当前位置: 仪器信息网 > 行业主题 > >

垂直腔发射激光器

仪器信息网垂直腔发射激光器专题为您提供2024年最新垂直腔发射激光器价格报价、厂家品牌的相关信息, 包括垂直腔发射激光器参数、型号等,不管是国产,还是进口品牌的垂直腔发射激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合垂直腔发射激光器相关的耗材配件、试剂标物,还有垂直腔发射激光器相关的最新资讯、资料,以及垂直腔发射激光器相关的解决方案。

垂直腔发射激光器相关的论坛

  • 【分享】科学前沿--宽禁带氮化物面发射半导体激光器研究获重大突破

    863计划新材料领域“蓝绿色垂直腔面发射半导体激光器”课题近日取得重大突破,在我国(除台湾地区外)首次实现了室温光泵条件下氮化物面发射激光器(VCSEL)的受激发射,所得器件重要性能指标超过了国际报道的最好水平。这标志着我国氮化物面发射激光器研究已进入世界先进行列。该成果由厦门大学、中国科学院半导体研究所和厦门三安电子有限公司组成的合作研究团队,经过将近一年的艰苦研发,攻克高质量增益区材料的生长、高反射介质膜分布布拉格反射镜的制作和蓝宝石衬底剥离等关键技术难题后得以实现。所使用的增益区是研究团队自主设计的由纳米级尺寸氮化物量子阱材料构成的新型特殊结构,利用该结构容易获得光场波峰与增益区峰值高的匹配因子,使激射阈值降低了一个量级。激光剥离后氮化物材料的表面平整度小于几个纳米,可以直接沉积反射镜,免除了减薄抛光工艺,简化了制作过程。该研究得到激射峰值波长449.5纳米,激射阈值6.5毫焦/平方厘米,半高宽小于0.1纳米。以上结果在国际上处于前沿先进水平。氮化物面发射激光器在激光显示、激光照明、激光高密度存储、激光打印,水下通信等方面有着广阔的应用前景。该成果为进一步研制实用化氮化物面发射激光器奠定了重要的基础。来源:科技部

  • 【分享】俄提出伽马射线激光器研发新方案

    2011年05月04日 来源: 科技日报 作者: 常丽君  本报讯 长期以来,建造原子核伽马激光器一直是个难题。据美国物理学家组织网5月2日报道,莫斯科大学核物理专家最近提出了一种新方案,并从理论上证明,钍原子核受激产生的伽马辐射也能发出相干“可见”光。相关研究发表在最近出版的《物理评论快报》上。   尽管原子核伽马射线激光也是以受激辐射为基础,但操作起来却和普通激光大不相同。在通常物质中,处于低能级的原子数大于处于高能级的粒子数,为了得到激光,必须使高能级上的粒子数目大于低能级上的原子数目,这种情况称为粒子数反转。在普通激光中,粒子数反转是让高能态电子比低能态电子多。普通激光的光子由原子或离子发出,而伽马射线激光的光子是由原子核发出,也称为原子核光。  原子核光的产生至少要克服两个基本难题:一是积累一定量的同质异能原子核(能长时间保持激发态的原子核),二是缩小伽马射线发射界限。莫斯科大学核物理学院的尤金·塔卡利亚解释说,他们利用钍元素的独特原子核结构,满足了这些要求,与外部激光的光子直接反应的是钍原子核,而不是它的电子。  研究小组使用了一种锂—钙—铝—氟(LiCaAlF6)混合物,并用钍替代了其中一些钙。当足够数量的同质异能钍原子核被外部激光激发后,原子核跟周围的电磁场发生反应,产生了粒子数反转,使整个系统中激发态的原子核多于非激发态原子核。然后,原子核能够发射或吸收光子而不会反冲,能发光而不会损失能量。  塔卡利亚表示,该研究中的原子核伽马射线激光只能发射“可见的”真空紫外光或称视觉范围的伽马射线。其应用之一是,可作为原子核频率的度量标准,即“原子核钟”。此外,该设备还可用以测试许多自然界的基本属性,如衰变指数定律和精细结构常数的变化效应等。(常丽君)

  • 便携式拉曼光谱仪激光器使用寿命是多少

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  便携式拉曼光谱仪激光器使用寿命是多少,便携式拉曼光谱仪的激光器使用寿命并不是一个固定的数值,因为它受到多种因素的影响。以下是一些影响激光器使用寿命的关键因素以及相应的解释:  控制发射功率:合理地控制激光器的发射功率是延长激光器寿命的有效方法之一。控制发射功率可以缓解晶体加热的程度,从而减缓晶体老化的速度。  维护工作环境:保持工作环境的良好通风和恒温状态,控制温度在激光器所允许的范围内,能够有效地延长激光器的使用寿命。  日常维护工作:多关注激光器的运行状态,及时更换性能不佳的部件,定期清洗光学元件和泵浦激光器,做好日常维护工作,也可以有效延长激光器的使用寿命。  具体到数值上,由于不同品牌和型号的便携式拉曼光谱仪激光器存在差异,以及使用环境、操作方式等因素的不同,因此无法给出确切的使用寿命数字。  然而,一般而言,如果正确操作和维护,激光器的使用寿命可以达到数千小时甚至更长。但是,这只是一个大致的估计,实际使用寿命可能因具体情况而异。  为了延长便携式拉曼光谱仪激光器的使用寿命,建议用户遵循以下几点:  仔细阅读并遵守产品说明书中的操作和维护指南。  定期对激光器进行清洁和检查,确保其处于良好的工作状态。  避免将激光器暴露在极端温度、湿度或灰尘环境中。  遵循正确的开关机顺序和操作流程,避免对激光器造成不必要的损害。  总之,虽然无法给出便携式拉曼光谱仪激光器确切的使用寿命数字,但通过正确的操作和维护,可以有效地延长其使用寿命。[/size][/color][/font]

