当前位置: 仪器信息网 > 行业主题 > >

单色光色彩传感器

仪器信息网单色光色彩传感器专题为您提供2024年最新单色光色彩传感器价格报价、厂家品牌的相关信息, 包括单色光色彩传感器参数、型号等,不管是国产,还是进口品牌的单色光色彩传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单色光色彩传感器相关的耗材配件、试剂标物,还有单色光色彩传感器相关的最新资讯、资料,以及单色光色彩传感器相关的解决方案。

单色光色彩传感器相关的资讯

  • 卓立汉光携波长可调单色光源亮相德国慕尼黑光电展
    第二十三届德国慕尼黑光电展于2017年6月26日在德国慕尼黑展览中心举行,该展会是全球唯一覆盖整个光电子行业所有门类、展示最尖端科技的专业光电博览会,目前,卓立汉光与Mountain Photonics GmbH 联合参加展出,卓立汉光携最具影响力产品:波长可调单色光源亮相展会现场! ZOLIX&Mountain Photonics GmbH德国慕尼黑光电展展位号:B2.340 卓立汉光与Mountain Photonics GmbH 已正式签订代理协议,由Mountain Photonics GmbH全权代理卓立汉光产品推向德国市场,Mountain Photonics GmbH 在光电行业累积了70年的经验,为客户推广最全面的光学测量技术专业产品。 Mountain Photonics GmbH德国慕尼黑光电展(展位现场图) 卓立汉光自1999年成立,通过数年的不断努力,成为了光电行业知名的生产厂商, 2000年我司推出第一套量产型三光栅光谱仪后,不断推出了多套荧光、拉曼、光电探测器光谱响应、太阳能电池检测等光谱测量系统,广泛应用在众多高校和科研院所的研究与试验,为国家科技创新贡献了一份力量,产品凭借优良的品质远销欧美、东南亚等海外市场。 此次展会,与Mountain Photonics GmbH公司联合展出的Omni-λBright亮谱系列产品, 其应用市场广泛: 用于荧光光谱测试系统的激发光源 生物荧光测试 探针台应用 CCD相机 CMOS相机 紫外光传感器 红外光传感器 太阳能电池测试 PEC光电化学电池量子效率测试 光电探测器光谱响应度标定 眼部防护用品光谱测试 光学镜头透过率测试 透反吸测试系统光源 更多卓立汉光产品详情,请登录公司展台:北京卓立汉光仪器有限公司更多产品详情:可调单色光源
  • 卓立汉光可调单色光源的应用 — 均匀光源
    技术介绍:目前市场上有多种灯源,这些灯源只一般提供复色光,不能根据用户的实际应用提供单一或是较短波段范围的光,因此可调光源也就孕育而生。光源经过不同特点的分光器件(一般为单色仪),输出或是高分辨高窄线宽光,或是高能量的复色光,从而可以在不同的应用场景中使用。产品应用:均匀光源是可调光源一个重要分支,一般可用于探测器如(CCD,CMOS)的响应均匀性测试等光电领域测试。CCD像素非均匀性测试:CCD芯片是由多个像素组成。在CCD制造过程中,因为硅基材料本身质量,以及生产工艺等因素,即使在同一个采集参数下(曝光时间,读出速率等),各像素的暗电流,量子效率还是会有细微的差别。在一些大面阵相机使用的场景,如天文观测,需要在CCD相机使用前对感光芯片的各像元的响应非均匀性做统一的测试。 均匀光源是该测试中的重要环节,光源的均匀性和稳定性都会影响到测试的准确性。 图1:CCD芯片非均匀性测量流程图,内含TLS(可调光源)和积分球如上图所示灯源经光谱仪分光后由积分球输出成为均匀光源,然后照射待测CCD相机进行测试。根据测试响应波段的要求,一般灯源可以选用卤素灯作为光源,用光功率计放置于积分球出口,测量光源在不同电流时的能量输出。经过长时间开启后,(一般30分钟以上),再次测量输出能量数值。经过对比,得到一个电流最佳值使得灯源在长时间工作后仍可保持1%以内的稳定性。光源均匀性测试可以用光功率计在XY电移台上以一定间隔(如1cm),在CCD测试位置获得光源照射到CCD面上的不同位置的照射强度均匀程度。在光源的强度稳定性和均匀性符合测试指标后,接下来可以进行CCD非均匀性测试。分别在挡光和不挡光状态下获得相机在同一AD等参数的情况下图像数据。然后在逐一针对不同曝光时间分析像素点的数值输出。最后得到对CCD芯片的响应均匀性测试,并重新建构测试芯片的暗电流和光电流的分布情况。 