当前位置: 仪器信息网 > 行业主题 > >

玻璃等离子处理仪

仪器信息网玻璃等离子处理仪专题为您提供2024年最新玻璃等离子处理仪价格报价、厂家品牌的相关信息, 包括玻璃等离子处理仪参数、型号等,不管是国产,还是进口品牌的玻璃等离子处理仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合玻璃等离子处理仪相关的耗材配件、试剂标物,还有玻璃等离子处理仪相关的最新资讯、资料,以及玻璃等离子处理仪相关的解决方案。

玻璃等离子处理仪相关的资讯

  • 应用:通过表面能表征等离子体对聚合物表面的处理效果
    研究背景等离子体处理是聚合物表面改性的一种常用方法,一方面等离子体中的高能态粒子通过轰击作用打断聚合物表面的化学键,等离子体中的自由基则与断开的化学键结合形成极性基团,从而提高了聚合物表面活性;另一方面,高能态粒子的轰击作用也会使聚合物表面微观形貌发生改变 。本文提出通过等离子体处理提高 PP的胶粘接强度。利用KRÜ SS光学接触角测量仪DSA100分析了等离子体处理对于PP表面的接触角、自由能的影响。利用胶粘剂将 PP薄膜与铝箔粘接到一起,采用T剥离强度试验方法对PP的胶粘接强度进行了测试,结果表明等离子体处理可以显著提高 PP的胶粘接强度。DSA100型液滴形状分析仪试验样品制备由于PP薄膜表面可能会有油污、脱模剂等残留物,本文采用超声清洗方法对其表面进行实验前的处理。结果与讨论1.PP表面接触角系统分析了等离子体改性的射频功率和处理时间对于PP表面接触角的影响。首先,将处理时间恒定为 120 s,射频功率分别选取了 80 W、120 W、180 W、240 W 和300 W。如图1(a) 所示,PP表面经等离子体处理后,去离子水和二碘甲烷的接触角均有较明显的下降。当射频功率超过120 W时,接触角下降趋势缓慢,此时去离子水的接触角由99.08°降到了79.25°,二碘甲烷的接触角则由69.31°降到了59.39°。当射频功率达到300 W时,去离子水的接触角为 74.88°,二碘甲烷的接触角为55.88°。去离子水属于极性溶液,它的接触角越小表明PP表面润湿性越好,PP与胶粘剂的粘接强度将越高。 图1.薄膜表面接触角的变化其次,将射频功率恒定为 80 W,处理时间分别为30 s、60 s、120 s、300 s和600 s,PP表面的接触角与处理时间的关系如图1(b)所示。可见,随着处理时间的增长,接触角逐渐减小。当处理时间长于120 s时,接触角变化缓慢,此时去离子水的接触角由 99.08°降到了77.39°,二碘甲烷的接触角由69.31°降到了56.05°。结合上述两个实验结果,本文选择射频功率120 W和处理时间120 s作为后续的PP等离子体改性工艺参数数值。2.PP表面自由能本文采用Owens二液法 ,通过测量去离子水和二碘甲烷在 PP表面的接触角,计算出PP表面的自由能。PP表面自由能与射频功率和处理时间的关系如图2所示。从图中可以看出,PP在等离子体处理后,色散分量和极性分量均有所提升,其中极性分量的提升更显著,PP的表面自由能得到了较大提高。经计算,未经等离子体处理的 PP表面色散分量、极性分量和自由能分别为18.68 mJ/m 2 、12.12 mJ/m 2 、30.8 mJ/m 2 ,经等离子体处理后的PP表面色散分量、极性分量和自由能分别为22.27mJ/m 2 、26.64 mJ/m 2 、48.91 mJ/m 2 。即,经等离子体处理后,PP表面色散分量增加了 19.22%,极性分量增加了119.8%,自由能增加了58.8%。可见,PP表面自由能的提高主要归因于极性分量的增加,而极性分量的增加则是由于等离子体处理使得PP表面形成了极性基团,从而有助于提高PP的胶粘接强度。 图2.PP表面自由能3.PP胶接强度根据T剥离强度试验记录的最大剥离力和最小剥离力计算得到平均剥离力(FT),而剥离强度(σT)为 式中:B为测试样品的宽度 ,本文测试样品的宽度为25 mm。在剥离过程中,可以看到胶粘剂形成的胶膜完全保留在铝箔表面,证明胶粘剂对铝箔的粘附性远高于对PP薄膜的粘附性,即通过该实验测试到的剥离强度为PP与胶粘剂之间的粘接强度。未改性的 PP薄膜和改性后的PP薄膜的剥离力与剥离长度的关系曲线如图3所示,由于夹持位置的差异,PP薄膜与铝箔之间开始出现分离的位置稍有不同。在二者刚出现分离时,剥离力较大,之后剥离力逐渐下降并保持稳定。根据上述公式可以计算出,未改性的PP薄膜最小剥离强度为588 kN/m,最大剥离强度为 661.2 kN/m,平均剥离强度为 624.8 kN/m;与之对应,改性后的PP薄膜最小剥离强度为734 kN/m,最大剥离强度为810.8 kN/m,平均剥离强度为775.2 kN/m。即,PP薄膜经过等离子体改性处理后最小剥离强度提高了24.83%,最大剥离强度提高了22.63%,平均剥离强度提高了24.07%。 图3.剥离长度和剥离力的关系结论本文从接触角、表面自由能等方面揭示了等离子体处理提高PP材料胶粘接强度的机理。实验结果表明,经过等离子体改性处理后,PP表面由疏水性变为亲水性,去离子水的接触角由99°减小到了75°,PP表面自由能由31 mJ/m 2 增大到了49 mJ/m 2 ,同时PP表面整体上变得凸凹不平,且出现了大量纳米级凸起和凹坑。PP表面发生的这些化学和物理变化共同作用,使得PP的胶粘接强度提高了24%。参考文献隋裕,吴梦希,刘军山.等离子体处理对于聚丙烯胶粘接强度的影响[J].机电工程技术,2023,52(01):30-32.
  • 光伏太阳能电池-等离子表面处理和USC干式除尘的关键作用
    光伏电池又称太阳能电池,是一种直接将光能转化为电能的半导体薄片。*光伏电池(图源网络,侵删)其中,基板作为光伏电池的主要组成部分之一,其表面性能和洁净度直接关系到电池的光电转换效率和稳定性。光伏太阳能电池等离子处理、除尘解决方案在光伏电池制程中,等离子表面处理可用于玻璃基板表面活化,阳极表面改性,涂保护膜前处理等,在提高光伏元件表面亲水性、附着力等方面具有显著的优势。*光伏电池结构(图片来源:灼识咨询,侵删)同时,需要解决光伏电池制程中的尘埃污染问题。浮尘颗粒会附着在基材表面,不仅影响光电转换效率,还可能引发电池内部故障。*光伏电池工艺制程(资料来源:灼识咨询、中泰证券,侵删)因此,在光伏电池制程中,需要对光伏元件进行表面活化和除尘处理,增强基板表面附着力和洁净度,提升电池的稳定性。大气等离子应用案例通过等离子表面活化,可以提高玻璃基板表面亲水性,有效优化表面附着力,提升电池的稳定性和品质,从而改善器件的性能。等离子处理玻璃基板*光伏原片玻璃(图片来源:江西赣悦新材料,侵删)USC干式超声波除尘应用案例通过USC干式超声波除尘清洗机清除基板上的浮尘,可以提高光伏电池的性能和稳定性。除尘率可达97-99%光伏电池基板除尘光伏太阳能电池领域应用设备1、 大气等离子清洗机SPA-5800具有强大的数据处理功能,实现设备数字化控制,可对接客户产线,有效减低生产成本。✅ 支持数字通信接口和模拟通信接口✅ 搭载进口ARM芯片,实现功率自匹配✅ 具有十余种故障报警功能,故障率低2、 中频宽幅等离子清洗机适用于各种平面材料的清洗活化,可装配不同长度等离子枪头,可客制化流水线设备。✅ 等离子体均匀✅ 电源设计兼容性充足,输出功率范围大✅ 软件/硬件多重保护,安全可靠3、 在线式干式超声波除尘清洗机集除尘、除静电为一体的在线式除尘设备。配有真空吸附移动平台、内部洁净系统,不会对洁净室造成2次污染。✅ 非接触式除尘,产品无损伤✅ 闭环系统,不造成2次污染✅ 以空气作为除尘媒介物质,无需水、溶剂、干燥等过程4、 接触角测量仪SDC-200S光伏电池制备中对于基板表面的润湿性能具有一定的要求,SDC-200S具有全面、完整、精准的拟合测量法,可用于光伏电池基材表面润湿性能检测。✅ 变焦变倍镜头,成像清晰✅ 自动注液系统✅ 可自动生成报告
  • 玻璃芯片:使用注意事项、清洗步骤、堵塞检查及常规处理方法
    玻璃芯片使用注意事项1. 玻璃芯片及玻璃芯片夹具如图所示,安装时需按夹具使用说明操作。2. 生成微滴粒径大小取决于玻璃芯片结构十字剪切口的下游宽度,客户依据需要选择合适玻璃芯片。3. 通入的液体必须经过0.45 μm滤膜过滤以防止芯片堵塞。4. 使用完毕后必须按照规定步骤对玻璃芯片进行清洗和干燥。5. 玻璃芯片为玻璃材质,使用过程中需避免磕碰损坏。6. 硅胶塞使用时须定期更换,如通二氯甲烷溶液(需每次更换)。清洗步骤1.在A和C口处连接液体排出管,在B口中通入2 mL分散相溶剂(这里特指水包油实验,如易析出的溶质PLGA,可通入二氯甲烷溶剂溶解且必须滤膜过滤),以此将易析出的溶质快些排出;2.在B口中,通入60s空气,将1中通入的溶剂排出;3.在B口中,通入5 mL去离子水滤膜过滤,将易溶于水的物质排出;4.在B口中,通入5 mL异丙醇滤膜过滤 5.在B口中,通入60s空气干燥。玻璃芯片堵塞检查及常规处理方法1.在使用或清洗过程中,发现流道中有杂质,需及时处理,如改变液体进入口冲出流道中的杂质;若仍无法解决,可参考“堵塞的玻璃芯片处理方法”。2.若从一个端口通入液体时,发现液体无法从另外两个端口流出:① 需要从夹具中取出玻璃芯片,检查三个端口(A、B和C)是否堵塞;②若端口堵塞,需用尖嘴镊子取出杂质;若三个端口无堵塞现象,则需要把芯片放置在显微镜下观察,检查流道内是否有较大杂质堵塞;若仍无法解决,可参考“堵塞的玻璃芯片处理方法”。堵塞的玻璃芯片处理方法1.若杂质可溶于油相溶剂(水包油实验,如溶于二氯甲烷)且芯片未完全堵死,如PCL、PLGA和PLA(由于二氯甲烷的挥发而析出),可直接通入二氯甲烷以溶解流道中的杂质;若芯片完全堵死,可将芯片泡于二氯甲烷中,使得杂质被慢慢溶解;2.若玻璃芯片中的杂质是水相中的PVA(水包油实验,PVA为表面活性剂),或者加热易溶解于水(如海藻酸钠,油包水实验)的杂质:可直接将玻璃芯片置于90°C水浴锅中,一段时间后,取出并用洗耳球或从芯片的一端口将溶解后的杂质吹出;3.若杂质为长条纤维状,卡在十字剪切口且与BC线垂直,在B口和C口交替通入水或异丙醇(此外溶液需0.45 μm滤膜过滤),以此将杂质通过A口排出;4.若杂质为块状,可视情况从一个端口(或水等其他溶剂)加大压力将块状杂质排出;此方法仅作参考,不一定完全能将杂质排出;5.若玻璃芯片被堵但未完全堵死(不符合方法1),可以选择在芯片中通入浓硫酸(浓硫酸腐蚀硅胶塞,用完需立即更换)以碳化杂质;若玻璃芯片已被完全堵死,可将芯片泡在浓硫酸中以碳化杂质;此方法仅针对于有机物,其他无机物不适用;6.若芯片已完全堵死,可将玻璃芯片上放置于电热板上200 °C(温度过高易损坏玻璃芯片)加热,用于碳化杂质疏通流道;此方法仅针对于有机物,其他无机物不适用。以上方法仅供参考,具体问题需视情况而定。
  • 玻璃化学组成知多少?iCAP PRO ICPOES告诉您