  • 新型超小激光器只有一个病毒大小

    突破阈值限制 可在室温下工作2012年11月07日 来源: 中国科技网 中国科技网讯 据物理学家组织网11月6日(北京时间)报道,美国西北大学的一个研究小组开发出一种只有一个病毒大小的超小型激光器。这种激光器具有体积小、室温下即可工作的特点,能够很容易地集成到硅基光子器件、全光电路和纳米生物传感器上,具有极为广阔的应用前景。相关论文发表在近日出版的《纳米快报》杂志上。 光子和电子元件的尺寸对超快数据处理和超高密度信息存储至关重要,因此,小型化是此类设备未来发展所必须攻克的一个难关。负责这项研究的纳米技术专家,西北大学温伯格学院艺术与科学学院以及麦考密克工程和应用科学学院材料学教授泰瑞·奥多姆说,纳米尺度上的相干光源不仅能够用来对小尺度的物理化学现象进行探索和分析,同时也能够帮助科学家打破光的衍射极限。 奥多姆称,能够制造出这种纳米激光器,都要归功于一种3D蝴蝶结式的纳米金属空腔结构。这种激光腔的几何结构能够产生表面等离子激元,这是一种在金属介质界面上激发并耦合电荷密度起伏的电磁振荡,具有近场增强、表面受限、短波长等特性,在纳米光子学的研究中扮演着重要角色。当产生表面等离子激元后,由于金属表面电子的集体震荡,因而能够最大限度的突破阈值限制,让所有光子都以激光形式进行发射,不浪费任何光子。这种蝴蝶结状结构的使用与先前类似的设备相比有两个明显的好处:第一,由于其电磁特性和纳米尺寸的体积,这种结构清晰可辨认。第二,由于其离散结构,损失可以减到最少。 此外,研究人员还发现,当这些结构排列成为一个阵列时,3D蝴蝶结谐振器能够根据晶格的参数发射出带有特定角度的光。(记者 王小龙) 总编辑圈点 科学家以前开发出的极小尺寸机器,包括小轮子、小马达和小弹簧等等,大多是机械类的。纳米光电类机器也有不少,但光源很难缩小到这个尺寸,使得纳米级光电路链条难以完整。美国西北大学研发的迄今最小的激光源,让纳米级光电路的元件齐全了。这意味着,完全依靠病毒或细菌大小的机器,信息的采集、传递和计算也可以实现。“小尺度的智慧”可能很快超出人们的想象。 《科技日报》(2012-11-07 一版)

  • 【转帖】世界首个反激光器问世

    http://i1.sinaimg.cn/IT/2011/0222/U5385P2DT20110222082412.jpg传统激光器利用增益媒介产生连续光束。http://i3.sinaimg.cn/IT/2011/0222/U5385P2DT20110222082423.jpg反激光器将被证实在电脑计算方面的应用会比在武器防御方面更有用。  北京时间2月22日消息,美国物理学家研制成世界首个反激光器,它可完全抵消激光器发出的光束。这种装置由美国耶鲁大学科研组制成,它能完全吸收入射激光束。  不过研究人员表示,该装置并不是用来防御高能激光武器的。他们认为,可以把这种反激光器应用到下一代超级电脑上,这种电脑利用光而非电子等成分制造。耶鲁大学的道格拉斯·斯通教授和他的同事最初是为了提出一项理论,用来解释哪种材料可以当作激光器的基本组成要素。  斯通解释说,当前在激光器设计方面取得的新进展,导致大量与众不同的装置产生,它们无法通过传统激光器概念进行解释。他说:“因此我们正在设想一种新理论,以便预测什么材料能够制成激光器。”通过该理论还能预测到,他们制造的反激光器不像激光器那样可以增强光,它可能会吸收入射光束。现在他们已经成功制造了一个这种装置。  他们的装置将两束特殊频率的激光束集中到一个经过特殊设计的、用硅制成的光共振腔里,硅晶片用来捕捉入射光,束缚住它们,直到它们的能量消耗完为止。他们在《科学》杂志上的论文里说,反激光器能吸收99.4%的一种特殊波长的入射光。斯通表示,改变入射光的波长,意味着可以利用光学开关有效打开和关闭反激光器。  斯通表示,制造可以吸收不同波长的光的装置非常简单,但是像反激光器一样只吸收一种特殊波长的光的装置,可能对光学电脑有好处。反激光器的一大优势是它是用硅制造的,这种物质已经广泛应用于电脑中。据斯通说,该技术不会太多应用于激光护目镜上。他说:“它会以热的形式驱散光。因此,如果一些人利用高能激光烘烤你,反激光器是无法阻止的。”

  • 世界最强X射线激光器会是什么样子的?

