当前位置: 仪器信息网 > 行业主题 > >

薄膜磁性测试系统

仪器信息网薄膜磁性测试系统专题为您提供2024年最新薄膜磁性测试系统价格报价、厂家品牌的相关信息, 包括薄膜磁性测试系统参数、型号等,不管是国产,还是进口品牌的薄膜磁性测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合薄膜磁性测试系统相关的耗材配件、试剂标物,还有薄膜磁性测试系统相关的最新资讯、资料,以及薄膜磁性测试系统相关的解决方案。

薄膜磁性测试系统相关的论坛

  • 【原创大赛】薄膜材料磁电阻效应实验讲义

    薄膜材料磁电阻效应实验 王立锦 编 用巨磁电阻(GMR)和各向异性磁电阻(AMR)磁性薄膜材料制作计算机硬盘读出磁头和各种弱磁传感器,已经广泛应用于信息技术、工业控制、航海航天导航等高新技术领域。通过本实验能够使同学们对磁性薄膜材料的知识和磁电子学有所了解,并由此引起对纳米磁性薄膜材料研究和应用的浓厚兴趣。本实验仪器由我校教师设计搭建,采用高精度纳伏表和数控恒流源,计算机自动采集和显示数据,具有结实牢固、操作简便等优点,适用于大专院校教学和科研使用。以下略,详细内容请看附件。

  • 红外磁性样品架

    红外磁性样品架

    这是我们红外配的红外磁性样品架,用来测薄膜类的透射,比较方便。http://ng1.17img.cn/bbsfiles/images/2013/07/201307292127_454612_1827385_3.jpg

  • 用 ICP-MS 进行 CIGS薄膜组分测试问题

    大家好,群中有没有人做过 用 ICP-MS(电感耦合等离子体质谱仪)测试 CIGS(铜铟镓硒太阳能电池)薄膜的组分。我想要做这方面的测试,我用10%的硝酸 溶解 CIGS 薄膜,但是CIGS薄膜好像不溶解, 只是呈片状 悬浮于溶液中。对于 用 ICP-MS(电感耦合等离子体质谱仪)测试 CIGS薄膜的组分, 大家有没有什么建议,希望大家 踊跃发言!

  • 用 ICP-MS 进行 CIGS薄膜组分测试问题

    大家好,群中有没有人做过 用 ICP-MS(电感耦合等离子体质谱仪)测试 CIGS(铜铟镓硒太阳能电池)薄膜的组分。我想要做这方面的测试,我用10%的硝酸 溶解 CIGS 薄膜,但是CIGS薄膜好像不溶解, 只是呈片状 悬浮于溶液中。对于 用 ICP-MS(电感耦合等离子体质谱仪)测试 CIGS薄膜的组分, 大家有没有什么建议,希望大家 踊跃发言!CIGS薄膜 分别有 铜Cu 铟In 镓Ga 硒Se 四种元素

  • 稳态强磁场实验装置测试系统产出新成果

    近期,中国科学技术大学朱弘教授小组利用稳态强磁场实验装置电子自旋共振等测试系统,研究了压缩应变(La,Ba)MnO3薄膜中的磁晶各向异性,其研究结果近期发表于《应用物理学杂志》(Journal of Applied Physics)。 中国科学院强磁场科学中心的科学实验测试系统包括输运实验测试系统、磁性实验测试系统、磁光实验测试系统、极低温实验测试系统、高压实验测试系统和组合显微系统。朱弘小组此次实验就是利用磁性实验测试系统中的“电子顺磁共振谱仪”,进行了一系列研究。其实验结果表明,在Sr或Ca掺杂的锰氧化物铁磁薄膜中容易磁化轴沿拉伸应变方向。该工作利用转角铁磁共振技术,发现在Ba掺杂的薄膜中情况正相反,易磁化方向对应面内的压缩应变方向。实验得到面外共振位置高达12千奥斯特(kOe),表明除了形状各向异性外,磁晶各向异性非常可观,且是易面的。这种磁晶各向异性“异常”的表现反映了锰氧化物与Bethe-Slater曲线的物理内容相一致。(La,Ba)MnO3和Co、Ni相同,易磁化轴沿压缩方向;而另两种掺杂的锰氧化物(LaCa),(LaSr)和a-Fe一样表现相反。 强磁场科学中心成立于2008年4月30日,是国家发改委支持的“十一五”国家重大科学工程。中心的长远预设目标包括强磁场的产生、强磁场下的物性研究以及依托强磁场实验装置进行科学技术发明,其实验设施包括磁体装置和科学实验测试系统。2010年,部分磁体装置及测试系统建成,已开始先期投入试运行并陆续向用户开放,基本实现“边建设边运行”。 稳态强磁场实验装置项目建设总目标是建立40T级稳态混合磁体实验装置和系列不同用途的高功率水冷磁体、超导磁体实验装置,使我国的强磁场水平跻身于世界先进行列。目前四台超导磁体中的SM3与配套核磁共振谱仪完成联调,并已开展了多项结构生物学和药物学方面的研究,SM2已调试成功,正与组合显微测试系统SMA联调。磁体装置方面,强磁场中心现已成功研制出国内首台铌三锡管内电缆导体的超导磁体以及我国首台井式真空充气保护大型铌锡线圈热处理炉系统。http://www.cas.cn/ky/kyjz/201208/W020120820347280715931.jpg

