当前位置: 仪器信息网 > 行业主题 > >

储运过程温控系统

仪器信息网储运过程温控系统专题为您提供2024年最新储运过程温控系统价格报价、厂家品牌的相关信息, 包括储运过程温控系统参数、型号等,不管是国产,还是进口品牌的储运过程温控系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合储运过程温控系统相关的耗材配件、试剂标物,还有储运过程温控系统相关的最新资讯、资料,以及储运过程温控系统相关的解决方案。

储运过程温控系统相关的论坛

  • 粘度计在石油储运中的应用(一)

    石油的储存和运输简称石油储运。主要指合格的原油及其它衍生产品,从油田的油库、转运码头或外输首站,通过长距离原油输送管线、油罐列车或油轮等输送到炼油厂、石油化工厂等用户的过程。原油流变性是储存和管道运输工艺设计的重要参数。原油储存及输送过程中,由于粘度过高,通常需要降粘,改变其流变学特性,以方便储存和运输,同时也能控制输油的能耗。目前,国内外一般采用加入分散剂或降粘剂来降低稠油在开采和输送过程中的流动阻力,提高输送效率。Brookfield 的粘度计和流变仪,为油品储存和管道运输过程中的粘度和流变性问题提供了全面系统的实验室应用研究以及在线粘度实时监控的解决方案。管道输油特点l 运输量大;能耗小、运费低便于管理,易实现全面自动化,劳动生产率高;管线大部埋于地下,受地形地物限制小,能缩短运输l 距离;安全密闭,基本上不受恶劣气候的影响,能长期稳定、安全运行。l 运输方式不灵活,钢材耗量大,辅助设备多,适于定点、量大的单向输送。原油的粘度和流变性概念及特性石油的粘度:液体质点间流动的摩擦力,以 mPa.s 表示。粘度大小决定着石油在地下、管道中的流动性能。一般与原油的化学组成、温度和压力的变化有密切关系。通常原油中含烷烃多、颜色浅、温度高、气容量大时,粘度变小。而压力增大粘度也随之变大。地下原油粘度一般比地面的原油粘度小。原油是一种多组分烃类的复杂混合物。高温下,蜡晶被溶解,沥青质高度分散,原油可视为假均匀流体,表现出牛顿流体特性。随着温度降低,蜡晶析出并长大,原油成为一种以液态烃为连续相、蜡颗粒和沥青质为分散相的细分散悬浮液,显示出非牛顿流体特性。油温更低时,蜡油连成网络,出现屈服现象,显示出更复杂的非牛顿流体特性。非牛顿原油的流变特性与热历史、剪切历史有关。管道中,原油的流变特性管道内,原油流变性呈现两个阶段:较高温度段:原油仍呈现牛顿流体特性,其流变性与剪切历史、热历史无关;原油粘度较低,处于紊流光滑区流动。较低温度段:通过长距离海底和陆地管道泵输送含蜡原油,油温逐渐降低,蜡结晶量增加,油温已处在原油的反常点以下,原油呈现非牛顿流体特性(假塑性、触变性、屈服性等),其流变性与剪切历史、热历。Brookfield 仪器推荐针对原油储运过程中粘度和流变性的特性、国家标准要求以及储运全程自动化的发展要求,BROOKFIELD向您建议不同场合下所适用的最佳仪器。管道运输前:采用实验室方法测定特定的模拟管输条件下原油的流变性,是安全、经济地储存和运输原油的重要基础工作。管道运输中:采用在线粘度计实时监测自动化输送过程中原油的粘度变化状况,是确保原油经济、高效、低能耗地持续输送的重要手段。实验室仪器推荐:QC 型 --- DV2T 旋转粘度计DV3T 旋转流变仪R&D 型 --- RST 系列旋转流变仪在线粘度计推荐:旋转法 --- TT-100 在线粘度计

  • 粘度计在石油储运中的应用(二)

    用于系统地研究油品低温(低于反常点温度)流变特性随管输条件热历史、剪切历史变化的规律,建立原油凝点、粘度(表观粘度)、触变性、屈服应力与管输条件下热历史、剪切历史关系的数学模型,为指导石油管网的安全运行提供理论依据。大量实验证明,当油温高于凝点 TZ+10℃以上时,原油呈现牛顿流体特性。中低温度下,原油的流变特性逐渐变为假塑性,需要更高流速或更大的泵送力来确保继续畅通流动。更低温度下(凝点 TZ 附近),原油的流变特性逐渐变为屈服-假塑性,需要更高流速或更大的泵送力来使其“屈服”后再继续流动。 [img=图片5.jpg]https://i3.antpedia.com/attachments/att/image/20200410/1586507712435805.jpg[/img]原油粘温曲线反映了原油粘度随温度变化的规律,因此正确确定原油粘温曲线,对原油集输储运设计、生产、科研具有重要意义。随着温度降低,粘度也随之增大。这样在管道运输中,到达管线未站的原油粘度大大高于不含蜡的原油。需要我们设计管道时,应考虑是否在中间站或大管径管线上进行原油粘度检测和化学处在线粘度实时监控实验室测量方法的局限性本质属于离线(off-line)测量即:从管线上取样品,送入实验室后再进行测量。这种过程的后果:l 耗时长l 花费大l 经常引入误差 (人为性/时间性/测量环境等)实际的管道运输中,离线测量是油品质量波动和引起冗余过程的原因。l 引入在线粘度测量和控制,通常可以使产品的品质更加一致并使流程更经济,快速调整可以使产品保持连续的高品质。在线粘度测量的引入契机随着我国经济的飞速发展,全球工业科技水平的提升,国内三大石油公司对原油开采、输送、处理等技术高,Brookfield 在原油行业在线检测的技术优势得以充分展示。Brookfield和全球三大油服公司(Baker Hughes、Halliburton、Schlumberger)等合作密切。仅美洲区域每年配套数达超百台之巨,行业应用广泛,TT-100在美国的石油行业几乎是行业使用标准。在线监控的目的和用途 l 不同来源的原油,在同样条件下粘度差异会很大,可以利用在线粘度数据,来判断原油的来源并对油 品作相应的下道工序处理(存储、炼油工艺参数确定等)。 l 在原油输送过程中,需要添加不同的降粘剂,利用在线粘度数据,可以快速确定添加剂的种类和加入 量,并迅速掌握加入后的效果。 l 根据原油的情况,控制相应的温度,利用在线粘度数据,可以按实时情况调整温度,节约能源并保证 原油的顺利输送。 l 利用在线粘度数据,可以掌握不同原油的流变特性,为节能、节约、高效、安全的原油输送加以实时 监测和保障。TT-100在线粘度计 l 液体受转子和容器内壁两个表面的剪切,能精确计算剪切率;改变转速可评价油品的流变特性。 l TT-100 在线粘度计以撬装的形式,安装在原油主管道旁边上,实时监控在线原油粘度值,就地显示 实时粘度值,并可将数据远传至站控室系统实时监控粘度,无需人员往返xun视。 l 系统配置电伴热及保温,防止冬天温度过低导致管道堵塞问题;配置过滤器防止杂质颗粒堵塞或卡在 粘度计内。 l TT-100 在线粘度计撬装系统自带远程控制及反馈信号,可从站控室直接控制现场粘度计、循环泵的 启停动作。 l 在线测量数据可与实验室数据做好的相关性比对。