    据国外媒体报道,美国国家加速器实验室近日利用世界上最强大的X射线激光器--直线加速器相干光源激光器再现恒星内部强大的压力与高温情形。这种激光器的激光能量迸发可超过一个小国家全年的发电总量。  在实验中,科学家将X射线聚焦于一个直径比人类头发丝还要细30倍的小点上,在1万亿分之一秒内将金属箔加热到200万摄氏度。金属在如此短的时间内被熔化,其所产生的极度高温和高压状态,通常只有在恒星内部才会出现。  英国牛津大学物理系科学家萨姆-文科博士等人参与了直线加速器相干光源激光器实验。文科博士表示,“如果我们要想了解现存恒星内部的情形以及我们太阳系内外巨型行星中心的情形,那么制造高温、高密度的物质非常重要。直线加速器相干光源激光器是一台神奇的机器,我们已经在多个科学领域取得了重大发现,如材料科学、生物学等。”  直线加速器相干光源激光器的实验成果近日发表于《自然》杂志之上。直线加速器相干光源长约2公里,可以产生密集的X射线爆发,亮度超过地球上任何光源10亿倍。在高峰时,光脉冲的能量甚至比一些小国家一年的发电总量都要多

  • 美探索用反物质制造伽马射线激光器 探测微小空间

    美探索用反物质造伽马射线激光器 可对非常微小的空间进行探测 科技日报讯 传统激光器的操作光波可从红外线到X射线一网打尽,而伽马射线激光器则依靠比X射线更短的光波来运行,这就使其能产生波长仅为X射线千分之一的光波,从而能对非常微小的空间进行探测,并在医学成像领域大展拳脚。不过,长期以来,建造伽马激光器一直是个难题。现在,美国科学家让一类名为“电子偶素(positronium)”的物质—反物质混合物作为增益介质,将普通光变成了激光束。 据美国趣味科学网站5月8日报道,在最新一期的《物理评论·原子分子物理》杂志上,马里兰大学联合量子研究所的王逸新(音译)、布兰登·安德森以及查尔斯·克拉克撰文表示,他们发现,当向电子偶素提供特定能量,它将产生在其他能量下无法制造出的激光;而且,要制造出激光束,这种电子偶素必须处于玻色—爱因斯坦凝聚态下。 克拉克解释道,这种奇怪的效应与电子偶素的“性格”有关。每个电子偶素“原子”实际上是一个普通的电子和一个正电子(电子的反物质)。正电子和电子分别带正负电荷。当它们相遇时,会相互湮灭并释放出两个高能光子,这两个光子位于伽马射线范围内,反向移动。 有时,电子和正电子会围绕对方旋转,就像电子围绕着质子旋转组成原子一样。然而,正电子比质子轻,因此电子偶素并不稳定,在不到十亿分之一秒内,电子和正电子会相互碰撞并发生湮灭。 为了制造出伽马射线激光器,科学家们需要使电子偶素的温度非常低,接近绝对零度(零下273摄氏度)。这一冷却过程会让电子偶素进入波色—爱因斯坦凝聚态,这种状态下物质内的所有原子,也就是电子—正电子对,进入同样的量子状态,一举一动整齐划一。 量子状态的一个方面是自旋。电子偶素的自旋数要么为1,要么为0。一束远红外线光脉冲能让电子偶素的自旋数为0。自旋为零的电子偶素会湮灭并产生双方向相干的伽马射线束—激光束。研究人员表示,能做到这一点是因为所有电子偶素“原子”拥有同样的自旋数。如果是自旋为0和自旋为1的电子偶素随机组合,那么,光会朝各个方向散射。 研究人员也计算出,为了让一台伽马射线工作,每立方厘米大约需要1018个电子偶素原子,听起来有点多,但与空气的密度相比还是少很多,同样体积的空气大约有2.5×1019个原子。 在1994年首次提出伽马射线激光器这一概念的贝尔实验室的艾伦·米尔斯表示,研究人员可以借用数学方法,让制造这种激光器所需要的环境更加精确。(刘霞)来源:中国科技网-科技日报 2014年05月10日

  • 【转帖】He-Ne激光器与半导体激光器

    半导体激光器又称激光二极管(LD),是二十世纪八十年代半导体物理发展的最新成果之一。导体激光器的优点是体积小、重量轻、可靠性高、使用寿命长、功耗低,此外半导体激光器是采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低等。因此应用领域日益扩大。目前,半导体激光器的使用数量居所有激光器之首,某些重要的应用领域过去常用的其他激光器,已逐渐为半导体激光器所取代。它的应用领域包括光存储、激光打印、激光照排、激光测距、条码扫描、工业探测、测试测量仪器、激光显示、医疗仪器、军事、安防、野外探测、建筑类扫平及标线类仪器、激光水平尺及各种标线定位等。以前半导体激光器的缺点是激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差.但随着科学技术的迅速发展,目前半导体激光器的的性能已经达到很高的水平,而且光束质量也有了很大的提高.以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展,发挥更大的作用。 在气体激光器中,最常见的是氦氖激光器。1960年在美国贝尔实验室里由伊朗物理学家贾万制成的。由于氦氖激光器发出的光束方向性和单色性好,光束发散角小,可以连续工作,所以这种激光器的应用领域也很广泛,是应用领域最多的激光器之一,主要用在全息照相的精密测量、准直定位上。He-Ne激光器的缺点是体积大,启动和运行电压高,电源复杂,维修成本高。

  • 德研发快速检测水质的激光器

    据新华社柏林10月23日电 德国科研人员利用激光技术,推出了一种饮用水快速检测法,仅需几分钟就可得出检验结果。 德国弗劳恩霍夫应用固体物理研究所日前发表研究公报称,一种特殊的红外线激光器可以对自来水厂的饮用水样本进行自动分析。这种激光器的体积仅为鞋盒大小,其工作原理是,每种化合物分子都有特定的吸收光谱,用红外线激光照射水样本并分析其吸收光谱就可以确认化合物的种类。 这套红外线激光器已在德国黑森林地区的金齐希河自来水厂进行试用。在六周的时间里,这套仪器每隔三分钟就会对饮用水样品进行自动检测,共进行了约2.1万次检测,结果非常精确。 除对饮用水进行日常检验分析外,这套仪器还能快速检验出水中的危险物质,这将有助于政府部门对水污染事件作出快速反应。

  • 氦氖激光器与半导体激光器的性能有何差异?

