当前位置: 仪器信息网 > 行业主题 > >

不溶性微粒分析仪

仪器信息网不溶性微粒分析仪专题为您提供2024年最新不溶性微粒分析仪价格报价、厂家品牌的相关信息, 包括不溶性微粒分析仪参数、型号等,不管是国产,还是进口品牌的不溶性微粒分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合不溶性微粒分析仪相关的耗材配件、试剂标物,还有不溶性微粒分析仪相关的最新资讯、资料,以及不溶性微粒分析仪相关的解决方案。

不溶性微粒分析仪相关的资讯

  • 普洛帝发布不溶性微粒检测显微镜计数系统新品
    普洛帝不溶性微粒检测显微镜计数系统PLD-MPCS2.0A不溶性微粒显微镜计数系统 不溶性微粒显微镜法 显微镜计数系统 显微镜不溶性微粒计数系统不溶性微粒显微镜计数系统是普勒新世纪实验按照普洛帝分析仪器事业部的规划,于2001年推向市场的成熟系统仪器;符合中国药典规范附录0903不溶性微粒检查法第二法(显微计数法}。观察颗粒形貌,还可以得到粒度分布、数量、大小、平均长径比以及长径比分布等,为科研、生产领域增添了一种新的粒度测试手段;不溶性微粒显微镜计数系统微纳米颗粒计数器为一种图像法粒度分布测试以及颗粒型貌分析等多功能颗粒分析系统,该系统包括光学显微镜、数字 CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成;测试软件具有操作员管理系统、测试标准、零件测试模板、图像存储、颗粒追踪、报告输出、清洁度分析等功能;全面自动标准选择、颗粒尺寸设定、颗粒计数,或按用户设定范围计数,自动显示分析结果,并按照相关标准确定产品等级;将传统的显微测量方法与现代的图像处理技术结合的产物;专业软件控制分析过程,手动对焦,手动光强(颗粒清洁度测试必须人为干预进行),自动扫描,自动摄入,自动分析;专用数字摄像机将显微镜的图像拍摄及扫描;全自动膜片扫描系统,无缝拼接,数字化显微镜分析系统;R232接口数据传输方式将颗粒图像传输到分析系统;颗粒图像分析软件及平台对图像进行处理与分析;显示器及打印机输出分析结果;直观、形象、准确、测试范围宽以及自动识别、自动统计、自动标定等特点;避免激光法的产品缺陷,扩展检测范围;现实NAS、ISO等国际标准方法的认可;提供“OIL17服务星”签约式服务;不溶性微粒显微镜计数系统产品应用:大输液、小针剂、水、水乙二醇、水溶液、溶水产品等检测!完全并高于2020版《中国药典》的要求,内置药典、麻醉器具、输液器具检测标准,可直接进行各种装量的注射液、无菌粉末,及医疗器具微粒污染滤除率检测;航空、航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造、制冷、电子、半导体、工程机械、液压系统等领域;对各类液体如油田回注水、污水、自来水、纯净水、高纯水、电子级水、超纯水、口服液、酒、饮料、牛奶、清洗剂、润滑油等液体进行固体颗粒污染度检测及不溶性微粒的检测。不溶性微粒显微镜计数系统执行标准:GB/T 11446.9-2013 电子级水中微粒的仪器测试方法美国药典USP 788、USP 789、USP35-NF30、USP32-NF27;欧洲药典EP6.0、EP7.0、EP7.8、EP8.0;英国药典BP2013、BP2012、2010、2009;日本药典JP16、JP15、JP14;印度药典IP2010版;WHO国际药典IntPh第五版;中国药典2020年、2020年;GB8368输液器具;ISO21510;ISO11171等。0.1~3000μm的超宽范围、超高分辨率满足全球510多个标准要求。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。不溶性微粒显微镜计数系统技术参数:订制要求:各类液体检测要求;测试范围: 1μm-500μm放大倍数:40X~l000X倍分辨率:0.1μm显微镜误差:0.02(不包含样品制备因素造成的误差)重复性误差: 5%(不包含样品制备因素造成的误差)数字摄像头(CCD):300万像素标尺刻度:0.1μm分析项目:粒度分布、长径比分布、圆形度分布等自动分割速度: 1秒分割成功率: 93%软件运行环境:Windows 2000、Windows XP接口方式:RS232或USB方式供货期:30个工作日精 确 度:±3% 典型值;重合精度:10000粒/mL(5%重合误差);分 辨 率:95%(按中国药典2020版校准);10% (按美国药典、ISO21501校准)鉴定机构:国家西北计量测试中心(民品)售后服务:普洛帝中国服务中心/普研检测。创新点:1、我司符合药典2020版0903显微镜法的仪器2、实现上光源、下光源双向监测功能3、引入金属颗粒、非金属颗粒和纤维丝等颗粒属性检测4、微量样品0.01ml的痕量试样测试5、高分辨率可实现X100~X1000的测试不溶性微粒检测显微镜计数系统
  • 胤煌科技发布显微镜不溶性微粒检测仪新品
    YH-MIP-0103型显微镜不溶性微粒检测仪检测介绍药典规定:按照中国药典0903章节的要求,不溶性微粒的检测有两个方法,光阻法不溶性微粒检查和显微镜不溶性微粒检查。随着光阻法收录入药典作为不溶性微粒检查的一个方法以来,由于其操作简单,检测速度快,无需制样等优点深受广大用户的喜爱,也便成了用户偏爱和较高一种的检查方法。而显微镜法不溶性微粒慢慢淡出人们视野。随着药学的发展,尤其是制剂学的飞速进步,各式新的剂型进入临床,如注射用乳剂,常见的有丙泊酚、中长链脂肪乳、三腔袋脂肪乳等,脂质体,混悬剂,滴眼剂,混悬剂,易产生气泡剂型等。此种注射剂剂型的特殊性,无法利用常用的光阻法检测不溶性微粒,因为其样品本身的不透明性、高粘度等原因,使得采用光阻法检测会产生假性结果,因为光阻法会将样品本身和气泡也作为颗粒计入。中国药典CP中规定所有的注射剂都要做不溶性微粒项目检查,故而显微镜法不溶性微粒检查设备是非常重要的选择。常规显微镜不溶性检查的缺陷常规显微镜不溶性微粒检查大家会采用一台简单显微镜,人工进行计数。此种操作的难点是:无法避免人为的原因导致计数的偏差,主观性太强;最重要的是人为计数对实验员眼睛的要求较高,用眼过度会造成视力过早下降,引起一些不必要的眼疾;操作不规范性,测试结果重复性差YH-MIP-0103系列显微镜不溶性微粒检测仪上海胤煌科技有限公司自主研发生产的全自动显微镜不溶性微粒检测仪YH-MIP-0103系列,从样品制备到测试完成有一套完整的方案。1)直接按照药典要求出具报告;2)全自动进行滤膜全扫描,并进行颗粒图片分析;3)可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维;4)按照颗粒性质进行归类分析统计;5)光阻法检测不通过时,作为光阻法不溶性微粒的一个验证;显微镜不溶性微粒检测仪设备构成样品过滤装置,烘干装置,检测分析系统,电脑等。检测分析系统可以根据用户要求配置奥林巴斯体式显微镜、奥利巴斯金相显微镜、徕卡金相显微镜、尼康金相显微镜等。显微镜不溶性微粒检测仪应用领域应用范围:乳剂、脂质体、滴眼剂、混悬剂、易产生气泡剂型、粘度大制剂等执行标准:中国药典CP,美国药典 USP 788、USP 789,欧洲药典 EP,英国药典 BP2013,日本药典JP等YH-MIP-0103系统介绍:组成:显微镜颗粒分析系统既可以观察颗粒形貌,还可以得到粒度分布、数量、大小、平均长径比以及长径比分布等,为科研、生产领域增添了一种新的粒度测试手段;该系统包括光学显微镜、数字CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成;是传统显微测量方法与现代图像处理技术结合的产品;软件:测试软件具有操作员管理系统、测试标准、零件测试模板、图像存储、颗粒追踪、报告输出、清洁度分析等功能;全面自动标准选择、颗粒尺寸设定、颗粒计数,或按用户设定范围计数,自动显示分析结果,并按照相关标准确定产品等级;专业软件控制分析过程,手动对焦,手动光强,自动扫描,自动摄入,自动分析;专用数字摄像机将显微镜的图像拍摄及扫描;全自动膜片扫描系统,无缝拼接, 数字化显微镜分析系统;数据传输:R232 接口数据传输方式将颗粒图像传输到分析系统; 颗粒图像分析软件及平台对图像进行处理与分析;显示器及打印机输出分析结果;特点:直观、形象、准确、测试范围宽以及自动识别、自动统计、自动标定等特点; 避免激光法的产品缺陷,扩展检测范围;YH-MIP-0103系统介绍:胤煌科技为您奉献的专门高性价比实验室显微镜。可以轻松地根据需要进行明场、暗场、相衬、荧光、偏光等多种观察;还可以连接照相机、数码摄像头,与电脑联机工作。1)物镜:独立校正光学系统,物镜拥有更高的数值孔径,成像更加平坦,清晰范围可达视场边缘。5X、10X、20X、30X、40X、50X、80X、100X 等可根据要求选配、经过防霉处理;2)目镜:高眼点,屈光度可调。10X 目镜视场范围有 20mm 和 22mm 两种配置。经过防霉处理;3)阿贝聚光镜:数值孔径 NA1.25,中心可调,带相衬板插孔,配孔径光阑调节装置,聚光镜孔径光阑采用与物镜色圈相同颜色的标记,方便您的使用;4)暗场聚光镜:专门用于暗场观察,安装方便;5)偏光装置:加配起偏器和验片器,您便可以轻松进行简易偏光观察;6)多功能转盘式相衬聚光镜:数值孔径 NA1.25,配置多功能相衬聚光镜,您可以配合 10X-100X 相衬物镜进行相衬观察,配合 10X-40X 物镜进行暗场观察,也可以明场观察;7)内倾式转换器:方便您放置切片,变换物镜进行观察;8)机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm。低位同轴移动手轮;9)无导轨机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm,低位同轴移动手轮,调节手轮可以根据您的用手习惯任意安装在载物台的左手或右手一侧;10)电动载物台:平台行程:大于 80*70mm;行程:2000μm;定位精度:≤±5μm;典型分辨率: 单步 0.625μm;11)观察筒:双目或三目铰链式观察筒;三目分光比 20/80,可以轻松与数码摄像头或照相机连接工作;视场较高可配置到 22mm;有 48-75mm和 52-75mm 两种不同的双目瞳孔,调节距分别适用于亚洲和欧美人士使用,您可以根据自己双目距离作出灵活的选择;12)粗微动手轮高度可调:根据您手形的大小,粗微动手轮高度可调,为您的手臂带来轻松和舒适;13)照明系统:6V/20W、6V/30W 卤素灯或者 LED 多种光源可供选择。抽屉式的灯座设计让您只需简单地拔出、插入便可方便地更换灯泡;14)高效率的独立散热系统:即使在 6V/30W 卤素灯 48 小时不间断照明的环境下,机身也不会烫手,完全解决了长期困扰研究人员的机身发烫问题;15)增高器:果您体型高大,可选配增高器,保证您观察时的坐姿更加舒适;16)搬运把手:保证您移动显微镜时轻松安全;YH-MINP-0103产品配置 显微镜不溶性微粒检测仪技术参数测试范围: 1 μm - 500 μm放大倍数:40X-l000X 倍比较大分辨:0.1 μm显微镜误差:0.02(不包含样品制备因素造成的误差)重复性误差: 5%(不包含样品制备因素造成的误差)数字摄像头(CCD):300 万像素标尺刻度:0.1 μm分析项目:粒度分布、长径比分布、圆形度分布等自动分割速度: 1 秒分割成功率: 93%软件运行环境:Windows 2000、Windows XP接口方式:RS232 或 USB 方式供货期:30 个工作日精 确 度:±3% 典型值;重合精度:10000 粒/mL(5%重合误差);分辨率:95%(按中国药典 2010 版校准)10%(按美国药典、ISO21501 校准)YH-MIP-0103分析过程: YH-MIP-0103系统介绍:美国药典 USP 788、USP 789、USP35-NF30、USP32-NF27;欧洲药典 EP6.0、EP7.0、EP7.8、EP8.0;英国药典 BP2013、BP2012、2010、2009;日本药典 JP16、JP15、JP14;印度药典 IP2010 版;WHO 国际药典 IntPh 第四版;中国药典 2010 年、2015 年;GB8368 输液器具;ISO21510;ISO11171 等。GB/T 11446.9-2013 电子级水中微粒的仪器测试方法。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。 创新点:显微镜不溶性微粒检测仪全自动进行滤膜全扫描,并进行颗粒图片分析,可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维按照颗粒性质进行归类分析统计,检测分析系统可按客户要求配置奥林巴斯体式显微镜、奥林巴斯金相显微镜等显微镜不溶性微粒检测仪
  • 美国PSS发布生物蛋白不溶性微粒检测仪新品
