超高温同步热分析

仪器信息网超高温同步热分析专题为您提供2024年最新超高温同步热分析价格报价、厂家品牌的相关信息, 包括超高温同步热分析参数、型号等,不管是国产,还是进口品牌的超高温同步热分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高温同步热分析相关的耗材配件、试剂标物,还有超高温同步热分析相关的最新资讯、资料,以及超高温同步热分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

超高温同步热分析相关的厂商

  • 400-601-1369
    德国耐驰仪器制造有限公司(NETZSCH Scientific Instruments Trading (Shanghai) Ltd.)是世界著名的分析仪器制造厂商之一,其产品主要包括热分析仪器、导热分析仪与树脂固化监测仪三大类。在热分析仪器领域,耐驰公司拥有60余年的软、硬件研制及应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质热红联用,我们都能提供一系列不同型号不同配置的具有高精度高稳定性与优异性价比的仪器,温度范围上至高温2800℃,下及低温-180℃。耐驰树脂固化监测仪采用美国麻省理工大学技术,包括介电法、超声波法等一系列仪器,广泛应用于热固性树脂、油漆、涂料、复合材料与电子材料等领域的研发、质控与工艺优化。耐驰公司在导热分析仪领域同样处于世界领先地位,针对不同应用提供了一系列的导热测试仪,包括激光法、热流法、热板法、保护热流法与热线法等各种原理,其测试温度范围为-150℃...2000℃,导热率范围为0.005...1500W/(m*k)。作为驰名世界的仪器供应商,耐驰公司在全球二十余个国家设有分公司和代表处。在德国总部与美国设有多个研究实验室,专为国际市场提供应用及技术支持。实验室每年都发表聚合物、陶瓷、金属等研究领域的技术年鉴和图谱集。耐驰仪器公司于1996年进入中国,凭借其仪器性能上的优势,强大的技术支持,完善的售前、售后服务,在国内的用户不断增加。耐驰公司现已在上海、北京、广州、成都、西安、沈阳、济南、武汉等地设立了办事处和维修站,在上海设有技术服务中心与应用实验室。德国耐驰仪器制造公司以其雄厚的实力和可靠的品质,愿与您共创美好的前程。
    留言咨询
  • 凯璞博渊(无锡)科技有限公司隶属于法国凯璞科技集团,是集团在华投资设立的首家精密仪器海外分厂,主要生产集团旗下塞塔拉姆品牌科学仪器。塞塔拉姆品牌仪器在高温、超高温热分析领域以其独特的Eyraud光电天平技术、卡尔维三维量热技术及模块化设计一直处于行业领先地位。生产的产品在生物制药、食品、石油和天然气、核能、化工与过程安全、先进材料等研究领域正在发挥着日益重要的作用。我们的系列产品可用于测试腐蚀、氧化、降解及混合反应和研究纳米材料、金属、陶瓷和合金的老化特性,在生物制药、过程安全和能源开发研究领域。2015年集团原子能工业检测部门开发出非破坏性分析表征核能fei料的独特解决方案为中法原子能技术he作做出了突出贡献。2019年集团首次在法国本土外投资设立精密仪器工厂,凯璞博渊(无锡)科技有限公司主要聚焦于精密仪器技术开发、技术咨询与服务等,承担集团合资产品科技成果转换的重任。业务范围涉及仪器仪表、机械电器设备、电子产品、软件产品生产、销售等众多领域。在中国生产法国塞塔拉姆品牌下Setline系列通用仪器,包括:差式扫描量热仪、同步热分析仪及热重分析仪等…
    留言咨询
  • 400-801-5339
    自1957年以来,德国林赛斯在热分析和热物性领域不断推陈出新,提供了先进的设备,可靠的服务和完善的解决方案。 我们始终坚持以产品创新和客户满意度为第一导向。“客户至上、品质第一、探索创新”的理念让林赛斯在前沿科研机构和工业企业中享负盛名。多年来,一直为热分析研究领域提供优质的仪器。 林赛斯热分析业务涉及多个应用领域的设备研发,包括在聚合物、化工、无机建筑材料和环境分析行业的产品性能检测。完全适用于固体、液体和熔液等不同状态样品的热物性分析。 林赛斯公司因技术领先而得以不断发展壮大。我们以高标准、高精度和严要求来研发热分析仪器。创新驱动和高精确度让我们成为热分析领域倍受客户信赖的一流生产商。 针对热分析仪器发展领域现存的前沿研究方向和高精准度需求,林赛斯不吝大力投资,始终坚持着“客户利益至上”的服务理念。
    留言咨询