    [font=宋体]同样作为激光器,氦氖激光器稳定性比普通半导体激光器的稳定性更高,主要原因在于激光器受温度影响,激光波长会发生偏移,氦氖激光器的温度稳定度相比半导体激光器更稳定,受环境影响更小。[/font]

  • 3微米光纤激光器发展空间巨大

    目前, 3 μm 波段光纤激光器在高功率化、 降低成本化、 生产规模化等方面还有许多限制。无氧玻 璃在原料提纯、 大尺寸制备、 光纤拉制等方面的工艺 仍显不足, 这也是制约所有中红外发光稀土掺杂光 纤走向实用化的最大障碍。另外, 提高稀土离子浓度虽能提高光纤单位长 度增益, 但也会增加光纤的传输损耗或发生浓度淬 灭现象, 也制约了其发展。而 “级联” 掺 Er 3 + 光纤激 光器由于具有较低的掺杂浓度和纤芯温度具有十分 广阔的研究前景。同时, 掺 Ho 3 + 光纤激光器由于采 用 1150 nm 的抽运光, 斜效率更高, 也具有较好的应 用前景。

  • 寻激光发射器探头

    请问谁知道在哪买激光发射器的探头,实验室原来的老化了,现在没法用;原来的厂家倒闭了,咨询过好多家都说没有?谢过了

  • 国产HeCd激光器推荐

    测zno的PL谱一般要用到325nm的HeCd激光器作为激发光源吧。但苦于进口的激光器动辄十几万,预算不够,大伙有没较便宜的国产激光器推荐的。谢谢!

  • 【分享】俄提出伽马射线激光器新方案 或可作"原子核钟"

    长期以来,建造原子核伽马激光器一直是个难题。据美国物理学家组织网5月2日报道,莫斯科大学核物理专家最近提出了一种新方案,并从理论上证明,钍原子核受激产生的伽马辐射也能发出相干“可见”光。相关研究发表在最近出版的《物理评论快报》上。

  • 半导体激光器的优点和缺点

    半导体激光器又称激光二极管(LaserDiode,LD),是二十世纪八十年代半导体物理发展的最新成果之一。半导体激光器的优点是体积小、重量轻、可靠性好、使用寿命长、功耗低。此外,半导体激光器采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低。目前,半导体激光器的使用数量居所有激光器之首,某些重要的应用领域,过去常用的其他激光器,已逐渐被半导体激光器所取代。此外,半导体激光器品种繁多,既有波长较长的红外、红光,也有波长较短的绿光、蓝光,可以利用这些优势拓展激光粒度仪的测量范围, 提高测量精度。早期的半导体激光器激光性能受温度影响大,光束的发散角也大( 一般在几度到 20 度之间 ),所以在方向性、单色性和相干性等方面的性能并不理想。但随着科学技术的迅速发展,目前半导体激光器的的性能已经达到很高水平,光束质量也有了很大提高,因此世界上大多数品牌的激光粒度仪都使用半导体激光器做为光源,半导体激光器用作激光粒度仪的光源时,在控制电路上须采取恒流和恒温措施,以保证输出功率的稳定。

  • 半导体激光器的优点和缺点有哪些?

    [font=&]半导体激光器又称激光二极管(LaserDiode,LD),是二十世纪八十年代半导体物理发展[/font][font=&]的最新成果之一。[/font][font=&]半导体激光器的优点是体积小、重量轻、可靠性好、使用寿命长、功耗低。此外,半导体激[/font][font=&]光器采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低。目前,半导体激光[/font][font=&]器的使用数量居所有激光器之首,某些重要的应用领域,过去常用的其他激光器,已逐渐被[/font][font=&]半导体激光器所取代。此外,半导体激光器品种繁多,既有波长较长的红外、红光,也有波[/font][font=&]长较短的绿光、蓝光,可以利用这些优势拓展激光粒度仪的测量范围, 提高测量精度。[/font][font=&]早期的半导体激光器激光性能受温度影响大,光束的发散角也大( 一般在几度到 20 度之[/font][font=&]间 ),所以在方向性、单色性和相干性等方面的性能并不理想。但随着科学技术的迅速发展,[/font][font=&]目前半导体激光器的的性能已经达到很高水平,光束质量也有了很大提高,因此世界上大多[/font][font=&]数品牌的激光粒度仪都使用半导体激光器做为光源,半导体激光器用作激光粒度仪的光源时,[/font][font=&]在控制电路上须采取恒流和恒温措施,以保证输出功率的稳定。[/font]

