当前位置: 仪器信息网 > 行业主题 > >

波段比特率倍增器

仪器信息网波段比特率倍增器专题为您提供2024年最新波段比特率倍增器价格报价、厂家品牌的相关信息, 包括波段比特率倍增器参数、型号等,不管是国产,还是进口品牌的波段比特率倍增器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合波段比特率倍增器相关的耗材配件、试剂标物,还有波段比特率倍增器相关的最新资讯、资料,以及波段比特率倍增器相关的解决方案。

波段比特率倍增器相关的资讯

  • 纳米电镜表征技术的“倍增器” ---访北京科技大学冶金与生态工程学院方克明教授
    在“纳米”技术愈来愈广泛地开发应用的同时,人们可能会提出这样的问题∶如此微小的“纳米”是用何种科学手段检测的?北京科技大学方克明教授经过20多年的研究,探索出了一种新的方法———   “纳米”这个名词越来越引起人们的兴趣。大家知道“纳米”是一个非常微小的长度单位。具体地说,一纳米约一根头发粗细的万分之一。纳米技术应用到传统产品中,会极大地改善产品的性能。例如,碳纳米管是由一层或若干层碳原子卷曲而成的管状“纤维”,直径只有几到几十纳米。比重只有钢的六分之一,而强度却是钢的100倍。如果把碳纳米管制成绳索,是从月球上挂到地球表面而惟一不被自身重量所拉断的绳索。  笔者日前在采访中了解到,北京科技大学冶金学院博士生导师方克明教授经过20多年的研究,在纳米表征技术方面取得了新的突破,探索出了用透射电镜或高分辨电镜对纳米材料进行表征的全新的样品前处理方法。该技术采用金属包埋法可以从纳米材料中切取纳米尺度的薄膜而不会破坏物质的原有组织结构,然后用透射电镜或高分辨电镜研究纳米材料的微观形貌和微观结构。该技术的成功为我国纳米技术的发展提供了一种重要的检测手段,它荣获第十二届全国发明展览会金牌奖并取得了国家专利,目前在国内外处于该领域的领先水平。  纳米材料包括纳米颗粒及其以纳米颗粒为基础的材料;纳米纤维及其含有纳米纤维的材料;纳米界面及其含有纳米界面的材料。纳米材料的性能与其微观结构有着重要的关系。因此研究纳米材料微观结构的表征对认识纳米材料的特性,推动纳米材料的应用有着重要的意义。  透射电镜是研究材料的重要仪器之一,在纳米技术的基础研究及开发应用中也不例外。但是用透射电镜研究材料微观结构时,试样必须是透射电镜电子束可以穿透的纳米厚度的薄膜。单体的纳米颗粒或纳米纤维一般是透射电镜电子束可以直接穿透的。研究者通常把试样直接放在微栅上进行透射电镜观察。但是由于纳米颗粒或纳米纤维容易团聚,因此,用这种方法常常得不到理想的结果,有些研究内容也难以实施。比如∶纳米颗粒的表面改性的研究,纳米纤维的横切面研究都比较困难,研究界面问题则有更大的难度。因此,纳米材料的透射电镜研究,其样品制备问题是一个值得探讨的重要课题。目前,国内外已有一些比较成熟的方法可以把相对宏观的试样即用普通方法可以切割、磨抛的试样制成透射电镜电子束可以穿透的薄膜;但是,还没有其他成熟的技术可以把相对微观的试样即用普通手段不能直接切割、磨抛的试样制成透射电镜电子束可以穿透的薄膜。有些研究工作为了采用透射电镜这一重要手段,把试样研磨成透射电镜电子束可以穿透的超细颗粒,这不仅破坏了试样的原位组织,而且由于超细颗粒很难分散,常常得不到满意的研究结果。对此,方克明教授进行了研究,探索了一种比较适用的制样方法。该方法可以从纳米颗粒或微米颗粒中直接切取可以进行透射电镜研究的薄膜,对进行纳米纤维横切面观察或纳米界面观察的制样也有很高的效率。  这一技术的特点是从纳米或微米尺度的试样中直接切取可供透射电镜或高分辨电镜研究的薄膜。试样可以为简单颗粒或表面改性后的包覆颗粒,对于纤维状试样,既可以切取横切面薄膜也可以切取纵切面薄膜。对含有界面的试样或纳米多层膜,该技术可以制备研究界面结构的透射电镜试样。技术的另一重要特点是不损伤试样的原始组织。制膜过程中不使用高温,不接触酸碱,必要时也可以不接触水或水溶液。特别需要指出的是,实现这项技术的实验设备很容易获得,且操作简捷,容易掌握使用,无需严格培训,因此非常便于推广应用。  在谈及这项技术创新意义的时候,方教授举了个例子。迄今为止,报道碳纳米管的研究文章很多,而报道实心碳纳米纤维的研究文章却很少。这也许是客观事实,但也有可能是一种假象。因为有些纤维由于内外层结构不同,往往容易把实心纤维描述为管状纤维。因此在研究微米级尺寸的纤维时,如果不能从纤维中直接切取可供透射电镜研究的纳米级厚度的薄膜,用透射电镜研究其微观结构是有困难的。而方教授开发的这一方法正好解决了从微米级、纳米级纤维试样中切取可供透射电镜研究的薄膜这一技术难题。  据方教授介绍,现在上述技术已广泛应用于多项课题研究,如:沸石颗粒中半导体纳米团簇组装过程的研究;纳米碳纤维微观结构的高分辨电镜研究;纳米颗粒微观结构与尺寸的表征;多层膜层间结构的透射电镜研究;粉体颗粒表面改性的研究;电容钽粉颗粒渗氧层及介质膜的研究;铸铁中各种石墨微观结构的研究等。  结语:随着分析仪器自动化程度的日益提高,样品前处理技术在分析测试过程中占有越来越重要的位置,样品处理的好坏直接影响到最终的分析结果,因此,可以这样认为,精当的样品制备方法已成为当今材料表征技术的“倍增器”。  联系电话:010-62332426  E-mail:FKM66@Hotmail.com  单位地址:北京科技大学理化系
  • 基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳
    成果名称基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 □原理样机 &radic 通过小试 □通过中试 □可以量产成果简介:光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。利用频率梳测量频率时,需要频率梳的频率间隔在200MHz以上,以便波长计数器计量波数。特别地,类地行星观测需要20GHz以上频率间隔的频率梳来定标光谱仪,这个频率间隔一般的光纤激光器无法达到,目前只能依靠法布里-珀罗(FP)滤波装置进行频率倍增。由于FP透射光谱的有限线宽会导致边模泄露,从而影响天文光谱仪的定标精度,因此需要源激光频率梳本身的频率间隔尽量大,以抑制边模。可见,研制高重复频率(大频率间隔)的频率梳已经成为国际激光器和频率梳领域研究的热点和难点。目前该产品的国内市场基本上被德国Menlo System公司生产的基于掺镱光纤激光器的可见光域频率梳垄断,我国亟需研制出具有自主知识产权的光梳设备。2011年,北京大学信息学院张志刚教授申请的&ldquo 基于光纤激光器的可见光频率梳&rdquo 得到第三期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金经费支持下,通过关键配件的购置和加工,该项研究得以顺利开展。课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作,包括:(1)搭建高重复频率、1um波长的锁模光纤激光器,作为频率梳&ldquo 种子源&rdquo ;(2)研究初始频率和腔内色散的关系,以得到更高信噪比的初始频率信号;(3)利用合适的色散补偿元件对种子源输出的脉冲进行色散补偿,并进行多级反向放大,使其输出功率满足频率梳要求;(4)试验多种光子晶体光纤,以获得更宽的、覆盖可见光域的光谱。通过以上工作的开展,课题组成功研制出了国际首创的500MHz光学频率梳样机,而Menlo公司同类产品重复频率仅为250M。这一技术的产品化将打破外国公司在国内市场的垄断,填补国内外市场的空白。在第三期项目工作的基础上,张志刚课题组的王爱民副教授申请的&ldquo 20GHz可见光波段天文光学频率梳的研制&rdquo 项目在2012年得到了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在第四期基金的支持下,项目组发展了前期500MHz高重复频率的光学频率梳的研究成果,开展了更加深入的工作,包括:(1)利用FP技术对500MHz重复频率的稳定光梳进行倍频,获得20GHz、1m波段的稳定光学频率梳;(2)对20GHz光学频率梳进行功率放大、脉冲压缩和倍频,实现515nm波段的蓝光飞秒光梳源;(3)利用拉锥光子晶体光纤对飞秒蓝光光梳进行可见光扩谱,达到400-750nm的光谱覆盖。通过这些工作,课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。这两期项目目前已经结题,其成果已进入产品化阶段,科技转化前景良好。相关成果受到了北京市科委的高度重视。课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作。课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。应用前景:光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。
  • 探访海南展创:光电倍增管中国造
    仪器信息网讯 相比于北方,12月初的海口温暖如春,和所拜访的企业一样充满着绿色和生机。仪器信息网慕名而来,是因为这里有一家在分析仪器行业内并不知名的企业&mdash &mdash 海南展创光电技术有限公司。公司虽然不出名,但其产品在分析仪器行业无人不知:光电倍增管。  海南展创厂房外景  在此行之前,仪器信息网已从多位专家处了解国产光电倍增管的情况,多位专家均对海南展创的技术和产品赞不绝口。  参观合影(中间为海南展创总经理王芳)  海南展创总经理王芳向我们介绍了海南展创光电技术有限公司的情况。展创成立于2009年11月。2011年,公司根据国内外市场需求和自身发展的需要,进行了增资扩股,开始启动光电倍增管生产线收购项目。  目前能满足科学仪器使用需求的光电倍增管主要供应商是北京滨松光子技术股份有限公司。国内投资企业虽然有卓立汉光、江苏仪征以及上海飞乐等企业涉足,但是在性能和市场都处于边缘化地位。海南展创能否打破这种局面?  王芳介绍说,&ldquo 海南展创光电技术有限公司注册资本为5000万元人民币,实际投资已高达3个多亿。公司通过收购具有国际先进水平的法国PHOTONIS公司的一条光电倍增管生产线,在海南省澄迈县老城开发区建厂。收购的项目包括全部生产设备、专利、工艺技术资料,以及设备安装、调试并确保使产品达到PHOTONIS公司现有产品品质。所引进的生产线是当今世界顶级的两条PMT生产线之一,该生产线设计独特、产量稳定,且具有不可复制、不可替代的唯一性。其产品的设计、质量标准一直处于国际领先地位,是GE、西门子、飞利浦等公司PET/SPECT等医疗设备核心零部件的供应商。海南展创拟通过此项目实现我国光电倍增管产品的技术突破,提高技术水平,从而在更大的空间里整合以医疗仪器、分析仪器为代表的电子整机装备制造能力,以发展我国光电倍增管民族产业自主品牌,配合努力打造我国最大的光电倍增管产业集群,并最终实现我国中高端光电倍增管的产业化。&rdquo   海南展创目前已成功试制出XP1455,XP5312,XP5382,XP1912,XP53B20,XP1805,XP5212等各类型光电倍增管十余种,分别应用于高端医疗器械(美国GE医疗集团)、高能物理(中科院高能物理研究所)和闪烁计数(清华大学)等领域,以及以色列、丹麦的单光电子CT。各产品样管都已经交由各个客户进行产品的测试和最终调试。其中,供给美国GE医疗集团的XP1455(主要用于PET-CT等医疗器械)样管近100支,全面通过以严格和高标准著称的美国GE医疗集团的各项产品性能测试,产品性能指标表现优异。  &ldquo 众所周知,作为医疗仪器设备知名厂商,GE对自己的供应商有着非常严格的审核标准。一般情况下,对核心元器件供应商来说,没有2-3年的考察,很难通过GE认证。而展创仅用了不到一年的时间,即通过了美国GE医疗集团供应商认证,成为GE医疗全球合格供应商,也侧面表明了海南展创的技术实力。&rdquo 王芳说。  据了解,在高能物理领域,海南展创已向中科院高能物理所交付了专为其订制的用于高能物理射线探测的光电倍增管XP1805。XP1805具有8英寸的大体积,属于光电倍增管行业里制作难度最大的管型之一。在试制过程初期,主要面临增益小,光阴极灵敏度偏低,光阴极均匀性差等问题。经过海南展创工程师的不懈努力,以上问题基本得到解决,与光阴极相关的参数也已符合标准。2013年11月7日,中国科学院高能物理所江门中微子实验负责团队一行5人,专程来到海南展创,就江门中微子实验所需的光电倍增管与海南展创进行了细致的探讨,并就双方接下来的合作交换了意见,正式邀请海南展创参加将于2014年1月中旬在开平召开的江门中微子实验国际合作组会议。  王芳还介绍说:&ldquo 根据现有市场需求分析以及公司发展规划,我公司已制定了3年期的产品计划和目标。现阶段正有序的按照计划开展试制与生产工作&rdquo 。  针对科学仪器市场,根据该行业应用特点及海南展创自身技术优势,海南展创也提出了相应的解决方案:  ● 将大力开发端窗型光电倍增管,该产品类型具有更大的有效面积,拥有从几十平方毫米到几十平方厘米的光阴极,是侧窗型光电倍增管不具备的。  ● 进一步巩固和提高产品的信噪比,目前光电倍增管产品对某些元素具有极低的检测下限。此特点是其他检测器所达不到的。例如在检测高纯物质,如99.997%的电解铝或者电解铜时,CCD无法检测。再如做纯金属分析或个别军工用特殊合金产品,检出限在1ppm或0.1ppm,须选用PMT。海南展创也将进一步提高产品性噪比来巩固这一传统优势。  ● 温度适应性高,工作温度普遍为-30度到+50度。  ● 稳定性好,工艺成熟,产品寿命长。  ● 海南展创还能依据客户需要,在特定波段提高检测极限值,使得仪器相对于其他同类产品有更精确的检测结果,从而更有竞争力。  10万级洁净间  王芳介绍说,&ldquo 海南展创的成立以及伴随而来的光电倍增管生产线的国产化,光电倍增管的性价比将不断提高。我们愿意与仪器厂商一同研发,共同进步,为推进国产分析仪器行业健康发展贡献力量。&rdquo   我们一行还参观了海南展创的生产车间,其高自动化的生产设备给我留下了很深的印象。当然,在海南展创生产出科学仪器厂商所需的核心部件之前,还有很多路要走,还需要和仪器厂商更多的沟通。但是,从现场和展创人身上,我们也看到和感受到了其扎实的技术实力和自信心。相信,中国高科技领域年轻的创业者们将给中国科学仪器行业带来巨大活力的潜力。  撰稿:陈丽英
  • 国仪量子:成功研制可商用W波段脉冲式电子顺磁共振波谱仪
    4月2日,国仪量子研发人员正在操作W波段脉冲式电子顺磁共振波谱仪“W波段脉冲式电子顺磁共振波谱仪的研制成功,使国仪量子成为目前国内能研制生产该类高端科学仪器的厂商。也标志着中国成为继德国之后,第二个有能力研发该型电子顺磁共振波谱仪的国家。”4月2日,国仪量子技术(合肥)股份有限公司传感事业部副总经理石致富站在最新研发的仪器前向记者介绍。根据揭榜项目任务书的项目目标和考核指标,国仪量子最终任务全部完成,部分指标超额完成。专家组召开验收会议,认为该产品达到了国际先进水平,此攻关任务已经完成。近年来,安徽在量子信息领域“从0到1”的原始创新不断突破:目前,安徽集聚量子科技产业链企业60余家、数量居全国首位,全国首条量子芯片生产线建成运行,全国首个量子信息未来产业科技园挂牌运营,量子专利授权量全国领先,以国盾量子、国仪量子、本源量子、问天量子、中电信量子集团等为龙头的量子高新技术企业不断涌现。安徽发展量子信息等未来产业,具有强劲的科技创新策源能力。国仪量子在2021年承接了安徽省制造业重点领域产学研用补短板产品和关键共性技术攻关任务,项目针对“W波段电子顺磁共振波谱仪”进行工程化、产品化开发,解决产品化实现涉及到的核心技术难题,研制出用户友好、皮实可靠,可产品化出售的W波段电子顺磁共振波谱仪。W波段电子顺磁共振波谱仪具有高分辨率、高灵敏度的优势,是一种重要的高端科学分析装置,将给生物、化学、物理以及交叉学科等领域提供一项强有力的研究手段,可用于进行蛋白质、RNA、DNA 的结构解析,从而解决生物学、医学、制药学中的关键问题。得益于中国科学技术大学、合肥国家实验室等高校与科研机构,合肥在量子信息技术的科研领域具有先发优势,为量子科技发展提供了强有力的人才和智力支撑。“我们团队在量子精密测量领域有着十多年的研究积累,以长相干、多比特、高精度量子操控为核心目标,目前已掌握了世界领先的高保真量子态调控技术、高灵敏度磁探测技术、微波收发技术、高精度扫描钻石探针技术等核心技术。”石致富说。 “揭榜挂帅”是用市场竞争来激发创新活力的一种机制。国仪量子相关负责人表示,“揭榜挂帅”有助于选拔领头羊、先锋队,聚力突破关键共性技术瓶颈,提高制造业自主创新能力,带动产业链上下游的技术进步,强化供应链保障。未来,国仪量子将持续加强研发投入力度,在核心技术上不断追求更高标准。与用户协同创新,推动技术落地,赋能多个行业的升级发展,在全球量子领域逐渐发出中国声音,也让“安徽身影”更加活跃。
  • 中国企业获2.7亿光电倍增管合同 打破日企垄断
    p  2015年12月16日,中国兵器工业集团北方夜视科技集团与中科院高能物理研究所就“20英寸光电倍增管采购合同”举行签约仪式。高能所正式委托夜视集团开始生产高性能微通道板型光电倍增管(MCP-PMT)。在为国家重大基础科研做出贡献的同时,也标志着夜视集团进入了国际光电倍增管主流供应商行列。/pp  中微子探测对探索理解宇宙起源有重要意义。该项研究是中科院最重要的基础理论前沿课题,王贻芳院士因此获今年世界基础物理学突破奖。/pp  探测中微子要采用高灵敏、大面积的光电倍增管阵列,过去器件都被日本公司垄断。从2011年至今,以高能所牵头,夜视集团参与了中科院中微子探测项目研究,由夜视集团承担光电倍增管的研制和生产。经过四年努力,夜视先后成功研制了8英寸、20英寸MCP-PMT产品,性能指标国际领先。在2015年12月的国际招标中一举击败日本公司,中标江门项目15000支20英寸MCP-PMT, 是目前国际上MCP-PMT单笔采购数量和金额最大的合同。/pp  此项目竞标的成功,打破了国外的技术垄断,填补了国内空白,拓展了微光探测的技术领域,也是光电高技术军转民的重要成果& #823& #823/ppbr//p
  • 光电倍增管大家族概览,原来都有它们……
    科学新发现、理解大自然的根本动力是好奇心,人们又通过对自然的仔细思考和实验推动了科学的发展。在追寻未知未涉的过程中,最简单的探测和记录装置就是我们人类自身的感觉器官,但是对于现代科学,这种“自然”的探测器要么灵敏度不够,要么适用范围不广。就拿我们人眼为例,要产生视觉影像至少得几十个光子,而一个光电倍增管可以很容易地探测到单光子;人眼观察的光谱也只是集中在可见光(400-800nm),而自然界的电磁波频谱从广播电波到微波、红外辐射、可见光、紫外光、X射线、伽马射线,足足跨越了23个量级。 我们的眼睛了解世界是有限的,而好奇心赋予了人类对未知未涉世界的渴望,也推动了光探测器技术的发展。滨松公司的研发一直是从与光的对话开始的,从最初的光电管、摄像管的研发生产开始,逐步发展到拥有光探测器及光源、半导体光电产品、图像分析与计测装置、激光以及相关技术等全系列光电产品的公司。在滨松公司发展过程中光电倍增管技术起到了不可磨灭的作用,也一次又一次地把滨松公司的探测器产品推向了世界的舞台。光电倍增管是一类用于极微弱光探测的真空电子管,第一只光电倍增管(PMT)于80多年前由美国国家辐射公司(Radio Corporation of America)发明,并于1936年首次成为商用产品。滨松公司从1955年开始了对光电倍增管技术的研发,经过了无数次的实验和磨练以后生产出了性能优于其他厂家的光电倍增管,并且在1959年侧窗型光电倍增管投放市场。经过50多年的发展,滨松公司已经成为了世界上技术最先进、产品种类最全、市场占有率最高的光电倍增管生产厂家。光电倍增管由光阴极、电子光学系统、倍增级、阳极、真空保护壳组成,其中光阴极是由逸出功较小的碱金属化合物镀膜形成,光阴极在一定能量的光子照射下发生外光电效应,将光子转化成电子,电子在电场约束下通过电子光学系统进入倍增级,电子通过电场加速后轰击倍增级表面的二次电子材料实现电子的倍增,电子信号经过多级倍增以后可以达到105-109倍的放大,最后放大后的信号被阳极收集输出。由于光电倍增管优秀的倍增特性,到目前为止光电倍增管仍然在很多极微弱光探测领域有着不可取代的地位。从结构上光电倍增管可以分为侧窗型光电倍增管和端窗型光电倍增管,不过这样很难充分体现光电倍增管的本身特性。下面我们就从功能和应用上对光电倍增管进行一下简单介绍。常规光电倍增管光电倍增管用在光学测量仪器和光谱分析仪器中,它能在低光量光度学和光谱学方面测量波长115-1700nm的极微弱辐射功率。闪烁计数器的出现,进一步扩大了光电倍增管的应用范围,激光检测仪器的发展与采用光电倍增管作为有效接收器密切相关,我们的日常生活和健康也离不开光电倍增管。目前光电倍增管被广泛地应用在冶金、电子、机械、化工、地质、医疗、核工业、天文和宇宙空间研究等领域,也和我们的日常生活息息相关。滨松光电倍增管大家族,从Macro到Micro 图中的20寸光电倍增管为世界最大的光电倍增管,并于2014年获“IEEE”里程碑认证超级神冈实验中的滨松20英寸光电倍增管(共11200个)高温光电倍增管常规的光电倍增管一般的使用温度是-30℃-50℃,如果常规的光电倍增管超过50℃工作,首先噪声会变的非常大;其次高温也会加速光电倍增管阴极和倍增级材料的性能退化,降低光电倍增管寿命。在我国一般的石油勘探都要达到3500m左右的地层,而在这个地层下温度高达175℃,常规的光电倍增管就无法满足要求了,为了这样的应用环境,我们开发了耐高温、耐振动的高温光电倍增管产品。 低温光电倍增管低温作用下光电倍增管的阴极面电阻会变的非常大,面电阻增大会阻碍阴极电流的流出,所以常规的光电倍增管在低温下工作时候,阴极线性电流会变的非常小,极大限制了光电倍增管的应用,尤其是在一些类似液氙、液氩环境中进行的直接暗物质探测的试验中。滨松公司通过低温碱源技术,以及在阴极面内部镶嵌金属辐条技术,大大的降低了低温下阴极面的面电阻,使光电倍增管低温下使用成为了可能。低本底辐射光电倍增管低辐射光电倍增管是随着宇宙射线探测、暗物质探测应用而生的,在我们自然界中存在着大量的天然放射性物质,铀系、钍系、钾等物质是自然辐射的主要来源,当然在我们常规的玻璃管壳中也存在较高的自然辐射本底,然而由于辐射与光阴极面反应截面很小,自然辐射对于我们常规的光探测几乎是没有影响的,但是对于闪烁测量,尤其是对本底要求很高的暗物质检测的试验中,这些本底辐射可能就是致命的,会对有效信号造成干扰,从而影响实验的效果。滨松公司一方面采用无钾玻璃作为光电倍增管管壳来降低本底,另一方面为了进一步降低本底,滨松公司采用金属作为光电倍增管外壳、用陶瓷作为基板,通过这样的措施可以将本底降到常规光电倍增管的1/10以下。 位置检出型光电倍增管光电倍增管大多数情况下是作为点探测器使用的,然而像PET、伽马相机等既要判断入射光电强度,又要判断光斑位置的应用,我们可以采用在闪烁体技术以及计算机数据处理等方法,用常规光电倍增管实现应用;如果我们要达到更好的位置分辨效果,就需要位置检测型光电倍增管了。