当前位置: 仪器信息网 > 行业主题 > >

超声波扫描显微镜

仪器信息网超声波扫描显微镜专题为您提供2024年最新超声波扫描显微镜价格报价、厂家品牌的相关信息, 包括超声波扫描显微镜参数、型号等,不管是国产,还是进口品牌的超声波扫描显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超声波扫描显微镜相关的耗材配件、试剂标物,还有超声波扫描显微镜相关的最新资讯、资料,以及超声波扫描显微镜相关的解决方案。

超声波扫描显微镜相关的论坛

  • 【原创】超声波扫描显微镜SAM与X-RAY的区别

    超声波扫描显微镜SAM与X-RAY的区别 在同一实验室内,SAM与X-ray是相互补充的方法手段。它们主要的区别在于展现样品的特性不同。X-ray能观察样品的内部,主要是基于材料密度的差异。密集的金属材料比陶瓷和塑料等材料对于X射线有较大的不透过性和较小的穿透深度。 X-ray对于分层的空气不是非常的敏感,裂纹和虚焊是不能被观察到的,除非材料有足够的物理上的分离。X-ray射线成像操作采用的是穿透模式,得到整个样品厚度的一个合成图像。在较长的检查期间内,如果半导体设备放置在离X-ray射线源比较近的地方可能会产生损坏或随机的电子错误。 超声波能穿透密集的和疏松的固体材料,但它对于内部存在的空气层非常的敏感,空气层能阻断超声波的传输。确定焊接层、粘接层、填充层、涂镀层、结合层的完整是SAM独特的性能。SAM可以分层的展现样品内部的一层一层的图像。基于反射回波模式产生的图像只需要通过样品的表面(反射扫描模式),而穿透模式需要通过样品的两个表面(类似X-ray)(透射扫描模式)。并且SAM使用的超声波频率是高于MHz,而不同于超声波清洗设备使用的KHz的频率。这个范围的超声波不会引起气穴现象,它不能清洗和搅动易碎的组件,因此对于检测的组件并没有任何的损坏。 关于超声波扫描显微镜和X射线成像系统的相关资讯,可以登录安赛斯(中国)有限公司官网查询和下载,www.analysis-tech.com,他们公司有独立的无损检测实验室,可以提供样机参观和测样服务,届时还会有专业的人员为您解答各种问题,可以登录其官网查询联系方式。

  • 【原创】超声波扫描显微镜的应用领域 汇总贴

    超声波扫描显微镜的主要用途:(1)材料的密度及晶格组织分布(2)材料内部的裂纹(3)材料内部分层缺陷,夹杂物等(4)材料的杂质颗粒,夹杂物,沉淀物等(5)材料的空洞,气泡,间隙等超声波扫描显微镜的应用领域:(1)在半导体及太阳能晶锭材料上的应用:分析晶锭内部缺陷等。(2)在半导体Wafer和太阳能晶圆上的应用:涂覆后和印刷后晶圆片上的分层缺陷等。(3)在半导体封装检测上的应用:塑封层、芯片顶部、 芯片粘接层、导线框、BGA 样品以及Flip Chip Underfill 上的分层缺陷等。 (4)在SMT贴装电路器件上的应用贴装后的MLF器件检测的重点是金线周围、基底和引出线之间的的分层缺陷,检测SMD贴片电容的内部缺陷等。(5)在MEMS器件上的应用:晶圆键合的超声检测。(6)在其他工业产品上的应用:钻头材料焊接面的结合情况,电池密封性的超声检测。(7)在材料科学领域的应用:镀层界面、铬合金镀层界面、镀膜层界面、多碳合金的超声金相分析、材料的硬度分析、材料内部的裂纹分析、高性能陶瓷内部的裂纹分析等。 (8)在生物医疗研究领域的应用:活体细胞组织裂变过程,不同活体细胞组织裂变过程,骨骼切片的超声图像等。

  • 半导体器件/材料焊接层\填充层空洞分析手段-超声波扫描显微镜

    半导体器件芯片内部失效分析 超声波扫描显微镜(扫描频率最高可以达到2G). 其主要是针对半导体器件 ,芯片,材料内部的失效分析.其可以检查到:1.材料内部的晶格结构,杂质颗粒.夹杂物.沉淀物.2. 内部裂纹. 3.分层缺陷.4.空洞,气泡,空隙http://simg.instrument.com.cn/bbs/images/brow/emyc1002.gif请点激链接:半导体器件芯片失效分析 芯片内部分层,孔洞气泡失效分析C-SAM的叫法很多有,扫描声波显微镜或声扫描显微镜或扫描声学显微镜或超声波扫描显微镜(Scanning acoustic microscope)总概c-sam(sat)测试。XRAY 与C-SAM区别XRAY:X射线可以穿过塑封料并对包封内部的金属部件成像,因此,它特别适用于评价由流动诱导应力引起的引线变形 在电路测试中,引线断裂的结果是开路,而引线交叉或引线压在芯片焊盘的边缘上或芯片的金属布线上,则表现为短路。X射线分析也评估气泡的产生和位置,塑封料中那些直径大于1毫米的大空洞,很容易探测到. 而小于1毫米的小气泡空洞,分层.就非常难检测到.用X射线检测芯片焊盘的位移较为困难,因为焊盘位移相对于原来的位置来说更多的是倾斜而不是平移,所以,在用X射线分析时必须从侧面穿过较厚的塑封料来检测。检测芯片焊盘位移更好的方法是用剖面法,这已是破坏性分析了。C-SAM:由于超声波具有不用拆除组件外部封装之非破坏性检测能力,根据其对空气的灵敏度非常强的特性.故C-SAM可以有效的检出IC构装中因水气或热能所造成的破坏如﹕脱层、气孔及裂缝…等。 超声波在行经介质时,若遇到不同密度或弹性系数之物质时,即会产生反射回波。而此种反射回波强度会因材料密度不同而有所差异.C-SAM即最利用此特性来检出材料内部的缺陷并依所接收之讯号变化将之成像。因此,只要被检测的IC上表面或内部芯片构装材料的接口有脱层、气孔、裂缝…等缺陷时,即可由C-SAM影像得知缺陷之相对位置C-SAM服务超声波扫描显微镜(C-SAM)主要使用于封装内部结构的分析,因为它能提供IC封装因水气或热能所造成破坏分析,例如裂缝、空洞和脱层。C-SAM内部造影原理为电能经由聚焦转换镜产生超声波触击在待测物品上,将声波在不同接口上反射或穿透讯号接收后影像处理,再以影像及讯号加以分析。C-SAM可以在不需破坏封装的情况下探测到脱层、空洞和裂缝,且拥有类似X-Ray的穿透功能,并可以找出问题发生的位置和提供接口数据。主要应用范围:· 晶元面处脱层· 锡球、晶元、或填胶中之裂缝· 晶元倾斜· 各种可能之孔洞(晶元接合面、锡球、填胶…等)· 覆晶构装之分析C-SAM的主要特性: 非破坏性、无损伤检测内部结构 可分层扫描、多层扫描 实施、直观的图像及分析 缺陷的测量及百分比的计算 可显示材料内部的三维图像 对人体是没有伤害的 可检测各种缺陷(裂纹、分层、夹杂物、附着物、空洞、孔洞、晶界边界等)C-SAM的主要应用领域: 半导体电子行业:半导体晶圆片、封装器件、红外器件、光电传感器件、SMT贴片器件、MEMS等; 材料行业:复合材料、镀膜、电镀、注塑、合金、超导材料、陶瓷、金属焊接、摩擦界面等; 生物医学:活体细胞动态研究、骨骼、血管的研究等;