  • ICP光谱观察方式比较:垂直观测、水平观测、双向观测

    在ICP光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观测(Radial)、水平观测(Axial)和双向观测(DUO),下面介绍他们的区别:ICP光谱仪垂直观测:又称为垂直观测或者测试观察,是采用垂直放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向垂直;从光谱仪能够接收整个分析区的所有信号。  对不同的元素不用进行炬管调节,是分析测试的常用观察方式。具有更小的基体效应和干扰,特别是对有机样品;对复杂基体也有好的检出限。可以测定任何基体的溶液,如高盐分样品测定、复杂样品的分析、有机物而积炭相对不严重的分析。较低的氩气消耗量。侧向观测方式的炬管是垂直炬,热量和分析废气自然向上进入排气系统。ICP光谱仪垂直观测示意图ICP光谱仪水平观测:又称为轴向观察或端视观测,是采用水平放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向呈水平重合;可使整个火焰个个部分的光都全部通过狭缝。  水平观测方式的优点是:由于整个“火焰”各个部分的光都可以被采集导致灵敏度高,对简单样品有较好的检出限;其缺点:基体效应和电离干扰大,线性范围小,炬管溶液积炭和积盐而沾污,需要及时清洗和维护,RF功率设置不能一般不超过1350W;使用于光谱仪水质分析中。ICP光谱仪水平观测示意图总体而言,ICP垂直观测检测的只是最佳分析区给出的发射信号,其特点就是干扰信号少,但分析元素的发射强度不如水平观测的效果好;水平观测检测的是整个分析通道的发射信号,其特点是分析元素的发射强度大,但缺点是干扰信号比较大。双向观测:  传统双向观测是在水平观测ICP光源的基础上,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误;同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。ICP光谱仪双向观测示意图  在有上述考虑之后,需要改变传统,尤其是改变光路使其简单,几家都推出了双向观测技术。安捷伦的双向观测  首先是安捷伦的5100,它采用ZL的智能光谱组合技术 (DSC),以及全新的仪器设计理念,推出区别于传统的、极具创新的、全新概念的双向观测 5100 SVDV ICP-OES,可实现同步的水平和垂直双向观测分析。安捷伦5100同步垂直双向观测技术的设计原理  传统的双向观测 ICP-OES 需要人为定义测量 元素、分析波长及观测模式,无法完成同 步的双向观测分析。 某些系统甚至采用多狭缝模式,分别应对不同波段、不同观测方式以及不同灵敏度样品的分析要求,极大地降低了样品分析通量和测量效率。5100 SVDV ICP-OES 凭借独特的智能光谱组合技术 (DSC) 一次测量完成水平和垂直信号的同步采集读取,实现高速高效的样品分析,确保复杂基质样品的分析准确度斯派克的双向观测  斯派克公司也推出了双向观测技术  首先,斯派克专门开发了不需经过很多的光路反射、折射,而是采用了无需反射镜的MultiView 等离子体接口,让等离子体切换方向,真正实现直接观测。比如在贵金属分析中,贵金属作为基体元素,其含量90%多,其他微量元素含量极低;而对于贵金属冶炼厂家,矿样中贵金属则变成了微量元素,伴生元素很多;那么采用这种观测方式可以兼顾高含量元素的分析,也可以兼顾低含量元素的分析,同时还能满足复杂基体的分析。MultiView 的切换示意图  此外,斯派克的产品还采用垂直同步双观测(DSOI)技术,一种全新的等离子体视图设计方法,采用垂直等离子体炬,通过新的直接径向视图技术进行观察。两个光学接口捕获从等离子体两侧发射的光,仅使用一个额外的反射,以增加灵敏度和消除困扰新的垂直火炬双视图模型的问题。因此,垂直同步双观测(DSOI)提供了传统径向系统的两倍灵敏度,但是避免了垂直双视图模型的复杂性、缺点和成本。垂直同步双观测(DSOI)示意图  采用同步双向观测应用于斯派克的多款ICP光谱上,包括ACRO,SPECTROGREEN等。  除了观测方面,斯派克的ICP光谱整体采用的光学器件少,包括其不用中阶梯光栅,而用帕邢—龙格结构。优点包括:首先在很宽的光谱范围内分辨率是一个恒定的常数,因此能轻松区分谱线富集区域内相邻谱线,最大限度减少光谱干扰。而中阶梯光栅正相反,只是在200nm处有最好的分辨率,而到了300nm或400nm处分辨率会有大幅度的下降。其次是线性范围宽,例如在做固体金属分析时,几乎所有光谱仪器都是采用的帕邢—龙格结构,因为一个固体样品里既有主量元素也有微量元素,高低含量元素都要兼顾到。帕邢—龙格结构线性范围很宽。第三点,帕邢—龙格结构系统采用的光学器件最少,只有反射镜和光栅,由于光路设计越简单,光量损失就越少,仪器灵敏度越高。帕邢—龙格结构的缺点是:仪器体积大。

  • 【求助】关于质谱仪上,激光器的问题

    大家看看我贴的图片1 这个图片中的激光器的参数该怎么翻译?2 脉冲能量稳定性:2%,是什么意义?3 beam divergence(V×H)这个翻译为激光发散角,为什么值是:0.5×0.3mrad?4 有谁知道ABI的激光器用的什么牌子的?5 激光器的衰减参数是多少?

