当前位置: 仪器信息网 > 行业主题 > >

磁光克尔效应系统

仪器信息网磁光克尔效应系统专题为您提供2024年最新磁光克尔效应系统价格报价、厂家品牌的相关信息, 包括磁光克尔效应系统参数、型号等,不管是国产,还是进口品牌的磁光克尔效应系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁光克尔效应系统相关的耗材配件、试剂标物,还有磁光克尔效应系统相关的最新资讯、资料,以及磁光克尔效应系统相关的解决方案。

磁光克尔效应系统相关的论坛

  • 迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    [color=#990000]摘要:在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制,否则会因变形、折射率和温度等因素的影响带来巨大波动,甚至会造成测量无法进行。本文介绍了真空度的自动化控制技术,详细介绍了具体实施方案。[/color][size=18px][color=#990000]一、问题的提示[/color][/size] 作为一种高精密光学仪器,迈克尔逊激光干涉仪得到了非常广阔应用,它可用于测量波长、气体或液体折射率、厚度、位移和倾角,具备对长度、速度、角度、平面度、直线度和垂直度等的高精密测量。但在高精密测量中,迈克尔逊干涉仪会受到气氛环境的严重影响,为此一般将被测物放置在低压真空环境中,如图1所示,并对真空度进行精密控制,否则会带来以下问题:[align=center][color=#990000][img=激光干涉仪真空度控制,500,315]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813137507_5730_3384_3.jpg!w690x435.jpg[/img][/color][/align][color=#990000][/color][align=center]图1 迈克尔逊激光干涉仪典型测试系统结构[/align] (1)测试环境的气体折射率波动,会对高精密测量带来严重影响。如果采用专门的气体折射率修正装置,测量精度也只能达到微米或亚微米量级,而无法实现更高精度的测量。 (2)如果真空腔室内有温度变化,腔室内的气压也会剧烈变化,相应折射率也会发生剧烈波动而严重影响干涉仪测量。 (3)在抽真空过程中,内外压差会造成真空腔室的微小变形,同时也会造成光学窗口产生位移和倾斜,从而改变测量光路的光程。 (4)在有些变温要求的测试领域,要求被测物能尽快的被加热和温度均匀,这就要求将真空度控制在一定水平,如100Pa左右,由此来保留对流和热导热传递能力。 总之,在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制。本文将介绍真空度的自动化控制技术以及具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 迈克尔逊激光干涉仪测试过程中,真空度一般恒定控制在100kPa左右,并不随温度发生改变。为此,拟采用如图2所示的真空度控制系统进行实施,具体内容如下:[align=center][color=#990000][img=激光干涉仪真空度控制,690,411]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813484950_7314_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图2 迈克尔逊激光干涉仪测试真空度控制系统结构[/color][/align] (1)采用1torr量程的电容真空计进行真空度测量,其精度可达±0.2%。 (2)采用24位A/D采集的高精度PID真空压力控制器,以匹配高精度真空压力传感器的测量精度,并保证控制精度。 (3)在真空腔室的进气口安装步进电机比例阀以精密调节进气流量。 (4)控制过程中,真空泵开启后全速抽取并保持抽速不变。然后对控制器进行PID参数自整定,使控制器自动调节比例阀的微小开度变化实现腔室真空度的精确控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 超快普克尔斯盒介绍以及用途

    1111型[b]超快普克尔斯盒[/b]和1112型[b]超快电光调制器[/b]是目前全球转换最快的美国lasermetrics公司[b]超快电光Q开关[/b],上升沿时间可达40皮秒,非常适合[b]超快激光脉冲斩波和超快激光脉冲拾取[/b],锁模激光器脉冲中[b]拾取皮秒脉冲[/b]或[b]拾取飞秒激光脉冲[/b].[url=http://www.felles.cn/keerhe/chaokuai.html][img=超快普克尔盒]http://www.felles.cn/Upload/chaokuai.jpg[/img][/url]其中1111KD*P普克尔斯盒使用一块晶体, 上升时间为40皮秒,光程15mm,而1112KD*P型具有两块晶体,上升时间为85皮秒[i].[/i],光程是22mm, 这样就最大程度地减小时间色散.这两款超快普克尔盒,超快电光Q开关同样使用最优质的KD*P晶体制造而成, 晶体安装在配备熔炉石英窗口的密闭铝制外壳里, 也可使用折射率匹配的液体以减少内部光学界面的反射.[b]超快普克尔斯盒超快电光Q开关[/b]产品参数:型号:FP-1111-KD*P材料:KD*P晶体晶体个数:1光程:15mm净孔径:2.5mm半波电压: 约6.5KV@1064nm反射系数 tr=140ps: 5%上升时间:50ps终端阻抗: 50欧姆阻抗 使用1米长50欧姆阻抗的线连接到调制器上尺寸:光束方向 83W x 48H x 50.8 L mm重量:312g型号:FP-1112-KD*P材料:KD*P晶体晶体个数:2光程:22mm净孔径:2.5mm半波电压: 约3.3KV@1064nm反射系数 tr=140ps: 5%上升时间:100ps终端阻抗: 50欧姆阻抗 使用1米长50欧姆阻抗的线连接到调制器上尺寸:光束方向 83W x 48H x 50.8 L mm重量:312g[b]超快普克尔盒,[/b]超快电光调制器,超快电光Q开关由[url=http://www.felles.cn/][b]孚光精仪[/b][/url]进口销售,[url=http://www.felles.cn/][b]孚光精仪[/b][/url]是中国领先的进口(光学)精密仪器旗舰型服务商!精通光学,服务科学,先后为北京大学,中科院上海光机所,哈尔滨工业大学,中国工程物理研究院,山东大学等单位提供这种优质进口的[b]:[/b]超快普克尔盒,超快电光调制器,超快电光Q开关[b]。更多型号:http://www.felles.cn/keerhe.html[/b]

  • 多巴胺与甲叉双丙烯酰胺迈克尔加成反应红外光谱分析

    [color=#444444]PDA与MBA的迈克尔加成反应,红外光谱测定后,怎么分析PDA加成到MBA上啊,MBA与新形成的混合物都有碳氮键,这样的话是不是没法用红外分析啊?求大神指点[/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2019/0113/w133h4465285_1547370449_377.png[/img][/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2019/0113/w75h4465285_1547370450_451.png[/img][/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2019/0113/w133h4465285_1547370450_190.png[/img][/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2019/0113/w133h4465285_1547370450_994.png[/img][/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2019/0113/w133h4465285_1547370450_229.png[/img][/color]

  • 【求助】有没有使用德克尔氮氢空发生器的大虾

    在下正在使用杭州德克尔DQK-500氮氢空发生器一体机,可是空气发生器突然压力变的比以前大了,而且自动排水口会不停的拍水,有时排出来的是黄色的液体,还带有油烟味。哪位大虾知道原因啊?有没有德克尔维修点的联系方式啊,或者售后服务电话?