图2:卓立汉光推出的基于可调光源的均匀光源系统卓立汉光经过多年的研发,针对不同的光源需求,推出基于不同光源和单色仪的可调光源系统(TLS系列光源) 图3:不同灯源组合灯源加320mm焦距谱仪组合TLS光源灯源不稳定性输出范围氙灯(75W、150W)1%200-2000nm氙灯(300W、500W)10%200-2000nmEQ光源1%200-2000nm溴钨灯(150W、250W)1%350-2500nm40W红外光源1%1.1-12um 灯源加200mm焦距谱仪组合TLS光源灯源不稳定性输出范围氙灯(75W、150W)1%200-1000nm氙灯(300W、500W)10%200-1000nmEQ光源1%200-1000nm溴钨灯(150W、250W)1%350-2500nm40W红外光源1%1.1-8um 引用文献:1, Liang Shaolin, Wang Yongmei, Mao Jinghua, Jia Nan, Shi Entao,Infrared and Laser Engineering, 0417004, 48(2019)2, EMVA Standard 1288,Standard for Characterization of Image Sensors and Cameras,2021Wang Shushu, Ping Yiding, Men Jinrui, Zhang Chen, Zhao Changyin,Proc. SPIE 11525, SPIE Future Sensing Technologies, 115252I (2020)
  • 蓝菲光学发布成像传感器量子效率测试系统-蓝菲光学-QES新品
    SPECTRA-QT 成像传感器量子效率测试光源对于图像传感器行业而言,精确地了解光电量子效率的转换是极其重要的,一个良好特性的传感器可以指定和调整输入滤波后光谱,增强修正终端产品的使用性能。Spectra-QT成像传感器量子效率测试积分球均匀光源提供可调的、已知均匀度的、覆盖光谱灵敏度范围的硅光学传感器单色光源,用于测试图像传感器的光谱响应率和量子效率,线性度,像素和模块。测量参数:量子效率光谱响应度线性度 特点:超高的光照强度和超大的动态范围,能够满足各种传感器的量子效率测试需求输出稳定、光谱辐射度均匀的面光源,确保传感器测试结果的一致性。光谱辐照度和辐亮度能够实时溯源至美国国家标准与技术研究院(NIST)提供软件开发包,能够满足客户各种自定义测试流程开发需要规格参数光谱辐照度光谱辐亮度波长范围:375 - 1100 nm375 - 1100 nm光谱带宽:5 nm to10 nm5 nm to10 nm波长准确度:0.6 nm0.6 nm开口孔径尺寸:29 mm, 23.9 mm, 26.2 m, 22 mmN/A400 nm最大光谱辐照度:12 mW/cm232 mW/cm2-sr600 nm最大光谱辐照度:21 mW/cm254 mW/cm2-sr800 nm最大光谱辐照度:5 mW/cm211 mW/cm2-sr550 nm稳定性: (UV-VIS 光源) 1.5% over 5 sec period 1.5% over 5 sec period750 nm稳定性: (VIS-NIR 光源) 0.05% over 5 sec period 0.05% over 5 sec period 创新点:QES成像传感器量子效率测试光源提供可调的、已知均匀度的、覆盖光谱灵敏度范围的硅光学传感器单色光源,用于测试图像传感器的光谱响应率和量子效率,线性度,像素和模块。成像传感器量子效率测试系统-蓝菲光学-QES
  • 美研制出增强拉曼散射传感器 灵敏度提高10亿倍
    据美国物理学家组织网3月22日(北京时间)报道,美国科学家研制出一种超灵敏传感器,可使用其增强的拉曼散射来探测包括癌症信号、炸药等物质,其灵敏度比普通拉曼散射传感器增强了10亿倍。  拉曼散射是指光通过介质时由于入射光与分子运动相互作用而引起光的频率变化,1928年由印度物理学家钱德拉塞卡拉拉曼发现。在拉曼散射中,一束单色光照射到一个物体后,其反射光会包含另外两种频率的光,这两种光的频率仅与该物体的分子组成相关,这就潜在地提供了一种有效识别物质的方法。但由于这种额外的光太微弱,科学家几十年来很难将拉曼散射付诸于实践。  上世纪70年代,科学家研制出表面增强拉曼散射(SERS)技术,可以通过将所鉴别物质放在粗糙的金属表面或金、银小粒子之上来增强拉曼信号。但科学家随后发现,这种增强的拉曼信号仅出现在传感器表面的几个随机点上,很难预测其具体位置,仍然非常微弱。  而普林斯顿大学电子工程系教授斯蒂芬周领导的团队摒弃了以往设计和制造拉曼传感器的方法,研发出一种全新的SERS结构:一块芯片上布满一行行由金属和半导体组成的小柱子。  新传感器获胜的“秘密武器”就是这些小柱子的排列方式:每个柱子上部和底部各有一个由金属制成的中空部分 柱壁上布满直径约为20纳米的金属粒子(等离子体纳米点),金属粒子之间有2纳米左右的空隙。金属粒子和空隙能显著增强拉曼信号 中空部分能捕捉光信号,让光多次而不是仅一次地通过等离子体纳米点,从而也能增强拉曼信号。迄今为止,该芯片的灵敏度比不经过拉曼增强而研制出的传感器高10亿倍,而且其灵敏度非常稳定,能可靠地应用于感应设备中。  除灵敏度大增之外,借助纳米压印技术和纳米粒子自组装技术,新芯片能实现高质量、规模化制造,研究人员已经在4英尺的晶片上制造出这些传感器。  美国海军研究实验室的科学家也在进行相关实验,希望军队也能使用该技术探测化学物质、生物试剂和炸药。