  • 小型恒温控制系统怎么判断其运行状况

    现在很多制药、化工行业都用的上了无锡冠亚小型恒温控制系统,小型恒温控制系统在运行的过程中怎么判断其运行状况呢?  小型恒温控制系统汽缸中应无杂声,只有吸气阀片正常规律的起落声。冷凝器冷却水应足够,水压0.12MPA以上,水温不能太高。汽缸壁不应有足部发热和结霜情况,表面温差不大于15-20度,冷藏或低温系统,吸气管结霜一般可到吸气口;对于高温工况,吸气管应不结霜,一般结露为正常。  小型恒温控制系统曲轴箱油温小型恒温控制系统不超过70度,不低于10度。小型恒温控制系统润滑油可有泡沫,排气温度不能太高,太高接近国产冷冻油的闪点会对设备不利。冷凝压力不易太高,冷凝压冷库施工力高低受水源、冷凝方式及制冷剂影响而变化。曲轴箱油面不低于视油镜水平中心线的1/2。  小型恒温控制系统手摸卧式储液器和油分离器应上部热下部凉,冷热交界处为液面或油面,安全阀或旁通阀按低压一端应发凉,否则高低压串气。运行中蒸发压力与吸气压力应近似,排气压力、冷凝压力与储液器压力应相近。  小型恒温控制系统冷却水进出应有温差,如无或温差极微,说明热交换器有污垢,需清洗。小型恒温控制系统应密封,不得渗露制冷剂或润滑油,氟小型恒温控制系统轴封不许有滴油。小型恒温控制系统轴封及轴承温度不超过70度。膨胀阀阀体结霜或结露均匀,但进口处不能有浓厚结霜。流体经过膨胀阀时,只能听到沉闷的微小声。系统各压力表指针应相对稳定,温度指示正确。  以上小型恒温控制系统相关的情况是可以判断其小型恒温控制系统运行情况的,建议操作者多多观察,及时判断出有故障的声音,有效的解决。

  • 【分享】云温控器中央空调智能温控器采暖温控开关

    采暖季到了,中央空调也进入了高峰使用期,电量也在直线攀升,怎么才能节省电量而且可以手机远程遥控着空调的开关,成了每个用户的困扰。云温控器代替传统的温控开关,实现手机的远程,专注于中央空调智能温控,是采暖节不可缺少的空调伴侣。  云温控器透过WiFi通讯网将中央空调的房间温控器的数据结合,并传达到服务器上;再由服务器传达到用户的智能手机或桌上电脑等。提供家里的温度远程控制的云端服务;家里的温控操控不再复杂,难做,所有设置不会丢失,都在云端存储。  云温控器采用互联网云技术,以感温NTC元件,实时监测环境温度,手机远程遥控控制空调,随时随地关注空调的状态,实现节能省电的目的。  云温控器配有APP和云温控器遥控平台;用户只要下载APP或登录到平台上,就可以随时随地远程遥控;可在APP上调节温度,切换模式,多用户的管理,查看温度和开关状态。睡眠模式的开启,夜间温度自动提升2度,有利睡眠促进新陈代谢,可以通过温限设置、时段设置对室内的温度进行自动操控,提前远程调节你家里的供暖状态,就可以避免滞后供暖现象;根据需求随时随地调节达到舒适和节能的效果。  有了云温控器,随心所欲指尖掌控空调开关和温度设定,科学改变生活。