    玻璃化学组成知多少?iCAP PRO ICPOES告诉您 关注我们,更多干货和惊喜好礼引言玻璃的出现和使用在人类生活中已经有4000多年的历史,公元12世纪出现了用于交换的商品玻璃,并开始成为工业材料。18世纪,制成了望远镜用的光学玻璃。1874年,比利时首先制出平板玻璃。1906年,美国制出平板玻璃引上机。此后,随着玻璃生产的工业化和规模化,各种用途和各种性能的玻璃相继问世。现代,玻璃已成为日常生活、生产和科学技术领域的重要材料。 玻璃材质的饭盒、酒杯、输液瓶都属于硅酸盐类玻璃,这类玻璃主要成分为二氧化硅,其他化学成分包括碱金属,碱土金属氧化物以及三氧化二硼等,通过合理的优化化学组成可改善玻璃的化学及物理性质,全面提高玻璃质量。想知道此类氧化物化学组成含量?让赛默飞ICPOES来告诉您。 赛默飞iCAP PRO ICPOES仪器特点找我准没错! 紧凑精密恒温的光学系统:在波长200nm处光学分辨率小于7pm,确保卓越的检出限,可快速准确的对复杂样品进行简单分析全新400万像素CID检测器:2MHz高速读取数据,确保最jia信噪比,拥有9个数量级的动态范围,分析速度提高30%-40%智能Qtegra软件:入门级技术人员也能快速上手,智能监控分析物并直接提供分析结果,软件符合21 CFR法规独特的炬室设计:拥有方便拆卸的POP石英窗,易于观察和维护,垂直炬管与独特的等离子接口结合,可获得超高耐用性插拔式进样系统:快速安装和维护前处理参考国家标准GB/T 1347-2008《钠钙硅玻璃化学分析方法》,GB/T 1549-2008《纤维玻璃化学分析方法》前处理方法,采用湿法消解对三氧化铝、氧化镁、氧化钠、氧化钾、氧化钙、三氧化二铁、二氧化钛等化学组成元素进行消解,优化微波消解的方法作为三氧化二硼及二氧化硅测定的前处理方法。湿法消解过程称量准确称量0.1000 g样品于铂金坩埚中, 加入10 mL氢氟酸,1 mL硝酸湿法消解置于300 ℃左右电热板上加热,待样品溶解完全且近干的情况下,用3 mL 1:1盐酸冲洗杯壁。定容转移定容至100 mL容量瓶中。同时处理样品空白。微波消解过程称量准确称量0.1000 g样品于聚四氟乙烯管中微波消解加入2 mL硝酸,2 mL盐酸,7 mL氢氟酸,置于微波消解仪中进行消解定容待消解程序完成后,转移定容至100 mL容量瓶中。同时处理样品空白。检测结果采用标准曲线法进行测定,各元素标准曲线线性良好,线性相关系数0.9975以上。谱线选择及线性相关系数如下表所示:各元素峰形呈正态分布,基本不需要调整背景扣除位置,部分元素峰形图如下图所示: 图1 Ti元素标准物质及标准溶液重叠峰形图 图2 Mg元素标准物质及标准溶液重叠峰形图 图3 K元素标准物质及标准溶液重叠峰形图 为考察方法的准确性,对标准物质进行测定,实验结果表明,采用湿法消解测定的各氧化物成分含量基本控制在标准值不确定度范围内,说明该方法是可靠的。 表1 湿法消解测定结果 采用微波消解前处理方法测定三氧化二硼结果在标准值不确定度范围内,二氧化硅结果基本满足控制在标准值不确定度范围内。 表2 微波消解测定结果结论Conclusion实验使用Thermo Scientific iCAP PRO系列全谱直读型电感耦合等离子体光谱仪,针对不同的元素采用不同的前处理方法,通过优化仪器参数条件,可以很好的满足玻璃中氧化物化学组成成分的含量检测,具有高效、准确、重现性好、分析时间短等优点。通过对标准物质的测定,保证了前处理方法及上机结果的可靠性。“码”上下载填写表单即刻获取【赛默飞iCAP PRO系列电感耦合等离子体发射光谱仪手册】
  • 岛津应用:ICPMS测定玻璃药包材中浸出金属元素含量
    玻璃药包材化学稳定性高,耐药物腐蚀性,与药物相容性好。同时卫生安全,无毒无异味,吸收小,可回收利用成本低。YBB00172005-2015 《药用玻璃砷、锑、铅、镉浸出量限度》中明确规定了元素测定金属元素的限度及相应的前处理方法,根据YBB00372004-2015 《砷、锑、铅、镉浸出量测定法》测试浸出元素,其中砷、锑采用紫外法,铅、镉采用原子吸收法。ICPMS测定快速快、灵敏度高等优点备受测试者的亲睐。本文采用岛津电感耦合等离子体质谱仪ICPMS-2030,建立了玻璃药包材中溶出的砷、钡、镉、铜、铅、锑和硒的ICP-MS 测定方法,该方法具有检出限低、灵敏度高、线性范围宽、基体效应小、准确度和精密度高、简便快捷、可同时多元素分析等优点。岛津电感耦合等离子体质谱仪ICPMS-2030 了解详情,敬请点击《ICPMS-2030 测定玻璃药包材中浸出金属元素含量》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 可折叠玻璃、新一代人造太阳,20项重大科技成果亮相中关村论坛
    2023中关村论坛重大科技成果专场发布会5月30日举行,发布了面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康的20项重大科技成果。面向世界科技前沿成果(共5项)硅基光电子集成芯片与多功能系统硅基光电子集成芯片是在同一硅基衬底上,集成光电子与微电子优势的微纳芯片,是在半导体领域的核心技术之一。北京大学科研团队首次研发由微腔光梳驱动的硅基片上集成系统,采用高稳定性的并行激光光源给芯片装上了“大脑”。根据应用需求,设计不同光子芯片架构,实现多通道海量信息传输、感知、计算,在超高算力密度、超高图像识别准确度等方面达到国际领先水平,广泛应用于云计算、自动驾驶等领域。(发布单位:北京大学)夸父卫星在轨获得世界一流天基太阳硬X射线图像等系列成果2022年10月9日,中国首颗综合性太阳探测卫星“夸父一号”成功发射。在轨测试期间,获得一系列重要科学观测成果。其中,全日面矢量磁像仪(FMG)首次实现我国在空间开展高时间分辨、高精度的太阳磁场观测,所获取的太阳局部纵向磁图的质量达到国际先进水平;太阳硬X射线成像仪(HXI)首次实现我国对太阳硬X射线成像,是目前唯一提供地球视角太阳硬X射线图像的专用设备;莱曼阿尔法太阳望远镜(LST)的子载荷之一,即太阳日面成像仪(SDI)首次实现在卫星平台上获取莱曼阿尔法波段全日面像,另一个子载荷—太阳白光望远镜(WST)观测到太阳上多个之前罕见的“白光耀斑”。卫星在轨表现为后续的科学运行打下良好的基础。(发布单位:中国科学院紫金山天文台、中科院国家空间科学中心)通用视觉大模型SegGPTSegGPT是国际首个利用视觉提示完成任意分割任务的通用视觉模型。SegGPT“一通百通”:给出一个或几个示例图像和意图掩码,模型就能get用户意图,“有样学样”地批量化完成同类物体分割任务,无论是在当前画面还是其他画面或视频环境中。SegGPT可以“分割一切,识别万物”,加速高级别自动驾驶和通用机器人等实体智能产业的发展。(发布单位:北京智源人工智能研究院)高能同步辐射光源直线加速器满能量出束高能同步辐射光源是探测物质微观结构的国之重器,电子束发射度达到世界顶尖水平,亮度比太阳光高一万亿倍,可为航空航天、能源环境、生物医学等多学科前沿领域,提供多维度、实时、原位表征的“探针”,解析物质结构生成及演化的全周期。2023年3月14日,作为电子诞生地的直线加速器成功加速第一束电子束,束流能量达到500兆电子伏特,标志着该设施进入科研设备安装与调束并行的阶段。该设施是在国家发展改革委支持下,中科院、北京市共建的大科学装置,建成后,将是中国首台高能量同步辐射光源,也将是世界上亮度最高的第四代同步辐射光源之一,为全球前沿基础科学和高技术领域的原始创新提供先进研究平台。(发布单位:中科院高能物理研究所)下一代云化开放无线网络新型空口试验验证平台基于6G“数字孪生、智慧泛在”的愿景与需求,中关村泛联院联合中国移动开发了下一代云化无线新型空口试验验证平台,为无线人工智能、通信感知一体化、智能超表面等6G前沿关键技术提供原型验证。该平台基带部分采用异构硬件开放架构,与5G基带相比,提升了近5倍的数据处理能力,并首次实现与多频段前端的灵活接入。该平台将为科研机构和企业提供开放的联合研发测试验证环境,支撑6G技术标准路线选型和系统方案验证,同时将协同带动芯片、器件等产业链研发布局和技术迭代。(发布单位:中关村泛联移动通信技术创新应用研究院)面向经济主战场(共5项)30微米厚度柔性可折叠玻璃超薄柔性可折叠玻璃是全球柔性显示技术与终端发展的焦点,可广泛应用于折叠手机、卷轴电视机、柔性医疗检测装备、5G天线等领域。中国建材集团科研团队成功开发出厚度30-70微米超薄柔性可折叠玻璃,其中30微米产品厚度仅为A4纸厚度的四分之一,弯折半径小于0.5毫米,弯折寿命突破100万次,核心性能指标达到全球领先,打造了超薄柔性可折叠玻璃全流程的工业化产业链。(发布单位:中国建材集团玻璃新材料研究总院)先进压缩空气储能技术中国科学院工程热物理研究所完成先进压缩空气储能技术研发,成功攻克了宽负荷压缩机、高负荷透平膨胀机和高效蓄冷蓄热器等关键技术,实现了从空气内能到电能的高效转换。基于该技术,已在张家口建成国际首套百兆瓦先进压缩空气储能示范电站,顺利并网发电,系统额定效率达70.2%,比国外同等规模的压缩空气储能电站高出10%-15%,整体性能良好。(发布单位:中科院工程热物理研究所)己内酰胺绿色生产成套新技术己内酰胺作为重要化工原料,广泛应用于纺织、汽车、电子、航空航天等领域。中国石化首创己内酰胺绿色生产成套新技术,采用新反应途径、新反应工艺、新催化材料,使碳原子利用率由80%提升至95%,使氮原子利用率由60%提升至90%,与国际同行业技术相比,装置投资下降80%,生产成本下降50%。中国已成为己内酰胺的第一生产大国,全球市场份额达60%。(发布单位:中国石化集团公司)180kW高效率氢燃料电池发动机系统亿华通自主开发180kW高效率氢燃料电池发动机系统,通过氢能转换为电能,为新能源重型卡车电机提供动力。通过优化膜电极、双极板的流道设计,大幅提升了氢燃料电池寿命、氢电之间能量转化效率、动态响应速度。电池寿命达3万小时,是行业均值的2倍;能量转化效率达52%,比行业均值高10个百分点;从怠速到平稳运行最大功率点的动态响应时间小于3.2s,发动机提速快,比行业均值缩短60%。主要指标参数行业领先。(发布单位:北京亿华通科技股份有限公司)钠离子电池中科院物理所科研团队在国际上首次研发出低成本、高性能的钠离子电池,该电池由铜基氧化物正极材料、煤基无定型碳负极材料,以及高安全电解液体系组成。目前,该电池已在短续航电动车、1兆瓦时钠离子电池储能电站等进行示范应用。(发布单位:中科院物理研究所)面向国家重大需求(共5项)随钻成像测井仪器及井地数据传输系统 开发深层和非常规油气是保障未来能源安全的需要。随钻成像测井仪器利用井下传感器探测地层特性,在钻井过程中给钻头装上“眼睛”,是石油工业最核心的技术之一。中科院地质与地球物理所科研团队攻克了强振动冲击条件下动态测量等多项关键技术,自主研制了高温石英加速度计、压力传感器等5种井下核心传感器,成功开发出地质参数成像测井仪器,实现了从随钻一维曲线测井到二维成像测井的技术跨越;同时,研发出将井下数据实时传输至地面的泥浆连续波高速传输系统,并取得了最高速率每秒12比特的重大技术突破。这套仪器为油气高效开发提供了有力支撑。(发布单位:中科院地质与地球物理研究所)集成电路用12英寸高纯钴靶材及阳极12英寸高纯钴靶材及阳极是先进制程逻辑芯片及存储芯片关键支撑材料。通过自主开发,有研亿金成功突破高纯钴深度净化、高纯熔铸、磁性能调控及高可靠焊接等多项核心关键技术。配套国内外高端PVD机台用于国内最先进制程逻辑芯片,及DRAM和3D NAND FLASH先进存储器,批量销售给国内外多家一流半导体生产企业。有研亿金成为国内唯一、全球第二家掌握集成电路用高纯钴靶材和阳极成套制备技术的企业。(发布单位:有研亿金新材料有限公司)低温法烟气污染物近零排放控制(COAP)技术当煤燃烧时产生大量有害烟气。华能集团基于低温氧化吸附脱除技术,利用多孔材料,完成烟气多污染物一体化脱除,烟气经梯级冷却降至零下温区,低温烟气进入吸附塔,一体化吸附脱除多种污染物。实现二氧化硫、氮氧化物、粉尘的排放浓度远低于国际超低排放标准,同时,还可实现三氧化硫、重金属等其他污染物的深度脱除,并实现硫的资源化利用。这一重大原始创新成果为绿色、可持续发展作出了有益贡献。(发布单位:中国华能集团清洁能源技术研究院)基因编辑新型核酸酶 基因编辑是高效、精准的生物育种技术。中国农业大学科研团队首次发现全新的、拥有自主知识产权的基因编辑核酸酶Cas12i和Cas12j。当前,已应用于水稻、玉米、小麦、大豆等主要农业生物遗传改良中,支持培育了高产玉米、高油酸大豆等产品,为基因编辑技术产业化应用提供了重要工具。(发布单位:中国农业大学)新一代人造太阳 中核集团核工业西南物理研究院研制新一代“人造太阳”,是规模和参数在国内领先的新一代磁约束核聚变研究装置,等离子体电流可达300万安培,等离子体离子温度可达1.5亿摄氏度,将使我国等离子体聚变三乘积参数达到聚变堆芯级水平,综合性能跻身国际聚变先进行列。目前该装置等离子体电流突破115万安培,书写了我国可控核聚变装置运行新纪录。(发布单位:中核集团核工业西南物理研究院)面向人民生命健康(共5项)颅内病灶磁共振引导激光消融治疗系统 由华科精准、天坛医院等机构共同研发磁共振引导激光消融治疗系统,包含磁共振监测激光治疗设备及一次性激光光纤套件,是国内首款获批上市的磁共振引导颅内激光消融治疗系统,开创了我国神经外科微创治疗可视化、可控化、可量化的全新手术方式。该治疗系统磁共振温度监控误差小于1℃,温度刷新时间间隔小于4s,关键技术参数均处于国际领先水平。