  • 选择合适的光源—解析D65与TL84的关键区别及目视评估技巧
    太阳是生命之源,其洋溢的光辉赋予地球以生命力,促使自然界万物繁荣生长,保障了人类文明的持续发展。它主要通过辐射的光能向我们传递生命所需的能量。更为神奇的是,太阳光中包含的多彩光谱,不仅滋养了大地,还为我们的世界披上了绚烂的色彩,丰富了我们的视觉体验。在今天我们探讨一下“光源”这一主题。光,作为一种电磁波,其分类依据是波长。电磁波的波长不同,其应用领域也各异。特别地,人眼能够感知的光波范围介于380nm至780nm之间,其中400nm至700nm的波段尤其关键,几乎涵盖了人类可见的所有色彩。我们平日所见的白光,实际上是这一波段中各种色光的综合体。为了统一颜色的评估标准,国际照明委员会(CIE)制定了一系列用于颜色评估的常用光源标准,并对不同光源的性能进行了评价,这些将在课堂上逐一介绍。一、颜色评估常用的标准光源有四种:在颜色评估中,标准光源的选择至关重要,共有四种常用标准光源:①D65光源:被认为是模拟平均日光的光源,广泛应用于各行各业。它旨在模仿自然白天的太阳光环境。②A光源:此光源类似于白炽灯发出的光,其色温较低,发出偏黄色的光。主要用途包括模拟橱窗照明条件下的光环境,以及用于进行同色异谱效果的评估。③F2光源:亦称为CWF(Cool White Fluorescent)这是一种冷白色的荧光灯光源,特别在北美的商店中得到广泛使用。针对出口至北美市场的产品,常常需要按照此类光源的条件来进行颜色评估和匹配。④F11光源,也被称作TL84光源:这种光源是一种窄频带的白色荧光灯,是欧洲商店中的常见照明方式。对于销售或出口到欧洲的产品,通常要求在此种光源下进行颜色评估以确保颜色的准确性和一致性。二、光谱功率分布与光源特性光谱功率分布描述了光源在不同波长上的功率密度,这与物体反射光谱的概念相似。它为光源的性质提供了最详尽的描述,可以视为光源的独特“指纹”。不同类型的光源显示出不同的分布特征。在380至780纳米的可见光范围内,光谱分布越是均衡平滑,光源对物体颜色的还原性就越高。接下来,我们将展示几种常用光源的光谱功率分布图。光谱功率分布为我们提供了关于光源色光特性的全面信息,尽管如此,由于数据量庞大(在380-780nm范围内以5nm间隔存在101个数据点),这使得信息的交流与分享变得复杂。光源的色彩影响,尽管可以通过其光谱功率分布细致了解,但人眼更直观地感知到的是光源的总体色彩倾向。国际照明委员会(CIE)的xy色度坐标系统能够简明地表示光源的整体色度位置,从而简化了颜色信息的传达。在这个系统中,x轴值越大表示颜色趋向红色,y轴值越大表示颜色趋向绿色,而当两者值都减小时,颜色则偏向蓝色。以坐标点(0.33,0.33)代表纯白色,D65光源的色度坐标为(0.31,0.32),显示为带有轻微蓝色调的白色,这种坐标表示形式被用来界定色品。典型的光源大多发出白光,但根据其特性,这些光源可能偏向红黄色调或蓝色调。这引发了一个问题:是否存在一个单一的参数能够准确描述光源的色相特征?为了解决这个问题,国际照明委员会(CIE)引入了色温(CCT,Correlated Color Temperature)的概念,通过一个简单的参数来表征光源的色相。色温的概念基于黑体(或完全辐射体)的行为。黑体在未被加热时不发光,但当其温度升高时,会开始发光并随着温度的不同变换光的颜色。具体来说,低温下黑体发出红色光;温度升高时,光色转向黄色;再进一步增加温度时,光变为白色;当温度达到更高时,会发出蓝光。因此,光源的色相可以通过与黑体在特定温度下发出相同颜色的光相对应的温度值来定义。这一过程在色度图上表现为随温度增高,光的色相沿着特定轨迹变化的现象。色温是用来描述光源颜色的一个参数,采用开尔文(K)作为度量单位。例如,A光源的色温是2890K,表明其发出的光接近低温下黑体的红色光;D65光源的色温为6500K,表示其光色类似于中午阳光下黑体的光色;F2光源,色温为4150K,介于A光源与D65光源之间,发出偏冷的白光。即便是色光看起来相同的不同光源,照射在同一物体上时,所反射的光色可能会有所不同。这是因为光源的显色性能各异,由其光谱功率分布的差异引起。例如,两个均为D65标准的光源中,一个分布更均匀的光源能够使物体颜色表现得更为鲜明和饱满;而另一个光源如果存在明显的光谱波峰和波谷,可能会导致某些颜色的丢失,使得物体颜色显得不那么吸引人。