溶胶泄露测试,一个全面的面罩完整性测试会被执行.在负压和恒流条件下,面具会在一个完整头模上做测试,并使用一个增强型的气囊密封系统为大多数防毒面具和各种尺寸和类型的全面式呼吸防具提供一个良好的密封环境.这样的配置将测试面罩或者呼吸器的完整性以保证高级别的防护因素能够被测试.如果仪器检测到面具或者呼吸器有泄露,整合的气溶胶棒和气溶胶生成器会被用来精确地找到难以发现的泄露并且快速的评估以决定是否需要修理或者直接将面罩或者呼吸器报废处理.一起不仅仅是提供一个&ldquo 合格或者不合格&rdquo 的测试结果,MITA能够鉴别正在测试的面具或者呼吸器需要修理的部分.为了达到上述目的,操作者使用一根气溶胶棒将浓缩的粒子流导向在面罩附近的某个位置以精确找到泄露.这时候,仪器会测试到一个突然的浓度升高,并且会提醒操作者,这样面罩的的修理可以在当场完成.  某些面罩有其他一些潜在的薄弱环节包括封接面,呼气阀以及饮用管(用于核生化防护面罩).MITA能够测试所有以上提到环节的完整性.MITA能够和8020,8020M,8030以及8038型PortaCount呼吸器密合度测试仪一起使用.面罩接口套件适用于包括Avon,Draeger,Scott,3M以及MSA在内的所有主流生产厂商的呼吸器.多达4,000组面具测试结果能够存储于一起的内部存储中,并且可以后面下载到电脑中.MITA和PortaCount 配套使用易于操作,并且包括一个易于读数的显示器,能够提供一个直观的检测序列.操作者不需要很多培训就能够进行面具完整性测试,而且MITA的菜单结构消除了使用错误或者多余按键造成的风险.在效率方面,这款仪器已经设立了行业基准:在保证品质的条件下,每小时可以测试多达12-20个面具
  • 犹如向大海滴水,他们成功做到给城市“量”呼吸
    “如果把城市比作人,城市也会呼吸,吸入氧气并呼出二氧化碳。以往我们更多关注污染物和二氧化碳的排放,理所当然地认为氧气含量足够,但现在越来越多的证据表明,氧气已被过量消耗,这会给人类的生命健康带来巨大威胁。”中国科学院院士、兰州大学大气科学学院教授黄建平说。日前,黄建平团队在《环境科学与技术》杂志发表题为“工业重镇氧气观测揭示‘城市呼吸’”的封面文章,在国际上率先开展“城市呼吸”研究,从观测的角度提供了城市氧气浓度下降的有力证据,开拓了氧循环城市健康效应研究的新领域。“城市呼吸”机制图。 课题组供图建立国内首个高精度观测平台现有观测资料表明,过去30年中,大气中二氧化碳快速上升,氧气下降的速度是二氧化碳上升速度的两倍左右。实地测量选在中国西北部半干旱地区甘肃省省会兰州市。兰州总人口超过 440 万,由于两山夹一河的独特地形,以及少风少雨的气候特点,大气扩散受到抑制,导致流域内污染物的稳定积累。“我们看到兰州市中心的地形十分独特,南北最窄处仅1公里左右。考虑到大量人口在如此狭窄的区域聚集,人类的呼吸过程所消耗的氧气势必会影响大气中的氧浓度,因此想对这个问题进行深入的探索。”论文第一作者、大气科学学院2020 级气候学专业博士生刘晓岳说。基于上述考虑,黄建平团队提出“城市呼吸”的新概念,用来衡量城市空气的健康状态。目前,针对“城市呼吸”中二氧化碳、污染物、能源等要素的研究在国际上已经比较全面,但是针对氧气的研究几乎是空白状态。“这主要有两个原因,一是没有意识到氧气减少的危害,现在越来越多的研究表明,氧气浓度减少与人体健康特别是心血管疾病密切相关;二是因为氧气浓度实时观测所需仪器的精度很高,一般仪器测量不到。”黄建平介绍道。国内外一些研究团队多用密封瓶采样,进行大气采样分析,其数据的时空分辨率有限。在大自然背景下探测微小的氧气变化是相当具有挑战性的。“大气中细微的氧气变化信号以百万分之一计,这种探测犹如向茫茫大海中滴一滴水,去讨论这一滴水对于整个海平面的影响,因此,氧气监测对分析仪器的精度和漂移有严格的要求,特别是对于连续监测。”团队负责技术的工程师王莉说。2017年,黄建平团队投入140多万元,在兰州大学城关校区一栋22层建筑的顶楼建立了国内首个高精度大气氧气观测平台。空气采样的采气口正对着兰州市最繁忙的街道——天水路,它有双向10车道,毗邻火车站,路段交通发达,受人为活动影响比较显著。