位置检测型光电倍增管一般采用通道式的打拿极结构,这样的结构可以有效地把电子倍增过程约束到一个很小的空间内,这样可以降低通道间的串扰,根据阳极结构的不同我们也把位置检测型的光电倍增管分为多阳极光电倍增管和位敏型的光电倍增管,多阳极光电倍增管采用多个独立的阳极作为输出,而位敏型的光电倍增管则采用十字金属板的阳极,通过X、Y轴信号的大小来判断光的位置和强度。MCP型光电倍增管时间响应特性和时间分辨能力是光电倍增管非常重要的参数,尤其是用在一些荧光寿命检测或者是快速时间响应的应用中,例如系统事业部生产的Q-τ(荧光寿命分析仪),就利用了MCP-PMT的高时间分辨能力。MCP(微通道板)是一种通道式的电子倍增系统,能够对带点粒子、X射线、极紫外等射线进行探测,同时作为电子倍增系统具有极高的时间分辨率,可以达到Ps级别,利用MCP作为倍增系统的光电倍增管,不仅可以探测光,同时也具有时间分辨率高的特点。 混合型光电倍增管混合型光电倍增管在我们销售过程中不太常见,不过由于其能量分辨率高、时间响应速度快等特点,在高能物理研究领域有着非常重要的地位。从结构上看混合型光电倍增管由前级的光电阴极、电子加速系统、半导体雪崩系统、输出系统构成。混合型光电倍增管阴极接收光子产生光电子,电子在高压加速系统中加速,高能量的电子轰击半导体,利用雪崩效应产生大的增益,最后电子由输出系统输出。μ-PMT是MEMS技术和真空电子管技术的完美结合,他利用MEMS技术在硅晶片上加工打拿极,利用真空电子管技术形成光阴极以及倍增级。虽然他仅仅手指大的体积,但是他可以实现106倍的增益。μ-PMT为光电倍增管的发展开辟了一条新的道路,使我们看到光电倍增管微小化、集成化、柔软化成为了可能,也使我们看到了光电倍增管更广的发展和未来。滨松微光电倍增管(μ-PMT)为世界上最小的光电倍增管 在半导体探测器蓬勃发展的今天,有人说光电倍增管快过时了。不过我们看到的是滨松更高量子效率、更低噪声、更耐环境的光电倍增管技术研发,以及新型的μ-PMT的技术研发。我们可以相信光电倍增管技术永无止境,而且必定还会在我们未来的生活和科学研究中发挥更大的作用
  • 光电倍增管才是单光子探测的yyds
    随着科技的突飞猛进,我们逐渐揭开了光子的神秘面纱。由于光子的微弱特性,直接观测和探测它是一项巨大的挑战。因此,研发出能够探测单个光子的探测器成为了科学家们追求的重要目标。市面上已经有多种单光子探测器,比如光电倍增管、光子计数探头、MPPC和SPAD等。它们各有千秋,但要说到单光子探测的顶尖高手,那非光电倍增管莫属。那么,这些单光子探测器是如何工作的呢?接下来,让我们一一揭开它们的神秘面纱!01 光电倍增管光电倍增管的工作原理如下图所示:当单个光子到达阴极面的时候,由于光电效应会产生光电子,产生的光电子在聚焦电场的作用下进入倍增级实现连续的倍增,从而实现电信号的连续放大,最后通过阳极输出,这个过程就实现了单光子信号的探测。图1 端窗型光电倍增管结构02 光子计数探头除了光电倍增管裸管,也有光电倍增管模块能做到单光子探测,也被称之为光子计数探头。光子计数探头是在能够做单光子探测的光电倍增管的基础上增加了如下的信号处理电路,可以将单光子的输出信号转换为TTL 信号输出,通过对TTL信号进行计数,就可以得到光子数量,方便实际测试。图2 光子信号处理电路03 多像素光子计数器(MPPC)除了上面的真空电子管类型的光子计数探测器之外,目前半导体器件也能够进行光子计数,常见的就是多像素光子计数器,滨松也称之为MPPC,硅光电倍增管。其中,MPPC是一种由多个工作在盖革模式的APD组成的光子计数型器件,其中APD(雪崩光电二极管)是一种具有高速度、高灵敏度的光电二极管,当加有一定的反向偏压后,它就能够对光电流进行雪崩放大。而当APD的反向偏压高于击穿电压时,内部电场就会变强,光电流则会获得105~106的增益,这种工作模式就叫APD的“盖革模式”。在盖革模式下,光生载流子通过倍增就会产生一个大的光脉冲,而通过对这个脉冲的检测,就可以检测到单光子,实现单光子探测!图3 MPPC输出示意图04 单光子雪崩光电二极管(SPAD)除了MPPC之外,半导体探测器中单光子雪崩光电二极管也能进行单光子探测,我们称之为SPAD。SPAD可以理解为它是由单个MPPC像素形成的探测器,它只有一个像素点,也就是只有一个能工作在盖革模式下的APD,所以它无法反映光强度的变化,只能是对光的有无做出反应。而MPPC由于是多个像素的阵列,我们可以根据输出信号的幅度来判断光信号的强度。但是SPAD也能做到单光子的探测。05 光电倍增管单光子探测优势通过以上介绍我们可以看到,目前单光子探测器主要分为真空电子管和半导体探测器两个类型,他们都能实现单光子的探测,那么光电倍增管的优势在哪呢?光敏面积光敏面积是单光子探测中比较关键的一点。相对来说,面积越大,能够探测到的光子数也就越多,同时前端的光路也会相对比较简单,不需要复杂的聚焦系统。由于光电倍增管是真空电子管,我们是可以通过控制阴极面积的大小来决定探测器的光敏区域。目前滨松最大的光电倍增管阴极面直径能做到20英寸,光子计数探头模块阴极面积最大的直径在25毫米,能够满足不同光斑大小的探测需求。但是对于MPPC来讲,由于面积大小与其性能有直接联系,比如,暗计数率同光敏面积成正比,面积的增加会导致暗计数率的增加。由于半导体的固有热噪声较大,暗计数会随着面积的增加进一步导致波形堆叠,难以对单光子信号进行分析。此外,面积越大,寄生电容越大,影响MPPC的响应速度。暗计数暗计数是指探测器在没有光子进入的时候,探测器本身的信号输出。其中光电倍增管是真空电子管器件,噪声的主要来源是阴极面的热电子发射,暗计数的值大概在百个级别,常见的光子计数探测器H10682-110,典型的暗计数在50 cps,最大值在100 cps。而MPPC和SPAD是半导体探测器,不仅光子可以产生载流子,热电子也会产生载流子,热电子生成的载流子也具有单光子水平的信号电平,并且暗计数的水平明显高于光电倍增管的暗计数,暗计数的值大概上千,常见的MPPC光子计数模块C13366-1350GD,典型的暗计数在2.5 kcps,最大值在7 kcps。弱光信噪比不管是真空电子管还是半导体探测器,他们都能实现单光子探测,但是由于噪声的存在,相同信号的输入,会导致不同的信噪比。相对来说,信噪比越大,说明其中的噪声比较小,能够有效地反映信号的情况。通过对比目前滨松常见的光子计数探头和半导体光子探测器型号在同样光强环境下的信噪比,可以看到,在弱光环境中,光电倍增管具有一个很好的信噪比。图4 不同类型探测器弱光信噪比对比(光子计数探头&MPPC&SPAD)通过以上对比我们可以看到,光电倍增管在单光子探测中,具有面积大、噪声小、信噪比高的特点,所以在弱光探测环境中,我们还是推荐使用光电倍增管!以上就是本期的讲解,如果还有其他问题,欢迎评论区留言或者直接联系相关工程师获取技术支持。相关阅读喏,你要的光电倍增管全解析在这里~想了解光电倍增管原理及应用,这一场报告就够了关于光电倍增管(PMT)模块的选型与使用光电倍增管:光照灵敏度&辐射灵敏度“差别”在哪?光电倍增管动态范围的定义不是?而是?光电倍增管(PMT)分压器设计原理
  • 国内首条20英寸新型光电倍增管生产线启动
    光电倍增管  11月25日,由中国科学院高能物理研究所(以下简称高能所)牵头成立的微通道板型大面积光电倍增管研制合作组(以下简称合作组)宣布,国内首条年产7500支的20英寸微通道板型光电倍增管生产线建成运行。未来两年内,中国兵器工业集团北方夜视技术股份有限公司将为中科院战略性先导科技专项——江门中微子实验提供1.5万支该产品。  该生产线的建成及运行,标志着20英寸新型光电倍增管正式进入批量生产阶段,它不仅是产学研有机结合的范例,也将为我国在中微子实验的研究领域再登高峰夯实基础。  中微子看不见摸不着,只参与弱相互作用,即便是与液体闪烁体相互作用也只产生很少的光子,极难探测。要想探测中微子,就需要极弱光探测技术即光电倍增技术,该技术可以检测微弱光信号,具有极高的灵敏度和超快的时间响应,就像猎手敏锐的猎眼。  “20英寸新型光电倍增管代表着光电倍增管的最高技术水平。”高能所所长王贻芳告诉《中国科学报》记者,光电倍增管是粒子物理及核物理实验的关键通用部件,其主要作用是将光信号转换为电信号。  据悉,2008年,在高能所提出大亚湾中微子实验二期实验(现更名“江门中微子实验”)设想时,大亚湾中微子实验所用的2000多支8英寸口径光电倍增管由美国合作者从日本购买。  在此背景下,高能所决定启动新型光电倍增管的预研并希望实现国产化。2011年底,由该所牵头,并与北方夜视技术股份有限公司、中国科学院西安光学精密机械研究所、中核控制系统股份有限公司和南京大学等单位组成合作组。  合作组用4年时间,攻克了高量子效率的光阴极制备技术、微通道板、大尺寸玻壳等多个技术难点,最终研制出量子效率、收集效率和单光电子峰谷比等关键技术指标达到国际先进水平的样管。  记者了解到,江门中微子实验计划将于2018年底启动光电倍增管安装工作,并预计于2020年前后开始中微子实验的数据采集工作。
  • 关于光电倍增管(PMT)模块的选型与使用
    PMT模块的选型PMT模块中不仅都集成了PMT裸管、分压电路和高压电源,还根据信号输出的不同需求集成了其他的功能组件。按照PMT模块的信号输出类型,滨松的PMT模块产品可以分为电流输出模块、电压输出模块和光子计数探测器。他们的区别是这样的:点击查看大图PS.图中灰色方框内的各种产品/附件滨松也有提供~可以移步至滨松中国官网了解目前滨松有40多个系列,工程师梳理了一张系列型号及基础参数参考表,在选型时可以有所帮助:(点击查看看大图)在同一系列的滨松PMT模块中,会以后缀来区分不同的产品型号。这些后缀往往代表着不同的含义,了解它们,也可以有助于我们的产品选型。这里,我们选出了用途最为广泛的φ8端窗PMT模块,针对其中关键的名词项,来深入一一解读。 滨松φ8 PMT模块命名规则# Settling time是什么?在PMT模块中,加在PMT上的高压会随着控制电压(一般在0.5-1.1V)的变化而变化;但这个过程是有一定延迟的,且根据PMT模块中分压电路的设计有长有短。从调节完控制电压,到施加在PMT的高压到达设定电压——其时间间隔称之为Settling time,也就是稳定时间,简而言之,就是PMT调完控制电压后等多久能用。在滨松PMT模块的彩页中,标注的Settling time数值一般是控制电压从+1.0V到+0.5V所对应的Settlingtime。如果控制电压的变化幅度较小,响应的Settling time也会相应变小。 # 纹波噪声是什么?PMT模块中,除了PMT裸管之外,还至少会集成高压电源和分压电路。其中高压电源中使用的振荡电路(oscillation circuit)会带来额外微小的电压抖动,继而使得加在PMT上的高压、PMT的增益以及最终输出的信号上都会出现相应的抖动,即纹波(ripple,见图)。纹波现象所带来的纹波噪声在滨松PMT模块的彩页中一般被标注为“Ripple noise(peak to peak)”,是在特定控制电压下,采用特定的读出参数所测得的电压曲线中波峰和波谷的差值。 纹波噪声示意为高压电源选择合适的电路设计可以大幅减小纹波噪声。虽然纹波噪声不可能完全消除,但在当前已经商业化的PMT模块中,纹波噪声已经小到基本可以不予考虑。如果特定情况下确实需要降低纹波噪声,可以考虑以下两种方法: (1)在模块信号输出之后加入低通滤波器,过滤掉一部分;(2)提高控制电压——此时光电倍增管的增益与纹波的绝对值都会增加,但是增益的增长要更快,所以能够实际上降低纹波的影响。# PMT模块的电流输出与电压输出的区别?电压输出的PMT模块的Conversion factor是什么? PMT最原始的输出信号为电流。