当前位置: 仪器信息网 > 行业主题 > >

大鼠心电遥测系统

仪器信息网大鼠心电遥测系统专题为您提供2024年最新大鼠心电遥测系统价格报价、厂家品牌的相关信息, 包括大鼠心电遥测系统参数、型号等,不管是国产,还是进口品牌的大鼠心电遥测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大鼠心电遥测系统相关的耗材配件、试剂标物,还有大鼠心电遥测系统相关的最新资讯、资料,以及大鼠心电遥测系统相关的解决方案。

大鼠心电遥测系统相关的资讯

  • 航天科工203所自主研发车载云台式激光甲烷遥测系统
    记者近日从中国航天科工集团公司(以下简称航天科工)203所获悉,该所智慧市政研究室自主研发的车载云台式激光甲烷遥测系统目前已正式推向市场。目前,城市燃气管网纵横交错,燃气泄漏检测多以人工巡检为主,检测员采用燃气管网检漏仪进行日常的路面巡检,效率低、工作量大、无法及时检测到燃气泄露。据介绍,203所智慧市政研究室以“提高仪器核心性能,发现更多的泄漏隐患”为设计理念推出该系统,其顶置遥测模块采用先进的可调谐半导体激光吸收光谱技术,检测半径可达到150m。车内控制单元集云台控制、实时导航、视频监控和浓度显示等功能于一体,结合北斗定位技术和GIS技术,可分析、处理、记录重要巡检信息并实时生成完整的巡检报告并上传,为指挥调度和领导决策提供科学依据。此外,车载云台式激光甲烷遥测系统具备检测响应快、精度高、范围广、抗气体干扰能力强、维护方便等优点,可以帮助巡检人员对燃气泄漏隐患进行精准排查,全力保障城市燃气管网运行安全。
  • 山东特检院顺利开展无线遥测科研项目
    从山东省质监局获悉,由省特检院起重机械检验中心与北京航天数据技术有限公司共同承担的科研项目“无线遥测数据采集系统在起重机械型式试验中的应用研究”近日取得阶段性成果。  随着起重机械行业的快速发展,目前广泛应用的有线测试方式不能很好的满足实际工作的需要。而采用无线遥测数据采集系统对塔式起重机进行远距离测试,可以克服传统有线数据采集传输方式的固有缺点,在起重机械检测技术创新方面开辟一条新路,尤其对于大型、超大型起重机械的应力测试有着更加深远的意义。同时,此项技术亦可推广应用于各类大型钢结构的应力测试,有着广阔的应用前景。  省特检院起重中心对此项科研项目高度重视,于2009年10月29日至30日对遥测数据采集系统进行了全面详细的现场试验,并对无线数据采集和有线数据采集两种方式进行了详细的对比。通过试验比对分析研究,对无线遥测数据采集系统在起重机械型式试验中应用存在的问题进行了细致的总结,指出设备研制下一阶段的重点和方向。此次试验是本项目的关键步骤,将为无线遥测数据采集系统在起重机械检验上的成功应用起到决定性的作用。
  • 启动大数据收集系统 南京监测尾气污染出新招
    江苏省南京市建立起一套机动车尾气排放的大数据收集和整理系统,利用全市518个遥测天线,通过专门的软件对采集到的数据进行统计分析。一张张直观的色彩渲染图,一个个精细的尾气排放数据,使得环保和交通部门可以一目了然地掌握道路污染情况,让机动车尾气排放管理和治污决策有了科学依据。目前,这套系统已投入应用中,取得了很好的效果。  南京在机动车上安装&ldquo 环保信息卡&rdquo 。市机动车排气污染监督管理中心技术科科长孟磊介绍,环保信息卡大小如信用卡,安装在每辆车的前挡风玻璃上,里面储存着车辆的各种信息,如车牌号、发动机排量、排放标准、有无违章、黄标车还是绿标车等等,每次经过监控装置时,环保信息卡发射出的信息,会被安装在监控装置上的天线自动接收。南京市机动车污染联防联控电子执法平台上面显示了经过环保监控天线的各种车辆的信息:10月30日,龙蟠中路长乐路以北东侧监控点,共有2213辆车通过。在这些车中,绿标车占76.9%,黄标车占0.2%,无标车占2.3% 排放等级中,国Ⅳ标准的排放车辆占61.9%,国Ⅲ的占24.4%,国Ⅱ的占11.6%。鼠标一点,可以看到每辆车的具体环保信息。  据介绍,目前南京全市共有167万辆机动车,其中140万辆汽车安装了这种环保信息卡。&ldquo 这些智能卡采用的是射频识别技术,可通过无线电讯号识别特定目标并读写相关数据。&rdquo 这些卡片就像汽车的信息终端,每辆汽车在经过监控点时,自动向天线发射汽车的信息,这样就可以了解到每台汽车的尾气排放情况。安装在全市道路的500个智能卡基站,通过感应经过车辆的智能卡信息,将每辆车的尾气排放数据传输到智能交通公司后台大数据分析中心。利用这个物联网系统,全市每天乃至全年所有路段的尾气排放量都可以精确计算出来。
  • 隔空辨毒气,识图保安全 | 谱育科技EXPEC 1900 傅里叶红外气体遥测仪 新品上市
    EXPEC 1900 傅里叶红外气体遥测仪化学成像+红外成像+可见光成像全天候全自动360°巡逻,发现异常可自动报警可监测TIC、VOC、化学战剂等400多种气体超广覆盖范围,最远覆盖半径可达5公里傅里叶红外化学成像原理EXPEC 1900 傅里叶红外气体遥测仪利用傅里叶红外遥感检测 快速扫描目标空域获取目标区域内每个空间点的大气红外吸收光谱从而描绘出整个目标区域内基于红外吸收的化学物质成像 系统特点● 可视化化学成像以FTIR遥感技术为核心,与可见光/红外视频成像完美结合,通过红外成像捕捉人眼无法识别的气团,以图像方式呈现问题点、风险源,为高效决策提供支持。● 智能化全天候全自动360°巡逻,针对重点区域,定时定点预置位守望监测,能对异常点自动预警。● 能力强可监测包括TIC、VOC、化学战剂等400多种气体,并支持气体库扩展。● 精度高采用斯特林制冷(-200℃)科研级MCT红外探测器,结合高分辨FTIR光学遥感系统和专利的数据处理算法,实现ppb级探测下限。● 可车载可实现车载模式,远距离、非接触、快速响应事故现场应急监测,可为应急行动提供可靠数据支撑。应用领域EXPEC 1900傅里叶红外气体遥测仪可为环境保护、应急安全、科学研究等提供有效的技术和数据支持,为生态环境安全保驾护航。
  • 桂林航专全面启动无人机遥感遥测实验室建设
    为了更好地服务地方经济社会,日前,桂林航天工业高等专科学校全面启动无人机遥感遥测实验室建设,计划投资930.72万元,拟在今年底验收投入使用。该校将组成有15名专家、教授的专项小组,利用实验室装备,与桂林鑫鹰电子科技有限公司技术人员共同研发具有更高技术含量的新产品。 无人机项目是桂林航专和桂林鑫鹰电子科技有限公司校企合作共建项目,自2007年5月双方签订了产学研一体化框架合作协议以来,该校就成为桂林鑫鹰电子科技有限公司无人机人才培养基地、无人机项目研发中心和遥感遥测技术应用实践中心,并被授予“民政部国家减灾中心无人机生产基地无人机项目研发中心”和“民政部国家减灾中心无人机生产基地遥感遥测人才培养中心”。 双方在技术合作中,不断加快科技改革的步伐,增强科研力量,取得显著的成绩。在2008年5月汶川地震中,他们自主研发的产品“千里眼I型”无人机第一时间赶赴灾区进行航拍,得到最详尽的北川灾情图,为国家抗震救灾工作获取第一手宝贵资料。通过双方共同努力,开发的“步云者II型”无人机高调亮相2008年深圳高交会和中国-东盟博览会,取得了近亿元的订单。今年,又新开发了“天翼”旋翼型无人直升机和“天翔”系列无人机,并已投入商用。2008年底,由该校申报的科研项目“微型无人机在防灾减灾中的运用”获得了2008年广西高校科技十大最具影响力事件的称号。
  • 《激光甲烷遥测仪校准规范》等125项行业计量技术规范计划项目汇总
    近日,工信部将2021年申请立项的《激光甲烷遥测仪校准规范》等125项行业计量技术规范计划项目和项目建议书予以公示,截止日期为2021年4月9日。这125项项目中,包括石化行业(26项)、有色金属行业(7项)、建材行业(14项)、机械行业(20项)、纺织行业(9项)、兵工民品行业(14项)、电子行业(15项)、通信行业(8项),目录如下表所示。附:《激光甲烷遥测仪校准规范》等125项行业计量技术规范计划项目建议书.zip2021年行业计量技术规范申报项目汇总表 行业:石化 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域1JJFZ(石化)001-2021激光甲烷遥测仪校准规范制定/2023中国石油和化学工业联合会山东省计量科学研究院、济宁市计量所石油化工2JJFZ(石化)002-2021磷化氢气体检测报警器校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工3JJFZ(石化)003-2021柴油十六烷值机校准规范制定/2023中国石油和化学工业联合会中石化(洛阳)科技有限公司、山东省计量科学研究院石油4JJFZ(石化)004-2021乙醇气体检测报警器校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工5JJFZ(石化)005-2021丙酮气体检测报警器校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工6JJFZ(石化)006-2021石油产品定氮仪(化学发光法)校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工7JJFZ(石化)007-2021润滑油蒸发损失测定仪(诺亚克法)校准规范制定/2023中国石油和化学工业联合会中国计量科学研究院石油8JJFZ(石化)008-2021开路式红外可燃气体探测器校准规范制定/2023中国石油和化学工业联合会中国石油化工股份有限公司青岛安全工程研究院石油化工9JJFZ(石化)009-2021恒温振荡培养箱校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院石油化工10JJFZ(石化)010-2021涂料耐溶剂擦拭仪校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院涂料11JJFZ(石化)011-2021涂膜、腻子膜打磨性测定仪校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院涂料12JJFZ(石化)012-2021厚漆、腻子稠度测定仪校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院涂料13JJFZ(石化)013-2021二氧化氮气体检测报警器校准规范制定/2023中国石油和化学工业联合会中国石油天然气股份有限公司吉林石化分公司石油化工14JJFZ(石化)014-2021管状输送带试验机校准规范制定/2023中国石油和化学工业联合会青岛中化新材料实验室橡胶15JJFZ(石化)015-2021汽车同步带疲劳试验机校准规范制定/2023中国石油和化学工业联合会青岛中化新材料实验室橡胶16JJFZ(石化)016-2021橡胶软管外覆层耐磨耗性能试验机校准规范制定/2023中国石油和化学工业联合会青岛中化新材料实验室橡胶17JJFZ(石化)017-2021润滑脂锥入度测定器校准规范制定/2023中国石油和化学工业联合会济宁市计量测试所石油化工18JJFZ(石化)018-2021激光甲烷气体检测报警器校准规范制定/2023中国石油和化学工业联合会济宁市计量测试所石油化工19JJFZ(石化)019-2021帘线干热收缩仪校准规范制定/2023中国石油和化学工业联合会北京橡胶工业研究设计院有限公司橡胶20JJFZ(石化)020-2021橡胶压缩屈挠试验机校准规范制定/2023中国石油和化学工业联合会北京橡胶工业研究设计院有限公司橡胶21JJFX(石化)021-2021直读式橡胶密度计校准规范修订JJG(化)106-912023中国石油和化学工业联合会北京橡胶工业研究设计院有限公司橡胶22JJFZ(石化)022-2021石油产品盐含量测定仪校准规范制定/2023中国石油和化学工业联合会山东省计量科学研究院石油23JJFZ(石化)023-2021甲醛气体检测报警器校准规范制定/2023中国石油和化学工业联合会山东省计量科学研究院石油化工24JJFZ(石化)024-2021氧化性固体重量试验仪校准规范制定/2023中国石油和化学工业联合会浙江省化工产品质量检验站有限公司化学品鉴定25JJFZ(石化)025-2021撞击感度试验仪校准规范制定/2023中国石油和化学工业联合会浙江省化工产品质量检验站有限公司化学品鉴定26JJFZ(石化)026-2021易燃液体持续燃烧试验仪校准规范制定/2023中国石油和化学工业联合会浙江省化工产品质量检验站有限公司化学品鉴定2021年行业计量技术规范申报项目汇总表 行业:有色金属 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域27JJFZ(有色金属)001-2021隔热型材用高温持久试验机校准规范制定/2023中国有色金属工业协会广东省科学院工业分析检测中心力学28JJFZ(有色金属)002-2021闭路循环法铝及铝合金液态测氢仪校准规范制定/2023中国有色金属工业协会西南铝业(集团)有限责任公司工艺29JJFZ(有色金属)003-2021电热恒温水浴锅校准规范制定/2023中国有色金属工业协会西南铝业(集团)有限责任公司温度30JJFZ(有色金属)004-2021电子式温湿度计校准规范制定/2023中国有色金属工业协会西南铝业(集团)有限责任公司温度31JJFZ(有色金属)005-2021有色金属材料用循环腐蚀试验箱校准规范制定/2023中国有色金属工业协会国标(北京)检验认证有限公司腐蚀32JJFZ(有色金属)006-2021铜合金冲刷腐蚀试验机校准规范制定/2023中国有色金属工业协会国标(北京)检验认证有限公司腐蚀33JJFZ(有色金属)007-2021非接触式引伸计标定器校准规范制定/2023中国有色金属工业协会西安汉唐分析检测有限公司力学2021年行业计量技术规范申报项目汇总表 行业:建材 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域34JJFZ(建材)001-2021水泥企业用转子计量秤现场校准规范制定/2023中国建筑材料联合会建筑材料工业技术监督研究中心水泥35JJFZ(建材)002-2021垂直安装的成束电线电缆火焰垂直蔓延试验装置校准规范制定/2023中国建筑材料联合会北京建筑材料检验研究院有限公司、国家建筑防火产品安全质量监督检验中心防火性能测试36JJFZ(建材)003-2021电线电缆热释放测试装置校准规范制定/2023中国建筑材料联合会北京建筑材料检验研究院有限公司、国家建筑防火产品安全质量监督检验中心等防火性能测试37JJFZ(建材)004-2021便携式气相色谱仪用微型气相色谱柱校准规范制定/2023中国建筑材料联合会中国科学院空天信息创新研究院、建筑材料工业技术监督研究中心等室内环境监测38JJFZ(建材)005-2021室内有害气体监测用微型阵列金属氧化物气体传感器校准规范制定/2023中国建筑材料联合会中国科学院空天信息创新研究院、建筑材料工业技术监督研究中心等室内环境监测39JJFZ(建材)006-2021卫生陶瓷包装跌落试验装置校准规范制定/2023中国建筑材料联合会台州市产品质量安全检测研究院、台州方圆质检有限公司建筑卫生陶瓷40JJFZ(建材)007-2021智能坐便器检测用供水装置校准规范制定/2023中国建筑材料联合会台州市产品质量安全检测研究院、台州方圆质检有限公司建筑卫生陶瓷41JJFZ(建材)008-2021水泥快速养护箱校准规范制定/2023中国建筑材料联合会北京建筑材料检验研究院有限公司水泥42JJFZ(建材)009-2021砂浆凝结时间测定仪校准规范制定/2023中国建筑材料联合会北京建筑材料检验研究院有限公司水泥制品43JJFZ(建材)010-2021低温柔度仪校准规范制定/2023中国建筑材料联合会北京建筑材料检验研究院有限公司建筑防水44JJFZ(建材)011-2021卫生陶瓷包装抗压、堆码性能试验机校准规范制定/2023中国建筑材料联合会台州市产品质量安全检测研究院、台州方圆质检有限公司建筑卫生陶瓷45JJFZ(建材)012-2021非接触给水器具水击试验机校准规范制定/2023中国建筑材料联合会中国建材检验认证集团(陕西)有限公司建筑卫生陶瓷46JJFZ(建材)013-2021便器水效测试系统校准规范制定/2023中国建筑材料联合会中国建材检验认证集团(陕西)有限公司建筑卫生陶瓷47JJFZ(建材)014-2021淋浴器水效测试系统校准规范制定/2023中国建筑材料联合会中国建材检验认证集团(陕西)有限公司建筑卫生陶瓷2021年行业计量技术规范申报项目汇总表 