  • 手腕激光治疗仪更换鼻腔照射头激光管

    手腕激光治疗仪更换鼻腔照射头激光管

    一只JG-503型手腕激光治疗仪,鼻腔照射头不工作了,没有红激光输出。主机显示屏的状态显示正常,分析是鼻腔照射头中的红激光二极管损坏了,拆开照射头检修一下。见下面图片,在鼻腔照射模式(模式2)下,照射头没有红激光输出:[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211020109113687_9082_1807987_3.jpg[/img]取下导线插头,拆开照射头。用万用表测量了导线,没有断线。是激光管有问题:[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211020109116933_7008_1807987_3.jpg[/img]微距图片,照射头由两只贴片NPN型三极管(1AM)和电阻、电容构成的驱动电路及激光二极管组成:[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211020109118300_8562_1807987_3.jpg[/img]电路板背面:[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211020109124244_8991_1807987_3.jpg[/img]根据PCB上元件分布,绘出照射头电路图如下:[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211020109122326_8874_1807987_3.png[/img]照射头电路工作原理:这是一个恒流驱动电路。R1是驱动激光管内发射管LD的三极管Q2偏置电阻,激光管内光电二极管PD和取样电阻R3以及三极管Q1构成Q2基极电流控制电路。当激光管的LD电流变大后,激光输出强度增加,光电二极管PD电流增加,取样电阻R3压降提高,Q1集电极电流增加,流入Q2基极电流减少,Q2集电极电流下降即流过激光管LD电流降低,达到恒流控制的效果。反之亦然。电路中C是滤波电容,防止线路感应的浪涌损坏激光管。下面是在TB新购的激光二极管,型号RLD650005,650nm红光,额定功率5mW,装在防静电屏蔽袋中:[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211020109128271_7059_1807987_3.jpg[/img]该激光二极管主要参数如下:[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211020109125085_2589_1807987_3.jpg[/img]从参数表中得知,激光二极管中的发射管LD反向电压2V,光电二极管PD的反向电压30V,工作温度-10~40℃,是比较娇气的。激光二极管对静电敏感,要求在储运、组装、使用中有防静电措施。使用时要求适配稳定的驱动电路及良好散热,高电压、大电流、电浪涌都有可能使其损坏。照射头的电路板太小,不及一根手指宽,用小焊接工作台的夹子夹住进行更换焊接(电烙铁外壳应接地,防止感应电损坏激光管):[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211020109130677_4081_1807987_3.jpg[/img]更换新激光二极管后,先通电试一下,亮了![img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211020109127206_3230_1807987_3.jpg[/img]装还原,鼻腔照射头工作正常:[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211020109133102_2895_1807987_3.jpg[/img]维修后语:手腕激光治疗仪配的鼻腔照射头,引线有点像耳机线,比较娇气,使用中要注意轻拿轻放。常见的故障有电线折断、激光二极管损坏,稍有电工知识的人都能维修。激光二极管发射出的激光有可能对人眼造成伤害,严禁照射人眼、严禁直视其发光端面,不能透过镜片直视激光,也不要透过反射镜观察激光。平时要放置妥当,不要让小孩子玩耍。