目前,已在国内率先完成难治性癫痫、脑肿瘤等各类微创手术超过400例。(发布单位:华科精准(北京)医疗科技有限公司、首都医科大学附属北京天坛医院)深脑成像微型化三光子显微镜三光子显微镜基于荧光分子吸收三个光子并发射荧光的效应,实现高分辨率光学成像。北京大学科研团队研发了重量仅为2.17克的微型化三光子显微镜,采用新颖的光学构型设计,并自主研制传输飞秒激光的柔性光纤、微型高分辨率物镜等核心部件,一举突破此前微型化显微镜的成像深度极限。该显微镜神经元功能成像最大深度可达1.2毫米,首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构的神经功能连接机制提供了观测手段。(发布单位:北京大学)北斗卫星通信融入大众智能手机及实现产业化兵器工业集团联合中国移动、中国电科,应用先进的信道编码技术,研制射频基带一体的核心芯片,可搭载于个人智能设备,实现直连卫星,可在无地面网络情况下持续保障应急通信、即时报告位置。这是成功链接高轨卫星、随时随地实现双向通信的重大跨越。目前,核心芯片量产规模突破千万。如您的手机搭载了这款芯片,当您身处无网络的险境,可点开北斗卫星消息选项,发出短报文,将获得及时响应。北斗,为您的生命保驾护航。(发布单位:中国兵器工业集团、中国移动通信集团、中国电子科技集团)基于国际首创技术的基因测序仪赛纳生物首创荧光发生和纠错编码技术,其中荧光发生技术是荧光切换的测序化学技术,纠错编码技术则是编码再解码的自校正信息处理技术。应用两项核心技术,进行基因序列检测,准确度达99.99%。目前,推出首款桌面型S100基因测序仪,具有体型小、操作简单、通量灵活、多场景适用的特点,在肿瘤诊疗、生殖健康等领域进行基因异常检测,实现了精准的疾病预警和诊断。(发布单位:赛纳生物科技(北京)有限公司)国产体外膜肺氧合治疗(ECMO)产品长征医疗联合北京协和医院等多家知名医院悉心研制的辉昇-I型ECMO产品,能够在体外循环过程中提供动力及安全监测,适用于急性呼吸衰竭、其他治疗方法难以控制并有可预见的病情持续恶化或死亡风险的患者。主机采用航天伺服系统中的电机控制技术,可精准控制泵头转速,减少对血液的破坏。该设备稳定性强、集成度高,产品仅为同类产品重量的1/2-1/3,整体性能达到国际先进水平。
  • 国家标准《搪玻璃层试验方法 第10部分:生产和贮存食品的搪玻璃设备搪玻璃层中重金属离子溶出量的测定和限值》征求意见
    国家标准计划《搪玻璃层试验方法 第10部分:生产和贮存食品的搪玻璃设备搪玻璃层中重金属离子溶出量的测定和限值》由 TC72(全国搪玻璃设备标准化技术委员会)归口 ,主管部门为中国石油和化学工业联合会。主要起草单位 江苏扬阳化工设备制造有限公司 、天华化工机械及自动化研究设计院有限公司 、苏州市协力化工设备有限公司 、太仓新工搪玻璃有限公司 、北京华腾大搪设备有限公司 。征求意见稿编制说明
  • 解决方案 | ICP-OES法分析玻璃粉及高纯石英粉末中多种元素
    玻璃粉主要组成为PbO 、 SiO2 、 TiO2及其他杂质元素,是一种重要的半导体材料,主要应用于制造电子浆料和其它电子元器件行业。其中组成的变化会影响元器件的性能,因此对玻璃粉中各组分含量的分析具有重要的意义。高纯石英主要矿物成分是SiO2,因具有耐高温、耐腐蚀、低热膨胀性、高度绝缘性和透光性等优异物理化学特性,广泛应用于LED照明、光伏和半导体等高新技术产业。《矿产资源工业要求手册》中,根据石英中SiO2、Fe2O3及污染元素(Al、Ti、Na、K、Li、Ca、Fe、P、B)的含量,划分为不同纯度等级。因此对石英粉末中各组分含量的分析对实现不同纯度石英砂的级别划分具有重要的意义。技术难点玻璃粉及高纯石英中多元素分析存在以下技术难点:种类多待测元素种类多,需实现多元素同时检测,常规分析方法(如容量法、比色法)不能满足其检测需求。差异大待测元素含量差异大,需满足高低浓度元素同时检测的需求,对仪器检测准确度、线性范围提出了更大挑战。含量低高纯石英粉末中杂质元素含量低,要求仪器具有高灵敏度和低检出限。谱育优势谱育科技 EXPEC 6000 R型 电感耦合等离子体发射光谱仪(ICP-OES)具备高灵敏度、低检出限、宽线性范围、多元素同时测定的特点,可解决上述困难,实现玻璃粉、高纯石英中Al、Na、K、Li、Cr、Fe、Mg、Ba、Ti、Ca、Mn、Mi、Cu、Mo 14种元素的分析。EXPEC 6000 R型电感耦合等离子体发射光谱仪EXPEC 790s超级微波化学工作站多元素同时分析全谱直读数据采集,实现多元素同时性分析。宽线性范围测定谱线的线性动态范围:≥105,实现高低浓度同时检测。高灵敏度百万像素科研级防溢出面阵CCD检测器,实现低含量元素的高灵敏响应。应用案例仪器与试剂仪器:EXPEC 6000 R型、EXPEC 790s主要试剂:氢氟酸 ;盐酸;去离子水测定参数分析结果玻璃粉使用 EXPEC 790s 对样品进行微波消解,应用 EXPEC 6000 R型 测定玻璃粉末标准品中Al2O3、CaO、Fe2O3、K2O、MgO、Na2O 6种金属氧化物含量,结果表明:该方法测定方法精密度均小于3%,其测量结果与该样品的的标准值比对其偏差在6%以内,说明了 EXPEC 6000 R型 测定结果的准确性。玻璃粉标准品中样品测试结果高纯石英使用 EXPEC 790s 对样品进行微波消解,应用 EXPEC 6000 R型 测定4种高纯石英粉末中Al、Na、K、Li、Cr、Fe、Mg、Ba、Ti、Ca、Mn、Mi、Cu、Mo 14种元素的含量,目标元素均有良好的线性,空白低,样品中常量及微量元素均能满足低浓度的检出。使用 ICP-OES 法测定石英样品中的微量元素的测试方法基体效应小,精密度高,检出限较低,较传统方法效率较高,结果可信度高,可满足石英样品中多元素快速、精确检测的要求。高纯石英粉末中样品测试结果EXPEC 6000 R型 电感耦合等离子体发射光谱仪(ICP-OES),统一了高可靠性的射频电源、稳固的恒温二维分光系统、制冷的防溢出高速CCD传感器、易用的炬室与进样系统,结合独创的FSC光谱校正技术,配合 EXPEC 790s 使用,大大提高了样品处理效率。目前,EXPEC 6000 R型 已成功应用于环境检测、材料、冶金、食品安全和化工等领域,有效满足多种元素检测需求,致力于为用户带来良好的性能和使用体验。
  • 等离子如何提升太阳能光伏板封装可靠性
    等离子清洗机提升太阳能光伏板封装可靠性2017年,习近平总书记在党的十九大报告中提出,必须树立和践行“绿水青山就是金山银山”的理念,站在人与自然和谐共生的高度谋发展。生态环境是人类生存发展的根基,通过清洁能源的开发使用,才能做好保护生态环境,走好绿色发展之路。一、清洁能源之太阳能光伏一般情况,太阳能光伏板的使用环境较为苛刻,而国家规定光伏电站的设计使用寿命是25年,因此太阳能光伏组件封装的可靠性就显得尤为重要。光伏产业流程中,哪些环节会影响最终的封装效果呢? 二、光伏产业流程 显而易见,中游太阳能光伏板制程中,背板可靠性、压层件工艺、整体光伏组件封装工艺等,均是影响太阳能光伏板封装可靠性的重要因素。下面我们来了解,如何使用等离子技术,提高太阳能光伏组件封装可靠性!三、等离子提升太阳能光伏板封装可靠性太阳能光伏板在生产过程中,存在大量涂覆、复合、粘接、热压等工艺,使用等离子技术活化后,可以有效提高材料表面的润湿性,从而提升整体封装效果。01 等离子提升光伏背板可靠性太阳能背板需具备优越的耐候性、高绝缘性以及低水透性能。含氟材料的耐候性、斥水赤油性能,能很好的满足这一要求,但斥水斥油性不利于与基材复合,因此在与基材(PET)涂覆/复合前,使用等离子清洗,可有效提高含氟材料与基材涂覆/复合的可靠性。02 等离子提升光伏压层件工艺可靠性 压层件工艺中,使用等离子清洗机对光伏玻璃表面和底板上的氟膜进行表面处理,能更好的与EVA结合,提高压层件各组件的结合强度。03 等离子提升“组件”工艺可靠性压层件完成后,加上边框、密封胶、接线盒,就完成了我们的主体“太阳能光伏板”的制作。在这一环节,使用等离子清洗机对边框进行处理,从理论上讲,对密封效果也会有一定程度的提升。后续加上逆变器、汇流箱、支架、蓄电池等,一个整体的光伏系统就可以完成啦。
  • 片式真空等离子清洗机:双工位处理平台,有效提升半导体封装效率,提升产能
    随着集成电路技术的发展,半导体封装技术也在不断创新和改进,以满足高性能、小型化、高频化、低功耗、以及低成本的要求。等离子处理技术作为一种高效、环保的解决方案,能够满足先进半导体封装的要求,被广泛应用于半导体芯片DB/WB工艺、Flip Chip (FC)倒装工艺中。DB工艺前等离子处理芯片键合(Die Bonding)是指将晶圆上切割下来的单个芯片固定到封装基板上的过程。其目的在于为芯片提供一个稳定的支撑,并确保芯片与外部电路之间的电气和机械连接。常用的方法有树脂粘结、共晶焊接、铅锡合金焊接等。在点胶装片前,基板上如果存在污染物,银胶容易形成圆球状,降低芯片粘结度。因此,在DB工艺前,需要进行等离子处理,提高基板表面的亲水性和粗糙度,有利于银胶的平铺及芯片粘贴,提高封装的可靠性和耐久性。在提升点胶质量的同时可以节省银胶使用量,降低成本。WB工艺前等离子处理芯片在引线框架基板上粘贴后,要经过高温使之固化。如果芯片表面存在污染物,就会影响引线与芯片及基板间的焊接效果,使键合不完全或粘附性差、强度低。在WB工艺前使用等离子处理,可以显著提高其表面附着力,从而提高键合强度及键合引线的拉力均匀性,提升WB工艺质量。*WB工艺前处理应用案例Flip Chip (FC)倒装工艺等离子应用在Flip Chip(FC)倒装工艺中,将称为“焊球(Solder Ball)”的小凸块附着在芯片焊盘上。其次,将芯片顶面朝下放置在基板上,完成芯片与基板的连接后,通常需要在在芯片与基板之间使用填充胶进行加固,以提高倒装工艺的稳定性。通过等离子清洗可以改善芯片和基板表面润湿性,提高其表面附着力,进而影响底部填充胶的流动性,使填充胶可以更好地与基板和芯片粘结,从而达到加固的目的,提高倒装工艺可靠性。片式真空等离子清洗机针对半导体行业,DB/WB工艺、RDL工艺、Molding工艺、Flip Chip (FC)倒装工艺等,能够大幅提高其表面润湿性,保证后续工艺质量,从而提高封装工艺的可靠性。设备优势:1. 一体式电极板结构设计,等离子体密度高,均匀性好,处理效果佳2. 双工位处理平台,四轨道同时上料,有效提升产能3. 可兼容多种弹匣尺寸,可自动调节宽度,提升效率并具备弹匣有无或装满报警提示功能4. 工控系统控制,一键式操作,自动化程度高行业应用:1. 金属键合前处理:去除金属焊盘上的有机污染物,提高焊接工艺的强度和可靠性2. LED行业:点银胶、固晶、引线键合前、LED封装等工序中可提高粘和强度,减少气泡,提高发光率3. PCB/FPC行业:金属键合前、塑封前、底部填充前处理、光刻胶去除、基板表面活化、镀膜,去除静电及有机污染物
  • “等离子体表面处理仪有奖问答”——2014年五洲东方公司系列有奖问答五
    2014年五洲东方公司系列有奖问答五 “等离子体表面处理仪网络有奖问答”活动开始啦!全部回答正确者即可获得由五洲东方公司提供的精美奖品一份。熟悉实验方法的网友不要犹豫了,快来参加吧!活动开始时间:2014年4月底。活动奖励:全部答全答对的网友将获得精美礼品一份。答题规则如下:我们会提供参考文章,您可以阅读完文章后答题。本次试题共5题,1-5题都必须答全。点击下载试题等离子体表面处理仪网络有奖问答问题.doc,,填写完整后,您可以:1)将问卷邮件至g.y_liu@ostc.com.cn。2)将问卷邮寄至北京五洲东方公司(“北京市海淀区北四环中路265号中汽大厦7层”,邮编:100083,刘广宇收)。奖品发放:收到问卷经审核后,将发放精美奖品。为了保证奖品能顺利发送到您的手中,请将您的所有联系方式全部填写全面。活动咨询电话:400-011-3699活动详情:等离子体表面处理仪有奖问答——五洲东方系列有奖问答五请关注下期有奖问答活动:2014年五洲东方公司系列有奖问答六所有活动信息请关注五洲东方官方网站www.ostc.com.cn首页公告栏。感谢您的参与!