  • 液氢储运中的几种绝热材料及其热性能

    液氢储运中的几种绝热材料及其热性能

    摘要:随着氢能源汽车的快速发展,液氢储运将大规模出现在商业应用中,被动防热中的绝热材料和系统是决定液氢储运经济性和安全性的重要因素。本文介绍了目前液氢储运中候选的几类绝热材料/系统,介绍了它们各自的特点及其热性能。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#333399]一、液氢的蒸发和损失[/color][/size] 由于氢气的正常沸点极低(20.4K),在储运过程,当外部温度接近环境温度(~300K)时,内部储罐的温度必须保持在20K或更低,从而导致约有280K的温差。由于这种显著温差,即使隔热良好,漏热热流也会非常显著。例如位于NASA肯尼迪航天中心的最大储罐LC-39B,3200m3容量(约224吨),如图1所示,每天会导致0.03~0.05%的蒸发损失[1]。[align=center][color=#000099][img=低温绝热材料热性能,600,382]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151909474272_5271_3384_3.jpg!w690x440.jpg[/img][/color][/align][align=center][color=#000099]图1 肯尼迪航天中心LC-39B液氢储罐[/color][/align] 如图2所示,以相对蒸发率BOR(单位:每天%)为指标评价液氢的相对损失(相对于储罐尺寸),储罐越小损失越大,较大储罐损失可能较小,因为从周围环境热量进入到储罐的热传递的单位体积表面积较小。尽管随着储罐尺寸的增大(容量约为20000 或更高),相对蒸发损失可降至0.01%以下,但对于较大储罐,液氢损失的绝对量非常可观。这不仅会导致有效储量(和生产能力)降低,还会带来其他安全威胁,因为汽化的氢气呈气态,如果暴露在环境中,会迅速升温。这些威胁包括但不限于易燃性和其他问题,例如焊接/阀门材料的脆化,以及通风管道/部件中环境空气的液化。 [align=center][color=#000099][img=低温绝热材料热性能,600,393]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151910230789_9197_3384_3.jpg!w690x452.jpg[/img][/color][/align][align=center][color=#000099]图2 绝热厚度(或漏热热流)固定时的每日蒸发率与罐体尺寸关系[/color][/align] 目前,低温介质的零蒸发存储技术(Zero Boil Off,ZBO)被用于控制蒸发损失,即利用低温制冷机主动冷却液氢储罐使其内部温度保持在20K以下,或者将沸腾的气态氢转化为[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]。 尽管主动冷却技术可有效减少净蒸发,然而对于实际的液氢储运,这种方法需要进一步评估,以确定这种方法在经济上是否可行,因为成本显著增加且有些储罐尺寸较大。总之,在任何情况下,无论有无采用主动冷却技术,被动防热技术中更有效的绝热材料以及绝热系统设计对于液氢储运都至关重要。[size=18px][color=#000099]二、六种候选绝热材料/系统[/color][/size] 在液氢储运方面,商业上存在多种绝热材料可供选择,材料性能差异很大,包括体积密度、复合结构、制造形式、老化、环境暴露和层密度等各种因素的具体变化,因此选择最佳绝热材料以最大限度减少热量进入储箱则是液氢储运中的一项重要内容。 (1)气凝胶材料 目前的气凝胶材料有多种形式,如颗粒(散装)、复合毯、无纺材料中的粉末或颗粒、片状和块状的聚酰亚胺交联气凝胶等。气凝胶复合毯可以提供非常低的热导率,同样,选择散装填充和复合毯型气凝胶材料可以提供额外的能力,因为它们具有纳米多孔结构的强度和超疏水性的化学成分。气凝胶材料的一个重要优点是它们可以吸附气体形式的单个氮分子,因为它冷却到稳态温度并避免形成液体。根据文献[2]中描述的测试及其结果,气凝胶有可能减轻非真空系统的低温泵浦效应。然而,这些实验是基于液氮的测试,还需在相关条件(液氢和非真空)下进行更多测试,以了解气凝胶材料对抗低温泵浦的性能和液氢储存的绝热效率。气凝胶材料相对较高的成本可能会限制其商业应用,但其安装成本可能低于传统泡沫材料,这意味着安装时的总成本以及生命周期考虑是关键指标。 (2)闭孔泡沫 闭孔泡沫材料主要有闭孔硬质泡沫板(RFP)和硬质喷涂泡沫绝热材料(SOFI),它们在限制传质方面表现良好,但有很大比例的开孔含量(至少5%),气态分子仍然可以通过这些开孔含量到达冷侧[3]。虽然闭孔泡沫刚性面板不存在此类问题,但随着时间的推移,它们可能会导致其他问题,例如所有接头、接缝和界面的完整性。由机械损坏(最初或随着时间的推移,或由热循环效应)产生的一系列小裂缝或间隙可能导致对抗低温泵浦或隔热效果的普遍退化。 (3)多层绝热(MLI)系统 虽然MLI在液氢储存方面的表现非常好,但它们可能不适合大规模装置,因为考虑到精致的物理结构,它们对真空的要求很高,而且在大规模工业使用中安装不切实际[4]。然而,已经开发成功的层状复合材料可以将MLI系统的反射特性与气凝胶的高机械强度、低导热性相结合,其中包括用于软真空到中等真空环境的分层复合绝热材料(LCI)[5]。LCI系统结合了气凝胶复合毯材料层,也已被证明具有机械强度[6]。 (4)分层复合绝热系统(LCX) 分层复合系统LCI的另一种变体是LCX,它用于非真空或室外环境[7]。组件包括第一层气凝胶复合毯与连续成对的气凝胶毯和可压缩阻隔层相结合。LCX系统也已成功用于7600升液氮储罐[8]和许多液氢输送管道和组件系统多年[9]。 (5)珍珠岩粉 用于真空夹层绝热系统的散装填充材料包括珍珠岩粉和中空玻璃微球(玻璃泡)。珍珠岩粉可以在施工现场通过裂解火山岩生产,成本相对较低。珍珠岩已广泛用于LNG绝热系统[10],也被NASA用在两个LH2球形罐的绝热系统[11]。 (6)3M玻璃泡 由硼硅酸盐玻璃制成的空心玻璃微球已被NASA广泛用于液氢储罐的应用测试,以替代珍珠岩[12,13]。玻璃泡在所有真空度下都比珍珠岩具有更好的热性能,并显示出更好的物理性能,即气泡不会因振动或热循环而破裂和压实变形。总体而言,玻璃泡表现出更强大的性能,并被证明是用于抽空液氢和其他低温介质储罐应用的优质散装绝热材料。[size=18px][color=#000099]三、绝热材料/系统热性能[/color][/size] 对于上述几种绝热材料或系统的热性能评价,采用了ASTM C1774“低温绝热系统热性能测试的标准指南”中推荐的测试方法。基于此方法测试获得的实验数据[14]对上述不同厚度绝热材料/系统在不同真空度下的等效热导率和漏热热流密度进行了汇总,如图3和图4所示。[align=center][color=#000099][img=低温绝热材料热性能,690,516]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151912153362_1201_3384_3.jpg!w690x516.jpg[/img][/color][/align][align=center][color=#000099]图3 各种不同厚度低温绝热材料/系统在不同真空度下的等效导热系数测试结果[/color][/align][align=center][color=#000099][/color][/align][align=center][color=#000099][img=低温绝热材料热性能,690,515]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151912292998_9572_3384_3.jpg!w690x515.jpg[/img][/color][/align][align=center][color=#000099]图4 各种不同厚度低温绝热材料/系统在不同真空度下的漏热热流密度测试结果[/color][/align] 决定热性能的一个主要因素是整个隔热系统在稳态操作条件下的真空度范围,即ASTM C1774中定义的冷真空压力(CVP)。因此,测试结果中的有效导热系数数据根据给定材料/系统分为三类CVP:高真空(HV,即小于1mTorr)、软真空(SV,即约100mTorr)和无真空(NV,即1个大气压或约760Torr)。另外所有测试中所设定的冷热面边界温度分别为78K和293K,残余气体为氮气。 基于实验数据[14]对上述绝热材料/系统的初步评估见表1,以进行一阶比较。[align=center][color=#000099]表1 各种低温绝热材料/系统及其性能[/color][/align][align=center][img=低温绝热材料热性能,690,319]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151912524819_2938_3384_3.png!w690x319.jpg[/img][/align][size=18px][color=#000099]四、总结[/color][/size] 通过上述几类候选绝热材料和系统的介绍,以及它们的各自特点和热性能,可以得出以下几方面的结论: (1)软真空SV范围和高真空HV范围之间的最大区别是根据系统的尺寸和几何形状,在大约50mTorr下发生向自由分子气体热传导的转换,即在软真空范围内绝热材料或系统的有效导热系数和进入的热流密度会发生数量级上的急剧变化。因此在现有绝热材料或系统中,无真空范围内的热泄露会非常严重,但可以希望通过相对简单的真空抽气设备和工艺可实现约100mTorr的软真空抽取能力,而实现1mTorr在技术上更难实现,尤其是对于大型系统。 (2)迄今为止,NASA已对700多种材料和系统中的大约50%进行了测试分析,测试筛选的结果如图3和图4所示。图中的阴影区域代表“中等低温蒸汽压力”区域,该区域在集成绝热系统中具有最大的应用潜力,使用较低总压力下运行的系统将需要较少的造价和维护。 (3)多年来NASA已经在全球建立起了唯一完备和系统的低温绝热材料/系统的热性能测试评价平台,并倡导建立了测试方法ASTM C1774。然而,这些实验的绝大多数是基于液氮的测试,对于用于液氢储运的绝热材料还需在相关条件(液氢和非真空)下进行更多测试,以了解绝热效率和其他物理性能。 (4)对于超低导热系数的绝热材料/系统的测试,ASTM C1774确实是一种非常有效的测试方法,此标准从2013年颁布以来经过多次修订,但目前还是一种ASTM的“标准指南-Standard Guide”。由于还存在许多技术难题(如低温下绝热材料样品收缩后的厚度在线测量修正和蒸发量热计侧向精确护热等)、无法进行不确定度考核评定、各种边界和环境等条件需要精确控制以及测试系统整体造价昂贵等问题,造成此方法一直无法升级为一种标准测试方法(Standard Test Method)或标准实施规程(Standard Practice)。总之,针对大规模液氢储运中的绝热材料和系统的导热系数测试,需建立有效和经济的新型测试方法,需提高测量精度和重复性精度。[size=18px][color=#000099]五、参考文献[/color][/size][1] Peschka W. Liquid hydrogen: fuel of the future. Springer Science & Business Media 2012 Dec 6.[2] Fesmire JE, Sass JP. Aerogel insulation applications for liquid hydrogen launch vehicle tanks. Cryogenics 2008 May 1 48(5e6):223-31.[3] Fesmire JE, Coffman BE, Meneghelli BJ, HeckleKW. Spray-on foam insulations for launch vehicle cryogenic tanks. Cryogenics 2012 Apr 1 52(4-6):251-61.[4] Fesmire J, Augustynowicz S, Darve C. Performance characterization of perforated multilayer insulation blankets. Proc Nineteenth Int Cryogenic 2002:843-6.[5] Fesmire JE, Augustynowicz SD, Scholtens BE. Robust multilayer insulation for cryogenic systems. In: AIP conference proceedings. vol. 985. American Institute of Physics 2008 Mar 16. p. 1359e66. 1.[6] Johnson WL, Demko JA, Fesmire JE. Analysis and testing of multilayer and aerogel insulation configurations. In: AIP conference proceedings. vol. 1218. American Institute of Physics 2010 Apr 9. p. 780-7. 1.[7] Fesmire JE. Layered composite thermal insulation system for nonvacuum cryogenic applications. Cryogenics 2016 Mar 1 74:154-65.[8] Fesmire JE. Layered thermal insulation systems for industrial and commercial applications. NASA report 2015. 2015 (report/patent#:KSC-E-DAA-TN26226).[9] Fesmire JE. Aerogel-based insulation materials for cryogenic applications. In: IOP conference series: materials science and engineering. vol. 502. IOP Publishing 2019 Apr, 012188. 1.[10] Bahadori A. Thermal insulation handbook for the oil, gas, and petrochemical industries. Gulf Professional Publishing 2014 Mar 14.[11] Krenn AG. Diagnosis of a poorly performing liquid hydrogen bulk storage sphere. In: AIP conference proceedings. vol. 1434. American Institute of Physics 2012 Jun 12. p. 376-83. 1.[12] Fesmire JE, Augustynowicz SD, Nagy ZF, Sojourner SJ, Morris DL. Vibration and thermal cycling effects on bulk-fill insulation materials for cryogenic tanks. In: AIP conference proceedings. vol. 823. American Institute of Physics 2006 Apr 27. p. 1359-66. 1.[13] Sass JP, Fesmire JE, Nagy ZF, Sojourner SJ, Morris DL, Augustynowicz SD. Thermal performance comparison of glass microsphere and perlite insulation systems for liquid hydrogen storage tanks. In: AIP conference proceedings. vol. 985. American Institute of Physics 2008 Mar 16. p. 1375-82. 1.[14] Fesmire JE, Swanger AM. Advanced cryogenic insulation systems. International Congress of Refrigeration. Montreal, Quebec, Canada: Intl Institute of Refrigeration Aug 2019.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 小型恒温控制系统设备焊接维修注意事项