  • 磁性样品的XPS测试

    磁性材料在电子通信、医疗和机械制造等领域的广泛应用使得对其表面成分进行XPS分析变得尤为重要。然而,对于磁性样品,XPS设备的信号接收器可能无法准确采集到光电子信息,因此如何进行磁性样品的XPS测试一直是研究

  • 霍尔效应测试仪 ITO 薄膜测试案例

    样品: ITO 氧化铟锡, 标记为 ITO1, ITO2, ITO3样品薄膜厚度: 60 - 100 nm样品尺寸: 10 * 10 mm实验内容: 载流子浓度, 类型, 霍尔迁移率, 方块电阻 实验仪器: 上海伯东英国 NanoMagnetics ezHEMS [url=http://www.hakuto-vacuum.cn/product-list.php?sid=131][color=#0000ff]霍尔效应测试仪[/color][/url]测试温度和磁场温度: 300K RT 1 Tesla[color=#ff0000]* 在测试开始前, 仪器均经过标准样品校验. 所有样品根据 ASTM 标准.[/color][b][color=#000000]样品 ITO1 测试结果:[/color][color=#000000]I-V 测量结果[img=霍尔效应测试仪 ITO 薄膜]http://www.hakuto-vacuum.cn/hakuto_upfile/images/ITO-nano.jpg[/img][/color][/b][color=#000000][b]VdP 测量结果[/b][/color][color=#000000] 测量头类型: RT Head 磁场: 9677G 厚度: 80nm[img=霍尔效应测试仪 ITO 薄膜]http://www.hakuto-vacuum.cn/hakuto_upfile/images/ITO-vdp.jpg[/img][/color][b]部分测试结论:[/b]1. 得到的电阻值彼此相容.2. 所有的IV 曲线都是线性的3. 所有样本都是欧姆的,统一的,均匀的.4. Van der Pauw 测试为了保证准确性, 测试了2次, 测试结果是相同的. ...[color=#ff0000]* 鉴于信息保密, 更详细的霍尔效应测试案例欢迎联络上海伯东[/color]