  • 【分享】迈克尔逊干涉仪工作视频

    视频展示了迈克尔逊干涉仪的结构以及它的工作过程,非常逼真形象![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=83043]迈克尔逊干涉仪工作视频[/url]

  • 【求助】迈克尔逊干涉仪 用途

    请教一个非常弱的问题:[color=#DC143C]迈克尔逊干涉仪的用途[/color],红外本来不就是一定波长范围在照射样品吗,与干涉仪的光程差有什么联系,搞不明白,请指点!!!

  • 有ipad的玩迈克尔杰克逊那款游戏没?

    有ipad的玩迈克尔杰克逊那款游戏没?

    育碧出的。叫《迈克尔·杰克逊:体验HD》好像apple store 里有,大概几十RMB。http://ng1.17img.cn/bbsfiles/images/2012/05/201205141902_366955_1786353_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/05/201205141902_366957_1786353_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/05/201205141902_366958_1786353_3.jpg可惜没PC版,不然我也玩玩。

  • gjb 8848-2016 系统电磁环境效应试验方法

    工业与信息化标准网整理:GJB 8848-2016 系统电磁环境效应试验方法基本信息分类号:b0110页数:148实施时间:2016.08.01主办单位:海军批准单位:中央军委装备发展部主编单位:中国人民解放军海军装备研究院标准规范研究所、技术基础管理中心、第二十一试验训练基地、军械工程学院、中国航空工业集团公司沈阳飞机设计研究所、工业和信息化部电子第四研究院、中国船舶重工集团公司第七〇一研究所、中国兵器工业集团第二〇一研究所、中国航天科工集团第二研究院二〇三所、中国人民解放军理工大学、北京航空航天大学、中国航空综合技术研究所、中国人民解放军三一〇〇七部队、中国航天科工集团第三总体设计部、东南大学、中国空间技术研究院总体部、中国船舶重工集团公司第七二三研究所、中国电子科技集团公司第二十九研究所、国防科学技术大学、中国电子科技集团公司第十四研究所、空军装备研究院、武器装备论证研究中心、工业和信息化部电子第五研究所适用范围本标准规定了系统电磁环境效应试验方法,包括安全裕度试验与评估方法、系统内电磁兼容性试验方法、外部射频电磁环境敏感性试验方法、雷电试验方法、电磁脉冲试验方法、分系统和设备电磁干扰试验方法、静电试验方法、电磁辐射危害试验方法、电搭接和外部接地试验方法、防信息泄漏试验方法、发射控制试验方法、频谱兼容性试验方法和高功率微波试验方法。本标准适用于各种武器系统,包括飞机、舰船、空间和地面系统及其相关军械等。引用标准GB/T 6113.101 无线电骚扰和抗扰度测量设备和测量方法规范 无线电骚扰和抗扰度测量设备 测量设备GB/T 6113.104 无线电骚扰和抗扰度测量设备和测量方法规范 无线电骚扰和抗扰度测量设备 辅助设备 辐射骚扰GB/T 17626.21 电磁兼容 试验和测量技术 混波室试验方法GB 18871 电离辐射防护与辐射源安全基本标准GJB 72A-2002 电磁干扰和电磁兼容性术语GJB 151B-2013 军用设备和分系统电磁发射和敏感度要求与测量GJB 376-1987 火工品可靠性评估方法GJB 573A-1998 引信环境与性能试验方法GJB 1143 无线电频谱特性的测量GJB 1389A-2005 系统电磁兼容性要求GJB 3567 军用飞机雷电防护鉴定试验方法GJB 5313 电磁辐射暴露限值和测量方法GJB 7504-2012 电磁辐射对军械危害试验方法GJB 8815 电磁兼容测量天线的天线系数校准规程GJB/Z 170 军工产品设计定型文件编制指南GJB/Z 377A-1994 感度试验用数理统计方法

  • 【分享】非阿贝尔约瑟夫森效应

    最近,中国科学院物理研究所/北京凝聚态物理国家实验室刘伍明研究组在光与物质相互作用领域取得重要进展。他们发现在包含自旋为2的冷原子玻色—爱因斯坦凝聚体的两个光学势阱中可以产生一种新颖的量子效应—非阿贝尔约瑟夫森效应(Non-Abelian Josephson effect),并进一步设计了相干物质波干涉器件。这项新的研究工作对于进一步认识新奇量子现象,特别是玻色—爱因斯坦凝聚系统的新型量子效应具有非常重要的意义。 研究光与物质相互作用以及揭示新奇量子现象,并利用其奇异性质设计新型的量子器件,是人们长期以来一直感兴趣的问题,例如1997年度诺贝尔物理学奖授予美国斯坦福大学朱棣文教授、美国标准与技术研究院菲利普斯博士和法国巴黎高师科昂-塔诺季教授,以表彰他们发明了用激光冷却来俘获原子的方法。2001年度诺贝尔物理学奖授予美国标准与技术研究院科纳尔博士和威依迈博士、麻省理工学院凯特纳教授,以表彰他们实现碱性原子的玻色—爱因斯坦凝聚,揭示了一种新的物质状态。约瑟夫森效应是玻色—爱因斯坦凝聚、超导、超流系统中出现的新奇量子现象。1973年诺贝尔物理学奖授予英国剑桥大学约瑟夫森博士,以表彰他对穿过隧道壁垒的超导电流所作的理论预言:对于超导体—绝缘层—超导体互相接触的结构,只要绝缘层足够薄,超导体内的电子对就有可能穿透绝缘层势垒,即约瑟夫森效应。作为一种宏观量子效应,约瑟夫森效应不仅具有重要的科学意义,而且有广泛的实际应用,例如制作超导量子干涉器件。刘伍明研究组自1999年以来一直致力于光与物质相互作用的研究,并取得了一些重要研究成果,曾先后在 Physical Review Letters 上发表论文 9 篇,其中单篇被SCI论文引用超过100 次的有2篇。 博士生齐燃、余小鲁、研究员刘伍明与中山大学李志兵教授合作,他们发现在包含自旋为2的冷原子玻色—爱因斯坦凝聚体的两个光学势阱中可以产生一种新颖的量子效应—非阿贝尔约瑟夫森效应(Non-Abelian Josephson effect),并进一步设计了可以观察这种非阿贝尔约瑟夫森效应的真实物理系统。相对于阿贝尔情况,非阿贝尔约瑟夫森效应具有不同的密度和自旋隧穿特征。他们获得了表征非阿贝尔约瑟夫森效应的特征量—自旋为2的冷原子玻色—爱因斯坦凝聚体的两个光学势阱之间不同量子态的赝戈德斯通模(Pseudo Goldstone modes),并给出了如何在实验上观察非阿贝尔约瑟夫森效应的方案。这项新的研究工作对进一步认识新奇量子现象,特别是玻色—爱因斯坦凝聚系统的新型量子效应具有非常重要的意义。 相关研究得到中国科学院、国家自然科学基金委员会和科技部的支持。这一研究成果已发表在2009年5月2日出版的Physical Review Letters 102,185301(2009)上。