超高温同步热分析相关的仪器

  • 仪器简介:PerkinElmer 全新推出的同步热分析产品系列可在单台紧凑型设备中实现重量信号和热流信号的同步监测,赋予您双倍的热分析能力,满足您不同的需求。PerkinElmer 的同步热分析仪 (STA) 产品系列可实时监测样本重量以及热流信号随温度或者时间变化曲线。凭借独创的传感器技术和紧凑型炉体设计,我们的 STA 仪器可以胜任从常规品质检测到科学研究等各个领域。因此,无论您从事的是无机物材料表征、聚合物结构剖析、亦或是油品品质检测工作,STA 8000 系列产品将差热分析技术(DTA 或 DSC)与久经验证的热重分析 (TGA) 技术完美融合,您都可以获得可靠的测试结果和明确的数据阐释。技术参数:精确控温量热能力:STA 系列同步热分析仪具有宽广的工作温度区间,最低工作温度达 15º C,从而能够捕获完整的水分或溶剂挥发过程.卓越的热分析性能,高效的检测通量:本着高效的原则,STA 系列同步热分析仪均采用了垂直式炉体和天平设计方案,易于装卸样品。另外,该款仪器还集成了气体质量流量控制器,操作者可在软件中方便的进行气体流速的控制以及气体种类的切换,量热灵活性:STA 系列同步热分析仪外观小巧、结构紧凑,能够同时进行 TGA 和 DTA/DSC 测量,可为众多应用领域提供高质量的热分析数据。仪器配有质量流量控制器,可以根据您的分析需求保持稳定且精确的气体流速;如果您需要进行气体切换,Pyris 软件可以方便的将切换步骤编入温控程序中,全自动的进行气体切换操作。主要特点:强大的拓展能力联用分析技术往往可以有效简化数据分析的难度,而 PerkinElmer 提供多种不同的分析技术(红外、气质联用等等),均可以与 STA 8000 搭建联机工作站。此外,您也可以选择定制接口将其它制造商的实验室设备连接到您的 PerkinElmer STA 上。众多选择无论您从事何种行业,PerkinElmer 都能为您定制全套解决方案。高度集成STA 8000 仪器可选配自动进样器,满足您连续测试的要求,您可以在 Pyris 软件中独立的为自动进样器进行编程(Player List)。软件可以自动监测轻质炉体内的温度,并在 STA 6000/8000 准备就绪之后自动载入下一个样品进行测试。
    留言咨询
  • etsys Evolution同步热分析仪STA是SETARAM热分析的旗舰产品!系统高度模块化,可扩展性极强,满足各种苛刻条件下的测试需要,如:100 %腐蚀性气氛,氧化/还原性气氛,及水蒸气气氛工作条件。系统采用独特的上天平、悬挂式载样设计,单一石墨炉体全程快速升温,装配专业热分析光电天平,传感器采用即插即用式接口,加热炉配备水冷系统。应用领域:高温及超高温样品热分析,如:金属高温氧化及腐蚀、高性能陶瓷、催化及其他高端研发领域。技术参数:温度范围:-150℃ ~2400℃程控升温速率:0 ~ 100K/min(全程)TG最 大样品量:35/100gTG 分辨率:0.002 /0.02&mu gTG基线重复性:10&mu g(室温~1750℃)DSC分辨率:1&mu WDTA分辨率:0.4&mu W气路设计:3 路载气与 1 路辅助/反应气。