  • 等离子体显微镜载玻片“揭示”了癌细胞的颜色
    纳米载玻片为无染色细胞分析提供了一条清晰的途径。图1 一种新的显微镜载玻片可以转换介电常数的微妙变化,显示引人注目的颜色对比度澳大利亚的研究人员开发了一种显微镜载玻片,可以通过“揭示”癌细胞的颜色来改善癌症诊断。由澳大利亚的拉筹伯大学(La Trobe University )高级分子成像研究委员会卓越中心的布莱恩阿贝(Brian Abbey)教授及其同事首创的所谓纳米载玻片(NanoMslide),是一种等离子体活性的显微镜载玻片,可以将样品介电常数的细微变化转化为鲜明的颜色对比。阿贝和他的同事已经使用纳米载玻片在组织中辨别癌细胞,其灵敏度优于一些用于临界诊断的商业生物标志物。正如研究人员在《自然》(Nature)杂志上报道的那样:“这项技术的广泛应用以及它与标准实验室工作流程的结合,可能会证明其应用范围远远超出组织诊断。” 几十年来,研究人员已经知道,由于细胞内蛋白质分布和整体形状的差异等因素,癌细胞倾向于以不同于健康细胞的方式与光相互作用。虽然在生物成像过程中,通常会将染色剂和染料添加到透明的生物样品中,以生成彩色图像,但这些染料往往会改变样品的性质。考虑到这些点,阿贝和同事使用最新的纳米制作技术,来创建一个可以操纵光线和“添加”颜色的等离子体主动显微镜载玻片。图2载玻片在玻璃表面结合了几层精细印刷的金属,以操纵光与细胞的相互作用。结果是在显微镜下观察组织时,大大增强的对比度纳米制剂在墨尔本纳米制造中心(MCN)制作,该中心是澳大利亚国家制造设施(ANFF)的一部分。正如阿贝所强调的:“通过开发一种特殊的纳米涂层,我们改进了普通显微镜载玻片的表面,并将其转化为一个巨大的传感器。”他补充道:“真正引人注目的是,传感器的结构只有几百纳米宽,但在几十厘米或更大的范围内重复的精度惊人。”当样品放置在载玻片上,通过可见光激活载玻片时,就将介电常数转变为颜色对比度的变化。正如阿贝及其同事在《自然》杂志上所写:“非凡的光学对比度涉及光与金属表面自由电子集体振荡的共振相互作用,称为表面等离子体激元。”当透射光通过载玻片上的一组波长光阑时(载玻片与薄电介质试样接触),光谱发生了变化。当使用标准透射亮场显微镜对样品进行成像时,这会导致与局部样品厚度和/或介电常数相关的空间分辨颜色分布,从而产生显著的颜色对比效果。图3 使用纳米载玻片来观察未染色的癌组织。 [拉筹伯大学]根据阿贝的说法,这可能意味着很难通过等离子体增强的颜色对比度在可见光透射图像中清楚地看到光学透明样品中的特征。他说:“纳米载玻片使组织呈现出美丽的全彩对比,使得在一张玻片上更容易区分多种类型的细胞。”。研究人员利用小鼠模型和患者组织,与乳腺癌病理学家一起测试了他们的纳米载玻片。在小鼠模型中,研究人员确信从样本中看到的一些表明癌细胞的特定颜色。在对患者组织进行更复杂的病理学评估时,纳米载玻片也表现强劲,优于一些商业生物标记物,这些标记物被用作边界诊断的辅助手段。“这是我第一次看到癌细胞突然出现在我面前,”艾比的同事、彼得麦克卡勒姆癌症中心的贝琳达帕克(Belinda Parker)教授说。她补充道:“我们所做的只是取一段乳腺癌组织,放在载玻片上,在传统光学显微镜下观察。我们可以很容易地将癌细胞与周围的正常组织区分开来。”。“这张幻灯片还将乳腺癌与其他非癌性异常区分开来,这对早期癌症诊断有很大的希望。”研究人员现在也在测试他们的液体活组织切片载玻片,并希望扩大生产,这将使他们能够探索进一步的应用,并生产出进一步临床验证所需的载玻片数量。阿贝说:“这项技术也可能对不断增长的数字病理学空间产生巨大的好处,在那里,纳米载玻片产生的鲜艳色彩可以帮助开发下一代人工智能算法来识别疾病的迹象。”。该项研究发表在《自然》杂志上。符斌 供稿
  • 等离子体修饰碳纳米管在污染物处理方面取得进展
    低温等离子改性接枝是一种处理时间短、不产生化学污染、不破坏材料的整体体积结构、仅仅改变材料表面性能的处理技术。近年来,等离子体所“低温等离子体应用研究室”陈长伦、邵大冬、胡君、王祥科等所在的课题组利用低温等离子体技术对碳纳米管进行表面修饰改性组装,克服了碳纳米管的难溶性带来的制约等问题,大为提高了其实际应用程度。  该课题组在用低温等离子体技术对碳纳米管进行改性组装后,将其应用于环境污染物检测和治理研究方面,取得了一系列成果。  一是分别利用Ar/H2O,Ar/NH3,Ar/O2微波等离子体对碳纳米管进行表面处理,使其表面引入含氧、含氨基等功能基团,提高了碳纳米管的亲水性和分散性,使其可制备纳米溶液。这些经过处理的(表面修饰的)功能化材料对改善碳纳米管在生物、环境污染物吸附等方面,具有很好的应用前景。部分研究结果发表在Applied Physics Letter (2010, 96, 131504) Carbon (2010, 48, 939-948) The Journal of Physical Chemistry C (2009, 113, 7659-7665) Diamond & Related Materials (in press) 并受邀请在国际会议上做2次口头报告。  二是利用N2射频等离子体对碳纳米管表面进行活化处理,然后接枝上有机单体和天然高分子材料,制备碳纳米管/有机物复合材料。等离子体制备的复合材料表面具有各种功能基团,这些功能基团对持久性有机污染物(POPs)、有毒有害的重金属离子、放射性核素具有强的吸附、络合能力,因而提高了复合材料对污染物的吸附能力。部分研究结果发表在The Journal of Physical Chemistry B (2009, 113, 860-864) Chemosphere (2010, 79, 679-685) Plasma Processes and Polymers (in press,并被选为封面)。  三是碳纳米管由于尺度小,使其在吸附处理有机/无机污染物后,在回收和循环利用纳米材料方面具有很大的难度。采用传统的离心法需要高的转速,过滤法易导致过滤膜堵塞,如果吸附污染物的碳纳米管进入环境,会产生二次污染。针对上述问题,该课题组采用溶胶—凝胶法,首先在碳纳米管上组装上铁氧化物,然后利用N2射频等离子体对碳纳米管/铁氧化物表面进行活化处理,接枝上有机单体和天然大分子材料,制备出磁性多重复合纳米材料,该磁性复合纳米材料不仅具有高的吸附性能,且磁分离技术可以简单方便地把磁性复合纳米材料从溶液中分离出来,解决了固液分离的难题,同时可以大量的应用到实际工作中。部分相关研究成果发表在Environmental Science and Technology (2009,43,2362-2367) Journal of Hazard Material (2009,164, 923-928) Journal of Physical Chemistry B (jp-2009-11424k)。  该工作得到了国家自然科学基金,科技部973重大研究计划“面向持久性有毒污染物痕量检测与治理的纳米材料应用基础”,中科院合肥物质科学研究院重大项目,合肥研究院人才项目和火花项目,中科院新型薄膜太阳能电池重点实验室基金等经费的支持。
  • relyon发布relyon手持式等离子清洗机PZ3新品
    piezobrushPZ3高效便携式手持等离子体发生器piezobrush PZ3 是一款小体积紧凑型手持等离子体发生器,适用于实验室开发以及小批量产品的研发和组装加工。piezobrush PZ3的最大功耗为18瓦,凭借压电直接放电技术(Piezoelectric Direct Discharge Technology – PDD技术)可以产生温度低于50摄氏度的冷活性等离子体。PZ3的核心部件是来自TDK电子集团的CeraPlas™ ,用来产生常压冷活性等离子体的高压放电组件。等离子体能高效加工活化材料表面,同时还可以杀菌消毒和祛除异味。 应用领域》 接合技术 》 生产流程的开发和优化 》 实验室的研发设备 》 微生物、微流体以及食品生产 》 医疗和牙科技术 》 原型和样品模型制造 》 小批量生产加工潜在用途》 各种基础材料表面的活化加工处理 》 提高材料表面润湿性 》 优化黏合、喷漆、印刷以及涂层处理工艺 》 塑料、玻璃、陶瓷、金属、半导体、天然纤维以及复合材料的表面加工处理 》 精细清洁 》 杀菌消毒和祛除异味piezobrushPZ3的技术参数供电电源:AC110-240/50-60Hz最大功耗:18W重量:110g产品组成:手持式设备带电源线,集成风扇音量:45dB等离子体温度:不超过50℃加工处理速度:5cm2/s加工处理距离:2–10mm加工处理宽度:5–29mm可替换模块为了取得最好的加工处理效果,不同类型的材料表面需要使用相应的模块组件进行活化加工处理。我们目前为piezobrushPZ3手持式等离子体发生器提供两种不同的可替换模块组件。piezobrushPZ3所产生的冷活性等离子体是基于压电直接放电技术(Piezoelectric Direct Discharge Technology – PDD技术)中的高强度电场放电形成的。因此,待处理材料表面的电导率是选择相应可替换模块组件的重要参考。标准模块近场模块标准模块是专门为非导电材料(例如塑料、陶瓷以及玻璃等)表面加工处理设计的。为了获得最好的加工处理效果,推荐的使用距离为1–5毫米。如果加工材料表面产生不受控制的偏移或者翻转,等离子体加工设备将自动切断电源并关闭。在这种情况下,材料表面将会部分导电,因此后续的加工处理请使用近场模块进行操作。近场模块用于处理(部分)导电材料例如金属、碳纤维强化聚合物、铅玻璃以及导电塑料等。如果是带有导电涂层的材料或是产品中带有导电组件的情况下,也建议使用近场模块以获得最佳的加工处理效果。只有当近场模块足够接近待处理的导电材料表面时(也可以穿透所覆盖的薄绝缘涂层),才会激发点燃等离子体。当距离在几毫米的范围内,近场模块和待处理材料表面之间可以看见紫光,表明加工处理正在进行。系统会自动识别当前所使用的模块类型,并相应地调整加工处理参数。液晶显示为了更好的控制等离子体的各种加工处理过程,piezobrush PZ3配备了一块液晶显示屏用来显示和调用各种不同的功能:过程控制: 》 秒表:用来测量时间 》 定时器:具有自动结束功能的定时功能 》 节拍器:在设定的加工处理间隔以后,会给予声音反馈功耗设置:多级可调的等离子体功率piezobrushPZ2和piezobrushPZ3的对比piezobrush PZ3被认为是piezobrush PZ2的后继产品。下表简单介绍了两个产品各自的优点。piezobrushPZ2带内置电源的手持式设备可更换的喷嘴无法进行过程控制 piezobrushPZ3 带内置电源的手持式设备 可更换的压电模块 过程控制:秒表、定时器以及节拍器 110-240V/ 50-60Hz供电电源110-240V/ 50-60HzMax.30W功耗Max18W170g重量110g57dB噪音水平45 dB不超过50℃等离子体温度不超过50℃4cm2/s加工处理速度5cm2/s2–10mm使用距离2 – 10mm20mm最大使用宽度29mm标准、近场和混合喷嘴/模块标准、近场氩气、氦气和氮气工作气体/ 创新点:piezobrush® PZ3被认为是piezobrush® PZ2的后继产品。下表简单介绍了两个产品各自的优点。piezobrush® PZ2带内置电源的手持式设备,可更换的喷嘴,无法进行过程控制piezobrush® PZ3 带内置电源的手持式设备,可更换的压电模块,过程控制:秒表、定时器以及节拍器relyon手持式等离子清洗机PZ3
  • 使用泰伯劳干涉仪测量HED等离子体相衬像
    诊断高能量密度(HED)等离子体的特性,例如存在于惯性约束聚变(ICF)中的等离子体,对于理解它们的演化和相互作用至关重要。然而,考虑到所涉及的通常极端的温度和密度条件,以及其中一些相互作用发生的小时间和空间尺度,获得这些测量结果是具有挑战性的。干涉测量法是目前等离子体最灵敏、最成功的诊断方法之一。然而,由于最常见的干涉测量系统的设计,工作波长有限,因此可以探测的密度和温度范围受到严重限制,难以测量对于可见光波段不透明的 HED 等离子体。基于 Talbot 效应的 Talbot-Lau 干涉法,提供了将干涉测量扩展到 X 射线波长的可能性。另一方面,在光子能量从几 keV 到几十 keV 的范围内的硬 X 射线,低 z 物质的弹性散射截面远大于衰减截面,相位对比度比传统的衰减度对比对电子密度的变化更敏感。因此,在成像机制上,基于折射的方法相较于基于吸收的方法有更高的固有对比度。即,基于相位变化的 X 射线成像方法,包括 Talbot-Lau 偏折测量方法,尤其适用于低 z 生物组织、聚合物、纤维复合材料和 HED 等离子体等的表征。约翰霍普金斯大学物理与天文学系的 M. P. Valdivia 与 D. Stutman 等人提出了将TL莫尔光束偏转技术扩展到8 keV 能量,用于 HED 等离子体实验中的密度梯度测量。[http://dx.doi.org/10.1063/1.4885467]该实验采用低能 TL 干涉仪装置采用焦斑为 ~ 15 μm FWHM 的铜阳极管作为 X 射线源。当在 22 kV 下工作时,该管产生 Kα 特征线主导的光谱,在 8 keV 处有一个强峰。同时使用了 30 μm 厚度的 Ni 滤波器,进一步提高特征线与轫致辐射之间的比率。对于微周期 Talbot-Lau 光栅的设计与制造工艺,对于高能量X射线(如20~100keV),难点在于得到高厚度/深宽比的光栅结构;对于低能 X 射线(如10keV),则应在设计上更多的考虑光栅衬底的影响,即必须使用自支撑结构或者薄衬底的光栅.该实验中使用了由德国 Microworks 公司制造的基底为10 μm 厚聚酰亚胺膜的光栅。如下图所示,源光栅 G0 周期为 2.4 μm,直径有效尺寸为 7 mm,金高度为 21-24 μm;相位光栅G1的周期为 4.0 μm,直径有效尺寸为 9 mm,镍条高度为 3.0 μm。分析光栅 G2 周期为 12 μm,直径有效尺寸为 35 mm,金高度为 17-22 μm。1. Microworks GmbH 提供的 Talbot-Lau 光栅:a)源光栅;b)相位光栅;c)分析光栅该小组使用多种形状(棱柱,圆柱,球型)的多种材料(丙烯酸,铍,PMMA)作为材料进行实验验证。其中,以 PMMA 球形样品的测试结果为例:2. 直径1.5mm的 PMMA 球的 Moiré 条纹像(a)及其偏移映射图(b)结果表明,在 8 keV 下的测量足够灵敏,可以测量几到几十微弧度范围内的折射角,从而提供 10-20 到 10-21 mm&minus 2范围内的面密度。在静态模式下论证得出该技术能够为 HED 相关物体提供密度诊断。上述小组进一步改进该实验,使用短脉冲(30–100 J, 10 ps)激光轰击 Cu 箔产生 X 射线作为测量光源,由于激光的脉冲特性,使得对 HED 的时间分辨测量成为了可能。(doi: 10.1063/1.5123919)3. 超短脉冲时间分辨 X 射线 Talbot-Lau 干涉实验前端光路示意图4. Talbot-Lau X 射线干涉法诊断平台波尔多大学的 G. P´ erez-Callejo 与 V. Bouffetier,对特定靶结构在激光作用下产生的 HED 瞬时密度进行了模拟和测量,并提供了相应的干涉图像的后处理工具。(DOI: 10.1063/5.0085822)5. 等离子体靶材结构设计示意图(左);模拟轰击靶材后30ns 瞬时密度图像6. 瞬时状态下的干涉图像(a)与空光路参考图像(b)7. 经数据处理后的吸收像(a),暗场像(b)与相位像(c)相关阅读- Microworks光栅助力新冠病毒肺部诊断- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(上)- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(下)Microworks 德国 Microworks GmbH 基于其独特的 LIGA 技术,向广大科研用户提供定制化的微结构加工服务。其中,它的X射线透射光栅在相衬成像领域,有着极高的声誉。Microworks为X射线无损检测(NDT)提供标准化和定制产品。在微纳米技术领域,Microworks代表着高精度,其最高纵横比和精度可以远低于 1 µ m。北京众星联恒科技有限公司作为 Microworks 的中国大陆全权代理商,为中国用户提供所有的售前咨询,销售及售后服务,同时 TALINT EDU 干涉仪套件目前我们开放国内试用, 如果您想体验这款模块化、操作简易的 X 射线相衬、暗场成像套件, 欢迎联系我们。免责声明:此篇文章内容(含图片)部分来源于网络。文章引用部分版权及观点归原作者所有,北京众星联恒科技有限公司发布及转载目的在于传递更多行业资讯与网络分享。若您认为本文存在侵权之处,请联系我们,我们会在第一时间处理。如有任何疑问,欢迎您随时与我们联系。
  • 等离子清洗机如何助力动力电池发展?