CIE定义了显色指数(CRI)来衡量光源展现物体自然色彩的能力,范围从0到100,数值越高表示显色性能越好。例如,自然光和白炽灯的CRI为100,而CWF荧光灯的CRI只有65,说明它在颜色还原方面表现不佳。为评价人造光源模拟自然日光(D65标准)的质量,CIE设立了从A至E的日光模拟等级,A级最佳,E级最差。光源亮度的单位是坎德拉(cd),1cd定义为特定方向上,频率为540×10^12赫兹的单色光源的光通量,这是衡量光强的标准。光照射到物体上的强度,即照度,衡量单位面积接收的可见光量,以勒克斯(Lux,Lx)为单位。根据ASTM标准,不同颜色的样品推荐不同的照度级别以确保准确评估:浅色样品推荐540 Lx;中等颜色样品,一般评估810-1880 Lx,精确评估1080-1340 Lx;深色样品推荐2150 Lx。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 爱色丽新品RM200QC便携式成像分光色差仪
    爱色丽RM200QC 便携式成像分光色差仪是爱色丽新推出的产品。以轻巧易用著称,沟通表观色与真实色,确保从原料进厂批次色差控制到制成品出厂质量检验的色彩一致。 RM200QC便携式成像分光色差仪 就是这样一款颜色检测工具。RM200QC 重量轻、易于操作,随时可以使用。在仅一秒多时间内读取样品,然后输出报告告诉您该颜色与测量标准的差距。如此简单。根本不必连接至软件程序,仅需要你手持仪器单独就可完成操作。可以实现在整个制造过程中保持稳定的颜色质量,有效管理供应商,各供应商都遵守统一的标准,控制实验室配色、生产和成品间的差异,控制批次差异,消除员工经验相关的问题;每个人都使用相同设备,配合客户实物标准或彩通和孟塞尔颜色标准,进一步调高检测准确性,提高精确度。 RM200QC便携式成像分光色差仪使用 8 种不同可见光源和 1 个 UV LED(9 波段)通过捕获样品图像从而准确测量颜色。与传统3波段的色差计(红,绿,蓝)相比更有优势,是爱色丽RM200QC一大优势。 RM200QC便携式成像分光色差仪 拥有独特的成像技术,采用 45/0 光学几何结构和专有图像捕捉技术,实现与目测结果更好的一致性。每次测量都综合了从不同方向、不同颜色光源拍摄的 27 张图像。瞬间即在设备上显示颜色及表面纹理效果的相关信息。 RMC200QC便携式成像分光色差仪 可对样品进行精确定位,先预览测量区域,再存储并在测量结束后调出图像。RM200QC直观的用户界面快速、简便地测量和对比样品。可创建和存储多达 20条标准,使用平均功能取得更好准确性。测量样品并显示合格/失败警告信息。最多可存储 350 条带声音或文本标签的样品色彩空间图显示标准和样品差异,简单易懂。 RM200QC便携式成像分光色差仪 提供精确的L*a*b*C*H* 标准、样品和色差值。色彩描述评语有助于理解并说明色差方向灰尺评级和力度功能,方便进行纺织品评估。对于该应用,RM200QC 具有卓越的人体工程学设计和更优化的测量结果优化了性能(与目测评估相比)。内置遮盖度测量功能,对涂料和塑料制品进行精确、灵活的测量。更多关于X-Rite爱色丽RM200QC便携式成像分光色差仪的详细技术参数,请登录www.sinoinstrument.com查询或致电400-113-3003咨询
  • 我国首台弧矢聚焦双晶单色仪研制成功
    “上海光源”近日竣工。“上海光源”又名“上海同步辐射光源”,而同步辐射光束线的“心脏”则由中科院西安光学精密机械研究所研制。由该所承担研制的水冷弧矢聚焦单色器是“上海光源”光束线中的关键设备,各实验站所需单色光波长、能量分辨率、光斑大小都是由单色器来实现或决定,它是整个同步辐射光应用中最重要的装备之一。该设备的性能好坏直接关系到同步辐射光束线的优劣,因而被称为同步辐射光束线的“心脏”。由于单色器结构设计复杂,加工技术难度大,目前世界上只有法国等少数几个国家能够研制生产,且市场价格十分昂贵。为了研制我国自己的水冷弧矢聚焦单色器,满足“上海光源”工程建设的急需,承担该项研制任务的西安光机所“水冷弧矢聚焦单色器”项目组全体科研人员在中科院上海应用物理所、中科院沈阳科仪中心等单位的密切配合和大力支持下,用不到两年的时间,先后攻克了单色器第一晶体高精度定向、切槽、冷焊以及第二晶体肋拱结构等特殊形状单晶硅精密加工及压弯聚焦面形控制技术,四连杆柔性铰链设计及传递弯矩实施晶体弯曲聚焦技术,晶体投角、滚角、摆角精密微调及光束固定出口技术及高精度高稳定性悬臂式空心轴系、大口径磁流体密封及编码器闭环控制精确定位Bragg转角等系列技术难题,首次成功研制出我国第一台具有自主知识产权的水冷弧矢聚焦单色器。2008年5月12日和6月6日,在“上海光源”首批7条光束线站中,安装的水冷弧矢聚焦单色器的X射线小角散射光束站和高分辨X射线衍射线站等两条光束线相继进行了首轮调光试验。