配备电磁阀及MFC(质量流量计),全部软件控制气氛:100 % 惰性,氧化,还原,水蒸汽、腐蚀性气体;静态,动态高真空密闭系统:真空度最 高可达 10E-4mbar (10E-2torr),逸出气体分析(EGA):可与质谱,红外,气相联用主要特点:? 单炉体即可实现室温至2400℃全程测试? 高度模块化,不同的测试方式(DTA、DSC、TGA、TMA及TGA-DSC/DTA同步热分析)在同一平台实现? 加热炉配备水冷系统,可在高温区长期稳定工作。? 独有的TG上天平、悬挂式传感器设计,无可比拟的TG及DSC基线重复性? TG基线噪音低至0.03ug,准确探测微弱质量变化? 独有的三对热电偶DTA测试杆,灵敏度远高于其他DTA及DSC传感器? 耐腐蚀DTA测试杆,实现对复杂未知样品的安全测试? 3路载气及1路辅助/反应气,由质量流量计控制,可以任意比例混合两路气体? 可与湿度发生仪(Wetsys)联用,精确控制相对湿度(RH)? 可选配相关套件,实现SO2,NH3,H2S等腐蚀性气氛下的测试? 独有针对氢气气氛下测试的安全系统,确保操作人员安全? 标准逸出气体分析接口:与质谱(MS)、傅立叶红外光谱(FT-IR)、气相色谱(GC)等设备联用
    留言咨询
  • 仪器简介:Setsys Evolution同步热分析仪STA是SETARAM热分析的旗舰产品!系统高度模块化,可扩展性极强,满足各种苛刻条件下的测试需要,如:100 %腐蚀性气氛,氧化/还原性气氛,及水蒸气气氛工作条件。系统采用独特的上天平、悬挂式载样设计,单一石墨炉体全程快速升温,装配专业热分析光电天平,传感器采用即插即用式接口,加热炉配备水冷系统。应用领域:高温及超高温样品热分析,如:金属高温氧化及腐蚀、高性能陶瓷、催化及其他高端研发领域。技术参数:温度范围:-150℃ ~2400℃程控升温速率:0 ~ 100K/min(全程)TG最 大样品量:35/100gTG 分辨率:0.002 /0.02&mu gTG基线重复性:10&mu g(室温~1750℃)DSC分辨率:1&mu WDTA分辨率:0.4&mu W气路设计:3 路载气与 1 路辅助/反应气。配备电磁阀及MFC(质量流量计),全部软件控制气氛:100 % 惰性,氧化,还原,水蒸汽、腐蚀性气体;静态,动态高真空密闭系统:真空度最 高可达 10E-4mbar (10E-2torr),逸出气体分析(EGA):可与质谱,红外,气相联用主要特点:? 单炉体即可实现室温至2400℃全程测试? 高度模块化,不同的测试方式(DTA、DSC、TGA、TMA及TGA-DSC/DTA同步热分析)在同一平台实现? 加热炉配备水冷系统,可在高温区长期稳定工作。? 独有的TG上天平、悬挂式传感器设计,无可比拟的TG及DSC基线重复性? TG基线噪音低至0.03ug,准确探测微弱质量变化? 独有的三对热电偶DTA测试杆,灵敏度远高于其他DTA及DSC传感器? 耐腐蚀DTA测试杆,实现对复杂未知样品的安全测试? 3路载气及1路辅助/反应气,由质量流量计控制,可以任意比例混合两路气体? 可与湿度发生仪(Wetsys)联用,精确控制相对湿度(RH)? 可选配相关套件,实现SO2,NH3,H2S等腐蚀性气氛下的测试? 独有针对氢气气氛下测试的安全系统,确保操作人员安全? 标准逸出气体分析接口:与质谱(MS)、傅立叶红外光谱(FT-IR)、气相色谱(GC)等设备联用
    留言咨询

