当前位置: 仪器信息网 > 行业主题 > >

测试低能级反光仪

仪器信息网测试低能级反光仪专题为您提供2024年最新测试低能级反光仪价格报价、厂家品牌的相关信息, 包括测试低能级反光仪参数、型号等,不管是国产,还是进口品牌的测试低能级反光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测试低能级反光仪相关的耗材配件、试剂标物,还有测试低能级反光仪相关的最新资讯、资料,以及测试低能级反光仪相关的解决方案。

测试低能级反光仪相关的资讯

  • 500万!山东大学低能反光电子能谱仪采购项目
    项目编号:SDDX-SDLC-GK-2022024项目名称:山东大学低能反光电子能谱仪项目预算金额:500.0000000 万元(人民币)最高限价(如有):500.0000000 万元(人民币)采购需求:低能反光电子能谱仪,亟需购置。具体内容详见招标文件。标段划分:划分为1包。合同履行期限:质保期国产设备3年,进口设备1年。本项目( 不接受 )联合体投标。5、(进口)20221226-024-山东大学低能反光电子能谱仪(发售稿).pdf
  • 493万!ULVAC-PHI中标山东大学低能反光电子能谱仪采购项目
    一、项目编号:SDDX-SDLC-GK-2022024(招标文件编号:SDDX-SDLC-GK-2022024)二、项目名称:山东大学低能反光电子能谱仪项目三、中标(成交)信息供应商名称:高德英特(北京)科技有限公司供应商地址:北京市海淀区中关村大街45号兴发大厦408室中标(成交)金额:493.0000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元)1 高德英特(北京)科技有限公司 低能反光电子能谱仪 ULVAC-PHI PHI GENESIS 500 一套 ¥4930000.00
  • 欧盟安全反光服标准换版
    根据欧盟委员会的决定,2013年10月1日起,EN ISO20471:2013将取代EN471:2003+A1:2007成为欧盟安全反光服的协调标准。自2013年10月1日起,所有根据EN471测试的安全反光服的EEC验证证书将失效 所有安全反光服在投放欧盟市场前应符合EN ISO 20471:2013标准的要求。  新版EN ISO20471:2013与旧版EN471:2003+A1:2007的主要区别有:1.清洗周期过后应满足颜色和亮度的要求 2.耐汗渍色牢度沾色的染色要求将从3级改为最低4级 3.编织材料的拉伸强度要求更改为最低100牛 4.针织材料的破裂强度要求改为至少100千帕(50平方厘米的测试面积)和最低200千帕(7.3平方厘米的测试面积) 5.单层或多层服装的物理性能测试,透气指数(RET)不能大于5平方米帕/瓦特。如果透气指数超过5平方米帕/瓦特,必须测量并确定imt≥0.15 6.反光材料的各项性能级别没有区分,要求与EN 471的2级一样 7.新的标志更改。
  • 我国离轴三反光学系统技术获重大突破
    我国在离轴三反光学系统先进制造技术上实现重大突破,为我国空间光学遥感器的跨越式发展打下了坚实基础。日前,这一由中科院长春光机所完成的重大科技成果通过鉴定。  自上世纪90年代以来,空间光学遥感器在国防、国民经济领域的需求快速增长。如何解决高分辨率与大视场的矛盾,一直是高分辨率空间光学遥感器研究的瓶颈。离轴三反光学系统可以同时实现长焦距与大视场,且没有中心遮拦,调制传递函数高,被公认为新一代空间光学系统的发展方向。然而,由于其结构复杂性和非对称性,制造难度极大,需要开发多项先进的加工、检测、装调技术予以支持。欧美制造商将离轴三反光学系统制造技术列为核心关键技术,于90年代末取得了突破性进展,研制出在轨性能优良的光学遥感卫星。鉴于该技术在国防、国民经济领域具有重要的意义,欧美国家采取了严格的保密措施。  长春光机所从“十五”开始就展开了离轴三反光学系统的技术攻关。经过10年的艰苦拼博,张学军领导的科研团队在“离轴三反光学先进制造技术”研究上实现了以计算机控制光学表面成形技术为核心,涵盖以大口径离轴非球面自动加工设备、大口径高精度离轴非球面加工工艺技术、离轴高精度非球面检测技术、离轴三反高精度系统装调技术为核心的重大突破。  在国内率先研制成功了具有完全自主知识产权的离轴非球面数控加工中心。该设备采用集成化设计方案,将研磨、抛光和在线轮廓测量单元合为一体,可实现离轴非球面自动加工,综合技术指标处于国际先进水平。  实现了大口径高精度离轴非球面光学表面的确定性加工和面形误差的高效率收敛,提出了高效的反卷积模型及加工轨迹自适应优化算法,系统地建立了大口径碳化硅离轴非球面数控加工方法、模型和软件。  首次提出并建立了计算机全息检测(CGH)离轴非球面的理论模型及其设计与制作方法,检测精度处于国际领先水平 此外,还建立了非球面子孔径拼接的理论模型,取得了良好的工程应用效果。应用三种独立测量手段对离轴非球面进行互检,保证了测量精度,提高了可靠性。  在国际上首次提出了离轴三反光学系统共基准装调技术,实现主镜、三镜的共基准定位,将系统的装调自由度由18个降为6个,装调效率和精度大幅度提高。其中基于计算全息技术的第二代共基准装调技术,大幅度拓展了CGH的应用领域,属国际领先水平。
  • 北斗三号卫星低能离子能谱仪载荷研制成功
    记者27日从中国科学技术大学了解到,由该校物理学院单旭副教授为主任设计师,地球和空间科学学院以及物理学院组成的空间等离子体科学探测载荷研制团队,联合航天五院513所等单位,近期成功研制北斗三号卫星低能离子探测载荷(LEIS)。据了解,空间低能离子是空间等离子体探测的基本要素,卫星载荷的原位探测数据不仅可以用来研究太阳活动及太阳风对行星际空间和行星磁场的作用、磁层结构及其动力学、磁场重联和环电流现象等空间物理,而且还能对空间天气极端事件予以预警,为卫星或飞船的安全运行提供保障。因此,绝大部分的探测卫星都会携带空间等离子体探测载荷。与国际先进的低能粒子载荷相比,我国的同类载荷相对落后,获得第一手的基准数据较少,相关科学和应用研究受限。2012年,中国科大空间低能粒子有效载荷研制团队组建。2014年,团队完成了空间低能离子谱仪原理样机和性能定标。2016年3月,团队承担实践十八号卫星载荷研制任务,得益于前期的技术攻关,在一年时间内完成了原理样机、鉴定件和飞行件航天产品研制,并于2017年2月交付装星,7月卫星发射。专家对此评价:“与同类仪器参数相比,该谱仪比其他离子谱仪具有更高的性能。”2018年,团队承担北斗三号卫星等离子体探测包的低能离子载荷研制任务,在实践十八号卫星载荷的基础上,进一步拓展了离子能量探测范围,提高了能量和角度分辨率,减小了载荷功耗、尺寸和重量。载荷飞行件产品于2019年11月交付;2020年6月卫星发射成功;2020年8月27日首次开机测试正常;2021年9月23日正式开始科学数据测量,与美国航空航天局的范艾伦探测器(Van Allan)探测结果一致,数据质量达到国际先进水平。相关研究结果近期在线发表于《中国科学︰技术科学》上。
  • 北斗三号卫星低能离子能谱仪载荷研制成功
    由中国科学技术大学物理学院副教授单旭为主任设计师,地球和空间科学学院、物理学院组成的空间等离子体科学探测载荷研制团队,联合航天科技集团五院513所等单位,近期成功研制北斗三号卫星低能离子探测载荷。载荷研制成果论文被《开放天文学》期刊接受发表,首次在轨观测结果在线发表于《中国科学-技术科学》期刊。 北斗三号卫星低能离子能谱仪载荷在轨运行示意图 课题组供图空间低能离子是空间等离子体探测的基本要素,卫星载荷的原位探测数据不仅可以用来研究太阳活动及其太阳风对行星际空间和行星磁场的作用、磁层结构及其动力学、磁场重联和环电流现象等空间物理,而且还能对空间天气极端事件予以预警,为卫星或飞船的安全运行提供保障。因此,绝大部分的探测卫星都会携带空间等离子体探测载荷。与国际先进的低能粒子载荷相比,我国的同类载荷相对落后,获得第一手的基准数据较少,相关科学和应用研究受限。在中国科学院院士王水、窦贤康等人的倡议下,2012年中国科大地球和空间科学学院汪毓明团队、物理学院陈向军团队和安琪/刘树彬团队联合组建了中国科大空间低能粒子有效载荷研制团队,由单旭任载荷主任设计师,带领团队进行关键技术攻关。2014年团队完成了空间低能离子谱仪原理样机和性能定标,2015年2月顺利通过专家组评审。2016年3月团队承担实践十八号卫星载荷研制任务,得益于前期的技术攻关,在一年时间内完成了原理样机、鉴定件和飞行件航天产品研制,并于2017年2月交付装星,7月卫星发射。载荷研制成果论文于2019年发表在《中国科学-技术科学》期刊。审稿专家表示:“看到中国大学研制出紧凑、功能强大的空间离子谱仪,非常令人鼓舞。与同类仪器参数相比,该谱仪比其它离子谱仪具有更高的性能”。2018年团队承担北斗三号卫星等离子体探测包的低能离子载荷研制任务,在上款载荷的基础上,进一步拓展了离子能量探测范围;提高了能量和角度分辨率;减小了载荷功耗、尺寸和重量。载荷飞行件产品于2019年11月交付,2020年6月卫星发射成功。2020年8月27日首次开机测试正常,2021年9月23日正式开始科学数据测量。其中,首次在轨测量得出的离子微分通量定量数据,与美国国家航空航天局的Van Allan探测结果一致,数据质量达到国际先进水平。相关研究结果近期在线发表在《中国科学-技术科学》期刊上,审稿专家认为:“结果非常具有吸引力,获取的科学数据对研究磁层离子动力学和监测空间环境很重要”。北斗三号卫星低能离子载荷的成功研制,标志着中国科大空间低能粒子载荷研制团队和平台建设日趋成熟,已经具备承担相关国家空间探测计划任务的能力。中国科大单旭为上述论文的第一作者和通讯作者,缪彬副研究员为首次在轨观测成果论文的共同第一作者,汪毓明教授为项目负责人、论文的共同通讯作者。相关论文信息:https://doi.org/10.1007/s11431-022-2143-6https://doi.org/10.1007/s11431-018-9288-8
  • 低能强流发射度仪的研制
    成果名称低能强流发射度仪的研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com合作方式□技术转让 □技术入股 &radic 合作开发 □其他成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:束流发射度是反映束流品质的重要物理参数,是加速器和束流输运线设计的重要参数,也是研究束流匹配传输和束流传输效率的基础。近年来,强流加速器已成为国际上加速器技术发展的最为重要的方向之一。强流加速器的关键问题之一是尽量减小束流损失。为此,对强流离子束或电子束进行准确的发射度测量是十分重要的。国内外多个实验室均在进行强流束发射度仪的研制。其中,北京大学重离子物理研究所正在开展强流离子、电子加速技术及应用研究,为获得高品质的束流并实现对束流的有效调控,需要能够测量强流发射度、使用方便且精度较高的束流发射度仪。而现有发射度仪不能很好满足测量强流束发射度的需要,因此需要研制强流束发射度仪。2009年,北京大学物理学院陆元荣教授申请的&ldquo 低能强流发射度仪研制&rdquo 项目获得了第一期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。该项目研制的低能强流发射度仪用于测量强流RFQ加速器中强流离子束(脉冲束或直流束)的发射度和发射相图,能够全面反映离子束从离子源引出到低能束流输运段、RFQ加速器入口处等各阶段的发射相图的变化,对北大强流RFQ加速器技术的发展和建立基于RFQ加速器的中子照相研究平台具有重要意义。在基金的资助下,课题组完成的工作包括:(1)根据测量要求进行仪器的物理设计;(2)研发测量同一束流截面、两个相互垂直方向的发射度机械装置;(3)开发与系统功能相适应的自动控制电路;(4)研究数据采集过程中的噪声抑制电路和信号处理的算法;(5)编制用于控制、数据采集、结果显示的可视化图形软件。应用前景:目前该项目已经顺利结题,其研制的包含全套软、硬件装置的强流束流发射度仪正在强流离子束应用领域(如强流离子注入、散裂中子源、同步辐射光源等)进行推广,将为该领域其它单位的科研工作提供有力的帮助。
  • 低能耗、低排放设备更新,就看Memmert
    此前,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》(下文中简称《方案》)。加快设备更新换代,推动先进产能比重持续提升,是发展新质生产力从而推动高质量发展的内在要求和重要着力点。 针对实施设备更新行动,《方案》提出“推进重点行业设备更新改造,围绕推进新型工业化,以节能降碳、超低排放、安全生产、数字化转型、智能化升级为重要方向,聚焦重点行业,大力推动设备更新和技术改造。” 低能耗、低排放是美墨尔特半导体温控箱体的DNA。2023年10月,美墨尔特首家海外工厂落户中国常熟。短短4个月后的2024年2月,首批国产机已下线并正式交付客户。由美墨尔特常熟工厂所生产的使用美墨尔特半导体技术的稳定性试验箱HPPeco和低温培养箱IPPeco,正是您低能耗、低排放设备更新的理想选择。美墨尔特使用帕尔贴半导体(Peltier)技术的低温培养箱IPP在2000年德国慕尼黑analytica展会上一经推出,便吸引无数拥趸。过去24年中,我们推出的一系列使用帕尔贴半导体(Peltier)技术的箱体,并在实际应用过程中不断对其优化升级。帮助客户实现应用需求的同时,也以此助推美墨尔特始终走在行业前沿。 针对长期使用而言,美墨尔特所采用的帕尔贴半导体(Peltier)技术使我们的客户能够实现降低能耗、减少碳排放。使用半导体技术的稳定性试验箱HPPeco和低温培养箱IPPeco,可以在不依托制冷剂的情况下,就能实现预期的加热和制冷参数要求。与使用压缩机制冷的同类设备相比,帕尔贴半导体(Peltier)技术所需的能耗本就非常低。这一优势,在美墨尔特稳定性试验箱HPPeco系列与低温培养箱IPPeco系列上有更明显的展现——所需能耗约为之前的1/10。这不仅能节省能源成本,并在环境保护层面体现出企业的社会责任——降低碳排放。我们的客户——宝洁公司一个配置了22台压缩机冷却系统的实验室在运行中遇到问题。产生问题的原因在于,这一实验室中并没有安装空调系统,可用来补偿由22台压缩机运行时所产生并释放的热量。为此,我们为宝洁公司做了一些计算。10台使用Peltier帕尔贴半导体技术的稳定性试验箱HPP所释放的全部热量,同1台使用压缩机系统的箱体相当。由此看来,使用半导体温控箱体可节约许多花费在压缩机制冷设备上的空调运行及设备维护成本。 目前,美墨尔特稳定性试验箱HPPeco和低温培养箱IPPeco已实现全系列国产化。相同的品质,更短的交付周期,将帮助您平稳渡过设备更换期。关于我们——全球温控箱体领导品牌德国Memmert(美墨尔特),成立于1933年。九十多年来,美墨尔特一直致力于精确温控箱体的研发和生产,并引领箱体的发展方向与潮流。公司同时拥有悠久的半导体控温技术(Peltier)经验,是能提供全系列半导体技术温控箱体的制造商。 产品包括二氧化碳培养箱、恒温恒湿箱、光照培养箱、低温培养箱、稳定性试验箱、环境测试箱、真空烘箱、通用烘箱、灭菌箱、水浴等。2010年9月,德国Memmert(美墨尔特)大中华区全资子公司——美墨尔特(上海)贸易有限公司在上海成立,现在北京、南京及广州设有代表处。2023年,Memmert首座海外工厂“美墨尔特设备制造(常熟)有限公司”正式开业。目前,美墨尔特常熟工厂已实现全系列稳定性试验箱HPPeco和低温培养箱IPPeco的国产化生产。国产化产品将延续同德国制造相同的产品品质,并用中国速度为客户提供他们所需的产品。未来,美墨尔特还将为中国客户带去更多“德国品质”+“中国速度”的产品。