联调期间,各运动、调节机构精度高、稳定可靠,两台弧矢聚焦单色器成功得到我国第三代同步辐射第一束衍射X光束,联调试验获得圆满成功。它标志着我国自己研制的水冷弧矢聚焦单色器完全达到设计和使用要求。“上海光源”工程委员会在评价意见中指出,中科院西安光机所瞬态光学与光子技术国家重点实验室研制的弧矢聚焦双晶单色器是整个同步辐射光硬X射线光束线核心部件;该项目的完成,填补了国内在弧矢聚焦双晶单色器研制领域中的空白,在其结构设计和关键技术应用上填补了多项国内空白。它的研制成功,标志着我国同步辐射硬X射线光晶体单色器的研制水平迈上了一个新的台阶并跻身于国际同类水平,使我国成为第二个能生产弧矢聚焦单色器的国家。
  • 搭载全新CMOS传感器,FLIR机器视觉相机满足生物医学成像的严苛要求
    众所周知,现代生物医学成像的进步帮助医生在诊断和治疗上取得越来越大的突破,X光、计算机辅助断层摄影(computer aided tomographic,CT)、磁共振成像、核与超声波成像,生物医学成像技术越来越精细。因此,研究和诊断生物医学应用通常需要成像仪具备较高的空间分辨率、准确的色彩还原度以及弱光条件下较高的灵敏度,而且许多情况需要同时具备这三种因素,才能提高数据的可靠性。选择医学成像相机要考虑的因素选择合适的显微镜学相机、组织学相机、细胞学/细胞遗传学相机、落射荧光相机,对于临床应用进行正确诊断或在研究工作过程中提供可靠数据具有至关重要的作用。那么要如何判断机器视觉相机是否适合您的应用呢?你需要考虑这些因素:01分辨率与色彩精度现代生物医学成像相机所需的分辨率取决于样品中目标结构相对于相机像素大小的放大率,也就是说,显微镜应用的高分辨率可以通过2MP、25MP或介于这两者之间的相机来实现。它取决于光学元件对样品中目标结构进行的相对于相机像素大小的放大率,为了选出能实现所需分辨率的相机,首先要确定待解析样本中最小结构的尺寸,然后将其乘以光学系统中的镜头放大率,从而得出投射到相机传感器上的结构尺寸。如果结构的尺寸至少是相机传感器上像素的2.33(Nyquist)倍,那么相机可以解析此机构。例如,如果这些投射的结构尺寸是~8um,那么3.45um像素的相机可以解析这些结构。测量分辨率还可以用其他方法(如线对数),但上述方法可以通过简单计算,找到用于测试的相机的选项。组织学、细胞学和细胞遗传学等成像应用使用较大范围的白光(~400nm至700nm),或使用此范围内的选定波长(例如565nm)。如果这批样品中的样本不是活动的(即固定的),则可以暴露于亮光下,不会有污渍褪色或样品被杀死的风险。这种情况下,相机的主要要求是高分辨率和色彩还原度。反过来说,弱光灵敏度不是一个重要因素。02灵敏度、量子效率及动态范围对于活体样本的成像应用,面临的挑战是避免样本在太强光线下过度曝光,否则会使荧光分子褪色或杀死样本。这些应用通常使用一种称为落射荧光技术,落射荧光技术可用于固定样本和活体样本。有的标本很难获得或价格昂贵,而且制作样本的材料和人工费用很高。因此,能保护样品质量的系统有助于降低这些成像应用的持续成本。落射荧光使用经过过滤的高能量波长,以刺激样品发出低能量波长。低能量波长再经过过滤返回相机。这种情况下,可以对样品使用强度较小的破坏性光,因此其要求是灵敏度。即便发射光能量较低,具有出色灵敏度的相机也可以提供高质量的图像。如需查找具备出色灵敏度、在弱光条件下性能良好的型号,您可以侧重于以下三种技术规格:灵敏度、量子效率以及动态范围。灵敏度是得到与传感器所观测噪声等效的信号所需的光子数,数值越小越好。量子效率是指给定波长下转化为电子的光子——值越高越好。动态范围是信号与噪声(包括颞暗噪声)的比值,颞暗噪声是指无信号时传感器内的噪声,动态范围值越高越好。通常单色型号的弱光性能优于彩色型号。03因素综合对于同时使用白光和落射荧光的应用,可以选择FLIR配备Sony全新转换增益功能的相机型号,此功能可以优化传感器,实现高灵敏度或高饱和容量。弱光环境较高的转换增益,因为在此条件下,读取噪声被更大程度地弱化,从而产生较低的灵敏度阈值,非常适合在短时曝光下检测弱信号。强光条件下饱和容量得到了Maximun,获得的动态范围得以增强,因此稍低的转换增益是这种情况的理想选择,Maximun动态范围将受限于12位 ADC。挑选合适的机器视觉相机在选择相机时,较新的CMOS传感器是个很好的出发点。较新的传感器通常性能更好(价格可能还更低)另外,如果针对的应用程序需要在几年内购买多个相机(如持续生产诊断仪器),那么就要选择生命周期不会很快结束的相机,否则您可能要承受提前设计替换相机的成本费用。FLIR生产的机器视觉相机型号有200多种,广泛应用于采用新CMOS传感器的三大系列:Blackfly S、Oryx 和 Firefly。