行业:机械 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域48JJFZ(机械)001-2021圆度仪谐波标准器校准规范制定/2023中国机械工业联合会上海市轴承技术研究所机械49JJFZ(机械)002-2021氢燃料电池系统及电堆测试台架校准规范制定/2023中国机械工业联合会襄阳达安汽车检测中心有限公司汽车50JJFZ(机械)003-2021汽车安全气囊点爆装置校准规范制定/2023中国机械工业联合会上海机动车检测认证技术研究中心有限公司汽车51JJFZ(机械)004-2021汽车风窗玻璃除雾试验用蒸汽发生器校准规范制定/2023中国机械工业联合会中汽研汽车检验中心(天津)有限公司汽车52JJFZ(机械)005-2021汽车风窗玻璃除霜试验用喷枪校准规范制定/2023中国机械工业联合会中汽研汽车检验中心(天津)有限公司汽车53JJFZ(机械)006-2021汽车排放试验环境监测设备(气象站)校准规范制定/2023中国机械工业联合会中汽研汽车检验中心(天津)有限公司汽车54JJFZ(机械)007-2021车辆气压制动响应时间测试仪校准规范制定/2023中国机械工业联合会襄阳达安汽车检测中心有限公司汽车55JJFZ(机械)008-2021乘用车后端目标物校准规范制定/2023中国机械工业联合会襄阳达安汽车检测中心有限公司汽车56JJFZ(机械)009-2021车辆悬架运动特性(K&C)试验台校准规范制定/2023中国机械工业联合会襄阳达安汽车检测中心有限公司汽车57JJFZ(机械)010-2021机动车变温密闭蒸发舱校准规范制定/2023中国机械工业联合会上海机动车检测认证技术研究中心有限公司汽车58JJFZ(机械)011-2021机动车辅助驾驶检测设备(动态转向参数)校准规范制定/2023中国机械工业联合会洛阳西苑车辆与动力检验所有限公司汽车59JJFZ(机械)012-2021SPD动作负载测试装置校准规范制定/2023中国机械工业联合会甘肃电器科学研究院电气60JJFZ(机械)013-2021互感器开路电压峰值测试仪校准规范制定/2023中国机械工业联合会甘肃电器科学研究院电气61JJFZ(机械)014-2021钢珠抛射试验装置校准规范制定/2023中国机械工业联合会上海电动工具研究所(集团)有限公司电气62JJFZ(机械)015-2021电缆或光缆在受火条件下火焰蔓延、热释放和产烟特性试验装置校准规范制定/2023中国机械工业联合会上海国缆检测中心有限公司电气63JJFZ(机械)016-2021塑料烟生成--单室法测定烟密度试验装置校准规范制定/2023中国机械工业联合会上海国缆检测中心有限公司电气64JJFZ(机械)017-2021变压器消磁检测仪校准规范制定/2023中国机械工业联合会许昌开瑞自动化仪器设备检测有限公司电气65JJFZ(机械)018-2021隔膜式压力表校准规范制定/2023中国机械工业联合会机械工业洛阳计量测试中心站机械66JJFZ(机械)019-2021冲击试样缺口投影仪校准规范制定/2023中国机械工业联合会上海材料研究所机械67JJFZ(机械)020-2021变压器综合测试仪校准规范制定/2023中国机械工业联合会上海电动工具研究所(集团)有限公司电气2021年行业计量技术规范申报项目汇总表 行业:轻工 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域68JJFZ(轻工)001-2021低温保存箱热学性能校准规范制定/2023中国轻工业联合会中国家用电器研究院家电69JJFZ(轻工)002-2021家用真空吸尘器最大吸入效率检测装置校准规范制定/2023中国轻工业联合会中国家用电器研究院家电70JJFZ(轻工)003-2021家用洗衣机磨损率和漂洗率检测装置校准规范制定/2023中国轻工业联合会中国家用电器研究院家电71JJFZ(轻工)004-2021家用干衣机能效水效检测装置校准规范制定/2023中国轻工业联合会中国家用电器研究院家电72JJFZ(轻工)005-2021纸尿裤吸收性能测试仪校准规范制定/2023中国轻工业联合会中轻纸品检验认证有限公司造纸73JJFZ(轻工)006-2021皮革、毛皮测厚仪校准规范制定/2023中国轻工业联合会中国皮革制鞋研究院有限公司皮革机械74JJFZ(轻工)007-2021皮革、毛皮收缩温度仪校准规范制定/2023中国轻工业联合会中国皮革制鞋研究院有限公司皮革机械75JJFZ(轻工)008-2021电器安全防触电检测用试具校准规范制定/2023中国轻工业联合会中国家用电器研究院家电76JJFZ(轻工)009-2021消声室内反射平面装置校准规范制定/2023中国轻工业联合会中国家用电器研究院家电77JJFZ(轻工)010-2021加湿器加湿效率测试装置校准规范制定/2023中国轻工业联合会中国家用电器研究院家电78JJFZ(轻工)011-2021蒸汽挂烫机用标准叠布机校准规范制定/2023中国轻工业联合会中国家用电器研究院家电79JJFZ(轻工)012-2021电子锁具耐久性试验机校准规范制定/2023中国轻工业联合会中国家用电器研究院家电2021年行业计量技术规范申报项目汇总表 行业:纺织 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域80JJFZ(纺织)001-2021口罩呼吸阻力测试仪校准规范制定/2023中国纺织工业联合会浙江省计量科学研究院、浙江省轻工业品质量检验研究院(浙江省纺织计量站)、国家纺织计量站其他81JJFZ(纺织)002-2021通气阻力测试仪校准规范制定/2023中国纺织工业联合会浙江省轻工业品质量检验检测院、纺织工业科学技术发展中心等其他82JJFX(纺织)003-2021八篮烘箱校准规范修订JJF(纺织)011-20102023中国纺织工业联合会国家纺织计量站上海分站、纺织工业科学技术发展中心等通用83JJFX(纺织)004-2021毛细管效应仪校准规范修订JJF(纺织)056-20132023中国纺织工业联合会广州纤维产品检测研究院、纺织工业科学技术发展中心等通用84JJFZ(纺织)005-2021棉花短纤维率测试仪校准规范制定/2023中国纺织工业联合会咸阳市纤维检验所、纺织工业科学技术发展中心等纤维85JJFZ(纺织)006-2021织物冲击渗水性测试仪校准规范制定/2023中国纺织工业联合会浙江省轻工业品质量检验研究院、纺织工业科学技术发展中心等织物86JJFX(纺织)007-2021耐洗色牢度试验机校准规范修订JJF(纺织)026-20102023中国纺织工业联合会河北省纤维质量监测中心(河北省纺织纤维计量站)、温州方圆仪器有限公司、南通宏大实验仪器有限公司等色牢度87JJFZ(纺织)008-2021锐利尖端测试仪校准规范制定/2023中国纺织工业联合会福建省纤维检验中心、福建省纤维纺织计量站等其他88JJFZ(纺织)009-2021婴幼儿背带燃烧性能测试仪校准规范制定/2023中国纺织工业联合会浙江省轻工业品质量检验研究院、纺织工业科学技术发展中心等其他2021年行业计量技术规范申报项目汇总表 行业:兵工民品 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域89JJFZ(兵工民品)001-2021烟火药爆发点测试仪校准规范制定/2023中国兵器工业标准化研究所中国兵器工业第二〇四研究所民用爆破90JJFZ(兵工民品)002-2021X射线三维尺寸测量机校准规范制定/2023中国兵器工业标准化研究所中国兵器工业标准化研究所机械制造91JJFZ(兵工民品)003-2021履带式车辆扭力轴疲劳试验机校准规范制定/2023中国兵器工业标准化研究所国营第六一八厂机械制造92JJFZ(兵工民品)004-2021全自动布氏压痕测量系统校准规范制定/2023中国兵器工业标准化研究所国营第六一八厂机械制造93JJFZ(兵工民品)005-2021万能比较测量仪校准规范制定/2023中国兵器工业标准化研究所国营第六一七厂机械制造94JJFZ(兵工民品)006-2021短波长特征X射线衍射仪器校准规范制定/2023中国兵器工业标准化研究所中国兵器工业第五九研究所基础材料95JJFZ(兵工民品)007-2021自动滤料分析仪校准规范制定/2023中国兵器工业标准化研究所山西新华防化装备研究院有限公司防护器材96JJFZ(兵工民品)008-2021方管前置镜校准规范制定/2023中国兵器工业标准化研究所西安应用光学研究所光学97JJFZ(兵工民品)009-2021呼吸器综合检测仪校准规范制定/2023中国兵器工业标准化研究所黑龙江华安精益计量技术研究院有限公司防护器材98JJFZ(兵工民品)010-2021微库仑法氯含量测定仪校准规范制定/2023中国兵器工业标准化研究所黑龙江华安精益计量技术研究院有限公司化工材料99JJFZ(兵工民品)011-2021盐含量测定仪校准规范制定/2023中国兵器工业标准化研究所黑龙江华安精益计量技术研究院有限公司化工材料100JJFZ(兵工民品)012-2021数显焊缝规校准规范制定/2023中国兵器工业标准化研究所山西北方机械制造有限责任公司机械制造101JJFZ(兵工民品)013-202130°楔形防松螺纹塞规校准规范制定/2023中国兵器工业标准化研究所山西北方机械制造有限责任公司机械制造102JJFZ(兵工民品)014-2021激光测平仪校准规范制定/2023中国兵器工业标准化研究所山西北方机械制造有限责任公司机械制造2021年行业计量技术规范申报项目汇总表 行业:电子 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域103JJFZ(电子)001-2021固态微波功率器件直流参数测试仪校准规范制定/2023中国电子技术标准化研究院中国电子技术标准化研究院测试仪表及专用测试设备104JJFZ(电子)002-2021光切断法三维轮廓测量仪校准规范制定/2023中国电子技术标准化研究院工业和信息化部电子第五研究所/广州赛宝计量检测中心服务有限公司测试仪表及专用测试设备105JJFZ(电子)003-2021汽车电子瞬态传导发射测试系统校准规范制定/2023中国电子技术标准化研究院广电计量检测股份有限公司测试仪表及专用测试设备106JJFZ(电子)004-2021空气线校准规范制定/2023中国电子技术标准化研究院广州广电计量检测股份有限公司关键零部件、元器件107JJFZ(电子)005-2021光采样模块校准规范制定/2023中国电子技术标准化研究院工业和信息化部电子第五研究所、广州赛宝计量检测中心服务有限公司关键零部件、元器件108JJFZ(电子)006-2021自动扶梯综合检测仪校准规范制定/2023中国电子技术标准化研究院广州广电计量检测股份有限公司测试仪表及专用测试设备109JJFZ(电子)007-2021在片微波测试系统散射参数校准规范制定/2023中国电子技术标准化研究院中国电子技术标准化研究院关键零部件、元器件110JJFZ(电子)008-2021偏振依赖损耗模拟器校准规范制定/2023中国电子技术标准化研究院工业和信息化部电子第五研究所、广州赛宝计量检测中心服务有限公司测试仪表及专用测试设备111JJFZ(电子)009-2021反射式分辨率测试卡校准规范制定/2023中国电子技术标准化研究院中国电子技术标准化研究院关键零部件、元器件112JJFZ(电子)010-2021音视频同步测试仪校准规范制定/2023中国电子技术标准化研究院中国电子技术标准化研究院测试仪表及专用测试设备113JJFZ(电子)011-2021相控阵超声点焊分析仪校准规范制定/2023中国电子技术标准化研究院广州广电计量检测股份有限公司测试仪表及专用测试设备114JJFZ(电子)012-2021直流断路器安秒特性测试仪校准规范制定/2023中国电子技术标准化研究院广州广电计量检测股份有限公司测试仪表及专用测试设备115JJFZ(电子)013-2021观片灯校准规范制定/2023中国电子技术标准化研究院工业和信息化部电子第五研究所测试仪表及专用测试设备116JJFZ(电子)014-2021离子风机校准规范制定/2023中国电子技术标准化研究院中国电子技术标准化研究院测试仪表及专用测试设备117JJFZ(电子)015-2021输电线路工频参数测试仪校准规范制定/2023中国电子技术标准化研究院广州广电计量检测股份有限公司测试仪表及专用测试设备2021年行业计量技术规范申报项目汇总表 行业:通信 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域118JJFX(通信)001-2021通信信号分析仪校准规范修订JG(YD)054–20062023通信计量技术委员会中国信息通信研究院信息通信119JJFZ(通信)002-2021无线局域网Wi-Fi数据网络测试仪校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信120JJFZ(通信)003-2021同步以太网漂移分析仪校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信121JJFZ(通信)004-2021雷达回波模拟器校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信122JJFZ(通信)005-2021电子校准件校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信123JJFZ(通信)006-2021功率分配器校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信124JJFZ(通信)007-2021混频器校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信125JJFZ(通信)008-2021光纤反射镜校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信
  • 《激光甲烷遥测仪校准规范》等117项行业计量技术规范报批公示
    根据工业和信息化部计量技术规范制修订工作的总体安排,现将审查后报批的《激光甲烷遥测仪校准规范》等117项行业计量技术规范报批稿(附件1)予以公示,截止日期为2023年8月20日。如对报批的计量技术规范有不同意见,请在公示期间填写《行业计量技术规范报批稿反馈意见表》(附件2)并反馈至工业和信息化部科技司,电子邮件发送至wangjianhao@miit.gov.cn(邮件主题注明:计量技术规范报批稿公示反馈)。地址:北京市西长安街13号工业和信息化部科技司邮编:100846联系电话:010-68205243附件:1.117项行业计量技术规范报批稿2.行业计量技术规范报批稿反馈意见表工业和信息化部科技司2023年7月20日
  • 科研|安光所基于傅立叶红外光谱遥测技术实现气云三维成像