    AccuSizer 780 A2000 SIS 蛋白质注射液不溶性微粒检测仪 注射剂不溶性微粒检测方案全覆盖提升注射剂用药安全遵循法规规范基本信息仪器型号:AccuSizer 780 A2000 SIS工作原理:光阻法[Light Obscuration(LO), Light Extinction(LE),Light block(LB)]检测范围: 0.5 μm – 400 μm AccuSizer 780 A2000 SIS 蛋白质注射液不溶性微粒检测仪集自动进样、自动检测、数据处理以及自动清洗等全自动检测功能于一身,为注射剂检测提供安全、快捷、高效、可靠的不溶性微粒分析解决方案。其搭载的系列传感器采用先进的半导体用光阻法单颗粒光学传感技术(SPOS),更额外加载了光散传感器,除覆盖传统的光阻法检测范围1.5 μm – 400 μm外,更可下探到0.5μm的极限值。 AccuSizer 780 A2000 SIS 蛋白质注射液不溶性微粒检测仪内置各国药典的检测标准,更可通过自定义检测标准符合多种应用场景,也可以避免后续药典标准升级之虞。 AccuSizer 780 A2000 SIS蛋白质注射液不溶性微粒检测仪搭载的AccuSizer软件完全符合US 21CFR Part11要求,具有数据自动备份,审计追踪,权限分级,电子签名,以及可连接Lims系统等多项功能,再原有的经典型号780 A2000 SIS基础上增配了具有50uL的微量进样能力模块,是检测大小注射液、蛋白注射液、混悬液、口服液、滴眼液等液体制剂及无菌粉末和无菌原料药的不二选择。技术优势1、检测范围广0.5μm-400μm;2、高分辨率,高灵敏性,统计精度高;3、粒子灵敏度 ≤10PPT4、粒径准确度 ≥98%5、粒子计数准确度 ≥90%6、符合21CFR法规软件——符合cGMP要求;7、现场校准,无需返厂;8、模块化设计,便于升级及维护;9、512通道,不放过任何细微颗粒;10、符合美国药典USP787、788、789、1788、中国药典CP、欧洲药典EP、日本药典JP等要求,且可自定义报告和标准;11、集自动取样(选配)、自动检测、数据处理以及自动清洗等自动化功能与一身;512数据通道 对于颗粒计数器来说,通道数越多,意味着其在特定测量量程内划分的区域越多。AccuSizer 780 颗粒计数器系列的仪器对于0.5μm - 400.0μm的测量范围按照指数等级划分有512个通道,意味着其在粒径越小处划分的范围越细,例:1.586μm-1.675μm。这样做的优点是显而易见的,一方面仪器实现了计数的准确性,将测量的结果作最细致的分析,而不是将结果作大致的分类。另一方面,对于测量复杂体系和多组分的样品,数据能很好的体现在结果图谱及数据中。图1多通道的优势 如上四张图是同样一个样本在使用不同通道的时候的表现,明显可以看出,使用8、16、32个通道的时候,仅仅能判断颗粒度在一个范围内,不能明确到底多大。而换用512高通道后,粒径大小的辨析度明显增加,对于峰值的判断更加清晰明了。高分辨率 高通道的优势换来的是高分辨率的优势。所谓分辨率,在这里指的是分辨同一体系内不同粒径大小的能力。得益于超前的设计理念和软硬件组合,AccuSizer 780系列仪器除了能够呈现完全不同于经典光散射的颗粒计数分布外,相对于经典的电阻法和光阻法,具有更高的分辨率和准确性。它不会错过任何“尾部” 大颗粒,而这些“尾部”大颗粒往往是决定产品好坏的标准。图2 AccuSizer 780 高分辨率展示 如图2所示,同一个样本中混合0.7μm,0.8μm,1.3μm,2μm,5μm,10μm,15μm,20μm,50μm,100μm,200μm 11种标准PSL粒子,AccuSizer 780可以很容易将每种不同大小的标粒区分清楚。图3 SPOS VS Laser diffraction 图3展示了同一个样本在SPOS技术和激光衍射法(Laser diffraction,LD)粒度仪中测得的结果。样本使用的是过400目筛(37μm)的样本。SPOS技术(绿色线)显示在35μm以上是没有粒子的,这和实际情况相符。但是使用LD检测得到的仅仅是“相似”的分布,但是在100μm本来没有颗粒的情况下却给出了还有大量大颗粒的假性结果。US 21CFR Part 11法规软件——符合cGMP要求 AccuSizer 780 A7000 APS不溶性微粒检测仪全系配备了符合美国联邦法规21章第11款(21 CFR PART11)要求的软件。具有数据自动备份,审计追踪,权限分级,电子签名,可连接Lims系统等多项功能。 中国食品药品监督管理局(NMPA)有政策趋势将对医药研发企业实施规范的GLP 管理。使用符合21 CFR PART 11法规的软件更能符合现在GLP/GMP的要求。产品优势 模块化设计将主机(数据处理中心),进样器,传感器分模组进行设计,既利于维护,也有助于后续的升级。主机:512通道计算实现仪器的高分辨率、高灵敏度;进样器:使用洁净度、耐受度超高的PFA管路,测样过程安全、简单、快捷,配备不同型号的注射器,拆卸方便;传感器独立安装,方便拆卸,既有利于维护维修,也便于更换其他型号传感器。CETAC自动进样器微量进样器微量进样 随着诸如蛋白质注射液等新型注射剂的研发和上市,对于金贵样品的“痕量”检测提出了要求。PSS使用先进的微控技术,可以实现最小容量到50μl的检测量,大大减少样品浪费,降低检测成本。 而新版药典如USP789对于体积精度更是提出了苛刻的要求。AccuSizer 780 A2000 SIS不溶性微粒检测通过了严格测试,可以保证进样量的准确性。表1 微量进样器的精确度确认 表中可以看出,在50微升的重复性,AccuSizer 780 A2000 SIS表现优异,重复三次的RSD值为2.4%。CETAC自动进样 在传统的粒度仪使用过程中,需要操作人员时刻在现场操作。因为粒度仪的测试结果都是累计结果,也就是说,数据需要一定的时间来累积才能获得准确的结果。一般来说,一个样品要取得比较好的数据重现性和准确性,需要3-15分钟,甚至更长时间。现代实验室如果有大量的样品进行检测,会花费很多时间。PSS粒度仪可全系搭配CETAC自动进样系统,一次性可以检测24-96个样品,这会大大节省操作时间。创新点:最新版蛋白注射液的不溶性微粒标准大大提高了对仪器的检测灵敏性和微量进样的重要性。本最新型号根据蛋白注射液的最新药典要求,增配了小容量注射进样系统,可以最少到150微升。虽然大大减少了进样量,却仍然满足体积精确度5%的标准。生物蛋白不溶性微粒检测仪
  • 美国PSS发布PSS-780 A2000 SIS不溶性微粒检测设备新品
    PSS-780 A2000 SIS不溶性微粒检测设备 注射剂不溶性微粒检测方案全覆盖提升注射剂用药安全遵循最新法规规范基本信息仪器型号:PSS-780 A2000 SIS工作原理:光阻法[Light Obscuration(LO), Light Extinction(LE),Light block(LB)]检测范围: 0.5 μm – 400 μm PSS-780 A2000 SIS不溶性微粒检测设备集自动进样、自动检测、数据处理以及自动清洗等全自动检测功能于一身,为注射剂检测提供安全、快捷、高效、可靠的不溶性微粒分析解决方案。其搭载的系列传感器采用先进的半导体用光阻法单颗粒光学传感技术(SPOS),更额外加载了光散传感器,除覆盖传统的光阻法检测范围1.5 μm – 400 μm外,更可下探到0.5μm的极限值。 PSS-780 A2000 SIS不溶性微粒检测设备内置各国药典的检测标准,更可通过自定义检测标准符合多种应用场景,也可以避免后续药典标准升级之虞。 PSS-780 A2000 SIS不溶性微粒检测设备搭载的AccuSizer软件完全符合US 21CFR Part11要求,具有数据自动备份,审计追踪,权限分级,电子签名,以及可连接Lims系统等多项功能,具有50uL的微量进样能力,是检测大小注射液、蛋白注射液、混悬液、口服液、滴眼液等液体制剂及无菌粉末和无菌原料药的不二选择。技术优势1、检测范围广0.5μm-400μm;2、高分辨率,高灵敏性,统计精度高;3、粒子灵敏度 ≤10PPT4、粒径准确度 ≥98%5、粒子计数准确度 ≥90%6、符合21CFR法规软件——符合cGMP要求;7、现场校准,无需返厂;8、模块化设计,便于升级及维护;9、512通道,不放过任何细微颗粒;10、符合美国药典USP787、788、789、1788、中国药典CP、欧洲药典EP、日本药典JP等要求,且可自定义报告和标准;11、集自动取样(选配)、自动检测、数据处理以及自动清洗等自动化功能与一身;512数据通道 对于颗粒计数器来说,通道数越多,意味着其在特定测量量程内划分的区域越多。AccuSizer 780 颗粒计数器系列的仪器对于0.5μm - 400.0μm的测量范围按照指数等级划分有512个通道,意味着其在粒径越小处划分的范围越细,例:1.586μm-1.675μm。这样做的优点是显而易见的,一方面仪器实现了计数的精准性,将测量的结果作最细致的分析,而不是将结果作大致的分类。另一方面,对于测量复杂体系和多组分的样品,数据能很好的体现在结果图谱及数据中。图1多通道的优势 如上四张图是同样一个样本在使用不同通道的时候的表现,明显可以看出,使用8、16、32个通道的时候,仅仅能判断颗粒度在一个范围内,不能明确到底多大。而换用512高通道后,粒径大小的辨析度明显增加,对于峰值的判断更加清晰明了。高分辨率 高通道的优势换来的是高分辨率的优势。所谓分辨率,在这里指的是分辨同一体系内不同粒径大小的能力。得益于超前的设计理念和软硬件组合,AccuSizer 780系列仪器除了能够呈现完全不同于经典光散射的颗粒计数分布外,相对于经典的电阻法和光阻法,具有更高的分辨率和精准性。它不会错过任何“尾部” 大颗粒,而这些“尾部”大颗粒往往是决定产品好坏的标准。图2 AccuSizer 780 高分辨率展示 如图2所示,同一个样本中混合0.7μm,0.8μm,1.3μm,2μm,5μm,10μm,15μm,20μm,50μm,100μm,200μm 11种标准PSL粒子,AccuSizer 780可以很容易将每种不同大小的标粒区分清楚。图3 SPOS VS Laser diffraction 图3展示了同一个样本在SPOS技术和激光衍射法(Laser diffraction,LD)粒度仪中测得的结果。样本使用的是过400目筛(37μm)的样本。SPOS技术(绿色线)显示在35μm以上是没有粒子的,这和实际情况相符。但是使用LD检测得到的仅仅是“相似”的分布,但是在100μm本来没有颗粒的情况下却给出了还有大量大颗粒的假性结果。US 21CFR Part 11法规软件——符合cGMP要求 AccuSizer 780 A7000 APS不溶性微粒检测仪全系配备了符合美国联邦法规21章第11款(21 CFR PART11)要求的软件。具有数据自动备份,审计追踪,权限分级,电子签名,可连接Lims系统等多项功能。 中国食品药品监督管理局(NMPA)有政策趋势将对医药研发企业实施规范的GLP 管理。使用符合21 CFR PART 11法规的软件更能符合现在GLP/GMP的要求。产品优势 模块化设计将主机(数据处理中心),进样器,传感器分模组进行设计,既利于维护,也有助于后续的升级。主机:512通道计算实现仪器的高分辨率、高灵敏度;进样器:使用洁净度、耐受度超高的PFA管路,测样过程安全、简单、快捷,配备不同型号的注射器,拆卸方便;传感器独立安装,方便拆卸,既有利于维护维修,也便于更换其他型号传感器。CETAC自动进样器微量进样器微量进样 随着诸如蛋白质注射液等新型注射剂的研发和上市,对于金贵样品的“痕量”检测提出了要求。PSS使用先进的微控技术,可以实现最小容量到50μl的检测量,大大减少样品浪费,降低检测成本。 而新版药典如USP789对于体积精度更是提出了苛刻的要求。AccuSizer 780 A2000 SIS不溶性微粒检测通过了严格测试,可以保证进样量的准确性。CETAC自动进样 在传统的粒度仪使用过程中,需要操作人员时刻在现场操作。因为粒度仪的测试结果都是累计结果,也就是说,数据需要一定的时间来累积才能获得准确的结果。一般来说,一个样品要取得比较好的数据重现性和准确性,需要3-15分钟,甚至更长时间。现代实验室如果有大量的样品进行检测,会花费很多时间。PSS粒度仪可全系搭配CETAC自动进样系统,一次性可以检测24-96个样品,这会大大节省操作时间。创新点:1、全新型号传感器2、更新了外观设计3、软件版本的升级PSS-780 A2000 SIS不溶性微粒检测设备
  • 美国PSS发布AccuSizer 780 A2000 SIS 不溶性微粒检测仪新品
    AccuSizer780系列仪器揭示出了不同于以往的粒径分布数据。 应用单颗粒传感技术(SPOS)的AccuSizer 780系列仪器更加稳定和灵敏,一次只允许一个粒子通过检测器,可以避免错过任何一个粒子。粒子灵敏度 ≤10PPT粒径准确度在 ≤2%粒子计数准确度 ≤10%近期独立试验证明:在检测离群值(尾部大颗粒)时,单颗粒传感技术(SPOS)比光散射法和声学法敏感1,500到25,000倍。AccuSizer780系列仪器可以清晰准确地呈现粒径分布,而粒径分布往往是直接与材料物性相关联的。从研发到生产,全球各大实验室均已应用并验证了AccuSizer 780系列仪器可以用作重塑产品品质的强有力工具。AccuSizer 780APS全自动颗粒计数粒径检测仪 AccuSizer 780APS 集自动进样、自动稀释、自动检测、数据处理以及自动清洗等全自动检测功能于一身,为用户提供可方便、快捷、高效、可靠的粒径分析。其使用了适用于高浓度样品的二次自动稀释系统,能稀释最高浓度为50%(固含量)的样品。只需通过鼠标的单击操作,喜用即能自动完成所有操作,使用户获得重要准确的粒径分布和颗粒数目的信息。所以AccuSizer 780APS 成为实验室微粒粒径分析及质量监控最理想的仪器。APS由于具有可以检测离平均粒径只有几个标准偏差的极低水平的聚合物的能力,被很多客户称为万能探测器(bolder detector),因为这些聚合物的存在与否往往决定着产品的好与坏。独立试验显示APS在电化学抛光法(CMP)过程所使用的磨料浆(slurry)中对大颗粒的检测要比一般的激光散射法其灵敏度要高1,500到25,000倍。同样,此款仪器可以应用在墨水、颜料、色素、药物乳剂等行业,这些应用中极少的“尾部”大颗粒是判断一个产品成功或者失败的重要标准。创新点:AccuSizer 780 A2000 SIS不溶性微粒检测仪集自动进样、自动检测、数据处理以及自动清洗等全自动检测功能于一身,为注射剂检测提供安全、快捷、高效、可靠的不溶性微粒分析解决方案。其搭载的系列传感器采用先进的半导体用光阻法单颗粒光学传感技术(SPOS),更额外加载了光散传感器,除覆盖传统的光阻法检测范围1.5 μ m – 400 μ m外,更可下探到0.5μ m的极限值。AccuSizer 780 A2000 SIS 不溶性微粒检测仪内置各国药典的检测标准,更可通过自定义检测标准符合多种应用场景,也可以避免后续药典标准升级之虞。AccuSizer 780 A2000 SIS不溶性微粒检测仪搭载的AccuSizer软件完全符合US 21CFR Part11要求,具有数据自动备份,审计追踪,权限分级,电子签名,以及可连接Lims系统等多项功能,具有50uL的微量进样能力,是检测大小注射液、蛋白注射液、混悬液、口服液、滴眼液等液体制剂及无菌粉末和无菌原料药的不二选择。AccuSizer 780 A2000 SIS 不溶性微粒检测仪