01FLIR Blackfly SFLIR Blackfly S系列相机的传感器、外形尺寸及接口最为广泛。这些相机提供USB3和GigE两种型号,功能广泛,设计初期易于整合。板级Blackfly S型号是全功能盒装产品的微型版本,特别适合空间受限和嵌入式的应用,其功能广泛,性价比高,分辨率可达24MP,是生物医学和生命科学应用的选择。FLIR Blackfly S USB3FLIR Blackfly S 板级02FLIR Oryx10 GigEFLIR Oryx相机系列拥有适配最快10GigE接口的高分辨率传感器,能够以60FPS的速度捕捉4K分辨率、12位的图像。Oryx的10GBASE-T接口是经过验证且广泛部署的标准,能够在线缆长度超过50米的经济实惠的CAT6A上或者长度超过30米的CAT5e上提供可靠的图像传输。03FLIR Firefly DLFLIR Firefly相机系列的外壳尺寸娇小、重量轻、功耗低且价格实惠。Firefly DL型号还能够运行已经过训练的神经网络,可用于物体检测或分类。所有FLIR机器视觉彩色相机都可以通过不同的白平衡选项的形式自定义色彩还原,并使用特殊色彩校正矩阵,这对于生物医学成像非常重要,医学成像中,色彩准确度的涵义不同,这取决于人类对诊断的视觉分析以及实现数据准确性的机器可读格式之间的对比。另外,FLIR 机器视觉Blackfly S、Oryx 和Firefly相机系列可通过GenICam3及 Spinnaker SDK进行控制和编程,它们自一开始设计时就以轻松开发与部署为理念时,确保我们能更快进行应用开发和测试。随着医学科技的进步对于现代生物医学成像的需求也将更加严格对于如何选择医学成像相机
  • 新型快速检测多氯联苯原型器件研究成功
    传感器的结构及相关测试结果  多氯联苯(PCBs)是一类典型的持久性有机污染物(POPs)。由于PCBs的生物富集性和高毒性,这类曾经发挥了巨大作用的化工产品也给人类和生态环境造成了巨大的危害。中科院合肥物质科学研究院固体物理研究所杨亚军博士利用银纳米“树枝晶”的表面增强拉曼散射效应,实现了对四氯联苯的快速、痕量检测。最近,该所李明涛博士后与孟国文研究员、尹志军副研究员及等离子体所黄青研究员合作,发明了一种新的能快速检测PCBs的表面光电压变化传感器。  氧化锌半导体多孔材料在吸附PCBs前后会引起自身的表面光电压(SPV)变化。分析表明,在亚带隙单色光照射下,表面态电子的跃迁引起表面势的变化,产生SPV。而吸附在氧化锌表面的PCBs可以影响表面态电子的跃迁,导致SPV发生变化。例如,在500 nm单色光照射下,该传感器的SPV信号在吸附PCBs后会降低 并且SPV降低的幅度与PCBs的吸附量相关,在一定范围内二者呈线性关系。这样,通过简单测量表面光电压的变化就可以快速检测出PCBs的含量。  基于上述原理,新开发的传感器结构非常简单,由两片导电玻璃和中间夹着的一薄层多孔氧化锌粉末构成(图A)。在光照面一侧的导电玻璃中间有一个小圆孔,是PCBs进入氧化锌粉末层的通道。通过锁相放大器与导电玻璃相连来测量其SPV。该系统的灵敏度较高,可以检测出微弱的SPV信号变化。之所以采用多孔氧化锌粉末,是为了增强对PCBs的富集作用,从而提高检测的灵敏度。由于该传感器在光照后几秒钟便可获得稳定的SPV信号(图B),因而具有较短的分析时间,有望用于PCBs的快速检测。  目前检测PCBs的常用方法是以色谱和质谱为基础的联用检测技术。然而,这些检测方法不仅过程复杂、耗时,且成本高,难以对痕量的PCBs进行实时在线监测。研究人员使用新开发的传感器对三氯联苯PCB29和五氯联苯PCB101两种多氯联苯进行了试验,结果发现其检测灵敏度可达10-6 M,分析时间不超过一分钟。这为构建快速检测PCBs(甚至其它POPs)的传感器提供了一条新途径,对于环境中POPs的快速痕量检测具有重要参考价值。  相关成果申请了国家发明专利 撰写的论文发表在Langmuir 2010。该工作得到纳米研究重大科学研究计划、国家自然科学基金和中国博士后基金等资助。
  • 爱色丽全新方案:高效构建可持续的纺织品色彩流程