超高温同步热分析相关的资讯

  • 国际首台材料超高温力学性能测试系统在中国问世
    &ldquo 把脉&rdquo 极端环境下的材料性能&mdash &mdash 中国建材检验认证集团首席科学家包亦望教授专访  2000℃的环境下,铁已熔成液体,有人想到变通办法,在铁表面镀一层&ldquo 膜&rdquo &mdash &mdash 可以胜任高达2000℃以上超高温氧化环境的陶瓷材料。但问题接踵而至,现有试验机的夹具和压头材料本身难以承受1500℃以上的超高温氧化极端环境,如何评价材料的可靠性?这个问题曾经难倒了我国科研人员,也包括国际同行。  如今,问号已经拉直。  1月9日,在2014年度国家科技奖励大会上,中国建筑材料科学研究总院博导、中国建材检验认证集团(CTC)首席科学家包亦望教授和他的团队凭借&ldquo 结构陶瓷典型应用条件下力学性能测试与评价关键技术及应用&rdquo 捧得国家科技进步二等奖。包亦望在操作超高温极端环境力学测试系统  缺失的极端环境下材料评价方法  2003年,包亦望还在中科院金属所做&ldquo 百人计划&rdquo 研究,所里一位研究人员找到他,寻问有没有陶瓷复合构件界面强度的评价方法。这个问题来源于工程实践。  之所以找到包亦望,不仅因为他是有名的&ldquo 点子王&rdquo ,更重要的是,解决这个世界性难题已经越来越迫切。  结构陶瓷具有高强耐磨、抗腐蚀、耐高温等许多优异性能,因此被广泛应用于航空航天、机械、石油化工和建筑等高技术领域。  但陶瓷本身是脆性的,具有&ldquo 宁碎不屈&rdquo 的特点,服役中的陶瓷及构件容易发生突发性灾难事故,故又成为最不安全的材料。  时隔近30年,1986年的&ldquo 挑战者&rdquo 号航天飞机灾难仍被多次提及,刚起飞73秒,航天飞机发生解体,机上7名机组人员丧命。这次灾难性事故导致美国航天飞机飞行计划被冻结了长达32个月之久。最终调查发现,原因之一是陶瓷隔热瓦与母体界面脱粘后失去隔热能力,导致价值12亿美元的航天飞机被炸成碎片。  如果能对结构陶瓷力学性能做出准确评价,不仅可以保证构件安全可靠,还能对其失效时间做出预测。  但由于涂层与基体间难以剥离作为单质材料进行测试,如何评价材料的可靠性是一项国际难题。  包亦望告诉记者,具体来说,难题体现在四个方面:界面问题:陶瓷复合构件界面强度和不同环境下的服役安全评价;异型件:管状或环形陶瓷构件的力学性能无法参照现有标准和检测技术;陶瓷涂层:热障涂层、耐磨涂层的模量或强度无法直接测试 极端环境:超高温氧化环境下陶瓷性能评价无技术,无标准,无测试设备 构件性能预测:通过表面痕迹和接触响应非破坏性的监测和预测构件可靠性。  &ldquo 因为评价标准缺失,目前大多采用&lsquo 牺牲层&rsquo 的办法。&rdquo CTC研究中心副主任万德田解释,所谓&ldquo 牺牲层&rdquo ,是指本来只要10毫米的涂层,被加厚到了15&mdash 20毫米,这样虽然安全系数提高了,代价是飞行器重量也提高了,成本随之增加。  随着航天、航空、航海、化工、冶金等工业的快速发展,准确评价涂层材料力学性能显得越来越紧迫和重要。  中国工程院院士杜善义曾经说过,超高温试验是一个很复杂的技术问题,每一系统的建立难度都很大,但我国航空航天工业的发展需要建立超高温测试技术。  &ldquo 雕虫小技&rdquo 解决大难题  &ldquo 方法非常简单,在外行看来可能就是雕虫小技。&rdquo 但包亦望说,这其中最难的是首先要想到捅破那一层窗户纸的方法,而这得建立在大量分析计算基础上。  随手翻开一本笔记本,除了看似简单的图示,就是密密麻麻的计算式。  &ldquo 有时候为了一个小公式,花几个月推导都是正常的。&rdquo 经过长达十多年的研究,包亦望和团队不断试验,反复采集整理数据,发明了一系列评价新技术。  陶瓷材料难以直接进行拉伸载荷试验,如何测得界面拉伸强度和界面剪切强度?传统的测试方法将试验样品叠加或者拼接,然后在叠加处或拼接处施力,但都无法获得界面拉伸强度。  &ldquo 十字交叉法&rdquo 提出,将两根矩形截面短棒以十字交叉方式粘接成测试样品,设计专用带槽夹具和圆弧形压头,分别测得界面拉伸强度和界面剪切强度。  这项技术适用任何固相材料之间的界面强度和疲劳性能评价,并可推广到各种高强粘接剂的强度和耐久性评价,此方法一经推广,受到国内外无机材料检测领域专家的赞赏。  但新课题又来了。  不是所有产品的样品都能加工成常规的矩形截面,而这类产品的应用范围又很广,如模拟核爆用石英玻璃管,光纤套管,火箭或导弹的尾喷管,石油化工用防腐内壁管等。  &ldquo 缺口环法&rdquo 能简单、方便、快捷的评价管状和环状脆性材料的基础力学性能。  &ldquo 无需特殊的夹具,节省了大量的试验经费和时间。&rdquo 包亦望说。  &ldquo 相对法&rdquo 则是通过已知或容易测量的材料参数去计算出无法直接测量的未知参数。  &ldquo 这就好比即使没有秤砣,只要知道一公斤白糖在杆秤的什么位置,就能称出同样质量的其他物质。&rdquo 包亦望说,这解决了陶瓷涂层的基础力学评价问题。此前涂层材料力学性能测试基本上空白,世界各国都在寻求测试技术。  试验证明该方法简单、准确、可靠达到事半功倍的效果,解决了热障涂层、防腐涂层和耐磨涂层等力学性能测试的空白。  &ldquo 局部受热同步加载法&rdquo 解决了超高温氧化环境下测试的国际难题。  &ldquo 痕迹法&rdquo 则有点类似于&ldquo 中医号脉&rdquo ,通过分析试验后样品残余压痕痕迹的形貌和尺寸,推测出几乎全部的材料力学性能。该方法受到国内外专家的高度赞赏,国际评审专家认为&ldquo 这项工作确实是对纳米压痕技术的一个新贡献&rdquo ,并在国际综述文献里被称为&ldquo BWZ method&rdquo (其中B指包亦望)。  主导制定国际标准提高话语权  建立方法、发明技术,包亦望和团队不满足于此,近年来一直致力于将技术转化为国家标准和国际标准。  &ldquo 国际标准的形成过程是一个博弈过程,体现了技术、产业乃至国家的综合影响力和话语权,是市场的竞争源头,为此国际上对标准的竞争极为激烈。&rdquo 包亦望印象深刻的是将&ldquo 相对法&rdquo 形成国际标准中的波折。  2007年,包亦望将发明的&ldquo 相对法&rdquo 在国际刊物发表,受到国际同行的高度认可,实验证明该方法简单、准确、可靠。此前虽然国内外有用纳米压痕技术来评价陶瓷涂层的弹性模量,但反映的仅仅是局部甚至某晶粒的性能,只对理想均匀致密材料有效,而且设备昂贵,尚不能测量涂层的强度。  2013年,ISO组织向全世界征求陶瓷涂层测试技术时, &ldquo 相对法&rdquo 评价技术与日本提出的类似国际标准草案形成竞争,最后交由ISO顾问Peter(皮特)先生仲裁,由于相对法具有原创性,适用范围更广泛,最后被成功立项。  利用自主知识产权转化成的国际、国内及行业标准,已被用于1000多家陶瓷企业和军工企业的相关产品各项力学性能检测与分析,经济效益数亿元。  包亦望认为,标准的社会效益意义更重大。大量性能检测方面的标准技术的制定,对于促进工程陶瓷和玻璃行业健康发展、无机非金属材料力学性能的学科发展、切实保障老百姓生命财产安全方面具有重要意义。  2007年,包亦望向ISO组织提交的以&ldquo 十字交叉法&rdquo 技术为基础的国际标准获得一致通过,在此前的陈述环节中,他提出的创新性、实用性受到高度关注,与会的六七个国家代表找到包亦望,反映该标准简洁明了,并找他要PPT,提出在自己的国家先用。  不将技术装在口袋里  让科技成果落地开花,而不是将技术装在口袋里。  有别于大多数科研工作者,包亦望不仅建立了很多创新的理论,还能将抽象的理论转化为可操作的方法与技术,并通过仪器设备这种载体来实现,反过来,自主研发的科学仪器设备又成为产生新观点的重要工具。  在中国建筑材料科学研究总院的实验室里,庞大的超高温极端环境力学测试系统塞满了约40平米的屋子。  &ldquo 该系统是国际上唯一针对陶瓷、复合材料的超高温力学性能测试仪器,温度最高可达2200℃,已经为多家合作单位进行了材料的超高温测试试验,解决了材料的超高温力学性能评价技术难题。&rdquo 万德田言语间透出自豪,他告诉记者,以近地空间用超高声速飞行器为例,该系统可为飞行器所用特种材料的服役安全和结构设计提供重要技术支撑,此外还有助于低成本选材。  超高温氧化耦合极端环境下,航天、航空飞行器的外围材料,如发动机和喷火管等处材料的安全性性能评价和设计至关重要。现有试验机的夹具和压头材料本身难以承受1500℃以上的超高温极端环境,这样使得材料的力学性能试验样品无法测试。该系统就是包亦望和团队运用&ldquo 局部受热同步加载法&rdquo 生产出来的。  包亦望教授率领他的团队不断攻克难题,从理论到技术、从实验到装置,发明了一套评价材料在极端超高温氧化环境下的力学性能测试方法与评价技术,开发了国际上首台&ldquo 材料超高温力学性能测试系统&rdquo ,并获得863计划和首批国家重大科学仪器设备开发专项的支持。  这些年,包亦望和团队将取得的理论成果和新方法、新技术转化为一系列有特色的仪器设备,包括常温和高温固体材料弹性模量测试仪、安全玻璃冲击失效检测仪、多功能零能耗钢化玻璃检测器、钢化玻璃表面平整度测试仪、钢化玻璃缺陷和自爆风险检测仪、硬脆材料性能检测仪、幕墙松动脱落风险测试仪等,这些仪器设备有的已经进入国内多所高校和科研机构的实验室,成为科研工作者探索科学的有力工具。