相对于电流输出模块,电压输出的PMT模块中多了一个跨阻放大器(Current-Voltage Conversion Amp)将电流已经转换成了电压(可以翻到上文看看图)。对应的转换系数就是conversion factor(或者称作Current-to-voltage conversion factor)。 此外,由于跨阻放大器本身是有带宽的,如H10722和H10723采用了不同的跨阻放大器,所以其输出信号的带宽也就不一样。 总的说来,电压输出模块和电流输出模块在使用中的优劣如下:# 插针式与导线式有什么区别? 插针式(下图左,如H10720,H11900)与导线式(下图右,如H10721,H11901)的两种光电倍增管模块没有本质区别。前者可以直接插在电路板上;后者在安装上则更加灵活。可以根据实际使用环境和条件选择。 H10720和H10721外观 # 光谱响应参数的解析PMT模块的光谱响应范围主要由光阴极面的材料和窗材决定。 光阴极面的材料决定了PMT光谱响应的波长上限,更长波长的光子由于能量不足就较难转化成光电子从而被探测了。 管壁材料(窗材)决定了PMT光谱响应的波长下限。对于波长更短的光子,理论上只要能够轰击到光阴极面都能够产生光电子。但PMT是一个真空管结构,光子到达光阴极面之前需要先通过管壁。过短波长的光子会被管壁所阻碍,所以管壁材料(窗材)一般决定了PMT光谱响应的波长下限。 光电倍增管工作示意图在滨松样本资料中,一般会给出波长范围(如H10720-110的230-700nm)。其下限代表的是管壁透光率曲线的拐点;其上限,对于多碱材料是灵敏度峰值的0.1%,对于双碱材料是灵敏度峰值的1%。# 关于功耗更多的解析H1072X系列最吸引人的是其低功耗;H10720/H10721系列所要求的电压(input voltage)甚至只有2.8-5.5V,电流也只是mA级别。这意味着,3节普通的5号电池就足以作为PMT模块的电源。加上H10720/H10721本身的小体积,使得其非常适合用于手持式设备。 H10720/H10721,H11900/H11901系列与功耗相关的参数 PMT模块的使用根据实际应用中数据测量的需求,PMT模块的使用可以分为如下3类。 1. 在示波器上读出PMT模块输出的模拟信号 2. 在电脑上读出PMT模块输出的模拟信号 3. 在电脑上读出光子计数结果
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 新疆理化所创制全波段相位匹配晶体
    短波紫外全固态相干光源具有光子能量强、可实用化与精密化、光谱分辨率高等特点,在激光精密加工、信息通讯、前沿科学和航空航天领域颇具应用价值。获得全固态短波紫外激光的核心部件是非线性光学晶体。在非线性光学过程中,若使基频光的能量源源不断地转换到倍频光,需要保持基频光激发的二次极化谐波和倍频光在晶体中位置时刻相同,但由于晶体的本征色散导致基频光和倍频光的折射率不同,进而导致两束光在晶体中群速度不同,无法实现倍频光的持续增长,此为相位失配。因此,在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,如晶体各向异性的双折射相位匹配技术、晶体内部自发畴结构的随机准相位匹配技术和人工微结构准相位匹配技术等。其中,利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该技术利用各向异性晶体的双折射特性,使一定偏振的基频光沿晶体的特定方向入射,或者改变晶体的温度,实现角度或者温度相位匹配,即使基频光和倍频光在晶体中特定方向传播时的折射率相同。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相片匹配波长的差值表征(λcutoff-λPM)。中国科学院新疆理化技术研究所晶体材料研究中心致力于新型紫外、深紫外非线性光学晶体的设计与合成。该团队前期基于领域前沿进展的研究和对非线性光学晶体双折射相位匹配现状的剖析,在特邀综述中首次提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?若该假设在晶体中得以实现,将为晶体在整个透过范围内均实现双折射相位匹配提供新途径和新思路。近期,该团队创制一类新非线性光学晶体即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,从折射率的微观表达及双折射色散曲线、折射率色散曲线和相位匹配等光学条件等角度出发,给出两种独立的全波段相位匹配晶体的评价参数,并将此评价参数应用于一些经典的非线性光学晶体材料,讨论以此参数评估晶体相位匹配波长损失的可行性和普适性。基于此,研究获得一例非线性光学晶体(GFB)。实验通过多级变频的方案或光参量技术方案,研究晶体在整个透过范围内的直接倍频输出能力,并基于相位匹配器件已经实现193.2-266 nm紫外/深紫外可调谐激光输出,验证其该晶体全波段相位匹配能力,使该晶体成为目前首例且唯一一例实现了全波段双折射相位匹配的紫外/深紫外倍频晶体材料。该材料193.2 nm处晶体透过率0.02%,依然可以实现倍频激光输出,验证了其全波段相位匹配特性。该晶体具有优异的线性和非线性光学性能,如短紫外截止边(~193 nm),大有效倍频系数(deff = 1.42 pm/V)、短相位匹配波长(~194 nm)和高抗激光损伤阈值(BBO@ 266/532 nm, 8 ns, 10 Hz)等,是颇具应用前景的266 nm激光用非线性光学晶体材料。相关研究成果以全文形式发表在《自然光子学》(Nature Photonics)上。研究工作得到科技部,国家自然科学基金委员会和中国科学院等的支持。GFB晶体结构、微观性能分析及晶体照片
  • 江门中微子专项:2016支国产光电倍增管已交付!
    p  熟悉中国科学院先导专项的人都知道,自2011年起,中科院组织实施了战略性先导科技专项,并把它分成了A、B两类,A类侧重于前瞻战略科技,B类侧重于基础与交叉前沿方向布局。/pp  不过,细心的人会发现,在A类先导专项的名单里,有一个特殊的条目——“江门中微子实验”。与所有其他专项都不同,“江门中微子实验”专项只为一项实验而设。/pp  回望过去,这个特殊的先导专项,曾因独特的国际竞争而提前诞生。五年来,它一步步为撑起中国中微子研究的新辉煌而前行。/pp  strong提前五年启动的项目/strong/pp  江门中微子实验先导专项的诞生,还要从大亚湾实验说起。/pp  2007年10月,大亚湾反应堆中微子实验开工。热衷于“走一步看三步”的科学家们一边建着大亚湾工程,一边盘算着下一步还可以做点什么。/pp  在后续研究的各种可能中,现任中科院高能物理所所长王贻芳和研究员曹俊提出的“中微子的质量顺序测量”方案很快成为二期实验的首选。不过,二期实验能不能做,取决于一个前提——大亚湾实验测出的中微子振荡几率一定要够大。/pp  2012年3月8日下午两点,高能物理所召开了一场新闻发布会,王贻芳向世界宣布,大亚湾实验测到了中微子第三种振荡,振荡几率为9.2%。这一结果,远远超过他们最早期待的1%到3%。科研人员心里有数了:“后续的中微子实验能做!”/pp  最终,实验选址广东江门,距阳江和台山反应堆群分别约53公里,由原先的“大亚湾中微子二期实验”更名为“江门中微子实验”。/pp  让人意想不到的是,项目的启动比预期中提前了五年。“2008年时,我们预计如果大亚湾实验结果比较好,十年后可以启动后续研究。”曹俊说。/pp  大亚湾实验结果公布之后,中微子质量顺序测量成为下一步的研究热点,美国、日本、甚至印度都逐渐明确了下一步的计划。“我们如果走常规的经费支持申请渠道,新的研究项目批下来至少还要四五年,到那时,这事儿就黄了。”曹俊说。/pp  于是,他们申请了先导专项的支持。2013年2月1日,唯一一个以单一实验项目为内容的战略性先导专项成立了。根据科学目标,“江门中微子实验”工程建成后将着力解决国际中微子研究中下一个热点和重大问题:中微子质量顺序,同时开展超新星中微子、地球中微子、太阳中微子等一系列国际领先的天体物理研究,巩固我国在中微子研究领域的国际领先地位。/pp  strong关键器件已实现国产化/strong/pp  项目启动,技术挑战也随之而来。大亚湾中微子实验项目积累下来的经验,虽然为江门中微子实验建设提供了支撑,却无法解决新出现的所有技术问题。科研人员要面对的第一大挑战,就是高量子效率光电倍增管的研发。/pp  中微子看不见、摸不着,极难探测,被称为“幽灵粒子”。要想探测中微子,就需要极弱光探测技术,即光电倍增技术,该技术可以检测微弱光信号,具有极高的灵敏度和超快的时间响应,就像猎手敏锐的猎眼。光电倍增管是粒子物理及核物理实验的关键通用部件,其主要作用就是将光信号转换为电信号。/pp  当初,大亚湾中微子实验采用了2000多支8英寸口径光电倍增管,都是由美国合作者从日本购买。/pp  “对江门中微子实验,这样的光电倍增管已经达不到要求,必须在现有技术上突破,大幅提高探测效率,才有可能实现测量中微子质量顺序的科学目标。我们在2008年提出实验设想时就意识到了这个问题,设计了新型光电倍增管,启动了技术研发。但项目提前启动给研发带来了巨大的压力,直到2015年底,我们仍然心里没有底,到底能不能成功。”曹俊告诉记者。/pp  2011年底,由高能所牵头,北方夜视技术股份有限公司、中国科学院西安光学精密机械研究所、中核控制系统股份有限公司和南京大学等单位组成了产学研合作组。/pp  4年时间,他们攻克了高量子效率的光阴极制备技术、微通道板、大尺寸玻壳等多个技术难点,最终研制出量子效率、收集效率和单光电子峰谷比等关键技术指标达到国际领先水平的样管。/pp  2016年11月,国内首条年产7500支的20英寸光电倍增管生产线建成运行。截至今年9月18日,江门中微子项目已经得到了2016支国产光电倍增管。/pp  strong向着“最高”和“最大”/strong/pp  2015年1月,项目启动建设。中国科学院院长白春礼为此发来贺信:“我国科学家在中微子研究领域迈出的重大步伐,对于巩固我国在中微子研究的领先地位具有重要意义”。/pp  “江门中微子实验将致力于测量中微子的质量顺序,并进一步精确测量中微子混合参数,其土建工程规模约是大亚湾反应堆中微子实验项目的3至5倍。” 王贻芳曾在接受《中国科学报》记者采访时说。/pp  按照实验项目的计划和判断,江门中微子实验项目不仅比大亚湾中微子实验工程规模大,它还将是世界上能量“精度最高”、“规模最大”的液体闪烁体探测器。/pp  “精度越高,能发现的内容就越多,因为或许就差那么一点点,我们就会错失认识世界的机会。”曹俊说。/pp  实验要求探测器的能量精度达到3%,比当前国际最好水平还要高1倍。要想实现“精度最高”,不仅探测光子的光电倍增管效率要高,发出光子的液体闪烁体也要效率高、透明度高。/pp  为了测试透明度,科研人员拿出了大亚湾实验八台中微子探测器中的一台。“目前我们已经完成了20吨液体闪烁体的光学纯化和本底纯化,光学性能已经可以达到设计指标。放射性纯化方面,我们还在用大亚湾的探测器做进一步研究。”曹俊说。/pp  与此同时,江门中微子实验要求有2万吨液闪,比当前国际最大的液闪探测器大20倍,这也为工程设计和建设提出了挑战。/pp  经过很长时间评审讨论,项目最终选择用有机玻璃罐装液体闪烁体。这意味着工程建成后,江门的地下700米深处将会有一个13层楼那么高的大玻璃球。/pp  今天,有幸到江门中微子实验工地的人,能够看到建设过半的巨大地下实验室,这是施工人员克服了多次万吨级地下涌水困难后建造出来的。而三年后,这里将成为科学家更清晰地观测“幽灵粒子”的地方,也将成为中国领先国际中微子研究的新平台。/p