    上海2023年11月16日 -- 作为全球知名的色彩管理品牌,爱色丽近期推出了其最新的创新产品——Textile Color Hub数字色彩管理解决方案。该方案旨在通过先进的技术优化传统的色彩匹配流程,有助于提高产品的上市速度并减少对环境的影响,降低碳足迹。Textile Color Hub的核心特点是其开放的云端生态系统,灵活适应品牌商和供应商的需求,实现均衡的色彩一致性。在时尚、服装和家居用品领域,色彩在纺织品美学和顾客满意度中扮演着关键角色。然而,当前传统的色彩管理方式面临一些挑战,管理色彩规格耗时且具有较强的主观性。在常规的工作流程中,设计师先提供一个实物样品以供色彩匹配,供应商随后会制作多个色样,并将其送往品牌商进行审批。如果品牌商对色彩的一致性不满意,整个过程可能就要重新开始。这一过程不仅可能花费数天甚至数周的时间,还可能导致材料和时间的浪费,进而影响产品上市时间,同时也可能增加纺织行业的碳排放量。面对传统色彩管理流程中的挑战,一些品牌商开始采用"孤立测试解决方案"来改善情况。这些解决方案包括实施数字颜色沟通(QTX)的标准操作程序(SOPs)、使用特定的分光光度仪,以及提供针对颜色容差和光源选择的详细测量指南。尽管这种方案有所突破,但它并非是一个能够帮助供应链基于数据客观生产色彩的整体解决方案。爱色丽近期推出其全新的Textile Color Hub色彩管理方案,为纺织品品牌和供应商提供了可持续的工作流程。它减少对实物样品的依赖,帮助缩短产品上市的时间并降低碳足迹,提升环境责任意识。Textile Color Hub是一款开放的云端生态系统,可帮助品牌商将传统的孤立环节整合成一个完整的数字化色彩解决方案。该系统使用安全可靠的色彩规格文件,包括颜色光谱数据、供应商匹配所需的公差以及测量色彩所需的光源,以此实现品牌色彩的有效沟通和控制。此外,该方案具有高度灵活性,适用于爱色丽及其他品牌的分光光度仪。同时,它还能自动验证并优化分光光度仪的性能,通过校准将设备校正到全球标准白点,并减少来自不同供应商设备之间的差异。Textile Color Hub 工作流程爱色丽Textile Color Hub旨在为纺织品品牌商提供可量化的优势,不仅展示了色彩解决方案的易用性,更体现了其在提升打样速度、加快全流程配色流程、减少实物样制作和传递成本以及提升产品上市周期和速度等方面的潜在价值和快速投资效果。基于此,纺织品品牌商和制造商得以在全球供应链中迅速且可持续地生产所需的色彩。此外,借助爱色丽Ci7x00系列高精度台式分光色差仪能够实现色彩数据化的准确定义,其多孔径设计能够测量各种复杂样本,非常适合制造商无缝沟通、分享和协调色彩关键值和规格。该款色差仪若与Color iQC质量控制软件配套使用,可快速识别样品是否处于容差范围内,并在超出容差范围时提供直接反馈。如需详细了解爱色丽纺织行业色彩管理解决方案,爱色丽诚邀您莅临11月19至23日于上海国家会展中心(上海市青浦区徐泾镇崧泽大道333号)举办的中国国际纺织机械展览会暨ITMA亚洲展览会。爱色丽将在5.1印染馆 H5C51(靠近7号门)期待您的到来!如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 大型高精度衍射光栅刻划机:把光谱看得更通透
    科研人员在为光栅检测做准备工作。 罗浩摄(资料图片)  在1毫米距离里划出6000道刻槽,且槽型均匀,这意味着在20公里的刻距内,刻槽间距误差小于一根头发丝的千分之一。这正是不久前,中科院长春光学精密机械与物理研究所研制的“大型高精度衍射光栅刻划机”达到的刻划精度。  走进长春光机所实验室,项目组科技人员向记者介绍了一块银灰色、近似不透明“玻璃窗”的光栅,它是这套“精密机械之王”的杰作,也是目前世界上面积最大的高精度中阶梯光栅。打造这台“精密机械之王”的,正是长春光机所光栅刻划机老中青三代研制项目组。  光栅是分析万物光谱信息的“芯片”,应用遍及海陆空、吃穿用  人类如何通过光认识世界?项目负责人、长春光机所研究员唐玉国说,人类借助光认知世界有两种方式:一是光学成像,二是光谱分析。光学成像可以看到物质世界的形状、尺寸等外在信息 地球上所知的元素及其它们的化合物都有自己的特征光谱线,光谱分析可以获得物质成分信息,帮助我们看清事物的本质。  但要“抓”住光谱信息并不容易。日常生活中的光,是由红、橙、黄、绿等各种单色光组成的复色光,而单色光才能更好地记录下物质的光谱信息。光栅是一种非常精密的光学元件,它的神奇在于,它能从复色光中解析、提取出单色光。  日常生活中,人们很少看到光栅,但其实它的作用无处不在。“人们去医院抽血检验,原理就是依靠光谱仪器里的光栅,来实现观察血液里的成分是否符合健康标准。”项目组成员、长春光机所研究员巴音贺希格说,“简单地说,光谱分析需要光谱仪器,光栅之于光谱分析的作用,就如芯片之于计算机,是核心和‘大脑’。”  与血液检查原理类似,分析不同物质的光谱,可以探查出农药残留、钢材质量、爆炸物特性等许多重要信息。唐玉国表示,光栅的价值不限于光谱仪,其应用“遍及农轻重、海陆空、吃穿用等各行各业。既能看天,也能看地、看人”。在天文观测中,通过光谱测量得到天体的组成及其与地球的距离,从而揭示宇宙诞生及演化规律 在光通信领域,光栅的分光作用使得不同波长的光能够携带信息顺着光纤飞入千家万户̷̷  通常,光栅性能越强,能分析出的物质成分就更精细。光栅面积越大,集光率和分辨本领就越高 光栅的精度越高,信噪比就越高。