  • 我科学家首次发现量子反常霍尔效应

    美妙之处或可加速推进信息技术进步的进程 新华社北京3月15日电 (记者李江涛)由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队在量子反常霍尔效应研究中取得重大突破,他们从实验中首次观测到量子反常霍尔效应,这是我国科学家从实验中独立观测到的一个重要物理现象,也是物理学领域基础研究的一项重要科学发现。 该成果于北京时间3月15日凌晨在美国《科学》杂志在线发表。 据介绍,美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,由于洛伦兹力的作用,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。而在磁性材料中不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。 量子霍尔效应之所以如此重要,一方面是由于它们体现了二维电子系统在低温强磁场的极端条件下的奇妙量子行为,另一方面这些效应可能在未来电子器件中发挥特殊的作用,可用于制备低能耗的高速电子器件。 例如,如果把量子霍尔效应引入计算机芯片,将会克服电脑的发热和能量耗散问题。然而由于量子霍尔效应的产生需要非常强的磁场,因此至今为止它还没有特别大的实用价值,因为要产生所需的磁场不但价格昂贵,而且其体积庞大(衣柜大小),也不适合于个人电脑和便携式计算机。 据了解,量子反常霍尔效应的美妙之处是不需要任何外加磁场,因此,这项研究成果将会推动新一代的低能耗晶体管和电子学器件的发展,可能加速推进信息技术进步的进程。

  • 傅立叶变换红外光谱仪的原理

    傅立叶红外光谱仪的原理是把光源发出的光,经迈克尔逊干涉仪调制成干涉光,再让干涉光照射样品,由检测器获得干涉图,由计算机把干涉图进行傅立叶变换,得到全波段吸收光谱. 傅立叶变换红外光谱仪在整个检测过程中,只有一个可动镜在实验过程中运动;它的测量波段宽,光通量大,检测灵敏度高,具有多路通过的特点,故所有频率可同时测量;它的扫描速度最快可达60次/秒,因使用调制音频测量,故杂散光不影响检测;因样品放置于分束器后测量,大量辐射由分束器阻挡,样品接受调制波,故使热效应极小;因检测器仅对调制的声频信号有反响,其自身的红外辐射不会被检测器吸收。

  • “量子反常霍尔效应”离诺贝尔物理奖有多近?

    我国科学家首次发现“量子反常霍尔效应”这一科研成果离诺贝尔物理奖有多近2013年04月11日 来源: 中国科技网 作者: 林莉君 李大庆 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244421_change_wtt3427_b.jpg量子反常霍尔效应的示意图,拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244437_change_wtt3428_b.jpg理论计算得到的磁性拓扑绝缘体多层膜的能带结构和相应的霍尔电导 “这个研究成果是从中国实验室里,第一次发表出来了诺贝尔物理奖级别的论文,这不仅是清华大学、中科院的喜事,也是整个国家发展中喜事。”4月10日,诺贝尔物理奖得主、清华大学高等研究院名誉院长杨振宁教授高度评价了我国科学家的重大发现——量子反常霍尔效应。 由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。美国《科学》杂志于3月14日在线发表这一研究成果。由于此前和量子霍尔效应有关的科研成果已经3获诺贝尔奖,学术界很多人士对这项“可能是量子霍尔效应家族最后一个重要成员”的研究给予了极高的关注和期望。那么什么是量子反常霍尔效应?对它的研究为什么引起世界各国科学家的兴趣?它的发现有什么重大意义? 重要性 突破摩尔定律瓶颈 加速推动信息技术革命进程 在认识量子反常霍尔效应之前,让我们先来了解一下量子霍尔效应。量子霍尔效应,于1980年被德国科学家发现,是整个凝聚态物理领域中重要、最基本的量子效应之一。它的应用前景非常广泛。 薛其坤院士举了个简单的例子:我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗。而量子霍尔效应则可以对电子的运动制定一个规则,让它们在各自的跑道上“一往无前”地前进。“这就好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在‘各行其道、互不干扰’的高速路上前进。”薛其坤打了个形象的比喻。 然而,量子霍尔效应的产生需要非常强的磁场,“相当于外加10个计算机大的磁铁,这不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。”薛其坤说,而量子反常霍尔效应的美妙之处是不需要任何外加磁场,在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。 自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2006年, 美国斯坦福大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于2008年指出了在磁性掺杂的拓扑绝缘体中实现量子反常霍尔效应的新方向。2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系。这个方案引起了国际学术界的广泛关注。德国、美国、日本等有多个世界一流的研究组沿着这个思路在实验上寻找量子反常霍尔效应,但一直没有取得突破。 薛其坤团队经过近4年的研究,生长测量了1000多个样品。最终,他们利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功观测到了量子反常霍尔效应。 “量子反常霍尔效应可在未来解决摩尔定律瓶颈问题,它发现或将带来下一次信息技术革命,我国科学家为国家争夺了这场信息革命中的战略制高点。”拓扑绝缘体领域的开创者之一、清华大学“千人计划”张首晟教授说。 创新性 让实验材料同时具备“速度、高度和灵巧度” 从美国物理学家霍尔丹于1988年提出可能存在不需要外磁场的量子霍尔效应,到我国科学家为这一预言画上完美句号,中间经过了20多年。课题组成员、中科院物理所副研究员何珂告诉记者:“量子反常霍尔效应实现非常困难,需要精准的材料设计、制备与调控。尽管多年来各国科学家提出几种不同的实现途径,但所需的材料和结构非常难以制备,因此在实验上进展缓慢。” “这就如同要求一个运动员同时具有刘翔的速度、姚明的高度和郭晶晶的灵巧度。在实际的材料中实现以上任何一点都具有相当大的难度,而要同时满足这三点对实验物理学家来讲是一个巨大的挑战。”课题组成员、清华大学王亚愚教授这样描述实验对材料要求的苛刻程度。 实验中,材料必须具有铁磁性从而存在反常霍尔效应;材料的能带结构必须具有拓扑特性从而具有导电的一维边缘态,即一维导电通道;材料的体内必须为绝缘态从而对导电没有任何贡献,只有一维边缘态参与导电。 2010年,课题组完成了对1纳米到6纳米(头发丝粗细的万分之一)厚度薄膜的生长和输运测量,得到了系统的结果,从而使得准二维超薄膜的生长测量成为可能。 2011年,课题组实现了对拓扑绝缘体能带结构的精密调控,使得其体材料成为真正的绝缘体,去除了其对输运性质的影响。 2012年初,课题组在准二维、体绝缘的拓扑绝缘体中实现了自发长程铁磁性,并利用外加栅极电压对其电子结构进行原位精密调控。 2012年10月,课题组终于发现在一定的外加栅极电压范围内,此材料在零磁场中的反常霍尔电阻达到了量子霍尔效应的特征值h/e2—25800欧姆——世界难题得以攻克。 课题组克服薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,最终为这一物理现象的实现画上了完美的句号。 “下一步我们主要的努力方向是全面测量材料在极低温下的电子结构和输运性质,寻找更好的材料体系,在更高的温度下实现这一效应。那时,也许我们能对其应用前景作更好的判断。”王亚愚告诉记者。 外界评说 这是凝聚态物理界一项里程碑式的工作 “实验成果出来以后,量子霍尔效应的发现者给我发了一封邮件。他写道:我深信拓扑绝缘体和量子反常霍尔效应是科学王冠上的明星。”张首晟向记者展示了这封邮件。 《科学》杂志的一位审稿人说:“这项工作毫无疑问地证实了与普通量子霍尔效应不同来源的单通道边缘态的存在。我认为这是凝聚态物理学一项非常重要的成就。”另一位审稿人说:“这篇文章结束了多年来对无朗道能级的量子霍尔效应的探寻。这是一篇里程碑式的文章。” 延伸阅读 霍尔效应与反常霍尔效应 霍尔效应是美国物理学家霍尔于1879年发现的一个物理效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,由于洛伦兹力的作用,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。产生的横向电压被称为霍尔电压,霍尔电压与施加的电流之比则被称为霍尔电阻。由于洛伦兹力的大小与磁场成正比,所以霍尔电阻也与磁场成线性变化关系。 1880年,霍尔在研究磁性金属的霍尔效应时发现,即使不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔效应与普通的霍尔效应在本质上完全不同,因为这里不存在外磁场对电子的洛伦兹力而产生的运动轨道偏转。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。 量子霍尔效应的相关研究已3次获得诺贝尔奖 量子霍尔效应在凝聚态物理的研究中占据着极其重要的地位。它就像一个富矿,一代又一代科学家为之着迷和献身,他们的成就也多次获得诺贝尔物理奖。 1985年,诺贝尔物理奖颁给了德国科学家冯·克利青,他于1980年发现了整数量子霍尔效应。 1998年,诺贝尔物理奖颁给了美国科学家:美籍华人物理学家崔琦以及施特默、劳弗林。前两人于1982年发现了分数量子霍尔效应,而后者则对这一效应进一步给出了理论解释。 2010年,诺贝尔物理奖颁给了英国科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。他们俩在2005年发现了石墨烯中的半整数量子霍尔效应。 此外,量子化自旋霍尔效应于2007年被发现,2010年获得欧洲物理奖,2012年获得美国物理学会巴克利奖。(记者 林莉君 李大庆) 《科技日报》(2013-04-11