    基于双机扫描的气云立体图像近日,中科院合肥研究院安光所徐亮研究员团队在傅立叶红外光谱气体探测技术上取得新进展,实现了污染气云立体图像的被动遥测,相关研究成果发表在国际知名光学期刊Optics Express上,并被选为“Editor’s Pick”文章,博士生胡运优为论文第一作者。红外光谱成像检测技术,是以FTIR气体探测技术为基础的在线监测技术,它具备监测距离远、监控范围广、灵敏度高、监测成分多等特点,可实现泄漏气云的成分甄别、柱浓度定量和图像呈现。徐亮团队在单台设备实现气云二维探测的基础上,架设了2台AG-FTIR-GS3000型气体泄漏傅立叶红外光谱扫描仪,将多幅2D气云柱浓度图像与来自GPS和陀螺仪传感器的精确定位信息相结合,通过计算机层析成像技术实现立体气云远距离定量重建,以创建叠加在数字地图上的气体云的3D图像。为泄漏成分分析、泄漏源精准定位和扩散态势评估提供了全新的技术路线。论文对在约315立方米的空间中在两分钟内释放的少量六氟化硫和甲烷进行了远程监测,成功地生成具有两种气体的经纬度、高度和浓度分布的气体云的3D图像。 AG-FTIR-GS3000型气体泄漏傅立叶红外光谱扫描仪监测结果与现场情况高度吻合此外,该型号气体泄漏傅立叶红外光谱扫描仪已在多个化工园区成功开展气体泄漏早期预警实际应用。如近日某厂区发生泄漏事故后,团队应邀使用AG-FTIR-GS3000获取了厂内风险区域的泄漏成分、泄漏位置,并与现场工作人员的核验结果吻合,为装置复产试车提供了准确的监测数据,为安全复工提供了有力的技术保障。该团队长期专注于红外精密仪器装备的软硬件关键技术攻关和工程化开发,并积极推动国产仪器装备的行业有效应用。左:安装于生产现场的该设备右:双机扫描成像原理图
  • 科学岛团队利用傅立叶红外光谱遥测技术实现气云三维成像
    近日,中科院合肥研究院安光所徐亮研究员团队在傅立叶红外光谱气体探测技术上取得新进展,实现了污染气云立体图像的被动遥测,相关研究成果发表在国际知名光学期刊Optics Express上,并被选为“Editor’s Pick”文章,博士生胡运优为论文第一作者。   红外光谱成像检测技术,是以FTIR气体探测技术为基础的在线监测技术,它具备监测距离远、监控范围广、灵敏度高、监测成分多等特点,可实现泄漏气云的成分甄别、柱浓度定量和图像呈现。徐亮团队在单台设备实现气云二维探测的基础上,架设了2台AG-FTIR-GS3000型气体泄漏傅立叶红外光谱扫描仪,将多幅2D气云柱浓度图像与来自GPS和陀螺仪传感器的精确定位信息相结合,通过计算机层析成像技术实现立体气云远距离定量重建,在数字地图上创建叠加气体云的3D图像。研究人员对约315立方米的空间中在两分钟内释放的少量六氟化硫和甲烷进行了远程监测,成功地生成具有两种气体的经纬度、高度和浓度分布的气体云的3D图像。该研究为泄漏成分分析、泄漏源精准定位和扩散态势评估提供了全新的技术路线。   此外,该型号气体泄漏傅立叶红外光谱扫描仪已在多个化工园区成功开展气体泄漏早期预警实际应用。如近日某厂区发生泄漏事故后,团队应邀使用AG-FTIR-GS3000获取了厂内风险区域的泄漏成分、泄漏位置,并与现场工作人员的核验结果吻合,为装置复产试车提供了准确的监测数据,为安全复工提供了有力的技术保障。(a) 安装于生产现场的AG-FTIR-GS3000型气体泄漏傅立叶红外光谱扫描仪,(b)双机扫描成像原理图基于双机扫描的气云立体图像AG-FTIR-GS3000型气体泄漏傅立叶红外光谱扫描仪监测结果与现场情况高度吻合
  • 同阳发布同阳科技TY-CGT机动车尾气遥感监测系统新品
    1、 产品基本信息◆ 产品名称 机动车尾气遥感监测系统◆ 产品图片 ◆ 型号 TY-CGT◆价格区间 200W –250W◆ 产地 中国◆ 核心参数测量范围:(1)CO:(0~10)%;(2)CO2:(0~16)%;(3)HC≤10000ppm;(4)NO≤10000ppm;(5)不透光烟度(0~100)%;测量精度:(1)CO精度:相对误差±10%或绝对误差为±0.25%,取最大值;(2)CO2精度:相对误差±10%或绝对误差为±0.25%,取最大值;(3)HC精度:相对误差±10%或绝对误差±250×10-6,取最大值;(4)NO精度:相对误差±10%或绝对误差±250×10-6,取最大值;(5)不透光烟度:相对误差为±5%或绝对误差为±2%,取最大值。2、 产品详细介绍◆ 基本原理TY-CGT机动车尾气遥感检测系统可根据光谱吸收原理检测出被检车辆的排气污染状况。其基本测量原理是光谱吸收原理,利用不同污染物对不同波长的光波有不同的吸收作用,吸收谱线可作为识别不同气体分子的“指纹”,以吸收谱线的位置和强度确定气体分子的成分和浓度。利用TDLAS技术测量尾气排放的CO、CO2,利用紫外氘灯(紫外差分吸收)测量尾气排放的HC、NO,利用550~570nm绿光测量不透光烟度◆技术优势本方案采用异构融合的理念,系统涵盖道路环境空气质量监测、固定式尾气遥感检测、移动式尾气遥感检测、车流量统计等,涉及环保大气监测、机动车尾气监管、公安交管等跨部门,设备安装在城市主干道、快速路、次干道、重要交通路口、城市出入口等各个地方,针对不同的管控手段和业务目标,建立全方位的机动车尾气遥感检测综合管理系统。系统框架(异构融合)整个系统采用分层设计:从功能上划分为自动采集、智能传输、智慧中心管理三个层次。系统分层设计 1.1.1 自动采集层在机动车尾气遥感检测综合管理系统中,采集层包含了前端固定式尾气遥测、移动式尾气遥测、空气质量监测、车辆信息采集、速度/加速度采集、气象信息、车流量信息采集等部分。 1.1.2 智能传输层针对系统要求,本系统固定式尾气遥测以数字化和网络化为基础,租用或买断电信等通信运营商的光纤建成环保信息专网,也可根据现场要求,利用无线网络实现数据传输;针对移动式尾气遥测,系统采用无线数据传输模式。 光纤有线传输 4G无线传输 1.1.3 智慧管理层本系统支持接入机动车尾气遥感检测综合管理平台,用户在中心平台的统一管理下,可以通过专门的平台通讯服务对通行车辆进行数据采集和统计,获取机动车通行和尾气不合格信息。依托平台大数据处理和挖掘,实现审计检查、筛选高排放车辆、豁免清洁车辆、检查车辆环保装置、入境检查、尾气不合格车辆非现场执法等有价值的内容,深入挖掘机动车尾气遥感检测资源和数据信息的潜在价值。◆应用领域1) 审计检查:利用遥感检测技术可以经济地审查目前采取的汽车污染物排放控制措施和政策的效果,例如核查当前采用的检查维修计划(I/M 制度)是否有效,检查 I/M 制度以外的车辆(过境车和未登记车)是否是空气污染主要来源之一,确定环境空气质量的变化与汽车尾气排放的相关关系。2) 筛选高排放车辆:实验表明当汽车工况已知,遥感检测可用于判断高排放车。高排放车一般只占车辆总数约10%,排放的污染物却占到全部车辆排放污染物的80%以上。筛选高排放车并加以治理或淘汰,是防治机动车污染,改善空气质量的有效措施之一。3) 豁免清洁车辆:筛选清洁车辆用于鼓励人们选用低排放车辆,并经常保养检修车辆,使汽车保持在良好的工作状况下。清洁车辆的车主可以主动驾车至有尾气遥感检测的地方,检测通过后可免除进行例行的年检。4) 入境检查:尾气自动遥感检测设备可安置在城市道路入口处收费站,通过检测禁止高污染车辆进入城市。5) 检查汽车的环保装置:遥感检测设备中具有检查汽车是否安装并使用环保装置的功能。 ◆应用案例创新点:1、机动车尾气遥感监测设备复杂的光学核心处理部分和电气部分选择独立模块式结构,提高了设备在现场使用的稳定性同时也易于维修;2、产品通过先进的车辆轮廓图分析技术,结合速度/加速度和不透光模块,可以对柴油车尾气排气烟度位置进行准确识别,有效提高烟团捕获率;3、设备采用激光和进口光电探测器对速度/加速度进行测量,响应时间快,测量准确,可以快速准确的对监测数据是否有效进行准确判断。同阳科技TY-CGT机动车尾气遥感监测系统
  • 华大基因与华为签署《基因大数据存储系统联合开发协议》
    p  华为与华大基因在华为云计算大会2015上,签署《基因大数据存储系统联合开发协议》,双方将针对基因处理工作流特征,联合设计和开发专为基因研究优化的大数据存储系统,消除基因研究工作流中的重复数据,使整体效率提升30%以上。华大基因CEO杨爽、华大基因研究院副院长方林、华为IT产品线总裁郑叶来、华为海量存储领域总经理肖苡共同出席本次签约仪式。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 266px" title="20150928103553769.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201509/noimg/8013a2fc-f392-45c0-acba-be422df1d8f8.jpg" width="450" height="266"//pp style="TEXT-ALIGN: center"strongHCC2015上华为与华大基因签署《基因大数据存储系统联合开发协议》/strong/pp  “华大基因一直致力于让基因技术更好地为人类服务,效率是影响基因技术全面普及的重要因素。基因研究是典型的大数据应用,从生物样本的基因测序到遗传疾病的识别、预防与治疗,需要处理海量的数据,而这一过程将消耗大量时间。”华大基因CEO杨爽表示:“大数据、云计算技术是加速基因研究成果输出和应用的重要途径,我们希望与华为的联合创新能够将基因研究效率提升一个新的台阶。”/pp  华为IT产品线总裁郑叶来表示:“基因技术是生命科学研究的重要基础,华为很高兴能够和全球最领先的基因研究机构一起,探讨大数据、云计算等IT技术如何更好的服务于生命科学研究,共同推动基因技术普惠时代的到来。”/p
  • 大鼠甲状腺滤泡上皮细胞的培养操作与应用!
    大鼠甲状腺滤泡上皮细胞的培养操作与应用! 一、背景 大鼠甲状腺滤泡上皮细胞分离自甲状腺组织;甲状腺是脊椎动物非常重要的腺体,属于内分泌器官。在哺乳动物身体中,它位于颈部甲状软骨下方,气管两旁。甲状腺表面有结缔组织被膜,表面结缔组织深入到腺实质,将实质分为许多不明显的小叶,小叶内有很多甲状腺滤泡和滤泡旁细胞。甲状腺控制使用能量的速度、制造蛋白质、调节机体对其他贺尔蒙的敏感性。 甲状腺依靠制造甲状腺素来调整这些反应,有T3和T4。这两者调控代谢、生长速率还有调解其他的身体系统。T3和T4由碘和酪胺酸合成。甲状腺也生产降钙素,调节体内钙的平衡。其中,甲状腺滤泡上皮细胞(也称为滤泡细胞或主要细胞)是在甲状腺细胞是负责生产和分泌甲状腺激素,甲状腺素(T4)和三碘甲状腺原氨酸(T3)。 二、培养操作 1)复苏细胞:将含有1mL细胞悬液的冻存管在37℃水浴中迅速摇晃解冻,加入4mL培养基混合均匀。在1000RPM条件下离心4分钟,弃去上清液,补加1-2mL培养基后吹匀。然后将所有细胞悬液加入培养瓶中培养过夜(或将细胞悬液加入10cm皿中,加入约8ml培养基,培养过夜)。第二天换液并检查细胞密度。 2)细胞传代:如果细胞密度达80%-90%,即可进行传代培养。 1.弃去培养上清,用不含钙、镁离子的PBS润洗细胞1-2次。 2.加1ml消化液(0.25%Trypsin-0.53mM EDTA)于培养瓶中,置于37℃培养箱中消化1-2分钟,然后在显微镜下观察细胞消化情况,若细胞大部分变圆并脱落,迅速拿回操作台,轻敲几下培养瓶后加少量培养基终止消化。 3.按6-8ml/瓶补加培养基,轻轻打匀后吸出,在1000RPM条件下离心4分钟,弃去上清液,补加1-2mL培养液后吹匀。 4.将细胞悬液按1:2比例分到新的含8ml培养基的新皿中或者瓶中。 3)细胞冻存:待细胞生长状态良好时,可进行细胞冻存。下面T25瓶为类; 1.细胞冻存时,弃去培养基后,PBS清洗一遍后加入1ml胰酶,细胞变圆脱落后,加入1ml含血清的培养基终止消化,可使用血球计数板计数。 2.4 min 1000rpm离心去掉上清。加1ml血清重悬细胞,根据细胞数量加入血清和DMSO,轻轻混匀,DMSO终浓度为10%,细胞密度不低于1x106/ml,每支冻存管冻存1ml细胞悬液,注意冻存管做好标识。 3.将冻存管置于程序降温盒中,放入-80度冰箱,2个小时以后转入液氮灌储存。记录冻存管位置以便下次拿取。 三、应用 用于RCCS模拟微重力影响大鼠甲状腺滤泡上皮细胞生长特性和分泌功能的研究: 釆用微重力细胞培养系统(the rotary cell culture system,RCCS),研究模拟微重力对大鼠甲状腺滤泡上皮细胞生长特性和相关分泌功能的影响,为航天员在失重环境中甲状腺应激和病理性改变的防治提供理论依据。 研究方法应用RCCS技术构建FRTL-5细胞模拟微重力培养系统。将大鼠甲状腺滤泡上皮细胞FRTL-5细胞株随机分为模拟微重力组(simulated microgravity group,SMG)和正常重力对照组(normal gravity group,NG),分别于培养第6h、12 h、24 h、36 h取细胞及上清液,MTT检测细胞增殖,流式细胞仪检测细胞周期,化学发光免疫分析法检测T3、T4、FT3、FT4,ELISA检测上清液中Tg和TPO水平 应用倒置相差显微镜观察培养第6 h、12 h、24 h、36 h后细胞表面形态 透射电镜观察培养12 h和36 h的细胞超微结构 激光共聚焦显微镜观察培养36 h的细胞微丝骨架荧光强度变化。 结果:(1)MTT结果显示,SMG组FRTL-5细胞经6 h、12 h、24 h、36 h培养后,各时相细胞增殖均较NG组受到明显抑制(P0.05),其中24 h最为明显(P0.01) 36 h表现为两种情况,一是SMG组的细胞增殖恢复,二是NG组的细胞增殖速度快速提升。 (2)流式细胞仪测细胞周期显示,与NG相比,FRTL-5细胞微重力培养6 h、12 h、24 h、36 h后G1期细胞比例显著增高 除6 h外,S期细胞比例明显降低 而各时相的G2/M期细胞比例表现为模拟失重早期(6-12 h)降低,其中12 h出现低谷值,24 h一过性显著增高,36 h回落。研究结果提示,SMG组FRTL-5细胞培养6-12 h阶段DNA合成下降,24 h的DNA合成趋活跃,而36 h的DNA合成后期比例又呈现下降趋势并向NG组的比例靠近。 (3)化学发光免疫分析法检测结果显示,RCCS培养6 h组FRTL-5细胞上清液中FT3、T4和FT4水平显著降低(P0.05),其余各时相的T3、T4、FT3、FT4则未受明显影响。 (4)ELISA测细胞上清液结果显示,与NG相比,SMG组FRTL-5细胞Tg和TPO分泌均明显升高(P0.01),表现为6 h即显著升高,随后呈下降趋势,24-36 h阶段又趋上升,其中SMG组的6 h与24 h以及24 h与36 h之间有显著差异(P0.01)。 (5)倒置相差显微镜观察结果显示,模拟失重环境下FRTL-5细胞形态发生显著变化,实验早期细胞逐渐趋于死亡状态,24 h后细胞数量又有所增长。 (6)透射电镜结果显示,模拟失重第12 h,36 h的FRTL-5细胞超微结构发生显著变化。 (7)模拟微重力培养36 h后,激光共聚焦显微镜观察荧光素FITC标记的FRTL-5细胞,发现细胞微丝骨架局部解聚,张力纤维减少,结构和排列紊乱,细胞伪足少见,细胞形状呈不规则。 微生物菌种查询网自设细胞系板块,是细胞株提供中心,专业提供代次低、周期短、活性好的细胞株。与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 安捷伦科技公司发布适用于人、小鼠和大鼠模型的新型基因表达微阵列芯片