  • 海岸鸿蒙助力医药企业应对可见异物、不溶性微粒挑战
    2023注射剂注册评审及一致性评价培训班于6月8日—11日在北京成功举行。此次活动通过培训方式,帮助参训学员准确掌握注射剂产业最新监管政策、审评技术等动态,并针对《中国药典》对注射剂产业高质量发展相关的质量要求和检验方法作出交流活动。此次会议由国家药品监督管理局主办,邀请中检院首席专家胡昌勤教授、沈阳药科大学博士生导师袁红梅教授等业内知名专家学者进行授课。海岸鸿蒙窦晓亮博士在6月10日下午分享的“不溶性微粒检查光阻法的检测与校准,可见异物自动检查设备的确证方法”主题内容,受到参训人员的认可。可见异物/不溶性微粒 医药企业的持续挑战生物医药领域作为21世纪最具发展前景的领域之一,随着药物质量研究的深入以及患者依从性需求的提高,注射给药途径逐渐趋于主流,注射产品是当如今全球生物制药市场发展中的主要增长引擎。目前,美国FDA批准的药物中有40%以上是可注射的皮下和肌肉注射产品,注射产品在这些批准的药物中所占的比重正越来越大。注射剂产品正经历飞速发展,但产品质量问题同样不可忽视,国内外因产品因质量问题而召回的事件频频发生,其中因颗粒异物问题被召回处于前列。如西班牙ROVI制药公司生产的COVID-19疫苗产品存在可见异物问题,美国费森尤斯卡比频繁出现产品因可见异物的因素召回产品,福建某药业生产的注射液一年内被两次检出可见异物,黑龙江某制药厂生产的葡萄糖注射液产品内有可见异物……颗粒异物问题作为生物医药界常见且极具挑战性的问题,它直接影响生物药的安全性和有效性。一旦产品中出现不符合监管要求的异物颗粒,会导致危机患者生命安全及产品召回等后果。因此,如何避免由于异物颗粒导致的安全影响,是企业面临的持续挑战,加强药品的质量管理,则是企业永恒的责任。海岸鸿蒙标准物质 助力药企质量管理随着临床上注射剂的大量使用,由注射剂中不溶性微粒引起的临床不良反应案例不断发生,国内外药典等对注射剂中微粒进行了严格的控制。《中国药典》2020年版(ChP 2020)、《美国药典》43-国家处方集 38(USP 43-NF 38)、《欧洲药典》10.0(EP 10.0)、《英国药典》2021(BP 2021)和《日本药典》18(JP 18)都对不溶性微粒和可见异物有明确规定,均采用光阻法和显微镜法进行检测。以中国药典为例,不溶性微粒可以通过光阻法和显微计数法两种方法测量,其中光阻法的判定标准为:(1)标示装量为100mL或100mL以上的静脉用注射液除另有规定外,每1mL中含10μm及10μm以上的微粒数不得过25粒,含25μm及25μm以上的微粒数不得过3粒。(2)标示装量为100mL以下的静脉用注射液、静脉注射用无菌粉末、注射用浓溶液及供注射用无菌原料药除另有规定外,每个供试品容器(份)中含10μm及10μm以上的微粒数不得过6000粒,含25μm及25μm以上的微粒数不得过600粒。除了明确的颗粒数量要求,《中国药典》中规定仪器的校准所用仪器应至少每6个月校准一次。做好药品可见异物/不溶性微粒的风险控制,是确保药品安全性和有效性的重要措施。海岸鸿蒙深耕标准物质领域二十七载,颗粒标准物质的研发已经达到国内领先、国际先进水平,可见异物等百余种标准物质的研制成功填补国内空白,并可提供特殊定制服务。海岸鸿蒙更将作为生物医药企业的合作伙伴,为生产中的质量管理,减少异物颗粒提供有效保障,助力企业在不断变化的市场状况下应对新的挑战。
  • 用BettersizeC400检测氯化钠注射液中不溶性微粒
    不溶性微粒是指存在于液体制剂中除气泡以外的异物,是非代谢性的有害粒子[1],其粒径一般在1~50μm之间,肉眼看不见。1966年,美国食品药品监督管理局(FDA)《关于大输液安全性问题》专题讨论报告中指出,输液中大量非代谢性异物(微粒)可引起热源反应、静脉炎。有些微粒具有抗原作用,使机体发生过敏反应;有些可导致血管栓塞及动脉肉芽肿的形成[2]。这主要是由于人体最细的毛细血管内径仅4~7μm。此外,大于8μm的微粒会沉积在肺部,小于8μm的微粒则可能沉积在肝、脾与骨髓中[3],因此很多国家药典中均制定了微粒检查的限度。中国药典对不溶性微粒的限定标准如下: 本次实验采用丹东百特研制的BettersizeC400光学颗粒计数器,来分析三个不同厂家的0.9%氯化钠注射液中的不溶性微粒数,规格均为250ml。检测方法是在每个厂家的0.9%氯化钠注射液中抽取4个10ml样品,分别用BettersizeC400分别测10μm-25μm之间和大于25μm的微粒数,结果如下:表2. 三个厂家0.9%氯化钠注射液的微粒数(个/10ml)测试结果显示,三个样品的不溶性微粒含量极少,远远小于药典中规定的数值,完全符合药典要求。0.9%氯化钠注射液为基础注射液,它的不溶性微粒含量达到药典要求,对民众的用药安全具有特殊意义。BettersizeC400光学颗粒计数器(光阻法)具有操作简单、快速、灵敏、智能化程度高、取样体积准确等特点,是目前各种类型的注射液中不溶性微粒检测的必备仪器,是药典规定的检测方法,也是各大药企和药监机构普遍使用的方法。[1]付艳 注射液中不溶性微粒检查方法 中国粉体技术 2008年6月14卷,238-239[2]黄佳,白彩珍,山广志等,中国药典对注射液中不溶性微粒的监控变革及防控微粒污染的措施.药品评价,2010,7:18-21[3]毛璐,甄健存,陈志刚,崔蔚,静脉滴注药物中不溶性微粒的考察,中国药学杂志,2006.1月41卷1期,45-47
  • WAGA-100大气水溶性离子在线分析仪
    大气颗粒物来源广泛,化学组分复杂,与痕量气态污染物如二氧化硫、氨等互相转化,造成大气复合污染的复杂状况。传统的大气颗粒物和气体组分多遵循采样-运输-实验室分析的流程,时间周期长,消耗人力物力较多。一些不稳定的物质在周期中容易挥发或者发生反应,导致检测结果不能准确地反映实时污染物组分浓度,造成测量误差。  因此,对颗粒物化学成分和痕量污染气体开展准确、实时、长期的监测、是治理大气颗粒物的先决基础。  聚光科技(杭州)股份有限公司(以下简称“聚光科技”)联合北京大学最新推出基于离子色谱法的WAGA-100大气颗粒物水溶性离子成分在线分析仪,可实现对大气中多种水溶性离子的自动准确测量。 WAGA-100大气水溶性离子在线分析仪可测气体组分NH3、HCl、HONO、HNO3和SO2可测颗粒物组分F-、Cl-、NO2-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等WAGA大气颗粒物水溶性离子成分在线分析仪原理图关键技术  1)湿式平行板溶蚀器技术  它的基本工作原理是:选择能吸收被测组分的吸收剂涂渍于溶蚀器内壁,或让吸收剂以一定流速流过溶蚀器内壁,利用气体和气溶胶扩散系数的差异,使气体分子扩散到管壁被吸收剂吸收,而气溶胶不受影响一直通过扩散管,从而有效地分离气态污染物和气溶胶。湿式平行板溶蚀器工作原理示意图  2)蒸汽喷射-撞击式采样技术  基于蒸汽喷射的气溶胶采样技术原理是气溶胶颗粒在水蒸气的作用下长大,经过一个水汽分离装置后,水溶性组分进入溶液并进一步分析。该技术解决了传统膜采样法时间周期长、颗粒物成分变化等问题,应用于组分在线监测,可以实时、准确的获知颗粒物化学成分信息。 基于蒸汽喷射的气溶胶收集技术示意图  3)微差压全自动液面探测技术  基于微压差的自动化液面探测技术可以连续自动的输出收集液容积,适用于无人值守的在线监测仪器,结构简单,灵敏度高。 微差压全自动液面探测技术示意图  4)针对自动在线分析的智能化软件系统  聚光科技WAGA-100大气水溶性离子在线监测系统将采样、分析、检测单元、数据处理单元等集成在分析仪内部;通过内置程序控制电磁阀的开关和设定流量,根据时序控制不同采样流程状态下泵的工作状态和频率,减少仪器使用及维护的工作量;通过定时循环自动触发下一流程,实现流程的循环和连续在线测量,减少人工维护,实现高度自动化控制。产品特点  痕量气体和颗粒物组分的自动监测  适用于大流量的平行板溶蚀器设计  高效颗粒物捕集装置  联合北京大学研制,经十余年研发和应用验证  全自动化控制,可长时间无人值守  数据自动分析和上传应用案例 2017.04.17 凌晨5:00WAGA仪器在现场捕捉到颗粒物较高的硝酸盐和硫酸盐含量 2008.10.20~2008.11.09基于该技术现场监测的PM2.5水溶性离子成分和气体浓度的变化趋势
  • 低水溶性化合物TOC分析:清洁验证中棉签回收率的评估
    本研究旨在通过总有机碳(TOC)分析评测具有低水溶性的化合物能否进行回收。在默克索引中,这些化合物的可溶性说明被描述为“基本不溶”或“实际不溶”。我们的任务是在实验中测定这些化合物的溶解度,并调查研究擦拭技术的百分比回收率。鉴于保密协议,不能公开这些化合物的特性。化合物A-F(参见表1)为小分子(300-600 g/mol)。材料12x12cm不锈钢板,具有10x10cm加标区域,使用CIP-100清洗,使用低TOC水漂洗,放置干燥无粉手套容量瓶,按照Sievers️步骤914-80015进行清洗棉签(Texwipe Alpha棉签)预清洁的40 mL样品瓶移液管,30 mLHamilton气密注射器,使用CIP-100和低TOC水清洗使用膜电导检测技术的Sievers️ TOC分析仪带自动进样器步骤为最大限度地降低有机污染,在整个实验过程中须佩戴无粉手套。各化合物的溶解度通过将化合物加入低TOC水中进行经验测定。对混合物进行摇动、搅拌和超声处理以帮助化合物的溶解。目测检查后,按以下公式计算储备液的碳浓度。百分比(%碳)从化合物的经验式推导得出。如,化合物C20H22N4O10S的%碳是:用TOC分析确定各储备液的碳浓度。对化合物A和B的储备液直接分析,而化合物C到F的储备液进行10倍稀释。进行TOC分析之前,使用磷酸将少量(2 mL)的各储备液酸化到pH2。(对于溶液C到F,酸化少量稀释溶液)。对得到的酸化溶液进行目测检查,观察是否有沉淀形成。在任何酸化溶液中都没有观察到沉淀。然后使用Sievers TOC分析仪分析A和B储备液,以及储备液C到F的稀释液。TOC结果与计算的碳浓度吻合,各种化合物的溶解度列在下表1中。进行棉签回收研究时,配制了以下溶液:2个样品瓶的试剂水2个样品瓶的背景棉签溶液2个样品瓶的标准添加溶液(共12个)2个样品瓶的棉签回收溶液(共12个)试剂水:30 mL的移液管用于在28个预清洁样品瓶(40 mL)中注入30 mL的低TOC水。流入后,马上盖上各样品瓶,直到以后使用。2个试剂水样品瓶进行标注并放到一边,以备随后的TOC分析。剩余的26个充注好的样品瓶用于制备背景棉签溶液、标准添加溶液和棉签回收溶液。背景棉签溶液:通过切除三个棉签尖端到30 mL低TOC水中制备两个样品瓶的背景棉签溶液。小心避免污染切入水中的棉签柄部分。标准添加溶液:在低TOC水(30 mL)中加入少量储备液(试剂量范围为0.1-1.0 mL)制备标准添加溶液(每种化合物2个样品瓶)。每种化合物所选的试剂量使最终的标准添加溶液浓度约为1 ppm C。棉签回收溶液:制备棉签回收溶液时,在不锈钢板上放置用于制备标准添加溶液的同样试剂量的储备液。溶液在10x10cm钢板表面区域均匀分布,以便干燥(大约1个小时)。然后使用三根由低TOC水预湿润的棉签擦拭钢板的表面。然后将三根棉签的尖端切入低TOC水的样品瓶(30 mL)中。分析前剧烈摇动所有的样品瓶。使用配备自动取样器的Sievers TOC分析仪(采用膜电导检测技术)对所有样品瓶(28个)进行分析。分析条件为:氧化剂流速为0.2 mL/min,酸流速为0.75 mL/min。每个样品瓶重复分析四次。舍弃各样品瓶的第一次测定数值,将后面的三次进行平均。然后将重复样品瓶的结果进行平均,显示于表1中。这些数据用于计算图1所示的百分比回收率。结论虽然化合物A至F在默克索引中描述为在水中“基本不溶”或“实际不溶”,我们通过实验测定其室温下的溶解度,其范围为百万分之几(ppm)。使用擦拭技术和TOC分析从不锈钢板上成功回收了这些化合物。本研究论证了使用TOC分析进行清洁验证应用的可行性。通过TOC分析,诸如A至F通常被认为在水中“不溶”的有机化合物实际上对于回收而言充分可溶。◆ ◆ ◆联系我们,了解更多!