  • 基于迈克尔加成含哌嗪结构的交联聚合物制备及其与金属离子络合的功能研究

    【序号】:1【作者】: 刘家麟【题名】:基于迈克尔加成含哌嗪结构的交联聚合物制备及其与金属离子络合的功能研究【期刊】:北京化工大学【年、卷、期、起止页码】:2022【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202201&filename=1022005132.nh&uniplatform=NZKPT&v=hxJv3NMhuDHY-jj4l0AX3Nzwz8LzS540BpAmeGTIX14YK0KG0XqVG210VP0so7Kz

  • 英牛津大学专家指出 量子反常霍尔效应成果预示新时代来临

    新华社伦敦4月14日电(记者刘石磊)中国科学家从实验中首次观测到量子反常霍尔效应,英国牛津大学专家对此发现予以高度评价,并指出这一成果预示着一个令人兴奋的新时代的来临。 牛津大学物理系讲师索斯藤·赫斯耶达尔说:“这一成果预示着一个令人兴奋的新时代的来临——对于基础物理学来说,观察到量子反常霍尔效应让研究新的量子系统成为可能;对于更广泛的(电子)设备领域来说,这一成果为研发新式电子器件提供了基础。” 英国牛津大学物理系讲师陈宇林指出,在反常霍尔效应发现120年后,清华大学和中科院物理所的研究团队,在磁性掺杂的拓扑绝缘体材料中实现了量子反常霍尔效应,这是一个很了不起的成就。 陈宇林解释说:“反常霍尔效应是固体中由电子自身的自旋和轨道运动耦合导致的一个输运过程。而在量子反常霍尔绝缘体中,自发磁矩和自旋轨道耦合结合产生了拓扑非平凡电子结构,引起在无外加磁场条件下的量子霍尔效应。因为只有一个自旋通道参与电子导电,使其无损耗的导电比量子自旋霍尔体系更不容易被干扰,这将更有利于应用在低损耗电子和自旋电子学器件中。” 陈宇林认为,这个成就也肯定了近年来中国对基础研究的重视和投入。他说:“在拓扑绝缘体领域,华人科学家和中国国内的研究组作出了巨大的贡献。在过去两年中,清华大学和中科院物理所的研究人员做了大量工作,克服了各种困难,终于在世界上首次实现了这个优美的物理学现象。这说明只要有合适的条件,中国的科研是可以走在世界前沿的。”