氧气观测平台采用气相色谱热导检测器技术测定大气氧含量,这个技术已经使用了20多年,可以较准确的量化大气氧气的变率。团队利用气相色谱仪直接测量的是氧氮比。由于大气中氮气的变化比氧气的变化小得多,可忽略不计,因此氧氮比的变化可以被认为是氧气造成的。“在氧气观测平台建设初期,我们克服了一系列技术难题,包括仪器调试、定标以及后期数据处理,构建了适用于平台的大气氧观测数据的订正方法等。经过团队的不懈努力,我们的观测资料最终得到了国际同行的认可。”黄建平告诉《中国科学报》。首次揭示居民呼吸影响城市中居民呼吸和化石燃料燃烧是两个独立的过程,因此很难直接将上述两个过程分别从大气氧气观测资料中分离出来。但值得注意的是,居民呼吸是不排放污染物的,而化石燃料在燃烧过程中不仅排放了二氧化碳,同时也排放了包括氮氧化物、一氧化碳、二氧化硫在内的各类污染物。在他们的氧气浓度观测信号里,有一部分是和污染物相关的化石燃料燃烧消耗的氧气,另一部分和污染物无关的则是居民呼吸过程消耗的氧气。将现有的氧气浓度和污染物浓度的观测资料进行对比,就可以从氧气浓度变化的信号中分离出化石燃料燃烧信号和呼吸信号。黄建平团队将城市氧气浓度观测数据分为两组:在空气质量较好的情景中,大气扩散条件较好,工业、交通活动消耗的氧气(化石燃料燃烧)能够较快补充,兰州市氧气浓度整体较高。这种情景下人类呼吸占到氧气亏损的33.08%,化石燃料燃烧占比66.92%。此外,大气传输模型也显示,扩散条件较好时,有利于工业区污染气团远距离传输至兰州市中心城区,因此二氧化硫、一氧化氮等污染物对氧气的消耗占比有所上升。在这种情景下,大气充分混合,各类耗氧过程对兰州氧气浓度的影响较为均衡,对人体健康影响较小。在氧气浓度较低、污染严重的情境下,化石燃料燃烧对氧气的消耗占比升高到72.5%,居民呼吸对大气氧损耗的占比降低。高精度的大气传输模型显示该情景下耗氧过程主要发生在中心城区,氮氧化物和PM1排放过程的耗氧量明显增加,对应机动车尾气排放造成的氧气消耗显著增强。黄建平表示,化石燃料燃烧是引起兰州市氧气浓度下降的主要原因(贡献达66.92%~72.50%),此外,居民呼吸过程可造成27.50%~33.08%的氧气亏损,成为准确估算城市排碳耗氧的主要误差来源之一。植物光合作用是氧气的主要来源,兰州市耗氧量是产氧量的500倍以上,其缺口来自周边植被的支援。这种情况不仅发生在兰州,全球人口超过100万的大城市中,有75%的大城市耗氧量和产氧量的比值超过100。黄建平团队曾做过测算:如果化石燃料燃烧稳定在一定水平不下降,则会发生持续的氧气浓度下降,26世纪将降至20.0%以下,并在29世纪初将降至19.5%,可能会对地球上部分生物的生存造成威胁。 下一步,团队希望对全世界大城市的“呼吸指数”进行估算,通过城市耗氧和产氧的具体数据,来呼吁国际社会关注氧浓度问题,进一步评估不同情景下城市氧气浓度变化带来的健康风险,为制订因地制宜的、与产业结构相协调的‘双碳’现实路径提供科学依据。“这是一个前瞻性的研究,更长远来说,我们希望推动一个关于‘城市呼吸’的大科学计划,呼吁全世界更多的城市关注这个问题,因为它不仅是一个科学问题,对每个城市、国家、地区的可持续发展都至关重要。”黄建平说。
  • 众瑞仪器发布ZR-1210型 口罩呼吸阻力检测仪新品
    详细介绍产品简介 ZR-1210型口罩呼吸阻力检测仪用于测定口罩在规定条件下的吸气和呼气阻力。适用于口罩生产厂家、国家劳动防护用品检验机构对口罩产品进行相关的检测和检验。符合标准GB2626-2006 呼吸防护用品——自吸过滤式防颗粒物呼吸器技术特点高清晰LCD液晶显示屏;电子流量计,流量控制精度高;自动恒流控制,自动样品合格判定;可设置呼气检测和吸气检测两种模式;大容量数据存储,实时保存检测数据;可通过U盘导出或热敏打印机打印历史数据;合格判定压力差、样品编号等参数可设置;故障检测自动保护。创新点:1、ZR-1210型口罩呼吸阻力检测仪用于测定口罩在规定条件下的吸气和呼气阻力;2、电子流量计,流量控制精度高;3、自动恒流控制,自动样品合格判定;4、可设置呼气检测和吸气检测两种模式。ZR-1210型 口罩呼吸阻力检测仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制