  • 美国拟为金属卤化物灯设立最低能源效率标准
    目前,美国能源部有关金属卤化物灯的最低能源效率标准(MEPS)要求和测试程序要求还正在制定当中。金属卤化物灯的能效要求主要体现在能源之星规范中。  有关金属卤化物灯的能源之星规范主要是2011年7月5日发布的灯具能源之星规范V1.1版。该规范取代了原来4.2版的住宅照明设备和1.3版的固态照明灯具的能源之星规范,并于2011年4月1日开始生效。  根据灯具能源之星规范V1.1版的规定,金属卤化物灯在2013年9月1日之前,每个灯-镇流器系统的初始光效应大于等于65 lm/W,2013年9月1日后,每个灯-镇流器系统的初始光效应大于等于70 lm/W。同时,每个灯-镇流器系统应能提供最小800 lm的初始光输出。  金属卤化物灯的光效和光输出按照IES LM-51-11进行测试。  2013年8月20日,能源部发布了有关金属卤化物灯具的节能标准的技术规则提案(78 FR 51463)。2013年9月27日,美国能源部将就金属卤化物灯的MEPS标准举行公共会议并征集公众意见。意见征询的截止日期为2013年10月21日。能源部在一份技术规则提案中称,用于室内外的400W的金属卤化物灯具的平均寿命周期可节约的成本约为30美元 1000W的金属卤钨灯具可节约的寿命周期成本约为400-500美元。根据能源部的估算,在30年间,设立的金属卤化物灯的MEPS标准将节约0.80-1.1夸特的能源。同时,MEPS标准还将减少4900-6500万公吨的二氧化碳、21.4-28.9万吨甲烷、890-3000吨一氧化二氮、6.5-8.7万吨二氧化硫、6.6-9.0万吨氧化氮和0.11-0.15吨水银的排放。  详情参见:http://www.gpo.gov/fdsys/granule/FR-2013-08-20/2013-20006/content-detail.html
  • 《野外作业用宽温度范围锂离子电池技术性能及测试方法》团标发布
    2022年1月20日,广东省测量控制技术与装备应用促进会发布了T/GDCKCJH 057—2022《野外作业用宽温度范围锂离子电池技术性能及测试方法》团体标准。该团体标准由东莞市钜大电子有限公司、东莞理工学院、广东斯泰克电子科技有限公司、华南理工大学等单位共同起草,针对野外作业用宽温度范围锂离子电池的术语、定义、符号和缩略语、要求、测试方法等作了规定。标准详细信息标准状态现行标准编号T/GDCKCJH 057—2022中文标题野外作业用宽温度范围锂离子电池技术性能及测试方法英文标题Technical performance and test method of polymer lithium-ion energy storage battery with wide temperature range for field operation国际标准分类号29.220.01 电池和蓄电池综合中国标准分类号K82国民经济分类M732 工程和技术研究和试验发展发布日期2022年01月20日实施日期2022年02月01日起草人薛家祥、周钢、朱云、马金虎、刘桂雄、于文庆、欧宁、朱亮华、袁伟、晋刚、万珍平、刘旺玉、曾敏起草单位东莞市钜大电子有限公司、东莞理工学院、广东斯泰克电子科技有限公司、华南理工大学范围本文件适用于科考、勘探、旅游、急救、侦查、测量等野外作业用宽温度范围锂离子电池单体和电池组的技术性能测试,其他宽温度范围锂离子电池可参照执行。主要技术内容本文件规定了野外作业用宽温度范围锂离子电池的术语、定义、符号和缩略语、要求、测试方法。是否包含专利信息否标准文本T/GDCKCJH 057—2022《野外作业用宽温度范围锂离子电池技术性能及测试方法》团体标准下载链接:https://www.instrument.com.cn/download/shtml/1017326.shtml
  • 台湾发布自镇流LED灯的最低能效标准草案
    2013年9月11日,台湾向WTO提交了第G/TBT/N/TPKM/143号通报,通报提出了自镇流LED灯的最低能效标准草案。  草案中涉及的LED灯为符合CNS 15630规范范围的、并经经济部标准检验局公告为实施检验范围内的产品,但高显色性产品(CRI实测值为95以上)的除外。草案为符合要求的高、低色温条件下非定向LED灯和定向LED灯的最低能效标准进行了确定。见下表。发光效率,LM/W非定向LED灯定向LED灯实测光通量200lm实测光通量≤200lm实测灯泡出光面的最大机械机构尺寸5cm实测灯泡出光面的最大机械机构尺寸≤5cm低色温(高于2700K、低于3500K)70656055高色温(高于4000K、低于6500K)75706560
  • 加拿大OCI公司MCP-LEED 微通道板式低能电子衍射光谱仪在南方科技大学中标
    创元公司代理的加拿大OCI Vacuum Microengineering Inc.公司生产的MCP-LEED 微通道板式低能电子衍射光谱仪近日在南方科技大学中标。OCI公司是一家纳米表面结构和成分分析仪器专业制造商。尤其擅长为MBE、STM、XPS等超高真空设备提供LEED、AES、电子枪和离子枪等重要部件。主要应用于纳米技术、微电子技术、薄膜技术、平板显示器和各种传感器等领域。该公司生产的MCP-LEED 低能电子衍射光谱仪,有着100度俘获角的镀金钨半球栅格、具备先进的带有外径为10mm透镜的完整的微型电子枪、整合快门可达100mm线性运动、LEED自动图像采集和自动分析等先进特性。MCP-LEED 微通道板式低能电子衍射光谱仪是分析晶体表面结构的重要方手段,可广泛用于表面吸附、腐蚀、催化、外延生长、表面处理等材料表面科学与工程领域。
  • 卫健委发布GBZ 115-2023《低能射线装置放射防护标准》
    近日,卫健委发布强制性国家职业卫生标准——GBZ 115-2023《低能射线装置放射防护标准》。该标准规定了非医用低能射线装置的放射防护要求,适用于能量从豁免值至1MeV的X射线衍射仪、X射线荧光分析仪、离子注入装置、电子束焊机、静电消除器、电子显微镜和测厚、称重、测孔径、测密度用的射线装置。该标准自2024年3月1日起实施,GBZ 115-2002《X射线衍射仪和荧光分析仪卫生防护标准》同时废止。标准下载链接:GBZ 115-2023 低能射线装置放射防护标准.pdf
  • 打破国外垄断,首台国产低能离子注入机顺利完成验证
    在全球产能紧缺以及半导体国产化的浪潮下,国产半导体正面临前所未有的发展机遇,尤其是国产半导体设备中的离子注入机,近期好消息不断。8月27日,万业企业披露财报,根据财报显示,在过去半年,万业企业的营收为6.09亿元,同比增长28.25%,其中集成电路设备收入同比增长223%,研发费用同比增长575.23%,这一串数据的背后既是万业企业不断创造辉煌的展现,也是国产离子注入机快速增长的证明。国产离子注入机的春天离子注入机作为半导体制造的关键设备之一,在整个晶圆加工中占比约5%,但这一设备长期被国外所统治,美国的应用材料(Applied Materials)和亚舍利(Axcelis)合计占据全球85%-90%的市场。长期以来,国内企业的市场份额一度近乎为0,凯世通是国内为数不多切入这个领域的企业。2018年万业企业收购凯世通,一年之后,凯世通的集成电路(IC)离子注入机,就陆续在主流存储器芯片厂和国内12英寸晶圆厂进行产线验证,产品在束流强度指标上表现优异,实力可见一斑。而如今,在凯世通的努力下,国产离子注入机迎来了一个朝气蓬勃的春天。根据万业企业的财报显示,凯世通的离子注入机已经拿下多个订单。尤其是凯世通自主研发的第一台国产低能大束流离子注入机,已于今年5月份在国内一家12寸主流集成电路制造厂完成设备验证,并已确认销售收入。这也是首台完成国内主流客户验证并确认收入的国产低能大束流设备,是一次攻克卡脖子设备的初战告捷。△凯世通低能大束流离子注入机凯世通的离子注入机获得国内最高等级晶圆厂的验证,这不仅是凯世通从0到1的突破,也是国产离子注入机领域从0到1的突破。万里长征最难的是第一步,随着凯世通第一笔国产低能大束流设备订单销售的确认,凯世通后续的订单也会越来越多。国产替代订单前景广阔当前的趋势之下,国产半导体对于国产离子注入机的需求也是十分紧迫的。根据产业人士透露,2016年时,国产离子注入机产量仅4台,而需求已高达157台,供需差为153台。尽管过去几年需求增速低于国产产能速度,但离子注入的本土供需仍存在较大差距,进口替代迫在眉睫。如果以现在国内新增产能52万片计算,预计新增晶圆产能需采购的离子注入机需要520-780台,市场潜力巨大,这也给了万业企业更多的机会与更高的要求。除了今年5月通过验证了的1台低能大束流离子注入机,凯世通去年12月公告的另外3台设备进展顺利,重金属离子注入机和超低温大束流离子注入机已完成客户交付,高能离子注入机设备按客户交付计划进行组装。值得一提的是,报告期内凯世通又新增2台订单,与国内另一家12英寸芯片制造厂签署了1台低能大束流超低温离子注入机和1台高能离子注入机订单。可以看到,广阔的市场需求给了万业企业更大的成长空间,未来万业企业的订单也将越来越多,而万业企业在获得订单的同时,也没有忘记作为一个半导体企业的使命,那就是不断的攻克更尖端的技术。加强人才技术研发投入从万业企业的财报不难发现,从2018年到2020年三年间,其费用的年均复合增长率为238%,并且2020年研发费用超过了销售费用,这充分体现了万业企业在半导体设备国产化方面的决心。根据本次财报的披露,上半年用于设备的研发费用同比增长575.23%,这再次说明万业企业对于技术的执着追求。凯世通的创始团队主要是来自全球知名的离子注入机公司,深耕离子注入机领域30多年,曾开发过多款畅销的离子注入机。所以在进行国产IC离子注入机研发过程中,凯世通在每款产品开发之初,就做了详尽的市场与知识产权调查,避免陷入专利纠纷,同时也积极的布局关键专利,为自己筑起一道雄厚的技术壁垒。此外,人才是半导体企业的立身之本,对人才的尊重才能让企业更快速发展。为了完善人才激励机制,调动公司管理层和核心技术/业务人员的积极性,同时提高公司的市场竞争力。万业企业在今年6月推出了第一期员工持股计划。此举有效的调动员工积极性和创造性,增强员工凝聚力和提升公司集成电路业务的技术与市场能力。两大引擎驱动板块成长从万业企业的股权架构可以看出,当前万业企业的前三大股东分别是浦东科投,三林万业和大基金,三者分别持股为28.44%、12.9%、7.07%。值得注意的是,浦东科技投是一家专注于高科技产业领域并购投资的专业机构,曾投资过数家知名集成电路设计公司,2014年参与收购澜起科技,并曾与紫光集团竞购锐迪科。有大基金与浦东科投的坐镇,也意味着万业企业与向下游形成产业协同时也更为顺利。在经营方面,万业企业不仅收购了凯世通,还在2020年牵头境内外投资人收购Compart Systems。后者是全球领先的气体输送系统领域供应商之一,也是全球少数可完成该领域零组件精密加工全部环节的公司。△Compart Systems精密零部件生产线今年上半年,Compart Systems首度布局国内市场,相关产业正式打入国内集成电路设备公司的供应链。另一方面,万业牵头签约浙江海宁新建Compart研发和制造中心,该项目总投资30亿元,是海宁市2021年重点引进的半导体领域产业项目。自此,万业企业集成电路板块正式形成双引擎驱动发展模式。一是以凯世通的离子束技术为核心,集科研、制造于一体的高科技项目,二是以Compart的集成电路设备气体传输系统为核心的零部件供应。两者目前都属于国产替代,成长空间巨大。总结一家半导体企业的成长靠的是什么?靠的是资金,靠的是技术,但更靠的是恒心。敢于挑战国际寡头的恒心,以及对研发持之以恒的投入,正是这种信念驱使着万业企业不断前行,也驱使着国产半导体产业不断前行。回顾万业企业的转型,从2015年至今仅有6年,6年很快,但万业企业走得更快,不仅打破了国外对于IC离子注入机的垄断,还用专利筑起了自己的技术壁垒。此次中期财报,只是万业企业对过去半年的一次小结,在半导体国产化与产能紧缺的双重因素之下,以及万业企业对技术的投入,对人才的尊重,相信未来万业企业也定会踩着东风加速前进。
  • 环球分析测试仪器有限公司助力第三届中国国际氢能及燃料电池高峰论坛
    2024年4月11日-4月13日环球分析测试仪器有限公司应邀携德国札纳电化学工作站及美国艾德茂电化学工作站参加了在重庆帕格森蒂两江蒂苑酒店举办的“第三届中国国际氢能及燃料电池高峰论坛暨展览会"。德国札纳电化学工作站及美国艾德茂电化学工作站凭借其性能优异、简洁易用操作软件、强大离线数据分析软件、优越性价比及强大的拓展功能等诸多亮点受到广大参会科研学者的支持。 本次大会以“氢助双碳、引向未来"为主题,邀请来自政府主管部门、行业精英、涉氢企业、社会组织负责人、专家学者、企业家等齐聚美丽山城。旨在促进氢能产业技术“政、产、学、研、用"协同发展,推进氢能产业链基础设施建设,深入拓展氢能产业领域相关新技术、产品示范应用,助力实现双碳目标,推动氢能产业高质量发展。 环球分析测试仪器有限公司是德国札纳公司和美国艾德茂公司在中国的总代理。在此次会议展出了德国札纳公司生产的ZenniumPro和ZenniumX新型电化学工作站,以及CIMPS光电化学谱仪、瞬态光电响应测试模块、IPCE模块、透射/吸收光谱测试系统、光电化学发射测试系统等;并展出了美国艾德茂公司生产的Squidstat Plus、Squidstat Prime、Squidstat Solo、Squidstat Penta、Squidstat Decka、Squidstat Venta、Squidstat Cycler等型号的电化学工作站。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • 青岛能源所提出一种低能耗的二氧化碳捕集方法