  • 近红外光谱假药识别系统的设想及可行性探讨

    近红外光谱及其仪器的特点近红外光谱的波长范围是780~2500nm,主要源于化合物中含氢基团,如C-H, O-H, N-H, S-H等振动光谱的倍频及合频吸收,由于其谱带较宽且强度较弱,限制了其应用。80年代中后期,随着计算机技术的发展和化学计量学研究的深入,加之近红外光谱(near infrared spectroscopy, NIR)仪器制造技术的日趋完善,促使了现代近红外光谱分析技术的发展。近红外光谱测定通常采用透射方式(transmittance)或漫反射方式(diffuse reflectance),通常不需对样品进行预处理即可以直接对不同物态的样品进行分析,配合光纤可满足对不同尺寸、形状样品测定的需要。作为一种间接测定方法,近红外光谱分析首先需要通过训练集得到校正模型,再来预测未知样品的性质或组成,因此训练集样品的性质或组成的适用范围、基础数据的准确性以及选择化学计量学方法的合理性,都直接影响最终的分析结果。此外,近红外光谱分析的灵敏度较低,对微量组分的测定比较困难。近红外光谱仪主要有滤光片型、扫描型和傅立叶变换近红外光谱仪三种类型。滤光片型仪器的特点是设计简单、成本低、光通量大、信号记录快、坚固耐用;但通常只能在单一或有限的波长下测定,灵活性较差;适用于制成各类专用仪器进行特定项目的分析,如土壤中水分的测定、糖及烟草中尼古丁的分析等。扫描型近红外光谱仪的分光元件可以是棱镜或光栅。该类仪器的特点是可进行全谱扫描,分辨率较高,仪器价格适中,便于维修;其最大弱点是光栅的机械轴容易磨损,影响波长的精度和重现性,一般抗振性较差,特别不适于在线检测。傅立叶变换近红外光谱仪的主要光学元件是麦克尔逊(Michelson)干涉仪。其具有扫描速度快、波长精度高、分辨率好以及信噪比和测定灵敏度较高等特点;采用立体角镜偶合等技术的麦克尔逊干涉仪,已极大地消除了传统干涉仪对振动、温度、湿度等的敏感性,减少了不同仪器的台间测定误差;发展出的便携式仪器可满足车载等野外测定的需要。从近期的国内外仪器展览会看,傅立叶变换近红外光谱仪将成为近红外光谱仪的主导产品。近红外光谱分析在假药识别中的应用近红外光谱法在药物分析领域中的应用范围相当广泛,它不仅适用于分析药物的多种不同状态如原料、完整的片剂、胶囊与液体等制剂,还可用于不同类型的药品,如蛋白质、中草药、抗生素 等。NIR更适用于对原料药纯度、包装材料等的分析与检测、以及生产工艺的监控 ;利用不同的光纤探头可实现生产工艺的在线连续分析监控。此外,近红外作为一种快速扫描技术,以它无需对样品预处理以及收集信息量大等特点,有助于假药劣药的识别与鉴定,正在成为国内外药物分析领域中的一枝奇葩。目前已有研究人员将其用于辅料间存在差异的不同生产厂家所生产的同一品种药品的鉴定,还有人对建立假药识别谱库的影响因素进行了全面的考察。在药品的鉴别过程中,常采用马氏(Mahalanobis)距离等指标,通过对样品光谱与标准光谱距离的定量描述,确定样本离校正集样本的差异,进而对其归属。虽然此方法在对光谱匹配程度的检测和模型外推方面均很准确,但应用时对波长范围的选择非常重要;波长点过少,光谱得不到合理的描述;波长点过多,计算量过大。此外,由于药品制剂特别是口服制剂中通常含有较多的辅料成分,也干扰对活性成分的鉴别。为有效的避免各类干扰作用,选择合理的波长范围进行药品的鉴别,可利用主成分分析(Principal Component Analysis;PCA)法对光谱数据进行分析,通过对活性成分光谱、辅料光谱和因子光谱的比较分析,首先对诸因子光谱的属性进行归属,进而选用合理的因子光谱进行鉴别。将PCA与马氏距离结合,既可以充分利用PCA对采集的全光谱数据进行降维处理,较好的解决马氏距离计算时波长范围的选择问题,也可克服利用PCA进行自身界限判断不易量化的问题。此外结合导数光谱等手段,还可以提高对鉴别的分辨率。近红外假药识别系统的设想根据近红外光谱分析的特点,可以看出,建立近红外假药识别系统,可以大大地提高假药识别的速度和识别能力,满足基层现场快速鉴别的需要。在国家食品药品监督管理局的支持下,中国药品生物制品检定所已经启动了近红外假药识别系统的科研项目。拟建立的假药识别系统包括有定性分析和定量分析两部分,首先确定药品与其标签标示名称是否一致,再根据需要调用适当模型对药品的质量进行快速检验或判别药品是否为特定企业的产品。近红外光谱分析是一个间接分析方法,假药鉴别系统的完善与否与模型中所包括的已知样品的数量与质量密切相关。由于药品品种的数量巨大,市场中出现的假药品种较多,且不断有新的假药出现,因此假药识别系统中所需要的鉴别模型不仅数量多,而且应能不断更新,故建模不可能在一个实验室完成;此外,由于我国地域广阔,开展假药的监督检验工作不可能由少数实验室承担,但为保证药品监督检验的严肃性,所有实验室的检验结果应具有一致性;因此,近红外假药鉴别系统应用的关键是能在不同的近红外光谱仪间实现模型的共享,并保证不同仪器测定图谱的一致性。虽然由于众多因素影响模型传输的准确性,使得光栅型及普通傅立叶变换型近红外光谱仪通过简单的模型传输不可能保证不同仪器测定结果的一致性,但在以采用立体角镜偶合等技术为基础的8台傅立叶变换型近红外光谱仪之间,传输间苯二酚水溶液定量模型,在未对模型经任何校正的情况下,对一批样品(300g/l)每台仪器每星期测定10次,连续测定60个星期,其测定结果显示,仪器间的测定误差(SD=0.22%)及不同时间的测定误差(SD?0.13%)均可以忽略。即现代近红外光谱仪已经较好的解决了模型传输的准确性,结合互联网技术,可以在全国范围内建立近红外假药识别模型网络系统(图1),由设立在全国的近红外假药鉴别模型建立基地将建好的模型输入国家假药鉴别模型数据库;各基层使用单位直接从中心数据库中调用所需的鉴别模型;国家近红外假药鉴别中心负责对进入数据库的模型的评价与更新;进而解决假药识别系统中鉴别模型的建立与模型共享问题。 http://assets.dxycdn.com/app/bbs/img/attachment.gif 近红外光谱假药识别系统的设想及可行性探讨.rar(73.35k) 在线查看

  • 2016新品-LSR4(哈曼法/赛贝克效应/电阻率)

    2016新品-LSR4(哈曼法/赛贝克效应/电阻率)

    LSR4(哈曼法/赛贝克效应/电阻率)http://ng1.17img.cn/bbsfiles/images/2016/01/201601151419_581968_3060548_3.jpg特点、直接测量ZT值+ 可用以计算热传导系+ 高准确度 (使用双样品校正模式)赛贝克系数:静态直流法电阻:四端法ZT:哈曼法用哈曼法测定热电优值是通过样品上(在直流电和绝热条件下)的热电压与欧姆电势降的比值来实现的。在样品中通直流电则相应的“欧姆”压降可直接测得。因为珀尔贴效应,样品一端会被加热而另一端会被冷却,即在样品中产生温度梯度。通过测量产生的压降和热电压,ZT值便可直接得到。LSR—4测试系统可以同时测量塞贝克系数和电阻(电阻率)可以测量圆柱形或棱柱形的样品,长度6——23毫米利用独特的测量适配器可以测量线状和薄片状样品通过三种可更换的炉体,测量温度范围可以覆盖-100到1500 ℃样品架的设计保证了极好的测量重复性最先进的32位软件可以通过程序实现自动测量测量数据导出测量原理:圆柱形或棱柱形的试样垂直放置的两个电极之间,下部电极块包含一个加热器。整个测量装置放置在炉体中。将整个炉体和样品加热到特定的温度,在此温度下利用电极块中的二级加热器建立一组温度梯度,然后两个接触热电偶测量温度梯度T1和T2。独特的热电偶接触机制保证了以最高的温度精度测量每个热电偶上每条导线电动势dE。