    近日,小米汽车SU7正式亮相,在电池安全方面,小米采用全球最高电池安全标准,全系采用高安全的电芯。另外,小米SU7上市27分钟大定超5万台,十分火爆。*图片源自小米汽车视频号,侵删在新能源汽车行业迅猛发展的当下,800V及以上高电压平台车型的兴起,电池安全也成为汽车制造商和消费者的核心关注点。一、PET蓝膜 vs UV涂覆绝缘材料电池绝缘材料作为电池安全的重要屏障,对于电池模组性能乃至整车性能都有着关键作用。在电池生产过程中,PET蓝膜以其良好的绝缘性、化学抗性和拉伸强度备受青睐,PET蓝膜贴合一直以来都是主流的绝缘方案。然而,随着新能源汽车对电池性能的要求提高,PET蓝膜逐渐显现出其局限性,蓝膜粘接性能不足,且在高电压下容易产生击穿风险,对于电池安全而言是一大隐患。为优化单体电池乃至整个电池模组的性能,UV涂覆绝缘材料应运而生。这种材料不仅具备良好的绝缘性、耐高温性和耐腐蚀性,还具备与电池完美结合的能力,能够为电池提供更为全面的保护,有效防止短路和热失控的风险。而UV涂覆绝缘材料也因此被认为在动力电池领域具有广泛的应用前景。*图片源自网络,侵删UV涂覆绝缘材料喷涂固化后,会在电芯铝壳表面形成一层连续、致密的绝缘涂层,可以提高电芯的耐久性和稳定性,延长使用寿命。同时,为了使得UV涂覆绝缘材料可以更好地与电芯铝壳表面结合,等离子表面预处理的作用不容小觑。二、等离子表面处理在喷涂UV绝缘材料之前,通过等离子表面处理可以粗化电芯铝壳表面,提高其表面附着力,使其更有利于UV绝缘材料的涂覆和固化,有助于防止涂层在使用过程中出现脱落或剥离,进一步提高电池的安全性和可靠性。大气等离子清洗机应用案例经过等离子处理前后接触角的数据对比可以看出,电芯铝壳表面润湿性得到提高,保证后续UV绝缘材料能够更均匀地分布。大气等离子清洗机,适用于各种平面材料清洗,在动力电池领域,可搭配旋转枪头使用,有效粗化材料表面,提高表面附着力和润湿性。
  • AST接触角测量仪和等离子体表面处理仪诚招代理
    北京五洲东方科技发展有限公司的前身是成立于1988年的北京东方科技公司,是中国科学院东方科学仪器进出口集团公司的控股子公司。本公司是国外30多家知名企业的代理商,秉承"东方科技"品牌,公司为材料科学、生命科学研究和农业科学研究提供优质服务。本公司是美国AST公司在中国区的独家代理,为满足国内不断扩大的市场需求,并扩充现有渠道,现将其产品在全国范围内诚招区域合作伙伴。AST公司产品:接触角测量仪:Optima XE, VCA 3000等等离子体表面处理仪:PJ,PS-350,PS500,PS750等征聘代理商说明:1) 对电子行业、材料行业比较熟悉,并在相应地区有畅通的销售网络; 2) 遵守北京五洲东方科技发展有限公司区域管理制度;3) 能够保证稳定的最低销售额。 我公司以优惠的代理政策、合理的代理价格及一流的客户服务期待与您合作!联系方式:北京五洲东方科技发展有限公司地址:北京市海淀区北四环中路265号,100083联系电话:010-82388866-210传真:010-82388989
  • 赛默飞将发布新一代多源等离子体Helios Hydra 双束电镜
    p style="text-align: center "strong style="text-align: center "具有快速、可切换的离子源的新型双束电镜/strong/pp style="text-align: center "strong可实现创新研究和增强样品制备/strong/pp  聚焦离子束(FIB)光源与扫描电子显微镜(SEM)相结合,由于其独特的生成各种结构的能力,无论是通过切割还是离子束诱导沉积(IBID),都引起了人们的极大兴趣。通过SEM观察。直到最近,只有镓(Ga+)和氙(Xe+)FIB / SEM仪器可商购。由于其光斑尺寸小和电流密度高,Ga+FIB可为样品制备和纳米原型制作提供良好的结果。Xe+等离子体FIB(PFIB)具有更高的最大电流,可实现高通量切割,适用于大体积表征,同时还可消除Ga+污染样品。但是,在一些情况下,两种离子源都不是理想的选择。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 400px height: 399px " src="https://img1.17img.cn/17img/images/201907/uepic/ff3d817a-c92b-4900-976e-52634d33d3fe.jpg" title="1.jpg" alt="1.jpg" width="400" height="399" border="0" vspace="0"//pp span style="color: rgb(0, 176, 240) " 图1.用Helios Hydra UX DualBeam制备的高质量GaAs薄片的HR S / TEM图像,使用Ar FIB进行最终抛光。/span/pp  为了扩展FIB应用领域的视野,赛默飞推出了新的Thermo Scientific Helios Hydra DualBeam。这种先进的仪器具有新一代PFIB光源,支持多种离子作为主光源。Helios Hydra与氙一起提供三种额外的离子种类:氩,氧和氮。单个离子源,提供多种离子,可在10分钟或更短的时间内在各个光源之间进行独特、轻松的切换。这为各种应用案例提供了显着的优势 例如,先进的TEM样品制备,其中采用氩束的最终抛光可以显着改善成像结果。这项新技术还将使科学家能够对离子 - 物质相互作用进行基础和应用研究,例如氮离子束硅藻与硅相互作用。/pp  " 为科学家在一台仪器中轻松选择四种不同离子源的整合能力,将扩大和优化跨长度尺度研究材料性能的应用空间," 赛默飞世尔科技-材料和结构分析总裁Mike Shafer说," 我们新的 Helios Hydra DualBeam 系统提供了所需的灵活性,可以更好地分析样品、改进结果并开发新的和增强的材料。”/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 400px height: 435px " src="https://img1.17img.cn/17img/images/201907/uepic/355e5007-ce56-4bf5-8d90-ac0a6b27a17c.jpg" title="2.jpg" alt="2.jpg" width="400" height="435" border="0" vspace="0"//pp  span style="color: rgb(0, 176, 240) "图2.使用Helios Hydra CX DualBeam采用O+聚焦离子束和AS& V4软件进行自动连续切片的汽车机油滤清器壳体(聚合物/玻璃纤维复合材料)的三维重构。HFW(水平宽度)为350μm。/span/pp  Helios Hydra 双束电镜允许材料科学研究人员发现和设计新材料并分析其性能和结构。凭借其氧离子束,非常适合用于切割碳基材料,如电池正极中使用的石墨,它可以帮助研究人员开发更安全、更轻、更高效的储能设备。/pp  这是第一款商业化的,允许快速、简便地离子束切换的仪器。以前,应用不同的离子束需要研究人员在仪器之间转移样品,或进行冗长而复杂的源交换。例如,独立的专用宽束氩离子抛光机目前是高质量透射电子显微镜(TEM)样品制备工作流程的典型部件。使用 Helios Hydra DualBeam 电镜,在初始切割后,可直接将聚焦的氩离子应用于样品抛光,从而大大减少了样品的转移和处理时间。切换时间为 10 分钟或更短,研究人员还可以在一个小节内将所有 4 束光束应用于样品,以确定哪种离子最适合其预期用途。这种灵活性扩展了FIB在探索电子-样品相互作用方面的潜在应用。/pp  strongHelios Hydra 双束电镜的正式生产将于 2019 年 9 月开始。/strong/ppbr//p
  • 赛默飞新一代多源等离子体FIB技术实现4种离子源轻松切换
    p style="text-align: center "img src="https://img1.17img.cn/17img/images/201908/uepic/94c59ab4-b437-4f62-92f9-ae26a382d0da.jpg" title="001.jpg" alt="001.jpg" width="500" height="250" border="0" vspace="0" style="text-align: center max-width: 100% max-height: 100% width: 500px height: 250px "//pp  聚焦离子束(FIB)光源与扫描电子显微镜(SEM)相结合,由于其独特的生成各种结构的能力,无论是通过切割还是离子束诱导沉积(IBID),都引起了人们的极大兴趣。通过SEM观察。直到最近,只有镓(Ga +)和氙(Xe +)FIB / SEM仪器可商购。由于其光斑尺寸小和电流密度高,Ga + FIB可为样品制备和纳米原型制作提供良好的结果。Xe +等离子体FIB(PFIB)具有更高的最大电流,可实现高通量切割,适用于大体积表征,同时还可消除Ga +污染样品。但是,在一些情况下,两种离子源都不是理想的选择。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 299px " src="https://img1.17img.cn/17img/images/201908/uepic/58f259f0-038b-4bd3-9e82-95b5382b4679.jpg" title="002.jpg" alt="002.jpg" width="300" height="299" border="0" vspace="0"//pp style="text-align: center "strong图1.用Helios Hydra UX DualBeam制备的高质量GaAs薄片的HR S / TEM图像,使用Ar FIB进行最终抛光。/strong/pp  为了扩展FIB应用领域的视野,赛默飞推出了新的Thermo Scientific Helios Hydra DualBeam。这种先进的仪器具有新一代PFIB光源,支持多种离子作为主光源。Helios Hydra与氙一起提供三种额外的离子种类:氩,氧和氮。单个离子源,提供多种离子,可在10分钟或更短的时间内在各个光源之间进行独特、轻松的切换。这为各种应用案例提供了显着的优势 例如,先进的TEM样品制备,其中采用氩束的最终抛光可以显着改善成像结果。这项新技术还将使科学家能够对离子 - 物质相互作用进行基础和应用研究,例如氮离子束硅藻与硅相互作用。/pp  " 为科学家在一台仪器中轻松选择四种不同离子源的整合能力,将扩大和优化跨长度尺度研究材料性能的应用空间," 赛默飞世尔科技-材料和结构分析总裁Mike Shafer说," 我们新的 Helios Hydra DualBeam 系统提供了所需的灵活性,可以更好地分析样品、改进结果并开发新的和增强的材料。”/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 326px " src="https://img1.17img.cn/17img/images/201908/uepic/c117ffc6-bd94-4bbb-92d6-0aa93a46826c.jpg" title="003.jpg" alt="003.jpg" width="300" height="326" border="0" vspace="0"//pp style="text-align: center "strong图2.使用Helios Hydra CX DualBeam采用O +聚焦离子束和AS& V4软件进行自动连续切片的汽车机油滤清器壳体(聚合物/玻璃纤维复合材料)的三维重构。HFW(水平宽度)为350μm。/strong/pp  Helios Hydra 双束电镜允许材料科学研究人员发现和设计新材料并分析其性能和结构。凭借其氧离子束,非常适合用于切割碳基材料,如电池正极中使用的石墨,它可以帮助研究人员开发更安全、更轻、更高效的储能设备。/pp  据介绍,这是第一款商业化的,允许快速、简便地进行离子束切换的仪器。以前,应用不同的离子束需要研究人员在仪器之间转移样品,或进行冗长而复杂的源交换。例如,独立的专用宽束氩离子抛光机目前是高质量透射电子显微镜(TEM)样品制备工作流程的典型部件。使用 Helios Hydra DualBeam 电镜,在初始切割后,可直接将聚焦的氩离子应用于样品抛光,从而大大减少了样品的转移和处理时间。切换时间为 10 分钟或更短,研究人员还可以在一个小节内将所有 4 束光束应用于样品,以确定哪种离子最适合其预期用途。这种灵活性扩展了FIB在探索电子-样品相互作用方面的潜在应用。/pp  据悉,a href="https://www.instrument.com.cn/netshow/SH100537/C18181.htm" target="_blank"strongHelios Hydra 双束电镜/strong/a的正式生产将于 2019 年 9 月开始。/pp  更多详情请点击:a href="https://www.instrument.com.cn/netshow/SH100537/C18181.htm" _src="https://www.instrument.com.cn/netshow/SH100537/C18181.htm"https://www.instrument.com.cn/netshow/SH100537/C18181.htm/a /pp /p