  • 【原创】超声波扫描电镜型号汇总贴,C-SAM,超声波 扫描电镜

    超声波扫描显微镜特点及原理介绍超声波仪器的分类 声纳频率范围: 》500KHz分辨率范围: m-cm应用领域:航海测绘等B-超 频率范围: 1 MHz分辨率范围:cm-mm应用领域:医疗诊断等超声波探伤 频率范围: 100 KHz–15MHz分辨率范围: 0.01- 5 mm应用领域:工业探伤等超声波显微镜 频率范围: 5–2000MHz分辨率范围: 0.3-100μm应用领域:电子工业等超声波的传播方式 超声波与电磁波不同,是一种机械波,其传播的方式是通过介质中分子的振动进行的,因此超声波的传播情况和介质具有非常大的关系,通常来说,介质的密度越大超声波传播的速度越快,衰减也越低,在稀薄的空气中,超声波无法传播。超声波根据其介质分子的振动方向和传播方向的不同,分为纵波和横波二种。超声波检测的特点l 无损检测可做非破坏性的缺陷检测,是目前最常用的无损检测手段之一;l 纵向(Z)方向具有高检测分辨本领对于Z 方向的缺陷分辨率可以达到nm级水平(指缺陷厚度);l 材料的力学性能检测由于材料密度决定了声阻抗,因此可以通过高频超声检测得到材料密度的分布,从而推导出应力场,裂纹变化趋势等材料的力学性能; 主要用途l 材料的密度及晶格组织分布l 材料内部的裂纹l 材料内部分层缺陷,夹杂物等l 材料的杂质颗粒,夹杂物,沉淀物等l 材料的空洞,气泡,间隙等超声波显微镜和X-光检测技术的比较X-光检测适用于检测内部的结构性情况,比如 IC 集成电路内部的金线分布等,但并不能检测芯片与基底之间粘接层的缺陷,超声波扫描显微镜主要适用与检测这些粘接层或其他界面之前的缺陷。

  • 无损检测设备,超声波扫描显微镜和X射线检测机供应

    [b][size=16px][font=楷体_GB2312]超声波扫描显微镜的主要用途:[/font][/size][/b][font=&][size=16px][font=楷体_GB2312](1)材料的密度及晶格组织分布[/font][/size][/font][font=&][size=16px][font=楷体_GB2312](2)材料内部的裂纹[/font][/size][/font][font=&][size=16px][font=楷体_GB2312](3)材料内部分层缺陷,夹杂物等[/font][/size][/font][font=&][size=16px][font=楷体_GB2312](4)材料的杂质颗粒,夹杂物,沉淀物等[/font][/size][/font][font=&][size=16px][font=楷体_GB2312][/font][/size][/font][font=&][size=16px][font=楷体_GB2312](5)材料的空洞,气泡,间隙等[/font][/size][/font][b][size=16px][font=楷体_GB2312]超声波扫描显微镜的应用领域:[/font][/size][/b][font=&][size=16px][font=楷体_GB2312](1)在半导体及太阳能晶锭材料上的应用:[u]分析晶锭内部缺陷等[/u]。[/font][/size][/font][font=&][size=16px][font=楷体_GB2312](2)在半导体Wafer和太阳能晶圆上的应用:[u]涂覆后和印刷后晶圆片上的分层缺陷等[/u][/font][/size][/font][u][size=16px][font=楷体_GB2312]。[/font][/size][size=16px][font=楷体_GB2312][/font][/size][/u][font=&][size=16px][font=楷体_GB2312](3)在半导体封装检测上的应用:[u]塑封层、芯片顶部、[/u][/font][/size][/font][u][size=16px][font=楷体_GB2312] [/font][/size][size=16px][font=楷体_GB2312]芯片粘接层、导线框、BGA 样品以及Flip Chip Underfill 上的分层缺陷等。[/font][/size][/u][font=&][size=16px][font=楷体_GB2312][/font][/size][/font][font=&][size=16px][font=楷体_GB2312][/font][/size][/font][font=&][size=16px][font=楷体_GB2312](4)在SMT贴装电路器件上的应用[/font][/size][/font][u][size=16px][font=楷体_GB2312]贴装后的MLF器件检测的重点是金线周围、基底和引出线之间的的分层缺陷,检测SMD贴片电容的内部缺陷等。[/font][/size][/u][font=&][size=16px][font=楷体_GB2312](5)在MEMS器件上的应用:[u]晶圆键合的超声检测[/u][/font][/size][/font][u][size=16px][font=楷体_GB2312]。[/font][/size][/u][font=&][size=16px][font=楷体_GB2312][/font][/size][/font][font=&][size=16px][font=楷体_GB2312](6)在其他工业产品上的应用:[u]钻头材料焊接面的结合情况,电池密封性的超声检测。[/u][/font][/size][/font][font=&][size=16px][font=楷体_GB2312](7)在材料科学领域的应用:[u]镀层界面、铬合金镀层界面、镀膜层界面、多碳合金的超声金相分析、材料的硬度分析、材料内部的裂纹分析、高性能陶瓷内部的裂纹分析等。 [/u][/font][/size][/font][font=&][size=16px][font=楷体_GB2312][u]方136式4144联3960[/u][/font][/size][/font]