  • 使用超高效合相色谱进行脂溶性维生素胶囊分析
    沃特世公司(美国马萨诸塞州米尔福德)背景简介脂溶性维生素(FSV)(通常来自充油胶囊、充粉胶囊或压缩片粒)的分析是一项具有挑战性的任务。最常见的情况是,这些配方的分析都采用正相色谱法,使用传统的正相溶剂(己烷、叔丁醇、乙酸乙酯、二氯甲烷等),采购和处理的成本相当高。用于FSV分析的其它分析色谱技术包括反相液相色谱法、气相色谱法、薄层色谱法和比色技术。超高效合相色谱(UPC2&trade )为脂溶性维生素分析提供了一种可行的技术,它是一种具备成本效益的、可持续的和绿色环保的替代技术,降低了有机溶剂的用量,分析时间快,保持了色谱数据的品质。使用ACQUITY UPC2系统分析了一系列FSV配方。被检验的配方有:维生素A、维生素A+D3、维生素E,维生素D3、维生素K1和维生素K2.这些实验的结果表明,UPC2有可能替代当今正在使用的许多分离方法成为唯一的一种技术全文下载链接:http://www.instrument.com.cn/download/DownLoadFile.asp?id=221998
  • FRITSCH粒度仪——日本海域海洋微粒的粒径分析
    在浩瀚无垠的海洋中,隐藏着一个对生态平衡至关重要却常被忽视的秘密——悬浮颗粒的复杂粒径组成。这些微小的颗粒物不仅是海洋沉积物生成的关键指标,也直接影响着海洋生态系统的健康与人类社会的福祉。近年来,随着技术的进步,科学家们开始采用精密仪器来深入探索这一领域,其中,Analysette 22 NeXT激光粒度仪正成为揭示海洋微世界奥秘的强大工具。海洋微粒:未知的威胁在日本海的阿贾克斯湾,研究者们收集了宝贵的样本,随后进行了深入分析。目标是通过先进的技术手段,揭开海底焊接与切割作业过程中产生的悬浮颗粒的神秘面纱。这一过程看似遥远,实则与我们息息相关——因为这些微米级的颗粒物,正是对人类及海洋生物健康构成潜在威胁的因素。青岛鑫龙达海洋工程有限公司 _水下检验, 水下清理清淤与打捞救助,水下焊接切割,水下绳据切割 (qdxld.cn)在这个实验中,从距离日本海阿贾克斯湾海岸30米的表层收集了20个水样。实验中的被测颗粒是通过使用特殊的药芯焊丝PPS-APL2 D-1.6mm(技术要求1274-001-83763787)在海水中焊接和切割金属而获得的,速度为-265mm/min。使用“VD-309P焊接整流器”作为焊接机。60秒后取样,这对应于水下焊接1个电极的燃烧时间。激光科技的力量:精准解析微小世界在这项前沿研究中,Analysette 22 NeXT激光粒度仪发挥了核心作用。这款高科技设备能够精确测量和分析颗粒大小分布,其精度之高,轻松捕捉到直径小于10μm的微小粒子。这些数据对于理解海洋环境中污染物的动态以及它们对生态系统的影响至关重要。无人为影响的海洋悬浮颗粒粒径分布的累积曲线执行水下切割后海洋悬浮颗粒粒径分布的累积曲线 执行水下焊接工作后海洋悬浮颗粒的粒度分布中,可看出所有样品中9.9μm微粒的峰值,主要颗粒分数为60%。焊接下的海洋:未被充分认识的污染源研究表明,海底焊接作业期间,直径小于10μm的颗粒物占比高达30%至60%。这意味着,这些细微的污染源不仅广泛存在,而且其浓度水平足以对海洋生物造成负面的毒理学效应,进而威胁整个海洋生态系统的稳定性和多样性。悬浮颗粒粒径分布测量结果的比较直方图显示,在人为影响下,水下焊接过程中主要排放粒径小于10μm的有害物质。从科研到行动:保护海洋生态的紧迫使命该研究揭示了水下焊接活动可能对海洋生态系统的水生生物产生负面的毒理学效应,强调了研究悬浮颗粒复杂粒度组成的重要性,尤其是在评估和管理海洋环境中的人为污染源时。这项研究成果不仅仅是学术上的突破,更是对环境保护的强烈呼吁。了解这些微粒的来源、分布及其潜在危害,是制定有效环保策略、减少人类活动对海洋环境影响的前提。借助如Analysette 22 NeXT这类高精度仪器,科学家们能够更准确地评估海洋污染状况,为政策制定者提供科学依据,共同推动更加可持续的海洋开发利用方式。总之,随着科技的进步,我们有了揭秘海洋微粒世界的利器。然而,技术的革新也要求我们以更加负责任的态度去使用这些知识,共同努力保护好地球上这片最后的蔚蓝。Analysette 22 NeXT激光粒度仪的运用,不仅是一项科学研究的成就,更是向实现海洋生态保护迈出的重要一步。
  • 招标!中科院大气物理所预算434万采购水溶性有机气溶胶在线分析系统
    p 5月27日,中国政府采购网发布中国科学院大气物理研究所水溶性有机气溶胶在线分析系统采购项目公开招标公告,预算434万人民币。/pp 详细采购信息如下:/ptable border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 30px "td width="52" height="30" style="padding: 0px 7px border: 1px solid windowtext border-image: none background-color: transparent "p style="text-align: center margin-top: auto margin-bottom: auto "span style="font-family: 宋体 font-size: 12px "包号/span/p/tdtd width="123" height="30" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center margin-top: auto margin-bottom: auto "span style="font-family: 宋体 font-size: 12px "货物名称/span/p/tdtd width="65" height="30" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center margin-top: auto margin-bottom: auto "span style="font-family: 宋体 font-size: 12px "数量/span/pp style="text-align: center margin-top: auto margin-bottom: auto "span style="font-family: 宋体 font-size: 12px "(套)/span/p/tdtd width="190" height="30" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center margin-top: auto margin-bottom: auto "span style="font-family: 宋体 font-size: 12px "简要技术要求/span/p/tdtd width="94" height="30" valign="top" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center margin-top: auto margin-bottom: auto "span style="font-family: 宋体 font-size: 12px "是否接受进口产品/span/p/td/trtr style="height: 53px "td width="52" height="53" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center margin-top: auto margin-bottom: auto "span style="font-family: 宋体 font-size: 12px "1/span/p/tdtd width="123" height="53" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center margin-top: auto margin-bottom: auto "span style="font-family: 宋体 font-size: 12px "水溶性有机气溶胶在线分析系统/span/p/tdtd width="65" height="53" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center margin-top: auto margin-bottom: auto "span style="font-family: 宋体 font-size: 12px "1/span/p/tdtd width="190" height="53" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center margin-top: auto margin-bottom: auto "span style="font-family: 宋体 font-size: 12px "用于大气颗粒物中水溶性有机化合物的快速同步定性、定量分析/span/p/tdtd width="94" height="53" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center line-height: 150% margin-top: auto margin-bottom: auto "span style="line-height: 150% font-family: 宋体 font-size: 12px "是/span/p/td/tr/tbody/tablep style="text-align: left "br//pp  项目名称:中国科学院大气物理研究所水溶性有机气溶胶在线分析系统采购项目/pp  项目编号:OITC-G17032390/pp  项目联系方式:/pp  项目联系人:窦志超/pp  项目联系电话:010-68725599-8447/pp  采购单位联系方式:/pp  采购单位:中国科学院大气物理研究所/pp  地址:北京市朝阳区德胜门外祁家豁子华严里40号/pp  联系方式:010-82995275/pp  代理机构联系方式:/pp  代理机构:东方国际招标有限责任公司/pp  代理机构联系人:窦志超010-68725599-8447/pp  代理机构地址: 北京市海淀区阜成路67号银都大厦15层(请乘大厅中间的电梯)/p
  • 使用液相色谱法一次测定多种水溶性维生素
    维生素是人体重要的营养物质,但有些维生素在人体内无法合成,或合成量不能满足机体需要,要从外界摄取以满足人体需要。维生素根据溶解度的不同,分为水溶性和脂溶性两类,水溶性维生素主要有维生素C、B1、B2、B3、B5、B6、B11和B12。不同水溶性维生素的结构差异较大,化学性质不稳定,分离检测较为复杂困难。 目前水溶性维生素的测定方法主要有分光光度法、分子荧光法和高效液相色谱法等。分光光度法的样品前处理较复杂,且干扰物多,测定结果偏高。分子荧光法的样品前处理也复杂,定量不精确。高效液相色谱法的样品前处理简单,用量少,可一次分析多种水溶性维生素,是目前最合适的测定方法。实验部分 采用离子对试剂(四丁铵)作为流动相,由于离子对试剂易吸附在色谱柱上不易彻底清除,因此建议用来分析水溶性维生素的色谱柱专用。 图1. 9种水溶性维生素标准品的色谱图(上)和等高线图(下)1. 维生素 B1 (硫胺素) * 2. 维生素 B6 (吡哆素) * 3. 烟酰胺 4. 维生素 B12 (氰钴胺素) 5. 抗坏血酸糖苷 6. 维生素 C (抗坏血酸) 7. 异抗坏血酸 8. 维生素 B2 (核黄素) 9. 菸碱酸 使用二极管阵列检测器(简称:DAD),除了色谱图外,还可获得光谱图,两者结合可排除仅通过色谱保留时间定性造成的假阳性峰,能对食品和其他含有大量杂质的样品进行精确有效的分析。 图2. 维生素B6的标准曲线 9种水溶性维生素的标准曲线(浓度范围0.1 ~ 50 mg/L)均显示了良好的线性, r2 均≥ 0.996。但采用流动相进行稀释时,维生素C、异抗坏血酸和维生素B12 不稳定,为获得良好的线性,需使用新配制的溶液进行测定。 图3. 保健饮料的测定结果 图4. 营养补充剂的测定结果 该方法可同时检测多种水溶性维生素,标准曲线线性良好。借助二极管阵列检测器,可对食品和其他含有大量杂质的样品进行精确有效的分析,排除假阳性性峰的干扰。由于维生素C和异抗坏血酸不稳定,在样品制备过程中或随着时间的推移,二者容易发生分解,因此难以获得良好的线性和重现性。所以,此方法适用于定量分析,在定量分析时,建议对各维生素单独测定。关于日立高效液相色谱仪,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm 日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。其产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。
  • 产品上新—变压器油自动水溶性酸测定仪
    分析仪器作为专用设备,在电力、石化、制药、科学研究等领域都有着重要的作用,各异的功能要求造成了多样繁杂的分析仪器仪表种类,即使是同样功能的分析仪器,具体到每个行业,又有不同的要求。各类分析仪表仪器之间的原理、设计、制造等有较大区别,每一款分析仪器涉及的专业知识广而深,导致自主研发和市场开发的难度非常大,存在较高的技术壁垒。繁杂多样的下游需求结构和技术壁垒造成了行业细分市场分割特征明显。在细分领域中,常有 1~2 家技术优势、服务较好的企业在市场上具有压倒性优势,但总体企业市场规模仍普遍较小。国内还缺乏综合性横跨多领域具有明显优势地位的仪器仪表供应商。A1180自动水溶性酸测定仪是依照GB/T 7598标准设计研发,实验是在规定条件下,将试样与等体积的蒸馏水混合摇动,取其水抽出液通过比色确定其pH值。适用于变压器油、汽轮机油、抗燃油等石油产品的水溶性酸。仪器特点1、一体化设计,单片机控制。2、仪器自动化程度高。3、液晶显示,中文菜单,操作方便。4、自动完成加热、振荡、静放、油水分离、显色、比色、显示并打印测定结果。技术参数测试范围:pH3.8~7.0测量误差:≤±0.05 pH重复性: ≤0.05 pH适用温度: 5℃~40℃适用湿度:≤85%工作电源:AC220V±10%,50Hz功 率: 500W外形尺寸: 680mm×420mm×345mm
  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用