  • 【转帖】磁性液体性质及应用

    磁性液体性质及应用 一、概述磁性液体是由纳米级(10纳米以下)的强磁性微粒高度弥散于某种液体之中所形成的稳定的胶体体系。60年代美国首先应用于宇航工业,后来逐渐转为民用,现已成为很庞大的产业,在美国、日本、德国等发达国家都有磁性液体公司,全球每年要生产磁性液体器件数百万吨。磁性液体中的磁性微粒必须非常小,以致在基液中呈现混乱的布朗运动,这种热运动足以抵消重力的沉降作用以及削弱粒子间电、磁的相互凝聚作用,在重力和电、磁场的作用下能稳定存在,不产生沉淀和凝聚。磁性微粒和基液浑成一体,从而使磁性液体既具有普通磁性材料的磁性,同时又具有液体的流动性,因此具有许多独特的性质。磁性液体是由强磁性微粒、基液以及表面活性剂三部分组成。为了得到稳定的磁性液体,强磁性微粒必须足够小,如对铁来说,微粒直径要小于3纳米;对Fe3O4来说,直径不能大于10纳米。制备纳米微粒的方法很多,我们采用化学共沉淀技术制备直径10纳米左右、分布均匀的Fe3O4微粒。化学共沉淀技术具有操作简便、成本低,对设备要求不高等优点。选择合适的表面活性剂是制备磁性液体的关键。表面活性剂包覆在微粒表面,具有以下作用:1. 防止磁性颗粒的氧化;2. 克服范德瓦尔斯力所造成的颗粒凝聚;3. 削弱静磁吸引力;4. 改变磁性颗粒表面的性质,使颗粒和基液浑成一体。对表面活性剂总的要求是,活性剂的一端能吸附于微粒表面,形成很强的化学键,另一端能与基液溶剂化。不同基液的磁性液体要选择不同的表面活性剂,有时甚至需要两种以上的表面活性剂。南京大学从八十年代开始进行磁性液体的研制工作,在强磁性微粒的制备,表面活性剂的选择等方面积累了丰富的经验。现已能制备出高质量的水基、煤油基和邻苯二甲酸二异辛脂基磁性液体。 二、磁性液体的性质由于磁性液体同时具有磁性和流动性,因此具有许多独特的磁学、流体力学、光学和声学特性。磁性液体表现为超顺磁性,本征矫顽力为零,没有剩磁;在外磁场下,磁性液体被磁化,满足修正的伯努利方程。与常规伯努利方程相比,添加了一项磁性能,使磁性液体具有其它流体所没有的、与磁性相关联的新性质:例如磁性液体的表观密度随外磁场强度的增加而增大;当光通过稀释的磁性液体时,会产生光的双折射效应与双向色性现象。当磁性液体被磁化时,使相对于磁场方向具有光的各向异性,偏振光的电矢量平行于外磁场方向比垂直于外磁场方向吸收更多,具有更高的折射率;超声波在磁性液体中传播时,其速度及衰减与外磁场有关,呈各向异性;磁性液体在交变场中具有磁导率频散、磁粘滞性等现象。 三、磁性液体的应用磁性液体的特殊性质开拓了许多新的应用领域,一些过去难以解决的工程技术问题,由于磁性液体的出现而迎刃而解。下面简单地介绍几种磁性液体应用的原理。1. 旋转轴动态密封 磁性液体旋转轴动态密封技术是磁性液体较成熟也是最重要的应用之一,现已广泛应用于X-射线转靶衍射仪、单晶炉、大功率激光器、计算机等精密仪器的转轴密封。其结构原理见图1. 磁性液体在非均匀磁场中将聚集于磁场梯度最大处,因此利用外磁场可将磁性液体约束在密封部位形成磁性液体“O”型环,具有无泄露、无磨损、自润滑、寿命长等特点。目前在国外的精密仪器中,磁性液体密封部件作为一个整体出售,售价一般在两、三千美圆,不单独出售磁性液体。南京大学在磁性液体旋转轴动态密封方面做了大量工作,积累了丰富的经验,拥有一项国家实用新型专利。在南京大学、南京师范大学、南京55研究所等单位的仪器上使用我们的磁性液体密封技术,效果良好,真空度可达10-6t .磁性液体密封技术目前重要用于真空、灰尘、气体的动态密封,封水等液体由于难度较大,实际应用的不多。若能在封水、封油等方面取得突破,其应用领域将极为广阔,必将产生巨大的经济效益和社会效益。我们认为可从以下方面开展工作:改进密封件结构,改善磁路设计,研制新型磁性液体。2. 扬声器 将磁性液体注入扬声器的音圈气隙对音圈的运动起一定的阻尼作用,并能使音圈自动定位,同时音圈所产生的热量可以通过磁性液体耗散,因此加入磁性液体可以提高扬声器的承受功率,在同样结构条件下可使输入功率提高2倍,同时改善频率响应,提高保真度。磁性液体用于金属膜扬声器性能更佳。目前国内许多厂家生产磁性液体扬声器,生产线和磁性液体均从国外进口。若能将磁性液体国产化,必将带来非常可观的收益。3. 阻尼器件 利用磁性液体作为旋转与线性阻尼器,以阻尼不需要的系统振荡模式。与一般阻尼介质相比优点在于可挤占籍助外磁场定位。例如在步进马达中使用磁性液体阻尼来消除系统的振荡与共振,使马达精确定位。另外在防振台中使用磁性液体阻尼(图2),可消除外界振动噪音的干扰,以确保精密仪器(天平,光学设备等)正常工作。4. 选矿分离 利用磁性液体的表观比重随外磁场的变化而改变的特点,可用来筛选比重不同的非磁性矿物(图3)。比重差别在10%左右的矿物可用此技术较好地分离,一般采用水基磁性液体,可重复使用。5. 开关 图4为磁性液体无摩擦开关示意图。水银和磁性液体装在一个不导电的容器中,利用外磁场改变水银在容器中的位置,来达到接通和断开电流的目的。图5为不需动力的新型磁性液体离心开关示意图。磁性液体密封在转轴上的非磁性容器中。当转轴静止时,磁性液体位于容器下部,传感器检测不到它;当轴转动时,离心力使磁性液体分布于容器内壁,传感器检测到磁性液体并引发开关动作。6. 精密研磨和抛光 磁性液体研磨是利用磁性液体的浮力将微米级的磨料悬浮于液体表面,与待抛光的工件紧密接触。不论工件的表面形状多么特殊,均可用此技术精密抛光。另外还可用来研磨高级Si3N4陶瓷球(图6),效率比传统方法高40倍。7. 传感器 目前有两种商用磁性液体传感器:一种是在石油勘探工业中用来测量钻头的加速和倾斜(图7),另一种是在建筑工业中用来检测地下管道的倾斜(图8)。8. 其它应用 除此以外,磁性液体还在许多领域有着广泛的应用前景。如:磁性液体印刷、磁性液体薄膜轴承、声纳系统、磁性药物、细胞磁性分离、磁性液体人工发热器、磁性液体涡轮发电、光学开关,磁性液体刹车,等等。 四、当前的重要工作首先将已经成熟的磁性液体旋转轴封真空、封气技术推向市场,以此为突破口占领市场。同时研制用于超高真空的硅油基磁性液体、可封油用的憎油基磁性液体;改善磁路设计和密封件结构,力争在封水、机油等液体介质方面取得突破。