    全球气候变暖已经成为人类社会可持续发展的严重威胁,人类活动排放的温室气体占其诱导因素的90%,而CO2占温室气体总排放量的77%。随着世界人口的不断增长和对能源需求的不断增加,人类排放的CO2与可持续发展的矛盾愈发尖锐。   碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)技术是CO2直接减排的有效手段,中国生态环境部发布的《中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)》认为,CCUS技术是我国化石能源低碳利用的唯一技术选择,而CO2捕集技术是前提和关键。CO2捕集是指将CO2从工业生产、能源利用或大气中分离出来的过程,目前较为成熟的碳捕集方法主要有热钾碱法和多醇胺法,其工艺过程类似,如图1所示。 图1 传统CO2捕集工艺流程图   活化热钾碱法和多醇胺法具有吸收速度快、净化度高、再生气纯度高等优点,但因存在大量溶剂蒸发(热钾碱法水蒸气与CO2摩尔比为1.8~2.2;多醇胺法约0.5)、捕集能耗高(占CCUS总成本的60%~85%,再生温度比吸收温度高,现有技术的两阶段存在大量溶液的反复升降温,导致再生能耗普遍≥2.4 GJ/(t CO2),捕集总能耗≥3.1 GJ/(t CO2))、吸收剂浓度低(碳酸钾浓度≤30%,否则易结晶堵塞管道)或吸收剂易蒸发降解等缺点,尤其是再生能耗和操作成本偏高,阻碍了其大规模工业推广应用,开发吸收效率高、捕集成本低的工艺和技术,一直是国内外研究的热点和难点。   近日,青岛能源所黄青山研究员带领的多相反应工程研究组在传统热钾碱法的基础上提出了一种基于相变吸收剂(碳酸钾/碳酸氢钾)、粒度可自由调控的反应分离一体化反应结晶器、微气泡技术及蒸汽热泵技术(Mechanical Vapor Recompression, MVR)的低能耗CO2捕集方法,其工艺流程如图2所示。 图2 基于碳酸钾/碳酸氢钾相变捕集低浓度CO2的工艺流程图   本方法具有以下特点:   (1)吸收速率高:采用高浓度的碳酸钾溶液(≥60 wt%)和特色微气泡技术(平均直径200~800 μm),大大延长了气泡在溶液中的停留时间,提高了气液吸收速率;   (2)仅固相再生,再生能耗低:再生过程无需对溶剂进行加热,可减少再生过程中因大量溶剂升降温和蒸发导致的显热和潜热损失;   (3)以水为媒介,采用蒸汽热泵技术实现吸收阶段热量的充分再利用:根据水汽化潜热分别是其气相和液相比热2000多倍和1000多倍性质,通过水的多次相变,采用蒸汽热泵技术实现潜热回收和热量品位的提升,不仅可将CO2吸收阶段的反应放热全部用于其解吸阶段的吸热过程,还避免了传统CO2捕集技术在吸收和解吸过程之间存在的大量且反复的升降温过程而造成的大量能量消耗问题,提高了能量的利用效率;   (4)连续反应结晶及晶体粒径可调控:生成物KHCO3晶体长大到一定尺寸后,利用反应结晶器内流体的定向流动实现颗粒自动分级和分离(小颗粒晶体返回结晶器中继续长大,大颗粒被分离并被浓缩),从而实现了晶体产物的节能分离及粒径的精准调控;   (5)设备投资小:吸收塔中各种过程强化技术相结合实现了反应分离一体化,再加上高浓度CO2吸收剂和微气泡技术,可提高捕集效率,减小设备尺寸。   该技术的理论再生能耗0.8 GJ/(t CO2)、综合捕集能耗≤1.5 GJ/(t CO2),为解决传统CO2捕集技术能耗高、成本高的问题提供了一种新的技术路径,以期助力我国“双碳”目标的实现。   上述工作发表在化工TOP期刊《Chemical Engineering Journal》上并申请了中国发明专利,通讯作者是青岛能源所的张海东助理研究员。该工作得到国家自然科学基金、山东省自然科学基金、所内合作基金、山东省合成生物学技术创新中心主任创新基金、中国科学院绿色过程制造创新研究院自主部署项目等项目的支持。
  • 重庆:提升智能仪器仪表产业发展能级
    3月18日,重庆市人民政府印发《重庆市战略性新兴产业发展“十四五”规划(2021—2025年)》(以下简称《规划》)。《规划》指出,2020年,重庆市规模以上工业战略性新兴产业产值由2015年的4000亿元增加至7600亿元,占全市规上工业总产值比重由2015年的18.7%提升至32%;规模以上战略性新兴产业增加值超过2300亿元;全社会研发经费投入逐年递增,占GDP的比重由2015年的1.57%提高到2020年的2.11%;规上工业企业研发投入强度为1.61%。累计获批建设国家重点实验室10个、国家企业技术中心37家,国内外知名高校院所来渝建立创新机构、产业研究院101家;发布国内首个自主开发180nm全套硅光工艺PDK、全球首款Micro—LED智能手表;铝合金产业基本实现对国家所需重点关键铝材品种全覆盖,西南铝业集团成为国内唯一的国产大飞机铝材供应商。《规划》提出到2025年的发展目标,在新型智能终端、新型显示、软件和信息技术服务、先进材料、生物医药、新能源汽车和智能汽车、新兴服务业等领域形成若干千亿级的战略性新兴产业集群,在集成电路、高端装备制造、绿色环保等领域形成若干500亿级的产业集群,卫星互联网、氢能与储能、生物育种与生物制造、脑科学与类脑智能、量子信息等产业在全国形成一定优势。《规划》明确了十类战略性新兴支柱产业,涉及集成电路、新型显示、新型智能终端、新能源汽车和智能汽车、生物医药、生物医药、高端装备制造、绿色环保、软件和信息技术服务以及新兴服务业。其中,高端装备制造要求提升先进传感器和智能仪器仪表产业发展能级。《规划》还提出了五种面向未来的先导性产业,包括卫星互联网、氢能与储能、生物育种与生物制造、脑科学与类脑智能以及量子信息。其中,在量子信息产业发展重点中提到,开展激光器、调制器、探测器等核心器件技术研究,实现量子通信领域核心元器件自主可控。《规划》明确了五项重大工程,包括集群梯次发展工程、优质企业培育工程、科技创新引领工程、应用示范推广工程和成渝协同发展工程。《规划》部署了五项保障措施,包括加强组织领导、加强政策扶持、加强产业引培、加强人才供给和加强考核监测。《规划》原文:重庆市战略性新兴产业发展“十四五”规划(2021—2025年).doc
  • 重庆:提升先进传感器和智能仪器仪表产业发展能级
    3月18日,重庆市政府印发《重庆市战略性新兴产业发展“十四五”规划(2021—2025年)》(下称《规划》),提出到2025年,全市战略性新兴产业规模将实现万亿级,战略性新兴产业主营收入超过10亿元的企业突破100家,规模以上工业战略性新兴产业企业达到1500家,新型研发机构数量突破300家。《规划》提出,重庆“十四五”战略性新兴产业发展将围绕“创新驱动、聚焦重点、集群发展、绿色低碳、开放协作”这5个要素进行。其中,重庆市将通过实施战略性新兴产业5类工程,包括集群梯次发展工程、优质企业培育工程、科技创新引领工程、应用示范推广工程和成渝协同发展工程,在发展战略性新兴支柱产业方面,重点建设集成电路、新型显示、新型智能终端、新能源汽车和智能汽车、生物医药、先进材料、高端装备制造、绿色环保、软件和信息技术服务、新兴服务业等10类产业;在面向未来的先导性产业方面,重点建设卫星互联网、氢能与储能、生物育种与生物制造、脑科学与类脑智能和量子信息等5类产业。其中,在高端装备制造方面,《规划》提出,顺应装备高端化、智能化、成套化发展趋势,聚焦汽车、3C(计算机、通讯和消费电子)、无人机等产业发展迫切需求,进一步提升关键基础件的精度和可靠性,提升传感器和智能仪器仪表产业发展能级,提升新能源装备竞争优势,推动智能制造装备迈向中高端水平,在若干细分领域打造西部领先、国家重要的产业集群。提升先进传感器和智能仪器仪表产业发展能级。面向重庆市智能终端、智能汽车、智能制造和智慧城市等领域应用需求,发展互补金属氧化物半导体(CMOS)图像传感器、车身传感器/控制器、超声波传感器、流量传感器、惯性传感器、位移传感器、智能安防设备等传感设备。支持龙头企业整合市内外创新资源建设国家级产业创新平台,牵头开展核心技术攻关、产业孵化、产业招商等工作,提升产业发展能级。依托汽车、智能终端、装备制造等产业优势,加强产业链上下游合作,完善先进传感器及智能仪器仪表配套体系。推动智能制造装备迈向中高端水平。瞄准六轴机器人、双腕机器人、双旋机器人等工业机器人细分领域,提升产品的柔性化程度及低成本生产能力。依托机器人检测与评定中心,进一步完善机器人检验与认证体系,加快推动重庆市乃至西部地区机器人检测认证工作迈向制度化、规范化。拓展焊接、喷涂、柔性抛光等工业机器人应用领域。完善伺服电机、减速器、视觉系统、控制系统、视觉传感器、力矩传感器和碰撞传感器等关键零部件配套体系。发挥齿轮产品等制造优势,发展精密级高效磨齿机、滚齿机、数控加工中心和数控锻压机等中高档数控机床,引进培育高速钻攻中心等高端数控机床企业。紧抓增材制造产业高速发展契机,引进培育激光、电子束、离子束驱动的增材制造装备企业及超细合金粉末、高性能塑料粉末等企业,打造增材制造装备产业链。推动增材制造装备在工业机械、航空航天和汽车等领域的应用。在高端装备制造产业发展重点方面,《规划》提出,加快仪器仪表基地、呼吸机用流量与压力传感器、智能安防设备产业园等项目建设,扩大传感设备规模。此外,《规划》还部署了五项保障措施,包括加强组织领导、加强政策扶持、加强产业引培、加强人才供给和加强考核监测。
  • 欧洲大型强子对撞机刷新质子流对撞能级纪录
    据美联社报道,世界最大的粒子加速器——欧洲大型强子对撞机(LHC)3月19日刷新了由它保持的一项世界纪录,对撞机内的两束质子流被分别加速至3.5万亿电子伏特的能级,是原纪录的三倍。  欧洲核子研究中心称,两束质子流分别以3.5万亿电子伏特的能级在大型强子对撞机所在的环形隧道中运行。大型强子对撞机于2003年开始兴建,投入达100亿美元,位于法国和瑞士边境地下100米深、长17英里(约合27公里)的环形隧道中。  预计,在未来几天科研人员将使两束质子流对撞,展开一系列试验来研究原子内部微小粒子的奥秘,以揭开物质的形成之谜。  去年11月30日,大型强子对撞机(LHC)内的两束质子流被加速至1.18万亿电子伏特的能级,比之前该记录的保持者——美国费米国家实验室加速器——创造的能量多出20%,成为世界上“最强大的机器”。美国费米国家实验室加速器2001年曾创下0.98万亿电子伏特的纪录。  大型强子对撞机以创纪录的能级运行,将有助于揭开粒子物理的一些未解之谜,比如暗物质和暗能量是否存在。科学家还希望在微观上查明宇宙大爆炸之后瞬间内所发生的一切。科学界普遍认为,宇宙诞生于大约140亿年前的大爆炸。  自从去年大型强子对撞机重启以来,欧洲核子研究中心报告称已经取得了一系列成就。大型强子对撞机最初开始启动后,遭遇了一系列故障,科研人员不得不花费14个月时间对其进行维修和改进。去年冬天,欧洲核子研究中心用2个半月时间对大型强子对撞机停机进行改进,以做好准备迎接更高能级的对撞试验。  欧洲核子研究中心加速器负责人史蒂夫迈尔斯说:“将质子流加速到3.5万亿电子伏特能级表明大型强子对撞机的整体设计是可靠的,也表明我们自其2008年9月关闭以来所做的改进是有效的。”  不过,大型强子对撞机自上月底重新启动后显现两处“缺陷”,科研人员决定让这一世界最大的粒子加速器2011年底停机,为期将近1年,以实施“修复”。  欧洲大型强子对撞机是世界最大的粒子加速器,用于研究宇宙起源和各种基本粒子特性。大型强子对撞机在接近绝对零度的温度下(温度低于外太空)运行,以便让大约2000个超导磁体最有效地引导质子。欧洲核子研究中心(CERN)是世界上最大的粒子物理研究中心,现有20个成员国,同时获得了日本、印度、俄罗斯和美国等众多国家的支持。
  • 食品药品监督总局医械产品最新分类,基因测试盒为Ⅲ类
    国家食品药品监督管理总局办公厅7月20日发布《关于多功能超声骨刀等127个产品分类界定的通知》。  通知称,为适应医疗器械监督管理工作的需要,总局组织有关单位和专家对多功能超声骨刀等127个产品的管理类别进行了界定。其中:作为Ⅲ类医疗器械管理的产品8个 作为II类医疗器械管理的产品60个 作为I类医疗器械管理的产品36个 不作为医疗器械管理18个 视具体情况而定的产品5个。  一、作为Ⅲ类医疗器械管理的产品(8个)  (一)多功能超声骨刀:由主机、手机、工作尖、冲洗管和脚踏组成,用于牙科和口腔外科的植牙切骨手术、鼻窦增高手术、骨修型、拔牙、残根、断裂植体移除、牙周病治疗、根体清洁和根管移除。分类编码:6823。  (二)磁场成像系统:由操作台、数据采集室、患者检查床体、龙门、传感器系统和数据分析系统以及软件组成,通过磁传感器采集心脏的电生理功能的磁信号并以图形方式显示这些数据,对被检测人员进行心脏猝死风险分析预测。分类编码:6821。  (三)糖尿病管理应用程序:软件产品。通过蓝牙连接特定的血糖仪,将血糖值从血糖仪传输到移动设备,同时,具有药物计算(用药剂量指导)功能。分类编码6870。  (四)胶囊式内窥镜镜姿态控制器:由永磁体和外壳组成,通过产生驱动磁场,对人体吞服的胶囊内镜产生拉力和扭矩力,改变驱动磁场的方向和作用在胶囊内镜上的强度,从而驱动胶囊内镜在胃腔或结肠内滚动、旋转和倾斜运动,实现对胶囊内镜的运动控制和姿态调整。用于在患者进行消化道胶囊内窥镜检查时控制胶囊内窥镜的运动。分类编码:6822。  (五)胶囊式内窥镜控制系统:由电动检查床、体外磁控装置、图像工作站和紧急控制装置组成,与胶囊式内窥镜配套使用,用于在人体胃和十二指肠检查中,控制患者吞服的胶囊式内窥镜的姿态、方向和运动。分类编码:6822。  (六)内镜用气囊控制器:由主机(包括气泵、传感器)、手控面板、脚踏开关、供气导管、电源、连接器、过滤器组成。配合特定的一次性气囊辅助导引导管使用,控制气囊充气、放气。分类编码:6877。  (七)基因检测试剂盒(微阵列芯片法):由微阵列芯片(用于飞行时间质谱系统对核酸样本分析时的核酸样本的承载)、质控品(用于对微阵列芯片的性能指标的质控)、引物P1(与自备试剂合用,扩增质控品,产物对微阵列芯片的性能进行质控)、引物P2(与自备试剂合用,扩增质控品,产物对微阵列芯片的性能进行质控)、引物Y(与自备试剂合用,扩增目的核酸片段,对微阵列芯片性能进行质控)5 部分组成。产品适用于飞行时间质谱系统对人体来源样本中的特定基因进行分析。用于临床体外诊断。分类编码:6840。  (八)8种食源性细菌核酸检测试剂盒(LAMP法):由8连反应液管、阳性对照、基因组、阴性对照、DNA 提取液组成。用于疑为食源性疾病病人粪便、肛拭、呕吐物等样本中8 种常见食源性细菌(沙门菌、志贺菌、金黄色葡萄球菌、霍乱弧菌、副溶血性弧菌、单增李斯特菌、奇异变形杆菌、大肠杆菌O157) 核酸的快速检测,用于食源性疾病的辅助诊断。分类编码:6840。  二、作为II类医疗器械管理的产品(60个)  (一)牙齿研磨器:由一次性无菌研磨容器和研磨机组成,用于将拔掉的牙齿研磨成符合一定大小的颗粒物。颗粒物经过清洗液消毒转化为无菌颗粒,移植到牙洞和骨缺损处。分类编码:6806。  (二)上/下肢功能康复训练器:由基座、活动部件以及控制部件组成,由电机驱动,设备带动患者上肢和(或)下肢进行被动运动,从而进行上肢和(或)下肢的康复性训练。分类编码:6826。  (三)认知康复诊断系统:由硬件和专用软件组成,用于脑外伤、脑卒中、帕金森病、各种痴呆等脑部疾病或创伤所致认知障碍,儿童疾病如脑瘫、儿童多动症、自闭症以及智障等各种原因导致的认知障碍的诊断及辅助康复。分类编码:6826。  (四)认知康复训练与评估软件:用于脑外伤、脑卒中、帕金森病、各种痴呆等脑部疾病或创伤所致认知障碍的评估及训练。分类编码:6870。  (五)关节活动度评估与训练系统:主要由传感器、软件、绑带和蓝牙模块组成,用于脑卒中(脑梗死、脑出血)患者肢体运动功能障碍的康复评估与主动运动训练。分类编码:6826。  (六)上肢康复训练数据采集传输系统:主要由上肢运动数据采集模块(采集模块可为手套形式)和无线数据接收模块组成,用于将脑卒中(中风)、脊髓损伤(偏瘫)、工伤、外伤等引起的上肢功能障碍患者主动康复训练的运动数据采集并提交远程康复医生,作为医生诊断和指导训练的依据。分类编码:6821。  (七)下肢淋巴水肿治疗仪:由控制台、球形阀、隔板圈环、治疗床遥控装置、紧急关闭按钮、治疗床和电缆组成。在下肢上施加间歇性负压,用于治疗下肢淋巴水肿。分类编码:6826。  (八)上肢康复仪:由机器手、塑料手托、手垫套装、控制盒、前臂支撑座、前臂支撑座承托件、连接线、电源适配器和训练软件组成,通过采集表面肌电信号并进行处理,判断使用者的意图,训练软件控制机器手的运动从而协助使用者进行手部运动。用于脑卒中后导致上肢瘫痪患者的康复训练。分类编码:6826。  (九)诊断检查灯:包含LED 光源,用于为诊断、治疗的局部区域提供照明。分类编码:6820。  (十)上消化道pH-阻抗动态监测仪:主要由pH-阻抗动态监测采集仪、上消化道pH-阻抗分析软件、pH-阻抗导管电极和电源适配器组成,用于胃食管反流病(GERD) 、食管内酸或非酸反流、喉咽反流等反流性疾病的临床诊断,评估药物及手术治疗的效果。分类编码:6821。  (十一)胃肠电检测系统:主要由胃肠电图仪及胃肠电检测与自动分析软件组成,通过检测病人多通道胃电,记录人体胃肠部体表生物电信号,来评估胃慢波,供胃肠疾病临床诊断参考。分类编码:6821。  (十二)医用神经电刺激仪:主要由神经电刺激仪主机、人机交互软件、电极电缆线和电极片组成。非高频电刺激治疗设备。用于功能性消化不良及颈椎病、腰椎间盘突出症、肩周炎引起的颈肩腰腿疼痛的治疗。分类编码:6826。  (十三)刺激呈现与响应收集系统:由视觉刺激系统、音频系统、反应控制手柄、同步盒及处理软件组成。配合功能磁共振扫描器,用于在功能磁共振成像时为患者呈现音频和视频的刺激,并完成对该刺激响应的收集。分类编码:6828。  (十四)一次性雾化器套件:由雾化杯、伸缩波纹管、咬嘴组成,配合超声雾化机使用,超声雾化机产生的超声波作用于雾化杯内的药液,使药液雾化成微小颗粒,通过导管输送给患者。无菌产品。类编码:6866。  (十五)低周波治疗仪:主要由主机、导电线、电池组成,用于促进精明穴、耳垂穴周围相关部位的血液循环,缓解肌肉因疲惫或受伤而引起的疼痛。分类编码:6826。  (十六)护眼仪:由主机、眼罩、耳机、电源适配器组成,通过由微电脑芯片控制眼罩来产生磁场,作用于眼部周围的睛明、攒竹、太阳、四白等穴位。用于假性近视和轻度近视青少年,预防近视发生。分类编码:6826。  (十七)色觉缺陷检查仪:由主机、舒适控制器(选配件)及电源电缆组成。根据患者的主观判断给出人眼色觉的定性结论和参考数据,用于测试人眼色觉缺陷。分类编码:6821。  (十八)直肠测压管:由管体、塑配件和球囊组成,与肛肠动力仪配套,用于对直肠内压力进行测量。无菌产品。分类编码:6866。  (十九)尿动力学导管:由管体、塑配件和球囊组成,与尿动力仪配套,用于对尿道内压力和膀胱内压力进行测量。无菌产品。分类编码:6866。  (二十)测压连接套装:由灌注连接管、硅胶连接管、连接管和三通延长管组成,与肛肠动力仪和尿动力仪配套,用于将直肠测压管或尿动力学导管与肛肠动力仪或尿动力仪直接连接。无菌产品。分类编码:6866。  (二十一)髓内钉远端孔瞄准系统:通过电子感应器感应置于髓内钉内部的磁导针的位置,再利用外部机械结构实现外部支架的调整,以找到远端交锁螺丝的螺孔。用于股骨髓内钉和胫骨髓内钉手术中辅助瞄准髓内钉远端交锁螺丝螺孔。分类编码:6821。  (二十二)一次性使用输尿管结石封堵器:由外鞘管、弹簧圈内芯和推进器组成,用于以内窥镜方式抓取、移除结石时固定输尿管内的结石。分类编码:6822。  (二十三)双目视力仪:由主机、手持式控制器和电源线组成。根据患者的主观判断给出人眼视力的定性结论和参考数据,用于测试人眼视敏度、视力和色觉缺陷。分类编码:6820。  (二十四)一次性使用肛瘘旋转锉削器:由内撬柄、外撬柄组成,与外接的有源吸引切割器配合,在肛瘘管里使用。用于摘除剥离瘘管壁硬结组织。无菌产品。分类编码:6809。  (二十五)组配式软钻接头:由卡头和连杆组成,髋关节置换手术工具。用于在术中与钻头连接,为髋臼螺钉钻孔。分类编码:6810。  (二十六)软钻:主要由接头、钢丝绳和钻头组成,配合软钻导向器,并连接电动工具或软钻手柄,用于骨科髋关节置换手术时,在髋臼钻孔。分类编码:6810。  (二十七)柱形开髓钻:骨科髋关节置换手术时,与有源器械相连接,用于钻开髓腔。分类编码:6810。  (二十八)自闭与多动障碍干预仪:主要由单通道低通滤波器、听觉统合训练器、主机、自闭与多动评估和训练用具以及专用软件组成。通过对音乐、听觉语言、可视序列诱导信号进行实时检测、处理,为沟通交流、语言听处理功能的评估诊断和康复训练提供相关信息,以及康复过程的动态评估与实时监控。用于自闭症、注意力缺陷与多动障碍的诊断评估、康复训练及康复指导。分类编码:6826。  (二十九)电刀清洁片:由泡棉垫、粗糙面、背胶和x 光感应线构成。用于手术中电刀的清洁使用,不和人体接触,一次性使用。无菌产品。分类编码:6801。  (三十)放射性粒子植入防护枪:主要由一次性植入枪芯、一次性弹夹、植入枪托、专用配套推杆、弹夹防护套组成。与一次性使用粒子及输送用穿刺针配套,用于对操作者为肿瘤患者的内放射性治疗时的防护及粒子输送、防护。分类编码:6834。  (三十一)医用X线胶片扫描仪:扫描医用X射线胶片提取影像,用于医生阅片及诊断。分类编码:6831。  (三十二)口腔影像获取软件:由安装光盘及随机文件组成。安装于计算机上,与口腔设备通过数据传输获取影像,再将获取的影像传输给影像归档系统。分类编码:6870。  (三十三)呼吸阀:由呼气阀主体、进气口、排气口、阀盖、阀盖对准凹口、阀盖对准翼片、隔膜、隔膜对准凹口、隔膜对准翼片和压力传感器端口盖组成,接口符合YY1040.1-2003中非金属圆锥接头的要求。是一种多患者使用的呼气器械,与持续正压通气系统一同使用,使用时一端连接面罩,另一端连接呼吸管路。用于在低持续正压通气压力时,在患者回路中提供连续泄漏通路,从而减少患者对CO2的重复呼吸。分类编码6854。  (三十四)皮肤放大镜:主要由灯头(包含LED光源)、放大镜、物镜、手柄、电池组成,用于对患者皮肤的病变组织进行放大观察。分类编码:6822。  (三十五)认知功能训练系统:主要由显示屏、主机、嵌入式软件构成,从视、听及视听结合等方面来训练受训者的注意力、记忆力、手眼协调和执行能力,通过对训练者的成绩分析,针对性的给训练者进行训练,以提高训练者的执行功能。用于认知功能缺陷的辅助治疗。分类编码:6826。  (三十六)医用康复理疗仪:主要由助步行走装置、颈椎牵引装置、腰部按摩装置、腰椎牵引装置、电机及智能控制部分组成,用于颈椎病、腰椎病及下肢体运动障碍的康复理疗。分类编码:6826。  (三十七)非标准视标液晶视力表:主要由主机和红绿识别镜组成。在液晶屏幕上显示各种检查用视标及图形,使用非标准视标,用于视力检查以及其他视觉功能的检查。分类编码:6820。  (三十八)电子助视器:由图像采集控制模块、稳压电路控制模块、阅读平台滑动模块、液晶显示模块及电池充电模块组成,由摄像头对目标进行图像取样,并通过电子技术对图像进行放大、对比度调整、色彩模式调整处理。用于辅助眼科疾病患者 (弱视)日常阅读。分类编码:6820。  (三十九)电热煮沸消毒器:主要由主体、器盖、电热管和电器控制组成,利用电热管进行加热。用于医疗器械的煮沸消毒。分类编码:6857。  (四十)上肢功能康复系统:由手柄传感器(含绑带)、多功能训练球(含绑带)、多功能训练板、计算机、垫子、USB转接盒和软件组成。用于通过训练,帮助神经、骨科康复患者进行上肢功能训练,辅助提高其上肢运动功能及手部精细运动能力。分类编码:6826。  (四十一)胸腹传感带:主要由胸腹传感织带(含有传感器)、电极扣、自粘带组成,将胸部、背部以及腹部起伏变化转变为电信号,采集记录人体呼吸规律变化。与呼吸监测仪器配合,用于呼吸运动检测、睡眠呼吸检测,检测结果用于疾病诊断。分类编码:6821。  (四十二)灸用灸疗机:主要由机头、支架、遥控器及底座构成。具有根据实时监测的温度控制驱动电机,在超过安全温度设定时控制灸疗机自动报警并且停止灸疗 设定灸疗时间,确保灸疗的灸量 选择灸疗手法和模式 监控施灸的灸量、施灸时皮肤的温度、施灸时间、灸疗手法及模式等功能。不含灸治用灸。用于替代传统手工灸疗。分类编码:6827。  (四十三)酸性氧化电位水中心供水系统:主要由一台主控机及被其控制的多台(两台或以上)酸性氧化电位水生成机组成,将产生的酸化水用容器收集在一起,再通过管道将容器中的酸化水输送到各使用科室。用于医用器具、手术器械的常规消毒。分类编码:6857。  (四十四)冷敷器(冷敷袋):冷敷器由冰桶、控制盒、水管、气管、电源及冰袋组成。冷敷袋由冰袋、快速接头、连接管组成。冷敷器利用外来冷源配合加压装置对损伤组织局部进行冷敷、加压,降低局部组织温度,用于急性软组织损伤(踝、肘、肩部扭伤、肌肉损伤)早期、闭合性四肢关节骨折早期、四肢骨折及关节术后的早期和急性软组织疼痛的冷敷治疗。冷敷袋配合冷敷器,用于急性软组织损伤(踝、肘、肩部扭伤、肌肉损伤)早期、闭合性四肢关节骨折早期、四肢骨折及关节术后的早期和急性软组织疼痛的冷敷治疗。分类编码:6858。  (四十五)手术导航光学定位用反光小球:由载体球和反光罩组成,其中载体球中加工有支座安装孔,反光球罩表面的反光膜用于从空间各方向发射设备发射的外光。无菌产品。通过安装支座将小球支撑在手术工具上,利用追踪反光小球的空间位置,获取工具空间位置和方向。用于为手术导航的光学定位设备或其他光学设备提供空间位置标识。分类编码:6854。  (四十六)痕迹蛋白测定试剂盒(散射比浊法):由β痕迹蛋白试剂(抗体)、β痕迹蛋白补充试剂(缓冲液)组成。用于体外定量测定人血清、血浆、尿、脑脊液和含有鼻或耳分泌物的脑脊液(脑脊液漏)中β痕迹蛋白(BTP)。临床上用于残余肾功能、肾小管损伤、脑脊液渗漏的辅助评估和辅助诊断。分类编码:6840。  (四十七)尿半乳糖检测试剂盒:由反应装置、纯化装置、标准液组成,用于定性检测人体尿液中半乳糖,临床上仅用于乳糖不耐受的辅助诊断,不用于遗传性半乳糖血症的辅助诊断。分类编码:6840。  (四十八)金黄色葡萄球菌鉴定试剂盒(乳胶凝集法):由试剂1(包被人血纤维蛋白原的致敏乳胶颗粒试剂)、试剂2(包被未致敏的乳胶颗粒的阴性质控试剂)和检测卡组成,用于经形态学观察、革兰染色、触酶试验等确认为葡萄球菌后的进一步鉴定。分类编码:6840。  (四十九)三磷酸腺苷检测试剂盒:主要由裂解试剂、质控品、ATP 检测试剂、过滤柱组成,通过检测临床痰液或尿液样本中病原菌(包括细菌和真菌)胞内的ATP,可用于临床痰液样本中病原菌感染的快速筛选。分类编码:6840。  (五十)胰岛素样生长因子结合蛋白3 (IGFBP-3) 测定试剂盒(酶联免疫法):由校准品、质控品、反应板、酶结合物、校准品/质控品信息卡及其它必要辅助试剂组成,用于定量测定人血清胰岛素样生长因子结合蛋白3 (IGFBP-3) 。临床用于生长激素分泌异常的辅助诊断、评估垂体功能、监测生长激素疗法的疗效。分类编码:6840。  (五十一)抑制素A (INH A)测定试剂盒(酶联免疫法):由校准品、质控品、反应板、酶结合物、校准品/质控品信息卡及其它必要辅助试剂组成,用于定量测定人血清抑制素A (INH A)。临床上用于唐氏综合征的产前筛查,在辅助生殖技术中应用于黄体功能的异常检测。分类编码:6840。  (五十二)特异性生长因子测定试剂盒(化学法):由试剂1(识别物)、试剂2(显色剂)、校准品、质控品组成,用于体外测定人血清中特异性生长因子的含量。临床上用于急性炎症监测、免疫系统紊乱的辅助诊断。分类编码:6840。  (五十三)小而密低密度脂蛋白胆固醇检测试剂盒:由试剂1和试剂2 组成,用于体外定量测定人血清中小而密低密度脂蛋白胆固醇的含量,辅助诊断动脉粥样硬化。分类编码:6840。  (五十四)免疫细胞培养基和处理试剂:由基础培养基和白细胞介素(IL)、干扰素(INF)、肿瘤坏死因子(TNF)、生长因子(GF)等细胞因子或它诱导剂组成。用于骨髓、外周血、脐带血等样本中淋巴细胞的体外诱导、处理和分离培养。培养后的细胞仅用于临床体外诊断,不用于回输等治疗用途。分类编码:6840。  (五十五)糖化血红蛋白层析柱:主要由聚合物凝胶、层析柱件、密封栓等组成,配合高效液相色谱仪或特定糖化血红蛋白分析仪使用,检测人体样本中的糖化血红蛋白,用于血糖监测和糖尿病的辅助诊断。分类编码:6840。  (五十六)泪液渗透压测定仪:由读卡器、测定笔、测定卡配件托盘、电子检测卡、测定卡、质控液组成,用于测定人类泪液渗透压的仪器。用于同其他临床诊断方法一起,协助对疑似患有干眼症的患者进行诊断。分类编码:6840。  (五十七)集成式细胞处理系统:由超净工作台、离心机、紫外消毒装置、恒温振荡器、保暖桶、配料置物架组成。用于医疗机构及实验室在百级洁净环境下用专用的一次性耗材对从人体抽取的脂肪组织进行分离、提取操作,提取其中的脂肪间充质细胞群。用于临床检验。分类编码:6841。  (五十八)一次性使用运送采样盒:由采样棒、试管、管帽、试剂管、生理盐水组成,临床上用于对患者耳、鼻、咽喉、生殖等分泌物的样本采集及预处理。以无菌形式提供。分类编码:6841。  (五十九)内窥镜用送水送气附件:该产品由送水管路、送水送气管路、适配器、一次性内窥镜用水瓶和卡扣组成。除适配器外,其他均为环氧乙烷灭菌,无菌包装。与内窥镜配合使用,用于向胃肠道内窥镜输送空气或CO2以及无菌水。分类编码:6822。  (六十)静脉用药配置舱:主要由通风系统、空调系统、电气系统组成。通过正压保护和负压屏障及气流循环过滤避免药液在配置过程中因空气传播造成的污染,为静脉用药配制提供洁净配置环境,并为配置工作人员提供防护。用于静脉药物调配和菌种培养等需要在无菌环境下进行操作,避免操作过程中产生的生物气溶胶对操作人员和操作对象的污染。分类编码:6840。  三、作为I类医疗器械管理的产品(36个)  (一)马镫形多功能腿架:由脚靴、靴垫、气压杆、锁紧把手和脚靴支撑杆组成。利用边轨夹固定在手术床两侧,通过操作手柄,在气动助力下实现上下、左右调节。用于为泌尿科、妇产科及普外科截石位体位提供定位支撑。分类编码:6854。  (二)飞秒透镜分离铲:由铲片和柄部组成。非无菌提供,可重复使用。用于在飞秒激光手术过程中,待激光机打出透镜瓣后,铲起分离上皮和透镜瓣之间的粘联,便于透镜镊夹持透镜瓣从上皮层中取出。分类编码:6804。  (三)飞秒透镜镊:由头部和柄部组成。用于飞秒激光手术过程中夹持角膜瓣,从上皮层中取出。非无菌提供,可重复使用。分类编码:6804。  (四)飞秒分离匙:由匙状头部和柄部组成。用于飞秒激光手术过程中,分离角膜瓣。非无菌提供,可重复使用。分类编码:6804。  (五)位置定位器:种植手术修复过程中,用于标记和确定替代体在模型和牙桥架上的相应位置。在口腔外部环境使用,非无菌产品。分类编码:6806。  (六)钻针深度停止器:为带有螺丝的空心圆柱体,可以固定在牙钻上。在种植手术过程中,用于控制钻孔的深度,使牙钻停止于设置的深度。非无菌产品。分类编码:6806。  (七)钻针引导器:为一个套管。在种植手术过程中,用于将牙钻引导至正确方向。非无菌产品。分类编码:6806。  (八)骨磨引导器:在口腔内使用。使用时,将本产品固定到种植体内,然后将骨磨安放到本产品上。在种植手术过程中,用于引导骨磨放入正确的位置。非无菌产品。分类编码:6806。  (九)一次性使用胃镜咬口:由咬口、鼻部吸氧口、口部吸氧口、供氧管接口、弹力带系环和弹力带组成。设有吸氧通道。用于胃镜检查时维持被检者的开口状态。非无菌产品。分类编码:6866。  (十)种植体扫描体:固定在种植体上。用于牙科修复体计算机辅助设计的制作过程中,辅助口内扫描机获取清晰的3D 图像。非无菌产品。分类编码:6806。  (十一)机用螺丝刀:与有源牙科手机相连,用于旋紧、旋松种植体附件。非无菌提供,不接触中枢神经系统或血液循环系统,不在内窥镜下使用。分类编码:6806。  (十二)视功能检查仪:主要由主机、手柄控制器或操控软件、外接口组成。采用标准视标,通过更换不同视表图的视标,用于眼科常规视觉功能检查。分类编码:6820。  (十三)胸腰骶固定器:主要由背板、控制手柄、搭扣、腰带连接魔术贴、腰带、后板紧固带、前板紧固带、硬性前板、硬性后板、硬板衬垫套和腰带组成。用于手术后辅助固定,非移位脊椎骨折、椎管狭窄、椎间盘突出、退行性脊柱病变的辅助固定。分类编码:6826。  (十四)自助取片机:与医用胶片配套使用,供自助打印胶片和报告使用。分类编码:6831。  (十五)热敏胶片:由热敏层、PET 胶片基、保护层组成。