    小型恒温控制系统设备在维修的时候注意点比较,无锡冠亚小型恒温控制系统设备专业厂家提醒,其焊接部分也是维修的重点之一,那么,小型恒温控制系统设备焊接的时候注意哪些方面呢?  小型恒温控制系统设备焊接时要对机箱及小型恒温控制系统设备各部件采取保护措施,防止被焊枪火焰烧坏。焊接时要注意焊枪火焰的调节,将火焰调节至中性火焰时才能焊接,焊接时速度要尽可能的快,避免长时间加热温度过高对压缩机、制冷阀体、铜管等产生破坏。  小型恒温控制系统设备焊接时如果发现焊接后铜管有发黑的现象应调大助焊剂的流量,直到焊接后铜管呈紫色为止。更换小型恒温控制系统设备板式换热器时,焊接时焊接点以下应泡在水中,使用含银 50%的银焊条对板换进行焊接,禁止不采取保温措施直接对板式换热器进行焊接否则会导致温度过高而损坏,焊接好后,一定要用保温板对其进行保温,防止表面结露。安装时,进液端在下部,出气管端在上部。  小型恒温控制系统设备的压缩机搬动过程中不得将压缩机横放或倒置,否则会使滑动部分的润滑性能降低导致压缩机启动时损坏。相对于水平状态的倾斜度不得超过 5 度,在拔去橡胶塞后应尽快焊入系统中,时间控制在 10 分钟内。更换毛细管时,不能随意增加或减少毛细管的长度,当毛细管的长度增加时,将会产生不利情况。铜管与毛细管、过滤器与毛细管套接时毛细管插入深度控制在 10mm 左右,铜管钎焊的装配间隙:单边为 0.05~0.15mm。  小型恒温控制系统设备的焊接部分是很重要的,同时需要注意其工艺部分的强化,焊接的部分尽量找专业点的技术人员进行焊接。

  • 反应釜温控系统压缩机保护重点

    反应釜温控系统压缩机保护重点

    反应釜温控系统在运行中压缩机作为其核心部分,性能是比较重要的,所以,对于压缩机的保护措施是很必要的,那么,反应釜温控系统压缩机怎么进行保护呢?  正常工作情况下,反应釜温控系统压缩机应该吸入制冷工质的干蒸汽,若是制冷工质流量大、热负荷变化太快、操作不当都可能 吸入湿蒸汽,或者液体工质,更甚者还有润滑油进入气缸,如果进入的液体太多,来不及从排气阀排出,气缸内的压力将急剧升 高形成液击,是气缸,气阀,活塞,连杆等零件损坏。因此反应釜温控系统可采取各类保护措施,比如安装气液分离器,使夹带在低压蒸汽中的 液体分离出来,保证压缩机的干行程;安装油加热器,在压缩机起动前对润滑油加入,降低溶在润滑油中的制冷剂量;或将气阀 组件用一弹簧紧压在气缸端部,形成假盖。  为确保反应釜温控系统电动机不过热,除了正确使用,注意维修外,还可安装反应釜温控系统过热继电器;还有缺相保护,常用的三相电动机缺相的话会导致反应釜温控系统电动机无法起动或过载,可采用反应釜温控系统过载继电器避免电动机因缺相损坏。  反应釜温控系统排气温度保护方法主要是将温控器安放在靠近反应釜温控系统排气口处,感应到排气温 度过高时,温控器动作切断电路。反应釜温控系统机组的壳体温度过高会影响压缩机的寿命,主要因冷凝器的换热能力不足引起,故要检查冷凝 器的风量或水量、水温是否合适。并检查反应釜温控系统制冷系统内是否混入空气或其它不凝性气体,亦或吸气温度过高等原因,应注意观察并检测。  反应釜温控系统操作人员平时也应该多多主要反应釜温控系统压缩机的维护保养,以免对压缩机造成损坏。[align=center][img=,400,400]http://ng1.17img.cn/bbsfiles/images/2018/08/201808131650584031_6226_3445897_3.jpg!w400x400.jpg[/img][/align]

  • 旋转蒸发仪温控器的更换过程

    旋转蒸发仪温控器的更换过程

    最近实验室的一台旋转蒸发器又出现问题了,实际温度显示“---”,最开始怀疑是是温度传感器出了问题。可是换了新的温度传感器后问题依旧,打开温控部分的外壳,用万能表测量温控部分电流发现异常,果断判断是温控器出现问题。http://ng1.17img.cn/bbsfiles/images/2014/04/201404111907_495904_2204446_3.jpg去掉旧的的温控器,并标记好接线点。http://ng1.17img.cn/bbsfiles/images/2014/04/201404111912_495905_2204446_3.jpg新买来的温度控制器和原来的品牌和型号一致http://ng1.17img.cn/bbsfiles/images/2014/04/201404111913_495908_2204446_3.jpg依旧说明书,连接线路。http://ng1.17img.cn/bbsfiles/images/2014/04/201404111912_495907_2204446_3.jpg用万能表测定后没用什么问题,就按原来的步骤组装,恢复原样。通电加热一切恢复正常,至此更换过程结束。多谢电工老吴的指点。

  • 原油储运损耗的分析探讨

    [font=Encryption][color=#898989]摘要:[/color][/font][font=Encryption][color=#666666] 石油是国家的重要战略物质,它的产量增加和质量提高都直接关系到国民经济各个部门的需要和发展。然而各种形式的损耗给企业和国家带来巨大的经济损失。原油储罐即使是万分之一的损耗率,带来的损失也是巨大的。本文将就原油储运损耗进行分析。[/color][/font]