    安捷伦科技公司发布适用于人、小鼠和大鼠模型的新型基因表达微阵列芯片 安捷伦公司与根特大学合作在芯片中整合入了 LNCipedia 内容2015 年 6月 10 日,北京 — 安捷伦科技公司(纽约证交所:A)近日宣布更新其新型 SurePrint 基因表达微阵列芯片用于人、小鼠和大鼠模型的信使 RNA 分析应用。此次更新改进了编码和非编码内容,为研究人员提供在常用平台上研究表达模式的最新工具。安捷伦公司与根特大学合作开发了最新款旗舰版 SurePrint G3 人基因表达 v3 微阵列芯片,其中完整包含的 LNCipedia 2.1 数据库能够对长链非编码 RNA (lncRNA) 转录物进行可靠分析。LncRNA(长度大于 200 个核苷酸的非编码 RNA)能够通过直接作用于 DNA、RNA 和蛋白质而改变基因调控,从而实现靶标特异性或系统范围内的调控。 通过 lncRNA 与癌症、心血管疾病和神经退行性疾病的关联不难看出其广范却至关重要的作用。经重新设计的安捷伦基因表达微阵列芯片是高质量的特征捕获工具,可实现目标基因或通路的有效分析,涉及从协助疾病危险分层到阐明药物作用机制的各种应用。根特大学的 Jo Vandesompele 教授说:“我们与安捷伦密切合作设计了一流的 mRNA 和 lncRNA 表达分析方法。在单次分析中对这两种类型的RNA进行的同时测定有助于从相对基因表达水平深入探究mRNA与lncRNA之间的生物学联系。 其中的关键在于实现编码和长链非编码特征的良好平衡,而LNCipedia 2.1 则是与安捷伦基因表达内容配对的最佳数据源。微阵列芯片的最终设计经优化后可快速给出大量有价值的信息。”最新的微阵列芯片采用能够实现寡核苷酸精确合成的 SurePrint 技术制造。 SurePrint 微阵列芯片的灵敏度处于业内领先水平,具有5 个数量级以上的动态范围以及 5% 的阵列间变异系数中值,且在 R20.95 时与外部 RNA 对照联盟 (External RNA Controls Consortium) 的加标 RNA 对照品相比具有出色的定量一致性。“我们的 SurePrint 基因表达微阵列芯片不仅包含 LNCipedia 的 lncRNA 等严谨的专业内容,还能够为专家级用户提供灵活的定制服务。”安捷伦基因组学高级总监 Alessandro Borsatti 博士谈道, “凭借基因表达微阵列芯片的出色性能和定量一致性以及 RNA 测序和靶向序列捕获产品,我们能够使研究人员在微阵列芯片的筛查应用与更深度的二代测序的发现性应用之间实现完美转换。”SurePrint 基因表达微阵列芯片属于 SurePrint 产品系列,该系列包括 microRNA 与比较基因组杂交微阵列芯片。 安捷伦基因组学工作流程包括用于质量控制的 2100 生物分析仪和 2200 Tapestation、用于数据采集的SureScan 扫描仪、用于数据分析的 GeneSpring 软件,以及用于进行实时聚合酶链反应的 AriaMX 系统。如需了解有关 SurePrint 基因表达微阵列芯片的更多信息,请访问 www.agilent.com/genomics/v3。关于安捷伦科技公司安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2014 财年,安捷伦的净收入为 40 亿美元。全球员工数约为 12000 人。今年是安捷伦进军分析仪器领域的 50 周年纪念。如需了解安捷伦科技公司的详细信息,请访问 www.agilent.com.cn。编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 网格化+尾气遥感+工业园区监控 河北大气环境监测全面撒网
    p  日前,河北省发布大气环境监测专项实施方案,要求全省2017年完成142个县(市、区)环境空气质量监测事权的上收,在168个县(市、区)加密增设194个监测点位,在传输通道所有县(市、区)和国家级工业园区推行网格化监测。到2020年,建成省级空气质量综合分析大数据平台,构建全省机动车尾气遥感监测网络。除此之外,方案还部署了三大重点任务。/pp  strong全文如下:/strong/pp  环境监测是环境保护工作的基础,全面、真实、有效的环境监测数据是环境决策管理的支撑和保障。为全面掌握全省大气环境质量现状及变化趋势,进一步摸清大气固定污染源及机动车排放情况,为推进大气污染治理提供依据和支持,河北省环保部制定了《河北省大气环境监测专项实施方案》。/pp  工作目标/pp  2017年:完成全省142个县(市、区)环境空气质量监测事权的上收,在168个县(市、区)加密增设194个监测点位,发布全省168个县(市、区)空气质量排名,在传输通道所有县(市、区)和国家级工业园区推行网格化监测 完成1639家企业在线监测设施安装 在省界、城市环路和主干道安装机动车尾气遥感监测设备。/pp  2020年,建设2个环境空气质量背景站 完善质控手段,建设省级大气环境质控实验室及移动监测系统,建成省级空气质量综合分析大数据平台 所有工业企业实行24小时在线监控,235家省级工业园区建成空气站 构建全省机动车尾气遥感监测网络。/pp  重点任务/pp  1、优化自动监测网络/pp  1.完善全省空气质量监测网络。2017年3月底前,完成142个县(市、区)空气质量监测事权上收 10月底前,增设194个自动监测站点,实现每个县(市、区)至少2个点位 在位于全国排名后10位且未开展网格化监测的邯郸、邢台2市开展网格化监测 位于传输通道8城市的1464个乡镇均布设小型空气站,监测细颗粒物和二氧化硫两项主要指标,实现监测点位全覆盖。(牵头责任部门:省环境保护厅)/pp  2.扩大污染源自动监控范围。全面掌握全省工业企业固定污染源在线设备安装情况,按照“应装尽装,稳步推进”的原则,在目前已经在线联网779家企业的基础上,扩大在线监测范围,原则上依据排污总量大小依次完成。2017年完成1639家企业在线监测系统安装 2020年,所有的工业企业全部安装污染源在线监测设备,实行24小时在线监测,并实现与环保部门联网。(牵头责任部门:省环境保护厅)/pp  3.加强工业园区在线监控。在工业园区建设小型空气自动监测站,实现对园区企业无组织排放状况实时监控。2017年完成11家国家级工业园区设备安装 2018年完成235家省级工业园区设备安装 2020年,所有规模以上工业园区全部安装空气自动监测站。(牵头责任部门:省环境保护厅)/pp  4.建设机动车尾气监测网络。每个县(市、区)至少设置一个机动车污染检测机构。在全省高速、国道、城市快速路及主干道布设机动车尾气遥感监测点,2017年,在全省省界主要路口安装50套柴油车遥感监测设备,建成机动车排放云计算中心 2018年,在全省城市环路和主干道设置150个机动车遥感监测点 2020年,建成完善的机动车尾气遥感监测网。(牵头责任部门:省环境保护厅 主要承办部门:省公安厅、省交通运输厅)/pp  5.建设空气质量大数据平台。2018年底前,建成省级空气质量综合分析大数据平台,将环境空气质量、固定污染源和机动车尾气在线监测数据,以及地理信息、气象数据等统一接入,对数据进行深入分析,打通环境监测到监管的通道,对区域管控目标提出规划路径和实施建议。(牵头责任部门:省环境保护厅)/pp  6.建设全省空气质量背景站。2020年底前,建成2个省级空气质量背景站。在现有监测因子基础上,增加负氧离子等生态指标,对华北地区大气本底值变化情况进行研究。(牵头责任部门:省环境保护厅)/pp  2、加强内部质量控制及外部监督/pp  7.推行第三方运维机制。环境空气质量、工业园区以及机动车尾气在线监测设施的运行与维护,全面推行第三方运维机制,第三方运维机构及其负责人对数据的真实性和准确性负责。新增固定污染源在线监测设施采取政府监管、企业负责、自行运维或采取第三方运维模式,企业和第三方运维机构及其负责人对数据的真实性和准确性负责。(牵头责任部门:省环境保护厅)/pp  8.环境空气监测质量保障。构建省级环保部门及驻市监测机构为责任主体的质量控制体系,实施卫星监控等新技术手段,建设和完善省级质控实验室,开展量值溯源和传递,加强内部质量控制。/pp  强化对第三方运维机构的监督管理,明确考核标准。采取驻市检查、交叉检查等多种形式,加大抽查力度,实现外部监督常态化 引入社会监督,2017年6月底前,向社会公开全部环境空气自动子站监控视频。(牵头责任部门:省环境保护厅)/pp  9.污染源监测质量保障。企业和第三方运维机构及其负责人对自动监测数据质量负责,市级环保部门负责日常监督,开展在线设施的巡检、比对 省级环保部门加强抽检力度。(牵头责任部门:省环境保护厅)/pp  10.机动车尾气监测质量保障。强化对机动车环保检验机构日常监管。结合遥测倒查和巡查暗访等方式做到监管全覆盖。每年完成50%以上机动车环保检验机构的抽查和3个批次以上新车一致性检查,确保机动车检测规范有序。(牵头责任部门:省环境保护厅、省质监局、省公安厅、省交通运输厅)/pp  3、深入实施信息公开/pp  11.实时公开环境质量信息。按照“能公开、尽公开”的原则,自2017年4月起,向社会公开全省168个县(市、区)环境质量实时监测数据 11月底,实现微信平台数据发布。(牵头责任部门:省环境保护厅)/pp  12.公布环境质量排名。引入奖惩机制,自2017年4月起,每月、每季度向社会公布全省168个县(市、区)环境空气质量以及改善率排名。(牵头责任部门:省环境保护厅)/pp  13.公开企业排污信息。按照《河北省环境保护公众参与条例》的要求,重点企业向社会实时公开污染物排放信息,并在厂区外围显著位置设置电子显示屏,接受群众监督。(牵头责任部门:省环境保护厅)/pp  14.公开机动车排污信息。各市县政府要将机动车尾气检测不合格车辆信息予以网上公开 省级有关部门要在主要路口设置显示屏,显示遥测超标车辆信息。(牵头责任部门:省环境保护厅 主要承办部门:省交通运输厅、省公安厅)/pp  政策措施/pp  15.制定《河北省环境空气生态补偿监测管理办法》。按照“将环境空气质量逐年改善作为区域发展的约束性要求”和“谁保护、谁受益 谁污染、谁付费”的原则,以各市县细颗粒物、可吸入颗粒物、二氧化硫、二氧化氮季度平均浓度同比变化情况为考核指标,建立考核奖惩和生态补偿机制。(牵头责任部门:省环境保护厅、省财政厅)/pp  16.完善对第三方运维管理的政策法规。出台《河北省环境自动监测第三方运维机构管理办法》,明确委托方、监督方和第三方运维机构的职责,因监督和维护不到位及弄虚作假需承担的经济、法律责任。(牵头责任部门:省法制办 主要承办部门:省环境保护厅、公安厅)/pp  17.建立协调联动机制。建立环保、公安联动执法机制,加强部门协调配合,打击监测数据弄虚作假行为,确保监测数据真实性。(牵头责任部门:省环境保护厅、公安厅)/pp  组织保障/pp  18.加强组织领导,落实目标责任。各级各有关部门要对工作任务目标分解,严格落实目标责任,每年至少召开一次工作部署、调度会,在政策、资金、人员等方面给予充分保障,确保各项工作任务的落实。/pp  19.完善规章制度,强化日常监督。完善监测质量控制制度,采取交叉检查、联合执法,定期督导,加大日常监督检查力度,确保监测数据真实有效。(牵头责任部门:省环境保护厅)/pp  20.严格考核问责,引入退出机制。对干预大气环境监测、弄虚作假的相关行政负责人及监测工作人员要严肃查处和问责,情节严重的要追究刑事责任 建立第三方运维机构诚信体系和黑名单制度,明确责任,加强管理,对于诚信缺失、弄虚作假的机构,实行黑名单公告和淘汰退出制度。(牵头责任部门:省环境保护厅、省公安厅)/p
  • 大鼠气管狭窄对能量代谢和呼吸的影响
    -大鼠气管狭窄对能量代谢和呼吸的影响-关键词:塔望科技,动物能量代谢监测系统,全身体积描记系统,阻塞性睡眠呼吸暂停,气道阻塞,导致内分泌类疾病,肥胖症,糖尿病,代谢类疾病,大小鼠能量代谢监测系统...论文摘要阻塞性睡眠呼吸暂停(OSA)病人,经过治疗后,代谢生理健康还是不能恢复。在成功移除大鼠气管阻塞物(OR)后,维持呼吸稳态的同时,伴随有体温调节和能量代谢的异常。本研究比较了气道阻塞(AO)和轻度气道阻塞(mAO)移除后的呼吸稳态与能量代谢。结果显示,移除气管堵塞物后大鼠进食量永久性增加。同时,血清胃饥饿素、下丘脑促生长素受体1a(GHSR1a))和磷酸化Akt比率升高。 其中PI3K/Akt 通路与正常代谢密切相关,该通路异常会导致过度肥胖、胰岛素耐受和II型糖尿病。研究表明,为达到代谢健康状态,阻塞性睡眠呼吸暂停(OSA)患者需要终生注重饮食和内分泌健康。实验计划实验结果图A和B气管直径,对照组C:1.81±0.1mm,气道阻塞组AO:1.04±0.1mm,轻度气道阻塞组mAO:1.19±0.12mm,阻塞物移除组OR:1.87±0.11mm图C气道阻力,AO和mAO组气道阻力分别增加71%和35%。图D呼吸频率。图E潮气量。图F分钟通气量,在室内空气呼吸,AO和mAO组分钟通气量分别增加294%和64%,而OR组与对照组没有明显差别。图G二氧化碳敏感性,AO和mAO组二氧化碳敏感性分别增加59%和25.5%,而OR组与对照组没有明显差别。图A,相对对照组,AO、mAO和OR组的进食量分别增加50.9%、20%和10.7%图B,AO和mAO组白天和黑夜进食量均增加,OR只是在黑夜进食量增加。图C图D图E图F,只有AO组每次进食量增加,进食次数差异均不明显。进食量增加主要是由于每次进食时间延长,再加上夜间“微进餐”(micro meals)图G和图H,AO、mAO和OR组的血清胃饥饿素和GHSR-1a明显增加图I:AO、mAO和OR组的p-AKT/AKT比率分别上升25%、16%和15%图A和D,AO组和mAO组的能量消耗分别增加26.5%和10.2%。图B和C,能量消耗增加与氧气消耗量和二氧化碳产生量增加有关。图E图F和图G,AO组的活动量和体温明显降低。参考文献Yael Segev , Haiat Nujedat1, EdenArazi , Mohammad H.Assadi & ArielTarasiuk.”Changes in energy metabolism and respiration in diferent tracheal narrowing in rats” [J].Scientifc Reports. (2021) 11:19166塔望科技提供的相关仪器方案 大鼠全身体积描记系统可对清醒自由活动动物呼吸参数进行测量,如呼吸频率,潮气量,气道高反应性测试(Airway hyperresponsiveness,AHR)等。测试过程中,动物可以处于清醒自由状态,避免了创伤性气管切开及麻醉的影响,使实验过程更加简便,用于呼吸系统模型动物对药物等反应性研究,呼吸性药物的药理和毒理学研究,特别适合于大批量动物快速初筛试验,适合长期跟踪研究和重复性筛查。动物能量代谢监测系统主要用于实时监测和记录小动物代谢运动相关指标,定性定量测量分析动物行为活动及其与呼吸代谢的相互关系,广泛应用于营养、肥胖、糖尿病、心血管等代谢相关性疾病研究。可选择参数包括能量消耗,食物和水分摄取,取食和饮水模式,空间位置,总的活动量和转轮次数,体重,心率,体温及自动化的行为分析等,所有数据都可同步化储存到计算机内小动物麻醉机吸入式动物气体麻醉机,将挥发性麻醉剂或具有麻醉性的气体,途经动物的呼吸道进入体内产生麻醉效果。其麻醉起效快并且复苏快、深度易控制、动物的发病和死亡率低、已被全球科研工作者和宠物临床医师广泛认可和应用。END
  • 文献解读丨基于LCMS-IT-TOF的中药同系物代谢物鉴定方法的建立:五味子木脂素在大鼠体内代谢的性别差异