    大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。1. 已有吸湿性测量技术的局限性现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。2. 蒸汽吸附分析仪虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。图1. 蒸汽吸附分析仪的装置示意图(Gu et al., 2017a)该仪器对颗粒物的形貌没有要求,且具有卓越的灵敏度,能够准确测定小于千分之一的质量变化;在温湿度控制方面性能突出,所能研究的相对湿度最高可达98%。由于上述卓越性能,这项测量技术非常适用于研究形貌不规则或吸湿性较弱的大气颗粒物(比如矿质颗粒物、烟炱和生物气溶胶等),目前已被成功用于研究花粉颗粒物(Chen et al., 2019 Tang et al., 2019b)、矿质颗粒物(Guo et al., 2019 Tang et al., 2019c Chen et al., 2020)、高氯酸盐(Gu et al., 2017b Jia et al., 2018)等的吸湿性,大幅度提高了我们对上述几类物质吸湿性的科学认识水平。下文将介绍蒸汽吸附分析仪的几个典型应用。2.1 花粉颗粒物花粉颗粒物是最重要的生物气溶胶之一,其年排放量为 47-84 Tg,对大气环境、人体健康和气候变化具有重要影响,同时也在植物繁衍和和生态系统演化中起着关键作用。吸湿性是花粉颗粒物最重要的理化性质之一,其会影响花粉颗粒物的质量与形貌,从而影响花粉在大气环境和呼吸道中的迁移和传输。由于花粉颗粒物的形貌不规则,且吸湿性较弱,因此先前已有的吸湿性测量技术较难准确测定花粉颗粒物的吸湿性,而我们的方法对颗粒物的形貌无要求且非常灵敏,所以非常适合用于研究花粉颗粒物的吸湿性。图2. 花粉颗粒物的产生、传输及其环境、气候及生态效应在我们已经发表的两项工作中(Chen et al., 2019 Tang et al., 2019b),我们研究了25和37摄氏度下共17种国内外代表性花粉(12种风媒、5种虫媒)的吸湿性。我们发现这些花粉颗粒具有相对较强的吸湿性。例如,当相对湿度从0%升高至90%时,花粉颗粒物的质量增加了30%-50%,当相对湿度达到95%时,花粉颗粒物的质量基本接近于干燥条件下的2倍,如图3所示。另外就目前已有的数据(包括本研究和前人的研究)来看,风媒花粉和虫媒花粉的吸湿性似乎没有系统差异,而中国常见花粉与欧洲/北美常见花粉的吸湿性也非常相似。此外,两个温度下(25和37摄氏度)花粉颗粒物吸湿性的差异比较小。本研究对于深入认识花粉颗粒物的环境行为具有重要意义,尤其是37摄氏度下的实验结果,为模拟花粉颗粒物在呼吸系统内的传输和沉降以及评估其对人体健康的影响提供了关键基础数据。图3. (a)松树花粉与(b)梨树花粉分别在25和37摄氏度下的吸湿性2.2 矿质颗粒物由干旱和半干旱地区地表排放进入大气的矿质气溶胶是一种非常常见的大气颗粒物,其年排放量居于全球第二位,大气含量则居于全球第一位。图4展示了一次典型的沙尘暴事件。矿质气溶胶作为对流层中最重要的气溶胶之一,显著影响全球大气污染、气候变化以及生物地球化学循环。吸湿性在很大程度上决定了矿质气溶胶对大气化学和气候的影响。我们使用蒸汽吸附分析仪测量了21种矿质气溶胶的质量随相对湿度(0-90%)的变化,从而定量阐明矿质气溶胶的吸湿性(Chen et al., 2020)。这21种矿质气溶胶包括14种常见矿物(如石英、长石、石灰石和伊利石等)以及7种来自全球不同地区的实际沙尘。图4. 一次典型的沙尘暴事件我们发现矿质气溶胶的吸湿性普遍较弱,如图5所示。除了蒙脱石以外,当相对湿度从0%增加至90%时,矿质气溶胶的质量增加了不到10%,表明绝大部分的矿质气溶胶的吸湿性较低。另外,我们发现矿质气溶胶的吸湿性与其比表面积密切相关,这表明矿质气溶胶的吸湿性可能是由水在颗粒物表面的吸附所决定的。例如对于蒙脱石,其比表面积较大,吸湿性也远远强于其他矿质气溶胶。上述研究结果可显著提高矿质气溶胶吸湿性的科学认识,从而有助于更好地阐明矿质气溶胶在大气化学和气候变化中的作用。图5. 矿物样品的吸湿性与(a)BET比表面积的关系以及(b)粒径的关系2.3 盐尘暴颗粒物最近几年的外场观测表明,矿质颗粒物,尤其是从干盐湖和盐碱地表面排放进入大气的矿质颗粒物,除了吸湿性很弱的矿物之外,往往还含有一定量的水溶性盐(如氯化钠和硫酸钠等)。这类矿质颗粒物常被俗称为盐尘暴颗粒物。然而,目前关于盐尘暴大气颗粒物吸湿性的科学认识还基本上处于空白阶段。在近几年发表的一项研究工作中(Tang et al., 2019c),我们在东起黄河三角洲,西至新疆罗布泊的干旱和半干旱盐碱地采集了13个地表土壤样品,采样点的地理分布如图6所示。我们使用X射线衍射仪测定了这些样品的矿物组分,使用离子色谱仪分析了它们的水溶性离子成分,并使用蒸汽吸附分析仪研究了这些样品的吸湿性。图6. 土壤样品采样点的地理分布研究发现,不同样品的吸湿性存在着很大的差异,如图7所示。对于某些盐尘暴样品,其吸湿性较弱,当相对湿度升高至90%时,其质量仅增加了10%左右,然而对于某些盐尘暴样品,当相对湿度升高至90%时,其质量已增加至干燥状态下的5倍,这基本接近于氯化钠或硫酸钠的吸湿性。随后我们又探讨了颗粒物的吸湿性与其水溶性离子含量的关系。我们发现当水溶性离子的含量越高,颗粒物的吸湿性越强。此外,我们还将颗粒物水溶性离子含量的数据输入至气溶胶热力学模型(ISORROPIA-II)中来计算颗粒物的吸湿性,结果表明该热力学模型并不能很好的模拟实际盐尘暴样品的吸湿性。以上研究结果将改变我们对于矿质颗粒物吸湿性的科学认识,进而帮助我们更好地了解矿质颗粒物在大气化学和气候系统中的作用。图7. (a)新疆自治区吐鲁番市艾丁湖表层盐土与(b)内蒙古杭锦后旗盐碱土样品的吸湿性2.4 蒸汽吸附分析仪与其他表征仪器的联用由于蒸汽吸附分析仪仅可得到颗粒物随相对湿度的质量变化,因此我们通常还会将蒸汽吸附分析仪与其他表征仪器进行联用,从而深入认识颗粒物的吸湿性。例如,在花粉颗粒物吸湿性的研究工作中(Tang et al., 2019b),除蒸汽吸附分析仪以外,我们还使用了透射傅立叶变换红外光谱仪测定样品的红外吸收,以获得花粉颗粒物的化学成分的信息。测量结果表明,花粉颗粒物的吸湿性在很大程度上决定于颗粒物中羟基的相对含量。这一研究结果揭示了花粉颗粒物的化学成分与吸湿性的关系,进一步增强了我们对花粉颗粒物的环境、健康和气候效应的认识。在代表性钙盐镁盐颗粒物吸湿性的研究工作中,我们使用蒸汽吸附分析仪与H-TDMA系统分析了八种钙盐镁盐的吸湿特性,直接得到了颗粒物在不同相对湿度(0-90%)下的液态水含量及粒径变化数据,并讨论了不同初始相态对颗粒物吸湿性的影响以及环境意义。以Ca(NO3)2为例,其在蒸汽吸附分析仪实验中观察到明显的潮解行为,表明初始相态下该颗粒物为结晶态;而在H-TDMA实验中,Ca(NO3)2气溶胶颗粒呈现连续吸湿行为,表明其初始相态为无定形态。但是,颗粒物潮解之后两种手段得到的吸湿性参数均与气溶胶热力学模型模拟值吻合,呈现出良好的一致性。结果表明,两种手段的联用能够互为补充地系统研究颗粒物在不同粒径、不同初始相态下的吸湿特性,并为气溶胶热力学模型的验证提供有效的基础物化数据。2.5 火星上的液态水我们开发的大气颗粒物吸湿性的新方法还可以用来帮助我们认识火星中的液态水。2018年,来自意大利宇航局的团队通过雷达在火星南极附近冰层的地下发现了一个液态水湖。一般来说,由于火星环境条件极度寒冷和干燥,纯净液态水很难在火星环境中稳定存在。而土壤中存在的高氯酸盐可以降低水的冰点,并可在亚饱和条件下通过吸收水蒸气形成水溶液,这可以解释为什么火星这种极度干旱的条件下可能存在液态水。目前一些研究认为,火星土壤中所含的高氯酸盐能够在相对湿度远低于100%时通过吸收大气中的水蒸气发生潮解从而形成稳定的溶液,但关于不同温度和相对湿度下高氯酸盐液态水含量的实验数据仍十分匮乏。图8. 火星液态水湖(来源于网络)我们使用蒸汽吸附分析仪测定了几种常见的高氯酸盐(无水高氯酸镁、六水合高氯酸镁、无水高氯酸钠、一水合高氯酸钠等)在不同温度下的相变和吸湿性 (Gu et al., 2017b Jia et al., 2018)。我们发现,高氯酸盐可在较低的相对湿度下吸水形成稳定的水溶液。如图9所示,对于高氯酸钠盐,在相对湿度低于20%时,其主要以无水高氯酸钠颗粒物稳定存在;当相对湿度升高至30%时,则主要以结晶态的一水合高氯酸钠稳定存在;当相对湿度进一步升高时,结晶态的一水合高氯酸钠将吸收大量水形成稳定的高氯酸钠溶液。另外,我们还发现高氯酸盐的潮解点会随着温度的升高而降低。例如一水合高氯酸钠的潮解点从5摄氏度时的∼51.5%降至30摄氏度时的∼43.5%。这项研究工作大大加深了我们对不同条件下高氯酸盐在土壤中的吸湿性的认识,并在一定程度上揭示了为什么火星上可能存在液态水背后的物理化学机制。图9 (a)高氯酸镁盐与(b)高氯酸纳盐随温度和相对湿度变化的相态图参考文献【1】Chen, L. X. D., Chen, Y. Z., Chen, L. L., Gu, W. J., Peng, C., Luo, S. X., Song, W., Wang, Z., and Tang, M. J.: Hygroscopic properties of eleven pollen species in China, ACS Earth Space Chem., 3, 2678-2683, 2019.【2】Chen, L. X. D., Peng, C., Gu, W. J., Fu, H. J., Jian, X., Zhang, H. H., Zhang, G. H., Zhu, J. X., Wang, X. M., and Tang, M. J.: On mineral dust aerosol hygroscopicity, Atmos. Chem. Phys., 20, 13611-13626, 2020.【3】Gu, W. J., Li, Y. J., Zhu, J. X., Jia, X. H., Lin, Q. H., Zhang, G. H., Ding, X., Song, W., Bi, X. H., Wang, X. M., and Tang, M. J.: Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer, Atmos. Meas. Tech., 10, 3821-3832, 2017a.【4】Gu, W. J., Li, Y. J., Tang, M. J., Jia, X. H., Ding, X., Bi, X. H., and Wang, X. M.: Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid water in some hyperarid environments, RSC Adv., 7, 46866-46873, 2017b.【5】Guo, L. Y., Gu, W. J., Peng, C., Wang, W. G., Li, Y. J., Zong, T. M., Tang, Y. J., Wu, Z. J., Lin, Q. H., Ge, M. F., Zhang, G. H., Hu, M., Bi, X. H., Wang, X. M., and Tang, M. J.: A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols, Atmos. Chem. Phys., 19, 2115-2133, 2019.【6】Jia, X. H., Gu, W. J., Li, Y. J., Cheng, P., Tang, Y. J., Guo, L. Y., Wang, X. M., and Tang, M. J.: Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4∙H2O: implications for the stability of aqueous water in hyperarid environments on Mars and on Earth, ACS Earth Space Chem., 2, 159-167, 2018.【7】Tang, M. J., Chan, C. K., Li, Y. J., Su, H., Ma, Q. X., Wu, Z. J., Zhang, G. H., Wang, Z., Ge, M. F., Hu, M., He, H., and Wang, X. M.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631-12686, 2019a.【8】Tang, M. J., Gu, W. J., Ma, Q. X., Li, Y. J., Zhong, C., Li, S., Yin, X., Huang, R. J., He, H., and Wang, X. M.: Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature, Atmos. Chem. Phys., 19, 2247-2258, 2019b.【9】Tang, M. J., Zhang, H. H., Gu, W. J., Gao, J., Jian, X., Shi, G. L., Zhu, B. Q., Xie, L. H., Guo, L. Y., Gao, X. Y., Wang, Z., Zhang, G. H., and Wang, X. M.: Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications, J. Geophys. Res.-Atmos, 124, 10844-10857, 2019c.作者简介:唐明金,中国科学院广州地球化学研究所研究员,博士生导师。本科和硕士毕业于北京大学,博士毕业于马普化学研究所,并先后在英国剑桥大学和美国爱荷华大学从事博士后研究。主要研究方向为气溶胶化学及地球化学,已在Chemical Reviews、Atmospheric Chemistry and Physics和Journal of Geophysical Research-Atmospheres等国际知名期刊上发表SCI论文60余篇,并自2017年起担任国际SCI期刊Atmospheric Measurement Techniques副主编。曾获第18届侯德封矿物岩石地球化学青年科学家奖、第8届中国颗粒学会气溶胶青年科学家奖。
  • 北京市药品包装材料检验所215.30万元采购ICP-AES,切割机,红外光谱仪,紫外分光光度,不溶性...