  • 【原创大赛】毛细管电泳温控系统的改造方法

    【原创大赛】毛细管电泳温控系统的改造方法

    毛细管电泳温控系统的改造方法温度控制是所有仪器非常重要的一个环节,老仪器,或者国产仪器大多没有温度控制系统,到了炎炎夏日,许多实验就做不成了。这让我们十分苦恼又十分为难!http://ng1.17img.cn/bbsfiles/images/2013/11/201311201731_478420_2428063_3.jpg以毛细管电泳为例,该仪器本身没有柱温箱,需要通过冷冻液局部致冷,贝克曼的MDQ可以实现温控功能。但是国产仪器构造相对简单,就需要想办法冷却毛细管了。以前看过一部电视剧,叫做《我的团长我的团》,里面谈到了一种机枪叫做马克沁机枪,是水冷的机枪。后面查阅资料,才知道机枪也有风冷机枪。后面我和同学聊天,说起摩托车致冷,他说也有两种方式,即风冷和水冷。但是,风冷的效果没有水冷的效果好!我们的毛细管处在大气环境中,可以将其理解为风冷。可不可以设计一种毛细管,使其也具有水冷效果呢?于是按照这个思路和想法,我进行了如下的设计和实验。http://ng1.17img.cn/bbsfiles/images/2013/11/201311201728_478419_2428063_3.jpg毛细管水冷原理图首先到当地药店或者诊所购买一根输液管,在输液管上开两个小孔,将毛细管的绝大部分通过两个小孔插入输液管内部,然后用胶水将开孔处密封,保证水路不漏液。随后取一大桶,里面装满自来水,与输液管的两端构成虹吸系统。必要的时候,为了降低水的温度,里面可以加入冰块,进行致冷。根据书本知识,水的比热容最大,降温效果最好。当然如果有超级恒温水浴槽。理论上就可以实现恒温了,不过降低温度的成本可能会有点高啊!本人在不改变仪器结构和原理的条件下,进行了DIY,完完全全服从毛细管电泳分离的基本原理,通过水冷的方式有效的降低了毛细管体系的温度,使毛细管电泳的体系稳定,测试的结果稳定性更好!不过改造过程还是有风险的,一旦密封座的不好,就会漏液。

  • 基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统成果简介半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595303_3112929_3.png图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595304_3112929_3.jpg图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595305_3112929_3.jpg 图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595306_3112929_3.jpg 图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595307_3112929_3.jpg 图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571- 86872415、0571-87676266;Email: yangsuijun1@sina.com。微信公众号:中国计量大学工贸所工贸所网站:itmt.cjlu.edu.cn中国计量大学工业与商贸计量技术研究所中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。“应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。

  • 基于半导体制冷片的高精度温度控制系统-生命科学测试仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统-生命科学测试仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统成果简介半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/05/201605302259_595308_3112929_3.png 图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/05/201605302259_595309_3112929_3.jpg图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/05/201605302314_595310_3112929_3.jpg 图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/05/201605302314_595311_3112929_3.jpg 图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/05/201605302315_595312_3112929_3.jpg 图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571- 86872415、0571-87676266;Email: yangsuijun1@sina.com。微信公众号:中国计量大学工贸所工贸所网站:itmt.cjlu.edu.cn中国计量大学工业与商贸计量技术研究所中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。“应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。

  • 【分享】高密度聚乙烯的产品性能与包装与储运

    产品性能:高密度聚乙烯为无毒、无味、无臭的白色颗粒,熔点约为130℃,相对密度为0.941~0.960。它具有良好的耐热性和耐寒性,化学稳定性好,还具有较高的刚性和韧性,机械强度好。介电性能,耐环境应力开裂性亦较好。   熔化温度220~260℃。对于分子较大的材料,建议熔化温度范围在200~250℃之间。 包装与储运:贮存时应远离火源,隔热,仓库内应保持干燥、整洁,严禁混入任何杂质,严禁日晒、雨淋。运输应贮放在清洁、干燥有顶棚的车厢或船舱内,不得有铁钉等尖锐物。严禁与易燃的芳香烃、卤代烃等有机溶剂混运。例如,农夫山泉的四升装的矿泉水的大桶,就是此材料。 回收利用  HDPE是塑料回收市场增长最快的一部分。这主要因为其易再加工,有最小限度的降解特性和其在包装用途的大量应用。主要的回收利用是将 25%的回收材料,例如后消费回收物(PCR),与纯HDPE经再加工后用于制造不与食物接触的瓶子。

  • Cary Eclipse荧光分光光度计温控系统无法启动

    前段时间装Cary Eclipse荧光分光光度计软件(原来都装在C盘)的电脑中毒,我重装电脑系统后,又重温安装软件后,软件中的测光谱等都能使用,但昨天我发现吸收池温控系统控系统无法启动。是不是温控得另外安装???

  • 温控器如何工作

    温度控制器是对空调房间的温度进行控制的电开关设备。温度控制器所控制的空调房间内的温度范围一般在18℃--28℃。窗式空调常用的温度控制器是以压力作用原理来推动触点的通与断。其结构由波纹管、感温包(测试管)、偏心轮、微动开关等组成一个密封的感应系统和一个转送信号动力的系统。是新兴的一个仪器仪表大类,也是相关仪器仪表供应商较多的行业,其中深圳市华伦康盛科技有限公司是深圳地区代理温控器的厂商。这都得益于它的用途广泛。 没有PID控制温控器(英:Thermostat 日:サーモスタット)是集成编程器与软件并实现智能化控制温度的开关,可以自由调节室内温度,并能按用户要求设定各种时间段的开关和各种预设好的模式下自动运行调节室温;使之达到舒适的温度。真正达到方便、节能、舒适温暖的理想生活环境.适用于中央空调、单户取暖、地暖及各种燃油、燃气锅炉(壁挂炉)等设备的使用,是理想的温度控制产品及节能产品。  温度控制器有机械式的和电子式的, 机械式的采用两层热膨胀系数不同金属压在一起,温度改变时,他的弯曲度会发生改变,当弯曲到某个程度时,接通(或断开)回路,使得制冷(或加热)设备工作。 电子式的通过热电偶、铂电阻等温度传感装置,把温度信号变换成电信号,通过单片机、PLC等电路控制继电器使得加热(或制冷)设备工作(或停止)。 还有水银温度计型的,温度到就会有触点和水银接通。

  • 山西:推动氢能制储运加用全产业链发展,加快形成新质生产力

    为推动《山西省氢能产业发展中长期规划(2022-2035年)》实施,促进氢能产业高质量发展,2月18日,山西省发展改革委、省工信厅联合出台《山西省氢能产业链2024年行动方案》(以下简称《行动方案》)。[align=center][img]https://img1.17img.cn/17img/images/202402/uepic/dabab9a9-04a9-4270-a09b-cb26e56927f2.jpg[/img][/align]《行动方案》提出了开展氢能关键核心技术攻关、推进氢能创新平台建设、建立多元氢能供应体系、有序推进加氢站建设、有序开展氢能在交通领域示范应用、探索开展氢能在工业领域示范应用、打造氢能产业集聚区、推进氢能产业重大项目、开展氢能产业链招商、强化氢能行业交流合作、加强氢能全产业链安全管理等11项重点任务,明确3项保障措施,推动氢能制储运加用全产业链发展,加快形成新质生产力。[来源:高新处][align=right][/align]

  • 高低温试验箱如何建立温控

    高低温试验箱如何建立温控

    [url=http://www.weisifuqi.com/][b]高低温试验箱[/b][/url]是环境试验设备里边常用的溫度实验设备,两者之间相近的有关商品有高低温交变电场试验箱、恒湿试验箱、高低温寒湿交变电场试验箱等等。适用工业品高溫、超低温的可靠性测试。对电子电工、小车摩托车、航天航空、船只兵器图片、高等学校、科研机构等有关商品的零配件及原材料在高溫、超低温(交变电场)循环系统转变的状况下,检测其各类性能参数。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010221108017325_4916_1037_3.jpg!w348x348.jpg[/img][/align]  高低温试验箱是如何建立高溫与超低温的呢?  提到溫度,总有高溫与超低温的分别。高溫操纵是个加温的全过程,操纵较为简单。高低温试验箱的加温选用单独的加温方法,远红外线镍铬合金髙速升温加热丝,温控选用PID+SSR系统软件同频道栏目协调控制,功率均由全智能运算,以达高精及率的用电量经济效益。为超过迅速的提温速度和高溫度,通常是根据提升加温加热丝总数和提升温度控制手机软件操纵特性。  高低温试验箱的制冷机组选用泰康全封闭式制冷压缩机所构成的模块氟利昂制冷机组。致冷原理是选用逆卡若循环系统,该循环系统出2个等温过程和2个绝热过程构成。冷媒经制冷压缩机传热缩小到较高的工作压力、此循环系统循环往复进而超过减温的目地。高低温试验箱选用均衡控温(BTC),既在制冷机组在持续工作中的状况下,自动控制系统依据设置的溫度点根据PID全自动与运算輸出的結果去操纵电加热器的输出量,终超过这种稳定平衡。http://www.weisifuqi.com/