  • 【原创大赛】2016国产磁测量好仪器系列之四:磁电输运性质测量系统ET-9000系列

    【原创大赛】2016国产磁测量好仪器系列之四:磁电输运性质测量系统ET-9000系列

    2016国产磁测量好仪器系列之四:磁电输运测量系统ET-9000原创:刘小军、刘卫滨、李鹏飞 工程师,北京东方晨景科技有限公司推荐:陆俊 工程师,中科院物理所磁学室2016年9月25日一句话推荐理由:从引进吸收到成功集成改良的磁测量好仪器。一、引言电阻是人们借助电传输能量与信息时必须面临的基本物理现象,它导致电损耗及发热,因而几乎所有的电学材料都有必要考察其电阻率。对于电阻或电阻率的测量比较陌生的读者可以看一篇相关通俗意义的介绍“电阻测量的光与影”。本文要介绍的是磁场下电输运测量,根据加载磁场与电流的方向可以分为纵向磁阻(或简称磁阻效应)与横向磁阻(或简称霍尔效应)。进行磁电输运测量的意义在于磁自由度引入,通过电阻率随磁场的变化规律不仅仅可以用来测量磁场的大小,而且让电阻能展现出更深层次物质结构的信息(比如因晶格或拓扑等因素带来的电子自旋相关的能带结构变化)。其中最吸引人的是电子能量结构的量子化过程,竟可以只是通过简单的通过加磁场测电阻的方法予以揭示,参考图1,如1985年的诺贝尔物理学奖颁发给Klaus von Klitzing的量子霍尔效应、1998年的诺贝尔物理学奖颁发给崔琦等三位物理学家的分数量子霍尔效应、2007年诺贝尔物理学奖颁发给Albert Fert与Peter Gruenberg的巨磁电阻效应以及不久前中国刚公布的“未来科学奖”颁发给清华大学薛其坤的量子反常霍尔效应等奇特量子效应(也有可能在不久的将来获得诺贝尔奖)。因而磁场下进行电输运测量成为凝聚态物理学研究中的家常便饭式的手段。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612654_1611921_3.png图1 磁电输运测量相关的诺贝尔奖级别工作图示二、背景磁电输运测量相关的仪器虽然很轻松就能实现,但要达到在证明被研究物质的奇特量子性质并不容易。其中涉及到的主要技术不仅仅是电压与电流的稳定测量,还包括磁场的稳定与测量,此外还可能涉及到低噪声的低温甚至光学配件等,因而其综合性导致其从头开始的研发周期较长。几十年来,磁电输运测量仪器主要来自于美国的量子设计公司与Lakeshore两家公司。北京东方晨景科技有限公司从20世纪末开始引进代理Lakeshore公司设备,经过十多年的消化吸收,逐步掌握了国外公司在输运测量、磁场电源、低温等系统集成方面的技术,不仅如此,还针对国外公司在应用过程中的让用户感到不便的软硬件问题,进行了自主的改良研制,逐步形成ET-9000测量系统,系统照片如图2所示,该系统从2010年正式推出至今,明显的增加了国内外磁电输运测量仪器系统的比例(约从20%上升到40%)。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612655_1611921_3.png图2 ET-9000 型磁电输运测量仪器照片三、简介ET-9000系列磁电输运性质测试系统是集霍尔效应、磁阻、变温电阻、I-V特性等测试于一体的全自动化测试系统,其总体原理框图如图3所示。系统全面地考虑了集成一体性、屏蔽防干扰能力和操作人性化等用户经常忽略的问题,选取了美国Keithley的电测量仪表,高精度高稳定性电磁铁平台,配备灵巧的测量样品杆和快速插拔样品卡,加上全自动化的专用测试软件,能让用户快速方便地进行电输运测试,并获得准确可靠的数据。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612657_1611921_3.png图3 ET-9000磁电输运测量仪器的测试原理框图ET-9000根据不同的材料不同的测试需求分为多种型号,综合各类型号,其主要技术指标列表如下:物理学参数迁移率1 ~ 1 × 106 cm2/vs载流子浓度6 × 108 ~ 6 × 1023 cm-3霍尔系数±1 × 10-5 ~ ±1 × 1010 cm3/C电阻率5 × 10-9 ~ 5 × 106 Ω·cm电学参数电阻100nΩ ~ 100GΩ电流源±0.1pA~±1A(±1.05A@±21V, ±105mA@±210V)电压源±5μV~±200V(±21V@±1.05A, ±210V@±105mA)电流测量±10fA~±1.05A(10pA为最小分辨率)电压测量±1nV~±200V(0.1μV为最小分辨率)磁场环境室温磁场2.6T@10mm间距变温磁场2T@低温恒温器温度(选件)单点液氮盒77K闭循环恒温器4K~325K(4K型),10K~325K(10K型)高温炉325K~1000K其他样品最大尺寸50mm*50mm*3mm样品数量2个(增加选件可扩展到4个)光学配件[

  • 强激光高能量密度物理研究新进展——局域超临界场致正负电子对产生过程的磁场控制

    量子场论被认为是描述最本质物理规律的学科之一。利用最基本的关系式,狄拉克方程,所提出的多种预测已经被证实,并得到具有重大意义的结果。到目前为止,关于最具挑战性且有重大价值的一项预测的真实性验证还仍然在探索中:光是否能够直接转化成物质,即强场下真空中是否能够激发出正负粒子对。1951年诺贝尔奖得主Julian Schwinger给出了电子对在均匀稳恒电场中产生率的表达式,这项先驱性的工作引起了人们对这项对物理基础学科发展和应用极富挑战性的重大科学课题的注意,并激发人们开始投入大量精力来挑战这个未解的难题。超快超强激光技术的快速发展正在为开展这项研究提供前所未有的实验条件,使其逐渐成为物理学的一个新的前沿热点。迄今为止,人们在实验上已经得到一些有意义的结果,重离子对撞实验以及美国斯坦福线型加速器上进行的46.6GeV电子束和强激光碰撞实验,已经证实了正负电子对的产生。但是到目前为止,由强光场直接引起的真空击穿和相应的正负电子对产生过程的实验还未能实现,主要原因是目前激光系统的最大强度虽然已经高达2×1022W/cm2,但仍不足以直接“击穿“真空。为了获得更高功率的激光系统,跨国研究中心也正在建设中。我们能够预期,在不久的将来,激光就可接近甚至达到“击穿”真空并自发产生正负电子对的强度,在避免其它效应的情况下对超临界场产生正负粒子对的过程进行直接检验。如果能够实现,将是人类首次证实光可以直接转化成为物质,即爱因斯坦的能质公式E=mc2, 这对于物理学的发展和所带来影响是不可估量的。 对于这一重要问题,理论和数值方面已经得到了非常有意义的结果,但大部分工作都只考虑了电场而并没有考虑磁场效应。最近中科院物理所/北京凝聚态物理国家实验室(筹)光物理实验室强激光高能量密度物理组与美国伊利诺斯州立大学、中国矿业大学和上海交通大学的合作者一起,首次研究了磁场效应对局域超临界电场下正负电子对产生过程的影响。通过运用基于量子场论的非微扰的精确数值模拟,发现在超临界的电场中即使考虑强度非常小的磁场,只要其空间宽度足够宽,仍然可以关闭正负电子对产生通道,使系统变为次临界,并且伴随产生粒子数在时间上的震荡效应(见图1)。一直被公认的Schwinger公式和Hund公式都无法对这种效应做出描述。通过计算系统总哈密顿量的能量本征值得出,磁场变宽的同时正负能态的上下限随之相互远移,当磁场宽度达到粒子在磁场中的回旋半径的时候系统就变为次临界(见图2),并且出现离散的朗道能级引发粒子数在时间上的震荡效应。上述研究结果发表在近期的物理评论快报上:http://prl.aps.org/abstract/PRL/v109/i25/e253202。该工作得到了国家基金委、科技部、科学院和美国国家基金委的资助。http://www.iop.cas.cn/xwzx/kydt/201212/W020121231638765715614.png 图1. 不同磁场宽度下正负电子对的产生数随时间的变化关系。其中WB=1.25/c约为电子在磁场中的回旋半径:磁场宽度小于回旋半径时,粒子数持续产生,系统为超临界;磁场宽度大于回旋半径时,系统变为次临界。http://www.iop.cas.cn/xwzx/kydt/201212/W020121231638765722390.gif 图2. 根据总哈密顿量得到的能级分布随磁场宽度WB变化关系。宽度小于回旋半径时,正负能态交叠,能够持续产生电子对;宽度大于回旋半径时,正负能态分离并出现离散的朗道能级。