  • 【原创】激光的知识

    实际应用的激光器种类很多,如以组成激光器的工作物质来说可分为气体激光器、液体激光器、固定激光器、半导体激光器、化学激光器等。在同一类型的激光器中又包括有许多不同材料的激光器。如固体激光器中有红宝石激光器、钇铝石榴石(Nd:YAG)激光器。气体型的激光器主要有He-Ne(氦-氖)、CO2及氩离子激光器等。由于工作物质不同,产生不同波长的光波不同,因而应用范围也不相同。最常用而范围广的有CO2laser及Nd:YAG激光。有的激光器可连续工作,如He-Ne laser;有的以脉冲形式发光工作。如红宝石激光。而另一些激光器既可连续工作,又可以脉冲工作的有CO2laser及Nd:YAG laser。   (一)固体激光器  实现激光的核心主要是激光器中可以实现粒子数反转的激光工作物质(即含有亚稳态能级的工作物质)。如工作物质为晶体状的或者玻璃的激光器,分别称为晶体激光器和玻璃激光器,通常把这两类激光器统称为固体激光器。  在激光器中以固体激光器发展最早,这种激光器体积小,输出功率大,应用方便。由于工作物质很复杂,造价高。当今用于固体激光器的物质主要有三种:掺钕铝石榴石(Nd:YAG)工作物质,输出的波长为1.06μm呈白蓝色光;钕玻璃工作物质,输出波长1.06μm呈紫蓝色光;红宝石工作物质,输出波长为694.3nm,为红色光。主要用光泵的作用,产生光放大,发出激光,即光激励工作物质。  固定激光器的结构由三个主要部分组成:工作物质,光学谐振腔、激励源。聚光腔是使光源发出的光都会聚于工作物质上。工作物质吸收足够大的光能,激发大量的粒子,促成粒子数反转。当增益大于谐振腔内的损耗时产生腔内振荡并由部分反射镜一端输出一束激光。工作物质有2条主要作用:一是产生光;二是作为介质传播光束。因此,不管哪一种激光器,对其发光性质及光学性质都有一定要求。  (二)气体激光器  工作物质主要以气体状态进行发射的激光器在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞),及固体(如金属离子结构的铜,镉等粒子),经过加热使其变为蒸气,利用这类蒸气作为工作物质的激光器,统归气体激光器之中。气体激光器中除了发出激光的工作气体外,为了延长器件的工作寿命及提高输出功率,还加入一定量的辅助气体与发光的工作气体相混合。  气体激光器大多应用电激励发光,即用直流,交流及高频电源进行气体放电,两端放电管的电压增压时可加速电子,带有一定能量,在工作物质中运动的电子与粒子(气体的原子或分子)碰撞时将自身的能量转移给对方,使分子或原子被激发到某一高能级上而形成粒子数反转,产生激光。气体激光器与固体激光器相比较,两者中以气体激光器的结构相对简单得多,造价较低,操作简便,但是输出功率常较小。因气体激光器中的工作物质不同。因此分中性(惰性)原子、离子气体、分子气体三种激光器。  中性原子气体激光器这类激光器中主要充有以惰性气体(氦、氖、氩、氪等)的物质。  氦-氖(He-Ne)激光器 首台氦-氖激光器诞生于1960年,它可以在可见光区及红外区中产生多种波长和激光谱线,主要产生的有632.8nm红光、和1.15μm及3.39μm红外光。632.8nm氦-氖激光器最大连续输出功率可达到一W,寿命也达到一万小时以上。借助调节放大电流大小,使功率稳定性达到30秒内的误差为0.005%,十分钟内的误差为0.015%的功率稳定度;发散角仅为0.5毫弧度。氦氖激光器除了具有一般的气体激光器所固有的方向性好,单色性好,相干性强诸优点外,还具有结构简单、寿命长、价廉、频率稳定等特点。氦氖激光在精确指示,激光测量,医疗卫生方面有很广泛的用途。  氦氖激光器的工作原理:氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。这就产生了激光必须具备的基本条件。在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外,另二种是红外区的辐射光。因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。  He-Ne激光器结构:此类激光器的结构大体可分为三部分,既放电管、谐振腔和激发的电源。现在临床上最常应用的为内腔式。  He-Ne激光的放电管,最外层是用硬质玻璃制成。放电的内管直径约2~3mm,管长几厘米到十几厘米,放电管越长功率越大,相应的放电电压就高。管内主要按5:1~10:1的比例充入氦氖混合气体达到总气压约2.66~3.99Pa。管的一端装有铝圆筒作阴极(其圆管状结构主要是为了减少放电测射),另一端装有钨针作阳极,放电管两端装有反射镜(即一头为全反射镜,出光一端为半反射镜)。这就构成了激光放电管。  在氦氖激光器中,采用的谐振腔有球面腔或平凹腔。一般腔镜内侧镀有高反射率的介质。在其中一端反射率为100%,另一端反射率由激光器的增益而定。放电毛细管长度约15~20cm,He-Ne激光器的半反射镜的半反射镜的反射率98.5%~99.5%。谐振腔的轴线和放电毛细管轴偏离不超过0.1mm。  He-Ne激光器的外界激励能源与固体激光器不相同,不能使用光泵激励,而采用电激励的方法。把工作物质封入放电管中,供以直流、交流及射频等方式激励气体放电。通过放电过程把能量传给工作物质,促使气体中的离子、原子被激发。医疗中使用的激励方法主要是以直流电激发出光。大体结构主要有高压变压器、整流与滤波回路、限流与稳流回路组成。

  • 长春光机所在低发散角半导体激光器芯片技术上获得突破

    2W,斜率效率0.531W/A,快、慢轴发散角被降低到7.5o和7.2o,出光光斑近圆形 (如图2)。 该类器件结构不仅可以用于量子阱激光器,还可以拓展到不同波长、不同增益介质的半导体激光器,如量子点、量子级联激光器等,这可以从芯片结构角度彻底改变半导体激光器发散角大而不对称的缺点。该器件核心结构已经申请国家发明专利4项,目前,研究人员正在抓紧时间优化工艺,进一步提高器件的性能,努力实现实用化。http://www.cas.cn/ky/kyjz/201211/W020121102346159410465.png图1. (a)半导体激光器结构示意图及典型远场图,(b)布拉格反射波导激光器结构示意图。http://www.cas.cn/ky/kyjz/201211/W020121102346159426694.png 图2. (a)808nm 布拉格反射波导激光器L-I-V特性,内插图为激射谱,(b) 3A工作电流下的远场发散角,内插图为测量的二维远场光斑图。

  • 【讨论】激光粒度仪谁家的激光器最好?

    我觉得是法国Cilas的,他们用的是半导体激光器。这个公司主要的业务还是激光器这块嘛,在全世界范围来说生产的激光器都是数一数二的。马尔文,贝克曼这些公司都是买了人家的。

  • BD的流式细胞仪 Accuri C6 故障,换激光器?

    日前,一台流式细胞仪BD公司的 C6报修操作者说:“散点图右下角有杂质、跑水颗粒数高“送到维修站说是蓝激光器坏了或者老化,需要更换,报价8W RMB。想问问:这种现象是否确是激光器的问题?从资料介绍上看,激光照射在样本(细胞)上激发出来的信号要经过透镜、滤光片,被光电倍增管接收,通过电子线路放大到显示器上。我以为这些光路和电路都可能导致信号失真或噪声,是否仅从上述现象就断定激光器挂了?坛里可有朋友解答?谢谢!