  • 石油储运用泵与泵房

    [font=宋体][font=宋体]泵是石油储运系统输送石油及其产品的主要机械设备。泵的作用就是给管路中的油品提供动力[/font](机械能),使它们能够克服管路各种摩擦阻力与位差,完成油品从这一设备输向另一设备。[/font]1[font=宋体]、[/font][font=宋体]泵的分类与选择[/font][font=宋体][font=宋体]泵的种类繁多,根据泵的工作原理一般分为叶片泵和容积泵两大类。机泵的选用一般应考虑以下几点[/font]:[/font][color=#787878][font=宋体](1)装卸油泵一般不连续运转,主要要求排量大、扬程不用太高,这样可以缩短装卸作业时间,提高油台和车辆利用率,一般多选离心泵。黏度过大,输送困难的油则多选用往复泵或齿轮泵。[/font][/color][color=#787878][font=宋体](2)原油泵是管道的关键设备,要求它工作可靠,能长期连续运转,而且压力、流量保持平稳,有利管道长周期、安全、稳定均衡生产,一般多选用离心泵。[/font][/color][color=#787878][font=宋体](3)用于输转、调合、倒罐等作业用泵,要求各泵使用灵活,适宜多种工艺需要,泵组之间又可以互为备用,所选机泵流量较大,扬程能满足各种工艺要求,一般也选离心泵。[/font][/color][color=#787878][font=宋体](4)添加剂品种多、用量小、黏度较大,多选齿轮泵或往复泵。化学药剂则选耐腐蚀离心泵。[/font][/color][color=#787878][font=宋体]各种类型的机泵都有自己特点。应用最广的离心泵和往复泵相比、离心泵的优点是结构紧凑、体积小、价格便宜、转速高、运转连续、操作简便、运转平稳、流量及压力量程范围广,并能输送高温热油或含有机械杂质的液体。但缺点是效率低,而且没有自吸能力。当泵位高于油罐时,需要在泵吸入口灌满液体才能开泵,不适宜输送黏度大的油品。往复泵的优点是自吸能力强。对黏度大、温度高的液体都可输送。它的缺点是主体笨重、转速低、流量不均匀、与电机相连要有减速装置、操作较离心泵麻烦,不宜用于输送透明轻质石油产品。常用各种类型机泵性能特点的比较见。[/font][/color]2、[font=宋体]泵房[/font][color=#787878][font=宋体]石油储运用泵通常分区集中布置,在满足防火安全前提下尽量靠近装置或罐区。各系统泵组均建有泵房或泵棚。[/font][/color][font=宋体]([/font]1[font=宋体])[/font][font=宋体]泵房的分类[/font][font=宋体][font=宋体]地上泵房、地下泵房、半地下泵房、原油泵房、轻油泵房、燃料油泵房、润滑油泵房、[/font]LPG泵房、原料泵房、输转泵房、调合泵房、装卸泵房。[/font][font=宋体]([/font]2[font=宋体])[/font][font=宋体]泵房的平面布置[/font][font=宋体][font=宋体]泵房设备主要包括泵机组、附属设备和阀组两大部分。泵房布置以输油泵机组为主体。布置原则是操作方便,利于检修,排列整齐,留有余地。泵机组数多时,双排布置,两排电机端净距不小于[/font]2m。同时对泵房的建筑、通风、电气设备等都有规范要求,如要求油泵房与配电间严格隔开。[/font][font=宋体]([/font]3[font=宋体])[/font][font=宋体]泵房流程[/font][font=宋体][font=宋体]流程的设计原则[/font]:实用、简洁、安全、灵活。[/font]

  • 广州亚运会开闭幕式电力监控系统

    摘 要: 输配和保护控制是电力应用的前提条件,也是电气建设的基本目的,对与要求用电要求用电稳定保障、力保万无一失的亚运开闭幕式场馆来说,更是如此。因此,亚组委在选择电气设备及供应商时,慎之又慎,上海安科瑞电气股份有限公司的电力监控系统Acrel3000真是在这基础上突引而出,成为亚运保供电系统的一员。1  概述  海心沙岛位于广州市珠江内江心沙洲,在珠江北主航道上,2010年第16届广州亚运会开幕式以及半个月后的闭幕式在此隆重举行。  整个岛内的供电由现场发电以及广州市供电局供电两部分组成,整个配电设施全部位于舞台下方的地下空间,包括四个配电区域,分别是:(1#)综合变配电房、舞台(2#)综合变配电房、地下空间(3#)综合变配电房、舞台(4#)综合变配电房,每个配电房包括10KV高压配电柜、直流屏、0.4KV低压配电柜、发电机、变压器等。在亚运会开闭幕式当晚,所有涉及表演、喷泉、音响等重要回路全部由现场发电机供电,其余看台、照明等由广州市供电局供电。  作为洲际大赛的开闭幕式会场,其对供配电系统的稳定性,安全性要求极高。因此,在每个综合变配区域设置一个电力监控系统工作站,实现对本变配电房各运行设备的运行状态的检测、预警,故障分析、统计输出与自动控制;在看台设备监控中心设一个中央控制室,系统服务器和主管理工作站设于该中央控制室,所有变配电房电力参数通过光纤传输至中央控制室。同时在广州市供电局10楼设置电力监控系统工作站,数据通过网络公司局域网,通过广东省104规约传输至供电局调度中心。从多方位,全角度,深层次来确保亚运供电万无一失。  集合以上要求,Acrel-3000电力监控系统充分利用了现代电子技术、计算机技术、计算机网络技术、现场总线技术的最新发展,对整个岛内的供配电系统进行分散数据采集和集中监控管理。2  系统的网络构成   本系统采用分层分布式计算机网络结构即间隔层、通讯层和站控层如下图所示:  作为整个配电系统的基础,现场间隔隔层主要的设备包括:多功能网络电力仪表、漏电流监测装置、微机综合保护装置、直流屏系统、变压器温度控制仪等。这些装置分别对应相应的一次设备安装在高低压电气柜、温控箱以及直流屏柜内,多功能网络仪表、漏电流监测装置、微机综合保护装置以及变压器温控仪采用RS485通讯接口,通过现场MODBUS总线组网通讯,直流屏系统采用232接口,通过CDT通讯协议实现数据现场采集。  通讯网络层主要为:通讯服务器、光端交换机、交换机。其主要功能为把分散在现场采集装置集中采集,同时远传至站控层,完成现场层和站控层之间的数据交互。  站控层:设有高性能工业计算机、显示器、UPS电源、打印机、报警蜂鸣器等设备。监控系统安装在计算机上,集中采集显示现场设备运行状况,以人机交互的形式显示给用户。  以上网络仪表均采用RS485、RS232接口通过MODBUS-RTU以及CDT通讯协议,RS485采用屏蔽线传输,一般都采用二根连线,接线简单方便;通讯接口是半双工通信即通信的双方都可以接收、发送数据但是在同一时刻只能发送或接收数据,数据最高传输速率为10Mbps。RS-485接口是采用平衡驱动器和差分接收器的组合,抗噪声干扰能力增强,总线上允许连接多达32个设备,最大传输距离为1.2km。  数据在站控层以串口协议数据转发的形式,通过局域网,传输给总服务器,在总服务器,以104规约,通过高速以太网,传输给广州市供电局调中心。3  系统的主要功能3.1 数据采集与处理  数据采集是配电监控的基础,数据采集主要由底层的测控装置采集完成,实现远程数据的本地实时显示。需要完成采集的信号包括:三相电压U、三相电流I、频率Hz、功率P、功率因数COSφ、电度Ep、远程设备运行状态、温度等数据。  数据处理主要是把按要求采集到的电参量实时准确的显示给用户,达到配电监控的自动化化和智能化要求,同时把采集到的数据存入数据库供用户查询、分析。避免了运行保障团队直接去配电室查看配电系统运行状态,确保在最短时间发现并排除故障。3.2 人机交互  系统通过全中文界面,CAD图形显示高低压配电系统一次主接线图,显示当前各回路设备运行信息,并实时刷新,并通过着色,显示当前回路运行状态,如下图所示:3.3 故障报警及事故追忆  在配电系统发生运行故障时,会及时发出声光报警提示用户及时响应故障回路,同时自动记录事件发生的时间地点,以被用户查询,追忆故障原因,记录如下图所示:3.4 用户权限管理  可根据用户要求添加和删除软件的用户数量和设置用户的权限。针对不同级别的用户,设置不同的权限组,防止因人为误操作给生产,生活带来的损失,实现配电系统的安全,可靠运行。3.5 运行负荷曲线  定时采集进线及重要回路电流负荷参量,自动生成运行负荷趋势曲线的,方便用户及时了解设备的运行负荷状况、实时显示重要回路的谐波数据(2—31次谐波),以及查询历史谐波数据等。  由于开幕式当晚对配电系统安全性要求极高,因此,在重要回路部分采用现场发电,保证配电系统运行安全,稳定。图4中,大红色曲线表示由广州市供电局供电功率趋势曲线,紫色部分为现场发电机发电功率趋势,绿色曲线表示当前总功率运行趋势,通过实时趋势曲线,可以帮助值班人员密切监视当前负荷运行状况。3.6 用数据库建立与查询  主要完成遥测量和遥信量定时采集,并且建立数据库,定期生成报表,以供用户查询打印。3.7 数据转发功能  所有运行数据均通过以太网,由海心沙现场值班室通过104规约,传输至广州市供电局调度中心,由市供电部门集中监视,统一运筹。4  系统特点  系统的软硬件全部模块化,硬件全部智能化。软硬件设计选择工业级标准,可靠性非常高;整个系统的智能控制终端,远程智能通讯控制器全部由16位微机组成,这种集散型控制系统速度快,实时性好,通讯可靠;智能控制终端自带CPU,采集周期短,实时性强,系统冗余度高;各个子系统都是独立工作,互不影响;并且和子系统都实现了模块化,进一步提高了整个系统的安全及可靠性。5  总结  本文介绍了广州亚运会开闭幕式电力监控系统的总体结构以及实现功能。在系统投资运营以后,已经经过了亚运开闭幕式多次开幕式预演的考验,并最终在亚运开闭幕式当晚成功发挥其功效。通过本系统对前几次预演所得数据进行分析,得出了最合适的发电负荷量,既保证了供电的可靠性,又实现了成本的节约,响应了节约办亚运的号召。