  • 东莞市倍增计划——正业科技试点企业
    智能制造发展新局面 | 正业科技入选2018年东莞市“倍增计划”试点企业 2018年5月18日,“深入推进企业高质量倍增发展现场会”在黄江镇政府大会堂顺利召开,市委书记梁维东、市长肖亚非、常委张冠梓、市经信局叶葆华局长等领导出席会议,广东正业科技股份有限公司(以下简称:正业科技)作为2018年东莞市“倍增计划”试点企业参加了此次隆重盛会。 正业科技是2017年度首批市级“倍增计划”试点企业,凭借科技创新、兼并重组和总部经济等发展战略,母公司2017年营业收入5亿多元,同比增长39.08%,顺利完成了3年倍增的第一年度增长指标,成功入选2018年东莞市“倍增计划”市级试点企业(东倍增办[2018]96号)。 借助东莞市倍增计划的政策东风,正业科技在深耕智能制造领域的道路上,将如虎添翼,为正业科技开启一个智能制造发展新局面,更高质量地实现倍增发展,有效助力东莞市构建现代产业体系。 2017年以来,东莞市大力实施“倍增计划”,通过全面梳理企业发展需求、靶向配置要素供给、精准施策,进一步扶持先进制造业为核心的实体经济发展,着力推进供给侧结构性改革,构建有利于企业倍增发展的经营环境,推动东莞经济实现更高质量、更有效益、更可持续的发展。 2018年,正业科技会继续以“新时代、新征程、新正业”为主题思想,通过整合集团优势资源,狠抓内生发展,夯实产品技术,加大市场开拓力度,持续深入推进智能制造,延续2017年业绩高增长势头,努力提前完成东莞市“倍增计划”指标,大力促进东莞经济高质量发展。
  • 美打造高强度窄波段X射线激光束
    据物理学家组织网日前报道,美国能源部斯坦福直线加速器中心国家加速器实验室的研究人员,采用金刚石细薄片把直线加速器的相干光源转化为手术刀般更精确的工具,以探测纳米世界。改进后的激光脉冲可在X射线波长更窄频带高强度聚焦,开展以前所不能为的实验。该研究结果刊登在《自然光子学》杂志上。  这个过程被称为“自激注入”,金刚石将激光束过滤为单一的X射线颜色,然后将其放大。研究人员可以在原子水平研究和操纵物质上有更强的能力,传送更为清晰的物质、分子和化学反应的影像。  人们谈论“自激注入”已经近15年,直到2010年斯坦福线性加速器中心成立时,才由欧洲自由电子激光器和德国电子加速器研究中心的研究人员提出,并由来自斯坦福线性加速器中心和阿贡国家实验室的工程队伍将其建立。“自激注入”可潜在地产生更高强度的X射线脉冲,显著高于目前直线加速器相干光源的性能。每个脉冲增加的强度可以用来深入探测复杂的材料,以帮助解答诸如高温超导体等特殊物质或拓扑绝缘体中复杂电子态等问题。  直线加速器相干光源通过接近光速的电子群加速激光束,用一系列磁体将其设定为“之”字路径。这将迫使电子发射X射线,聚集成亮度超过之前10亿倍的激光脉冲。如果没有“自激注入”,这些X射线激光脉冲包含的波长(或颜色)范围比较宽,无法被所有的实验使用。之前在直线加速器相干光源创造更窄波段(即更精确波段)的方法则会导致大量的强度损失。  研究人员在可产生X射线的130米长磁体的中间段安装了一片金刚石晶体,由此创建了一个精确的X射线波段,并且使直线加速器相干光源更像是“激光”。该中心物理学家黄志荣(音译)说:“如果我们完成系统的优化,并添加更多的波荡,所产生的脉冲集中的强度将达10倍之多。”目前世界各地的相关实验室已经趋之若鹜,计划将这一重要进展与自身的X射线激光设施相结合。
  • 中高端光电倍增管试产 填补我国产业空白
    拇指般粗细的机械臂从传送带上取出一根小小的玻璃柱,放到火焰枪下煅烧数秒,“腾”的一声,玻璃柱被弹射出去,滑落到装接成品的小篮子里。这些玻璃柱,将填补我国产业空白的中高端光电倍增管(PMT)产品。  这只是海南展创公司中高端光电倍增管生产工序中的一道。展创公司负责人告诉记者,海南展创与世界最先进的两家中高端光电倍增管生产企业之一法国PHOTONIS(弗通尼斯)公司合作,生产数十种不同类型的光电倍增管。光电倍增管广泛应用于高新电子、分析仪器、医疗仪器、石油油田测井和地质勘探、核电站测量及防护、核物理应用和高能物理应用等7大领域。目前我国现有中高端光电倍增管生产水平,仅限于小批量有限品种的生产,大量产品依赖进口。  据悉,该公司已进入2000只光电倍增管的试生产环节。展创公司将在下月中旬举行正式开业庆典,同时迎接来自国内以及法国、荷兰等地的国际高能物理研究巨头举办的业内峰会,使展创中高端产品更适应各自的科研需求。  展创的中高端光电倍增管项目总投资为5亿元,一期计划投资3.2亿元,现已完成投资2.97亿元,计划在3年内达到年产23万只产品的规模,前期主要满足欧美市场,后期开发国内市场。
  • 滨松在华新工厂将投产,产值或倍增至10亿元
    北京滨松光子技术股份公司(以下简称北京滨松)廊坊工厂的新厂房已在日前竣工,并于2014年1月11日上午9:30举行了竣工仪式。新厂房预计将于2014年2月开始启用。新厂房总建筑面积约15000平方米,超过12000余平方米的原厂房,总工程投资约6000万元,于2012年3月动工。原厂房生产的产品较多,包括分光光度计、石油勘探设备,放射医疗、用于影像诊断设备伽马相机的光电倍增管、光电倍增管相关零部件、接收辐射的闪烁体(在辐射射线衰变时产生萤光的晶体,用于辐射成像)、各种传感器、用于电子零件的玻璃材料和产品、医用放射成像设备、环境监测仪器等,员工数量约500人。新厂房投产后,除了光电倍增管仍在原厂房生产以外,包括北京浜松永清工厂(廊坊)生产的闪烁体和玻璃加工等均将移至新厂房生产。北京滨松新厂房  北京滨松的新厂房每层面积约为3000平方米,预计地下1层用于配置电力系统,1层用于业务单位、质量控制、仓库和办公室等,2层用于闪烁体生产,3层用于环境监测仪器和图像测量设备生产以及新产品原型的开发,4层用于会议室及将来的产能增加,5层用于玻璃加工,新厂房共计将有约270名员工。  由于欧洲和美国的客户纷纷在中国设立生产基地,生产低价格产品满足中国市场需求,因此在过去的几年内滨松的在华业务也不断增长。滨松集团在中国的销售额主要包括三部分,分别来自于北京滨松、在华销售子公司滨松光子学商贸(中国)公司,以及从日本滨松光子学出口的产品。2013财年(截至2013年9月)这三部分的销售额总计达到约5亿元。滨松新厂房的产能相当于5亿元销售额规模,如果满负荷生产,其产值将倍增至10亿元。编译:魏昕
  • 下一代光电倍增管(μPMT)问世 PMT技术发展何去何从?
    下一代光电倍增管(μPMT)问世 PMT技术发展何去何从?  ——“2010(第19届)北京 HAMAMATSU技术交流会”在长沙举行  仪器信息网讯 2010年10月31日-11月2日,日本滨松光子学株式会社(以下简称“日本滨松”)与北京滨松光子技术股份有限公司(以下简称“北京滨松”)在长沙和一国际大酒店共同举办“2010(第19届)北京HAMAMATSU技术交流会”。本次技术交流会以“光电倍增管、光源的相关技术与应用”为主题,来自日本滨松电子管事业部和北京滨松的专家做了现场报告并解答用户提问。  120余名来自核电、分析仪器、医疗、环境等领域的滨松用户参加了本次交流会。日本滨松常务取缔役、北京滨松董事长竹内纯一先生,北京滨松总经理席与霖先生,总经理助理兼第一事业部部长段鸿滨先生等滨松集团高层出席。仪器信息网作为特邀媒体也参加了本次交流会。  交流会现场  日本滨松常务取缔役、北京滨松董事长 竹内纯一先生  报告题目:日本滨松光子学株式会社整体公司介绍  北京滨松光子股份有限公司总经理席与霖先生出席技术交流会  竹内纯一先生首先对日本滨松的发展历程、公司宗旨以及公司各个事业部的发展情况做了整体介绍,他在报告中说到:日本滨松成立于1953年,至今已有57年的历史。“Photon is Our Business”,公司长期致力于光子相关技术的探索。目前,公司下设电子管事业部、固体事业部、系统事业部、激光部大部门,分别生产不同产品(详细见表1)。除产品研发部门外,公司另设有中央研究院,专门从事跟光子相关的、具有开拓性的研究,这些研究立足于未来,非常具有前瞻性。  表1 日本滨松四大部门所生产的产品部门产品电子管事业部光电倍增管(PMT)、各种光源(灯)、微聚焦X线源、像增强器等产品。固体事业部光电二极管、光IC、图像传感器(CCD、CMOS、NMOS等)、发光器件等产品。系统事业部应用在生物、医疗、半导体芯片领域的各种测量仪器,如超高灵敏度、超高速数码相机,图像处理,条纹相机等产品。激光部大功率半导体激光器等产品。  (备注:本表根据竹内纯一先生的介绍内容整理而成。)  日本滨松研发出的微光电倍增管(micro μPMT)  电子管事业部近期研发出了全球首款采用MEMS技术的微光电倍增管(即micro μPMT),该产品只有大拇指大小,长7mm,宽5mm,厚2mm,其制作工艺是通过MEMS技术在硅底板上形成光电面及电子倍增部(倍增电极),用两张玻璃底板将其夹住形成,这种构造的最大特点是可轻松进行批量生产。μPMT的工作原理与原来的PMT相同,性能方面也毫不逊色。预计该产品将从2011年1月开始样品供货,主要面向利用μPMT进行研究开发用途的用户。  日本滨松电子管事业部营业推进部部长 袴田敏一先生  报告题目:光电倍增管新产品的动向、应用及其他常识  袴田敏一先生的报告内容主要分为两部分,即滨松光电倍增管产品的研究动向及其在使用中的注意事项。袴田敏一先生认为,日本滨松的光电倍增管产品正往五个方向发展:(1)其量子化效率提高,感应波长向长波方向延伸;(2)其响应速度提高;(3)其外壳采用金属封装,并实现多通道;(4)其暗电流与本身材料本底降低;(5)倍增极放大倍数提高。针对以上五个方面,日本滨松均推出了相应的产品,供不同需求的用户选择。  北京滨松的光电倍增管模块产品  此外,袴田敏一先生还指出了光电倍增管的技术方向:未来真空管技术将与半导体技术相融合,光电倍增管将向模块化、集成化、通用化发展。日本滨松将向光电倍增管技术的极限挑战——力争使光电倍增管的量子效率增至100%,而噪声降至0。  袴田敏一先生最后提醒广大用户在使用光电倍增管的过程中要注意高压电源、分压器、磁场等光电倍增管周边器件对其性能的影响,同时不能忽视温度、湿度、气压、振动等环境因素的作用。  北京滨松光子技术股份有限公司新产品开发部 李妙堂先生  报告题目:PMT在放射测量(闪烁计数)中的应用  李妙堂先生的报告主要涉及三方面内容:(1)闪烁探测器的组成、工作原理、特点与应用;(2)闪烁探测器的性能与特性;(3)闪烁探测器的设计技术。  李妙堂先生在报告中指出:闪烁探测器是由闪烁体和光电倍增管组合而成,是目前常用的核测量探测器之一。可以从能量分辨率、坪特性、探测效率、本底、计数速率、灵敏度、稳定性等多个方面去衡量闪烁探测器的性能。设计闪烁探测器涉及闪烁体的选择、光电倍增管的选择、光收集系统、分压器的设计、输出回路、前置放大器的设计、闪烁计数的稳定电路等方面,设计者要综合考虑各方面因素。  日本滨松光子学株式会社电子管事业部第4制造部制造部长 松下孝二先生  报告题目:日本滨松光子学株式会社的光源产品  松下孝二先生介绍到:日本滨松的光源产品涵盖氘灯、氙灯、汞氙灯、空心阴极灯等种类,广泛应用于半导体、医疗、分析仪器、环境检测、信息等领域。光源的性能可从波长范围、光能输出量、稳定性、寿命等方面来判断。  他详细介绍了滨松的氘灯系列产品。L2D2系列氘灯是专门为分析仪器开发的产品,具有高稳定性、长使用寿命、高光能输出等特点,可应用于高效液相色谱、紫外可见分光光度计、原子吸收分光光度计等仪器。X2D2系列氘灯在L2D2的基础上,性能又有所提升,其亮度是传统氘灯的两倍,适用于高分辨率、高通量分析仪器。而新近研发的S2D2系列小氘灯性能稳定、形状小巧,非常适用于便携式分析仪器。  日本滨松光子学株式会社电子管事业部第四制造部 上野和夫先生  报告题目:光源产品的使用方法  上野和夫先生针对滨松的汞氙灯、脉冲氙灯、氘灯三大类光源产品介绍了使用过程中所出现问题的原因以及如何应对。光源在使用过程中,可能会遇到诸如灯无法点亮、输出不稳定、输出衰减、灯破损等问题,不同种类的光源产生上述问题的原因是不一样的。用户要仔细分析,有针对性的排除不利因素。  技术交流会现场,日本滨松公司在会场还设立了产品展区。用户们仔细地观看所展出的产品,并在报告提问环节反应热烈,提问踊跃。  用户踊跃提问用户仔细观看滨松产品  技术交流会举办地:长沙和一国际大酒店  附录1:北京滨松光子技术股份有限公司  http://www.bhphoton.com/   附录2:日本滨松光子学株式会社  http://www.hamamatsu.com/