  • 全自动超高温乌式粘度计在聚丙烯(PP)材料中的应用
    聚丙烯简称PP,是指由丙烯通过加聚反应而成的聚合物,呈白色蜡状,外观透明而轻,具有无毒、比重低、易加工、耐化学腐蚀、电绝缘性好等诸多优良性能。被广泛应用于服装、毛毯等纤维制品、医疗器械、汽车、自行车等的机械部件,也可用于食品、药品等的包装,是今年来发展迅速的高分子材料之一。聚丙烯(PP)材料在过去更多用于编织袋、包装袋、捆扎绳等产品,约占总消费的30%。随着材料科学的发展,聚丙烯(PP)材料开始更多的应用于新能源部件,医用器材,光纤等高精尖领域,这也对聚丙烯(PP)材料的质量控制提出了更高的要求。GB/T 1632.3-2010中规定了使用毛细管粘度计测试聚丙烯稀溶液粘度的方法,借助相关辅助设备,在135℃下测定溶剂以及规定浓度的聚丙烯(PP)聚合物溶液的流出时间,根据这些测定的流出时间和聚丙烯(PP)聚合物的已知浓度计算比浓黏度和特性黏度。由于聚丙烯(PP)材料的粘度测定条件处于135℃的高温条件,操作危险性较大,对人员的素质要求较高,目前研究机构和聚丙烯材料生产厂家更多采用全自动超高温乌式粘度计来进行辅助测试,全自动超高温乌式粘度计具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚丙烯(PP)材料等高分子材料化验分析中的常用实验仪器。以杭州卓祥科技有限公司的IV6000H系列全自动超高温乌式粘度计,MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV6000H系列超高温全自动乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000H系列全自动超高温乌式粘度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器可自动排废液、自动加清洗液和干燥液,自动清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000H系列全自动超高温乌式粘度计可实现自动测试、自动排废液、自动加清洗液和干燥液,自动清洗,自动干燥,告别了粘度管是耗材的时代。
  • 我国实现3000℃极端环境下的超高温应变场测量
    记者9日从北京航空航天大学李宜彬教授团队获悉,该团队首次利用自主研发的紫外-数字图像(UV-DIC)系统在超高温极端环境应变场测量领域实现了3000℃环境下的成功测量。相关研究成果近日发表于国际无损检测领域的权威杂志《无损检测与评价国际》上。25℃-3000℃散斑图:(a)T=25℃;(b)T=1100℃;(c)T=1500℃;(d)T=1900℃;(e)T=2100℃;(f)T=2300℃;(g)T=2500℃;(h)T=2700℃;(i)T=2900℃;(j)T=3000℃;(k)在加热至3000℃后冷却至25℃的散斑此前,在超高温极端环境应变场测量领域一直缺乏有效测量表征手段,主要难点包括:一是超高温热辐射导致测量图像过度曝光,无法表征;二是使用中性密度、蓝光、偏振等多组滤光片,导致测量步骤繁琐,表征成像效果欠佳;三是作为变形信息载体的散斑在超高温中容易脱落,导致测量失败,无法表征。典型温度下应变场云图:(a)1100℃;(b)2100℃;(c)2500℃;(d)2700℃;(e)2900℃;(f)3000℃该文章通讯作者、北京航空航天大学、天目山实验室助理研究员董亚丽表示,研究人员利用紫外-数字图像(UV-DIC)系统,仅用单个紫外滤光片就有效抑制了3000℃热辐射,同时开发了以碳化铪粉末为散斑材料的超高温散斑制备工艺,最终在3000℃环境下成功测量了石墨热膨胀系数,并清晰记录了被测对象从室温到3000℃的高质量图像。该成果由北京航空航天大学、天目山实验室联合研发。“以上难点在紫外-数字图像相关的应变场测量方法中均被很好地解决,该测量方法能够有效、准确测量热端部件在超高温极端热力耦合条件下的热变形,对于助力我国航空航天技术发展具有积极意义。”李宜彬说。