  • 【资料】包装材料塑料薄膜性能的测试方法

    在塑料包装材料中,各种塑料薄膜、复合塑料薄膜具有不同的物理、机械、耐热以及卫生性能。人们根据包装的不同需要,选择合适的材料来使用。如何评价包装材料的性能呢?国内外测试方法有很多。我们应优先选择那些科学、简便、测量误差小的方法。优先选择ISO国际标准、国际先进组织标准,如ASTM、TAPPI等和我国国家标准、行业标准,如BB/T标准、QB/T标准、HB/T标准等等。 笔者在从事检验工作中,使用过一些检测方法,下面向大家简单介绍一下。 GBT 2918-1998 塑料试样状态调节和试验的标准环境规格、外观   塑料薄膜作为包装材料,它的尺寸规格要满足内装物的需要。有些薄膜的外观与货架效果紧密相连,外观有问题直接影响商品销售。而厚度又是影响机械性能、阻隔性的因素之一,需要在质量和成本上找到最优化的指标。因此这些指标就会在每个产品标准的要求中作出规定,相应的要求检测方法一般有: 1.厚度测定   GB/T6672-2001《塑料薄膜和薄片厚度测定 机械测量法》该非等效采用ISO4593:1993《塑料-薄膜和薄片-厚度测定-机械测量法》。适用于薄膜和薄片的厚度的测定,是采用机械法测量即接触法,测量结果是指材料在两个测量平面间测得的结果。测量面对试样施加的负荷应在0.5N~1.0N之间。该方法不适用于压花材料的测试。 2.长度、宽度   GB/T 6673-2001《塑料 薄膜与片材长度和宽度的测定》非等效采用国际标准ISO 4592:1992《塑料-薄膜和薄片-长度和宽度的测定》。该标准规定了卷材和片材的长度和宽度的基准测量方法。   塑料材料的尺寸受环境温度的影响较大,解卷时的操作拉力也会造成材料的尺寸变化。测量器具的精度不同,也会造成测量结果的差异。因此在测量中必须注意每个细节,以求测量的结果接近真值。   标准中规定了卷材在测量前应先将卷材以最小的拉力打开,以不超过5m的长度层层相叠不超过20层作为被测试样,并在这种状态下保持一定的时间,待尺寸稳定后在进行测量。 3.外观   塑料薄膜的外观检验一般采取在自然光下目测。外观缺陷在GB/T 2035 《塑料术语及其定义》中有所规定。缺陷的大小一般需用通用的量具,如钢板尺、游标卡尺等等进行测量。 物理机械性能 1.塑料力学性能——拉伸性能   塑料的拉伸性能试验包括拉伸强度、拉伸断裂应力、拉伸屈服应力、断裂伸长率等试验。   塑料拉伸性能试验的方法国家标准有几个,适用于不同的塑料拉伸性能试验。   GB/T 1040-1992 《塑料拉伸性能试验方法》一般适用于热塑性、热固性材料,这些材料包括填充和纤维增强的塑料材料以及塑料制品。适用于厚度大于1mm的材料。   GB/T13022-1991《塑料 薄膜拉伸性能试验方法》是等效采用国际标准ISO1184-1983《塑料 薄膜拉伸性能的测定》。适用于塑料薄膜和厚度小于1mm的片材,该方法不适用于增强薄膜、微孔片材、微孔膜的拉伸性能测试。  以上两个标准中分别规定了几种不同形状的试样,和拉伸速度,可根据不同产品情况进行选择。如伸长率较大的材料,不宜采用太宽的试样;硬质材料和半硬质材料可选择较低的速度进行拉伸试验,软质材料选用较高的速度进行拉伸试验等等。 2.撕裂性能   撕裂性能一般用来考核塑料薄膜和薄片及其它类似塑料材料抗撕裂的性能。   GB/T 16578-1996《塑料薄膜和薄片耐撕裂性能试验方法 裤形撕裂法》是等效采用国际标准ISO 6383-1:1983《塑料-薄膜和薄片-耐撕裂性能的测定 第1部分;裤形撕裂法》适用于厚度在1mm以下软质薄膜或片材。