    基本信息 关键内容: ICP-AES,切割机,红外光谱仪,紫外分光光度,不溶性微粒 开标时间: 2022-02-10 09:30 采购金额: 215.30万元 采购单位: 北京市药品包装材料检验所 采购联系人: 袁春梅 采购联系方式: 立即查看 招标代理机构: 中金招标有限责任公司 代理联系人: 杜雅威 代理联系方式: 立即查看 详细信息 [公开]检验设备设施更新改造项目公开招标公告 北京市-海淀区 状态:公告 更新时间: 2022-01-20 招标文件: 附件1 附件2 [公开]检验设备设施更新改造项目公开招标公告 2022-01-20 项目概况 检验设备设施更新改造 招标项目的潜在投标人应在北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取招标文件,并于2022-02-10 09:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:PXM2021_034305_000003_00447607_XMCG-JH001-XM001 项目名称:检验设备设施更新改造 预算金额:215.3 万元(人民币) 最高限价:215.3 万元(人民币) 采购需求: 包号 品目号 品目名称 数量(台/套) 简要规格描述 是否接受进口产品 预算金额(人民币/万元) 备注 1 1-1 傅立叶变换红外光谱仪 1 分辨率:不低于0.25cm-1 是 40 1 1-2 不溶性微粒检测仪 1 进样体积精度:±0.5% 否 14.5 1 1-3 可见异物检测仪 1 检测工位:44双模工位 否 34 1 1-4 紫外可见分光光度计 1 内置三种光源 否 18 1 1-5 切割机 1 锯条线速度:660/min 否 1.8 1 1-6 无管道净气型储药柜(附带配套耗材) 4 空气处理量: 200-230 m3/h 否 18 1 1-7 电感耦合等离子发射光谱仪 1 像素分辨率:≤0.002nm 是 82 核心产品 1 1-8 实验专用气体气路改造 1 易燃气体,如乙炔单独从其它气体分别引入 否 7 合同履行期限:2022年 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)鼓励节能政策:在技术、服务等指标同等条件下,优先采购属于国家公布的节能清单中产品。 (2)鼓励环保政策:在性能、技术、服务等指标同等条件下,优先采购国家公布的环保产品清单中的产品。 (3)扶持中小企业政策:评审时小型和微型企业产品享受6%的价格折扣。监狱企业视同小型、微型企业。残疾人福利性单位视同小型、微型企业。不重复享受政策。 (4)本项目采购标的是否接受进口产品详见第1条“招标内容”要求。 3.本项目的特定资格要求: 若所投产品为进口产品时,需提供产品制造商授权书(产品制造商投标则不需要提供)。 三、获取招标文件 时间:2022-01-20 至 2022-01-28 ,每天上午09:00至11:30,下午14:00至16:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home) 方式: 本项目采用电子化与线下流程结合招标方式 (1)办理CA认证证书(北京一证通数字证书),详见北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)查阅“用户指南”一“操作指南”一“市场主体CA办理操作流程指引”,按照程序要求办理。 (2)北京市政府采购电子交易平台“用户指南”一“操作指南”一“市场主体注册入库操作流程指引”进行自助注册绑定。 (3)招标文件获取方式:供应商按照规定办理CA数字认证证书(北京一证通数字证书)后,自招标公告发布之日起持供应商自身数字证书登录北京市政府采购电子交易平台免费获取电子版招标文件。 (4)未按上述获取方式和期限下载招标文件的投标无效。 (5)证书驱动下载: 北京市政府采购电子交易平台“用户指南”一“工具下载”一 “招标采购系统文件驱动安装包”下载相关驱动。 CA认证证书服务热线010-58511086 技术支持服务热线010-86483801、13669922829 注意:请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-02-10 09:30(北京时间) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层1516室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 投标保证金和中标服务费专用账户 (1)开户名称:中金招标有限责任公司 (2)开户行名称:招商银行北京海淀支行 (3)账号:86 7080 1128 10001 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市药品包装材料检验所 地址:北京市西城区水车胡同13号 联系方式:袁春梅,010-50950474 2.采购代理机构信息 名 称:中金招标有限责任公司 地 址:北京市海淀区西三环北路21号久凌大厦南楼15层 联系方式:杜雅威,010-68405035 3.项目联系方式 项目联系人:杜雅威 电 话: 010-68405035 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:ICP-AES,切割机,红外光谱仪,紫外分光光度,不溶性微粒 开标时间:2022-02-10 09:30 预算金额:215.30万元 采购单位:北京市药品包装材料检验所 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中金招标有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开]检验设备设施更新改造项目公开招标公告 北京市-海淀区 状态:公告 更新时间: 2022-01-20 招标文件: 附件1 附件2 [公开]检验设备设施更新改造项目公开招标公告 2022-01-20 项目概况 检验设备设施更新改造 招标项目的潜在投标人应在北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取招标文件,并于2022-02-10 09:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:PXM2021_034305_000003_00447607_XMCG-JH001-XM001 项目名称:检验设备设施更新改造 预算金额:215.3 万元(人民币) 最高限价:215.3 万元(人民币) 采购需求: 包号 品目号 品目名称 数量(台/套) 简要规格描述 是否接受进口产品 预算金额(人民币/万元) 备注 1 1-1 傅立叶变换红外光谱仪 1 分辨率:不低于0.25cm-1 是 40 1 1-2 不溶性微粒检测仪 1 进样体积精度:±0.5% 否 14.5 1 1-3 可见异物检测仪 1 检测工位:44双模工位 否 34 1 1-4 紫外可见分光光度计 1 内置三种光源 否 18 1 1-5 切割机 1 锯条线速度:660/min 否 1.8 1 1-6 无管道净气型储药柜(附带配套耗材) 4 空气处理量: 200-230 m3/h 否 18 1 1-7 电感耦合等离子发射光谱仪 1 像素分辨率:≤0.002nm 是 82 核心产品 1 1-8 实验专用气体气路改造 1 易燃气体,如乙炔单独从其它气体分别引入 否 7 合同履行期限:2022年 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)鼓励节能政策:在技术、服务等指标同等条件下,优先采购属于国家公布的节能清单中产品。 (2)鼓励环保政策:在性能、技术、服务等指标同等条件下,优先采购国家公布的环保产品清单中的产品。 (3)扶持中小企业政策:评审时小型和微型企业产品享受6%的价格折扣。监狱企业视同小型、微型企业。残疾人福利性单位视同小型、微型企业。不重复享受政策。 (4)本项目采购标的是否接受进口产品详见第1条“招标内容”要求。 3.本项目的特定资格要求: 若所投产品为进口产品时,需提供产品制造商授权书(产品制造商投标则不需要提供)。 三、获取招标文件 时间:2022-01-20 至 2022-01-28 ,每天上午09:00至11:30,下午14:00至16:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home) 方式: 本项目采用电子化与线下流程结合招标方式 (1)办理CA认证证书(北京一证通数字证书),详见北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)查阅“用户指南”一“操作指南”一“市场主体CA办理操作流程指引”,按照程序要求办理。 (2)北京市政府采购电子交易平台“用户指南”一“操作指南”一“市场主体注册入库操作流程指引”进行自助注册绑定。 (3)招标文件获取方式:供应商按照规定办理CA数字认证证书(北京一证通数字证书)后,自招标公告发布之日起持供应商自身数字证书登录北京市政府采购电子交易平台免费获取电子版招标文件。 (4)未按上述获取方式和期限下载招标文件的投标无效。 (5)证书驱动下载: 北京市政府采购电子交易平台“用户指南”一“工具下载”一 “招标采购系统文件驱动安装包”下载相关驱动。 CA认证证书服务热线010-58511086 技术支持服务热线010-86483801、13669922829 注意:请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-02-10 09:30(北京时间) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层1516室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 投标保证金和中标服务费专用账户 (1)开户名称:中金招标有限责任公司 (2)开户行名称:招商银行北京海淀支行 (3)账号:86 7080 1128 10001 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市药品包装材料检验所 地址:北京市西城区水车胡同13号 联系方式:袁春梅,010-50950474 2.采购代理机构信息 名 称:中金招标有限责任公司 地 址:北京市海淀区西三环北路21号久凌大厦南楼15层 联系方式:杜雅威,010-68405035 3.项目联系方式 项目联系人:杜雅威 电 话: 010-68405035
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 【瑞士步琦】固体分散体技术和喷雾干燥在难溶性药物中的应用
    固体分散体技术和喷雾干燥在难溶性药物中的应用近年报道的新药种类近 90% 都是属于水难溶性药物;由于其溶解度偏低,需要的给药剂量比其他药物大得多,这就使得难溶性药物的临床治疗效果低于预期。水溶性较差的药物化合物,由于其固有的低水溶性和在相关吸收窗口期内无法溶解于胃肠道介质,因此口服制剂的制备极具挑战性。业界研究者认为活性药物溶出限制其速率,为了获得足够的生物利用率,了解如何提高溶解速率非常重要。常用提高溶出度或溶解速率的方法有:固体分散体,药物颗粒微纳米化和优化脂质剂型配方等。固体分散体作为近些年的研究热点一直被广泛关注,它的优势也非常明显:改善难溶于水的药物化合物的性质,提高药物溶出速率,并且生物利用率也有明显改善。通过搭配水溶性聚合物,固体分散体主要应用于速释型药物系统,同时近期有研究发现其在缓释系统的表现也同样优异。固体分散剂的制备方法有很多种,包括基于溶剂的雾化蒸发技术产生微粒和对所得固体分散体进行微粒化的熔融技术。其中溶剂蒸发法包括喷雾干燥,冷冻干燥,超临界流体技术,静电喷雾和静电纺丝等方法。喷雾干燥是最常用于制备固体分散剂的技术,由于喷雾干燥可以生成细小的液滴,具有高比表面积,所以是一类非常快速的干燥过程。市面中喷雾干燥有不同类型的装置,尽管雾化装置和雾化能力各不相同,但其中大多数元配件都有一定相通性。近年来,研究者对喷雾干燥颗粒形成机理的探索也逐年增加;已经提出相关模型用于解释喷雾干燥颗粒形成的过程,特别是溶媒蒸发阶段,这也是液滴固化形成干燥颗粒的关键阶段。自从 1872 年首台喷雾干燥设备发明制造以来,在工艺及硬件方面已取得很大进步,同时也完全扩展到工业应用场景中。喷雾干燥可以通过简单的一步制造法产生小颗粒,并可以一定程度控制颗粒的特性以达到改善其药物传递性能的目的,这就非常适合肠道部位短的吸收窗口期,保证药物在相对短的距离内扩散。此外,喷雾干燥固体分散体微粒溶解速度快,可以获得良好的溶解曲线,还可以用于控制固体分散体的质量属性,防止药物与载体相分离,以提高药物稳定性和生物利用度。利用喷雾干燥制得的固体分散体具有粗糙表面和多空内部结构,有效增加颗粒总表面积;对研究微观结构及微观结构对配方性能的影响来讲,是当前研究优化所用配方的一种有效方法。在喷雾干燥过程中,可以调整一系列参数用以控制干燥过程和最终的颗粒特性。喷干过程中重要参数包括入口温度和出口温度,雾化气体流速,料液流速,料液粘度和液体中物料的性质。入口温度和出口温度是物料功能性过程监控解决方案的重要参数,有相关研究表明入口和出口温度之间的比率会影响形成颗粒的特性以及回收率;干燥气流对颗粒特性似乎没有任何直接影响,但在操作过程中还是建议使用最大流速,因为它会影响入口温度和出口温度。
  • 【技术指导】自动水溶性酸测定仪的维护与注意事项
    自动水溶性酸测定仪维护、注意事项A1180技术指导产品介绍产品名称:自动水溶性酸测定仪产品型号:A1180概 述:自动水溶性酸测定仪是在规定条件下,将试样与等体积的蒸馏水混合摇动,取其水抽出液通过比色确定其pH值。适用于变压器油、汽轮机油、抗燃油等石油产品的水溶性酸的测定。可广泛应用于电力、石油、化工、商检及科研等部门。适应标准:GB/T 7598维护与保养1、更换指示剂指示剂溴甲酚绿和溴甲酚紫用尽后取出原瓶,重新更换,再原样装回原位。2、更换蠕动泵管打开仪器上盖,向上拔动蠕动泵的拔杆,即可松动甭管的压板,取下磨损的旧泵管,退出旧泵管上的管箍,套在一根新的泵管上,再把新管原样装回泵体上,用拔杆把泵管压板压回原位。3、更换打印纸按下左图的按钮,将打印纸按照右图装入打印机,并关闭前盖即可。注意事项1、蠕动泵仪器使用完毕后,请将蠕动泵的压臂松开,防止蠕动泵软管被压臂长期挤压,而造成损伤。2、试验用水测定试样之前,将去离子(或蒸馏水)水煮沸,赶尽其中的二氧化碳。