    本文由中国药科大学药物代谢与药代动力学重点实验室所作,发表于DRUG METABOLISM AND DISPOSITION 38:1747–1759, 2010。 中药通常被定义为一种治疗方案,它不是由单一化合物与单一靶点相互作用组成的,而是几种化合物与多个靶点相互作用的协同药理干预。由于天然产物具有多种多样的生物活性和药用潜力,几乎每个文明都积累了使用它们的经验和知识。 最近,西方制药公司开始更喜欢用纯净的天然产品,而不是粗提取物作为药物原料。然而,在识别通过联合用药来有效对抗疾病的天然化合物或受自然启发化合物方面存在巨大的挑战。此外,体内可能存在的大量代谢物、有害药物相互作用的固有风险以及多组分制剂不可预测的药代动力学特性仍需解决。因此,中药代谢研究不仅是中药现代化的关键,而且对新药的开发具有重要意义。 中药代谢研究是一项艰巨的任务,由于中药成分复杂,代谢途径复杂,缺乏标准品,目前尚处于起步阶段。本研究基于液相色谱-离子阱-飞行时间质谱技术,建立了快速鉴定和分类中药成分代谢物的技术平台。 以五味子木脂素提取物为例,完成了体外和体内代谢研究。在体外研究中,对五种典型五味子的代谢产物进行了鉴定和结构表征。主要的代谢途径有去甲基化、羟基化及去甲基-羟基化。在体内研究中,在大鼠尿液中检测到44种代谢物。根据体外代谢规律,对这些代谢产物进行了快速鉴定和分类,并证实羟基化是木脂素在大鼠尿液中的主要代谢途径。 此外,根据在0 - 12、12 - 24和24 - 36小时采集的尿液样本的相对强度,计算雌性和雄性大鼠代谢产物的“相对累积排泄”(RCE)。结果发现,RCE存在很大的性别差异。对于大多数代谢物,雌性大鼠的RCE显著低于雄性大鼠。综上,目前开发的木脂素五味子代谢研究方法和途径将在中药代谢研究中得到广泛应用。 图1 基于液相色谱-质谱联用技术开发的中药代谢平台和工作流程图2 用LC-IT-TOF/MS测定NADPH存在时,五味子木脂素A及其代谢物在雌性(A)和雄性(B)大鼠肝脏S9中的EICs,以及五味子木脂素A可能代谢物的裂解途径(C-F)。虚线方块:潜在的去甲基化位点 虚线圆圈:潜在的羟基化位点。 综上所述,本研究基于LC-IT-TOF/MS单一平台,为解决中药代谢领域的关键问题——包括代谢产物的鉴定和分类,开发了一套系统方法论(图1)。在此基础上,利用LC-IT-TOF/MS平台对五味子木脂素的代谢产物进行了系统鉴别和分类。 首先,利用基于诊断片段离子的扩展策略对五味子木质素提取物中的五味子木脂素进行快速鉴定,并在此过程中对31种五味子木脂素进行了结构特征鉴定。 其次,基于LC-IT-TOF/MS,对5种五味子木脂素成分的标准品在肝脏和肠道S9系统中的代谢命运进行逐一研究,其主要生物转化方式包括去甲基化(-CH3)、羟基化(+OH)和去甲基化-羟基化(-CH3+OH)。 文献题目《Development of a Systematic Approach to Identify Metabolites for Herbal Homologs Based on Liquid Chromatography Hybrid Ion Trap Time-of-Flight Mass Spectrometry: Gender-Related Difference in Metabolism of Schisandra Lignans in Rats》 使用仪器岛津LC–IT-TOF/MS 作者Yan Liang, Haiping Hao, Lin Xie, An Kang, Tong Xie, Xiao Zheng, Chen Dai, Kun Hao, Longsheng Sheng, and Guangji Wang Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, People’s Republic of China
  • 文献解读丨矿化胶原骨材料修复大鼠颅骨损伤
    研究背景 颅骨除了容纳、支持和保护脑组织,在头面部外形的塑造方面也承担了一定的责任。在严重的颅脑外伤、脑出血、颅内占位等情况下,需要紧急开颅手术缓解颅内高压,术后则会遗留颅骨缺损的问题,给患者的身心造成了严重的影响。颅骨成形术对颅骨缺损的修复和脑神经功能的恢复都有重要的意义。但用于颅骨成形术的传统生物材料都有着各自的优缺点,至今没有一个理想的解决方案,特别是传统生物材料都不能降解的致命缺陷对于儿童颅骨缺损的修复尤其不利,因此设计制备一种具有成骨活性的生物可降解颅骨修复材料非常迫切。 颅骨修复与其它长骨修复有较大的差异,主要表现在以下三个方面。 首先,颅骨修复除了需要快速成骨,还需要足够的力学支撑发挥保护作用,这就使得材料的孔隙率、孔径和力学强度之间产生了很难平衡的矛盾。 其次,颅骨的发育是膜内成骨作用的过程。在膜内成骨的过程中,骨髓间充质细胞在不形成软骨的情况下就直接分化为成骨细胞,紧接着形成包括额骨、顶骨以及部分枕骨的一系列扁平骨。这样一个相对复杂的成骨方式也决定了颅骨修复较其它长骨的修复更为困难。并且在颅脑外伤、肿瘤等原因造成的颅骨缺损中,硬脑膜常被损坏而缺损,对骨修复的过程更增加了困难。 再者,颅骨除了本身容纳、保护脑组织的作用外,还兼具塑形美容的作用,且颅骨的形状较复杂,个性化要求高,而传统的的人工骨材料规格单一、不可定制。因此,研发一种新的人工骨材料满足颅骨修复的特殊要求势在必行。 方法与结果 该研究采用复合支架的形式,将仿生矿化胶原与可降解生物相容性高分子材料——聚己内酯结合起来,采用溶剂造孔的方式,制备了一系列具有不同孔径分布及孔隙率特征的可植入骨修复支架材料。采用大鼠颅骨临界骨缺损动物模型对各组材料在体内的生物相容性及成骨性能进行评价,筛选出成骨性能最佳且力学强度可以接受的材料。 图1 不同孔结构特征支架SEM形貌及孔径统计分布 其中,最为重要的评价环节为影像学评价,已确定各个实验组之间在不同时间点的成骨情况差异。该研究中采取了Micro-CT(inspeXio SMX-90CT Plus, Shimadzu,日本岛津无损检测)透视并扫描4%多聚甲醛固定24h后的样本,扫描后经三维等值画图软件重建并进行成骨体积分析测定。通过X线透视及CT扫描影像评估样品植入前后的形状、骨密度,并通过成骨体积的测量进行定量分析。 图2 岛津Micro-CT三维重构结果 图3 根据Micro-CT结构计算的相对成骨体积 术后各组大鼠典型的Micro-CT扫描三维重建结果如图2所示。术后4周,模型组大鼠仅有少量针状骨结构位于缺损区,G1、G2、G4组大鼠骨桥位于缺损边缘,G3组大鼠骨桥部分通过缺损。术后8周,空白对照组大鼠缺损区中心有较多针状骨结构,边缘存在骨桥结构。G1、G2、G4组大鼠骨桥部分通过缺损,G3组大鼠骨桥通过缺损最长点。术后12周,模型组大鼠骨桥部分通过缺损,而G1、G2、G3、G4各组大鼠骨桥均通过了缺损最长点,而G3、G4组密度更接近于周围的骨组织,尤其是G3组,95%以上区域已成骨,部分缺损边界已显示不清。 定量分析通过三维重建软件测算出各组大鼠缺损部位的成骨体积,如图3所示。各组大鼠成骨体积在4周,8周,12周时都与空白对照组有显著性差异(P0.05),并且在各个时间点,G3组(pMC 1:10)矿化胶原基颅骨修复材料较G1、G2、G4组成骨体积更多,差异有统计学意义(P0.05)。 图4 Micro-CT重构的矢状位结果 术后各组大鼠Micro-CT正中矢状位影像如图4所示。术后4周,空白对照组缺损区边缘极少量点状高密度影,各实验组缺损区密度均匀增高,颅骨内面靠近硬膜一侧密度较对侧增高更明显。术后8周,空白对照组缺损区可见少量片状密度增高影,各实验组缺损区出现较大面积条状或片状密度增高影,且密度与周围骨质相近。术后12周,空白对照组可见条状密度增高影,各实验组缺损区域密度升高影面积较前明显增加,尤其是G3、G4组,缺损区大部分已被高密度影所占据,且密度和周围正常骨质非常相似。 图5 缺损区组织HE染色 图5所示为术后各组大鼠颅骨正中矢状位石蜡切片HE染色结果,新生成骨被染成密度均匀的粉红色。可以看到4周时,缺损区仅少量点状成骨,各实验组缺损区材料内部可见较密集的斑片状新生成骨。术后8周,对照组新生成骨较少,各实验组新生成骨由斑片状连接成长条状,部分跨越缺损区,新生成骨位于颅骨内侧面硬膜外层。术后12周,对照组缺损区可见部分条状新生成骨,各实验组材料内部和边缘皆有新骨形成,可观察到明显的骨小梁结构,尤其是G3组材料几乎完全降解,大部分被新生的自体骨结构所替代,尤其是靠近硬膜一侧,新生骨结构已与周围正常骨的结构相同。 总结与讨论 本部分研究采用大鼠颅骨临界骨缺损动物模型评价了不同溶剂配比的矿化胶原颅骨修复材料在体内的成骨性能。从影像学、组织学不同角度观察了材料诱导骨长入的过程,并进行了定量分析,筛选出成骨性能和力学强度达到最佳平衡的骨材料溶剂配比,既可以保证一定的力学强度,并且诱导成骨作用最好,为进一步颅骨修复材料的研发奠定了基础。 文献题目:《Tuning pore features of mineralized collagen/PCL scaffolds for cranial bone regeneration in a rat model》使用仪器:岛津5SMX-90CTPlus-1909第一作者:王硕原文链接:https://doi.org/10.1016/j.msec.2019.110186 声明 1、文章来源:Materials Science & Engineering C2、因篇幅有限,仅显示第一作者。3、本文不提供文献原文,如有需要请自行前往原文链接查看。4、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。
  • 重磅!中科光电推出大气环境立体移动监测车典型系列
    大气环境立体走航观测车(以下简称“走航车”)是由中国科学院安徽光学精密机械研究所(以下简称“安光所”)的核心技术团队带领聚光科技(杭州)股份有限公司下属子公司无锡中科光电技术有限公司(以下简称“中科光电”)的小伙伴们一起自主研发的新一代产品。  走航车搭载遥测设备,结合三维高精度电子地图,可实现边走边测,既能说清污染成因、污染来源、污染趋势,也能起到及时发现来源、精确定位污染源位置的作用,为管控和监督污染源排放发挥重要作用,真正可以做到“测管”协同,在环境监测和环境监察系统都有广泛应用。在往期的文章中,小编就曾介绍过神一样存在的走航车,经过中科光电小伙伴一年多的技术论证、设计、试验,现在推出了三款不同功能的典型车系。这次小编卯足了劲,一口气向大家推荐现有的三款经典走航车。大气环境快速溯源监测车  配备高能扫描雷达和DOAS,走航和扫描相结合的方式,边走边测,快速溯源,精确定位源位置,判别污染的类型及趋势。大气综合遥感监测车  集成主要的遥感监测设备,如高能扫描雷达,风廓线雷达,微波辐射计等,形成一个可移动的遥测站点。可探测颗粒物及气象要素的垂直时空分布特征,在满足快速溯源,走航的基础上,联合风廓线雷达可计算污染物的输送通量,定量评估外来输送影响。多参数大气环境监测车  多参数移动监测车配备完整的地面站点式监测设备和空间遥测设备,如常规六参数,质谱,颗粒物雷达,臭氧雷达等,在满足监测气溶胶微物理化学特性外,还可监测污染的成因,过程及趋势,是一个综合性的移动超级监测站。  走航车主要功能有:环境监察,快速执法;快速溯源,空气保障;应急监测,科学评估;追霾行动,气团追踪;重大赛事,空气安保等。监测结果可通过网络传输,用户可第一时间在任何位置通过互联网,查看监测数据变化趋势,及时响应。走航车的开发小伙伴们具有多年立体监测设备应用和研发经验,对车体改装、仪器装车、监测应用等技术掌握熟练。
  • 重磅!中科光电推出大气环境立体移动监测车典型系列
    大气环境立体走航观测车(简称“走航车”)是由中国科学院安徽光学精密机械研究所(简称“安光所”)的核心技术团队带领中科光电的小伙伴们一起自主研发的新一代产品。走航车搭载遥测设备,结合三维高精度电子地图,可实现边走边测,既能说清污染成因、污染来源、污染趋势,也能起到及时发现源、精确定位污染源位置的作用,为管控和监督污染源排放发挥重要作用,真正可以做到“测管”协同,在环境监测和环境监察系统都有广泛应用。在往期的文章中,小编就曾介绍过神一样存在的走航车,经过中科光电小伙伴一年多的技术论证、设计、试验,现在推出了三款不同功能的典型车系。这次小编卯足了劲,一口气向大家推荐咱们中科家现有的三款经典走航车。 大气环境快速溯源监测车 配备高能扫描雷达和DOAS,走航和扫描相结合的方式,边走边测,快速溯源,精确定位源位置,判别污染的类型及趋势。 大气综合遥感监测车 集成主要的遥感监测设备,如高能扫描雷达,风廓线雷达,微波辐射计等,形成一个可移动的遥测站点。可探测颗粒物及气象要素的垂直时空分布特征,在满足快速溯源,走航的基础上,联合风廓线雷达可计算污染物的输送通量,定量评估外来输送影响。 多参数大气环境监测车 多参数移动监测车配备完整的地面站点式监测设备和空间遥测设备,如常规六参数,质谱,颗粒物雷达,臭氧雷达等,在满足监测气溶胶微物理化学特性外,还可监测污染的成因,过程及趋势,是一个综合性的移动超级监测站。 走航车主要功能有:环境监察,快速执法;快速溯源,空气保障;应急监测,科学评估;追霾行动,气团追踪;重大赛事,空气安保等。监测结果可通过网络传输,用户可第一时间在任何位置通过互联网,查看监测数据变化趋势,及时响应。我们走航车的开发小伙伴们具有多年立体监测设备应用和研发经验,对车体改装、仪器装车、监测应用等技术掌握熟练。
  • 文献解读丨大鼠血浆中9种三七皂苷绝对定量的UFLC-MS/MS分析方法的建立和验证:三七提取物药代动力学研究的应用
    本文由中国药科大学天然药物国家重点实验室药物代谢与药代动力学重点实验室所作,发表在Journal of Chromatography B (2015)46-53。三七皂苷是中药三七的主要活性成分,具有抗氧化、抗高血糖、抗肥胖等多种生物活性。然而,由于三七皂苷在体内浓度低、成分复杂,其药代动力学评价仍然是一项艰巨的任务。 本研究建立了一种基于超快速液相色谱-串联质谱(UFLC-MS/MS)的大鼠血浆中三七皂苷含量快速、灵敏的定量分析方法。三七皂苷R1、Rg3、Rd、Rg2、Rb2、Rf、Rg1、Rb1和Re经正丁醇液-液萃取,在ODS C18柱(5 mm× 50 mm × 2.1 mm)上分离,采用二元梯度洗脱,以负离子模式同时监测,所有化合物均在9 min内进行分析。多反应监测(MRM)方法如下:R1 (m/z 967.7→637.4)、Rg3 (m/z 819.6→621.4)、Rd (m/z 819.6→783.5)、Rg2 (m/z 819.6→475.4)、Rb2 (m/z 1113.4→783.4)、Rf (m/z 835.6→475.4)、Rb1 (m/z 1143.7→945.6)、Re (m/z 981.6→637.4)、内标(地高辛,m/z 815.5→779.4)。验证参数(线性、灵敏度、日内和日间的精密度和准确度、回收率和基质效应)均在可接受范围内,生物提取物在整个储存和制备过程中稳定。将UFLC-MS/MS方法应用于三七提取物在大鼠体内的药代动力学研究,进一步验证该方法的有效性,并利用Winolin软件计算了药代动力学参数。 因此,该方法简便、可靠、准确、精密,可用于各种三七皂苷和其他中药皂苷的药代动力学研究。 使用仪器:岛津LCMS-8050 图1 三七皂苷R1、Rg3、Rd、Rg2、Rb2、Rf、Rg1、Rb1、Re和地高辛(内标)的结构 图2 三七皂苷R1、Rg3、Rd、Rg2、Rb2、Rf、Rg1、Rb1和Re的线性曲线。 图3 空白大鼠血浆和添加R1、Rg3、Rd、Rg2、Rb2、Rf、Rg1、Rb1、Re和IS的大鼠血浆的典型MRM色谱。(A)空白大鼠血浆MRM色谱,(B)添加三七皂苷(50.0 ng/mL)和IS的空白血浆的MRM色谱,(C)大鼠灌胃三七提取物(1.0 g/kg)后2 h大鼠血浆的MRM色谱。 三七是一种在世界范围内广泛使用的植物药,有必要建立一种可靠、灵敏、高通量的方法来测定生物样品中的多种三七皂苷。本文以9种三七皂苷(R1、Rg3、Rd、Rg2、Rb2、Rf、Rg1、Rb1和Re)为研究对象,构建了一个功能强大的中药皂苷药动学分析技术平台。该方法色谱运行时间较短,LLOQs较低,可快速、灵敏地测定大鼠血浆中三七皂苷的含量。此外,该方法专属性强、结果准确、重现性好,已成功应用于大鼠灌胃三七提取物后三七总皂苷的临床前药代动力学研究。更重要的是,目前开发的方法稍加修改后,即可用于其他草药皂苷的药代动力学研究。 文献题目《Development and validation of an UFLC-MS/MS assay for the absolute quantitation of nine notoginsenosides in rat plasma: Application to the pharmacokinetic study of Panax Notoginseng Extract》 使用仪器岛津LCMS-8050 作者Lijun Zhou a, Rong Xinga,b, Lin Xiea,Tai Raoa, Qian Wanga, Wei Yea, Hanxu Fua,Jingcheng Xiaoa,b,Yuhao Shaoa,b, Dian Kanga,b, Guangji Wanga, Yan Lianga a. Key Lab of ug Metabolism hamon y booy of Atul Me Pamaeu Univ. Tongaxang24 Nanjing 210009. Chinab. Department of Pharmacy. The First ffiliated Hospital of Bengbu Medical College, Bengbu Anhui. China