试验方法是将长方形试样在中间预先切开一定长度的切口,像一条裤子。故名裤形撕裂法。然后在恒定的撕裂速度下,使裂纹沿切口撕裂下去所需的力。使用仪器同拉伸试验仪中的非摆锤式的试验机。   QB/T1130-1991《塑料直角撕裂性能试验方法》适用于薄膜、薄片及其它类似的塑料材料。试验方法是将试样裁成带有900直角口的试样,将试样夹在拉伸试验机的夹具上,试样的受力方法与试样方向垂直。用一定速度进行拉伸,试验结果以撕裂过程中的最大力值作为直角撕裂负荷。试样如果太薄,可采用多片试样叠合起来进行试验。但是,单片和叠合试样的结果不可比较。叠合试样不适用于泡沫塑料片。   GB/T11999-1989《塑料薄膜和薄片耐撕裂性试验方法 埃莱门多夫法》是等效采用国际标准ISO 6383/2-1983《塑料薄膜和薄片耐撕裂性的测定――第二部分:埃莱门多夫法》适用于软塑料薄膜、复合薄膜、薄片,不适用于聚氯乙烯、尼龙等较硬的材料。原理是使具有规定切口的试样承受规定大小摆锤贮存的能量所产生的撕裂力,以撕裂试样所消耗的能量计算试样的耐撕裂性。 3.摩擦系数   静摩擦系数是指两接触表面在相对移动开始时的最大阻力与垂直施加于两个接触表面的法向力之比。   动摩擦系数是指两接触表面以一定速度相对移动时的阻力与垂直施加于两个接触表面的法向力之比。   试验是由水平试验台、滑块、测力系统和使水平试验台上两试验表面相对移动的驱动机构等组成。   试验通过是将两试验表面平放在一起,在一定的接触压力下,使两表面相对移动,测得试样开始相对移动时的力和匀速移动时的力。通过计算得出试样的摩擦系数。   静(动)摩擦系数=目前常用的方法标准为GB/T10006-1988《塑料薄膜和薄片摩擦系数测定法》它非等效采用国际标准ISO 8295-1986《塑料-薄膜和薄片-摩擦系数的测定》。 4.热合强度   塑料薄膜作为包装材料,常常用热合的方法将被包装物封装在内,是否达到良好的密封,热合的质量很重要,目前试验室常用的仪器设备是“热梯度仪”是一台可设定不同温度、压力、时间的热合试验设备,它可用于试验某种材料在某种条件下封合的最佳效果,封合质量可用QB/T 2358-1998 《塑料薄膜包装袋热合强度试验方法》是常用的方法标准。本标准适用于各种塑料薄膜包装袋的热合强度测定。   试验是将条形试样的两端夹在拉力试验的两个夹具上,进行拉伸,破坏试样封合部位的最大力值,就是热合的力值,结果一定以单位长度的试样所用的力值来表示,即热合强度。所用的力用N/m来表示。 *]:bP&{i9 5.剥离力   复合薄膜是用干复式或共挤式将不同单膜复合在一起,复合的好环直接影响着复合膜的强度,阻隔性及今后的使用寿命。所以在选用包装材料前测试复合层的剥离力很重要。   GB/T8808-1988《软质复合塑料材料剥离试验方法》是将预先剥开起头的被测膜的预分离层的两端夹在拉力试验机上,测试剥开材料层间时所需的力。 6.抗冲击性能   GB/T8809-1988《塑料薄膜抗摆锤冲击试验方法》适用于各种塑料薄膜抗摆锤冲击试验。试验是测量半圆形摆锤冲击在一定速度下冲击穿过塑料膜所消耗的能量。   GB/T9639-1988《塑料薄膜和薄片抗冲击性能试验方法 自由落标法》适用于塑料薄膜和厚度小于1mm的薄片。试验是在给定的自由落标冲击下,测定50%塑料薄膜和薄片试样破损时的能量。以冲击破损质量表示。