  • 【分享】微型光纤光谱仪---荧光测量系统

    当前,微型光纤光谱仪非常流行,受到了众多应用领域的青睐。与大型光谱仪相比较,微型光纤光谱仪价格便宜(仅是大型光谱仪的零头);携带方便(只有手掌大小);测量速度快(毫秒级的数据采集,实现在线实时分析);操作方便,性能稳定可靠(无需专人维护)等长处。因此,在满足使用要求的前提下,微型光纤光谱仪是一种最佳的选择。 我司微型光纤光谱仪的主要功能有:吸光度测量;反射率测量;透射率测量;颜色测量;相对辐射和绝对辐射测量。具体应用包括吸光度测量系统(包括气体、液体、固体的吸光度测量);颜色测量系统(纸张、油漆、颜料、布料、动物皮肤、植物、光源等等);膜厚测量系统(感光保护膜、半导体薄膜、金属膜、等离子体镀膜、光学镀膜等);SLM系列光源测量系统(白炽灯、荧光灯、ARC、HRC、以及发光二级管等光源的各种参数测量);SMS光照度/辐照度测量系统(光通量、光强、光照度或光亮度测量);LCS系列LED测量系统(测量LED光源、大型光源的光学、光谱、颜色、纯度等特征信息);氧含量测量系统(连续测量氧饱和度、总含量、含氧和去氧血色素的浓度);[color=#00008B][color=#00FFFF][color=#DC143C][size=4]荧光测量系统(测量皮克级的含有荧光团的物质);[/size][/color][/color][/color]近红外测量系统(糖、酒精、湿度、脂肪等成分的分析);拉曼测量系统(药物、爆炸物、水质、现场材料的分析,制药监控,石化工业过程控制等);LIBS2500光纤光谱仪系统(无损地对气体、液体、固体进行定性和半定量的实时元素分析);PlasCalc等离子监控器系统(监测等离子蚀刻,检查表面清洁处理,分析等离子反应腔控制情况,检测异常污染和排放现象,等离子开发过程的检测和控制,等等);防晒指数测量系统(化妆品、防晒用品、防紫外服、感光乳剂等的SPF值测量);量子效应测量系统(量子效率的测量等)。另外,我司还有闪光光解光谱仪(演示化学动力学原理);各种光源(钨光源、氘光源、氘-钨光源、氙光源、LED系列光源、校准光源等)及各种光纤(普通光纤、中红外光纤、红外光纤、高功率传输光纤、图像传输光纤、医疗光纤等)。 谢谢您的关注!详情请见我司的网站(http://www.psci.cn)或与我联系(电话:0571-88225151-8020,13738178070,Email:zqchen@psci.cn 陈振泉)。

  • 【原创大赛】【奥运检测卫士】基于h-ER基因的水体类雌激素效应测定

    【原创大赛】【奥运检测卫士】基于h-ER基因的水体类雌激素效应测定

    基于h-ER基因的水体类雌激素效应测定前言: 写这篇文章源于当时看的一篇《体育学刊》的论文《奥运会我们拿什么招待客人?——环境激素(EDCs)对生物的影响》(http://www.cnki.com.cn/Article/CJFDTotal-TYXK200708030.htm)。水和食物是奥运健儿每天都会接触到的。若水中的类雌激素效应较高,会对运动员内分泌系统造成影响,从而影响比赛成绩,严重者甚至产生长期健康风险(如生殖影响、致癌等)。 之前,环境激素类物质在奥运会水质检测中有涉及,但是仅以GC-MS定性定量,这样做可能会丢掉部分环境激素类物质,如某些重金属和某些大分子的环境激素效应物质。同时环境激素类物质非常之多,采用理化分析不足以将这些物质全覆盖。所以未来分析的导向一定是生物分析,以环境激素效应代替单个的环境激素物质理化测定。下面就为大家分享下我们最近做的一个基于h-ER基因的类雌激素效应测定。摘要:目的:对水样中的环境激素含量进行定量测定。方法:重组h-ER基因酵母特异性地结合水中类雌激素化合物,产生具有生物学活性的酶,通过定量检测酶活,间接测定环境激素含量。结果:10-11~10-9mol/L的17β-雌二醇暴露下,标准浓度与β-半乳糖苷酶活呈S型曲线,相关系数0.984;该方法最佳检测范围为5.88×10-11mol/L~1.44×10-10mol/L;加标回收率在74%~108%之间。结论:该方法灵敏度高,在最佳检测范围内重复性好,能适用于地表水和污水厂进出水等水样的测定。关键词:环境激素 h-ER基因 酵母 环境激素是指能通过干扰内分泌功能,引起个体、后代或人群可逆性或不可逆性生物学效应的化合物,又称内分泌干扰物。随着工业化的进展和环境污染的加剧,环境激素在环境中的存在日益增多。生活中大量使用的化肥、农药、防腐剂、添加剂、洗涤剂、激素类药物等,很多属于内分泌干扰物。环境激素可以模拟或干扰正常激素内分泌调节功能,从而对动物及人类的发育、生殖功能产生不良影响, 甚至与人类某些肿瘤( 如乳腺癌、 卵巢癌等) 的发生有关。目前环境激素的检测方法有基于仪器分析的气质联用法,HPLC法、ICP-MS法等和基于生物检测手段的酶联免疫测定法、个体形态学检测法、实时定量PCR法、重组基因酵母法等等。其中重组基因酵母法具有高反应性和低背景,其检测阈值较低等的优点。1.实验材料和仪器http://ng1.17img.cn/bbsfiles/images/2012/08/201208012036_381106_1653274_3.jpg分光光度计(cary50,瓦里安);http://ng1.17img.cn/bbsfiles/images/2012/08/201208012200_381136_1653274_3.jpg全温振荡培养箱(SHZ-22,常州若基);http://ng1.17img.cn/bbsfiles/images/2012/08/201208012200_381137_1653274_3.jpg恒温平板摇床(Titramax 1000,Heidolph,Germany);[font=Times New R