  • 农残检测玩转大数据 两院士科普农药“电子身份证”
    “信息时代,农药残留检测面临着三大挑战——检测如何实现电子化、大数据报告生成如何实现自动化、农药残留风险溯源如何实现视频化。”  在日前召开的“第十三届中国食品科学技术年会”上,中国工程院院士、中国检验检疫科学研究院首席科学家庞国芳与中国工程院院士、广东省微生物研究所所长吴清平分析了目前我国食品安全检测面临的形势,并分别为如何有效检测果蔬农药残留和食源微生物“支招”。  信息化重塑检测手段  “农药残留定性鉴定的实物标准可用电子标准取代,实现农药残留检测电子化。利用非靶向农药残留高通量高分辨质谱技术,我们可以对150多种水果和蔬菜、1200种常用农药进行快速侦测。‘为符合一项标准,需购买400~500个农药标准品’的情况将一去不复返了。”庞国芳说。  农药残留检测电子化实施后,每一种农药都有自身独有的“电子身份证”,这个身份证包含了农药的保留时间、一级加和离子精确质量、同位素分布、同位素丰度和二级碎片(4~5)精确质量数及谱图。  检测的电子化取消了标准品做参比,改用电子标准定性鉴定,具有节省资源、减少污染、提高分析速度并且清洁高效等优势。  除此之外,科研人员还开发了农药残留质谱自动匹配定性鉴定软件。只要将软件植入仪器中就可以直接进行检测,通过将检测结果与农药质谱库比对,便可显示农药残留情况,实现了农药残留检测的高速度(半小时)、高通量(500种以上)、高精度(0.0001质荷比)、高可靠性(10个确正点以上)、高度信息化和自动化。  “以山东为例,未检出农药残留食品298例,占23.8% 有农药残留但未超标893例,占71.3% 有农药残留且超标61例,占4.9%??最常检出农药残留的种类为芹菜、青椒、番茄??其中芹菜在潍坊检出13种农药残留、在淄博检出16种农药残留??最常检出的农药为苯醚甲环唑、蚍虫林、甲基硫聚灵??”  电脑模拟人声详细汇报着农药残留检测情况,这是庞国芳团队的农药残留风险溯源实现视频化的创新成果。  以非靶向侦测技术为依托,把形成的农药残留数据库与中国地理信息技术数据库相关联,庞国芳团队开发建立了目标农药-食品名称-食品产地三维空间可视化自动生成软件,为风险溯源、残留预警、产品召回等食品安全监督工作提供了有力的技术支持。  同时,《中国农产品农药残留检测在线制图系统》视频软件也实现了地图模块、农药图标模块和农药数据模块的互联互通,使农药残留情况一目了然。  大数据助力风险预测  由于高分辨质谱检测速度快、效率高,而且产生的是多维化的农药残留数据,例如产地、商品情况、目标农药等,而每一个农药残留数据又有大量的表征,因此产生的数据极多。  为此,科研人员建立了五个基础数据库为残留定性鉴定提供理论保障。  这五个数据库是:实验室检测数据库、农药信息数据库、多国农药最高残留限量(MRL)标准数据库、多国农产品分类数据库、地域信息数据库。  “为保证数据的可靠性,基础数据库的数据全部来源于全国10个联盟实验室。这10个实验室完全统一,且操作规范。”庞国芳介绍道,通过实施封闭运行、循环侦测,保障了数据的统一性、完整性、安全性和可靠性。  数据库建立后,为了将数据表征出来,科研人员建立了智能分析系统。  据介绍,该系统分为四个层面:  一是五大基础数据库的数据层面   二是通过信息化技术来表达的统计分析学层面   三是业务层面,规定了一项农药残留的指标要用24项表征具体描述   四是展示层面。  四个层面互联互通,可以快速准确地完成农药残留大数据的智能分析,显示检测结果。  目前,农药残留大数据库构建已具雏形,覆盖了全国31个省(区、市)的284个区县,共600多个采样点 截至目前,共检测涵盖146种水果蔬菜的20000多批样品,其中400多种检出农药残留。样品数据具有代表性与普遍性,且能形成自动分析报告。  病原微生物防控是保障食品安全工作的重大需求。  针对我国食品微生物安全领域存在的风险不明、缺乏共性关键技术保障体系、重点行业亟待建立食品安全控制技术及工艺等问题,吴清平带领团队在全国45个城市进行了食品采样,最终收集了5000份样品,检测得出数据132988条。  “通过风险识别,我们发现速冻食品、肉与肉制品、熟食是最易被食源性致病菌污染的三类食品。”吴清平介绍。通过对分离菌株进行抗药性检测,研究人员发现我国食源性致病菌,如副溶血性弧菌、沙门氏菌和小肠结肠炎耶尔森菌的耐药性普遍较高。  以先进的环介导恒温扩增技术(LAMP技术)为依托,在检测特异性靶点选择上,吴清平团队对极易引发食源性疾病的牡蛎进行了重点研究,发现牡蛎鳃组织是很好的识别食源性微生物的靶点。  目前研究人员已经探明了食源性致病微生物在食品中的分布规律、风险水平,获取并保藏菌种20000株以上 菌种信息清晰,涵盖了菌株来源、抗药性、血清型、毒力基因等方面,初步建立了具有自主知识产权的中国食源性致病菌风险识别数据库。  两位院士一致认为,在信息时代,通过高通量快速检测建立起农药残留数据库与食源性致病微生物数据库,是食品安全风险监控和风险溯源的重要依凭。
  • 重磅成果:再帕尔阿不力孜、贺玖明研究团队利用空间代谢组学技术绘制大鼠脑代谢网络图
    2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambient mass spectrometry imaging and metabolomics”的研究成果,采用自主研发的质谱成像空间代谢组学技术,全面绘制了大鼠脑代谢网络,深入解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化。  封面文章  研究背景  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。科学家进行了很多研究,但是对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  本文作者开发了一种基于敞开式空气动力辅助解吸电喷雾离子化质谱成像(AFADESI-MSI)技术的代谢网络映射方法,对大鼠脑不同极性的小分子代谢物(m/z 50-500 Da)进行微区分布研究,不仅鉴定出脑部几乎所有重要的代谢物,还绘制了包含神经递质、嘌呤,有机酸,多胺,胆碱、碳水化合物和脂类等20条通路的代谢网络,并使用这种代谢网络映射质谱成像方法解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化,为中枢神经系统疾病的治疗提供新的信息和见解。研究思路  研究方法  1.样本准备  Sprague-Dawley大鼠模型腹腔注射东莨菪碱后被杀死(处理组,3只),对照组大鼠(3只)也用同样方法杀死。获取大鼠整个大脑,在低温下将大脑切成连续的矢状切片(暴露出海马和纹状体),用于Nissl 染色、H&E染色和质谱成像检测。  2.空间代谢组实验  使用AFADESI-MSI分析,代谢物质量数范围50-500 Da,质谱分辨率70,000。  3.数据处理和代谢网络分析  原始数据经过转化,再使用自建MassImager软件获取成像结果 在获取差异代谢物的高分辨率质谱信息后,使用Metaboanalys在线数据挖掘软件以褐家鼠(rattus norvegicus)为参考完成代谢物高通量定性,并输出代谢网络信息。大脑中复杂网络可视化使用Cyctoscope软件完成。  4.统计分析  两组大脑样本选择相同的微区,并将组织学和特征离子图像叠加进行确认。数据处理结果使用t检验(n = 3)进一步验证。大脑微区包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑。  研究结果  1.AFADESI-MSI用于大脑中极性代谢物的定位  如图1所示,将大鼠大脑连续矢状切面通过ESI探针对逐个像素进行扫描,并将解吸的代谢物离子传输到高分辨率质量分析仪进行分析。图1E是大鼠脑部某个像素点的一个代表性质谱图,在该图中可以观察到数千个代谢物的峰。AFADESI-MSI图像还表明脑部不同功能性区域中代谢物浓度的变化。图1A-D显示了代表性代谢产物图像,在松果体、纹状体、海马、胼胝体和嗅球等亚区域具有特定分布。这些异质代谢分布与大鼠脑的功能和结构复杂性高度一致。  实验结果表明,AFADESI-MSI的空间分辨率小于100μm,代谢物质量最大差异为0.001Da,同一物质的检测动态范围高达1000倍。如图1所示,通过AFADESI-MSI可在大鼠脑部检测到一些呈特征性分布有代表性的极性代谢物,其强度范围从0到104甚至到106。  图1 (A-E)使用AFADESI-MSI获得的用于构建大鼠大脑代谢网络图的代表性极性内源性代谢物   (F)AFADESI-MSI数据采集过程   2.在大鼠脑绘制特定区域分布的极性代谢物图谱  使用AFADESI-MSI在正离子和负离子模式下分别获得298个和372个微区轮廓清晰的代谢物离子图像。使用精确分子量并结合同位素丰度,通过人类代谢组数据库(HMDB)对离子图像进行识别,鉴定出多种内源极性代谢物,包括氨基酸、核苷酸或核苷、碳水化合物、脂肪酸和神经递质等。  中枢神经系统(CNS)的特定功能和特定解剖区域相关。例如,乙酰胆碱在大脑皮层中高度表达 γ-氨基丁酸是一种抑制性神经递质,其在大脑皮层的信号强度较低,在中脑、嗅球和下丘脑中的浓度较高 多巴胺在纹状体含量较高 组胺(一种兴奋性神经递质)主要分布于丘脑和下丘脑。松果体在睡眠和光周期调节中起着重要的作用,并且由于其体积小容易被忽视。在松果体区域中,作者检测到106种极性代谢物,例如吲哚乙醛、吲哚、5' -甲硫基腺苷和褪黑激素,它们在该微结构的表达最高。褪黑激素由松果体分泌,起到调节昼夜节律的作用。质谱成像结果表明褪黑激素只能在松果体检测到。褪黑激素的上游代谢物血清素(5-HT)在松果体中也有特定的分布。此外一些未知的代谢物也仅在大鼠大脑的某个很小但特定的区域中。以上结果表明,AFADESI-MSI方法可以直接检测极性代谢产物,并具有高特异性,能呈现其在大脑微区分布的图像。  3.在大鼠脑中绘制微区代谢网络图  要了解大脑的结构区域发生的复杂代谢过程,不仅应准确表征代谢物,还要研究其相关性。从大鼠脑微区中提取代谢谱进行代谢网络重建。从15个微区提取的MSI数据进行峰挑选和峰对齐(图1F),包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑,然后使用基于KEGG数据库的Metaboanalyst软件进行代谢网络分析。共找到20条KEGG代谢通路,包含126个具有微区信息的代谢物,图2显示了涉及丙氨酸-天冬氨酸和谷氨酸代谢、花生四烯酸代谢、精氨酸和脯氨酸代谢、肌酸途径、GABA能突触、葡萄糖代谢、谷胱甘肽代谢、甘油磷脂代谢、甘氨酸-丝氨酸和苏氨酸的代谢、组氨酸代谢、赖氨酸代谢、苯丙氨酸代谢、多胺代谢途径、嘌呤代谢、嘧啶代谢和TCA循环、色氨酸代谢、酪氨酸代谢、缬氨酸-亮氨酸和异亮氨酸代谢和类固醇激素合成途径。质谱成像方法提供了一种直接获取代谢网络信息的途径,以系统地深入了解大脑的代谢活动。  图2 通过AFADESI-MSI和Metaboanalyst获得的大鼠脑中的代谢网络  图3A展示了嘌呤代谢的分布和代谢途径,共包含17个核苷酸及相关代谢产物,饼图代表了某种代谢物在不同大脑微区的相对含量和分布,图3A中显示出不同代谢物的不同局部特征。例如腺嘌呤核糖核苷酸(AMP)和鸟苷酸(GMP)在大脑皮层和松果体中高表达,但在胼胝体和穹窿中含量较低。图3B显示了大脑不同区域的AMP分布,AMP在大脑皮层和松果体中含量很高,而在胼胝体和穹窿中含量较低。这些结果表明,大脑中代谢物分布呈现出功能性区域的差异性。这些空间和代谢途径的上游-下游转换过程为大脑局部代谢活动提供丰富信息。也证明质谱成像方法能够提供直接获取代谢网络信息的方法。  图3 (A)通过AFADESI-MSI获得的大鼠脑中嘌呤代谢途径和相关代谢产物分布   (B)腺嘌呤核糖核苷酸(AMP)在大鼠脑不同区域的分布   4.神经递质的代谢网络解析  神经递质在大脑不同区域具有极为复杂的代谢调节网络,使这些区域的中枢神经能够从事复杂的活动。作者分析了关键神经递质的代谢调控网络,分别为多巴胺、γ-氨基丁酸、腺苷、组胺、乙酰胆碱、5-羟色胺、谷氨酸和谷氨酰胺。图4A显示了神经递质以及相关代谢产物在大鼠脑的分布特征,它们联系非常紧密(图4B),这些神经元彼此相互作用并形成复杂的调节网络。  图4 |(A)大鼠脑中神经递质及其相关代谢产物的分布   (B)神经递质调节和代谢网络   5.从大鼠脑的代谢网络映射中发掘空间变化  东莨菪碱治疗的大鼠是一种学习和记忆障碍模型,通常用于研究抗遗忘药疗效。本文作者使用AFADESI-MSI分析了对照组和东莨菪碱治疗的大鼠矢状脑切片,将发现的代谢物全面映射代谢网络,并通过代谢组学分析发现空间代谢变化。不仅可以对药物准确定量,还可以检测代谢网络相关的数百种内源性代谢物在大脑特定区域的分布。图5显示了代谢网络中检测到的各种代谢物,以及在不同大脑微区代谢物的明显改变。如图5A所示,找到三种代谢物(N-甲酰基尿氨酸、L-色氨酸和5-羟色氨酸),属于色氨酸代谢途径,意味着东莨菪碱会干扰色氨酸的代谢过程。作者分析了东莨菪碱治疗组大鼠脑的十个微区,发现脑桥中有16种表达异常的代谢产物,而在大脑皮层中发现了7种。表明在东莨菪碱治疗下,脑桥和大脑皮层可能是受影响最严重的区域。  图5 东莨菪碱模型大脑中极性代谢网络的变化  图6显示了其中几种异常表达的代谢产物的分布,例如腺嘌呤在小脑皮层被下调 组胺在中脑导水管中下调 桥脑中的磷酸乙醇胺、大脑皮层中的2-氧戊二酸、纹状体中的多巴胺、胼胝体中的抗坏血酸、下丘脑中的谷胱甘肽、小脑皮层中的L-天冬氨酸和L-天冬氨酸也有所变化,这些代谢物的质谱成像结果(图6A-H)和相对定量结果(图6I1-18)进一步表明,大脑中药物作用后代谢物的多样性和区域特异性。这些代谢物不分区分析、含量进行全脑平均后,代谢物的微区含量差异很容易被削减。在空间上的代谢变化表明,在东莨菪碱治疗后,大鼠脑微区的代谢网络发生紊乱。但是代谢物和代谢酶是代谢网络的关键因素,基于空间分辨的代谢组学信息为发现酶或基因异常提供了线索,但若要完成完整的代谢网络分析必须进一步验证蛋白质和基因表达水平。  图6 在东莨菪碱治疗后大鼠模型的脑部质谱成像结果和代谢产物的统计结果  研究结论  本文作者开发了一种空间分辨代谢网络作图方法,通过无需衍生化、特定标记或复杂样品预处理的高通量AFADESI-MSI方法和代谢组学策略,在具有复杂结构化脑组织中发现代谢分子变化。能检测出多种极性内源性代谢物,并绘制相关代谢网络,提供组织微区分布的图谱。还将多种功能性小分子(例如核苷酸、多胺、肌酸、神经酰胺代谢物)含量分布可视化。这些代谢物构成大鼠脑关键代谢网络,为理解大鼠脑的作用机制和功能探索提供新的见解。在本文中,该方法被用于东莨菪碱处理的大鼠模型脑部的代谢研究。结合微区统计数据,该方法可以绘制代谢网络图、发现某些途径代谢产物的明显失调,而且还能描绘与神经疾病直接相关微区中发生的代谢变化。
  • 安徽省计量院顺利通过“机动车尾气遥感检测系统”建标考核
    近日,安徽省考核专家对安徽省计量院新建“机动车尾气遥感检测系统”进行了现场考核。   评审专家对此次申报建标的技术报告进行详细审阅,并进行了认真细致的现场考核。最后,专家认为此次安徽省计量院新建的“机动车尾气遥感检测系统”符合《机动车尾气遥感检测系统校准规范》(JJF1835-2020)要求,给予一次性通过。   机动车尾气遥感检测系统是应用遥测技术来测量由汽车排气污染物引起的长距离光度的变化。它可在路边直接测量汽车尾气浓度,不影响汽车正常行驶。   其主要目的是建设城市机动车尾气遥感网络化监测体系,可在很短的时间内监测行驶中机动车排放的一氧化碳、二氧化碳、碳氢化合物、氮氧化合物、温湿度压力差、车速等信息,同时可以在线或者离线对监测数据进行分析,为机动车尾气排放监控、城市大气污染源解析及尾气污染治理提供有力的数据支持,同时为社会提供该项目的计量校准服务。安徽省是继北京、上海后第三个建立该项计量标准的省份。
  • 远距遥测污染源,多组份气体监测还可这样做!