  • analytica 2014国际研讨会聚焦:微粒物质
    为什么山峦有时候看起来是蓝色的,但是在日出和日落的时候却变成了完全不一样的颜色?为什么一些城市要设置低排放区域?许多类似的问题答案都是:悬浮微粒,也就是在空气中漂浮的细小的固体或液体物质。根据其来源、化学组成、数量和大小的不同,悬浮微粒可以对人体和环境造成不同程度,有时甚至是极度危险的侵害。4月1-3日在慕尼黑国际会议中心(ICM)举行的analytica国际研讨会上,国际知名科学家将就它们所带来的挑战作精彩演讲。  为保护人们免遭微粒物质对身体的损害,不同领域的科学家们对悬浮微粒进行了多年的研究。研究中最大的挑战之一是化学和生化分析,因此,今年的analytica国际研讨会将&ldquo 悬浮微粒和健康&rdquo 列为核心主题。大会第一天(4月1日),罗斯托克大学教授、慕尼黑Helmholtz研究中心化学家Ralf Zimmermann将主持一整天的关于悬浮微粒的讨论。来自德国、澳大利亚、芬兰、英国、加拿大、挪威、瑞士和美国的科学家们一共将作14场演讲,解释悬浮微粒的特征、如何进入人体以及对我们的健康造成什么样的影响。此外,他们还将介绍汽油、海运油料、生物油料和生物物质燃烧的后果,以及所产生的悬浮颗粒中不同纳米粒子的比例。  纳米粒子是指直径100纳米以下的微粒,它们能轻易对人体造成伤害。但是,直径达10微米的花粉也可以引起过敏。除过敏外,微粒物质还能导致哮喘和其他呼吸道及心血管疾病。所有干燥微粒中,有机物质的比例大概为70%,且种类达数百之多。因此,在对它们的处理中分析化学面临严峻的挑战。问题首先在于如何&ldquo 收集&rdquo 这些微粒,而如此收集的微粒的复杂性又如何。我们可以选择色谱分离以及质量光谱分析方法,这些技术现在已经越来越精细。有着极高解析度的基于质量光谱分析的技术和现代在线分析技术仍在用于气体和颗粒相的检测。  除微粒物质外,大会还将推出水质分析、代谢物质和蛋白质组学等方面的内容。因此,analytica国际研讨会将覆盖所有分析类的话题。您可以访问www.analytica.de/conference或www.gdch.de/analyticaconf2014了解最新大会活动。大会入场券已经包含在展会的参观票价中。  analytica 国际研讨会由GDCh (德国化学学会)、GBM (生化与细胞生物学学会) 和DGKL (德国临床化学及实验室药物学会)三大科研机构共同主办。  关于analytica  analytica是分析、诊断、生物及实验室技术领域的国际盛会,每两年在德国慕尼黑召开一届。自1968年品牌创立以来,展会以发展成为全球分析、诊断、生物技术行业和科研及应用行业用户的重要交易平台。展会同期举办的analytica国际研讨会是全球领先的分析学术盛会,为科研界精英讨论化学、生化和实验室药物等问题提供绝佳机会。2012年共有30,481名观众和1,026家展商参加analytica。  更多展会和相关活动信息请访问:www.analytica.de/en  关于analytica China  analytica China(慕尼黑上海分析生化展)是analytica全球网络的一部分。2014年9月24-26日analytica China将在上海新国际博览中心N1、N2、N3馆隆重召开。展会规模将达30,000平方米,预计将吸引超过20个国家及地区约700家中外展商,集中展示包括分析仪器、测试测量、生命科学、生物技术、实验室建设、试剂耗材和通用实验室设备等在内的最新产品及应用,提供全方位的实验室技术解决方案。更多信息,敬请访问展会官网:www.a-c.cn  慕尼黑国际博览集团  慕尼黑国际博览集团是世界领先的展览企业之一。仅在慕尼黑一地,慕尼黑国际博览集团就每年组织近40场展览,涵盖资本货物、消费品及高科技行业等众多领域。每年有超过30,000家展商和近200万观众参加集团在慕尼黑展览中心、ICM-慕尼黑国际会议中心和慕尼黑MOC展览中心举办的展会。慕尼黑国际博览集团举办的领先国际展会均接受独立审计。  此外,慕尼黑国际博览集团还在亚洲、俄罗斯、中东和南非举办展览。集团在欧洲、亚洲和非洲拥有9家分公司,并在60多个国家设有代表处,服务于90多个国家,并形成自己的全球性业务网络。集团在可持续性方面也作出了突出贡献:我们是世界上第一家由TÜ V SÜ D 授予高能效认证的展览企业。
  • 禾工不溶性固体水分仪免费售后培训提供专业技术方案
    AKF-IS2015V仪器闭性好、检测精度高,测量结果重复性好(数据重复性及精度不差于进口产品)、测量范围广、自动化程度高,可用于准确分析固体、液体、气体样品中的结晶水、吸附水、游离水。性能指标达到行业领先水平,还可广泛满足于石油、化工、制药、日用化工、食品、机械、农业等诸多行业的水含量测定需求。近日,禾工专业技术人员对宜兴前成生物有限公司实验室仪器操作人员就产品的安装方法、实际操作、理论知识、维护保养等内容进行现场培训工作。 此次参与培训的翟工在技术员的指导下积极的动手实践操作,调试仪器;采用AKF-IS2015V不溶性固体水分测定仪测试两种样品,通过用卡式加热炉对样品进行加热,释放出其中的水分,用惰性气体作为载气间接进样测定样品中水分含量。 直至翟工能够熟练独立地掌握其仪器的使用方法,并能有效的采用禾工技术员培训的专业检测技术方案后,本次安调、培训才圆满结束。上海禾工不断地加强售后服务上的人力、财力和物力的投入,为了不断完善自身质量管理体系,我们拥有一支独立的售后服务队伍。全面负责所有售后项目的前期培训、现场服务、技术支持和维护等工作,对客户提出的需求,将在第一时间内做出响应并付诸实现。
  • 8部门关注水泥中水溶性六价铬安全风险
    2月21日,质检总局召开水泥中水溶性六价铬风险会商会,就如何有效处置水泥中水溶性六价铬质量安全风险,与工业和信息化部、人力资源社会保障部、环境保护部、卫生计生委、工商总局、安全监管总局、食品药品监管总局等部门进行了会商。这也是2009年产品质量安全风险监控工作开展以来,质检总局首次召开的工业产品质量安全风险会商会。质检总局副局长魏传忠出席会议并讲话。  魏传忠在讲话中指出,水泥中水溶性六价铬问题事关重大,希望各部门高度重视,统一认识,统一思想,统一行动,合力解决潜在的质量安全风险,共同促进提高水泥产品质量安全水平。对于质检部门来说,他强调,一是要结合环境保护、水泥产业发展等方面情况,加快制定水泥中水溶性六价铬限量标准并尽快实施 二是要以适当方式向水泥生产企业通报相关风险信息,督促生产企业查找原因,改进生产技术和工艺,落实质量安全主体责任。  据悉,在今年1月发布的《关于加强产品质量安全风险监控工作的指导意见》中,质检总局提出,要以消费品为重点,以产品质量中影响人体健康和人身财产安全等因素为内容,建立以风险信息采集为基础、风险监测为手段、风险评估为支撑、风险控制为目标的产品质量安全风险监控工作体系,形成以预防为主、风险管理为核心的产品质量安全监管新机制。本次多部门参与的风险会商会,就属于风险处置机制中的重要工作之一。
  • 广东省分析测试协会发布《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法(征求意见稿)》团体标准征求意见稿
    各有关单位及专家:由广东省分析测试协会组织制订的《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法》团体标准已完成征求意见稿,根据《广东省分析测试协会团体标准制修订工作程序》,现公开征求意见。欢迎各有关单位及专家提出修改意见,并请于2023年10月15日之前将《征求意见表》(附件3)反馈到下面指定邮箱。 联系人:1.梁敏思,13802833035,liangmsi@mail.sysu.edu.cn2.协会秘书处,020-37656885-227,gdaia@fenxi.com.cn 附件:1.《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法(征求意见稿)》2.《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法(征求意见稿)》编制说明3. 征求意见表 广东省分析测试协会2023年9月15日附件1 《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法标准(征求意见稿)》.pdf附件2 《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法(征求意见稿)》编制说明.pdf附件3 征求意见表.doc
  • AAV基因治疗产品亚可见颗粒分析方法简述
    生物制药如治疗性蛋白质、疫苗、基因与细胞治疗是一个不断快速增长药物领域。生物制药原料药和药品中蛋白质聚集体和不溶性颗粒是需要充分评估和控制的杂质,因为它们有可能引发免疫原性反应,影响产品的安全性和有效性。中美药典中现行的颗粒定义是10-100 nm为蛋白寡聚体,0.1-1 μm为亚微米颗粒/纳米聚集体,1-100 μm是亚可见颗粒/微米聚集体,∽100 μm是可见颗粒。目前基因治疗产品亚可见颗粒分析方法可参考USP787、788和789对治疗性蛋白质注射液和眼科溶液中亚可见颗粒的规定。对于含量超过100mL容器中的治疗性蛋白质注射剂,总颗粒数≥10 μm的颗粒≤6000,对于≥25 μm颗粒≤600。 不同于治疗性蛋白质产品,基因治疗产品大多采用病毒作为载体包括腺病毒(AdV)、腺相关病毒(AAV)或慢病毒(LV)、溶瘤病毒等,所以细胞、病毒和脂质纳米颗粒等递送载体本身就是颗粒,可通过大小、形态、含量和浓度的分析技术来表征。这些基于病毒载体的基因治疗产品剂型主要是注射剂,相关质量标准可参考生物大分子药物不溶性颗粒技术要求。但由于病毒颗粒异质性和复杂性,以及对最终产品的有效性和安全性可能影响,如降低病毒的转导效率和诱发免疫原性反应等,所以需要多种不同技术和方法联合使用,实现更全面更准确的基因治疗产品颗粒表征。以rAAV载体的基因治疗产品为例,病毒颗粒本身是无包膜的,二十面体结构,直径约为25nm,可形成各种不同大小的变体和聚合形态。AAV大小变异体和聚集体可增加临床实验的免疫原性,较大的AAV聚集体在转导细胞效力方面可能降低,进而改变产品疗效。目前有多种技术来表征相关产品溶液中颗粒大小,从纳米级到肉眼可见级别,对于不同粒径大小的颗粒可采用不同技术进行分析表征。对于纳米级别颗粒,可采用动态或静态光散射(Dynamic or Static Light Scattering)、SEC-HPLC、电镜(EM)、原子力显微镜 (AFM)、分析型超速离心机(AUC)、纳米颗粒跟踪分析技术(NTA,Nanosight)和非对称流场流动分级(A4F)等;对于微米级别颗粒,可采用光阻法(LO)、微流成像颗粒分析技术(MFI)、库尔特颗粒计数(Coulter counter)等。可见颗粒可采用拉曼/红外显微镜、荧光显微镜或目测法等。可用于AAV颗粒分析的代表性方法参考下图。颗粒分类中亚可见颗粒是一种聚集形式,经历了相分离并变得不溶。多个国家药典规定注射剂亚可见颗粒物检测采用光阻法(LO)和显微计数法。其中光阻法只能计数颗粒大小和数目,不能看到颗粒形态。美国药典1787推荐了微流成像颗粒分析技术作为大小和形态表征重要的方法。同时推荐在保质期内应该评估产品中2-10 μm亚可见颗粒的范围和水平,10 μm以下颗粒总数分成两组≥2-5μm和≥5-10μm来统计。2021年中国食品药品检定研究院发表文章,详细比较了微流成像颗粒分析方法和光阻法对17种单克隆抗体的亚可见微粒分析结果,显示了微流成像颗粒分析技术在准确性方面具有优势,未来可能用于放行质量控制和稳定性研究。代表性亚可见颗粒分析方法介绍微流成像颗粒分析方法(MFI):技术原理是待测样本在流经样本检测池过程中,在固定的检测窗口处,采用高频成像检测器动态连续检测样本中颗粒物,获取一系列的数据照片,最终通过软件对所获取的颗粒物照片进行分类和计数分析。核心技术是通过精确地控制样本检测池中的流速,配合静态的图像捕获,使相邻两次成像检测液柱无重叠,从而避免对样本颗粒的重复计数,同时需要保证85%以上样本实现了颗粒成像检测,配合全景深立体成像,保证所有检测到的颗粒都在景深范围内,实现对颗粒大小检测准确性。该方法提供了样本中颗粒真实图像的原位条件,对捕获的数字图像进行分析,实现了颗粒的可视化、计数、大小调整和表征。还可根据颗粒图像、对比度和形状,可能指示颗粒的来源和类型如蛋白聚集、硅油、气泡和纤维等。与图像数据库联合使用,可识别一些颗粒,有助于了解污染源和产品性质。与光阻法和显微计数法相比,缩短了分析时间,具有更高重复性和分辨率。满足2-10 μm范围内亚可见颗粒分析需求。光阻法(LO)介绍:被检测的液体通过专门设计的流通室,与液体流向垂直的入射光束由于被液体中的粒子阻挡而减弱,从而使传感器输出的信号变化,这种信号变化与粒子通过光束时的截面积尺寸成正比。这种比例关系可以反映粒子的大小。每一个粒子通过光束时引起一个电压脉冲信号,脉冲信号的多少反映了粒子的数量。光阻法检测颗粒范围为1∽300 μm(USP 401787)。以光阻法为原理设计的微粒检测仪主要包括取样器、传感器和计算机控制的检测和数据处理系统。不同设备测量粒径范围涵盖了2∽100μm,检测粒径浓度为0∽10000个/ml,取样体积为0.2∽100 mL。符合药典对大小容量注射液和粉针剂不溶性微粒检测需求。其主要优势是可直接观察溶液中颗粒,具有大量历史数据的药典推荐方法。操作简单可进行中高通量检测。劣势是对比度低,可能会低估制剂配方中形成的不可见蛋白质颗粒,对气泡敏感,某些脱气技术会改变样本性质,更重要的只适合表征颗粒大小和分布,不能通过形态来分析颗粒。电感应区检测方法:基于库尔特原理检测颗粒,可检测0.4∽1600μm范围内的颗粒(不同商业化库尔特颗粒计数及粒度分析仪有变化)。稀释悬浮在电解液中的样本颗粒通过小孔管时,取代相同体积的电解液,在恒电流设计的电路中导致小孔管内外两电极间电阻发生瞬时变化,从而中断电场,产生电位脉冲。脉冲信号的大小和次数与颗粒的大小和数目成正比。 信号响应不受颗粒类型的影响(如颜色、硬度、不透明度和折射率变化)。本技术优势不受溶液光学特性的影响,可实现单孔中高通量样本检测。劣势是需要大样本体积,需要较低颗粒浓度,有时样品必须在电解质溶液中稀释获得足够电导率,可能会改变样品性质。同样也不能提供形态学参数。显微计数法:采用光学显微镜(LM)检测和分析颗粒,光在样品上透射或反射后通过一系列透镜,直接采用目镜观测,或数码相机采集信号成像。图像分析可使用软件系统,按照一定参数对颗粒群体进行分析。优势是可直接观察溶液中颗粒,可视化计数颗粒大小和数目,并鉴别颗粒形态。可与红外或拉曼计数整合来鉴定颗粒化学组成。