用于记录CT、MRI、CR、DR、胸部X射线透视系统输出的数字信号的图像。用于记录影像图像供临床诊断。分类编码:6831。  (十六)一次性五官科清洗套装:主要由鼻罩、眼罩、集水杯和吸头组成,与五官科清洗器配套使用,对人体的鼻腔、眼睛进行清洗。分类编码:6866。  (十七)肢体压力套:由尼龙纤维(或聚丙烯/聚酰胺纤维)布料、塑料拉链(或魔术贴)、气囊、橡胶连接头组成,配合原位空气波压力治疗仪和深部静脉血栓防治仪使用。通过仪器给肢体压力套充气加压,压力套挤压肌肉群,促进血液和淋巴液回流。分类编码:6866。  (十八)超声波清洗机:由换能器、清洗槽、控制面板、外壳和排水阀组成,用于医疗器械的清洗。分类编码:6857。  (十九)一次性使用CT定位穿刺角度引导器:具有刻度数值的立体定位装置。依靠位于同一平面的二个相互垂直的水平仪来确定一个空间平面,利用标示刻度数值的量角器,达到角度定  位的目的。非无菌产品。用于临床辅助靶点定位穿刺。分类编码:6831。  (二十)大豆酪蛋白琼脂培养基:由大豆酪蛋白琼脂培养基干粉、灭菌纯化水、一次性无菌培养皿组成。临床上用于临床普通细菌的分离、培养和计数,不用于微生物鉴别。分类编码:6840。  (二十一)绒毛膜细胞处理试剂:由胰蛋白酶、胶原酶、透明质酸酶及其他必要的辅助成分组成。临床上用于绒毛组织的预处理,以获得更多游离的绒毛细胞。分类编码:6840。  (二十二)胰酶消化溶液:由胰蛋白酶、氯化钠、氯化钾、葡萄糖、碳酸氢钠、EDTA-Na2、酚红组成。通过胰酶消化溶液的处理,使培养的细胞从贴壁状态转变为悬浮状态,用于临床体外诊断。分类编码:6840。  (二十三)胰酶分带溶液:由胰蛋白酶、氯化钠、水组成。用于染色体G显带制备。临床上用于染色体检查。分类编码:6840。  (二十四)脱蜡热修复液:由氢化脂肪烃、表面活性剂、磷酸盐/柠檬酸盐/EDTA、防腐剂组成。临床上用于免疫组织化学染色前组织切片预处理,包括对福尔马林固定或石蜡包埋的组织切片进行脱蜡和热诱导抗原的修复。分类编码:6840。  (二十五)脱蜡液:由脱蜡液、防腐液、专用水等组成,临床上用于对样本进行染色前预处理,去除石蜡包埋组织样本上的石蜡。分类编码:6840。  (二十六)低离子强度盐溶液:由甘氨酸、澳甲酚紫和叠氮纳等低离子溶液组成,临床上用于提供抗体扑获时的最佳离子强度和血样添加指示剂。分类编码:6840。  (二十七)荧光原位杂交样品处理试剂盒:由预处理液、蛋白酶液、洗涤缓冲液、封片剂组成,临床上用于荧光原位杂交(FISH)检测过程中的样本处理。分类编码:6840。  (二十八)细胞蜡块制备试剂盒:由试剂A(含微量甲醛、海藻酸及其钠盐的水溶液)、试剂B(含氯化钙的水溶液)、一次性吸管、脱水盒、圆孔纸板和长纸盖片组成,临床上用于细针穿刺物、切割针活检、体液以及其他细胞学制备的残余沉积物和各种组织微小碎片的石蜡包埋块制作。分类编码: 6841。  (二十九)组织微阵列制作仪:产品由主机,内置摄像头,传动装置,钻头和取样装置组成。临床上用于提取多个石蜡样本块中的有用部分样本,注入到一个或多个未使用的石蜡块中,形成新的包含样本阵列的石蜡样本块,供后续石蜡切片机进行切片。还可以将提取的样本放置到PCR盒中,供后续DNA萃取以及PCR 分析。分类编码:6841。  (三十)标本液化处理仪:由样本瓶放置转盘、穿刺加液机构、混匀装置、过滤升降机构、试管放置转盘、样本瓶转移机械手及标本采集瓶、过滤试管等组成。用于临床检验分析前对粪便、痰液等固态、粘稠性状的标本进行加液、混匀、过滤分离等前期处理。分类编码:6841。  (三十一)全自动推片染片系统:由制片模块、染色模块和控制系统组成,用于对全血样品进行涂片和染色。分类编码:6841。  (三十二)粪便检验预处理装置:产品由塑料盛液管、连接固定件、样品管、采样棒及滴嘴盖等组成,临床上用于分辨检验前取样及预处理。分类编码:6841。  (三十三)一次性使用微量采血吸管:由一次性使用微量采血吸管和橡胶吸头组成,用于采集末梢血,适用于临床化验取血使用。产品以非无菌型式提供。分类编码:6841。  (三十四)细胞过滤器:由过滤管和过滤膜组成,用于将提取的异常上皮细胞样本并转移到玻片上。临床上用于病理检查的标本制作。分类编码:6841。  (三十五)一次性使用细胞过滤采集器:由过滤器筒体和过滤膜组成,临床上用于液基细胞的分离、制片,对细胞进行病理学分析。分类编码:6841。  (三十六) 棉胶剂:主要由火棉胶(硝化棉)、乙醇和无水乙醚组成,用于非介入性脑电测定时,作为固定电极的粘贴剂,非导电胶。分类编码:6821。  四、不作为医疗器械管理(18个)  (一)药粉吸入器记录仪:记录患者每次使用药粉吸入器的时间和日期,不指示药粉吸入器中剩余的药物量,不具有剂量计算功能。  (二)恒温控制仪:由控制仪机箱、部分内嵌于控制仪机箱内的加热筒体部分、测温装置部分、显示和控制部分、无菌管组成。通过对控制仪器内固定管加入无菌水,在保温及控制装置共同作用下实现加热和保持恒温的功能,仅用于为器械进行加热保温。  (三)蜡塑平台:在技工室制作蜡型基台时,用于作为蜡塑套管的基座或平台。  (四)转接头:用于内窥镜冷光源主机与导光束以及内窥镜之间的连接。  (五)全自动碎药机:由门、保险盒、开/关按钮、碎药专用药杯固定器、固定托盘、研磨头、电源LED 指示灯、输入衔接器、存放托盘组成,用于将药碾碎或者碾成粉末状。  (六)床垫消毒器:由消毒腔体和机械管线组成,用于消毒床垫、枕头、毛毯。  (七)多单位基台扫描体:技工室设备。用于牙科修复体计算机辅助设计的制作过程,固定在牙模上,以辅助牙科扫描机获取清晰的3D 图像。  (八)热合控制器:由热合控制器主机、热合钳和电源线组成,用于在内窥镜一次性使用护套系统从内窥镜拆卸时,对一次性钳道管进行热合封口。  (九)身高预测软件:根据手腕部X影像(DICOM文件)识别手腕部骨的等级、预测成年身高。  (十)电动排气筒:由交流电机和活塞装置组成。通过活塞上的密封圈使活塞筒密封,在往复运动的过程中产生负压,代替手动排气筒为负压罐排气。  (十一)医用胶片纸:由纸基与纳米级涂层组成,用于医学影像系统(CT、DR、MR、CR、DSA、US等)产生的DICOM影像输出,输出影像不作为诊断依据。  (十二) 药洗仪:由用于放置药液的容器、通过水管与容器连接的过滤装置、通过水管与过滤装置连接的水泵、通过水管与水泵连接的即时加热装置、设置在水管上的换向阀和用于喷药液的喷杆组成(不含药液)。用于肛肠手术、外阴手术患者的伤口药浴清洗。  (十三)层流空气消毒机:由机箱、控制器、支架、脚轮、风机、空气过滤器、消音棉和围档、框架、照明组成,通过循环风动系统使空气通过过滤器装置,对室内局部空气进行过滤净化消毒。用于对患者所处环境的净化消毒。  (十四)治疗用蛋白等化合物:应用蛋白重组技术,构建EpCAM-GM-CSF 融合蛋白,并验证其稳定性和毒性。用于腺癌患者术后治疗。  (十五)样本收集、承载器具:由样本杯、样本袋、导管、载玻片等组成,临床上仅用于样本的收集、承载。  (十六)仪器管路清洗液:由水溶性盐(氯化钾、氯化钠等)、缓冲对、去污剂及防腐剂组成。用于电解质、血气分析仪在分析标本前,检测液体通路气密性及传感器响应电位(是否在线性范围内),在分析标本后冲洗液体通路管道。  (十七)吸样延长臂:由延长轨道、延长盖板组成。与特定分析仪配合使用,轨道延长系统,使分析仪的吸样臂和吸样头可以达到第三方自动化轨道系统上新的吸液位点,实现分析仪与第三方自动化轨道系统配合使用。  (十八)健身运动用血氧测量系统:由手机和随机软件组成,通过手机上的传感器,测量使用者血氧浓度和心率,并传到手机软件中,形成记录文件。用于使用者查看每天的血氧浓度和心率变化,帮助用户了解运动状况,不具有《医疗器械监督管理条例》第七十六条明确的目的,测量得到的数据不作为诊断依据。  五、视具体情况而定的产品(5个)  (一)粪便分析前处理仪:主要由粪便样本采集机构(粪便样本盒:粪便样本分析实现用耗材)、粪便分析前处理仪主机(包括实现粪便分析前处理的粪便样本稀释液加注、搅拌实现机构)组成。在粪便分析工作中,对待分析的粪便样本进行分析前规范化前处理(包括对采集粪便样本、粪便样本稀释试剂加注、粪便样本稀释液加注后的搅拌混匀)。如不含有显微镜、不具有精密加样功能,作为I类医疗器械管理。否则作为II类医疗器械管理。分类编码:6841。  (二)射线束扫描测量系统:由水箱、控制单元、静电计、控制软件和电缆线组成。通过调强验证二维矩阵对患者特定体位的射线束剂量进行测量并得出数据,测量的数据传输到装有软件的电脑进行计算分析,并给出相应的验证信息。如治疗计划将使用该射线束扫描测量系统比较结果进行修改。作为III 类医疗器械管理,分类编码:6832。否则不作为医疗器械管理。  (三)生物光子系统:由发光二极管灯和光子转化凝胶(不含药)组成。发光二极管灯产生峰值未为446 nm的蓝光,部分蓝光经光子转化凝胶吸收后被转化发射出470~550nm、560~590nm和615~625nm的不同波长光的集合,不同波长的光具有不同皮肤穿透特性,并以光子能的形式同时作用于表皮和真皮。用于治疗16岁(含)以上患者的寻常痤疮。如产品依据GB/T 20145的蓝光视网膜危害类别为II类,作为II类医疗器械管理 如产品依据GB/T 20145的蓝光视网膜危害类别为III类,作为III类医疗器械管理。分类编码:6826。  (四)混合配药针:由储液腔、过滤器、进气器件帽、穿刺器保护套组成。通过混合配药针内外大气压差进行液体的分配或抽取,用于药液的配制和抽取。如仅作为指定中继泵的附件,不作为医疗器械管理 如用于药房或病房的普通配药,作为II类医疗器械管理,分类编码:6815。  (五)一次性使用无菌配药针:由针管、进排气槽和针座组成,用于药液的抽取和加注。如仅作为指定中继泵的附件,不作为医疗器械管理 如用于药房或病房的普通配药,作为II类医疗器械管理。分类编码:6815。  此外,CFDA还表示:对于不作为医疗器械管理的,如已受理尚未完成注册审批的,食品药品监管部门应按规定不予注册,相关注册申请资料予以存档。尚在有效期内的医疗器械注册证书不得继续使用。
  • 上海印发市重点实验室建设发展方案,将引导购置高能级仪器设备
    2月8日,上海市科委制定并发布《上海市重点实验室建设发展方案(2023-2025年)》(下称《方案》)。《方案》提出,到2025年,结合本市重点产业与区域发展需求,计划重组和新建一批市重点实验室,另组建若干市区共建市重点实验室;分信息、医药、农业、制造、工程、能源、材料、数理、化学、生物学、海洋、环境、天文与空间、地球科学、综合交叉15个领域进行布局;并引导市重点实验室持续购置高能级的科研仪器设备,开展进口减免税和通关便利服务。《方案》全文如下:上海市重点实验室建设发展方案(2023-2025年)上海市重点实验室(以下简称“市重”)作为我市科技创新体系的重要组成部分,是组织高水平科学技术研究、集聚培养优秀科技人才、开展高水平合作交流的科创基地。为培育构建在沪高水平科技力量,更好推进新时期市重建设发展,按照《上海市推进科技创新中心建设条例》《2021—2035年上海中长期科学和技术发展规划》《关于进一步深化科技体制机制改革增强科技创新中心策源能力的意见》《上海市重点实验室建设与运行管理办法》等文件要求,制定本建设发展方案。一、发展现状与建设需求(一)现状与成效我市历来重视科学研究基地平台建设。自1991年至今,市科委会同有关部门,围绕信息、医药、制造、工程、材料等领域方向,遴选建设了170余家市重。经过长期发展,这些市重在开展基础研究和关键核心技术攻关、推动学科发展、引育优秀科技人才、获得创新性成果等方面发挥了重要作用。以“十三五”时期为例,市重建设取得如下成效:——成为组织开展高水平科技研究的重要基地。建设数量稳步增长,布局不断优化,基本覆盖全市区域,依托单位结构日趋多元化。支撑科研任务能级不断提升,获科研经费总额取得较大突破,承担国家级项目和每百人获立项数在上海各类科研平台中名列前茅。高质量科研产出不断涌现,攻关取得了一批高水平基础研究成果和关键核心技术,世界顶级学术期刊发表及被引、省部级以上科技奖励、PCT专利数量等领先于上海平均水平。——成为集聚培养科技人才的重要平台。人员规模持续扩大,形成了高职称、高学历、年轻化的人才队伍,集聚两院院士情况、获人才称号情况、高被引科学家占比、H指数得分等在全市范围内均名列前茅;人才团队形成梯次储备,中青年骨干成长迅速,人才高地和蓄水池作用日益凸显。——成为高效配置创新资源的实践模式。以大型科学仪器为代表的科研基础条件不断完善,对外开放共享取得新突破;在定期评估制度引导下,投入和产出综合效率达到优良,并根据领域、定位和功能不同,呈现明显分类发展态势;成为科技体制改革新抓手,有力支撑在沪高校院所加强二级研究院建设,开展“实体化”和“有组织科研”。(二)形势与需求党的二十大报告强调,必须坚持创新在我国现代化建设全局中的核心地位,强化国家战略科技力量,优化配置创新资源,优化国家科研机构、高水平研究型大学、科技领军企业定位和布局,形成国家实验室体系。党中央、国务院提出重组全国重点实验室体系,强化“四个面向”,做到支撑有力、前沿领先、根基深厚,为我市市重建设发展指明了方向、形成了参考。当前,上海科技创新中心建设正加快从形成基本框架向形成核心功能迈进。科创中心“十四五”规划明确提出,围绕“四个面向”,聚焦优势领域,加强顶层设计和统筹协调,推进国家实验室建设和发展,推动全国重点实验室优化重组,加强市重等基地布局,形成战略目标明确、运行机制高效、资源整合有力的高水平科技力量体系化布局。与此同时,新的科技发展和范式变革为市重建设发展进一步丰富内涵。科学探索不断向宏观拓展、向微观深入,科研范式呈现多学科交叉、数据驱动、平台支撑等新的特点;以新一代信息技术、生物技术为代表的前沿科技正重塑产业体系并催生“核爆点”,创造出更丰富的未来场景和创新价值。市重建设亟待顺应这一发展趋势,抢占科技制高点和产业增长点,在育新机、开新局中把握未来发展主动权。此外,应当看到,市重仍存在一些问题不足:一是适应新时期创新发展的布局尚不足,顶层设计仍需完善;二是原始创新能力和经济社会发展支撑能力还需加强;三是管理运行体制机制需不断优化,外部合作体系亟待加强;四是多部门共同推进和多元投入机制尚未形成等。这些问题都需要通过新一轮建设发展予以解决。为此,开展市重体系布局,是支撑国家级实验室在沪发展、培育我市高水平科技力量、应对科研组织和创新能力各项挑战的一项基础性、长期性工作。二、建设思路和发展目标(一)指导思想和目标全面贯彻党的二十大精神,以习近平新时代中国特色社会主义思想为引领,坚持“四个面向”,加强顶层设计和系统布局,加大体制机制创新力度,着力提升市重的原始创新力、学科带动力、应用支撑力、人才集聚力,产出一批原创科技成果,引育一批高水平科技人才,支撑相关产业创新发展,构筑上海实验室体系,全面提升科技创新策源能力,为建设上海科技创新中心提供有力支撑。到2025年,结合本市重点产业与区域发展需求,计划重组和新建一批市重,另组建若干市区共建市重,成为本市高水平科技力量的重要组成,覆盖各领域主要方向,集聚两院院士和科研团队、大型科研仪器设备,承担我市战略任务能力、支撑企业创新和产业高地发展水平、对外开放合作态势、科研基础条件和学术影响力明显提升。(二)基本原则坚持系统布局。加强顶层设计,构建市重发展体系,面向“十四五”,强化不同类别市重的功能定位和目标任务。坚持价值导向。围绕我市经济社会发展和产业需求,推动市重聚焦重大科学问题和技术难点,注重原始创新,聚集优秀人才,提升学术影响力,促进成果产业化。坚持融通发展。