  • 【分享】超声波扫描电镜各型号技术参数汇总贴

    超声波扫描显微镜发展到今天,随着技术进步及不同的使用环境,已形成了一些列的型号产品,其扫描频率最高可以达到2G.扫描分辨率0.1微米.最小扫描范围为0.25mm*0.25mm. 是一种非破坏性的检测组件的完整性,内部结构和材料的内部情况的仪器,作为无损检测分析中的一种,它可以实现在不破坏物料电气性能和保持结构完整性的前提下对物料进行检测。被广泛的用在物料检验(IQC)、失效分析(FA)、质量控制(QC)、质量保证及可靠性(QA/REL)、研发(R&D))等领域。其可以检查到:1.材料内部的晶体结构、杂志颗粒、夹杂物、沉淀物、2.内部裂纹3.分层缺陷、4.空洞、气泡、孔隙等; 在一个较小尺寸的范围内,超声波会由于材料的物理特性发生相互作用。一旦材料的特性发生变化,样品内部的超声波就会被吸收、散射和反射。因为超声波无法很好通过空气进行传播,所以样品内的微小缝隙会被很容易的检测到。利用超声波的这种特性,可以把半导体材料内部的诸如分层,裂缝等的缺陷和不透光材料中的空隙等缺陷,成像在高分辨率的图像上,给材料的可靠性分析带来方便。 为了便于网友根据各自用途选择合适的型号产品,现将各型号的技术参数汇总如下: 见附件。

  • 【原创】【总结、分享帖】超声波扫描电镜在材料科学领域的应用

    超声波扫描显微镜(C-SAM)主要使用于封装内部结构的分析,因为它能提供IC封装因水气或热能所造成破坏分析,例如裂缝、空洞和脱层。 C-SAM内部造影原理为电能经由聚焦转换镜产生超声波触击在待测物品上,将声波在不同接口上反射或穿透讯号接收后影像处理,再以影像及讯号加以分析。 C-SAM可以在不需破坏封装的情况下探测到脱层、空洞和裂缝,且拥有类似X-Ray的穿透功能,并可以找出问题发生的位置和提供接口数据。

  • 【汇总、分享】超声波扫描电镜在材料科学、半导体封装上的应用

    超声波扫描显微镜(C-SAM)主要使用于封装内部结构的分析,因为它能提供IC封装因水气或热能所造成破坏分析,例如裂缝、空洞和脱层。C-SAM内部造影原理为电能经由聚焦转换镜产生超声波触击在待测物品上,将声波在不同接口上反射或穿透讯号接收后影像处理,再以影像及讯号加以分析。C-SAM可以在不需破坏封装的情况下探测到脱层、空洞和裂缝,且拥有类似X-Ray的穿透功能,并可以找出问题发生的位置和提供接口数据。主要应用范围:· 晶元面处脱层· 锡球、晶元、或填胶中之裂缝· 晶元倾斜· 各种可能之孔洞(晶元接合面、锡球、填胶…等) · 覆晶构装之分析C-SAM的主要特性: 非破坏性、无损伤检测内部结构 可分层扫描、多层扫描 实施、直观的图像及分析 缺陷的测量及百分比的计算 可显示材料内部的三维图像 对人体是没有伤害的 可检测各种缺陷(裂纹、分层、夹杂物、附着物、空洞、孔洞、晶界边界等)C-SAM的主要应用领域: 半导体电子行业:半导体晶圆片、封装器件、红外器件、光电传感器件、SMT贴片器件、MEMS等 ;材料行业:复合材料、镀膜、电镀、注塑、合金、超导材料、陶瓷、金属焊接、摩擦界面等; 生物医学:活体细胞动态研究、骨骼、血管的研究等;

  • 几个资料及扫描电子显微镜的安装与验收

    [color=red]资料包括:[/color]1 扫描电子显微镜: 介绍了采用半导体检测器、YA;检测器和鲁宾逊检测器等反射电子检测器,于,以低真空方式进行观察的低真空扫描电子显微镜及其在耐火材料上的应用例。2 扫描电子显微镜的应用3 扫描隧道显微镜在生物医学中的应用4 国内外扫描电镜发展的特点5 高性能多用途的扫描电子显微镜JSM—58006 常规扫描电子显微镜的特点和发展[url=http://www.instrument.com.cn/download/shtml/014678.shtml]下载资料[/url]这是《湖南冶金》杂志上的一篇文章,对我们搞电镜的很有用,等全文转载于此,希望对大家有用!并向作者张益谨、杨迈莉表示感谢![color=red][b]扫描电子显微镜的安装与验收[/b][/color][提要]本文对如何安装调试与验收扫描电子显微镜作了简单介绍,并以日立S—570型号为例,对验收技术指标、方法及误差计算进行了具体说图。随着我国科学技术与教育事业的发展,电子显微分析技术已在各个领域得到广泛的应用。现已有各种类型及规格近千台,其中半数以上为扫描电子显微镜。由于它具有制样简单,图象直观,且易掌握及理解等优点,因此,将有更多科研单位,高等院校及工厂实验宝购置这种先进仪器。这样,如何进行安装、调试及验收就成为很多人关心及要求了解的问题。一. 安装调试程序安装调试工作包括下述五个环节。1.安装前的准备 (1)安装条件:主要捡查水电供应,接地电阻,防震,防电磁干扰等条件是否满足仪器说明书的要求。可参阅《实验技术与管理》 (2)1986。(2)翻译说明书及操作人员的预先培训。 (3)安装调试除准备一套开箱、运输工具外,还要求准备下列仪器材料如示波器、数字万用表、电离真空计、超声波清洗器、恒温干燥箱、放大冲洗设备、化学药品(如酒精、丙酮)等等。