  • 全球首套5米分辨率宽波段多光谱卫星数据集发布
    5月29日至31日,第六届亚洲大洋洲区域综合地球观测计划(AOGEO)国际研讨会在澳门大学召开。在GEO秘书处、AOGEO协调委员会联合主席、GEO中国专家委员会专家、以及现场参会代表等共同见证下,全球首套5米分辨率宽波段多光谱卫星数据集(JLS-5M)正式对外开放共享。全球用户可通过国家对地观测科学数据中心获取相关数据产品。   该数据集由长光卫星技术股份有限公司和中国科学院空天信息创新研究院联合研制,包含20个光谱谱段,其中主要地物特征谱段图像的空间分辨率达到5米。数据集的研制利用了吉林一号光谱01/02卫星在2020-2022年期间采集的覆盖“一带一路”沿线65个国家的L1级标准数据,采用剔除邻近像元效应的大气校正算法、场地定标与交叉定标等在轨绝对辐射定标技术以及指数产品验证进行数据集精度评价,最终构建了两期覆盖率达到90%以上、支持定量遥感应用的地表反射率产品数据集,数据量超过80TB。   作为国家重点研发计划国际合作专项的重要成果,该数据集有助于提高土地利用、资源管理、环境监测等领域的精细程度,进一步提升了国产优质卫星数据资源的国际影响力。 长光卫星技术股份有限公司成立于2014年12月1日,是我国第一家商业遥感卫星公司。公司由吉林省政府、中科院长春光机所、社会资本以及技术骨干出资成立,总注册资金19.7亿元。公司专注于商业航天领域,是我国第一家集卫星研发制造、运营管理和遥感信息服务于一体的全产业链商业遥感卫星公司。 中国科学院空天信息创新研究院是光电工程、航天航空和应用科技等三个主要领域兼具总体管理与技术总体职能的研究单位。中国科学院空天信息创新研究院始建于1956年的电子学研究所。
  • 促进生态碳汇倍增 筑牢“双碳”战略“压舱石”
    “双碳”战略已成为新时代标志性的国家战略目标。它不单单是中国参与全球环境治理、应对气候变化的政治承诺,也是一场广泛而深刻的经济社会发展模式的系统性变革,更是一场新的科学技术革命。 从全球范围看,“双碳”行动是中国为推动人类命运共同体构建而作出的郑重承诺。当前应对全球气候变化、保护生物多样性、实现可持续发展,已经成为国际共识。中国实现“双碳”目标不仅有助于解开这三个目标形成的“连环套”,还将助力塑造全球的未来发展路径。 从国内来看,“双碳”行动是应对百年未有之大变局,实现未来中国社会变革、科技发展及民族振兴的宏伟举措;是改变社会经济发展模式、催生新型脱碳经济的倒逼机制;是驱动中国生态文明建设、实现建设社会主义现代化强国发展目标的新引擎。然而,由于时间短、任务重,中国要实现“双碳”目标必然会面临巨大挑战。 一方面,发达国家已经过了农业及工业的快速发展阶段,开始进入经济增长模式转型期,其碳排放也随之达到了峰值甚至进入下降状态,进入向碳中和目标过渡的新阶段。根据中国的“双碳”战略,留给我们完成碳达峰再到碳中和的时间不到40年。在如此短暂的时间内,中国要实现能源和经济发展的绿色转型,势必要经历一个艰难甚至是阵痛的过程。 另一方面,中国作为发展中大国,近四五十年的发展是由高强度资源开发及高能耗驱动的。例如,中国的国内生产总值(GDP)已连续两年超过100万亿元,但二氧化碳排放量也达到100亿吨。简单类推,我国要实现在“第二个一百年”建设成为社会主义现代化强国的目标,到2050年,GDP还须在现在基础上翻两番,届时二氧化碳年排放量将会更高,这种发展情景是人们无法接受的。由此可见,未来的碳减排任务十分艰巨,实现经济发展与碳排放的脱钩将面临严峻挑战。 如何解决减碳与社会经济发展的矛盾?如何制定技术可行、经济有效的行动方案?这些都是极具挑战性的重大战略问题,也是统筹社会可持续发展、生态文明建设及环境治理的重大科技问题。 作为国家战略科技力量主力军,中国科学院肩负着以科技支撑“双碳”战略行动的重大责任。今年3月,中国科学院启动实施科技支撑“双碳”战略行动计划,旨在围绕国家的碳源汇问题,开展系统性、整体性的集成研究,打破技术瓶颈,实现跨领域突破,为我国实现“双碳”目标提供科技支撑。 中国科学院的“双碳”行动计划要做些什么?如何做?我认为可以归纳为“两个系统”和“十六字”方针。前一个系统是基础理论问题,重点回答碳源汇的形成和调控机理是什么;后一个系统是实践应用问题,回答如何跨越行政区进行全域国土空间统一布局。“十六字”方针是监测、评估、认证、预测,减排、保护、增汇、封存。在这个基础上,如果能建立服务于“双碳”目标的科学数据库、模拟系统和计量系统,进行生态碳汇的认证和预算,就可以为国家提供相应的宏观决策和分析基础。 所谓碳中和,即“人为碳排放量=自然生态固碳+生态措施固碳+地球工程固碳”,达到一个平衡。正如丁仲礼院士所说,实现这样的平衡需要“三端发力”,即能源生产端的脱碳、产业消费端的减排、生态固碳端的增汇。 以生态固碳端为例,根据中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”(简称“碳专项”,2011~2015)16000个调查样地的清查成果,中国陆地生态系统固碳能力为每年10.96亿吨二氧化碳。综合同期各种研究和判断,近10年来,中国陆地生态系统固碳能力保守估计为每年10亿~13亿吨二氧化碳。中国陆地生态系统碳汇能力能否实现在现有基础上的倍增目标?种种迹象表明是有可能的! 实现生态碳汇倍增,首先需要保住现有基础,进一步统筹海陆全域国土空间,发挥森林、草原、湿地、滨海固碳作用。这方面有很大潜力可挖,比如,城市绿化面积的增加、人工造林的继续发展、海洋牧场的建设等,都可以增加一部分碳汇。通过进一步系统论证,还可补充一部分被忽视或遗漏的核算。此外,当前我国森林平均年龄为30~40年,通常林龄80年的森林均具有较强碳汇能力。再加上“天帮忙”——随着近年来气温升高,中国区域降水量增加,氮沉降也在增加,预期生态系统碳汇将进一步提升。通过多种途径,中国区域生态系统碳汇能力有望达到每年20亿~25亿吨水平,具有实现倍增的潜力。 也就是说,未来通过提升生态系统碳汇,加上每年采用工程性碳捕获、利用及封存技术固持5亿~10亿吨二氧化碳,将能为国家发展留出30亿吨左右的碳排放空间,这对于降低“双碳”行动的经济成本和抵御社会风险具有战略意义。 实现生态碳汇倍增目标,需要有强大的科学后盾。亟须突破的瓶颈是强化科学基础知识,开展系统化研究。在科学基础方面,目前生态系统碳汇的科学原理尚未完全明晰,概念上仍然支离破碎。例如,生态碳汇科学原理涉及生态系统的碳循环、气候变化与碳循环之间的互作关系以及人类活动如何影响碳循环。当前相关理论和方法依然停留在学界讨论中,尽管已经发表了很多文章,但缺乏系统性,一些碳汇基础理论尚未得到广泛认可,难以在全域国土空间范围内大面积推广或实施。 相关知识的系统化,需要把整个中国国土空间当作一个大系统来认知,通过网络化动态观测获取基础科学数据,理解整个海陆碳循环机理,模拟评估全组分、全统计口径、全区域的生态系统源汇格局及动态演变。其工作目标是实现“五个更”:对科学问题的认知更接近真理,对中国碳汇分布情况及增长潜力的了解更精确,对碳源汇功能格局和演变的模拟预测更准确,人为努力使得生态系统固碳能力更强大,用更扎实的科学理论和技术支撑国家环境治理及“双碳”战略行动的实施。 中国陆地生态系统具有巨大固碳能力,实现生态碳汇倍增目标,必将在国家碳达峰、碳中和行动中发挥“压舱石”“稳定器”的重大作用。实现“双碳”战略目标需要降碳、减污、扩绿和经济增长的有机联动。这不是一件简单的事情,也不是哪一个机构或企业能单独完成的,需要政府、企业及民众共同努力。
  • 投资5亿元光电倍增管生产线在海南投产
    2012年12月12日,由海南展创信息技术有限公司引进的展创中高端光电倍增管生产线投产。该项目填补我国中高端光电倍增管器件及整机产品制造空白,迅速拉短我国该技术落后国际先进水平40年的差距。  该项目承接法国弗通尼斯公司21项专利技术,生产35种不同类型的光电倍增管,广泛应用于高新电子、分析仪器、医疗仪器、石油油田测井和地质勘探、核电站测量及防护、核物理应用和高能物理应用等7大领域。目前我国现有中高端光电倍增管生产水平仅限于生产单个产品,大量产品依赖进口。  展创公司总经理王芳向海南日报记者介绍,项目总投资为5亿元,一期计划投资3.2亿元,今年已完成投资2.97亿元,主体建设完工,开始安装主厂房机电和生产线,预计9月份点火,11月份生产出样管,计划在3年内达到年产23万只不同型号光电倍增管产品的规模,前期主要满足欧美市场,供应法国弗通尼斯公司包括美国GE、荷兰NIKHEF,丹麦DDD等在内的原有用户,3年目标累计订单规模为2.5亿欧元,约合人民币20亿元,利税2亿元 后期启动与中国科学院研发生产基地项目后,国内外市场总销售规模可达30亿元,产生利税5至10亿元。  王芳表示,受国际经济危机及国内人力成本上涨影响,法国弗通尼斯公司与展创公司合作,将生产线转移到中国,由于这一行业技术门槛高、客户需求专业性强,展创公司前期的原料采购和市场销售均放在欧美,随着生产线扩大、设备管理和产品设计等核心技术的逐渐转移,原料采购和销售市场将随之本地化。
  • 天津拓普光电倍增管集成冷却系统专利获审批
    近日天津市拓普仪器有限公司申请的WSZ-5A型单光子计数实验系统光电倍增管的集成冷却系统专利获得 中华人民共和国国家知识产权局的审批。专利号为:ZL 2008 2 0074024.1WSZ-5A型单光子计数实验系统是我公司最新开发的一套实验系统,该实验由单光子计数器、制冷系统、外光路等部分组成。该系统的信号处理部分采用脉冲高度甄别,甄别后的信号送脉冲计数器进行计数。输出的信号也直接引出至面板,实验者可以根据自己的实验情况进行实验扩展,这样给实验者以更加大的实验空间以到达学习与锻炼的目的。 主要特点: 采用内置水循环半导体制冷系统,不需外部水源; 应用USB与计算机通信,可以很方便地进行实验,操作简单,结果明了; 应用稳定的脉冲计数器,具有计数范围宽、计数准确等优点; 采用CR110光电倍增管接收,利用半导体制冷技术以降低仪器的暗计数; 可以方便的进行实验扩展 主要技术指标: 波长范围:360-650nm 高压控制:数字可调 积分时间:数字可调 最大计数:107 甄别电平:数字可调 暗计数:≤30CPS(-20°C) 仪器成套性: 主机:一台 半导体制冷器电源、减光片、保险管、USB接口、计算机(由用户选配)
  • 东莞市长肖亚非莅临正业科技开展“倍增计划”试点企业调研