超高温同步热分析相关的方案

超高温同步热分析相关的资料

超高温同步热分析相关的论坛

  • 耐驰——STA超高温测试氧化铝纤维

    耐驰——STA超高温测试氧化铝纤维

    [color=#000000]STA[/color][color=#000000]配备的钨样品支架拥有确定的热流路径和高量热灵敏度。圆锥形的样品坩埚可以稳固地放置在样品支架上。热电偶采用非焊接设计,可以精确测量温度和DTA信号,方便更换。此外,样品坩埚可以彼此堆叠,方便测试特殊样品。[/color][color=#000000][img=,559,375]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131352287360_7764_163_3.png!w559x375.jpg[/img][/color][color=#000000][color=#000000] 氧化铝纤维熔融和结晶的[/color][color=#000000]DTA[/color][color=#000000]信号,样品挥发产生少量失重[/color][/color][color=#000000][color=#000000][color=#000000]和石墨相比,钨的蒸气压较低,所以常被用在超高温条件下的测试。此处,采用钨炉体和[/color][color=#000000]W3%Re/W25%Re[/color][color=#000000]样品支架来测量高温[/color][color=#000000]TGA-DTA[/color][color=#000000]信号。将[/color][color=#000000]6.8mg[/color][color=#000000]氧化铝纤维置于钨坩埚中加热到[/color][color=#000000]2100[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000],之后再冷却,整个过程采用[/color][color=#000000]He[/color][color=#000000]气氛保护。上图显示:在红色加热[/color][color=#000000]DTA[/color][color=#000000]曲线上[/color][color=#000000]2047[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]出现氧化铝纤维的熔融吸热峰,在蓝色冷却[/color][color=#000000]DTA[/color][color=#000000]曲线上[/color][color=#000000]1936[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]出现结晶峰。在绿色[/color][color=#000000]TG[/color][color=#000000]曲线上约[/color][color=#000000]1900[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]以后出现[/color][color=#000000]1.1% [/color][color=#000000]的轻微失重,这是由于样品在高温下发生少量挥发。[/color][/color][/color]

  • 超高温瞬间灭菌机使用操作手册

    超高温瞬间灭菌机使用操作手册  超高温瞬间灭菌机原理主要分为直接和间接加热两种,其中直接加热中有蒸汽吹入物料式和物料吹入蒸汽式两种(无锅炉用户也可选用电加热超高温瞬时灭菌机),而间接加热的又分为管式灭菌机和板式灭菌机。国内生产的超高温灭菌机中间接加热的最为常见。管式超高温灭菌机,即我们通常称为瞬时超高温灭菌机因其在乳品、饮料、酒类、冰淇淋、果汁及酱油等流体食品中广泛应用,且具有其它设备无可比拟的优越性,得到食品行业生产厂家使用的青睐。  超高温瞬间灭菌机原理:  一般物料由离心泵进入灭菌机中冷热料热交换装置中而得到预热,再经过充满高压的高温桶,物料被迅速加热到杀菌温度并在此前后保持约3秒,其中的微生物及酶类很快被杀灭。物料出高温桶后通过与冷料的热交换获得冷却,一般温度低于65℃。如果下道工序需要提高温度则可通过调节角式截止阀或循环等途径达到要求,反之则通过接入冷却水来降低出料温度。出料通过节流阀控制,此阀能使在维持一定压力下物料的沸点高于最高温度。正常生产时调节此阀,由泵的推动力克服弹簧压力而产生背压控制流量,在清洗灭菌机时则应全部开启。循环贮槽可用来配制酸碱溶液,对盘管内壁积垢进行有效清洗。由于同时采用不锈钢三通旋塞,流量可以得到适当调节。  超高温瞬时灭菌机使用注意事项  为保障瞬时超高温灭菌机使用性能及寿命,保证安全生产,使用中需注意以下问题。  1、定期检查疏水器及过滤器,防止蒸汽凝结水排出受阻。  2、经常检查安全阀、压力表及温度计是否失灵。  3、如发现进料泵轴封处渗漏严重应及时检修,或调换端面密封圈。  4、如与均质机同时使用,可选用3WR—1.5型高压泵配套,并按该产品说明书要求维护保养。  5、如果在冬季停用期间有受冻可能的地区,应把管道中的水放尽或用1%的碱液充满管子。  6、物料接头及旋塞应经常检查密封性能是否良好,防止泄露产生,空气混入。如果物料中带有空气将会加速物料在管壁上的积垢。  7、设备不用时,蒸汽排出阀应是开启的,以利于今后使用。  8、进料离心泵的电机轴承应一年清洗一次,并要换润滑油,用量不能过多,只要充满轴承壳一半就可以。  9、进料泵不允许在无液体时空转。  10.灭菌过程中遇上突然停电应迅速关闭蒸汽,打开排汽阀排尽高温桶内的蒸汽,同时打开进水截止阀。  11.灭菌过程中若出现停汽或气压达不到工艺要求,应调节阀门使物料在其中循环或暂时停机。  12.防止杂物等进入堵塞灭菌机,空气的进入也会加速盘管的结垢。