  • 半导体激光器自动温度控制设备配件故障解决办法

    半导体激光器自动温度控制中配件比较多,不同的配件在运行中如果使用不当的话,就会造成半导体激光器自动温度控制配件故障,如果发生故障,改怎么解决呢?  半导体激光器自动温度控制压缩机结霜,可能是循环水流通或阀未打开,检查水阀,所有管路,保证畅通,加装短路管道。可能是循环水管道配置过小,加大循环水管直径,保证水循环正常。  半导体激光器自动温度控制循环水箱内结冰可能是设定温度过低更正设定值;可能水箱内水无循环水,在冷冻水出口和进口之间短接一条循环水路;可能是温控表失控,更换温控表 高压故障 散热不良,散热器过脏,清洗散热器 能风不好,改善通风条件 散热风机不工作,检查风机马达是否烧坏短路维修或更换电机马达;高压擎损坏,更换高压擎; 制冷不良,冷媒不足或管道漏媒,补充冷媒或检漏后补焊,抽真空再补充冷媒 散热不良,散热器过脏、散热水阀门未打开或打开太小,将散热器清理干净,将阀门全开。  半导体激光器自动温度控制水泵故障可能是半导体激光器自动温度控制水泵电机线圈短,断路,修理电机线圈或更换电机,如果是水泵过载保护器自动跳开,将保护器的电流限数在允许的范围内适当调高半按下复位键。  半导体激光器自动温度控制温按表温度显示数字上下跳动可能是温控表损坏,修理或更换温控表,可能是感温线接触不良,修理或更换感温线,可能是感温线及测温体有污,将测温体擦干净。  半导体激光器自动温度控制压缩机故障可能是压缩机线圈短,断路,更换匹配的压缩机,压缩机过载保护器自动跳开,将保护器的电流限数在允许的范围内适当调高并按下复位键。  半导体激光器自动温度控制的配件要想避免一些故障的话,建议平时多多保养半导体激光器自动温度控制的有关说明,做好保养工作。

  • 请教大侠们关于拉曼激光器

    用于做拉曼激发光的激光器有什么特殊要求不?哪些参数对获得较好的拉曼光谱有重要的影响?国内哪个厂家做拉曼激光器比较靠谱?

  • 【分享】激光雷达/激光探测及测距系统

    【分享】激光雷达/激光探测及测距系统

    激光雷达可以按照所用激光器、探测技术及雷达功能等来分类。目前激光雷达中使用的激光器有二氧化碳激光器,Er:YAG激光器,Nd:YAG激光器,喇曼频移Nd:YAG激光器、GaAiAs半导体激光器、氦-氖激光器和倍频Nd:YAG激光器等。其中掺铒YAG激光波长为2微米左右,而GaAiAs激光波长则在0.8-0.904微米之间。根据探测技术的不同,激光雷达可以分为直接探测型和相干探测型两种。其中直接探测型激光雷达采用脉冲振幅调制技术(AM),且不需要干涉仪。相干探测型激光雷达可用外差干涉,零拍干涉或失调零拍干涉,相应的调谐技术分别为脉冲振幅调制,脉冲频率调制(FM)或混合调制。按照不同功能,激光雷达可分为跟踪雷达,运动目标指示雷达,流速测量雷达,风剪切探测雷达,目标识别雷达,成像雷达及振动传感雷达。激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。由此可以看出,直接探测型激光雷达的基本结构与激光测距机颇为相近。相干探测型激光雷达又有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共同在所谓单稳态系统中,发送与接收信号共用一个光学孔径。并由发射/接收(T/R)开头隔离。T/R开关将发射信号送往输出望远镜和发射扫描系统进行发射,信号经目标反射后进入光学扫描系统和望远镜,这时,它们起光学接收的作用。T/R开关将接收到的辐射送入光学混频器,所得拍频信号由成像系统聚焦到光敏探测器,后者将光信号变成电信号,并由高通滤波器将来自背景源的低频成分及本机振荡器所诱导的直流信号统统滤除。最后高频成分中所包含的测量信息由信号和数据处理系统检出。双稳系统的区别在于包含两套望远镜和光学扫描部件,T/R开关自然不再需要,其余部分与单稳系统的相同。美国国防部最初对激光雷达的兴趣与对微波雷达的相似,即侧重于对目标的监视、捕获、跟踪、毁伤评(SATKA)和导航。然而,由于微波雷达足以完成大部分毁伤评估和导航任务,因而导致军用激光雷达计划集中于前者不能很好完成的少量任务上,例如高精度毁伤评估,极精确的导航修正及高分辨率成像。较早出现的一种激光雷达称为“火池”,它是由美国麻省理工学院的林肯实验室投资,于60年代末研制的。70年代初,林肯实验室演示了火池雷达精确跟踪卫星,获得多普勒影像的能力。80年代进行的实验证明,这种CO2激光雷达可以穿透某些烟雾,识破伪装,远距离捕获空中目标和探测化学战剂。发展到80年代末的火池激光雷达,采用一台高稳定CO2激光振荡器作为信号源,经一台窄带CO2激光放大器放大,其频率则由单边带调制器调制。另有工作于蓝-绿波段的中功率氩离子激光与上述雷达波束复合,用于对目标进行角度跟踪,而雷达波束的功能则是收集距离――多普勒影像,实时处理并加以显示。两束波均由一个孔径为1.2M的望远镜发射并接收。据报道,美国战略防御局和麻省理工学院的研究人员于1990年3月用上述装置对一枚从弗吉尼亚大西洋海岸发射的探空火箭进行了跟踪实验。在二级点火后6分钟,火箭进入亚轨道,即爬升阶段,并抛出其有效负载,即一个形状和大小均类似于弹道导弹再入飞行器的可充气气球。该气球有气体推进器以提供与再入飞行器和诱饵的物理结构相一致的动力学特性。目标最初由L波段跟踪雷达和X波段成像雷达进行跟踪。并将这些雷达传感器取得的数据交给火池激光雷达,后者成功地获得了距离约800千米处目标的像。[~116966~][~116967~][~116968~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624049_1602049_3.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制