  • WHEATON硼硅33玻璃 —实验室玻璃器皿的理想选择
    玻璃器皿是是实验室必备是常规用品。日常工作中,常用的实验室玻璃器皿有试剂瓶,量筒、滴定管、容量瓶、温度计、试管、烧瓶、烧杯、锥形瓶、漏斗、滴管、玻璃棒等。 实验室对常规用玻璃的要求:耐热 、耐低温、干燥、储存、可重复使用等。随着各种实验技术的发展,实验室对玻璃的使用提出了越来越严格的要求。硼硅33玻璃的出现,满足了绝大部份实验室对玻璃的苛刻要求。在这里我们就硼硅33玻璃的属性进行介绍:1) 化学属性 * 耐水性 Class 1 (as per ISO 720) * 耐酸性 Class 1 (as per DIN 12116) * 耐碱性 Class 2 (as per ISO 695) 2)物理属性 * 硼硅33玻璃 耐热性 * 最高使用温度 500°C * 525°C 软化温度 * 最低使用温度 -70°C 3)耐热冲击 * 膨胀的线性相关系数 硼硅33玻璃 α = 3.3×10-6/ K 普通钠钙玻璃 α = 9.1×10-6/ K * 硼硅33玻璃内没有应力=高耐热冲击性4)硼硅33透明玻璃的光学性质 * 光谱范围内的光可以全透(没有吸收)* 在紫外线范围内不穿透,在红外线范围内穿透 5)硼硅33棕色玻璃的光学性质 * 500nm以上的光线不穿透 * 用于储存和保护光敏感物 上述说明了硼硅33玻璃的特点。硼硅33玻璃和钠钙玻璃(普通玻璃)究竟有什么不同? 硼硅33玻璃和钠钙玻璃之间的成分差异硼硅33玻璃 普通玻璃(钠钙玻璃)二氧化硅81 % 69% 氧化硼 13% 1% 氧化钠、氧化钾 4% 13%/3% 氧化铝2% 4% 氧化钙-5% 氧化镁-3% 氧化钡-2%硼硅33玻璃和钠钙玻璃之间的耐受性差异 硼硅33玻璃钠钙玻璃耐水解等级13(USP/EP) 1级Yesno热冲击100 or 160K30K最高使用温度500°C100°C硼硅33玻璃和钠钙玻璃(普通玻璃)在成分上和耐受性上的差异,直接体现在实验室在玻璃的使用上。1,普通玻璃在存储液体方面的限制因为普通玻璃含有的钠13%,钠离子容易和水发生反应 ,存储溶液 PH值容易转成碱性 ,PH值变化容易影响产品的稳定性。硼硅33玻璃 4% 这意味着硼硅33玻璃的PH值变化更小。2,普通玻璃在热冲击方面的限制钠钙玻璃的安全热变化是30K 。硼硅33玻璃最高耐热变化是160K。最高使用温度方面,普通玻璃是100°C,硼硅33玻璃500°C。实验室在涉及高温使用玻璃和热变化较大情况下使用的玻璃,需要高硼硅玻璃。3,生物耐受性限制因为硼硅33璃的整体性能要高于钠钙玻璃。生物培养需要较高的培养条件,玻璃器皿往往要经过高压蒸汽灭菌或干热灭菌。因此在做生物培养,尤其是细胞培养相关操作时,需要使用高硼硅玻璃。北京桑翌实验仪器研究所,有大量美国WHEATON和德国DURAN玻璃产品的现货库存,为广大客户提供最优质的玻璃产品。
  • 西门子再瘦身 欲剥离水处理业务
    近日,据外媒援引知情人士的评论称,为简化运营结构,保持市场竞争力,德国工业巨头西门子公司已经选定高盛等投资银行,协助其出售旗下两家子公司。其中一家为水处理技术公司,另一家子公司业务主要为开发门禁系统阅读装置,以及闯入者报警与监控技术。   对此,中投顾问高级研究员贺在华在接受《每日经济新闻》记者采访时评论,西门子当前有计划剥离多项业务部门,以专注于最赚钱的业务。虽然门禁系统阅读装置和水处理业务营收情况还不错,但作为德国市值第二高的公司,其他领域具有更大的挖掘潜力,选择放弃两项前景不错的业务,可为企业后期发展筹得一笔可观资金。  剥离水处理业务影响有限  西门子(中国)有限公司方面在接受《每日经济新闻》记者采访时称,西门子水处理业务在未来将更集中于具备核心竞争力的自动化和驱动业务上,涉及水和废水加工和处理的业务将被出售。不过,有关安全产品业务的出售却并未听说。  在水处理业务方面,西门子未来将专注于与其在机电领域的核心能力相关的解决方案,即支持饮用水厂、污水处理厂及海水淡化厂运行的自动化和驱动技术。而在水处理业务部旗下,水和污水的机械、生物和化学处理和加工业务将会被出售,其2012财年的营业额达到10亿欧元(约合14亿美元)。  贺在华认为,14亿美元的年营收在水处理行业中处于中下水平,但考虑到西门子水处理市场采取的是全球布局,这个营收水平确实有些不尽如人意。水处理子公司在西门子的业务占比相对较小,剥离后以发展盈利能力较强的业务,因此对企业影响不大。  资料显示,西门子于2012年11月初就提出“西门子2014公司计划”,通过该计划在截至2014财年各业务领域总利润率达到至少12%,实现削减60亿欧元开支的目标。据悉,上述“公司计划”旨在加强公司核心业务。  中国参与竞购可能性不高  据媒体报道称,有知情人士透露,目前已有多家有意竞购的潜在买家与西门子进行了接触,投资银行已开始对出售方案展开评估。  由于西门子水处理技术业务主要专注于北美市场,业内人士预计美国的Xylem和Pentair将寻求竞购这项业务。  媒体援引知情人士称,“亚洲企业也有可能会加入这场争夺。”由于亚洲经济正在经历快速增长,同时也面临人口上升、环境污染等一系列问题,因此预计未来几年会加大对水处理设备的投资。  上述知情人士透露,Kurita Water IndustriesLtd、HyfluxLtd、日立和Marubeni Corp等公司都是西门子水处理技术公司的潜在竞标方,而KKR&CoLP、Bain、Permira等大型私募股权公司也对这项业务感兴趣。  贺在华表示,虽然,西门子水处理业务营收能力不算特别强,但前期布局的市场可成为竞购企业国际化发展的平台,因此各国企业对这项业务虎视眈眈也在情理之中。  他认为,以如此激烈的市场购买形式来看,预计竞购西门子的水处理业务的价格不菲。中国国内水处理行业是环保行业中发展较为成熟的一个领域,形成了如首创股份、兴蓉投资等大型骨干企业,但在核心技术仍然发展不足,参与竞购的可能性较小。
  • Aliben发布等离子体固样分析发射光谱仪-PJ10新品
    粮食土壤元素分析仪(等离子体固样分析发射光谱仪-PJ10)本产品是基于射流等离子体技术的固体样品元素直接分析的光谱仪器。该仪器无需对固体样品进行湿法消解等复杂的化学前处理,即可快速对固体样品中的元素进行定性和定量分析,为固体样品的直接快速分析提供了新的检测技术和方法,有效地提升了对固体样品的分析效率。 1、仪器特点: △ 直接对固体样品中的多种元素进行快速定性和定量分析,无需化学消解;△ 装载高能激发源,灵敏度高,检出限可达ppb级 ,RSD9%;△ 分析速度快,60秒内可以同时获得190nm-1100 nm波段的全谱信号,覆盖Cd,Cr,Cu,Pb,Zn,Ca,Fe等多种元素;△ 配备自动样品仓和智能软件,可实现多个待测样品自动检测并输出结果。 2、仪器参数型号:PJ10尺寸:400*410*662 mm重量:32kg功率:200W进样方式:固体直接进样样品前处理:简单混样压片、用时2-3分钟(无需消解)分析时间: 60 s可检测元素:镉Cd,铬Cr,铜Cu,铅Pb,钙Ca,铁Fe,锌Zn等元素光谱范围:190nm-1100 nm (可 根据用户需求选配)光谱分辨率:0.10~0.25nm软件:全自动检测,直接给出测试结果存储:128 GB SSD数据接口:4XUSB,1X网口,1XVGA创新点:粮食土壤元素分析仪(等离子体固样分析发射光谱仪-PJ10) 本产品是基于射流等离子体技术的固体样品元素直接分析的光谱仪器。该仪器无需对固体样品进行湿法消解等复杂的化学前处理,即可快速对固体样品中的元素进行定性和定量分析,为固体样品的直接快速分析提供了新的检测技术和方法,有效地提升了对固体样品的分析效率: 1.直接对固体样品中的多种元素进行快速定性和定量分析,无需化学消解; 2.装载高能激发源,灵敏度高,检出限可达ppb级 ,RSD9%; 3.分析速度快,60秒内可以同时获得190nm-1100 nm波段的全谱信号,覆盖Cd,Cr,Cu,Pb,Zn,Ca,Fe等多种元素; 4.配备自动样品仓和智能软件,可实现多个待测样品自动检测并输出结果。等离子体固样分析发射光谱仪-PJ10
  • 玻璃行业中的透射与反射色彩质量测量—色差仪
    玻璃作为一种常见的材料,广泛应用于建筑、汽车、家具等领域。在玻璃行业中,透射和反射是两个重要的性质。透射涉及玻璃对可见光的透明程度和色彩表现,而反射关乎玻璃表面镀膜的效果。本文将介绍如何使用在线ERX55分光光度仪和ColorXRAG3色度分析仪来监控色彩质量和测量玻璃镀膜的反射率。透射是玻璃行业中最重要的光学性质之一,它决定了玻璃对可见光的透明程度和色彩表现。当光穿过玻璃时,会受到折射现象的影响。折射是光在从一种介质传播到另一种介质时改变方向的现象。这种折射现象使得玻璃能够将光有效地传播到玻璃的另一侧,使我们能够透过玻璃看到外面的世界。在玻璃行业中,透射率是一个重要的参数。透射率定义为通过玻璃的光强与入射光强的比值。透射率越高,玻璃对光的透明度就越好。而对于特定波长的光,其透过玻璃的能量与光谱分布有关,因此,不同类型的玻璃可能对不同波长的光具有不同的透射率。透射率的测量通常使用分光光度计来完成。在线ERX55分光光度仪是高精度的测量仪器,可以用于测量透明薄膜的色彩、可见光透射和雾度,持续监控色彩质量。通过持续监控透明薄膜的色彩质量,生产厂家可以确保产品的一致性和稳定性。反射是另一个在玻璃行业中需要关注的光学现象。反射率是一个指标,用于衡量光线在物体表面反射的程度。在玻璃制造过程中,常常会在玻璃表面进行涂层处理,这些涂层能够改变玻璃的反射性能。通过合理设计涂层,可以实现特定的反射率,使玻璃在特定波长范围内表现出所需的特殊光学效果,如防紫外线、隐私保护等。玻璃作为非散射性物体,在传统的直接照明测量设备中无法准确提供色彩数据。为解决这一问题,ColorXRAG3色度分析仪成为了一种重要工具。该设备具备宽波长范围(330nm到1,000nm)和高光学分辨率(1nm),可在实验室中安装在支架上,对放置在样品支架上的玻璃板进行测量。同时,它也可用于在线测量,安装在玻璃板上方的横梁用于测量低辐射玻璃,或安装在玻璃板下方用于测量遮阳镀膜。ColorXRAG3色度分析仪具有紧凑型设计,可从距离玻璃板10mm处捕获非散射性样品的光谱数据和色彩反射值,甚至能鉴定多银层镀膜。该仪器采用氙气闪光灯,同时采用+15°:-15°、+45°:-45°和+60°:-60°三种光学结构,每秒进行一次测量,以实现全方位的色彩数据获取。其中,±15°的测量值与传统实验室测量的积分球光学结构结果相同,而±45°和±60°的测量值则可以显示不同观察角度下的色彩变化。ColorXRAG3色度分析仪的应用为玻璃行业提供了一种高效、准确的色彩测量解决方案,使生产厂家能够更好地控制透射与反射性能,提高产品质量,并满足不同市场需求,推动玻璃行业的持续发展。透射和反射是玻璃行业中非常重要的光学现象。透射性能决定了玻璃的透明度和色彩表现,而反射率则与玻璃表面的涂层处理密切相关。使用在线ERX55分光光度仪和ColorXRAG3色度分析仪,可以对玻璃产品的透射性能和反射性能进行精确测量和监控,从而保证玻璃产品的质量和性能达到预期要求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 华东师大重庆研究院首次提出多维等离子体光栅诱导击穿光谱技术