  • 【原创】测量薄膜厚度和光学常数的方法

    摘要: 借助于不同的色散公式, 运用改进的单纯形法拟合分光光度计测得的透过率光谱曲线, 来获得薄膜的光学常数和厚度。用科契公式分别对电子束蒸发的T i O 2和反应磁控溅射的S i3 N 4,以及用德鲁特公式对电子束蒸发制备的I T O薄膜进行了测试, 结果表明测得的光学常数和厚度, 与已知的光学常数以及台阶仪测得的结果具有很好的一致性。这种方法不仅简便, 而且不需要输人任何初始值, 具有全局优化的能力, 对厚度较薄的薄膜也可行。采用不同的色散公式可以获得各种不同薄膜的光学常数和厚度, 这在光学薄膜、 微电子和微光机电系统中具有实际的应用价值。

  • 看完这些你或许会对磁性玻碳电极有更多的了解

    磁性玻碳电极是玻璃碳电极的简称。玻碳电极可作为惰性电极直接溶于阳极溶出,阴极和变价离子的伏安测定,还可作为化学修饰电极。  磁性玻碳电极的优点是导电性好,化学稳定性高,热胀系数小,质地坚硬,气密性好,电势适用范围宽(约从-1~1V,相对于饱和甘汞电极),可制成圆柱、圆盘等电极形状,用它作基体还可制成汞膜玻碳电极和化学修饰电极等。在电化学实验或电分析化学中得到日益广泛的应用。  因磁性玻碳电极是惰性电极,所以在使用镀扫描材料就是扫描电极,如镀汞,铜,金就是汞膜,铜膜,金膜电极。  磁性玻碳电极是采用石油焦为骨料,煤沥青为粘结剂,经过破碎、配料、混捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺生产的一种耐高温抗氧化的导电材料。广泛用于炼钢电弧炉、精炼炉、生产铁合金、工业硅、黄磷、刚玉等矿热炉及其他利用电弧产生高温的熔炼炉中。  磁性玻碳电极有良好的电性能和化学稳定性,在高温下机械强度高,杂质含量少,抗振性能好。是热和电的良好导体。  根据使用时功率和电流的不同,采用不同原材料和生产工艺生产,可分为普通功率石墨电极、高功率石墨电极、超高功率石墨电极。按电极的直径不同,有φ75~600mm不同规格。根据用户的特殊要求,可加工生产特殊规格的石墨电极和异型石墨产品。  当溶出伏安法在较正电位范围内进行时,可采用磁性玻碳电极。玻碳电极有较高的氢过电位、导电性能良好、耐化学侵蚀性强以及表面光滑不易沾附气体及污物。做修饰电极的原电极及氧化还原反应测量。

  • 【求助】磁性测试主要怎么分析?谢谢大家!

    【求助】磁性测试主要怎么分析?谢谢大家!

    磁性测试的结果不知道怎么分析,大家帮忙看看啊!有2个磁性测试结果不会分析,有懂得帮我看看啊,这个磁性测试主要怎么分析啊,这两个图怎么描述好呢,谢谢大家!http://ng1.17img.cn/bbsfiles/images/2010/12/201012272114_270196_2162613_3.jpg这是铁黄的磁性测试结果http://ng1.17img.cn/bbsfiles/images/2010/12/201012272114_270197_2162613_3.jpg

  • 磁性空运货物的磁场测试设备要求

    [size=16px][/size][font=微軟正黑體, sans-serif]请教有没有熟悉磁性空运货物的磁场测试要求的老师?关于测试设备,目前市面主流的品牌有哪些?根据IATA902相关条款的规定:如果距被测物2.1m(7ft)处测得的最大磁场强度不超过0.159A/m(200nT),则该物品不作为磁性物质受到限制,可以作为普货处理。[/font][font='Microsoft YaHei'][color=#d84600][/color][/font]

  • 【求助】薄膜比表面积测试

    急需进行薄膜比表面积的测定,但不知道合适的测试方法是什么?薄膜是带基底测试其比表面积,面积2*2cm2,或2*5cm2,不知道哪位大侠了解,请不吝赐教!谢谢!

  • 薄膜透过率测试

    请问大家,造成薄膜透过率低的原因可能有哪些呢?(利用积分球测试的透过率,薄膜镀在FTO 上的,并且薄膜尺寸小于透射侧孔洞大小)

  • 【求助】想测试导电玻璃上薄膜的反射及吸收,如何操作???

    在玻璃上制备了一层二氧化钛薄膜,现在想测试薄膜的光吸收和反射!目前有的仪器是Lambda 950,第一次接触,具体操作不会。还有就是:测试之前要扫基线,是不是要放一块玻璃来扫基线?另外薄膜的大小对测试是不是有影响,我用的1*1cm2的薄膜,用空白玻璃扫了下基线,测出来的曲线和文献上有差别,不知道是什么原因,恳请高手指点一二,谢谢了!!!急~~~~~~~~~~~~~~~~~~~~

  • 菜鸟求大神教薄膜应力的测试方法

    最近踩有磁控溅射镀铜,想分析薄膜的参与应力,采用Jade6.5测试了微观应力及晶粒尺寸,选择黄继武老师教材里面建议的用两组平行的晶面作拟合后计算,但是方差很大,显然结果不对,现在心里很没底,想请教下有没有大牛做过这方面的工作,我看到有些大牛采用其他的仪器测试的薄膜应力,甚至还有三位的图出来,都是怎么测怎么算的啊?

  • 【求助】SEM测试薄膜样品

    我们这边测试薄膜样品时,以前都是用的20KV的电压,可最近发现一些薄膜样品上出现裂痕的现象,是不是电压设置高了还是怎么回事呢?可是以前都是好的啊!请教各位了

  • 【求助】求制备磁性粉末样品方法

    我的样品是磁性粉末,很脆也很硬,以前是通过冷压-手工减薄-离子减薄来制样的,但效果不是很好,这一次我磨一个样,手都磨穿了,大约在150微米的时候却碎了,真是急死人了。后来在网上看到可以用环氧树脂包埋以后再进行减薄不容易碎,我在这儿想问一问大家:1、这种方法对磁性粉末有效么?2、减薄后的样品是否需要喷碳或喷金处理?3、环氧树脂用什么样的成分为好?在这儿县谢谢大家了,望高手给予解答或者告诉我一下可以用于离子减薄的环氧树脂的型号也行啊

  • 【原创】请问磁性纳米颗粒的TEM测试方法

    对于colloid 中纳米磁性颗粒,如铁、钴、镍等,怎么才能对他们的分散状态进行TEM测试?其难点在于这些磁性颗粒受电镜中的强磁场作用,吸附到目镜上造成污染。在文献中也能看到有很多TEM图,就是不知道是怎么做出来的。 哪位有经验的能否指点迷津?