坚持开放合作,加强不同创新主体、市重与市重之间的协同创新,强化“全过程创新”,注重产业赋能。对标国际国内领先水平,强化市重能力建设。坚持统筹管理。加强制度建设,强化分类管理,完善评估机制。加强统筹协调,突出依托单位责任,发挥各部门和地方政府作用。引导多元投入,强化财政稳定支持。三、布局方向分信息、医药、农业、制造、工程、能源、材料、数理、化学、生物学、海洋、环境、天文与空间、地球科学、综合交叉15个领域进行布局。四、能力建设(一)强化实验室功能定位坚持“四个面向”,围绕上海市重大需求,准确定位市重研究类型,形成主攻方向,做本领域特色鲜明、优势显著的科技“特长生”。基础研究类、应用基础研究类市重侧重于提出本领域新原理、新方法,提升学术影响力,开展原始创新;前沿技术研究类市重侧重于推动本领域技术更新和自主发展,支撑关键核心技术突破和工程化实现;市区共建类市重侧重于推动科技赋能“3+6”产业、“五大新城”建设发展,提升区域创新能力。通过持续布局建设,推动研究水平达到本领域(行业)领先或具有代表性,避免“大而不强”或低水平“拼盘”。(二)强化重大科研任务引领以在沪战略科技创新平台和重要科研任务为统领,逐步支持市重融入本市科研任务攻关体系,不断提升科技创新能力和水平。鼓励开展与在沪战略科技力量的科研合作,对有条件承接、高质量完成上述任务的科研单位申报市重予以优先支持。支持有条件的市重牵头组织本领域的上海市重点科研项目,推动科研成果获得应用。(三)强化高水平人才引育鼓励市重聘请具有领导能力、德才兼备的科学家或本领域高水平的带头人担任主任,形成结构合理的高水平科研队伍,建立开放、流动、竞争、协同的用人机制,加大海外高层次人才团队引进力度。以信任为基础,支持青年人才挑大梁、当主角。优化人员职称职务晋升机制,对科研人员、实验技术人员、管理人员分类聘用和管理,制定以创新成果质量和贡献、重大攻关任务完成情况等为依据的评价标准。强化优秀人才激励机制,提供与其能力和贡献相一致、具有竞争力的薪酬待遇。鼓励制订针对优秀人才的连续支持计划。(四)强化条件保障和多元投入支持市重建设良好科研实验条件,提供一定规模、相对集中的物理空间,保障高能级科研仪器设备的高效运转,有计划实施科研仪器设备的更新改造、自主研制。鼓励开展多元化投入试点,在争取推进部门、所在区经费投入的基础上,积极吸纳企业、基金、社会捐赠、“拨投结合”等社会经费投入,同时加大成果转化收益奖励向科研团队、技术骨干等的分配力度,力争形成较高的投入强度。(五)强化产学研合作和产业赋能鼓励高校、科研院所、医疗机构、企业等加强产学研合作,共同申报市重。重视科技成果转化,引导创新链不同环节的市重建立“创新群”,开展“全过程创新”,强化创新链产业链融合,在评估中予以倾斜支持。加强知识产权全过程管理。坚持全球视野,加强国际学术交流,构建国际科技合作平台。鼓励实验室科研仪器设备、科学数据等按规定向社会开放共享,积极开展科普活动。(六)强化创新文化营造引导市重科研人员树立长期奋斗的价值观,紧紧围绕科学目标和任务,坚持潜心钻研、严谨求实,坚守学术道德和科研伦理,践行学术规范。构建良好治理结构,充分发挥学术委员会的决策咨询与学术指导作用,保持创新活力。加强科研诚信建设,推动建立容错机制,形成宽容失败、鼓励争鸣的良好氛围。五、保障措施(一)加强工作统筹建立由市科委总体统筹,市教育、国资、经济信息化、卫生健康、农业等各委办局、各区、中科院上海分院等共同参与的组织管理体系,形成多层次、多部门共同推进市重建设的工作格局。市科委会同有关部门制定市重发展政策和规章制度,指导市重建设运行,组织开展评估。各部门、各区、中科院上海分院等负责前期规划、培育和遴选推荐,开展对市重以及依托单位的日常管理。(二)完善全过程管理依据《上海市重点实验室建设与运行管理办法》,优化市重建设运行全过程管理。在遴选立项阶段,强化择优遴选布局,扎实开展建设期满验收工作。在管理运行阶段,注重学术交流制度的日常化开展,开展建设运行情况检查,提升市重运行效率。在考核评估阶段,优化市重分类评价、中长期评价、代表性成果评价机制,建立良性有序的动态重组与退出制度。(三)强化依托单位和主任责任坚持和加强党的领导,依托单位负责市重建设运行的保障,鼓励依托单位探索市重建设与人才聘评的特区政策及创新机制,推动资源、人才、项目、基地统一配置,持续加大保障力度。试点选择1—2家长期运行成效显著、组织管理有力、保障充足的依托单位,下放市重重组自主权。健全市重主任负责制,明确主任负责实验室建设发展、完成各级部门委托的重大科研任务,在科研组织实施、经费和条件配置、工作人员聘任等方面拥有自主权。(四)优化资源配置和保障支持市重以“揭榜挂帅”“定向委托”等方式承担本市科研任务。市重人才团队在同等条件下优先推荐市级表彰和奖励,为市重申报国家人才计划开辟“绿色通道”。引导市重持续购置高能级的科研仪器设备,开展进口减免税和通关便利服务。企业市重优先享受各类科技惠企政策。强化市重绩效评估结果与财政支持相衔接,持续完善市重稳定支持机制。引导各部门、所在区将市重纳入本行业、本区的高水平科技力量体系,加强人才、经费、政策等保障。六、组织实施(一)方案、规划与指南公布采取“三年方案+领域规划+每年征集指南”的公布方式。先期发布2023—2025年建设发展方案作为总体规划,在2024年底前逐个出台所有领域布局规划,定期发布公开指南。每个领域采取持续征集方式,即三年内对每个领域的市重进行持续征集,不在一次指南征集内完成全部布局。(二)推荐与评审各推进部门按照《上海市重点实验室建设与运行管理办法》要求组织开展推荐工作,对所推荐市重形成排序清单。由市科委组织开展评审,择优予以立项。同一市重通过单个推进部门推荐,不得多头推荐;联合组建的市重,由第一依托单位的推进部门推荐。针对具有重大战略意义的方向及其依托单位,可采取定向委托方式建设。鼓励存量市重根据规划开展重组,不占推荐名额限制。(三)评估与退出市科委委托第三方专业机构,以创新价值、能力、贡献为导向,按领域对市重周期内的整体运行状况进行综合评估。通过评估,引导市重参与国家和地方重大科技任务攻关、开展重组、引进海外高层次人才等。突出动态调整、优胜劣汰,对于评估成绩不佳的市重,按规定予以调整或撤销。
  • 沃特世推出新一代高效经济、低能耗的ACQUITY QDa II质谱检测器,拓展化学分析新视界
    新闻摘要: ACQUITYTM QDaTM II质谱检测器利用质谱分析的特异性,可提高LC-UV分离的效率、耐用性和生产率,有助于提升常规化合物鉴定的可信度,并可利用 EmpowerTM色谱数据系统实现完整的可追溯性。 质量范围增加了20%i,为研发中的大分子和新型药物提供更广泛的分析支持。 与其他品牌同类产品相比,其能耗和热量输出可降低多达70%ii,因此,该质谱检测器荣获My Green Lab颁发的ACT(Accountability, Consistency, and Transparency)标签认证。 美国马萨诸塞州米尔福德 - 2024年5月8日 - 沃特世公司(纽约证券交易所代码:WAT)宣布推出ACQUITY QDa II质谱检测器,这是沃特世广受市场好评的精简紧凑型质谱检测器的升级版,可为色谱分离提供更为精准的质谱数据。该新一代质谱检测器可提供稳定性高、性价比出众、能耗低的解决方案,助力科学家分析更多种类的化合物。它改善并扩充了沃特世ACQUITY Premier液相色谱(LC)分离产品组合,为制药、食品、化学和材料领域的大小分子分析提供了更加灵活的选择。 图1.稳定性高、性价比出众、低能耗的新一代Waters ACQUITY QDa II质谱检测器。 沃特世公司研发及先进检测副总裁James Hallam表示: " 自2013年我们基于Empower色谱数据系统推出第一代ACQUITY QDa质谱检测器以来,这套系统已成为帮助色谱工作者加快步伐,为产品开发和杂质分析寻找更高质量方法的关键工具。在ACQUITY QDa II质谱检测器的设计过程中,我们扩展了新系统的功能,以应对包括单克隆抗体和胰高血糖素样肽1(GLP-1)激动剂在内的新分子实体的发展。 " ACQUITY QDa II质谱检测器的设计理念可以使其无缝集成到现行实验室工作流程中,并具有与LC检测器相似的用户体验和外形规格。它提升了20%的质量范围,是一款设计简洁小巧的LC-MS仪器,能无缝集成到受严格监管的实验室环境中,确保分析的合规性。 Polpharma(波兰最大的制药企业)的分析和API专家Mariusz Kurowski表示: " 我们需要确保结果没有任何时间上的延迟,因为即使短暂的分析时间差都可能导致成品无法及时放行以满足患者群体的需求。质谱技术虽然复杂,但ACQUITY QDa质谱检测器的操作便捷性让人印象深刻。我们相信,这台仪器可以助力未来。 " ACQUITY QDa II质谱检测器不仅能让科学家们在更接近目标点的位置部署质谱检测,还能提高可重复性,同时其能耗和热量输出相较于同类产品可降低多达70%。凭借效率和能耗方面的改进,ACQUITY QDa II质谱检测器赢得了独立非营利组织My Green Lab颁发的ACT标签。这一奖项主要是为了表彰那些满足甚至超过环保实验室可持续性要求的实验室设备。 ACQUITY QDa II质谱检测器专为在Waters Empower色谱数据系统(CDS)软件上进行合规部署而设计,实现了质谱测量与色谱方法的便捷整合,即使非质谱领域的分析科学家也能轻松使用。这款仪器现已面向全球市场开放订购。 其他参考资料 详细了解沃特世新一代ACQUITY QDa II质谱检测器 关于沃特世公司 沃特世公司(纽约证券交易所代码:WAT)是居于全球前列的分析仪器和软件供应商,作为色谱、质谱和热分析创新技术先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。沃特世公司在35个国家和地区直接运营,下设14个生产基地,拥有约7,900名员工,旗下产品销往100多个国家和地区。 关于沃特世中国 自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有近700名本地员工,并在上海、北京、广州设立实验中心和培训中心。 自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世致力于通过攻克关键难题释放科学潜力,始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。 凭借出众的人才与全球布局,沃特世与合作伙伴一起,在世界各地的实验室中,为增进人类健康福祉提供科学见解,助力让世界变得更美好。 i 与上一代QDa质谱检测器(1250 m/z)相比,QDa II的质量范围增加了20%,扩展至1500 m/z,覆盖的化合物更多(根据沃特世新产品性能文档)。 ii 根据QDa II与其他品牌同类产品功耗和BTU输出的公开数据进行比较。
  • 大型强子对撞机“开撞” 刷新最高能级纪录
    大型强子对撞机30日启动总能量达7万亿电子伏特的质子流对撞,成功刷新质子流对撞最高能级纪录,首次达到设计目的。  成功对撞  对撞试验于当地时间30日6时(北京时间30日12时)开始。按照计划,两束能量均为3.5万亿电子伏特的质子流将在超导磁铁吸引下“迎头相撞”。  法新社报道,由于质子流中部分质子流失,首次试验失败。  欧洲核子研究中心负责人罗尔夫霍耶尔说:“我们不应忘记这是一台新机器……我们要为暂时性的小问题做好准备,我相信我们会克服这些小问题。”  核子研究中心束流部门负责人保罗科利尔说,“当你有这样一台复杂机器时就会出现这种问题……我们会重新注入(质子)。”  数小时后,两束质子流在第三次尝试时成功对撞。核子研究中心控制室内响起掌声。  大型强子对撞机2008年9月10日正式启动,一度因氦泄漏停机,历时14个月、花费4000万美元后得以修复。  去年年底,对撞机重启后实现总能量高达2.36万亿电子伏特的质子流对撞,创下质子流对撞能级纪录。  对撞不易  两束质子流19日开始在大型强子对撞机内流通,为30日对撞做准备。尽管每束质子流带有上万亿个质子,但质子极为微小,在两束质子流交汇过程中发生对撞的质子数量很少。  欧洲核子研究中心加速器及技术负责人史蒂夫迈尔斯说,令质子发生对撞堪称一项挑战,“这就像从大西洋两岸(向对岸)扔出一些针,令这些针在半路上迎头相撞”。  路透社认为,虽然两束质子流成功迎面交汇,质子第一次发生对撞也可能需数小时,甚至数日。  大型强子对撞机自问世以来受到学术界热切关注,但也遭受不少疑虑。一些人甚至担心,对撞试验会生成黑洞以致地球毁灭。  欧洲核子研究中心科学家否认对撞试验会对人类构成威胁。他们说,对撞产生的任何“洞”都将在顷刻间消失,不会产生任何危害。  能量之源  大型强子对撞机建于瑞士和法国交界地区地下100米深处、总长大约27公里的环形隧道内,大约7000名科研人员参与对撞机建设。  对撞机旨在借助总能量达7万亿电子伏特的质子流对撞模拟宇宙大爆炸后最初状态,以便对宇宙起源和各种基本粒子特性展开深入研究,包括“寻找”希格斯波色子以及研究暗物质与暗能量。  按照粒子物理学标准模型预言,希格斯波色子是物理学家从理论上推断出的一种基本粒子,是物质的能量之源。研究人员希望借助对撞试验发现希格斯波色子的“真面目”,证实这种粒子的存在。  欧洲核子研究中心科学家德斯皮奥那哈齐弗蒂亚杜说,希格斯波色子将为探寻生命起源提供线索。  按照核子研究中心负责人霍耶尔的说法,对撞试验成功后,电脑将整理出大量试验数据,可能需花费数月才能得出科学结论。  霍耶尔说,研究人员希望在今年年底前对暗物质“有所发现”。
  • 步入式试验室性能及特点
    步入式试验室性能及特点:1、具有极宽的温湿度控制范围,可满足用户的各种需要。采用独特的平衡调温调湿方式,可获得安全、精确的温湿度环境。具有稳定、平衡的加热、加湿性能,可进行高精度、高稳定的温湿度控制。2、装备高精度智能化的温度调节器,温湿度采用LED数字显示方式。可选配温湿度记录仪。3、制冷回路自动选择,自控装置具有随温度的设定值自动选择运转制冷回路的性能,实现高温状态下直接启动制冷机,直接降温。4、内门装有大观察窗,可方便观察供试样品的试验状态。5、装有先进的安全、保护装置-漏电断路器、超温保护器,缺相保护器,断水保护器。高低温试验箱、恒温恒湿试验室、高低温湿热试验室、高低温交变湿热试验室、盐雾腐蚀试验室、以上试验室可根据客户要求定做。技术参数温度范围:-40℃~80℃(可交变温度范围:-40℃~60℃ )温度度动:±0.5℃温度均匀度:±2℃升温速率: 1.0℃~3.0℃/min降温速率: 0.7℃~1.0℃/min 温度范围:RT+10~400℃试验室类型步入式试验室,是配置有保护、加热、制冷的一系列装置,为大型零件、半成品、成品做环境测试的实验室。该实验室在箱体侧面设有带塞子的φ50mm测试孔,塞子材料为硅橡胶低发泡,能耐高低温,兼具保温效能。中文名 步入式试验室 温度度动 ±0.5℃ 温度均匀度 ±2℃ 升温速率 1.0℃~3.0℃/min箱体材料外箱材质:优质碳素钢板.磷化静电喷塑处理内箱材质:SUS304不锈钢优质光板保温材质:聚胺脂硬质发泡大门密封采用双层硅橡胶密封材料观察窗为多层导电膜钢化中空玻璃,为防止低温时玻璃结霜,特设内置式特制发热丝环绕,并设有照明灯,为观察提供照明控制系统采用:进口可编程触摸式液晶中文对话式显示,微电脑集成控制器保护系统整体设备超温/欠相/逆相/定时制冷系统过载/超压其它还有漏电、缺水、运行指示,故障报警后自动停机等保护加热加湿加热器采用瓷架镍铬丝电加热器,此加热器热惰性小,寿命长由仪表输出可控脉冲占空比PID信号,通过固态继电器来控制,控制平稳、可靠制冷系统压缩机:全进口半封闭德国谷轮;美国“艾高”干燥过滤器,台湾“冠亚”油分离器,意大利“卡士妥”电磁阀;冷冻系统采用单元或二元式低温回路系统设计;采用多翼式送风机强力送风循环,避免任何死角,可使测试区域内温度分布均匀;风路循环出风回风设计,风压、风速均符合测试标准,并可使开门瞬间温度回稳时间快;升温、降温、系统完全独立可提高效率,降低测试成本,增长寿命,减低故障率。步入式恒温恒湿室具有试验空间大,操作人员可以试验室对试验品进行操作的特点,为工业生产厂家的批量或者大型零件、半成品、成品提供了温湿度环境测试的条件。采用先进的中文液晶显示画面触摸屏,可进行各种复杂的程序设定,程序设定采用对话方式,操作简单、迅速。可实现制冷机自动运转,最大程度上实现自动化,可配制LAN通讯接口,便于用户远程距离程制和中央集中控制。可记录90天的温度、温度参数,相当配备无纸记录仪。东莞市海银环境测试设备有限公司成立于2010年,是国度高新技术企业,先后荣获ISO9001、国度AAA信誉体系等多项认证。 公司长期从事上下温实验箱,可程式恒温恒湿实验箱,冷热冲击实验箱,复层实环境老化实验箱,步入式上下温湿热实验箱,盐雾实验箱,紫外线加速老化实验机,振动实验台,跌落实验机,IP等级淋雨实验箱,IP等级沙尘实验箱,氙灯老化实验箱等牢靠性测试设备的研发和消费。 本着诚信、高效、感恩、共赢的运营理念,公司与中科院、清华大学、华为等数千家企事业单位坚持长期的良性协作。在此非常感激您的信任和选择,勤卓团队将会全力效劳您的协作需求。让我们携手,共创愈加高精尖的中国制造。