    近日,华东师范大学重庆研究院的科研团队与精密光谱科学与技术国家重点实验室进行合作,在超快激光诱导击穿光谱的研究中取得重要进展,团队首次提出多维等离子体光栅诱导击穿光谱(Multidimensional-plasma-grating induced breakdown spectroscopy,MIBS)技术,并实验证实新技术比常规激光诱导击穿光谱具有更高的探测灵敏度和克服基体效应。相关成果以题为Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating发表在光谱类一区期刊Journal of Analytical Atomic Spectrometry杂志(胡梦云,施沈城,闫明,武愕,曾和平,JAAS,2022)。《Journal of Analytical Atomic Spectrometry》杂志刊登曾和平教授团队研究成果激光诱导击穿光谱(Laser-induced breakdown spectroscopy,LIBS)是一种非常实用的分析测试工具,可以用于确定固体,液体和气体的元素成分。传统的纳秒激光诱导击穿光谱受基体效应与等离子体屏蔽等干扰,而飞秒光丝激发(Filament-induced breakdown spectroscopy,FIBS)受限于峰值功率钳制,灵敏度难以提高。团队前期发展飞秒等离子体光栅诱导光谱(Plasma-grating-induced breakdown spectroscopy, GIBS)技术,基于两束飞秒光丝非共线耦合形成等离子体光栅,突破峰值功率钳制效应,光功率及电子密度提高近2个量级,等离子光栅中多光子电离与电子碰撞激发协同,提高探测灵敏度(胡梦云,彭俊松,牛盛,曾和平,Advanced Photonics, 2020, 2(6), 065001);GIBS等离子体干涉激化可克服基体效应,首次实现成分探测自定标。为了进一步提高对样品的激发效果,延长激发产生的等离子体寿命,增强光谱信号,团队提出基于等离子体光栅的多脉冲耦合激发诱导击穿光谱MIBS新技术。团队利用三束非共线、非共面的飞秒脉冲进行相互作用对样品进行激发,成功观察到等离子体光栅的衍射效应,等离子体光栅实现从一维突破到二维。二维等离子体光栅对样品进行激发时,二维等离子体通道中具有更为精细的周期性结构和更高阶的非线性效应,提升了等离子体密度和光功率密度,多光子激发以及电子碰撞双重激发更为明显,从而进一步提高探测灵敏度,克服基体效应。MIBS实验装置,二维等离子体光栅的周期性结构使得三次谐波发生衍射值得一提的是,研究发现所获得的谱线信号会随着激光能量的提升而增强,当单脉冲能量超过2 mJ时,MIBS技术将取得更明显的优势。此外,MIBS技术仅在激发源上进行了改进,并未引入复杂的样品处理步骤以及额外的装置,与大多数改进技术相比保留了LIBS技术原有的快速、简单、便捷的优点,这使得其能够满足特定场景中的原位实时检测需求。随着GIBS/MIBS技术的研究发展与应用拓展,为了适应野外恶劣环境下移动作业,实现非接触式在线实时探测,对激发光源提出了更高要求,需要性能更加稳定的高能量飞秒光源进行激发。与此同时,华东师范大学重庆研究院发展高能量飞秒脉冲激光光源。基于掺Yb光纤种子脉冲产生与固体再生放大相结合的飞秒激光放大方案,通过搭建宽带可调谐的光纤脉冲种子源解决信号光和放大介质光谱窄化和增益失配的问题,实现激光高效率放大;结合啁啾脉冲放大和固体再生放大技术,抑制激光放大过程中的非线性累积,提升放大效率和功率,输出mJ级高能量飞秒脉冲激光。高集成化、高稳定性混合系统1030nm mJ级高能量飞秒激光光源满足实验室以外苛刻环境下应用,为GIBS/MIBS技术试验野外在线检测提供了技术和仪器的支撑。1030nm高能量飞秒激光器此外,华东师范大学重庆研究院开发多个系列超快飞秒激光光源,形成多款超快飞秒激光器产品,其中包括:FemtoCK,FemtoLine和FemtoStream等。针对GIBS/MIBS技术、强场激光物理、微纳加工等应用研究,开发的1030nm mJ级高能量飞秒激光器YbFemto HP采用光纤固体混合放大技术方案,种子源采用全保偏光纤结构的振荡器FemtoCK产生稳定脉冲序列;该光源通过啁啾脉冲放大技术,结合掺镱增益介质的固体再生放大技术,输出中心波长1030nm、能量达毫焦(mJ)量级,脉冲宽度小于300fs的高能量飞秒激光脉冲。该光源重复频率调谐范围覆盖单脉冲~ 250 kHz,增加定制模块可进行倍频操作,实现515nm、343nm等飞秒脉冲激光输出,满足科研、工业等多场景应用需求。华东师范大学重庆研究院将依托自研的毫焦级高能量飞秒激光器,输出高稳定的激化光源,与GIBS/MIBS技术相结合,集成实现轻量化高灵敏检测仪器,实现技术创新,仪器创新,装备创新,进而实现土壤、液体自标定痕量分析等应用创新,深入优化仪器系统的稳定性与可靠性,使更多野外极限环境下应用成为可能,进一步应用于环境监测、深海勘探、地质勘探、工业冶金、航天探测以及生物制药等领域。激光诱导击穿光谱技术应用毫焦级高能量飞秒激光器不仅仅在LIBS上产生重要应用,同时可用于设备集成,面向如半导体芯片制备、柔性OLED显示器件切割、玻璃切割、非金属/金属材料加工、打孔以及微纳加工等重要应用。另一方面,可用于光谱检测、非线性光学、高次谐波产生、医疗成像、双光子3D打印、相控阵等科研应用。
  • 安全玻璃冲击失效检测仪研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="144"p style="line-height: 1.75em "成果名称/p/tdtd width="504" colspan="3"p style="line-height: 1.75em "安全玻璃冲击失效检测仪/p/td/trtrtd width="144"p style="line-height: 1.75em "单位名称/p/tdtd width="504" colspan="3"p style="line-height: 1.75em "中国建材检验认证集团股份有限公司/p/td/trtrtd width="144"p style="line-height: 1.75em "联系人/p/tdtd width="156"p style="line-height: 1.75em "艾福强/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "afq@ctc.ac.cn/p/td/trtrtd width="144"p style="line-height: 1.75em "成果成熟度/p/tdtd width="504" colspan="3"p style="line-height: 1.75em "□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/p/td/trtrtd width="144"p style="line-height: 1.75em "合作方式/p/tdtd width="504" colspan="3"p style="line-height: 1.75em "□技术转让 □技术入股 □合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/883303d6-1d4f-4c5e-a162-73446386211d.jpg" title="安全玻璃冲击失效检测仪.jpg" width="350" height="292" border="0" hspace="0" vspace="0" style="width: 350px height: 292px "//pp style="line-height: 1.75em " 安全玻璃冲击失效检测是针对建筑玻璃、汽车玻璃进行的检测方法,被测玻璃受到冲击后,通常表现出三种型式:一种是受冲击后被测玻璃完好无损,没有发生失效(合格)。第二种是受冲击后被测玻璃,破损十分严重,发生完全失效(不合格)。第三种是,被测玻璃受冲击后,有破损产生,但是不知道,是否发生失效(合不合格)。针对这种情况我们研发了安全玻璃冲击失效检测仪,其特征是一个球形测试探头,在测试探头后方设置有传感器,传感器通过放大器和模数转换器与智能块和显示屏相连接,使用过程中先将测试探头安放在被测玻璃处,然后缓慢施力,达到预先设定的检测标准后,发出提示信号,将检测探头的载荷信号经传感器、一级放大器、滤波器、二级放大器经数模转换器送入中央处理器,经中央处理器内置的程序处理后,其结果通过该检测仪壳体表面设置的液晶显示器显示,人或外界对玻璃的破坏力可以根据该检测仪内设的过载报警灯控制,避免了人为因素的干扰,其测试结果直观,较传统技术所测得的数据更加准确,为玻璃生产厂家进一步改善玻璃性能提供了较准确的参考依据。同时,该检测仪通过控制面板的清零键、单位转换键、峰值保留键的设置,可保证该仪器的测量准确度,可以任意调整其测量数值中称量单位之间的转换,液晶显示器也将显示出相应的单位符号,其操作简单、易于维修且便于携带,使用安全方便。 br/ 测定单位:N,Kg,切换式 br/ A/D转换:16bit逐次变换方式 br/ 测试精度:± 0.2%F.S.以下 br/ 再现精度:± 0.1%F.S.以下 br/ 连续使用时间:约48小时(使用温度25℃) br/ 显示屏:16位液晶显示屏 br/ 使用温度:0-40℃ br/ 计测方式:最大值、瞬时值 br/ 电源:两节五号电池 br/ 采样频率:20次/秒 br/ 机体重量:约500gbr/ 容许载荷:50N(有过载报警灯)/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 该仪器测试结果直观,数据准确,操作简单、易于维修且便于携带,可广泛应用于企业、建筑工程质量检测站、产品质量检测站、科研院校等安全玻璃的生产检测以及开发研究部门。/p/td/tr/tbody/tablepbr//p
  • 超快电镜助力等离子体研究重要发现 万亿分之一秒的等离子体场检测
    阿贡纳米材料中心的超快电子显微镜,图片自:阿贡国家实验室每个去过大峡谷的人都能体会到靠近自然边缘的强烈感受。同样,美国能源部(DOE)阿贡国家实验室(Argonne National Laboratory)的科学家们发现,当接近一层单原子厚的碳薄膜(石墨烯)边缘时,金纳米颗粒会表现异常。这可能对新型传感器和量子设备的发展产生重大影响。这一发现是通过美国能源部科学用户设施办公室——阿贡纳米材料中心 (CNM) 新建立的超快电子显微镜 (UEM) 实现的。UEM能够实现在纳米尺度和不到一万亿分之一秒的时间尺度内的可视化和现象研究。 这一发现可能会在不断发展的等离子体领域引起轰动,该领域涉及光撞击材料表面并触发电子波,称为等离子体场。多年来,科学家们一直致力于开发具有广泛应用的等离子体设备——从量子信息处理到光电子学(结合光基和电子元件),再到用于生物和医学目的的传感器。为此,他们将具有原子级厚度的二维材料(例如石墨烯)与纳米尺寸的金属颗粒相结合。而要想理解这两种不同类型材料的组合等离子体行为,就需要准确了解它们是如何耦合的。在阿贡最近的一项研究中,研究人员使用超快电子显微镜直接观察金纳米颗粒和石墨烯之间的耦合。“表面等离子体是纳米粒子表面或纳米粒子与另一种材料界面上的光诱导电子振荡,”阿贡纳米科学家Haihua Liu说, “当我们在纳米粒子上照射光时,它会产生一个短寿命的等离子体场。当两者重叠时,我们 UEM 中的脉冲电子与这个短寿命场相互作用,电子要么获得能量,要么失去能量。然后,我们收集那些使用能量过滤器获得能量的电子来绘制纳米粒子周围的等离子体场分布。”在研究金纳米粒子时,Liu和他的同事发现了一个不寻常的现象。当纳米颗粒位于石墨烯薄片上时,等离子体场是对称的。但是当纳米颗粒靠近石墨烯边缘时,等离子体场在边缘区域附近集中得更强烈。Liu说:“这是一种非凡的新思考方式,可以思考我们如何利用纳米尺度的光以等离子体场和其他现象的形式操纵电荷。” “凭借超快的能力,当我们调整不同的材料及其特性时,很难预测我们将看到什么。”整个实验过程,从纳米粒子的刺激到等离子体场的检测,发生在不到几百千万亿分之一秒内。CNM 主管 Ilke Arslan 表示:“CNM 在容纳 UEM 方面是独一无二的,该 UEM 对用户开放,并且能够以纳米空间分辨率和亚皮秒时间分辨率进行测量。” “能够在如此短的时间窗口内进行这样的测量,开启了对非平衡状态中大量新现象的研究,而我们以前没有能力探测到这些现象。我们很高兴能够提供这种能力给国际用户。”对于这种纳米颗粒-石墨烯系统的耦合机制的理解,将是未来开发令人兴奋的新型等离子体装置的关键。基于这项研究的论文“使用超快电子显微镜可视化等离子体耦合”(Visualization of Plasmonic Couplings Using Ultrafast Electron Microscopy)发表在 6 月 21 日的《Nano Letters》上,DOI: 10.1021/acs.nanolett.1c01824。除了 Liu 和 Arslan,其他作者还包括 Argonne 的 Thomas Gage、Richard Schaller 和 Stephen Gray。印度理工学院的 Prem Singh 和 Amit Jaiswal 也做出了贡献,武汉大学的 Jau Tang 和 IDES, Inc. 的 Sang Tae Park 也做出了贡献(日本电子于2020年初收购超快时间分辨电镜商IDES)。文:Jared Sagoff,阿贡国家实验室关于CNM新建立的超快电子显微镜 (UEM)CNM 的超快电子显微镜 (UEM) 是一种独特的工具,可供美国能源部纳米科学研究中心的用户使用。CNM超快电子显微镜实验室。左起顺时针:Thomas Gage, Haihua Liu和Ilke ArslanUEM 的应用是利用电子研究纳米级材料中的超快(亚皮秒)结构和化学动力学,这是一个广受关注的新兴科学领域。CNM的 UEM 结合了以下功能:■具有高重复率的可调谐飞秒激光器■产生脉冲电子束的多种途径■配备高灵敏度相机和电子能量过滤的同步激光泵浦脉冲透射电子显微镜CNM精心设计的UEM打开了通向任何标准电子显微镜都不具备的科学理解领域的大门,即理解亚纳米空间分辨率材料中的快速(亚皮秒到纳秒)动力学和短期亚稳态相。它代表了一种关键的分析工具,可以提供超快的结构和化学变化,以广泛的系统。在未来几年,通过开发超快的电气和机械触发机制,CNM期望开发具有基础和设备相关性的新型样品环境和样品激发途径。结合超快探测,这将允许深入了解电场和应变的非平衡现象。例如,人们可以探索声学声子模式在量子信息科学感兴趣的材料和系统中产生的应变随时间变化的影响,例如金刚石或碳化硅中的空位缺陷。在纳米科学的许多领域中,UEM 在促进对瞬态过程的理解方面具有很高的价值,例如激子定位、短寿命亚稳相、光致分离、拓扑材料动力学、等离子体系统、分子马达和磁波动等。连同理论建模,UEM 将为纳米科学界提供对纳米材料的前所未有的理解。阿贡国家实验室是 1946 年在伊利诺伊州杜佩奇县成立的第一个也是最大的国家实验室。 美国能源部资助阿贡国家实验室和芝加哥阿贡大学有限责任公司管理该实验室。 阿贡国家实验室前身是芝加哥冶金实验室,也是恩里科费米 (Enrico Fermi) 第一个受控核链式反应演示的所在地。 目前,阿贡实验室由阿贡先进光子源、阿贡串联直线加速器系统组成,开展基础科学研究、清洁能源实验、全国环境问题管理,最重要的是审查和监测国家安全风险。