  • 说说:金相显微镜与扫描电镜的区别

    上周分享的文章:[color=#ff0000][b][color=#333333]专业角度看,光学显微镜与扫描电镜的区别在哪里[/color][color=#333333][/color][/b][/color][b][color=#333333]?[/color][/b]描述这两者的不同之处、机制和实际运用,希望能给更多的朋友们快速的了解,接下来小冉还是会继续分享关于电镜和其他显微镜的区别,好了,一起来简单看看[color=#ff0000]金相显微镜与扫描电镜的区别[/color]吧! 金相显微镜是用于观察具有入射照明的金属样品(金相组织)表面的显微镜。它结合了光学显微技术、光电转换技术、计算机图像处理技术。高科技产品可以在计算机上轻松观察金相图像,从而可以对金相图进行分析,分级等,输出图像为。金相显微镜是一种光学显微镜。相对于电子显微镜,分辨率较小,微米分辨率较小,放大倍数较小,但操作简便。大视场、价格相对较低。[align=center][img=,500,376]http://www.gdkjfw.com/images/image/15051531705166.jpg[/img][/align] 金相显微镜一种用于扫描电子显微镜的新型电光仪器。它具有简单的样品制备、放大倍率可调范围宽度、图像分辨率高、景深等。扫描电子显微镜已被广泛应用于生物学领域、医学、冶金学几十年,并促进了各相关学科的发展。扫描电子显微镜的特点:电子显微镜,高图像分辨率,纳米级分辨率,可调放大倍数和大,另一个重要特征是大景深和丰富的三维图像。 金相显微镜与扫描电镜之间存在很大差异,主要表现在以下几个方面: 一、光源不同:金相显微镜使用可见光作为光源,扫描电子显微镜使用电子束作为光源进行成像。 二、原理不同:金相显微镜采用几何光学成像原理进行扫描,扫描电子显微镜使用高能电子束轰击样品表面,激发表面上的各种物理信号。采样,然后使用不同的信号检测器接收物理信号并将其转换为图像。信息。 三、分辨率:由于光的干涉和衍射,金相显微镜只能限制在0.2-0.5um。扫描电子显微镜使用电子束作为光源,其分辨率可达到1-3nm。因此,金相显微镜的微观结构观察属于微米分析,扫描电子显微镜的观察属于纳米尺度分析。 四、景深:一般金相显微镜的景深在2-3um之间,因此样品的表面光滑度要求极高,因此制备过程相对复杂。 SEM的景深可以高达几个。

  • 扫描电镜与金相显微镜的区别

    光源不同:光学显微镜采用可见光作为光源,电子显微镜采用电子束作为光源成像原理不同:光学显微镜利用几何光学成像原理进行成像,电子显微镜利用高能量电子束轰击样品表面,激发出样品表面的各种物理信号,再利用不同的信号探测器接受物理信号转换成图像信息。分辨率:光学显微镜因为光的干涉与衍射作用,分辨率只能局限于0.2-0.5um之间。电子显微镜因为采用电子束作为光源,其分辨率可达到1-3nm之间,因此光学显微镜的组织观察属于微米级分析,电子显微镜的组织观测属于纳米级分析。景深:一般光学显微镜的景深在2-3um之间,因此对样品的表面光滑程度具有极高的要求,所以制样过程相对比较复杂。扫描电镜的景深则可高达几个毫米,因此对样品表面的光滑程度几何没有任何要求,样品制备比较简单,有些样品几何无需制样。体式显微镜虽然也具有比较大的景深,但其分辨率却非常的低。应用领域:光学显微镜主要用于光滑表面的微米级组织观察与测量,因为采用可见光作为光源因此不仅能观察样品表层组织而且在表层以下的一定范围内的组织同样也可被观察到,并且光学显微镜对于色彩的识别非常敏感和准确。电子显微镜主要用于纳米级的样品表面形貌观测,因为扫描电镜是依靠物理信号的强度来区分组织信息的,因此扫描电镜的图像都是黑白的,对于彩色图像的识别扫描电镜显得无能为力。扫描电镜不仅可以观察样品表面的组织形貌,通过使用EDS、WDS、EBSD等不同的附件设备,扫描电镜还可进一步扩展使用功能。通过使用EDS、WDS辅助设备,扫描电镜可以对微区化学成分进行分析,这一点在失效分析研究领域尤为重要。使用EBSD,扫描电镜可以对材料的晶格取向进行研究。