  • 真空室制冷加热恒温控制机组如何节能运行

    在节能减排运行的大环境下,无锡冠亚真空室制冷加热恒温控制机组如何高效运行是一件很重要的事情,接下来看看几个真空室制冷加热恒温控制机组技能降耗的小诀窍,看看如何使用的。  真空室制冷加热恒温控制机组的选型的非常重要的第一步,制冷量过小,影响生产,往往得不偿失;但是过大的制冷量则会在无形中增加企业成本,造成不必要的浪费。建议厂家在选购真空室制冷加热恒温控制机组的过程中将详细的工艺介绍清楚,让专业的人员来计算选配合适的真空室制冷加热恒温控制机组型号,需要冷却的对象以及降至所需温度所要求的时间。  在此过程中,千万要注意某些厂家在制冷量上做些小文章,往往夸大能效比,其实这些东西稍加注意便能返现其中的猫腻,有相关的数据显示制冷量功率理论上的数据,在实际的生产过程中,制冷量会低于理论值,根据环境的实际情况,制冷量会有波动。  真空室制冷加热恒温控制机组在保证生产需求和满足设备或是产品安全的前提下,提高蒸发温度,同时适当的降低冷凝温度,加大冷却塔的流量,以保证冷却水的效果;  完善真空室制冷加热恒温控制机组定期的日常维护保养工作,定期清理管道,减少管阻及防止管道结垢,增大流量,保证蒸发器和冷凝器充分补水,加强换热效率,不清洁的水源在长期的使用过程中,会产生碳酸钙和碳酸镁沉积管道中,影响换热效率,增加设备运行苏需要的功率,使得电费大幅度上升,在无形中增加企业成本。  无锡冠亚真空室制冷加热恒温控制机组采用全密闭管路,在运行的过程中,能够一定程度上降低真空室制冷加热恒温控制机组的能耗比,使得真空室制冷加热恒温控制机组高效运行。

  • 双层反应釜冷热源动态恒温控制机组压缩机启动故障说明

    双层反应釜冷热源动态恒温控制机组是制药化工行业中使用比较多的设备之一,其压缩机在无锡冠亚整个双层反应釜冷热源动态恒温控制机组中性能是比较重要的,那么在发现压缩机启动不了之后需要做好检查工作。  先检查双层反应釜冷热源动态恒温控制机组电源是否正常。电源电压不应超过或低于机组额定电压的±10%,常用的电压有3相380V、单相220V。当电压过低或过高时,不能启动双层反应釜冷热源动态恒温控制机组。有水系统的双层反应釜冷热源动态恒温控制机组压缩机组,仔细检查冷却水系统和冷冻水系统是否有水、水压是否正常,冷却水、冷冻水的管路系统是否畅通。  检查双层反应釜冷热源动态恒温控制的各种压力表、温度计、流量计、电磁阀、继电器、能量调节阀是否完好未失灵。检查双层反应釜冷热源动态恒温控制机组传动装置,若用带传动,其各种防护装置是否完全可靠,各种做错用具、防护用具是否齐全有效。检查工业双层反应釜冷热源动态恒温控制高压系统、低压系统的各类阀门,在起动或运转时的开关状态是否正确。  检查双层反应釜冷热源动态恒温控制机组曲轴箱润滑油。油面不应低于指示油位,也不应高于指示油位。若润滑油不够,应加足相同规格、型号的润滑油。检查工业双层反应釜冷热源动态恒温控制制冷剂系统是否有泄漏现象,润滑油系统是否漏油。检查储液罐的液位液面是否正常,液面应保持在三分之一到三分之二之间。  双层反应釜冷热源动态恒温控制机组在遇到简单的故障就需要及时处理,如果解决不了,联系双层反应釜冷热源动态恒温控制机组厂家-无锡冠亚进行售后故障解决。

  • 溶液不稳定 温控效果有差异

    求助一个问题:有一个样品,固体状态稳定,溶液状态在室温下易降解,生成另外一种物质,因此目前使用液相色谱分析,是采用进样室温控4度。A,B两地仪器均为安捷伦1260进样室温控模块,在A地,温控无问题,10个小时也仅仅降解0.1%,有关物质测定很稳定;在B地,温控有问题,1一个小时生成1%,有关物质测定不达标。自己分析原因:1 样品本身有问题。(同一样品,A,B两地测定结果明显,个人觉得不太可能。)2 溶液在配置过程中耗时太久。(有可能,有前科)3 样品稀释剂温度过高。(超声引起溶液升温,有可能)4 实际温控效果不太好。(数显温度计测定为4.6度)还可能有什么原因造成的那,请指教