超高温同步热分析相关的耗材

  • 高温/超高温分析油溶性GPC色谱柱HT-800和UT-800系列
    高温/超高温分析油溶性GPC色谱柱HT-800和UT-800系列 HT-800系列支持较大范围的分子量;UT-800系列的最高工作温度为210° ,是超高温条件下的SEC分析专用色谱柱,适合于含大超分子量的样品的分析。 需要详细供货信息请联系北京绿百草:010-51659766. 登录网站获得更多产品信息:www.greenherbs.com.cn
  • 超高温加热台配件
    超高温加热台配件是可用于真空和气密环境中的特高温加热平台,温度范围是从室温到1200℃,非常适合光热显微镜,光谱学应用和其他需要极高温度样品加热的应用。 超高温加热台配件可以轻易地并入任何复杂的高科技设置。工作台为地质,流体包裹体,半导体,光电,或其他材料科学应用提供最佳解决方案。超高温加热台配件配备有高精度MTDC600可编程温度控制器。 MTDC600温度控制器可以通过软件或手动操作。这增加了系统的适应性和灵活性超高温加热台配件特点?真空或气密环境?温度范围宽?可编程温度控制器?高精确度和高分辨率的温度测量和控制?软件或手动控制?适用与透射光和反射光?观察孔范围广?可移动盖子,方便样本进入?水平和垂直安装?真空口,气口,抽真空的4/6或8引脚电引入?水制冷架超高温加热台配件规格温度范围环境温度至 1200°C温度分辨率0.1°C温度控制方法切换 PID-PID温度控制传感器S型铂10%铑/铂热电偶样本区域? 25mm 48mm 75mm室高度标准4mm (其他根据要求)样本观察孔32mm (其他根据要求 )物镜工作距离6mm (其他可选)电引入4 电引入 (其他根据要求)超高温加热台 温度控制器和软件MTDC600是一款高性能温度控制器,分辨率和精确度为0.10℃。控制器MTDC600有一个内置电源,可以手动或通过一个USB2.0通信端口进行控制。软件为所有可能的实验提供了一个方便的平台。软件具有绘制温度曲线的功能。斜坡是完全可编程的。温度曲线可以命名,保存,然后加载。实验数据保存到文本格式(温度,时间),并可以导出到任何要求的格式(EXCEL,SQL等)。 PID参数,温度限制和控制要点可以通过相关菜单轻松选择。
  • 2200℃超高温陶瓷粘结剂
    2200℃超高温陶瓷粘结剂呈泥糊状,比较容易粘附于材料表面,并能在空气条件下干燥,特别适用涂于熔炼金属的坩埚表面,可以愈合坩埚裂纹。同时,也可涂于我司1800℃高温炉内,来愈合内膛中的裂纹,可非常好的防止炉膛开裂。产品型号2200℃超高温陶瓷粘结剂主要特点可用于焊接、钎焊、粘合、电机密封、热电偶保护层,及其他在高温工作下材料的粘结。技术参数1、主要成分:氧化锆2、极限温度:2200℃3、纯度:95%4、热膨胀系数:4.1(×10-6/°F)5、导热系数:106、可抗最大压强:6000psi7、可抗最大张应力:3000psi8、介电强度:250volts/mil9、固化时间:2h-4h
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制