但劣势是人工分析费时费力和通量低,难以看到低光学对比度颗粒,自动化程度低。颗粒鉴定表征可采用傅里叶红外光谱(FTIR)显微镜、显微拉曼光谱和扫描电镜-能谱分析(SEM-EDS)等技术,本文不做深入论述。基因治疗产品亚可见颗粒分析案例鉴于不溶性微粒研究在生物制品中重要性,有必要深入研究病毒为载体基因治疗产品中病毒颗粒聚集体和不溶性颗粒形成原因,并找到相应的解决方案来提高基因治疗产品的研发和质量控制水平。以下案例简要说明基因治疗产品亚可见微粒分析方案。AAV生产超滤工艺中颗粒监控AAV生产过程中超滤环节将AAV浓缩并置于最终制剂配方缓冲液中,作为生产工艺中关键步骤,需要深入研究和加深对AAV载体超滤的理解。美国Voyager Therapeutics公司研究超滤膜截留分子量和操作条件对复合再生纤维素(CRC)超滤膜的通量和传输的影响,采用AAV2和AAV9两个血清型病毒载体,以及对AAV超滤行为的定量理解,并指导工艺开发。利用微流成像颗粒分析方法(MFI)研究病毒浓缩超滤工艺开发过程中产生的亚可见颗粒,当通过CRC超滤膜时,膜截留分子量和操作条件对通量影响。下图结果展示1到10μm之间颗粒采用MFI检测时存在明显差异。两个批次A和B实验,对于特定的膜批次,当处理时间较长时,亚可见微粒浓度较高。与较低TMP 6.5 psig相比,当采用更高TMP(20 psig)进行超滤时,亚可见微粒浓度降低。这归因于较低TMP下超滤时,泵通过管道和通道次数增加导致。本研究可指导超滤工艺的条件设置。MFI系统具备自动进样系统,可一次自动检测多达90个样本,非常适合AAV生产过程中工艺优化。不同渗透率RC2A膜超滤的AAV2样本的不同大小颗粒评价,上图批号Lot A样本,下图Lot B样本AAV基因治疗产品稳定性研究制剂配方中AAV长期稳定性和密封容器封闭的完整性是冷冻产品两个关键方面。为了最大限度地减少化学和物理降解,也为了长期存储和运输,AAV原料药和产品制剂通常冷冻在≤-60 °C下,有时允许产品制剂短期存储在医院的2-8°C冰箱中。在制造、贴标签和临床使用过程中会在室温和冷藏条件下发生冻融循环。除了长期稳定性外,在外暴露期间AAV的稳定性也很重要。不同AAV血清型和制剂配方差异导致这期间的稳定性也会有所不同,所以在制剂配方早期开发过程中获得数据来确认AAV在制造、贴标签和临床使用期间将保持稳定是有意义的。为了研究温度、存储时间和冻融率对AAV8和AAV9稳定性的影响,美国REGENXBIO公司研究低浓度和高浓度AAV8和AAV9病毒在五个冻融循环中,预期存储以外时间的稳定性,考察病毒关键质量属性变化情况。下图是采用数字PCR检测病毒载体基因组浓度(GC/mL),结果显示病毒效力和浓度在方法误差范围内保持稳定。采用光阻法检测亚可见微粒(Particles/mL ≥10 μm)。左边第1列是配方F1中AAV8,第2列是配方F3中AAV8。每个小图中左边一对柱状图是低浓度结果和右边一对柱状图是高浓度结果。对照组标记为Cont.和累积预期存储时间外暴露样本标记为TOIS。实验结果显示TOIS后颗粒数非常低,≥2 μm的颗粒≤78个/mL,≥10μm的颗粒≤10个/mL,≥25μm的颗粒≤2个/mL,和≥50μm的颗粒0个/mL。在本研究设定实验条件下,结果表明AAV8和AAV9产品质量属性保持在可接受范围内,稳定性适合用于生产和临床使用。作者认为光阻法有局限,可能低估了半透明的蛋白质颗粒和病毒聚集体颗粒,后续研究需要采用微流成像技术对亚可见颗粒进行表征和稳定性研究。同样研究冻融条件对病毒载体稳定性影响,美国堪萨斯大学疫苗分析和制剂中心科学家(Vineet Gupta,2022,Journal of Virological Methods)研究了淋巴细胞性脉络丛脑膜炎病毒(LCMV)载体稳定性,使用TEM、NTA和MFI三种互补的病毒颗粒表征技术研究病毒载体在冻融应激下稳定性。4种不同制剂配方(Form 1-4)在0、3和6个冻融循环条件下亚可见颗粒变化,研究冻融对病毒载体稳定性影响。参考下图,结果证明了通过MFI可检测到样本中存在大量的亚可见微粒。揭示某些制剂(制剂F1和F3)病毒载体亚可见颗粒浓度与病毒载体滴度损失之间存在负相关,制剂配方2和4没有变化。与上述研究类似,Kumru等2015年观察到在冻融循环时,特定配方中溶瘤单纯疱疹病毒1的体外效力值和亚可见颗粒浓度之间呈现负相关。基于多项研究,不同制剂配方中观察到结果可能有所不同,所以在评估病毒感染能力和稳定性时,需要同步进行亚可见颗粒研究。综上所述,基因治疗产品在研发、生产、存储等多个工艺过程中需要持续监测样本中颗粒情况,从早期到晚期开发阶段都需要监测颗粒的动态变化过程,探索研究病毒聚集体和颗粒产生的原因。可采用多种不同分析检测技术联合使用,针对纳米级和微粒级颗粒进行全范围覆盖。特别是参考中美药典对不溶性颗粒检测规定,借鉴生物大分子蛋白质药物颗粒分析经验,不同方法优势互补,采用光阻法、显微计数法和微流成像颗粒分析方法(MFI)对亚可见微粒进行深入研究,分析基因治疗原料药和药品中颗粒形成原因,可用于优化病毒载体生产和纯化工艺、筛选合适制剂配方和存储条件,提高产品质量稳定性和安全性,保证产品疗效。索取资料请扫上方二维码参考文献:Alexandra Roesch, Sarah Zolls, et al. Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. Journal of Pharmaceutical Sciences(2021) 1−18于雷,裴德宁等. 基因治疗产品中病毒颗粒的微粒特性研究. 药物分析杂志 Chin J Pharm Anal 2020,40(1)Andrew D.Tustian, Hanne Bak. Assessment of quality attributes for adeno‐associated viral vectors. Biotechnol Bioeng. 2021 1–18.United States Pharmacopeia 787.Subvisible particulate matter in therapeutic protein injections. 788. Particulate Matter in Injections. 789. Particulate Matter in ophthalmic solution. 1787. Measurement of subvisible particulate matter in therapeutic protein injections. 1788. Methods for the determination of subvisible particulate matter. Rockville, MD: United States Pharmacopeial Convention 2020年版药典,0903 不溶性微粒检查法Abhiram Arunkumar, Nripen Singh. Ultrafiltration behavior of recombinant adeno associated viral vectors used in gene therapy. Journal of Membrane Science, volume 620,2021Jared S. Bee, Yu (Zoe) Zhang, et al. Impact of Time Out of Intended Storage and Freeze-thaw Rates on the Stability of Adeno-associated Virus 8 and 9. Journal of Pharmaceutical Sciences (2022) 1−8 Vineet Gupta, Lorena R. Antunez, et al. Development of a high-throughput RT-PCR based viral infectivity assay for monitoring the stability of a replicating recombinant Lymphocytic Choriomeningitis viral vector. Journal of Virological Methods 301 (2022) 114440
  • 水分含量对油墨的危害?禾工不溶性固体水分仪助力油墨行业生产检测
    近日,上海禾工不溶性固体专用卡尔费休水分测定仪AKF-IS2015V正式在天津东洋油墨有限公司投入使用。 天津东洋油墨有限公司主要生产经营印刷用油墨、颜料、油墨用各种原材料、印刷用各种材料及助剂,凹版油墨、凸版油墨等材料。 水分含量的高低在油墨的生产过程中也是重要的指标之一,油墨中的水份含量能使油墨的流动性变差,这种假性粘度会造成印刷油墨的转移困难,还会造成油墨对印刷基材的润湿性差,同时还对油墨的干燥性产生影响,甚至还会在印刷过程出现印刷油墨粘度不断变稠或出现疲劳状态,使得印刷无法进行。 禾工AKF-IS2015V不溶性固体水分测定仪的引进不仅可以帮助实验室工作人员快速精确的检测样品中的水分含量,对使用安全也多了一份保障。 禾工专业技术人员现场对仪器进行了安装调试、培训工作,样品检测结果重复性、准确性较好得到了用户的认可,仪器验收成功。
  • 【技术指导】石油产品水溶性酸及碱测定仪的使用方法及安装
    石油产品水溶性酸及碱测定仪使用方法、安装A1181技术指导产品介绍产品名称:石油产品水溶性酸及碱测定仪产品型号:A1181概 述:本仪器用蒸馏水或乙醇水溶液抽提试样中的水溶性酸及水溶性碱,然后,分别用甲基橙或酚酞指示剂检查抽出液颜色的变化情况,或用酸度计测定抽提物的pH值,以判断有无水溶性酸或水溶性碱的存在。适用于按GB/T 259所规定的方法测定液体石油产品、添加剂、润滑脂、石蜡及含蜡组分的水溶性酸及水溶性碱。使用方法1、当试验液体石油产品时,将50 ml试样和50 ml蒸馏水放入烧瓶,加热试样至50~60℃,倒入分液漏斗。然后轻轻摇动分液漏斗5min,不许乳化,放出澄清后下部的水层,经滤纸过滤后,滤入锥形烧瓶中。2、当试验添加剂产品时,向分液漏斗注入10 ml试样和40 ml溶剂油,再加入50 ml加热至50~60℃的蒸馏水。将分液漏斗摇动5min,澄清后分出下部的水层,经有滤纸的漏斗,滤入锥形烧瓶中。3、若石油产品用水混合后产生乳化时,则用50~60℃、1:1的95%乙醇溶液代替蒸馏水处理。4、当试验润滑脂、石蜡、地蜡及含蜡组分产品时,取50克预先熔化好的试样,将其置入瓷蒸发皿中,然后注入50 ml蒸馏水,并煮沸至完全熔化,冷却至室温后,将下部水层经有滤纸的漏斗,滤入锥形烧瓶中。5、用指示剂测定水溶性酸或水溶性碱:向两个试管中分别放入1~2ml抽提物,在第一支试管中加入2滴甲基橙溶液,并将它与装有相同体积蒸馏水和甲基橙溶液的第三支试管相比较。如果抽提物呈玫瑰色,则表示所试石油产品里有水溶性酸存在。在第二支盛有抽提物的试管中加入3滴酚酞溶液,如果溶液呈玫瑰色或红色时,则表示所试石油产品里有水溶性碱存在。当抽提物用甲基橙溶液或酚酞溶液为指示剂,没有呈现玫瑰色或红色时,则认为没有水溶性酸或水溶性碱。6、用酸度计测定水溶性酸或水溶性碱:向烧杯中注入30~50ml抽提物,电极浸入深度为10~12mm,按酸度计使用要求测定pH值,根据下表确定试样抽提物水溶液或乙醇水溶液中有无水溶性酸或水溶性碱。石油产品水(或乙醇水溶液)抽提物特性pH值1酸性4.52弱酸性4.5~5.03序号5.0~9.04弱碱性9.0~10.05碱性10.0用酸度计测定时同一操作者两结果之差不应大于0.05pH,取重复测定两个pH值的算术平均值作为试验结果。警告:仪器若出现故障应及时切断电源,请专业技术人员检修并排除故障后方可继续使用,防止发生意外!安装1、取出可调电热器,置于平整、耐高温、阻燃的工作台或平板上,按照图示和以下步骤安装仪器。2、将支架杆和固定台按图安装好,拧紧螺钉固定。3、将冷凝管夹持器在支架杆的合适位置,用管夹夹住分液漏斗。4、在分液漏斗下部装入烧瓶。5、试调加热器。将加热器调整旋钮逆时针调到底,接通电源,顺时针转动旋柄,逐渐加大电热器功率到适合程度(如果调小功率后,仍感到电热板温度过度,可在烧瓶与电热板间垫薄石棉网),然后关闭电源待用。
  • 新标发布|离子色谱法连续自动监测PM2.5中水溶性离子的技术规范
    2023年12月5日,生态环境部发布《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》,标准号HJ 1328—2023。该标准于2024年7月1日正式实施,规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。本标准适用于采用离子色谱法的环境空气颗粒物(PM2.5)中水溶性离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)连续自动监测系统。环境空气样品经切割器、采样管进入仪器,通过分离装置(溶蚀器),气体样品被吸收液吸收后进入气体样品收集单元,颗粒物样品经过高温蒸汽发生器,与水蒸气混合、吸湿长大、冷凝后进入颗粒物样品收集单元。收集后的颗粒物样品经过滤器进入阴、阳离子色谱系统,通过内标或外标定量分析其中的水溶性离子含量。详细技术规范见附件。附件:环境空气污染物(PM2.5)中水溶性离子连续自动检测技术规范.pdf
  • 恒美新品|​智能微粒检测仪多种打印模式,满足不同打印需求
    智能微粒检测仪是一种先进的仪器,可以用于药物检测中的微粒分析。微粒是药物生产和使用过程中不可避免的污染物,对药物质量和安全性有重要影响。 产品链接https://www.instrument.com.cn/netshow/SH104275/C547065.htm 智能微粒检测仪通常采用光学原理,对药物中的微粒进行检测和分析。它可以快速、准确地测量药物中的微粒数量和粒径分布,帮助人们了解药物的质量和纯度。 在药物生产和质量控制中,智能微粒检测仪的作用非常重要。首先,它可以检测药物中的微粒数量和粒径分布,确保药物的质量和安全性。其次,它可以对药物的副作用和不良反应进行监测和分析,帮助人们了解药物的治疗效果和副作用情况。此外,智能微粒检测仪还可以用于药物的鉴别和区分,帮助人们确保所使用药物的准确性和有效性。 总之,智能微粒检测仪在药物检测中具有重要作用,可以快速、准确地测量药物中的微粒数量和粒径分布,帮助人们了解药物的质量和纯度,并监测药物的副作用和不良反应。通过使用智能微粒检测仪,我们可以更好地保障药物的安全性和有效性,促进医疗事业的健康发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制