  • 激光雷达中F-P标准具的精密热电冷却器温控解决方案

    激光雷达中F-P标准具的精密热电冷却器温控解决方案

    [align=center][size=16px][img=高热稳定性法布里-珀罗标准具,600,451]https://ng1.17img.cn/bbsfiles/images/2023/10/202310041528303739_744_3221506_3.jpg!w690x519.jpg[/img][/size][/align][b][size=16px][color=#990000]摘要:法布里-珀罗标准具作为一种具有高温度敏感性的精密干涉分光器件,在具体应用中对热稳定性具有很高的要求,如温度波动不能超过±0.01℃,为此本文提出了相应的高精度恒温控制解决方案。解决方案具体针对温度控制精度和温度均匀性控制两方面的技术要求,采用了TEC热电技术及其相应的高精度加热制冷恒温装置,采用了多个TEC热电片圆周分布结构以保证温度均匀性。此解决方案在实现高热稳定性的同时,还可以进行推广和拓展应用。[/color][/size][/b][align=center][b][size=16px][color=#990000]=====================[/color][/size][/b][/align][b][size=16px][color=#990000][/color][/size][size=18px][color=#990000]1. 问题的提出[/color][/size][/b][size=16px] 法布里-珀罗标准具(Fabry-Pérot Etalon)是一种应用广泛的高分辨干涉分光仪器,可用于高分辨光谱学和研究波长靠近的谱线,诸如元素的同位素光谱、光谱的超精细结构、光散射时微小的频移、原子移动引起的谱线多普勒位移和谱线内部的结构形状;也可用作高分辨光学滤波器、构造精密波长计,在激光系统中它经常用于腔内压窄谱线或使激光系统单模运行;可作为宽带皮秒激光器中带宽控制以及调谐器件,分析、检测激光中的光谱(纵模、横模)成分。[/size][size=16px] F-P标准具是一种基于多光束干涉原理的光学元件,其主体由镀有对应部分反射膜或高反膜的两个平行表面构成,结构上可分为固体单腔标准具,固体多腔标准具,空气隙标准具,密封腔标准具等。[/size][size=16px] F-P标准具是一种对温度非常敏感的光学器件,温度的微小变化都会引起波长的漂移,因此在实际应用中,大多都要求标准具需有较高的热稳定性,如工作温度波动不能大于±0.01℃,这就对标准具的温度均匀性和稳定性提出了很高要求。[/size][size=16px] 为了实现F-P标准具的高热稳定性,本文提出了相应的解决方案,解决方案的重点是解决温度的均匀性和温度控制的稳定性问题。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是将圆片形式法布里-珀罗标准具装配在一个具有前后光学窗口的恒温装置内,前后光学窗口与标准具为同轴形式构成光路,恒温装置要实现的具体指标如下:[/size][size=16px] (1)温度控制在比室温高5~10℃,如30℃。[/size][size=16px] (2)标准具上的温度波动性优于±0.01℃。[/size][size=16px] (3)标准具上的温度均匀性也要优于±0.01℃。[/size][size=16px] 为了实现略高于室温且波动性小于±0.01的标准具温度控制,解决方案采用了半导体制冷片(即TEC帕尔贴片)作为加热和制冷源,利用TEC片即可加热又可制冷的帕尔贴效应,可将温度精确控制在室温附近的温度范围内。由半导体制冷片组成的加热制冷控制装置如图1所示。[/size][align=center][size=16px][color=#990000][b][img=01.TEC半导体冷热温度控制装置结构示意图,690,356]https://ng1.17img.cn/bbsfiles/images/2023/10/202310041530220088_6996_3221506_3.jpg!w690x356.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 TEC半导体冷热温度控制装置结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,标准具精密温控装置主要由TEC片、温度传感器、TEC电源换向器和超高精度温度控制器组成,它们的功能和相应指标如下:[/size][size=16px] (1)TEC片尺寸可根据标准具温控装置的结构设计进行选择。为了增大加热制冷功率以及使得标准具温度均匀,可采用多个TEC片的并联结构。[/size][size=16px] (2)温度传感器采用具有高精度的铂电阻和热敏电阻,温度测量精度要高于±0.01℃。[/size][size=16px] (3)TEC电源换向器是TEC温控必备部件,可接收控制信号对加热电流方向进行自动换向而分别进行加热和制冷,由此来实现温度的高精度恒定控制。[/size][size=16px] (4)超高精度温度控制器是一种具有目前最高测量和控制精度的工业用PID调节器,具有24位AD、16位DA和0.01%的最小输出百分比。调节器接收温度传感器信号,将此信号与设定温度值比较后按照PID算法计算,然后输出控制信号来驱动TEC电源换向器进行加热和冷却操作。此超高精度温度控制器自带功能强大的计算机软件,无需再编写任何程序即可与计算机构成完整的温控系统,实现温度的程序控制设定、远超操作、过程曲线显示和存储。[/size][size=16px] 为了使标准具具有高热稳定性,除了需要精确恒定的对温度进行控制之外,还需解决的另外一个问题就是如何使标准具温度均匀。为此,本解决方案所设计的标准具加热装置如图2所示。[/size][align=center][size=16px][color=#990000][b][img=02.高热稳定性F-P标准具TEC热电半导体恒温装置结构示意图,600,296]https://ng1.17img.cn/bbsfiles/images/2023/10/202310041530510655_9147_3221506_3.jpg!w690x341.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 高热稳定性F-P标准具TEC热电半导体恒温装置结构示意图[/b][/color][/size][/align][size=16px] 图2所示意的F-P标准具TEC热电半导体恒温装置,主要由F-P标准具、标准具基座、均热器、TEC制冷片、TEC散热器和外部水冷器组成。此恒温装置设计为圆形结构以形成均匀的温度分布,其中标准具安装固定在圆筒型标准具基座内,高导热纯铜材质的均热器为标准具基座提供均匀温度,而三个圆周三角形分布且并联连接的TEC制冷片为均热器提供加热和制冷,使均热器温度按照设定温度进行精密控制。TEC热电片的散热则通过高导热铝块散热器与外部水冷器形成热连接,为TEC热电片提供稳定的冷却功率,这也是实现TEC热电片高精度温度控制的关键。[/size][size=16px] 另外需要说明的是,在均热器上同样均匀布置了三个温度传感器(图2中并未示出),其中一个作为控制传感器,另外两个作为测温传感器以监视温度均匀性。[/size][size=16px] 这里还需补充的是,图2所示结构仅是为了方便说明标准具恒温装置的基本原理和功能,相关的热膨胀匹配和隔热装置等内容并未示出。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文所示的解决方案从温度控制精度和均匀性两个方面很好的解决了F-P标准具的热稳定性问题,采用TEC热电技术所设计的标准具恒温装置可将温度精确控制在±0.01℃的波动范围内,对称结构设计使得标准具同时还具有很好的温度均匀性以及长期稳定性。[/size][size=16px] 此解决方案可以推广应用到其它与F-P标准具相关的仪器设备中,而且还具有一定的拓展功能,解决方案的结构设计在实现高热稳定性的同时,也为精密气压控制奠定了技术基础,为了标准具的应用可提供更稳定的使用环境。[/size][size=16px][/size][align=center][size=16px][color=#990000][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 【求助】温控显示的测量温度来回跳动

    降温实验,降到490度附近,温控显示的温度会在490左右和530度左右来回跳动,最后稳定在520多度,然后温度继续降低。过程中,即使我停掉加热电源也是如此,换新热偶还是如此。好奇怪!求高人解答!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制