  • 【转帖】扫描电子显微镜的应用

    新设备简介扫描电子显微镜的应用扫描电子显微镜是一种多功能的仪器、具有很多优越的性能、是用途最为广泛的一种仪器.它可以进行如下基本分析:(1)三维形貌的观察和分析;(2)在观察形貌的同时,进行微区的成分分析。①观察纳米材料,所谓纳米材料就是指组成材料的颗粒或微晶尺寸在0.1-100nm范围内,在保持表面洁净的条件下加压成型而得到的固体材料。纳米材料具有许多与晶体、非晶态不同的、独特的物理化学性质。纳米材料有着广阔的发展前景,将成为未来材料研究的重点方向。扫描电子显微镜的一个重要特点就是具有很高的分辨率。现已广泛用于观察纳米材料。②进口材料断口的分析:扫描电子显微镜的另一个重要特点是景深大,图象富立体感。扫描电子显微镜的焦深比透射电子显微镜大10倍,比光学显微镜大几百倍。由于图象景深大,故所得扫描电子象富有立体感,具有三维形态,能够提供比其他显微镜多得多的信息,这个特点对使用者很有价值。扫描电子显微镜所显示饿断口形貌从深层次,高景深的角度呈现材料断裂的本质,在教学、科研和生产中,有不可替代的作用,在材料断裂原因的分析、事故原因的分析已经工艺合理性的判定等方面是一个强有力的手段。③直接观察大试样的原始表面,它能够直接观察直径100mm,高50mm,或更大尺寸的试样,对试样的形状没有任何限制,粗糙表面也能观察,这便免除了制备样品的麻烦,而且能真实观察试样本身物质成分不同的衬度(背反射电子象)。④观察厚试样,其在观察厚试样时,能得到高的分辨率和最真实的形貌。扫描电子显微的分辨率介于光学显微镜和透射电子显微镜之间,但在对厚块试样的观察进行比较时,因为在透射电子显微镜中还要采用复膜方法,而复膜的分辨率通常只能达到10nm,且观察的不是试样本身。因此,用扫描电子显微镜观察厚块试样更有利,更能得到真实的试样表面资料。⑤观察试样的各个区域的细节。试样在样品室中可动的范围非常大,其他方式显微镜的工作距离通常只有2-3cm,故实际上只许可试样在两度空间内运动,但在扫描电子显微镜中则不同。由于工作距离大(可大于20mm)。焦深大(比透射电子显微镜大10倍)。样品室的空间也大。因此,可以让试样在三度空间内有6个自由度运动(即三度空间平移、三度空间旋转)。且可动范围大,这对观察不规则形状试样的各个区域带来极大的方便。⑥在大视场、低放大倍数下观察样品,用扫描电子显微镜观察试样的视场大。在扫描电子显微镜中,能同时观察试样的视场范围F由下式来确定:F=L/M式中 F——视场范围;M——观察时的放大倍数;L——显象管的荧光屏尺寸。 若扫描电镜采用30cm(12英寸)的显象管,放大倍数15倍时,其视场范围可达20mm,大视场、低倍数观察样品的形貌对有些领域是很必要的,如刑事侦察和考古。⑦进行从高倍到低倍的连续观察,放大倍数的可变范围很宽,且不用经常对焦。扫描电子显微镜的放大倍数范围很宽(从5到20万倍连续可调),且一次聚焦好后即可从高倍到低倍、从低倍到高倍连续观察,不用重新聚焦,这对进行事故分析特别方便。⑧观察生物试样。因电子照射而发生试样的损伤和污染程度很小。同其他方式的电子显微镜比较,因为观察时所用的电子探针电流小(一般约为10-10 -10-12A)电子探针的束斑尺寸小(通常是5nm到几十纳米),电子探针的能量也比较小(加速电压可以小到2kV)。而且不是固定一点照射试样,而是以光栅状扫描方式照射试样。因此,由于电子照射面发生试样的损伤和污染程度很小,这一点对观察一些生物试样特别重要。⑨进行动态观察。在扫描电子显微镜中,成象的信息主要是电子信息,根据近代的电子工业技术水平,即使高速变化的电子信息,也能毫不困难的及时接收、处理和储存,故可进行一些动态过程的观察,如果在样品室内装有加热、冷却、弯曲、拉伸和离子刻蚀等附件,则可以通过电视装置,观察相变、断烈等动态的变化过程。⑩从试样表面形貌获得多方面资料,在扫描电子显微镜中,不仅可以利用入射电子和试样相互作用产生各种信息来成象,而且可以通过信号处理方法,获得多种图象的特殊显示方法,还可以从试样的表面形貌获得多方面资料。因为扫描电子象不是同时记录的,它是分解为近百万个逐次依此记录构成的。因而使得扫描电子显微镜除了观察表面形貌外还能进行成分和元素的分析,以及通过电子通道花样进行结晶学分析,选区尺寸可以从10μm到3μm。由于扫描电子显微镜具有上述特点和功能,所以越来越受到科研人员的重视,用途日益广泛。现在扫描电子显微镜已广泛用于材料科学(金属材料、非金属材料、钠米材料)、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害(火灾、失效分析)鉴定、刑事侦察、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=79549]扫描电子显微镜的应用[/url]