  • 科学家将“自旋塞贝克效应”放大千倍 有助于推动新型热电发动机研究

    中国科技网讯 热电循环需通过“塞贝克效应”来产生热,据物理学家组织网7月11日报道,俄亥俄大学找到了一种新方法,能将“自旋塞贝克效应”放大1000倍,将其向实际应用推进了一大步。该研究有助于热电循环的实现,从而最终有望开发出新型热电发动机,还可用于计算机制冷。相关论文发表在本周出版的《自然》杂志上。 热电循环是电子设备循环利用自身产生的部分废热,将废热转化成电。根据“塞贝克效应”,当导体被放在一个温度梯度中时,会产生电压使热能转变为电能。而2008年日本发现了“自旋塞贝克效应”,即在磁性材料中,自旋电子会产生电流使材料接点产生电压。这以后,许多科学家都在试图利用自旋电子学来研发读写数据的新型电子设备,以便在更少空间、更低能耗的条件下更安全地存储更多数据。但这种“自旋塞贝克效应”产生的电压一般非常小。 目前新方法是将此效应放大为“巨自旋塞贝克效应”。研究人员利用锑化铟及其他元素掺杂制成所需材料,并将温度降低到零下253℃至零下271℃附近,外加3特斯拉磁场。当他们将材料一面加热使其升高1℃时,在另一面检测到电压为8毫伏,得到比以往的5微伏高三个数量级的电流,是迄今为止通过标准“自旋塞贝克效应”产生的最高电压,且功率提高了近百万倍。 俄亥俄大学物理学与机械工程教授约瑟夫·海尔曼斯说,科学家认为热是由振动量子所组成,他们能在半导体内部引发强大的振动量子流,在流过材料时撞击电子使电子向前运动。而由于材料中原子使电子自旋,电子最终就像枪管中的子弹那样旋转前进。 以往人们只在磁性半导体和金属中发现过“自旋塞贝克效应”,而此次“成功的关键是选择材料,”该校材料科学与工程夫教授罗伯托·梅尔斯说,但由于材料是非磁性的,还需要外加电场和低温环境,这是实验的不足之处,他们还在进一步研究其他材料。 海尔曼斯表示,其最终目标是开发出一种低成本高效率将热转化为电能的固态发动机。这些发动机没有运动部分,不会磨损,可靠性几乎是无限的。“这是真正的新一代热电发动机。17世纪我们有了蒸汽机,18世纪有了燃气机,19世纪有了第一个热电材料,而现在我们正要用磁来做同样的事。”(常丽君) 《科技日报》(2012-07-13 二版)

  • 【原创】生产磁旋光元件

    磁旋光功能材料Faraday Rotator / Magneto-Optical Materials西安奥法光电技术有限公司研制和生产高费尔德常数的磁旋光玻璃Faraday Rotator Glass/ Magneto Optical Glass,耐高温玻璃 低温封装玻璃粉和导电银桨用玻璃粉和其它特殊光学玻璃;拥有全部材料配方、制造工艺和生产装备的自主知识产权和专有技术,二硅化钼MoSi2电热元件及耐高温结构件已获国家发明专利(2003101058656)同时,生产和加工各种精密光学产品。法拉第磁旋光棒,是一种新颖的磁光高科技领域中重要的透明光学功能材料,具有很强的法拉第磁光效应,它能使一束平行于磁场方向的线偏振光的偏振面发生旋转。主要产品:* 逆磁性的法拉第磁旋光玻璃元件(Diamagnetic Faraday Rotators Glass牌号MR1),其灵敏度高,旋光特性(Verdet Constant费尔德常数)几乎不受环境温度(-55—+135摄氏度)变化的影响,高Verdet常数0.071-0.075(min/Oe.cm)@632.8nm, 达国际先进水平 是根据法拉第“磁旋光效应”原理制作新型电子式电流互感器Magnet Optic Current Transform(MOCT)、磁光传感器、高稳定度旋光仪、偏光仪等高科技产品的核心部件。是目前国内外市场上灵敏度较高的与温度变化无关的磁旋光玻璃。* 顺磁性的法拉第磁光玻璃(Faraday Rotators Glass)及旋转元件(Faraday Rotators), 牌号MR3-2,MR3,MR4,其费尔德常数(Verdet Constant)分别为-0.33,-0.34,-0.38(min/Oe-cm@632.8nm);是旋光性能最高的工业化生产的磁光玻璃材料,光谱透过范围宽400nm-1600nm、透过率高、非线性指数n2低、高消光比、质量因数M等其它技术指标稳定可靠 各向同性、易加工。是大功率及大孔径光隔离器的最佳选择,避免激光系统的自聚焦和反射光而影响激光器稳定性和使用寿命,广泛用于磁光光纤隔离器、磁光衰减器、磁光开关、磁光调制器、各种高精度旋光仪,椭偏仪等磁光器件。* 电子工业和玻璃器皿专用的各种高、中、低温封装、熔接玻璃粉及银桨用玻璃粉。* 磁光电流传感器MOCT和其它光电产品的传感元件。* 各种旋光仪/偏振计使用的高灵敏度、高稳定性的精密旋光元件。Faraday Rotator used for polarimeters.联系人:成波 西安奥法光电技术有限公司地址:西安金花北路126号邮编:710032电话: +86 29 83217659 传真: +86 29 83222377 网址: www.xaot.com 电邮: xaot@21cn.com

  • 顺磁共振的理论基础[EPR]-塞曼效应

    塞曼效应是指原子光谱在外加磁场下发生分裂。 电子的自旋运动会产生环电流,进而会产生磁场;在外磁场作用下,同一轨道中自旋不同的电子能量不同导致了原子光谱的分裂。我们可以通过考虑和不考虑外加磁场时的薛定谔方程表达式来解释塞曼效应: 不考虑外加磁场时薛定谔方程的表达式是:HΨ=EΨ, 在这个表达式中能量只与n、l和m有关,而与磁量子数无关,也就是说与电子的自旋无关,所以具有同样的n、l和m的电子[也就是同一轨道中自旋反平行的两个电子]具有相同的能量;测试原子光谱时只有一条谱线。 考虑外加磁场时薛定谔方程的表达式:(H+Hb)Ψ=(E+Eb)Ψ, 此时Hb表示的是外加磁场对体系哈密顿量的影响, (H+Hb)是有外加磁场时的哈密顿量;Eb则有外场时Hb所对应的能量值,(E+Eb)是有外磁场时体系的能量;由于在外加磁场下自旋不同的电子有不同的能量,Eb值不同,所以在外磁场存在时原子光谱发生了分裂。

  • 近红外光谱配件咨询需要。

    本人需要一些近红外光谱分析系统的配件。谁给推荐一下好点的厂家。厂家或者经销商有的也可以联系我。谢谢。急求。。。半天没找到采购论坛。这里能发不?K9基片石英基片光电二极管光纤转接件红外探测器模组(FTIR-OEM100)光谱数据采集模组中红外光纤(FIB-PIR-830-100)迈克尔逊干涉系统光学套件(FTIR-EM000-ZNSE-MIR)中红外光纤(FIB-IR-500-100)FTIR-OEM200-HP IR中红外分束器(ZNSE-NIR)中红外凹面反射镜组件(MIR)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制