  • 【原创】薄膜物性测量中的假象分析(3)-异常磁电耦合效应的背后?::Artefacts in multiferroic(3)-No new physics yet behind the abnormal ME

    【原创】薄膜物性测量中的假象分析(3)-异常磁电耦合效应的背后?::Artefacts in multiferroic(3)-No new physics yet behind the abnormal ME

    [img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809220224_109665_1611921_3.jpg[/img]图1 一篇Science中报道的薄膜磁电耦合性能--疑似假象剖析示意图[color=#dc143c]本专题着重讨论了磁电耦合测量得到的异常耦合效应是否来源于材料的本征物性,指出鉴别异常磁电效应测量结果中假象的原理和思路,最后从测量的角度对磁电材料的应用前景作一点展望性评价。[/color]磁电材料(magnetoelectrics, 又称多铁材料multiferroics)是同时具有自发电荷序和自旋序的一类材料,表现在性能上,它们一般同时具有铁电性(ferroelectrics)、铁磁性(ferromagnetism, 包括弱铁磁性)、磁电耦合性能(magnetoelectricity, 外加磁场下产生电荷的能力)和电磁耦合性能(electromagnetism, 外加电场下产生磁性的能力)。由于磁电材料的多种自发有序同时共存且非常方便进行多场操纵,它有望在高密度集成的记忆元件(memory)、换能器件(transducers)及传感器(sensors)等应用领域里发挥独特的作用。关于磁电/多铁性材料的进展更加科普和富有文采的介绍建议阅读南京大学刘俊明教授blog中的"多铁复兴"专题系列: http://www.sciencenet.cn/blog/user_content.aspx?id=11974 .在这里,笔者从小处着笔,谈磁电研究的一个个细节问题,本专题将要就磁电测量中可能的假象判别逐步展开讨论,希望相关读者通过本文的阅读,在以后的工作中可以很轻松地鉴别出忽悠人的磁电测量结果,对忽悠者蓄意淡化或掩盖测量过程中见不得人的另一面而单纯突出华而不实繁花似锦的一面有能力做出客观的评价。回到题目,本专题要讨论的薄膜假象的原始动机来自于2003年的一篇Science[1],它是美国马里兰大学、Rutgers大学、加州大学和宾州大学等机构联合在Science上报道BiFeO3异质薄膜因为大应变导致的室温下的强铁磁和强铁电性的共存和耦合,声称该结果不论在实验和理论计算上都得到完全一致的结论,指出铁酸铋薄膜的高电阻特性使其有望作为高性能记忆材料的有竞争力的候选材料(BTW, 第一作者J. Wang是南京大学毕业的王峻岭)[1]。但是一段时间以后英国剑桥大学的几个研究组联合在Science上针对上述研究结果发表comment提出严厉的质疑。剑桥大学的研究组通过仔细的理论和实验研究指出铁酸铋薄膜不可能因为应变而产生强铁磁性;指出美国研究组报道的铁磁性只可能来源于杂质,而且很可能来源于二价的铁离子;同时提到因为杂质的存在,美国研究组报道的铁酸铋薄膜的电阻率将大大降低而丧失其器件上的竞争力[2]。最终美国研究组对英国研究组质疑的response承认其最初报道的主要结论存在问题,因为确实存在英国研究组指出的问题[3]。顺便说一个插曲,美、英multiferroic领域的主流学者可能是因为此而结下了怨:有一个有意思的事是今年在UCSB的一个国际性的multiferroic 2008 summer school中好像没有来自剑桥的教授代表出席……接着介绍这篇文章,笔者对剑桥大学质疑的主体抱肯定态度,只是在其对磁性测量数据的解释上笔者倾向于另一种更简单的假象解释:磁性来源于基体,而根本不是来自于薄膜,非磁性甚至抗磁性的基体在热处理过程中因为缺陷或污染的增加可引入磁性[4],一般薄膜越薄这种效应越明显,这和他们报道的不同厚度的测量结果相一致。笔者不认为磁性因为杂质是二价铁的FeOx而认为更可能是三价铁的Fe2O3,一方面是因为Bi2O3-Fe2O3相图上(如图2)显示1:1附近热力学上更稳定存在的相是BiFeO3+Bi2Fe4O9+Bi25FeO40[5],而含二价铁Fe2+的FeOx不大可能会稳定出现;另一方面FeOx不大可能为薄膜的高阻属性做贡献,因为它是半导体,从高阻的实验结果推测最可能存在的是反铁磁绝缘体氧化铁Fe2O3。[img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809220235_109666_1611921_3.jpg[/img]图2 文献中报道的BiFeO3赝二元相图[5]薄膜磁性测量假象将会在后面的专题中专门叙述,这里不再作过多讨论,本专题中着重要“小题大做”来讨论的是03年这篇sciece中非常不引人注意的一小块(剑桥大学的comment中对此只字未提过),如上面图1所示,其中左部分是原文中的Fig. 4,而用红框突出的是其磁电耦合系数的测量结果,原文中对它的介绍只有非常简短的一句话,光凭其原文根本不可能挖掘到该磁电耦合效应的背后及其真正的含义是什么,为了理解这一小幅图,笔者心怀忐忑的找到了第一作者J. Wang(王峻岭)的博士论文[6],并通过其博士论文中的诚实的叙述推测磁电耦合系数的频率依赖关系(原则上频率依赖关系非常容易体现测量结果是否假象,频率越宽越有利于识别)(i) At low (Hz to kHz) frequency, the ME coefficient is small, ~0.02V/cmOe under zero bias (ii) The observed signal dramatically increases to ~3V/cmOe at a measurement frequency of 100kHz (iii) Resonance like behavior was observed as the large signal drops quickly when measurement frequency shifts away from 100kHz (downwards in our case due to instrument limitation). The nature of this resonance behavior is still unclear.根据这段叙述笔者将其发表的磁电耦合曲线的顶点处3 V/cmOe的性能转换成频率依赖关系如图1中右侧所示,从中可以看出原文中发表的数据并非磁电耦合系数,而是某个共振处的异常磁电耦合系数。由于没有更多的实验数据可供参考,笔者仅凭自己的经验认为这个100kHz处的共振峰不可能来源于薄膜,即原文中Fig. 4用一小块地方展示的3 V/cmOe这个数值不具有任何参考意义,真的不如没有它(姑且不用说3 V/cmOe除以厚度因子后的实测值也不过0.1 mV/Oe,离应用价值还很远)!诚然,在没有新的实验数据证明的情况下作任何推断都是没有最终说服力的,不过笔者依然愿意通过接下来的逐步分析展示笔者如此论断的合理之处,即便本专题不能100%的否定之,相信能为有条件有兴趣且认为值得做实验验证之的朋友提供一些可借鉴的方法和思路。为了分析异常磁电耦合系数,接下来请容笔者对磁电耦合系数的测量过程及设备做一下简介。[color=#dc143c][/color]测量假象分析系列上一个专题:[url=http://www.instrument.com.cn/bbs/shtml/20080728/1377915/]【原创】薄膜物性测量中的假象分析(2)-想说铁电很容易吗?[/url]