    8月10日,东莞市长肖亚非率市经信局、科技局、商务局、环保局、松山湖管委会等领导一行莅临正业科技开展“倍增计划”试点企业调研工作,正业科技董事长徐地华给予了热情接待,并对企业经营状况、“倍增计划”落实情况以及未来发展规划等进行了汇报。肖亚非市长表示正业科技作为他本人挂点的“倍增计划”企业,在产品结构、产业资源方面与东莞市产业发展规划结合度高,正业科技有先进的技术,经营业绩较好,但需要在规模发展上更进一步,在当前宏观经济环境下,可以通过并购成长性较好的企业和团队,开发新产品,着力培育新的增长点,做大做强。肖市长还针对正业科技在经营中遇到的行业普遍存在的困难和问题,表示会积极协调相关部门和机构予以支持,并当场要求市科技局支持正业科技建设省级技术创新中心。市长肖亚非率团实地考察据了解,2017年2月以来,东莞市大力实施“倍增计划”,选取一批存量优势企业进行重点培育,通过全面梳理企业发展需求、靶向配置要素供给、精准施策,扶持培育试点企业提升综合竞争力,力争用3至5年时间,推动试点企业实现规模与效益的倍增,构建有利于企业倍增发展的经营环境,推动东莞经济实现更高质量、更有效益、更可持续的发展。参观正业科技展厅正业科技是2017年度首批市级“倍增计划”试点企业,凭借科技创新、兼并重组和总部经济等发展战略,2017年营业收入为12.65亿元,同比增长110.78%,顺利完成了3年倍增的第一年度增长指标,并成功入选2018年东莞市“倍增计划”试点企业。2018年上半年,正业科技在“倍增计划”政策指引下,各项业绩指标均呈增长态势,实现营业收入6.96亿元,同比增长28.07%;归属于上市公司股东的净利润为1.15亿元,同比增长40.46%,其中二季度环比增长182.62%,在电子行业高居第二位。市长肖亚非与董事长徐地华合影此次调研,充分体现了东莞市政府对正业科技的关心,相信在市委、市政府的正确指导和大力关怀下,正业科技会继续秉承“新时代、新征程、新正业”主题思想,借助东莞市倍增计划的政策东风,在深耕智能制造领域的道路上,通过大力推进科技创新,整合集团优势资源,狠抓内生发展,夯实产品技术,加大市场开拓力度,延续2018年上半年业绩高增长势头,努力完成东莞市“倍增计划”指标,为东莞经济跃升做出更大的贡献。
  • 中国科学家创制全波段相位匹配晶体
    激光是20世纪人类最重大的发明之一,60多年来,13项诺贝尔奖与激光技术密切相关。非线性光学晶体可用来对激光波长进行变频,从而扩展激光器的可调谐范围。近期,我国科学家成功创制了一种新型非线性光学晶体——全波段相位匹配晶体,为整个透光范围内实现双折射相位匹配提供了新思路。   该研究由中国科学院新疆理化技术研究所晶体材料研究中心潘世烈团队完成,相关成果于近期在国际学术期刊《自然-光子学》在线发表。   非线性光学晶体是获得不同波长激光的物质条件和源头。在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战之一,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,其中利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相位匹配波长的差值表征。   团队前期在特邀综述(Angew. Chem. Int. Ed. 2020, 59, 20302-20317)中提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?近期,该团队创制了一类新非线性光学晶体,即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,并以此为指导获得一例非线性光学晶体(GFB)。基于晶体器件实现了193.2-266 nm紫外/深紫外激光输出,该材料193.2 nm处晶体透过率0.02%,依然可以实现倍频激光输出,验证了其全波段相位匹配特性,使该晶体成为目前首例实现了全波段双折射相位匹配的紫外/深紫外非线性光学晶体材料。研究结果表明,宽的相位匹配波长范围使GFB晶体透光范围得到充分应用,可实现1064 nm激光器二、三、四、五倍频高效、大能量输出,有望满足半导体晶圆检测等领域的重大需求。更重要的是,GFB可采用水溶液法生长出高质量、超大尺寸晶体,使其有望成为应用于大科学装置的新晶体材料。   今年是习近平总书记视察中国科学院并提出“四个率先”目标要求十周年。十年来,新疆理化所认真贯彻落实习近平总书记重要指示精神,面向国家重大需求,在新型光电功能晶体材料等重要技术领域取得了一系列科研成果。下一步,新疆理化所将持续开展相关晶体材料、器件及激光光源应用的攻关研究,力争产出更多原创性、引领性重大创新成果。GFB晶体器件利用GFB晶体进行激光实验
  • 中国计量大学:基于太赫兹波段的负曲率轨道角动量光纤
    随着通信技术的快速发展,近些年的通信容量实现了快速增长,传统的光纤通信网络已经难以满足当前高速通信的需求。增大通信网络的容量和提高通信速度的一种方法是开发太赫兹(Terahertz, THz)波段的光纤通信空间维度。太赫兹波是介于微波和红外光之间的一种电磁波,频率介于0.1THz到10THz之间,由于它带宽大和传输速度快以及可以提供点对点的网络拓扑结构而备受关注。而在空间维度资源中,基于轨道角动量(Orbital Angular Momentum,OAM)的模分复用技术由于携带不同拓朴荷数的相互正交的轨道角动量模式成为扩大通信容量的一种非常有潜力的方案。轨道角动量具有全新的电磁波自由度特性,具有轨道角动量特性的电磁波可以在常用的信息传输方式,如波分复用(Wave Division Multiplexing,WDM)、偏振复用(Polarization Multiplexin,PM)、时分复用(Time Division Multiplexing,TDM)等信息传输方式上成倍的提高信息传输容量。近日,中国计量大学严德贤课题组提出了基于太赫兹波段的负曲率轨道角动量光纤。该光纤以重庆摩方精密科技有限公司提供的HTL聚合物材料(耐高温树脂)为基底,采用两层倾斜椭圆管的结构设计,通过引入环芯区域在0.4-0.8THz波段成功产生50-52个OAM模式,且在所研究的波段内获得了高模式纯度、低限制损耗和低波导色散等传输特性,相关研究成果以“Design of negative curvature fiber carrying multiorbital angular momentum modes forterahertz wave transmission”为题发表在《Results in Physics》。图1.3D打印负曲率轨道角动量光纤结构图图1展示了基于摩方精密nanoArch S140打印技术的3D打印光纤样品图。光纤整体尺寸为6.57mm,靠近纤芯区域的第二层倾斜椭圆管结构最小尺寸为0.051mm。光纤结构设计完成后,在Comsol Multiphysics有限元仿真软件中选取光纤结构的任一截面进行仿真研究。在研究频段内给定相应的太赫兹频率后,可以获得相应的模场分布,针对相应的模式进行数据收集和处理可以得出所需传输特性。在光纤中产生OAM模式的前提条件是有效生成HE和EH模式,且HEl+1,1与EHl-1,1有效模式折射率差异高于10-4。光纤中的OAM模式合成规则可由公式1表述:图3是OAM光纤各种传输特性随频率的变化趋势。由图3(a)和(b)可知,光纤产生的所有HEl+1,1与EHl-1,1之间的折射率差异均高于10-4,表明HE和EH模式均可以有效合成OAM模式。图3(c)是光纤的限制损耗特性,限制损耗与光纤的有效传输距离密切相关,由图可知光纤的限制损耗在0.55-0.8THz区间最低可以达到10-15(dB/cm)量级。图3(d)表示了OAM光纤的低平坦色散趋势,在0.4-0.8THz区间有近零的波导色散参数,有利于太赫兹波在光纤内部的快速传输。OAM模式的高模式纯度特性表明了光纤可以有效携带信息进行传输,由图3(e)所示结果,在0.55-0.8THz区间光纤的OAM模式纯度均高于80%。图3(f)是OAM光纤的有效模场面积特性,一般来说具有较高的有效模场面积可以产生较小的非线性特性,可以进一步提高信息的传输质量。图3.(a)有效模式折射率,(b)有效模式折射率差异,(c)限制损耗,(d)波导色散,(e)OAM模式纯度,(f)有效模场面积随频率的变化趋势官网:https://www.bmftec.cn/links/10
  • ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量
    利用短波红外波段通过干燥过程分割来估计土壤含水量 土壤水分是直接影响蒸发、入渗和径流等多种环境过程的重要因素。而且,土壤水分在农业蒸散与粮食安全、湿地退化、干旱、陆气界面的能量交换等相关研究领域发挥着重要的作用。地面测量能够提供易于校准和长时间连续获取的数据,但该种方法仅针对单个小区域,难以支持空间变化研究或实地研究。基于水和土壤介电特性的巨大差异,微波遥感被广泛应用于大空间尺度的土壤水分监测,但不适用于精准农业等多种研究。热遥感可以根据地表温度来估算土壤水分,但热遥感信号不单受到土壤含水量(SMC)的影响,湿度、风速、大气条件等其他参数也会影响估计结果。而光学遥感由于其精细的空间分辨率和利用诸如MODIS、Landsat系列和Sentinel任务等卫星数据进行大尺度监测潜力之间的平衡而引起了诸多关注。目前已经提出了许多指标和模型来阐明反射率特征随SMC的变化,并利用实验室、实地、机载和卫星数据从窄带和宽带的反射率来估计SMC。这些方法/指标主要针对从饱和到风干的各级SMC;然而,作者发现饱和到风干的单一关系映射会导致准确估计的错误印象。在整个干燥过程中,光谱反射率特征和SMCs之间的回归关系不一致导致对相对较低的SMCs估计的精度较低。基于此,在本研究中, 来自南京大学、康奈尔大学和河南农业大学的研究团队提出了一种分割方法以更准确的估计SWC。作者监测了代表不同土壤特性的三种土壤样品的整个干燥过程,并通过蒸发速率变化确定其过渡点(如高SWC的阶段1干燥和低SWC的阶段2干燥)。建立了SMC估计指数,即短波归一化指数(SNI),基于辐射传输模型支持干燥过程中的SNI指数趋势。图1 实验装置示意图。利用ASD FieldspecPro光谱仪进行光谱辐射亮度采集。【结果】 图2 a) 三种土壤样品蒸发速率变化与干燥时间的关系,b) 干燥过程中三种土壤在2150 nm处的反射率变化。 c) 三种样品蒸发速率导数的最大值确定干燥阶段分割点。 图3 三种样品砂/土壤含水量与光谱反射率之间的线性和对数回归的R2,a) 石英砂,b) 圬工砂,c) 伊萨卡土壤,d) 模拟大气透射率。在 a)、b) 和 c) 中,黑色虚线标记为1680 nm和2150 nm。图4 a) 显示了SMC估计的验证结果。 b)、c) 和 d) 显示了三种样品的 建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。图5 a)SMC估计值和测量值关系图,其中SMC估计值使用SNI2在线性回归中计算,Bwater 在1980 nm处评估。 图 b)、c) 和 d) 显示了三种样品的建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。【结论】利用单一回归关系和单一指数估计整个干燥过程的SMC对所有土壤类型并不是有效的。该研究证明了利用现有方法估计SMC结果不准确,以及在分割干燥过程中估计SMC的基本原理。监测整个干燥过程中3种不同土壤样品的光谱反射率和重量,将其分为两个阶段用于训练和验证。此外,基于辐射传输模型研究不同干燥阶段所提出指数和光通过水的路径长度之间的关系,并支持了经验方法建立的回归关系,尤其是对路径长度相对较短的土壤。结果表明,在分割思想下,SMC估计值和测量值之间的相关性明显提高,尤其是在SMC较低的情况下(阶段2干燥过程)。蒸发速率变化决定了干燥过程的分割过渡点,所有的土壤类型并不是一个特定的SMC值;因此,理解蒸发和SMC变化导致的光谱反射率变化之间的关系是极其重要的。例如,在实际使用中,石英砂阶段2干燥可以忽略,但它却是伊萨卡土壤干燥的重要组成部分。SN1/SN2指数结合可以有效估计三种样品的SMC。对于阶段1干燥,利用SNI1指数在1680 nm和2150 nm处的反射率预测SMC是有效的。在阶段2干燥中,尽管使用1930-2150 nm组合的SNI2指数实现了最佳相关性,但作者认为1980 nm比1930 nm更适合实地应用。这种波段选择是为了避免强烈的大气水汽吸收,以确保足够的地面反射辐射到达飞机或卫星传感器。相对于将阶段2干燥视为阶段1干燥延续的指标,相关关系显著改善。作者得到了如下结论:1.干燥过程分割对从光谱反射率数据准确估计SMC是很有必要的,尤其是对于具有较长阶段2干燥过程的土壤。例如本研究中的伊萨卡土壤。对于与伊萨卡土壤相似的土壤,基于整个干燥过程的SMC估计可能会导致阶段1或阶段2干燥的偏差,这取决于哪个阶段有更多的训练集。2. 由于石英砂中光通过水的路径长度相对较长,因此当SMC较高时,SNI具有独特的特征。在圬工砂或伊萨卡土壤中,half-logistic型的SNI曲线不同于线性关系。当光程较长时,拟合关系应由线性回归变为对数回归。3. 在阶段2干燥过程中,利用现有卫星系统常用的光谱波段组合难以准确估计SMC;使用高光谱数据可以获得更高的精度,可以提供近强水吸收波段的数据,如1930 nm。虽然由于大气水汽的吸收,1930 nm不能在实验室外有效地使用,但稍微偏离中心的波长(如1980 nm)仍然比水吸收波段范围外的波长表现更好。