  • 扫描电子显微镜,这个资料我给100分

    [b][color=#000000]扫描电子显微镜价格[/color][/b][color=#000000]扫描电子显微镜的价格?这个是很多科研人关心的问题之一,我们想知道电子显微镜多少钱(大概一个范围);其实,我们知道显微镜的价格是不便宜的,基本的一个范围就是30-100万,特别是高端的扫描电子显微镜价格200-300万也是什么不可能的事。下面小冉就给大家说说扫描显微镜的工作原理和价格以及其用途,给大家做一个了解和参考![/color][color=#000000][/color][color=#000000][/color][align=center][color=#000000][img=扫描电子显微镜原理及功能用途,400,412]http://www.gdkjfw.com/images/image/99161528266162.jpg[/img][/color][/align][color=#000000][/color][color=#000000][color=#000000]  [/color][b][color=#000000]扫描电子显微镜多少钱?[/color][color=#000000][/color][/b][/color][color=#000000][b][color=#000000][/color][color=#000000][/color][/b][/color][color=#000000]  FEI Inspect S50扫描电子显微镜参考成交价格:200万元[/color][color=#000000]  FEI Inspect F50场发射扫描电子显微镜参考成交价格:300万元[/color][color=#000000]  FEI Quanta 650 FEG环境扫描电镜参考成交价格:43万元[/color][color=#000000]  FEI Quanta 250环境扫描电子显微镜参考成交价格:200万元[/color][color=#000000]  FEI Magellan 400L XHR场发射扫描电子显微镜参考成交价格:200万元[/color][color=#000000]  注:价格来源于网络,仅供参考[/color][color=#000000][/color][color=#000000][color=#000000]  [/color][b][color=#000000]扫描电子显微镜结构图[/color][color=#000000][/color][/b][/color][color=#000000][b][color=#000000][/color][color=#000000][/color][/b][/color][align=center][color=#000000][b][color=#000000][img=扫描电子显微镜原理及功能用途,350,456]http://www.gdkjfw.com/images/image/28441528266163.jpg[/img][/color][/b][/color][/align][align=center][color=#000000]扫描电子显微镜结构图[/color][/align][color=#000000][/color][color=#000000][color=#000000]  [/color][b][color=#000000]扫描电子显微镜工作原理[/color][color=#000000][/color][/b][/color][color=#000000][b][color=#000000][/color][color=#000000][/color][/b][/color][color=#000000]  扫描电子显微镜可粗略分为镜体和电源电路系统两部分。镜体部分由电子光学系统(包括电子枪、扫描线圈等)、试样室、检测器以及真空抽气系统组成[/color][color=#000000][/color][align=center][color=#000000][img=扫描电子显微镜原理及功能用途,454,389]http://www.gdkjfw.com/images/image/24361528266163.jpg[/img][/color][/align][align=center][color=#000000]扫描电子显微镜原理图[/color][/align][color=#000000]  从图可以看出,由三极电子枪所发射出来的电子束(一般为50μm),[/color][color=#000000]  在加速电压的作用下(2~30kV),经过三个电磁透镜(或两个电磁透镜),汇聚成一个细小到5nm的电子探针,在末级透镜上部扫描线圈的作用下,使电子探针在试样表面做光栅状扫描(光栅线条数目取决于行扫描和帧扫描速度)。由于高能电子与物质的相互作用,结果在试样上产生各种信息如二次电子、背反射电子、俄歇电子、X射线、阴极发光、吸收电子和透射电子等。因为从试样中所得到各种信息的强度和分布各自同试样表面形貌、成分、晶体取向、以及表面状态的一些物理性质(如电性质、磁性质等)等因素有关,因此,通过接收和处理这些信息,就可以获得表征试样形貌的扫描电子像,或进行晶体学分析或成分分析。[/color][color=#000000]  为了获得扫描电子像,通常是用探测器把来自试样表面的信息接收,再经过[/color][color=#000000]  信号处理系统和放大系统变成信号电压,最后输送到显像管的栅极,用来调制显像管的亮度。因为在显像管中的电子束和镜筒中的电子束是同步扫描的,其亮度是由试样所发回的信息的强度来调制,因而可以得到一个反映试样表面状况的扫描电子像,其放大系数定义为显像管中电子束在荧光屏上扫描振幅和镜筒电子束在试样上扫描振幅的比值,即[/color][color=#000000]  M=L/l=L/2Dγ[/color][color=#000000]  式中M-放大系数;[/color][color=#000000]  L-显像管的荧光屏尺寸;[/color][color=#000000]  l-电子束在试样上扫描距离,它等于2Dγ,其中D是扫描电子显微镜的工[/color][color=#000000]  作距离;[/color][color=#000000]  2γ-镜筒中电子束的扫描角。[/color][color=#000000][/color][align=center][color=#000000][img=扫描电子显微镜原理及功能用途,400,363]http://www.gdkjfw.com/images/image/56411528266163.jpg[/img][/color][/align][color=#000000][/color][color=#000000][color=#000000]  [/color][b][color=#000000]扫描电子显微镜用途[/color][color=#000000][/color][/b][/color][color=#000000][b][color=#000000][/color][color=#000000][/color][/b][/color][color=#000000]  最基本的功能是对各种固体样品表面进行高分辨形貌观察。大景深图像是扫描电子显微镜观察的特色,例如:生物学,植物学,地质学,冶金学等等。观察可以是一个样品的表面,也可以是一个切开的面,或是一个断面。冶金学家已兴奋地直接看到原始的或磨损的表面。可以很方便地研究氧化物表面,晶体的生长或腐蚀的缺陷。它一方面可更直接地检查纸,纺织品,自然的或制备过的木头的细微结构,生物学家可用它研究小的易碎样品的结构。例如:花粉颗粒,硅藻和昆虫。另一方面,它可以拍出与样品表面相应的立体感强的照片。[/color][color=#000000]  在扫描电子显微镜应用中,很多集中在半导体器件和集成电路方面,它可以很详细地检查器件工作时局部表面电压变化的实际情况,这是因为这种变化会带来象的反差的变化。焊接开裂和腐蚀表面的细节或相互关系可以很容易地观察到。利用束感生电流,可以观测半导体P—N结内部缺陷。[/color][color=#000000]  电子束与样品作用区内,还发射与样品物质其他性质有关信号。例如:与样品化学成分分布相关的,背散射电子,特征X射线,俄歇电子,阴极荧光,样品吸收电流等;与样品晶体结构相关的,背散射电子衍射现象的探测;与半导体材料电学性能相关的,二次电子信号、电子束感生电流信号;在观察薄样品时产生的透射电子信号等。目前分别有商品化的探测器和装置可安装在扫描电子显微镜样品分析室,用于探测和定性定量分析样品物质的相关信息。[/color][color=#000000]  扫描电子显微镜对于固体材料的研究应用非常广泛,没有任何一种仪器能够和其相提并论。对于固体材料的全面特征的描述,扫描电子显微镜是至关重要的。[/color][color=#000000][/color][align=center][color=#000000][img=扫描电子显微镜原理及功能用途,446,310]http://www.gdkjfw.com/images/image/52861528266163.jpg[/img][/color][/align][color=#000000][/color][color=#000000][color=#000000] [/color][b][color=#000000] 扫描电子显微镜功能[/color][color=#000000][/color][/b][/color][color=#000000][b][color=#000000][/color][color=#000000][/color][/b][/color][color=#000000]  1、扫描电子显微镜追求固体物质高分辨的形貌,形态图像(二次电子探测器SEI)-形貌分析(表面几何形态,形状,尺寸)[/color][color=#000000]  2、显示化学成分的空间变化,基于化学成分的相鉴定---化学成分像分布,微区化学成分分析[/color][color=#000000]  1)用x射线能谱仪或波谱(EDSorWDS)采集特征x射线信号,生成与样品形貌相对应的,元素面分布图或者进行定点化学成分定性定量分析,相鉴定。[/color][color=#000000]  2)利用背散射电子BSE)基于平均原子序数(一般和相对密度相关)反差,生成化学成分相的分布图像;[/color][color=#000000]  3)利用阴极荧光,基于某些痕量元素(如过渡金属元素,稀土元素等)受电子束激发的光强反差,生成的痕量元素分布图像。[/color][color=#000000]  4)利用样品电流,基于平均原子序数反差,生成的化学成分相的分布图像,该图像与背散射电子图像亮暗相反。[/color][color=#000000]  5)利用俄歇电子,对样品物质表面1nm表层进行化学元素分布的定性定理分析,[/color][color=#000000]  3、在半导体器件(IC)研究中的特殊应用:[/color][color=#000000]  1)利用电子束感生电流EBIC进行成像,可以用来进行集成电路中pn结的定位和损伤研究[/color][color=#000000]  2)利用样品电流成像,结果可显示电路中金属层的开、短路,因此电阻衬度像经常用来检查金属布线层、多晶连线层、金属到硅的测试图形和薄膜电阻的导电形式。[/color][color=#000000]  3)利用二次电子电位反差像,反映了样品表面的电位,从它上面可以看出样品表面各处电位的高低及分布情况,特别是对于器件的隐开路或隐短路部位的确定尤为方便。[/color][color=#000000]  4、利用背散射电子衍射信号对样品物质进行晶体结构(原子在晶体中的排列方式),晶体取向分布分析,基于晶体结构的相鉴定。[/color][color=#000000]  扫描电子显微镜对科学研究与企业生产都有巨大的作用,在新型陶瓷材料显微分析中也有广泛的应用。上文就是小编整理的扫描电子显微镜的工作原理和应用介绍,在这方面有兴趣的朋友可以做进一步的深入研究。[/color]