    在许多工业生产中,废气的产生是必然的。它们往往成分复杂,既可能成为生产的安全隐患,又是大气环保的大敌之一。无论是想污染溯源,还是期望最后的针对性治理,监测都是第一环。在线气体监测系统,就是让污染环境的“小恶魔”无处遁形的利器,是否能拿下治理废气的“Frist Blood”,就看它的本事了。对于成分复杂的气体,光学的FT-IR法在在线监测中是比较常见的。其具备极高的精度,且可以保证监测气体种类的广泛性。同样是光学法,使用量子级联激光器(QCL)的红外气体分析法(QCLAS),也活跃在污染气体监测的前线。因为基于的是激光技术,因此相对FT-IR,在距离和定向性方面有更好的表现,可进行在更远距离下更精准范围的测量。 可惜的是受工艺限制,一直以来,每款QCL都有其特定的波长范围且较为狭窄,各自只能针对某几类气体。如果成分复杂且广泛,比如像VOC一类的气体,这种方法是不能实现同时的在线检测的。不同分子的气体都有其固定的、独有的特征吸收峰,我们根据这些吸收峰的位置进行识别,从而分辨出是哪种气体以及浓度大小,这些吸收峰我们也称之为“分子的指纹峰”,利用中红外光指纹峰来判断气体的种类和浓度,已经广泛地应用于气体测定中。 然而,下面这一个的巴掌大的“小小盒子”——波长外腔调谐量子级联激光器(QCL)模块,将改变这一现状。 滨松波长外腔调谐量子级联激光器(QCL)模块 L14890-09 波长调谐范围:7.84um~11.14umQCLAS能实现多种气体的同时监测了! 波长外腔调谐量子级联激光器(QCL)模块L14890-09是滨松刚推出不久的一款新QCL产品。波长调谐范围在7.84um~11.14um,峰值功率为600mW(typ.),往返频扫(全范围调谐)频率达1.8KHz。 在中红外光谱应用上,相比较于传统的FT-IR方法,这个新型的QCL模块充分利用激光的定向能和宽频扫特性,可实现中红外光谱的远程、非接触式、高通量、高精度测量。在污染气体监测中,也就可以实现我们上面提到的,同时满足在更远距离下的测量,以及多种气体的同时高精度在线监测。 QCL模块L14890-09的甲烷气体吸收的测定此外,在其他中红外应用中,这个QCL小盒子也被给予了期望。例如应用在无创小型血糖仪中。日本东北大学松浦祐司教授进行的一项研究中发现,使用QCL模块 L14890-09 测定和通过血液采样测量的血糖值结果接近。而在其他的塑料检测实验中,也得到了可观的数据结果(见下图):Polystyrene film Measurement resultData provided by Mr.Hiromitsu Furukawa, Electronics and Photonics Research Institute, NationalInstitute of Advanced Industrial Science and Technology打开这个QCL模块,看看它的小秘密这些神仙性能是怎么炼成的?要实现QCL这样的性能,并不是一件简单的事情,主要通过内部器件独特的优化,以及结构精密设计的加持。正因如此,QCL模块L14890-09也获得了2018日本文部科学省纳米技术平台事业部授予的“最佳成果奖”。那我们就来看看,在它的内部都有什么神仙操作。把这个QCL模块打开,里面装着自主研发的三项实现外腔调谐的核心技术: 新开发的宽谱增益的QCL芯片 MEMS衍射光栅 高效率的增透膜 简要图示如下:利用了滨松独特的量子结构设计技术,这个QCL小模块内的QCL芯片采用了一种反交叉双重高能态结构(AnticrossDAUTM)。而在QCL芯片的发射截面上,则制成了多层增透膜,它可以保证从截面发出的激光,在到达光栅前零损耗。芯片产生的宽带光再通过MEMS衍射光栅的倾斜来选频,实现了特定波长的完全反射和谐振。 模块在工作的时候,电控MEMS衍射光栅可高速摆动以改变其倾角,进而周期性地改变衍射角度、即改变谐振光的波长,最终使模块实现中红外激光的波长扫描。相对于已有的利用电机使镜面机械式运动来改变波长的QCL模块,电控MEMS衍射光栅可以达到更快的波长调谐,且衍射器件的微型化也使得模块更加的紧凑(8.2×8.8×11.2 cm),易于装配。说到这里,还有一款新的低功耗QCL也来了解下吧! 滨松在QCL的开发上一直都朝前推进着。继波长外腔调谐QCL模块后,一款新的低功耗QCL也踏着小碎步紧接着在今年初面世啦!和以前的QCL不一样的是,这个新成员采用的是蝶形(Tall-Butterfly)封装。继承了原来HHL封装QCL的优点,CW功率保证不低于15mW的情况下,在阈值电流、最大电流、芯片功耗及总功耗方面均有大幅度优化。芯片工作温度在10~65℃,甚至某些高温芯片无需外部风冷,完全可以满足日常环境下的使用要求。且紧凑小巧,重量仅16g,适合于集成到气体分析设备之内。针对于红外气体分析的应用,滨松可提供包括QCL以及红外探测器在内的全套解决方案。在空气污染问题日益严峻的现在,我们也希望通过推进基础核心技术的发展,为环境监测应用带来更多的支持和可能。滨松用于气体检测的产品一览
  • 科学岛团队牵头发表中国大气污染源排放在线监测技术进展综述文章
    近期,中科院合肥物质科学研究院王焕钦研究员在环境科学与工程领域知名期刊Journal of Environmental Sciences发表了题为“Review on recent progress in on-line monitoring technology for atmospheric pollution source emissions in China”的综述文章。文章系统介绍了“十三五”间我国大气污染源排放在线监测技术的最新进展,并指出移动源和固定源排放污染物在线监测技术正朝着多组分、小型化和智能化方向发展。   近几十年来,改善环境空气质量一直是全球面临的最大挑战之一。由于移动源和固定源的排放对大气环境和全球气候都有不利影响,其成分包括超细颗粒物、挥发性有机化合物(VOCs)和其他活性气体,如氨(NH3)和氮氧化物(NOx)等,对人类健康的损害也十分严重,因此它们是国家空气污染物排放控制法规的重点。此外,污染源排放已成为中国亟待解决的重大社会经济问题,在线监测技术和仪器亟待研究开发。   文章系统介绍了在“十三五”期间,以中科院合肥物质科学研究院牵头的桂华侨团队和以清华大学牵头的丁艳军团队,自2016年起分别针对我国移动和固定污染源排放特点和最新的超低排放标准,以快速、自动、在线监测技术研发为核心,创新性地提出了差分荷电式移动源超细颗粒物数浓度测量、微型平板式差分电迁移颗粒物粒径分级、垂直式多车道机动车尾气排放快速遥感识别,以及三波长光散射式固定源颗粒物质量浓度和粒径分布同时测量、利用物理定向吸附技术和涡流加热技术实现烟气汞形态分离与原子汞高效富集等一系列污染源超低排放关键污染物在线测量方法,实现了污染源超低排放超细颗粒物、挥发性有机物、烟气汞等典型污染物的高灵敏在线监测。   团队自主研发了高稳定喷射稀释器、飞安级(千万亿分之一)微电流检测模块、数字线型离子阱、专用磁性捕汞管、基于特异性催化的高性能半导体传感器等卡脖子核心模块,研制完成一批具有独立自主知识产权的机动车排放超细颗粒物监测仪、便携式车载挥发性有机物质谱仪、垂直式多车道机动车尾气遥测系统,以及固定源排放细/超细颗粒物、VOCs、恶臭、工业氨、汞等在线监测技术设备,关键技术和性能指标达到国际先进水平,形成了具有自主知识产权的移动源和固定源排放快速在线监测技术体系,并将自研仪器应用于机动车、船舶、机场、化学工业和发电厂的排放监测,有效满足了国家行业最新标准和超低排放监测的要求。   文章指出,随着中国大气污染防治工作的加强,对污染精准控制的需求日益迫切。此外,大数据、物联网、云计算等新一代信息技术也将在污染监测技术中发挥重要作用。总体而言,移动源和固定源排放污染物在线监测技术正朝着多组分、小型化和智能化方向发展。   论文第一作者为合肥物质科学研究院王焕钦研究员,通信作者为合肥物质科学研究院桂华侨研究员和清华大学丁艳军教授。该研究得到了国家重点研发计划项目、国家自然科学基金、安徽省科技重大专项和安徽省杰青项目的支持。图1. 研制的移动源与固定源排放多组分污染物在线监测仪器
  • 通过高分辨成像质谱分析大鼠视网膜中氯喹的分布
    p style="text-align: justify text-indent: 2em line-height: 1.75em "在药物研发过程中,候选化合物的体内药代动力学分析是非常关键的步骤。该分析不仅可以掌握其药效药理,还可以得到和毒性评价有关的信息。通常,使用放射性自显影技术(Autoradiography: ARG)和荧光色素标记细胞的方法进行分析。但是,使用ARG的方法成本高,而且一方面这些方法无法区别原药和代谢物,另一方面标记物质的行为可能与未标记物存在差异。因此,最近成像质谱分析法,不进行标记即可对候选化合物进行检测的方法备受瞩目。质谱成像法除了能够在无标记的情况下对各种物质的分布进行分析,还能够使用同一切片同时分析原药及其代谢物,有望在今后的药物研发领域得到应用,取得新的突破。本文介绍使用成像质谱显微镜iMScope iTRIO/i对氯喹给药后大鼠视网膜进行检测的示例。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/c4265e4a-c078-4017-93d2-68a9d4eafbd5.jpg" title="1.png" alt="1.png"//pp style="text-align: center "图1 氯喹的结构式/pp style="text-align: justify text-indent: 2em line-height: 1.75em "strong大鼠视网膜中氯喹的高空间分辨率成像/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在本次分析中,对给予抗疟剂药物氯喹的大鼠视网膜进行分析。图1为氯喹的结构式。使用氯喹标准品进行分析,对基质及测定模式进行优化,表1为组织切片的分析条件。使用成像质谱显微镜iMScope iTRIO/i进行高空间分辨率成像,发现在约10 μm厚的视网膜色素上皮周围有氯喹的分布(图2和图3)。在测定氯喹时,如果使用成像质谱分析法常用的MS模式,因受到生物体衍生杂质带来的离子抑制、干扰的影响,无法得到清晰的MS图像(此处数据省略)。在本次分析中,通过iMScopei TRIO/i的MS/MS模式进行测定,提高灵敏度,能够获得10 μm的高空间分辨率下的MS/MS图像。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b1a9ec68-3837-45b5-a422-9f98ed4422b0.jpg" title="4.png" alt="4.png"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/8fad9a5c-304b-4f86-b070-8ec12bb1a38d.jpg" title="2.png" alt="2.png"//pp style="text-align: center "图2 组织切片上的MS/MS质谱图/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4ba84009-2ef8-4ef5-92af-f47ac86ebdb9.jpg" title="3.png" alt="3.png"//pp style="text-align: center "图3 光学图像和MS/MS质谱图像/pp style="text-align: justify text-indent: 2em line-height: 1.75em "strong大鼠眼球中氯喹的高速成像/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在药代动力学研究过程中,为了阐明药物分子在细胞及器官水平的特征分布区域,分别需要在高空间分辨率及中等空间分辨率获得药物分子的分布信息。本实验使用MS/MSspan style="text-indent: 2em "模式测定在中等分辨率(50 μm)下测定大鼠眼球整体的氯喹分布情况,分析条件如表2 所示。虽然使用了更大的激光直径,有可能带来存在噪音高、离子抑制等问题,iMScope /spani style="text-indent: 2em "TRIO /ispan style="text-indent: 2em "依然能够检测得到具有较高信噪比的氯喹特征碎片,并获得清晰的质谱图像。成像质谱实验的采集/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "速度取决于目标检测区域中所包含的点数。iMScope iTRIO/i能够独立更改激光直径及采集间隔等参数,从而能够轻松控制采集速度及图像尺寸,并且不会影响数据质量。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/12e37b19-cce0-4e12-a91f-8af4b67f0802.jpg" title="5.png" alt="5.png"//pp style="text-indent: 2em "strongspan style="text-align: justify text-indent: 2em "基质涂敷方式的比较/span/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在氯喹成像质谱分析中,比较了2 种不同的MALDI 基质涂敷方式。 图5 显示了由升华法获得的成像结果(基质升华方式的示意图如图6 所示)。基质升华由iMLayer 升华仪自动完成,而喷雾方式由手动完成。喷雾方式获得成像结果如图7 所示。对比两种方式的检测结果,升华法获得了更加清晰尖锐的氯喹分布图像,而喷雾的结果则看起来会有一些扩散,如图7 所示。前处理方式的优化依然取决于组织切片的特性以及所使用的基质类型。如示例中的结果,前处理步骤对最终成像结果的图像质量有显著的影响,不仅仅是切片制备的条件,基质涂敷的过程也很重要。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/3e80c956-c24a-4b4f-b277-ff7fa0b9a5ad.jpg" title="6.png" alt="6.png"//pp style="text-align: center "图6 基质升华方式示意图/pp style="text-align: justify text-indent: 2em line-height: 1.75em "strong在相同切片上进行MS 和MS/MS 成像分析/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "成像质谱分析中,在同样位置只能采集一次数据。但是,使用iMScope iTRIO/i 可以调整激光直径及采集间隔,因此可以在采集点之间留下未采集区域,从而实现更多次的成像分析。图8显示了使用激光直径为5μm,采集间隔为10μm时,在同一采集区域内进行4次成像分析的方式。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7029ec9e-44bf-483d-a071-a1651cfc8ffb.jpg" title="7.png" alt="7.png"//pp style="text-align: center "图4 组织切片上氯喹的MS/MS产物离子质谱图,激光直径50μm/pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202006/uepic/b8099d01-93e1-49aa-9926-907aeab7a6d9.jpg" title="8.png"//pp style="text-align: center "图5 升华法获得的氯喹分布质谱图像/pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202006/uepic/c8b163cf-961b-4c26-8d20-902c68beed0f.jpg" title="9.png"//pp style="text-align: center "图7 喷雾法获得的氯喹分布质谱图像/pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202006/uepic/d51c038b-8e0c-4efa-8ecf-87c964a43b83.jpg" title="10.png"//pp style="text-align: center "图8 在同一测定区域进行1次MS分析及3次MS/MS分析的数据采集设置方式示例/ppbr//p
  • 骆清铭团队获取大鼠全脑高分辨数据集在欧盟脑计划平台发布
    由华中科技大学武汉光电国家实验室(筹)骆清铭教授、龚辉教授研究团队获取的一套大鼠全脑高分辨数据集,近期发布在欧盟人脑计划(Human Brain Project, HBP)的神经信息平台(Neuroinformatics Platform, NIP)上。这标志着该团队建立的“鼠脑最精细脑图谱基础数据库”为欧盟人脑计划正式采用。  此次发布在HBP-NIP上的数据集由该研究团队独立完成,样本为Golgi-Cox法染色的Sprague Dawley大鼠全脑,用显微光学切片断层成像(MOST)系统获取了全脑图像,成像分辨率为 0.35μ m×0.35μ m×1μ m,共包含16216层矢状原始切面。该数据集也同时在全脑网络可视化(Visible Brain-wide Networks, VBN)网站进行了共享,访问地址为 https://vbn.org.cn/2D/id3.html。  HBP是2013年经欧盟委员会批准发起的旗舰级拨款项目,汇集了欧洲神经科学领域的众多科研团队与神经科学前沿研究课题,有超过120个参与机构和10亿欧元的项目资金。神经信息平台是HBP的重要组成部分,用于神经科学数据的发布与检索,近期发布的是神经信息平台的第一个公开版本,可直接通过 https://nip.humanbrainproject.eu 访问。HBP还同时发布了脑模拟平台、高性能计算平台、医学信息平台、神经形态计算平台和神经机器人平台,可通过 https://collab.humanbrainproject.eu 注册、登录和使用。
  • 部署“十三五”文化遗产保护工作,没检测仪器怎么行?