  • 盘点被监管机构要求剥离业务的仪器行业并购案
    仪器信息网讯 2013年11月26日,欧盟反垄断监管机构批准了赛默飞世尔(以下简称为:赛默飞)以136亿美元收购Life Technologies的计划,但前提是赛默飞需出售培养基和血清业务、基因沉默产品业务,以及基于聚合物的磁珠业务。分析人士认为潜在购买者包括Bio-Rad、默克、Sigma-Aldrich和Techne。  这类监管机构对于并购的有条件批准很常见,其主要取决于并购是否实质性减少竞争,而实施方式也有多种,如上述案例的剥离出售,或创造出一个竞争对手等。  仪器行业历史上的类似需剥离业务的并购交易也有多起,其中比较著名的是1995年热电(现赛默飞)并购Fisons科学仪器部门(VG Instruments)。  当年热电计划以2.02亿英镑收购Fisons科学仪器部门,但由于担心并购会造成某些质谱技术垄断,美国和英国反垄断监管机构要求Fisons将部分质谱业务及高分辨ICP-MS产品拆分出售。最终,VG Analytical与VG Biotech的高级管理人员联合英国资产管理公司施罗德收购了部分质谱业务及高分辨ICP-MS产品,并以Micromass为公司名运营。如此,热电才得以并购成功,交易价格也缩减至低于1.5亿英镑。不过,1997年,沃特世以1.76亿美元又将Micromass收购。  此项并购交易,热电1995年3月宣布,而最终于1996年2月才得到美国反垄断监管机构批准,历时近一年时间。  除此之外,2009年安捷伦收购瓦里安的交易也被欧盟反垄断监管机构要求剥离相关业务。欧盟监管机构要求安捷伦出售其微型便携式气相色谱业务,瓦里安出售实验室气相色谱(Lab GC)、电感耦合等离子体质谱仪(ICP-MS)及气相色谱三重四极杆质谱仪(GC-QQQ)三大业务。  而后,英福康收购安捷伦微型便携式气相色谱业务,而布鲁克收购了瓦里安Lab GC、ICP-MS、GC-QQQ业务。2010年5月,随着相关业务的出售,安捷伦完成了对瓦里安的并购,安捷伦也扩充了光谱、核磁、真空产品及消耗品产品线。  以上两个案例都是剥离出售,但在遇到并购可能造成垄断的情况下还有一种做法,即创造一个合理的竞争者。  2012年11月,康宁(Corning)斥资7.3亿美元现金收购了美国BD(Becton Dickinson)的Discovery Labware大部分业务。美国监管机构审批该项交易时认为,如果该交易完成康宁则在细胞培养耗材方面形成了垄断。为了促成收购交易成功,康宁必须去创造一个合理的竞争者。于是,康宁与Sigma-Aldrich达成意向,康宁为Sigma-Aldrich贴牌生产的细胞培养耗材,由Sigma-Aldrich在全球销售。  相比于欧美国家,中国的反垄断法直到2008年8月1日才出台实施。据外媒的报道,赛默飞收购Life Technologies的交易还需要通过中国商务部批准。(撰稿:杨娟)
  • 美国绘制出等离子体波谱图,或将用于太空保护
    近日,美国科学家成功绘制出太空中等离子体波类似斑马线的波谱图,并证明了等离子体波是由围绕地球磁场线呈环状分布的质子激发产生的。等离子体波谱图的绘制可帮助科学家更准确地理解太空辐射和模拟太空环境,或有助于更好地保护宇航员和太空设备。  20世纪60年代,加州大学洛杉矶分校研究生克里斯托弗拉塞尔在范爱伦辐射带(围绕地球的含有高能粒子的圆环)检测到了神秘的等离子体波,它们普遍存在于近地空间,但科学家却一直无法解释这些等离子体波是如何产生的。现在,这一谜题已被解开。  据加州大学洛杉矶分校官网报道,该校地球物理学家尤里施普里茨领导的研究团队通过卫星观察到13个在太空中等间距分布的线,在赤道附近发现了结构稳定的类似斑马线的等离子体波波谱,根据上述结果绘制了等离子体波的模式图。研究人员还发现,围绕地球磁场线呈环状分布的质子能够为等离子体波提供能量,并证明等离子体波是由这些质子激发产生的。  赤道附近的等离子体波能使范爱伦辐射带内的粒子加速到高能状态,并使这些粒子消失在大气层内。这一现象可能对地球磁层、电离层和中高层大气有重要影响,其对太空中电子和离子的加速和扩散可能造成卫星通讯故障甚至使之完全失效,还可能伤害宇航员的健康。  施普里茨说:“等离子体波谱图的绘制有助于科学家更准确地理解太空辐射和模拟太空环境,以及更好地保护宇航员和太空设备。”  现在已经是空间物理和行星学教授的拉塞尔说:“施普里茨的工作非常有意义。我在1966年观察到的神奇现象终于得到了合理解释。”
  • Science Bulletin:超高真空机械剥离和堆垛技术取得进展
    近年来,二维材料及其异质结构由于在电子、光电及自旋器件领域展现出巨大的应用潜力而得到了人们的广泛关注。然而,制备表面高度洁净的二维材料以及界面原子级平整干净的二维异质结仍然十分困难,尤其对于表面敏感的二维材料而言更是如此。制备二维材料的方法主要分为两大类:以分子束外延(MBE)和化学气相沉积为代表的“自下而上”法和以机械剥离为代表的“自上而下”法。其中,“自下而上”法由于受到生长动力学的制约,仅能在特定衬底上制备特定的二维材料,并且制备出的二维材料通常具有确定的取向,因此极大地限制了可获得的二维异质结的种类。相比于“自下而上”的材料合成策略,以机械剥离为代表的“自上而下”方法具有操作简单、灵活性强的特点,对于范德瓦尔斯材料而言可以很容易地制备传统生长方法难以实现的少层样品和转角结构。然而,传统的机械剥离方法是在大气或手套箱中进行,仍然存在很多问题:(1)环境的污染将引入大量的杂质或缺陷。即使对于稳定的二维材料(比如石墨烯),这种方法制备的样品,如未经退火处理,传入真空后,由于表面吸附了大量的杂质,难以利用ARPES、STM等表面敏感的技术进行测量,而高温退火可能引入更多的杂质或缺陷。(2)很多单晶表面在空气中甚至低真空环境下不能稳定存在,比如Si(111)-7×7、Cu(111)、Fe(100)等,这些材料的表面必然会被氧化并吸附大量的杂质。因此,传统的机械剥离方法无法制备二维材料与这类衬底构筑的异质界面。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心SF9组的冯宝杰特聘研究员、陈岚研究员、吴克辉研究员与SC7组周兴江研究员、北京理工大学的黄元教授合作,指导博士生孙振宇、韩旭等,自主设计并搭建了一套超高真空环境下的二维材料机械剥离-堆垛系统。他们将机械剥离技术与超高真空MBE技术结合到一起,在本底真空10-10 mbar量级的环境中,利用MBE技术制备了多种原子级平整、洁净的表面,并利用机械剥离技术在这些衬底上成功剥离了多种单层和少层二维材料。设备的工作原理图如1所示,所有操作均在超高真空中完成。首先,他们利用高温退火、离子溅射、等离子体刻蚀、MBE生长等多种表面处理技术获得原子级平整、洁净的表面。表面的质量可以通过原位的扫描隧道显微镜、低能电子衍射、角分辨光电子能谱等超高真空表面分析手段进行确认。然后,他们在超高真空中将二维材料进行解理,获得新鲜的表面,并轻压到衬底表面上。最后,他们将系统加热并分离,获得了多种单层和少层二维材料。利用该方法,他们不仅重复了大气下的金辅助剥离技术,而且成功获得了多种以前未报道过的二维异质结,包括Bi-2212/Al2O3、Bi-2212/Si(111)、MoS2/Si(111)、MoS2/Fe、MoS2/Cr以及FeSe/SrTiO3(任意角度)等。图1 超高真空中机械剥离二维材料图2 在单晶衬底上获得的超薄二维材料为进一步展示该系统的能力,他们选择了两个体系作为示例。(1)利用金辅助剥离技术,他们在超高真空中制备出了毫米级的单层黑磷样品,并利用原位的低能电子衍射、角分辨光电子能谱对样品进行了表征,观察到了清晰的衍射斑点和沿高对称方向的空穴型能带(图3)。这是国际上首次对单层黑磷进行的相关测量。(2)为了揭示不同金属衬底对二维材料物性的影响,他们研究了单层MoS2和WSe2在不同金属表面的光学性质(图4)。通过测量不同金属上单层WSe2的荧光光谱,他们意外地发现,除了Au衬底以外,剩下的Ag、Fe、Cr等表面均不淬灭WSe2的特征A激子发射,且峰位略有偏移。通过拉曼光谱,他们发现在Au和Ag表面上的MoS2,其特征拉曼峰E2g和A1g除频率移动外,展现出了奇特的劈裂行为。图3 大面积单层黑磷的真空原位LEED和ARPES表征图4 不同金属表面单层WSe2和MoS2的光学响应本工作为进一步制备高质量的二维材料及异质结样品、研究材料的本征物性以及界面演生现象提供了一种全新的方法。相关成果以“Exfoliation of 2D van der Waals crystals in ultrahigh vacuum for interface engineering”为题发表在Science Bulletin上(doi.org/10.1016/j.scib.2022.05.017)。该工作得到了国家自然科学基金委、科技部、北京市自然科学基金、中科院国际合作项目以及中科院先导B等项目的资助。
  • 实验室玻璃仪器分类介绍,马住这篇干货!
    由于,玻璃仪器品种繁多,用途广泛,形状各异,而且,不同专业领域的分析实验室还要用到一些特殊的专用玻璃仪器,因此,很难将所有玻璃仪器详细进行分类。按照国际通用的标准,通常是将实验室中所用的玻璃仪器和玻璃制品大致分为以下8类:(1)输送和截留装置类:包括:玻璃接头、接口、阀、塞、管、棒等。(2)容器类:如,皿、瓶、烧杯、烧瓶、槽、试管等。(3)基本操作仪器和装置类:如,用于吸收、干燥、蒸馏、冷凝、分离、蒸发、萃取、气体发生、色谱、分液、搅拌、破碎、离心、过滤、提纯、燃烧、燃烧分析等的玻璃仪器和装置。(4)测量器具类:如,用于测量流量、比重、压力、温度、表面张力等的测量仪表及量器、滴管、吸液管、注射器等。(5)物理测量仪器类:如,用于测试颜色、光密度、电参数、相变、放射性、分子量、黏度、颗粒度等的玻璃仪器。(6)用于化学元素和化合物测定的玻璃仪器类:如,用于As、C02、元素分析、原子团分析、金属元素、As、卤素和水分等测定的仪器。(7)材料试验仪器类:如,用于气氛、爆炸物、气体、金属和矿物、矿物油、建材、水质等测量的仪器。(8)食品、医药、生物分析仪器类:如,用于食品分析、血液分析、微生物培养、显微镜附件、血清和疫苗试验、尿化验等的分析仪器。目前,国内一般将化学分析实验室中常用的玻璃仪器按它们的用途和结构特征,分为以下8类:(1)烧器类是指那些能直接或间接地进行加热的玻璃仪器:如,烧杯、烧瓶、试管、锥形瓶、碘量瓶、蒸发器、曲颈甑等。(2)量器类是指用于准确测量或粗略量取液体容积的玻璃仪器:如,量杯、量筒、容量瓶、滴定管、移液管等。(3)瓶类是指用于存放固体或液体化学药品、化学试剂、水样等的容器:如,试剂瓶、广口瓶、细口瓶、称量瓶、滴瓶、洗瓶等。(4)管、棒类管、棒类玻璃仪器种类繁多,按其用途分有冷凝管、分馏管、离心管、比色管、虹吸管、连接管、调药棒、搅拌棒等。(5)有关气体操作使用的仪器是指用于气体的发生、收集、贮存、处理、分析和测量等的玻璃仪器:如,气体发生器、洗气瓶、气体干燥瓶、气体的收集和储存装置、气体处理装置和气体的分析、测量装置等。(6)加液器和过滤器类主要包括各种漏斗及与其配套使用的过滤器具:如,漏斗、分液漏斗、布氏漏斗、砂芯漏斗、抽滤瓶等。(7)标准磨口玻璃仪器类是指那些具有磨口和磨塞的单元组合式玻璃仪器。上述各种玻璃仪器根据不同的应用场合,可以具有标准磨口,也可以具有非标准磨口。(8)其他类是指除上述各种玻璃仪器之外的一些玻璃制器皿:如,酒精灯、干燥器、结晶皿、表面皿,研钵,玻璃阀等。小结:实验室玻璃仪器可以说是我们在实验室中最常见也是最常用的仪器了,从最简单的烧杯、离心管到酒精灯、显微镜附件这些玻璃仪器为实验室科研工作做出了巨大贡献。此外将实验室常用的玻璃仪器进行了分类,能够帮助实验室工作人员对实验室玻璃仪器的管理。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制