  • 德国PVA超声扫描电镜,中国总代理,知识汇总贴

    超声波扫描显微镜是一种非破坏性的检测组件的完整性,内部结构和材料的内部情况的仪器,作为无损检测分析中的一种,它可以实现在不破坏物料电气性能和保持结构完整性的前提下对物料进行检测。被广泛的用在物料检验(IQC)、失效分析(FA)、质量控制(QC)、质量保证及可靠性(QA/REL)、研发(R&D))等领域。 其可以检查到:1.材料内部的晶格结构,杂质颗粒.夹杂物.沉淀物.2. 内部裂纹. 3.分层缺陷.4.空洞,气泡,空隙等。 近年来,超声波扫描显微镜(C-SAM)已被成功地应用在电子工业,尤其是封装技术研究及实验室之中。由于超音波具有不用拆除组件外部封装之非破坏性检测能力,故C-SAM可以有效的检出IC构装中因水气或热能所造成的破坏如﹕脱层、气孔及裂缝等。 超声波在行经介质时,若遇到不同密度或弹性系数之物质时,即会产生反射回波。而此种反射回波强度会因材料密度不同而有所差异.C-SAM即利用此特性来检出材料内部的缺陷并依所接收之讯号变化将之成像。因此,只要被检测的IC上表面或内部芯片构装材料的接口有脱层、气孔、裂缝等缺陷时,即可由C-SAM影像得知缺陷之相对位置。C-SAM服务 超声波扫描显微镜(C-SAM)主要使用于封装内部结构的分析,因为它能提供IC封装因水气或热能所造成破坏分析,例如裂缝、空洞和脱层。C-SAM内部造影原理[/siz

  • 差分偏光激光扫描显微镜简介

    [url=http://www.f-lab.cn/microscopes-system/dplsm.html][b]差分偏光激光扫描显微镜[/b][/url]differential polarization laser-scanning microscope (DPLSM)具有[b]扫描光学显微镜[/b]和[b]分光偏振计[/b]的双重优点,可提供逐像素地实施的生物样本的各向异性数据,在记录生物组织图像强度的同时,能够实时地提供高精度的生物样品的各向异性组织的逐个像素的数据。差分偏光激光扫描显微镜采用模块化设计,可以直接安装到用户现有的激光扫描显微镜上,不用担心改变原来的光路和电子。我公司提供方便安装的差分偏光激光扫描显微镜DPLSM模块,可直接安装到激光扫描显微镜上,不需要改变电路和光路就可使用差分偏光激光扫描显微镜DPLSM功能。差分偏光激光扫描显微镜:[url]http://www.f-lab.cn/microscopes-system/dplsm.html[/url]

  • 【原创大赛】扫描电子显微镜原理与应用

    【原创大赛】扫描电子显微镜原理与应用

    植物中某些组织在发育早期非常的小,肉眼无法辨别它的表面结构,一般的光学显微镜也无法满足观察需求,这个时候就需要高分辨率的扫描电子显微镜来帮助植物科研工作者来揭开这些微小组织器官的面纱,把真实表面结构展现给大家。扫描电子显微镜是怎样的工作原理,和其他显微镜的差别在哪里,它为何能有如此高的“分辨率”呢?这些都得从他的工作原理说起。扫描电子扫描电子显微镜(Scanning Electron Microscope),简写为SEM,它是由电子光学技术、真空技术、精细机械结构以及现代计算机控制技术等共同组成。在加速高压作用下,由电子枪发射的电子经电子光学系统(由聚光镜和物镜组成)聚集成束照射到样品表面,对样品进行逐行扫描,从样品表面反射出多种电子,包括二次电子、饿歇电子、反射电子、X射线等,其中二次电子为SEM主要采集信号,通过检出器采集,再经视频放大形成图象信号,经显示器显示成直观的图象信息。相对于光学显微镜而言,SEM具有放大倍数高、分辨率高、成像清晰、立体感强、样品制备简单等诸多优点。1938年第一部扫描电子显微镜就研发成功了,不过直到1965年第一部商用SEM才出现。现在,扫描电子显微镜在植物方面可以对分阶段连续取得的样品进行细胞发生和发育学方面的微观动态研究。除了在植物方面应用,SEM还被广泛应用与动物、医学、化学、物理、地质、机械等多个行业。不少研究者和厂家从二次电子图像分辨率,放大倍数,适用性等方面努力提高SEM的性能,满足人们对SEM的需求。http://ng1.17img.cn/bbsfiles/images/2015/07/201507121833_555080_3023439_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/07/201507121834_555081_3023439_3.jpg