    近日,科技部、文化部、国家文物局联合印发了《国家“十三五”文化遗产保护与公共文化服务科技创新规划》,明确到2020年,我国将基本建成文化遗产保护与公共文化服务的科技创新体系。  规划提出,聚焦文化遗产的价值认知、保护修复、传承利用和公共文化服务4个重点方向,我国将致力于在基础研究、重大关键技术、国产专有装备和标准体系建设方面取得实质性突破。具体目标如下:  1. 显著提升文化遗产价值认知的科技支撑能力  大力发展文化遗产价值认知科学与技术,在遗迹遗物探测、文物信息提取、文物价值挖掘等方面,集中突破天地联合遥感遥测、考古预探测智能机器人、复杂环境中的水下文物探测与判别、多功能水下及水面搭载平台、高环境适应性水下文物监测、精准测年、无损/微损检测、文物形貌结构信息高保真提取、残留物提取与判别、考古现场鉴别与应急保护、古代生存背景与生业模式分析、古代材料加工技术与物料流通阐释等核心关键技术20项以上,研发关键装备10套以上,初步构建文化遗产价值认知技术与装备标准体系 建成基于多源信息的陆地与水下文物资源调查和考古全周期智能决策系统各1套 揭示泥河湾早期人类起源、中华文明起源与早期发展历程,丰富人类文明发展演进的理论模式。  2. 显著提升文化遗产保护修复的科技支撑能力  构建馆藏文物保护修复和检测方法体系 形成室外石质文物、墓葬彩绘文物、泥塑、土遗址、木构建筑、传统村落、历史文化名城、工业遗产等保护综合技术体系和解决方案 研究馆藏文物保护关键技术专用工具、材料和装备 提出监测、评估、调控的综合指标和方法,全面提升馆藏文物和遗产地预防性保护整体水平 研制适合博物馆和遗产地预防性保护所需感知、监测、调控和防震等高精度装备 重点解决传统工艺领域的关键瓶颈问题。形成核心关键技术30项,关键装备15套,相关技术规范、方法和产品标准30项。  3. 显著提升文化遗产传承利用的科技支撑能力  建立并完善智慧博物馆理论与技术支撑体系 探索中国特色文化遗产传承利用创新服务模式 突破特殊文物与大遗址全模态高精度采集、文物本体状态主动精准感知、文物虚拟/增强现实展示与交互、文物数字指纹隐蔽提取与鉴别等关键技术30项 研制适合博物馆和遗产地文化遗产价值传承利用所需的知识图谱、馆藏文物流转管理、丝绸之路O2O(Online to Offline)多语种互动传播、文物价值传播一体化普适云服务平台、文化创意产品辅助设计等专有系统和装备10套。建成社会文物身份鉴别和征信评价指标体系,推动国家和国际智慧博物馆标准规范的制定。  4. 显著提升公共文化服务的科技支撑能力  构建智慧图书馆的技术标准体系 构建公共文化的综合传播技术体系 完善老少边穷地区的文化传播技术 完善基层文化站的文化传播技术体系 推动特殊人群文化需求的关键装备发展 突破口传心授等非物质遗产的采集和物理留存技术 突破少数民族语言与汉语的智能互译技术 解决公共文化跨域传播的关键技术 研发书法、绘画、舞蹈、乐器的辅助学习技术装备。形成核心技术30项,装备15套,技术标准30项。  5. 建设30个高水平研发基地  系统加强国家古代壁画和土遗址保护工程技术研究中心、国家水下文化遗产保护中心、国家文物局重点科研基地、文物保护省部级重点实验室、文化遗产保护基础条件平台、公共文化服务研发基地等建设,在重点领域培育国家工程技术研究中心和国家重点实验室,强化区域合理布局,大幅提升文化遗产保护与公共文化服务科技重点领域持续创新能力。  6. 加快人才队伍和创新团队建设  通过培养、引进等方式,重点培育文化遗产保护与公共文化服务领域的战略科学家、复合型科技人才、学术带头人,以及技能型人才和科技管理人才,建设一批具有国际视野、学科交叉、梯队合理的高水平创新团队。  “十三五”时期还将构建创新文化遗产价值认知研究方法体系,完善埋藏(地层)、古生物、古环境、资源开发、物料流通、人群迁徙等领域考古学研究方法。形成文化遗产空间观测、天地联合遥感遥测、复杂埋藏条件对地勘探、浑浊水域水下考古探测、精确测年、文物形貌结构信息提取、文物无损/微损检测、残留物提取与鉴定等技术 突破考古调查、勘探、发掘便携式仪器及工具包、文物无损/微损检测装备、非金属文物探测器、水下文物监控浮标、水下蓝绿激光探测器、水下3D成像声纳、湍急水流条件的水下考古调查机器人等专有装备 形成相关方法、技术与产品等系列标准。专栏2 文化遗产价值认知方法与技术1.中华文明探源工程。进一步研发测年、生物、环境、空间、材料、信息等考古技术,完善并创新考古学研究方法体系;系统揭示牛河梁、良渚、石峁、陶寺和二里头等一批遗址群的文化面貌和文明特征,探讨各自的发展历程及其在区域文明进程中的作用;开展黄河、长江、西辽河流域文明进程研究,探讨中国境内不同地区文明的形成和发展过程,对区域文明之间的相互关系进行综合研究,并与世界其他文明进行比较;建立中华文明探源遗址、遗物和检测分析的标本库和数据库,开发针对文明特质研究的数据分析模式,进行大数据分析,动态阐释中华民族多元一体文明进程的内在机制与外部原因,凝聚民族精神;创新展示方式,加强研究成果的推广和利用,传承文化根脉。2.泥河湾早期人类起源研究。依托泥河湾及相邻地区得天独厚的古人类遗存,针对直立人演化、现代人起源及适应生存模式等热点学术问题,研究其古人类科学资源的总体情况与规律,获取关键时段的新材料和新线索;创新理念和工作思路,开展泥河湾盆地旧石器文化特点与序列、古人类伴生动物群演替及其反映的人类生存背景和生计模式等方面的研究;从理论层面探讨人类起源、演化及农业起源等重大学术问题。3.馆藏文物及非物质文化遗产价值认知关键技术研究。围绕金属、玻璃、简牍、陶瓷、玉器、纺织品、纸张等馆藏与重要出土文物,以及织绣、印染、大漆工艺、传统制笔等非物质文化遗产技艺,研发不同材质文物和非物质文化遗产技艺的价值挖掘关键技术及专用装备,重点研发文物形貌结构信息提取、无损和微损检测、残留物提取与鉴别技术;研究反映各类文物年代、产地、原料、制作技术和生产设施的信息指标体系,以及与之适应的信息提取、存储、处理与分析方法;研究古代器物的制作、使用和流通历程,不同地区材料加工技术的区域特点、发展规律,以及区域间物料流通、跨文化区的技术交流互动;开展传统手工技艺与工业化、信息化融合的创新研究与应用示范。4.水下考古关键技术研发。基于蓝绿激光、声呐成像、磁力探测等多种技术,研发适合于浑浊水域、浅埋藏、多礁石激水流等复杂环境中的水下文物探测与判别技术;研发水下激光船体探测仪、水下埋藏文物探测仪、多功能水下及水面搭载平台;研发基于多源信息的水下文物资源调查决策技术;研发基于图像传输、影像识别技术的高环境适应性水下文物监测系统与设备;研发脆弱质文物水下加固提取、应急保护、稳定性处理等现场保护技术,出水木质船体、金属器、凝结物包裹文物的保护、保存的关键技术。5.田野考古关键技术研发。针对考古发掘和出土文物应急性保护的行业需求,在湖南、江西、陕西和甘肃等不同气候与地质环境地区,选择若干重要遗址的考古发掘工作,建立天地联合遥感遥测考古综合分析系统,研制考古预探测智能机器人;突破重点遗迹遗物(如泥化纺织品等有机质文物)的综合判别、提取技术和相关规范;研发和完善考古发掘现场出土文物应急保护、包装运输、微环境控制等成套装备;研发时序性田野考古发掘记录与回溯技术;研发田野考古全周期智能决策支持系统。  并完善和提升金属、陶瓷、纺织品、纸质文物、古籍善本、陶质彩绘等文物的保护修复技术、检测方法体系 构建室外石质文物、墓葬彩绘文物、泥塑、土遗址、木构建筑、工业遗产、传统村落、历史文化名城保护综合技术体系 突破以清洗、加固、显微修复、缓释封护为主要手段的文物保护修复专用工具、材料和装备 完善馆藏文物和遗产地预防性保护监测、评估、调控的综合指标和方法,提出各类风险源安全阈值 提升环境监测传感器性能,研发水盐监测传感器、霉菌监测传感器、污染物及水质监测传感器、游客数量监测装备、地形地貌监测装备及新一代物联网监测技术和相关装备 建立博物馆防震抗震理论模型、技术和装备 形成相关技术规范、方法和产品标准。  同时辅以人才基地与科研平台建设,培养我国文化遗产保护与公共文化服务领域的战略科学家、领军人才、专业技术人才和修复人才,建立一批人文社会科学和自然科学交叉融合的研发团队。在古代壁画保护、水下文化遗产保护、馆藏文物保存环境、陶质彩绘文物保护、纺织文物保护、古籍保护、非物质文化遗产保护和公共数字文化等方面建设若干国家重点实验室和国家工程技术研究中心。在文化遗产保护利用、公共文化服务等方面建设技术创新联盟,推动产业化应用及发展。  以专业机构、高等院校、科研院所、重点企业为依托,推进大型科学仪器设备共享与功能提升改造,组建联合实验室,形成基础研究与技术研发平台 构建基于大数据技术的文化遗产保护与利用、公众文化资源、文物收藏与交易等各类数据管理与共享平台 鼓励科技企业、专业机构、科研院所等合作组建试制车间和应用示范基地,构建专用器材、设备、装置、材料的研发、试制与应用评价的系统平台。经过本轮建设,初步形成科技创新的基础平台支撑环境,为科研人员提供开放、共享的科技资源,充分发挥科技创新在文化遗产保护与公共文化服务创新体系中的核心作用。  附件:《国家“十三五”文化遗产保护与公共文化服务科技创新规划》.docx
  • 丁雷: 让红外“大树”愈发根深叶茂生机勃勃
    红外科技在事关人民生命安全的气象灾害监测、空间安全以及红外天文观测等领域具有核心作用,是国家重要的战略技术之一。上海技物所自上世纪60年代起扎根红外光电,伴随着国家战略而发展,逐步成长为领域内苍翠挺拔的一棵“大树”,多项科技成果实现了对标国际领跑水平的重大突破。在国家重大工程牵引下锻炼并造就的研究所全创新链协同攻关能力,是滋养大树根深叶茂之本。这亦支撑着研究所始终紧盯“国家事”,自主发展、迭代创新,持续拓展红外科学与技术的应用领域。要实现从以任务带学科的发展模式,到以高水平技术体系推动高质量发展的转变,上海技物所不仅要持之以恒坚守定位,更需要不断适应新形势、新要求勇于改革、善于创新。一是强基础、提后劲,深根而固柢。以重点实验室体系重组为契机,瞄准国防安全、航天强国、气候变化全球治理、“美丽中国”绿色发展、“双碳战略”等国家需求中,制约核心能力提升的基础问题,我们调整基础研究学科布局,部署了以气象卫星对地观测技术为代表的“极限红外探测新体制”和“红外辐射精密测量”学科方向:聚焦辐射、光谱、偏振和时效等维度研究,提升探测极限能力以引领天基红外探测的发展;在天基光电溯源技术研究方向着力为全球高时效红外精细化探测提供核心手段,形成国际独有的原创体系。同时布局“对称破缺诱导非线性红外光电转换”等包干制人才专项,鼓励优秀青年基础研究人才潜心致研。努力建设国际前三红外科学与技术重点实验室,使得国家使命驱动下的红外物理前沿到光电系统实现创新深度融合,将释放源源不断的创新动力滋养“大树”,使其持续焕发蓬勃生机。二是强布局、重引领,枝繁且叶茂。“国家事”的时代性要求积极承担国家任务不仅要有预见性和继承性,更要有自主可控、自强自立的创新性。我们要在更前瞻的技术储备和载荷研发上开展体系性的系统布局:围绕太空安全、国土安全以及装备应用需求,部署关键技术攻关,策划红外与光电系统先行一步的技术发展;面向航天红外装备应用,努力提升焦平面探测器技术水平,探索红外探测器前沿研究,蓄力突破高精度、高灵敏、甚长波、多维探测器等关键技术;围绕下一代高精度、多维遥感信息获取、国土资源与环境保护等行业应用,布局天基高精度温室气体监测技术、大气辐射超光谱探测仪技术以及高光谱探测、偏振探测和辐射探测技术等,在体系性和完备性上先行一步。三是强管理、练内功,潜心以致研。研究所在重大任务攻关中形成并演进的矩阵式科研管理模式,实现了强统筹下的高效管理。面对新形势,更要发挥管理优势,使得各类资源投入对科研发展呈现正效应,推动研究所向内涵式高质量发展模式转变。通过部署“面向红外芯片的光谱与界面功能关系研究的多尺度表征系统”国家重大科研仪器研制项目,为高端红外芯片研究和核心技术应用提供创新源动力。我们加大了研究所自主部署项目力度,同步扩大“包干制”覆盖范围;围绕技术创新链,设立青年PI课题组群,实现分聚联动;以使命和问题为导向,持续完善研究所的基础研究、关键技术攻关、系统工程等各类人员的考核与绩效管理。推进研究所改革所做的努力和尝试,都在源源不断显现正效应,使红外学科的发展充满了突破的潜能。在自主创新大有可为的时代召唤下,红外科技正加速释放创新魅力,必将更加大有作为。(作者系中国科学院上海技术物理研究所所长)
  • 大数据解码人类基因,精准医疗不再遥远!
    很多人都思考过这样一个问题:假如生命只剩下三天,应该怎样去过?  从生命价值角度考虑,这只是一种“假设” 但从生命本身来看,我们之所以这样假设,是因为人类对自己的生命充满了未知,谁都无法预测自己的生、老、病、死。而在信息技术推动下,人类基因其实可以告诉我们很多关乎生命的秘密。  从生命诞生的那天开始,每个人都有自己的基因,如果我们对这些潜在的基因数据进行分析,就能够精准的诊断出病源,比如:有人是癌症潜在患者,还有人是心、脑血管疾病易发人群。。。需要明确的是,知道这个结果并不重要,重要的是我们如何解决很多不确定性问题,说服患者接受这个结果,让其更好地去生活和工作,提高生命质量。  在欧美一些国家,个人基因组检测已非常流行。从一个人的出生到死亡,每一个过程的基因变化都很大,医疗机构通过追踪整个过程的基因数据,可以对人们进行健康指导或者用药指导,从而降低患病风险,也就是我们常说的“精准医疗”、“个性化医疗”等概念。在中国,个人基因组检测的普及程度还不够高 但未来,在信息技术的推动下,生命科学必然会成为新的爆发点,尤其是医疗大数据,将带来不可估量的价值。  为什么大数据会成为医疗行业关注热点?  “医学大数据的特点与其他领域一样,也是大、多、快。不同的是,医学大数据的‘大’要体现出‘全’,即全样本、全流程,全生命周期 多,是指‘内容多元、数据多态’ 快,则是要具备较高水平的采集、存储、处理能力,更强调在线、时效性,并且在运用方面还要具备非常强的关联分析能力。” 上海儿童医院院长于广军,分析了医疗大数据的复杂性。  在上海儿童医院,医疗大数据平台正在成为其重点构建对象,而上海儿童医院院长于广军本人就是“跨界操刀员”。去年12月,上海儿童医院成立了上海市转化医学协同创新中心分中心,主要做生物信息和大数据的处理平台。于广军还有另外一个身份,是国家卫生信息共享工程技术研究中心副主任。  那么,上海儿童医院为什么要关注大数据?肯定不是为了大数据而大数据,而是因为医院本身就是大数据的发源地!  首先,EMR电子病历系统的发展,不仅取代了传统纸质病历,更产生了大量和医疗相关的检查、化验数据,尤其是类似于医学影像这种非结构化信息,必须有效管理。其次,RHIO区域健康信息组织也让医院从单个机构发展到公共卫生、区域卫生信息化的更高层次,这其中也会产生大量的医疗数据。其三,omics组学时代的到来也进一步推动了大数据的发展。Omics组学不仅包括基因组学(Genomics),还有蛋白组学(Proteinomics),代谢组学(Metabolomics),转录组学(transcriptomics),脂类组学(lipidomics), 免疫组学(Immunomics),糖组学(glycomics )和 RNA组学(RNomics)学等,这些数据对医学研究将带来重大变革。  正是基于这些大数据,精准医疗才会成为可能。如果说我们之前的研究是基于医学问题、科学问题 而大数据时代,我们要关注基于数据驱动的研究。当然,大数据也涉及很多技术难点,包括机器学习、认知计算等,都要努力去跨域。为了实现精准医疗目标,我们需要进行全基因关联分析,这就需要临床决策支持系统必须给力,基于大量的临床数据建立个性化的治疗,要做特征值挖掘与高相似性的匹配。  上海儿童医院在2006年开始就在建设国内第一个大型跨医院的区域信息中心,该中心覆盖了38家三级医院,18个行政区,600多所公立医疗机构,诊疗事件累计2.1亿。基于这个平台,上海儿童医院可以开展大规模的数据研究,可以构建资源中心,同时要创建相应的知识库,做相应的服务系统研发。上海儿童医院还承担了科技部863计划,主攻是区域医疗、健康分析和应用系统的部分。比如,环境、气候与儿童就医是怎样一种关系。其实,儿童看病难不只是和医院的儿科医生短缺有关,和外部环境也有直接关系,季节更替会让很多儿童易患过敏性疾病、感染性疾病等,大数据会提供非常好的预测模型。  我们如何看待生命科学领域的未来?  毫无疑问,精准医疗一定是生命科学领域的未来。无论是产业界、医疗界、信息技术界,每个人都对这样的未来充满期盼。作为生命科学领域信息技术的提供者和创新者,英特尔一直在精耕细作,并在实践中不断突破。  2016年6月,英特尔携手合作伙伴推出了“英特尔精准医疗伙伴计划(Intel BioIT Partners)”,共同推进计算技术在生命科学和医疗领域的创新和应用。同时,英特尔公司与上海交通大学、上海市儿童医院,香港大学,北京诺禾致源生物信息科技有限公司,以及北京荣之联科技股份有限公司签署战略合作备忘录,合力推动精准诊断、疾病预防等创新服务的落地和实践。  “我们正在建设属于中国人自己的数据库 未来,我们可以不依赖美国或者欧洲人的数据库” 作为英特尔精准医疗伙伴之一,香港大学教授林德华,非常看好精准医疗未来发展前景。  香港大学与诺禾致源、英特尔等企业在生命科学研究领域已成为深度战略合作伙伴。香港大学的索引技术可以用在生物医学上,来处理序列数据。未来三家将创建一个联合实验室,对生态数据分析以及生物研究型数据进行深度研究。  作为行业创新和转型的引领者,英特尔致力于联合合作伙伴构建和完善精准医疗生态系统,以加速创新模式的落地。在今年4月深圳举办的英特尔信息技术峰会上,英特尔宣布基于阿里云平台部署的华大基因BGI Online实现全平台打通,并发布了针对英特尔至强E5处理器进行了优化的BGI Online基因计算一体机,帮助医疗机构更加高效、快捷的分析病患的基因数据。此次活动上,英特尔联合上海交通大学、上海市儿童医院签署战略合作备忘录,合作开发并培育“儿童健康协作云”(Collaborative Children’s Health Cloud, CCHC)平台,部署基于英特尔架构的浪潮基因组一体机及英特尔领导开发的研究工具。  英特尔公司生命科学事业部总经理Ketan Paranjape认为,在2020年实现24小时之内完成包括基因序列检测、数据分析、疾病诊断,以及制定个性化治疗方案在内的精准医疗的主要过程,并进而让精准医疗早日惠及大众,这是英特尔在精准医疗领域持续努力的方向。“为了促成这一愿景的实现,英特尔期待通过领先的云到端技术创新优势、丰富的产业协作经验和用户支持策略,加速生物信息技术与云计算、数据分析等先进信息技术的融合,并支持产业伙伴进行解决方案创新”,Ketan表示。  从大数据到海量数据,再到精准医疗 从计算到存储,再到医疗数据传输、医疗数据协同,信息技术和生命科学的结合已越来越紧密。相信,未来五到十年内,人类在很多不能跨越的领域会有新的突破,比如:癌症、心血管等疾病等,信息技术会帮助医疗行业突破挑战,给人类健康带来新的福音。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制