  • 4.16亿元!天津工业大学一流学科群和高能级研发创新平台设备更新项目批复(附设备清单)
    7月4日,天津市发展和改革委员会发布了《关于天津工业大学一流学科群平台和高能级研发创新平台设备更新项目可行性研究报告的批复》。经委托天津国际工程咨询集团有限公司组织专家评审,原则同意该项目可行性研究报告,项目建设主体为天津工业大学,项目代码:2405-120000-89-03-702469。该项目位于天津市西青区宾水西道399号天津工业大学现址内。主要建设内容及规模:主要购置设备280台(套),主要为非织造智能工厂平台模拟系统等;替换原有老旧设备279台(套),主要为复合纺丝机、真空镀膜机、半导体及光学薄膜制备系统等设备(购置设备清单详见附件)。总投资金额为41587万元,通过申请中央资金和学校自筹等多种渠道解决。附件天津工业大学一流学科群平台和高能级研发创新平台设备更新项目设备清单表序号仪器设备名称数量(台/套)1柔性薄膜制备系统12天然木质素染料提取浓缩干燥专用设备13连续长丝3D成型系统14计算机基础教学与创新实验平台15图形图像实训系统设备16人工智能计算平台17人工智能实训与创新平台18纳米纤维智造平台19CAD/CAM数字化智能教学实训系统110户外功能性服装智能缝制系统111多通道超声波细胞粉碎机系统112超大隔距双针床经编机113柔性电极印刷系统114软包电池产线系统115生理参数模拟人台系统116呼吸综合模拟系统117纺织服装数智化实验教学系统118双面无缝成形针织小样机119染料-助剂-纤维界面作用与影响实验教学套装120转移印花与数码印花实验教学套装121熔喷纳微纤维水刺复合实验线122溶液喷射/微射流纳微纤维实验机123非织造成网固网系统124立式熔喷机125针织经纬编衬纱编织机126多功能全成型电脑横机127静电可调针织钩编系统128数字化小样纺纱精梳系统129环锭纺细纱自动接头机130单面高速提花无缝针织内衣机131双面全成形经编机132红外摄像机133紫外-可见-近红外分光光度计134多功能生物3D打印机135高真空电阻蒸发镀膜机136多结构复合纤维熔融纺丝实验线137动态纸页成型器138非织造智能工厂平台模拟系统139功能性纳米颗粒修饰改性微纳米纤维的制备体系140材料微纳米结构激光加工设备141超薄切片机142复合材料老化机组143纺织装备系列仿真软件144高精度视线交互系统145纺织关键工况物理模拟系统146数字工程师培训考核平台247二维材料制备系统148高真空多靶磁控溅射系统149HVPE沉积机台150服务器151电输运与磁致伸缩测量系统152布里奇曼定向凝固炉153高真空单辊旋淬及喷铸与电弧熔炼及吸铸系统154雾化气相外延沉积机台155物理气相沉积机台156晶圆表面修整抛光机157晶圆键合机158晶圆清洗湿法刻蚀机159虚拟仪器项目式实践与机器视觉平台160信号与系统综合实验平台161数据通信实验平台262软件无线电创新平台163光纤通信技术综合实验系统164大载重多功能无人机与四轴消防无人机系统165多旋翼搜救与测绘无人机群166多用途垂直起降固定翼无人机467大负载长续航物流运输无人机468智能双轴机械手缆控无人潜航器169无人机应急指挥调度平台170机载通信装备171无人系统教学仿真系统172共直流母线变频电源173电机结构虚拟化开发平台174高性能电机控制系统快速原型开发平台175现代电机系统教学实验平台176DSP教学实验平台177超声金属电极键合机178高频变压器179功率半导体器件互连烧结机180综合展示系列设备181多功能五合一绣花机182SLA系列光固化打印机183视觉成像系统184服装数字化教学系统185服装智能制造教学系统186服装综合性教学系统187微机原理实验平台188电路实验平台189电工学电子技术实验平台190电工学电工技术实验平台191实验教学数字化平台192电工电子多功能实训平台193电子类竞赛综合实训平台194数控车铣实验平台195纺织智能制造成品码垛实训平台196数字化设计与制造实训教学平台197非遗工艺创新-非金属激光加工系统198多材料金属3D成型机199激光钣焊成型系统1100数控加工智能制造生产线1101机器人创新实训平台1102传统机械加工实训平台1103精密铸造实训平台1104智能制造产线孪生教学系统1105虚拟现实元宇宙教学系统1106面向实验室安全监测的智能巡检机器人1107陶瓷粉末快速成型机1108高温连续碳纤维3D成型设备1109全彩树脂3D成型机1110高分子材料烧结快速成型机111110激光器超大SLA3D成型机1112金属激光加工系统1113教学(外语)视听设备及数据存储设备1114数字经贸融合创新教学平台1115数智化企业仿真创新教学平台1116金融科技智能融合创新教学平台1117交互式教学平台12118外语教学系统7119数字人系统8120工作站软件3121桌面工厂(设计版)4122化工原理及专业实验平台1123化工过程实训平台1124人工智能数学大模型平台11256寸半自动光刻机2126光刻预制处理实验平台1127高性能工作站11281940nm光纤激光器1129多工位有机无机蒸发镀膜系统11301910nm光纤激光器1131拉曼光纤激光器2132通用人工智能大模型训练设备4133手眼耳脑具身智能机器人集群系统1134人工智能专业课程实践平台1135医学大数据处理平台1136医工融合新工科创新育人平台1137高性能超精密航空航天金属构件复合加工平台1138高精度空天集群博弈位姿定位系统1139航空发动机燃烧室流场重构-燃烧诊断系统1140GPU服务器2141三维扫描建模系统1142惯性三维运动捕捉系统1143AIoT实验实训系统5144智能网联车实验平台1145深度学习开发平台1146智能复合机器人2147面向工业智能应用的算力租户科研服务平台1148高性能AI算力云资源管理平台1149生物制药实践教学平台1150药物制剂与新释药技术教学平台1151核心路由器2152核心交换机5153智能空间管理系统1154视觉管理设备4155视觉借还设备1156智慧管理服务平台1157AI学科馆员与咨询设备1158复合材料高压成型系统1159智能缝合系统11603D多层织物织造系统1161高性能碳纤维超薄织物织造系统1162复合材料连续纤维3D打印设备1163复合材料特种热压机1164碳碳复合材料制备系统1165磁控溅射镀膜系统(Magnetronsputteringdepositionsystem)1166飞秒激光器(Femtosecondlaser)1167台式超速离心机1168氮化物分子束外延生长系统1169紫外激光晶圆划片机1170科研通风设备1171能量转换设备8172能量转换设备20173电驱动离心式冷热高效交换机组2174大型双曲线横流自然通风水冷冷却器5175一体化高效节能冷温水传递系统18176冷冻水式高效组合空气换热处理设备机组1合计280
  • 中科院揭示量子点激子精细能级裂分及量子拍频新机制
    近日,中科院大连化学物理研究所研究员吴凯丰团队等在胶体量子点超快光物理研究中取得新进展。团队观测到CsPbI3钙钛矿量子点中激子精细结构裂分导致的系综量子拍频,并提出了一种通过温度诱导晶格畸变进而调控裂分能的新机制。相关成果发表于《自然—材料》。在半导体量子点中,形貌或晶格对称破缺导致的电子—空穴各向异性交换作用使激子能级发生精细结构裂分(FSS)。FSS亮激子态可用于量子态相干操控或偏振纠缠光子对发射,观测和调控FSS对这些应用至关重要。由于FSS能量对量子点的尺寸、形貌非常敏感,通常需要在液氦温度下测定单个或少数量子点的发射谱来测定FSS。因此,在系综水平观测FSS极具挑战,尤其是定量调控FSS尚未有报道。本工作中,研究团队利用圆偏振飞秒瞬态吸收光谱(即瞬态圆二色谱),在液氮到室温区间测定了溶液合成、成本低廉的CsPbI3钙钛矿量子点系综的亮激子FSS。研究发现,FSS能量可通过量子点尺寸进行调控,在液氮温度下最高可达1.6meV。更有趣的是,同一样品的FSS能量展现出强烈的温度依赖性,温度越低,裂分越大,这在以往的外延生长或胶体量子点体系都未有观测到。通过变温的晶格结构表征,结合美国能源部能源前沿研究中心Peter Sercel博士的有效质量模型理论计算,研究团队发现这种温度依赖的FSS源于CsPbI3钙钛矿高度动态的晶格结构:降温能加剧Pb-I八面体扭曲,降低晶格对称性,进而增大FSS。此外,这些晶格扭曲的正交相量子点却仍然拥有准立方相晶面,该特性使亮激子之间产生避免交叉的精细结构能量间隙,实验上观测到的系综层面量子拍频正是对应于该能量间隙。该工作精准测定了胶体量子点系综的亮激子精细结构裂分,提出了通过温度诱导CsPbI3量子点晶格畸变进而调控亮激子裂分能的新原理,展示了其在量子信息科学领域的重要应用潜力。文章链接:https://doi.org/10.1038/s41563-022-01349-4
  • 3D面积测试系统 | 满足不规则物体面积的自动检测需求
    3D面积测试系统 3D面积测试系统为实验室提供了一个先进的测量平台,用于快速、准确地计算不规则物体的面积,包括任意面积、外表面积、内表面积、液体面积、体积等,开拓了自动化计算面积的新模式。复杂样品轻松测量,任意面积一扫即得01产 品 展示02知识产权针对3D面积测定仪,上海汇像信息技术有限公司已取得多项具有业界标杆意义的权威证书,其中包括但不限于《发明专利证书》、《计算机软件著作权登记证书》、《上海市计量测试技术研究院华东国家计量测试中心校准证书》等多项荣誉证书。专利证书软件著作校准证书03参 与 标 准GB/T 材料表面积的测量高光谱成像三维面积测量法QC/T 紧固件镀层表面积计算方法T/SLIA 001-2019食品接触材料及制品、饰品表面积的测定三维模型重建法GBT 38009-2019眼镜架镍析出量的技术要求和测量方法计量技术规范两项发表论文多篇数据对比活动多次全国多家计量机构提供CNAS校准支持04合 作 机 构、持续更新中......• 国内外著名第三方权威检测机构:SGS通标标准技术服务有限公司、Intertek天祥集团、德国莱茵TÜV集团、TÜV南德意志集团、必维国际检验集团、华测检测认证集团、东莞市中鼎检测技术有限公司等。 • 国家质检机构:上海质检院、深圳计量院、山东质检院、浙江方圆检测集团、广州质检院等、南京质检院、新疆质检院、宁夏质检院; • 国家海关机构:广东海关、常州海关、宁波海关、上海海关、北京海关等; • 国际知名企业:宜家家居IKEA、周大福珠宝、浙江小商品城集团等; 05产 品 特 点• 批量测量根据样品大小,可一次同时检测30-50个样品批量选取样品测量• 自带软件处理完全针对检测检验行业需求定制开发,系统自带软件直接检测,无需切换自带软件进行处理• 任意面积计算根据标准的不同要求,鼠标轻松选取标准所需的接触面积鼠标轻松选取接触面积• 多种输出模式实现对检测结果的多种输出方式,例如:Excel、PDF报告导出报告导出06应 用 领 域目前3D面积测定仪已广泛应用于食品接触材料、药品包装材料、工艺品、日用品、纺织品、工业零部件、玩具、婴儿用品、医疗用品、首饰饰品等。 07配 套 产 品智能显像仪——采用光学原理的仪器,对于透明材料、反光材料、黑色材料会产生吸光效应,检测前须进行前处理。智能显像仪• 使用方法1.置入样品→2.自动处理→3.处理完成• 产品特点干净卫生、不粘手改变传统手摇罐式显像剂喷雾方式,更卫生、高效、方便触摸屏智能控制自动调节速度、处理时间、操作过程全程监控• 配合3D面积测定仪使用上海汇像信息技术有限公司领先的实验室自动化智能化系统供应商上海汇像始终坚持将人工智能技术与检验检测技术相融合,致力于为生物化学,医疗医药及安全检验检测提供领先的实验室自动动化智能化综合解决方案,产品范围涵盖从食品安全、药品安全、到生命科学领域的智能机器人工作站系统、全流程检验检测实验室自动化、智能化整合系统以及配套自动化、智能化仪器设备及相关耗材等。我们立志成为全球最为领先的生命健康自动化、智能化解决方案提供商、立志让世界每一个人都享受健康安全品质的生活,立志为业界提供最好的技术、产品与服务。
  • 化学分析方法“大聚会” 你用过多少