  • 扫描电子显微镜原理

    课程内容提纲 第一部分:扫描电镜第一章:扫描电镜1.1 慨论1.2扫描电镜原理1.3扫描电镜结构1.4扫描电镜的分辨率1.5扫描电镜图像的形成第二章:高分辨扫描电子显微镜2.1 场发射扫描电子显微镜2.2 SE和BSE之差做为信号的方式2.3 工作距离2.4 使用强磁物镜的方式第三章:扫描电子显微镜的实践3.1 扫描电子显微镜的操作3.2 扫描电子显微镜图像的毛病3.3 扫描电子显微镜的保养3.4 扫描电子显微镜的安装条件3.5 扫描电子显微镜的验收与维护3.6小结第四章:计算机图像演示第二部分:能谱分析第一章、引 言第二章、EDS系统的工作原理1.系统概述2.吸收和处理过程3.计数率的考虑4.谱仪的分辨率第三章、X 射线的产生和与物质的相互作用1.萤光产额2.连续辐射的产生3.莫塞莱定律X射线定性分析4.X射线的吸收5.二次发射(萤光)第四章、X射线测量第五章、能量定性分析1.检出限2.探测器的效率3.空间分辨率3.谱仪分辨率4.伪峰(“artifact”peaks)5.定性分析结果的表示方法第六章、电子显微镜的操作及其参数的选择1.加速电压2.电子源3.孔径光栏选择4.镜筒的合轴5.样品/探测器的几何条件第七章、定 量 分 析1.脉冲计数统计误差2.块状试样的定量分析第八章、能谱的定性和定量分析的方法与步骤1.定性分析概述2.定量分析概述第九章、能谱失真与杂散幅射 1.谱峰的失真2.背底的失真3.杂散辐射第十章、能谱的验收与维护第三部分:实际操作

  • 【电镜】购置扫描电子显微镜

    本单位是一理化测试中心,现用日本电子840型扫描电子显微镜已无法满足使用要求,经上级单位批准欲购置一台扫描电子显微镜,基本要求如下:图象清晰,操作简单,售后服务好。扫描电镜+EDS能谱+3年耗材总价格约20-30万美金

  • 【资料】激光共聚焦扫描显微镜一些介绍

    激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统  显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置  LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源  LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统  LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。

  • 扫描电子显微镜及偏光显微镜在碳纤维中应用

    请教下!!!问题1:扫描电子显微镜在碳纤维中应用,就是具体用扫描电镜分析碳纤维啥呢?问题2:偏光显微镜在碳纤维中应用?这2种设备那个更适合呢 ,我是一家生产碳纤维的厂家。想上这方面的设备?那位可以解答下,谢啦。

  • [分享]扫描电子显微镜入门1

    1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约 1500倍,扫描式显微镜可放大到10000倍以上。 2. 根据de Broglie波动理论,电子的波长仅与加速电压有关: λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (?) 在 10 KV 的加速电压之下,电子的波长仅为0.12?,远低于可见光的4000 - 7000?, 所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100?之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹 性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。 3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微 镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。 4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 发射电子 束,经过一组磁透镜聚焦 (聚焦后,用遮蔽孔径 选择电子束的尺寸后,通过一组控制电子束的扫描线圈,再透过物镜 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子或背向散射电子成像。 5. 电子枪的必要特性是亮度要高、电子能量散布 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。 6. 热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。 7. 价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。 8. 六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。 9. 场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同 时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。 10. 场发射电子枪可细分成三种:冷场发射式,热场发射式,及萧基发射式 11. 当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电 子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开 阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密 度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。 12. 场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴 极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压,以控制针尖场发射的电流强度,而第二 (下)阳极主要是决定加速电压,以将电子加速至所需要的能量。 13. 要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子 或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发 射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格 极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。 14. 冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能 量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除 所吸附的气体原子。它的另一缺点是发射的总电流最小。 15. 热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较 差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷 式大3~5倍,影像分辨率较差,通常较不常使用。 16. 萧基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函 数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr 。其发射电流稳定度佳,而且发射的总电流也大。而其电子能量散布很小,仅稍逊于冷场发射式电子枪。其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。 17. 场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。 18. 由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ion pump),在样品室中,配置了2组扩散泵(diffusion pump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(cold trap),协助保持样品室的真空度。 19. 平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空( step vacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gun valve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。 20. 场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。

  • 【原创】比较下国内扫描探针显微镜

    我想问下大伙,有没有知道上海卓伦的扫描探针显微镜好用还是中科奥纳的扫描探针显微镜好用呢?另大家还有没有人知道国内有没有做得比较成熟的显微镜厂商呢?希望大家踊跃发言。

  • 扫描探针显微镜一套

    山东大学从美国维柯公司DI分部购进扫描探针显微镜一套,该设备是属于多功能配套设备。它包含如下功能:①原子力显微镜;②隧道力显微镜;③电力显微镜;④磁力显微镜;⑤摩擦力显微镜。工作模式可分为:接触式,非接触式,敲打式,力调制等。功能之全是国际上一流的。为此,山东大学于2001年9月9日派遣任可、刘宜华、孙大亮三人赴美国圣巴巴拉市维柯公司DI分部接受培训(扫描探针显微镜生产厂家为美国、、、、、、、

  • 扫描隧道显微镜STM工作原理

    [b]分析原理:[/b]隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。[b]谱图的表示方法:[/b]探针随样品表面形貌变化而引起隧道电流的波动[b]提供的信息:[/b]软件处理后可输出三维的样品表面形貌图

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制