  • Raptor Photonics发布Raptor 电子倍增型X射线成像相机 Falcon III XO新品
    英国Raptor公司即将推出Falcon Ⅲ XO相机是业内率先基于EMCCD的直接探测X-ray相机,相比以往产品具有更高速度和灵敏度的优势。相机分辨率1024x1024,像元尺寸10um,满分辨率帧频可达34fps,X-ray探测范围1.2eV-20KeV。该相机非常适合对灵敏度、帧速有更高要求的软X-ray探测的应用。主要特性:● 来自e2v的EMCCD芯片,不带镀膜● CF152(6“)法兰设计直接与真空室连接● 帧频34fps@1024x1024● 深度制冷到-70℃,暗电流0.001e-/p/s● 探测能量1.2eV-20KeV技术参数:型号FA351XO-BN-CL芯片1“背照减薄EMCCD分辨率1024x1024像元尺寸10umx10um有效面积10.2mmx10.2mm满阱电荷 35Ke-读出噪声rms1e-@EM Gain打开;50e-@EM Gain关闭满分辨率帧频34fps曝光时间1ms to 1 hour暗电流0.001e-/p/s@-70℃A/D深度16bit光谱范围1.2eV-20KeVBinning1x1 to 32x32法兰CF152(6英寸)电源12V DC±0.5V功耗100W工作温度-20℃~+55℃存储温度-30℃~+60℃外形尺寸(LxWxH)129mm x 112mm x 94mm典型应用:X-ray显微成像、断层影像、相衬成像和源特性、X-ray等离子诊断、晶体学、极紫外/真空紫外成像、全息成像和半导体光刻、高次谐波产生创新点:全球首款采用电子倍增EMCCD芯片探测真空紫外及软X射线成像的相机,属于业内首创,将灵敏度与拍摄速度有机结合,为真空紫外探测及软X-射线探测提供了更多可能。Raptor 电子倍增型X射线成像相机 Falcon III XO
  • 新型光谱发生器:可发射近红外波段任何期望波长的光
    光谱发生器L12194-00-70130可发射近红外波段的光,而且使用者可根据用途自行选择波长,其调节的最小单位间隔可为1nm。该产品内置高稳定性的光源和特有的光学系统,实现了小型化(144x236.5x513.5mm)、高稳定性、高输出功率和高效率。滨松新型光谱发生器L12194-00-70130L12194-00-70130作为一个新产品,与以往同为近红外波段的光谱发生器的产品相比,照射波长可以根据实际应用,拥有390~700nm,430 nm ~790nm,700nm~1300nm三种照射波段的选择。滨松将提供产品的样本软件,直接在PC上就可实现波长的控制。产品连接示例该产品可以广泛应用于生物发光刺激、光谱设备性能以及材料光学性能的研究和评估,另外,亦可作为显微镜和内窥镜的光源使用。产品应用点击按钮,查看详细产品信息:欢迎关注滨松中国官方微信号
  • 中国计量大学严德贤课题组《Results in Physics》:基于太赫兹波段的负曲率轨道角动量光纤
    随着通信技术的快速发展,近些年的通信容量实现了快速增长,传统的光纤通信网络已经难以满足当前高速通信的需求。增大通信网络的容量和提高通信速度的一种方法是开发太赫兹(Terahertz, THz)波段的光纤通信空间维度。太赫兹波是介于微波和红外光之间的一种电磁波,频率介于0.1THz到10THz之间,由于它带宽大和传输速度快以及可以提供点对点的网络拓扑结构而备受关注。而在空间维度资源中,基于轨道角动量(Orbital Angular Momentum,OAM)的模分复用技术由于携带不同拓朴荷数的相互正交的轨道角动量模式成为扩大通信容量的一种非常有潜力的方案。轨道角动量具有全新的电磁波自由度特性,具有轨道角动量特性的电磁波可以在常用的信息传输方式,如波分复用(Wave Division Multiplexing,WDM)、偏振复用(Polarization Multiplexin,PM)、时分复用(Time Division Multiplexing,TDM)等信息传输方式上成倍的提高信息传输容量。近日,中国计量大学严德贤课题组提出了基于太赫兹波段的负曲率轨道角动量光纤。该光纤以重庆摩方精密科技有限公司提供的HTL聚合物材料(耐高温树脂)为基底,采用两层倾斜椭圆管的结构设计,通过引入环芯区域在0.4-0.8THz波段成功产生50-52个OAM模式,且在所研究的波段内获得了高模式纯度、低限制损耗和低波导色散等传输特性,相关研究成果以“Design of negative curvature fiber carrying multiorbital angular momentum modes for terahertz wave transmission”为题发表在《Results in Physics》。图1.3D打印负曲率轨道角动量光纤结构图图1展示了基于摩方精密nanoArch S140打印技术的3D打印光纤样品图。光纤整体尺寸为6.57mm,靠近纤芯区域的第二层倾斜椭圆管结构最小尺寸为0.051mm。光纤结构设计完成后,在Comsol Multiphysics有限元仿真软件中选取光纤结构的任一截面进行仿真研究。在研究频段内给定相应的太赫兹频率后,可以获得相应的模场分布,针对相应的模式进行数据收集和处理可以得出所需传输特性。在光纤中产生OAM模式的前提条件是有效生成HE和EH模式,且HEl+1,1与EHl-1,1有效模式折射率差异高于10-4。光纤中的OAM模式合成规则可由公式1表述: (1)根据公式1,在图2中给出了和在0.5THz的线性叠加过程以及相位分布图。图2.和在0.5THz的线性叠加过程以及相位分布如图2所示,和在模式合成后环芯区域有效产生OAM模式的模场分布,并获得[-ℼ-ℼ]的相位分布效果,满足在光纤中产生OAM模式的合成规则。图3是OAM光纤各种传输特性随频率的变化趋势。由图3(a)和(b)可知,光纤产生的所有HEl+1,1与EHl-1,1之间的折射率差异均高于10-4,表明HE和EH模式均可以有效合成OAM模式。图3(c)是光纤的限制损耗特性,限制损耗与光纤的有效传输距离密切相关,由图可知光纤的限制损耗在0.55-0.8THz区间可以达到10-15(dB/cm)量级。图3(d)表示了OAM光纤的低平坦色散趋势,在0.4-0.8THz区间有近零的波导色散参数,有利于太赫兹波在光纤内部的快速传输。OAM模式的高模式纯度特性表明了光纤可以有效携带信息进行传输,由图3(e)所示结果,在0.55-0.8THz区间光纤的OAM模式纯度均高于80%。图3(f)是OAM光纤的有效模场面积特性,一般来说具有较高的有效模场面积可以产生较小的非线性特性,可以进一步提高信息的传输质量。图3.(a)有效模式折射率,(b)有效模式折射率差异,(c)限制损耗,(d)波导色散,(e)OAM模式纯度,(f)有效模场面积随频率的变化趋势 文章链接:https://doi.org/10.1016/j.rinp.2021.104766
  • 滨松20英寸光电倍增管科技成就荣获“IEEE里程碑”
    引滨松日本2014年10月15日文章——日本浜松光子学株式会社(滨松公司)凭借开发用于天文科研,如超新星、中微子探索的20英寸光电倍增管的科技成就,受到了世界最大的电子,信息,通信领域的专业学会IEEE(美国电气与电子工程师学会,总部:美国纽约)的认可。20英寸光电倍增管最初是受到小柴昌俊教授(东京大学荣誉教授)的拜托而制作的,小柴昌俊教授亦因此探测到了宇宙中微子进而获得了2002年诺贝尔物理学奖。最初,在“神冈核子衰变实验”中制造并配备了上百个20英寸的光电倍增管。而后,在“超级神冈中微子探测实验”中则装备上千个20英寸的光电倍增管。 “IEEE里程碑”是IEEE用于认可在某个其涵括的科技领域里的“科技创新和对人类探知发现有卓越贡献的独立产品、服务,影响重大的种子论文,专利”,而20英寸光电倍增管凭借在中微子探测中的贡献,而被授予了“IEEE里程碑”。滨松制20英寸光电倍增管“IEEE里程碑”铭牌 新闻来源:http://www.hamamatsu.com/jp/en/news/news/20141015000001.html IEEE里程碑认证 IEEE电子工程及信息技术领域里程碑 标题:20英寸直径光电倍增管,1979-1987 原因: 滨松公司应小柴昌俊教授所托,于1979年在丰冈工厂开始制作用于3000吨储水的契伦科夫粒子探测,神冈实验第二期。实验配备1071个光电倍增管收集粒子落于水面而产生的光子。神冈实验第二期于1987年探测到了超新星SN1987A的中微子爆炸,因此发现小柴昌俊教授获得了2002年诺贝尔奖。
  • 新一代宽波段高通量光学光谱仪通过国际评审和技术验收
    7月12日至13日,由北京大学、中国科学院国家天文台、南京天文光学技术研究所与美国加州理工学院联合研制的新一代帕洛马天文台光谱仪(NGPS)通过国际评审。该项目是北京大学牵头的国家自然科学基金委员会国家重大科研仪器项目。中国科学院南京天文光学技术研究所是该项目的技术责任单位。中国科学院紫金山天文台、中国科学院大学杭州高等研究院、中国科学技术大学、南京大学、南京师范大学等单位的专家对该仪器项目进行了技术测试验收。 与会专家听取了项目组所做的研制情况汇报,审核了相关测试报告和技术文档,现场查看了光谱仪并测试了各项指标。经质询和充分讨论,与会专家一致认为NGPS各项技术指标全面达到技术要求。该仪器预计于2023年8月运往美国加州理工学院。 NGPS作为一台宽波段、高通量和智能化的新一代光谱仪,将安装在美国帕洛马天文台5米海尔望远镜的卡焦焦点,替换有40多年历史的双通道光谱仪(DBSP)。NGPS整体为四通道设计,单次曝光可实现310nm-1040nm的宽波段覆盖;光谱分辨率可实现1800-6000;包含大气和望远镜的仪器峰值效率优于45%,达到国际先进水平。光谱仪焦面前留有自适应光学系统接口,配置连续可调像切分器,将成为中大型望远镜上先进的现代天文光谱仪。 北京大学、国家天文台、南京天光所的相关负责人和项目组成员参加会议。 7月12日,NGPS国际交付评审 7月12日,测试组专家和项目组成员现场查验光谱仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制