    常见的化学成分分析方法  一、化学分析方法  化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。  1.1重量分析  指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。  1.2容量分析  滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。  酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。  络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀 剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。  氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。  沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以硝酸银液为滴定液,测定能与Ag+反应生成难溶性沉淀的一种容量分析法)。虽然可定量进行的沉淀反应很多,但由于缺乏合适的指示剂,而应用于沉淀滴定的反应并不多,目前比较有实际意义的是银量法。  二、仪器分析  2.1电化学分析  是指应用电化学原理和技术,是利用原电池模型的原理来分析所测样品的电极种类及电解液的组成及含量和两者之间的电化学性质的关系而建立起来的一类分析方法。现在一般是使用电化学工作站来对样品进行测试。其特点是灵敏度高,选择性好,设备简单,操作方便,应用范围广。根据测量的电信号不同,电化学分析法可分为电位法、电解法、电导法和伏安法。  电位法是通过测量电极电动势以求得待测物质含量的分析方法。若根据电极电位测量值,直接求算待测物的含量,称为直接电位法 若根据滴定过程中电极电位的变化以确定滴定的终点,称为电位滴定法。  电解法是根据通电时,待测物在电他电极上发生定量沉积的性质以确定待测物含量的分析方法。  电导法是根据电解质溶液中溶质溶度的不同,其电导率也不同的原理,而测量分析溶液的电导以确定待测物含量的分析方法。  伏安法是将一微电极插入待测溶液中,根据被测物质在电解过程中的电流-电压变化曲线来进行定性或定量分析的一种电化学分析方法。  2.2光化学分析  光化学分析是基于能量作用于物质后,根据物质发射、吸收电磁辐射以及物质与电磁辐射的相互作用来进行分析的化学分析方法。其主要可分为光谱法和非光谱法两大类。光谱法是基于辐射能与物质相互作用时,测量有无之内不发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度而进行分析的方法。主要有原子吸收光谱法(AAS)、原子发射光谱法(AES)、原子荧光分析法(AFS)、红外光谱法(IR)等。非光谱法是基于光的波动性而对物质进行测试,主要有分光光度法和旋光法等。  2.2.1原子吸收光谱法(AAS)  原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。  其基本原理是每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比:A=KC 式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。  2.2.2原子发射光谱法(AES)  原子发射光谱法是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进行元素的定性与定量分析的方法,是光谱学各个分支中最为古老的一种,可同时检测一个样品中的多种元素。  其基本原理是各物质的组成元素的原子的原子核外围绕着不断运动的电子,电子处在一定的能级上,具有一定的能量。从整个原子来看,在一定的运动状态下,它也是处在一定的能级上,具有一定的能量。在一般情况下,大多数原子处在最低的能级状态,即基态。基态原子在激发光源(即外界能量)的作用下,获得足够的能量,其外层电子跃迁到较高能级状态的激发态,这个过程叫激发。处在激发态的原子是很不稳定的,在极短的时间内(10s)外层电子便跃迁回基态或其它较低的能态而释放出多余的能量。释放能量的方式可以是通过与其它粒子的碰撞,进行能量的传递,这是无辐射跃迁,也可以以一定波长的电磁波形式辐射出去,其释放的能量及辐射线的波长(频率)要符合波尔的能量定律。  2.2.3原子荧光分析法(AFS)  原子荧光分析法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析技术。  其基本原理是通过测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度而进行定量分析。原子荧光的波长在紫外、可见光区。气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。若原子荧光的波长与吸收线波长相同,称为共振荧光 若不同,则称为非共振荧光。共振荧光强度大,分析中应用最多。在一定条件下,共振荧光强度与样品中某元素浓度成正比,从而通过测试共振荧光的强度来确定待测元素的含量。  2.2.4分光光度法  分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。  其基本原理是在分光光度计测试中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到与不同波长相对应的吸收强度。再以波长(&lambda )为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线。利用该曲线进行物质定性、定量的分析方法,称为分光光度法,也称为吸收光谱法。用紫外光源测定无色物质的方法,称为紫外分光光度法 用可见光光源测定有色物质的方法,称为可见光光度法。  2.2.5旋光法  旋光法是基于许多物质都具有旋光性(又称光学活性)如含有手征性碳原子的有机化合物,从而利用物质的旋光性质测定溶液浓度的方法。  其基本原理是将样品在指定的溶剂中配成一定浓度的溶液,采用旋光计测得样品的旋光度并算出比旋光度,然后与标准比较,或以不同浓度溶液制出标准曲线即工作曲线,求出含量。  2.3色谱分析  色谱分析是指通过利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。  2.3.1气相色谱法  气相色谱法的基本原理是利用气相色谱仪中的一根流通型的狭长管道(色谱柱)。在色谱柱中,不同的样品由于具有不同的物理和化学性质,与特定的柱填充物(固定相)有着不同的相互作用而被气流(载气,流动相)以不同的速率带动。当化合物从柱的末端流出时,它们被检测器检测到,产生相应的信号,并被转化为电信号输出。在色谱柱中固定相的作用是分离不同的组分,使得不同的组分在不同的时间(保留时间)从柱的末端流出。其它影响物质流出柱的顺序及保留时间的因素包括载气的流速,温度等。而气相色谱法中可以使用的检测器有很多种,最常用的有火焰电离检测器(FID)与热导检测器(TCD)。  2.3.2液相色谱法  液相色谱法的基本原理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。检测器主要有紫外吸收检测器、荧光检测器、电化学检测器和折光示差检测器,其中以紫外吸收检测器使用最广。  2.4波谱分析  波谱分析是指物质在光(电磁波)的照射下,引起分子内部某种运动,从而吸收或散射某种波长的光,将入射光强度变化或散射光的信号记录下来,得到一张信号强度与光的波长或波数(频率)或散射角度的关系图,用于物质结构、组成及化学变化的分析,这就叫波谱法。波谱法主要包括红外光谱、紫外光谱、核磁共振和质谱,简称为四谱。除此之外还包含有拉曼光谱等。  2.4.1红外光谱法(IR)  红外光谱法是分子吸收光谱的一种,是通过将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。主要是应用于测试有机分子的价键结构以及官能团的种类等。  其基本原理是当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。  2.4.2紫外光谱法(UV)  紫外光谱法是测定物质分子在紫外光区吸收光谱的分析方法。其基本原理是物质吸收紫外光后,其价电子从低能级向高能级跃迁,须吸收波长在200~1000 nm范围内的光,此波长恰好落在紫外-可见光区域,从而产生相应的吸收峰。并非所有的有机物质在紫外光区都有吸收,只有那些具有共轭双键(&pi 键)的化合物,其&pi 电子易于被激发发生跃迁,在紫外光区形成特征性的吸收峰。  2.4.3核磁共振谱法(NMR)  核磁共振谱法是指具有核磁性质的原子核(或称磁性核或自旋核),在高强磁场的作用下,吸收射频辐射,引起核自旋能级的跃迁所产生的波谱,叫核磁共振波谱。而利用核磁共振波谱进行分析的方法,叫做核磁共振波谱法。  2.4.4质谱法  质谱法是指用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的荷质比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核素的准确质量是具有多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子即可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。  其基本原理是使试样中各组分进行电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散,在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小 当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,将它们分别聚焦而得到质谱图,从而确定其质量。  2.4.5拉曼光谱法  拉曼光谱法是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。  其基本原理是当光照射到物质上会发生弹性散射和非弹性散射,其中弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,则统称为拉曼效应。由于拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。其中)。如果分子能级的跃迁仅仅涉及转动能级,则发射的是小拉曼光谱 如果涉及到振动-转动能级,则发射的是大拉曼光谱。
  • XPS小课堂丨XPS仪器通能的选择和谱线的灵敏度(二)
    XPS小课堂 上期我们介绍了XPS的重要参数能量分辨率与灵敏度之间的联系,以及在实际操作中需要调节的参数——通能的基本概念,本期XPS小课堂将分享在具体的应用中我们应该如何选择通能大小,以及如何在分析灵敏度和能量分辨率之间寻求更好的平衡。 了解仪器的性能和样品的情况对测试XPS来说非常重要,通常来说首先应该获取样品的宽扫描谱图,以确定样品中存在的元素,然后进行精细谱的扫描获得元素的化学状态信息。 01 宽谱扫描的通能选择宽谱扫描是在整个结合能范围内的低能量分辨率、高灵敏度的采集,采集的能量范围为1200eV到-5eV。对于岛津的XPS来说,宽谱的测试的通能通常建议为160eV,步进为1eV。在该通能下仪器处于高灵敏度的模式,痕量、低浓度的元素都可以在此模式下尽可能地被检测到,高通能下可以获得高计数率以及在短时间内可获得很好的信噪比。 图1. 硅酸盐颗粒负载Au催化剂 如上图所示为硅酸盐颗粒负载Au催化剂,该样品表面Au的含量低于0.02%原子百分比,全扫谱图表明硅酸盐颗粒表面具有很强的O和Si元素信号,全扫谱图局部放大图中可以清晰的看到Au 4f 的双峰。 但如上期所说择较高的通能时,可以获得更好的灵敏度,但同时分辨率会降低。在该采集条件下,很难确定元素的化学状态。 为了确定样品中元素的化学状态,我们需要在较低的通能下进行窄谱扫描。 02 窄谱扫描的通能选择对于岛津的XPS来说,通常建议采用通能40eV、20eV,步进0.1eV进行测试,可获得高能量分辨率的窄谱,可以确定测试元素局部化学环境变化产生的化学位移。 样品本身对能量分辨率也有影响,减小通能对于改善发射谱线本征宽度较小的谱线(如金属单质或高分子材料中的C 1s)会有比较明显的效果。图2. 不同通能条件下C1s的高能量分辨光电子谱图 如上图所示,当测试通能由80eV逐渐降低到5eV时,能明显观察到两个化学态的光电子谱峰分的更开,也能观察到更多的细节。 但对于本征线宽比较大的金属氧化物测试而言,通常会采用通能40eV,在该通能下会有比较好的灵敏度,即使进一步的降低通能到20eV,对于分辨率的提高(相比于40eV)也非常有限,因为本征线宽比较大,通能的减小对分辨率提高的贡献不大。 典型地说,20eV和40eV的通能对单质的Fe 2p可以看出明显的半高宽变化,但是对于Fe的氧化物2p峰来说,两个通能下的分辨率却差不多——为什么呢?因为Fe氧化以后,Fe原子(离子)趋于稳定,2p轨道的能级寿命变短,导致发射谱线的线宽变大,即Fe的WA变大了,通能从40eV变到20eV时导致的WD变小不足以在测量谱线的线宽W有明显的变化,但是对于Fe单质而言,WA足够小,通能从40eV变到20eV时导致的WD变小能够导致测量谱线的线宽W有明显的变化! 03小结XPS的测试,从本质上讲,就是在谱线分辨率和灵敏度之间找到一个较好的平衡点——看得见的基础上要分得开! 在测量金属单质和本征线宽较小的谱线(如高分子材料的C 1s)时,减小通能可以明显地看到测量谱线在变窄,但是在测量金属氧化物的时候,往往40eV的通能和20eV的通能在谱线分辨率方面差异不大,但是强度却下降不少(对数关系哦)。所以,我们经常使用的40eV或20eV的通能,就是这样的两个平衡点——20eV在分得开方面做得更好一点,对复杂的化学状态分辨(金属单质和高分子材料的C和O)更适合;而40eV的通能在看得见的方面做得更好一点,对于含量较低的元素(金属的氧化物)分析更适合。 当然,有时候要做更极限的分辨,如sp2和sp3杂化的C,可能要用到更小的通能10eV甚至5eV了,那时候灵敏度下降的更厉害一些,需要使用更高的功率和更多次的扫描才能获得信噪比更好的谱线了。 本文内容非商业广告,仅供专业人士参考。
  • 通过费米能级调控和氧缺陷工程增强BiVO4/BiOBr的光催化降解性能
    1. 文章信息标题:Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering页码:Chemical Engineering Journal, 2022: 137757.2. 文章链接专用链接:https://www.sciencedirect.com/science/article/pii/S13858947220324423.期刊信息期刊名:Chemical Engineering JournalISSN:1385-8947影响因子:16.744分区信息:中科院一区Top JCR分区(Q1)涉及研究方向:工程技术: 化工;环境4. 作者信息:南京理工大学刘纯(首要作者),王风云(首要通讯作者),夏明珠(第二通讯作者),陈群(第三通讯作者)5. 光源型号:北京中教金源(CEL-HXF300, Beijing China Education Au-light Co., Ltd.)(300 W氙灯,可见光)、CEL-PF300-T9氙灯光源系统(集成一体,光电化学专用)附:正文和补充材料中标明了光源型号文章简介:构建氧空位(Ov)作为一种传统且有效的方法已被广泛用于提高光催化活性,但其对界面电荷转移途径的影响仍不明确。在此,我们通过简便的方法合成了 BiVO4/BiOBr-Ov (BVB-Ov) 光催化剂。随后,各种表征结果验证了通过将BiVO4与含氧空位的BiOBr(BiOBr-Ov)结合成功制备BVB-Ov复合材料。光催化降解实验结果表明,20% BVB-Ov 对土霉素(OTC)的降解率极高(91%),远高于 20% BiVO4/BiOBr(71%)。此外,从液相色谱-质谱 (LC-MS) 分析中推断出三种可能的降解途径。光电化学、光致发光 (PL) 和时间分辨 PL (TRPL) 研究表明,20% BVB-Ov 具有最快的光生载流子分离和传输速率。开尔文探针力显微镜 (KPFM) 技术和密度泛函理论 (DFT) 计算表明,氧空位的引入调节了 BiVO4 和 BiOBr 之间费米能级的相对位置。我们最终结合了 DFT 计算、能带分析、俘获实验和电子顺磁共振 (EPR) 结果,证实了氧空位的存在导致光生载流子传输路径从 II-型到 Z-型的改变。这项工作为氧空位协调界面电荷转移途径提供了见解和指导。本文亮点:1. 制备了一种新型 BiVO4/BiOBr-Ov Z-型异质结。2. 氧空位的存在导致光生载流子传输路径从 II-型到 Z-型的改变。3. 基于 DFT 计算的结果解释了内部电场和带边弯曲。4. 讨论了Z型光催化的机理。5. • O2- 和h+是OTC 降解的主要自由基。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制