  • 关于用DSC方法测试PET薄膜结晶度的对比

    1.小弟手上有相同的配方和厚度,不同热处理和冷却温度下的BOPET样品,现在想研究不同工艺下膜的结晶度大小(可以只是对比大小不要求数据准确,但要求对比可靠);2.在做DSC的时候,我用20℃从50℃升温至285℃,我不用消除热历史,只看第一次升温下的熔融焓情况,我固定温度区间采用100℃~280℃下进行积分,然后得到结晶度数据,然后别的样品也是一样的处理,但为什么测出的数据大小没有可对比性,且测试重复性不好,同一种薄膜,连续测三次四,得到的该温度区间下的结晶度数据有差别?3,这个问题该如何解决?DSC的方法合适吗?难道要用X射线衍射? 大家有没有想法?我只是需要对比10几种膜的大小而已,这能不能在DSC被区分?发一些附件大家看看,是测试过程不对吗?

  • 【求助】麻烦看一下这个磁性测试结果如何?

    【求助】麻烦看一下这个磁性测试结果如何?

    我的铁黄材料请人做了一下磁性测试VSM,可是结果不懂得看,特来请教。谢谢!两张图是处理前后的,想知道这两个样品的磁性如何,对比一下,是哪个好一些,谢谢!http://ng1.17img.cn/bbsfiles/images/2010/11/201011170927_260075_1804087_3.jpghttp://ng1.17img.cn/bbsfiles/images/2010/11/201011170927_260076_1804087_3.jpg

  • 磁性样品在SA模式下看不到光,这是为啥?

    磁性样品,打开col valves colsed,在LM模式下能看到薄区, 但是一放大到M及以上模式下,就完全没有光了。老师来了以后说偏的太远了,调了几下就看到光了,过程中好像转了alpha角,这是啥原理啊?

  • 请教一个PFM测试薄膜电畴的问题

    各位兄台,请教一个PFM测试薄膜电畴的问题我的实验过程:选择薄膜的一个微区,通过逐渐增大针尖与样品表面的contact force, 来观测其对区域内晶粒内部电畴变化的影响。最终分别得到了原始PFM图(包括形貌和畴图)和不同三个接触力下的PFM图。有图像看到,增加第一次接触力时,区域内的晶粒电畴颜色均变得更深,而再次增大力时,颜色又变得淡,最后一次增加力,衬度的颜色又变得更深。也就是说随着接触力的逐渐增加,电畴衬度颜色的变化规律呈现:浅—深—浅—深。请问一下,如何对这个其中的机理做出相应的解释。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制