2009年,中科院长春光机所启动光栅刻划系统研制工作,一开始就瞄准世界领先水平,攻克光栅同时“做大”和“做精”的难题。  “精密机械之王”成功刻划出了400毫米×500毫米的大面积中阶梯光栅,标志着我国大面积光栅制造技术已达到国际领先。这一块光栅有多强?唐玉国说,最有经验的油漆工能辨别出1000多种色彩的微妙变化,而光栅理论上能够分辨出超过4亿种,可谓世界上感知色彩的最强利器。  光栅刻划机是制作光栅的母机,“做大”“做精”光栅是世界性难题  以防尘服武装,再经风淋室除尘,记者才得以获准进入实验室。这里有一套精密的环境保障系统,要求在30天内温差控制在± 0.01℃之内。  项目组成员、长春光机所研究员齐向东参与了光栅刻划机的设计、研制、调试等全过程,并长期在一线担任指挥。他说,这台仪器对环境要求极为严苛,气温、气压、空气成分等哪怕极其微小的变化,在纳米的尺度下,也可能带来巨大的刻划误差。  对环境的苛刻要求源自光栅刻划机自身的高精度。它由上千个元件、部件精妙配合而成,几乎所有关键部件冲击世界极限水平。加工装调精度难、运行保障环境要求之高,前所未有。  丝杠、蜗轮、导轨是刻划系统“三大件”,项目启动之时,国内现有机床技术根本达不到精度要求,研究组不得不采取土办法——手磨加工。  丝杠被誉为刻划机的“心脏”,其精度水平直接影响整机性能。国内不能造,国外买不到,已经退休的80岁高龄老专家张泰返聘回所,并亲自上阵,带领青年团队不分昼夜加工和检测。历时近1年时间,终于研磨出这根丝杠。这也是目前世界上精度最高、行程最长的三角螺纹丝杠。  用同样的方法,项目组费时6个月加工出蜗轮,8个月加工出V形导轨。这些具有亚微米、纳米量级的关键器件,都是科研人员用双手研磨出来的。此外,项目组成员为了攻克金刚石刻划刀、光栅镀膜等技术难题,也屡屡实验、研磨、调整,方才达到了光栅刻划机的要求。“有一次,项目组去外面交流。一握手,对方都说,你们的手不像科学家,倒像工人。”巴音贺希格回忆。  立项之初,研制计划时间是三年半,但由于整个过程比预料困难太多,前后花费了近8年,成为“严重耽搁的项目”。“研制期间,我们承受着巨大的压力,往往‘按下葫芦又起了瓢’,好不容易攻克一个困难,新的问题又立马出现。”齐向东说,科研人员不停地寻找问题产生的根本原因,有时候甚至要推翻之前花了很长时间建立起来的假设,否定自己重新开始。“这8年中,我曾多次感到绝望,以为进行不下去了。大光栅通过验收时,又觉得一切都很值得。”  这项成果使我国在光栅领域不再受制于人,并将精密机械加工技术推向世界前沿  国际上掌握光栅研制技术的国家很少,大面积高精度光栅是科技强国竞争的焦点。在此之前,只有美国能够制作300毫米以上中阶梯光栅。  大面积、高精度光栅刻划机的成功研制,使我国战略高技术领域所需的光栅不再受制于人,还将我国精密机械加工技术推向了世界前沿。  “我们这一代科研人员做出这台机器,离不开长春光机所几代人的努力。我们只是属于摘桃子的人,没有前辈的积累,没有青年梯队人才的付出,都不可能完成这项艰巨任务,是老中青三代人的结晶。”齐向东感慨。  1959年,长春光机所自主研制出了我国第一台光栅刻划机和第一块光栅。项目期间,我国第一代光栅刻划机的领军人、机械刻划光栅创始人梁浩明回到长春光机所,在重要问题上给出了指导意见 带领团队手工研磨丝杠等精密零部件的张泰先生,也是我国第一台光栅刻划机研制的参与者 已经退休的郝德阜研究员参与了系统的总体结构设计。  目前,我国第一台光栅刻划机依然没有“退休”。半个多世纪前,仅仅借助少量公开发表的相关文献,梁浩明等人开始了光栅刻划机的研制工作。没有专门设计的计算机软件,设计人员就靠手工绘制来画图 没有数控机床,科研人员就靠双手打磨加工零部件,精度甚至比当今数控机床加工还要高。  上世纪80年代,长春光机所计划研制高精度大面积光栅刻划机,由于资金等种种限制,项目搁浅,我国遗憾地错失了追赶光栅制造强国的机会,制造大光栅也成为我国光栅人的梦想。  “我们有信心,也有信念能够完成项目。长春光机所具有数十年的技术积累,此外,现代精密仪器加工技艺水平更高,技术条件更好。老一辈在物质匮乏年代都能够制造出精度非凡的光栅刻划机,我们有条件也有责任把新一代刻划机做好。”齐向东说。  八年磨一剑,项目组研制的这套大型高精度光栅刻划系统,攻克18项关键技术,取得9项创新性成果。  让唐玉国欣喜的是,经过光栅刻划机项目历练,一批青年人才成长起来了,关键技术得到有效传承。他还说,研制成功并不是刻划机的重点,未来项目组还将从“精稳快新”四个方面对它进行持续改进和技术升级、提升性能,使其在满足国家重大科研对大光栅需求的同时,始终保持国际领先。
  • 马耀光研究员团队提出一种具有皮米量级分辨率的微纳光纤锥光谱仪
    近日,浙江大学光电学院的马耀光研究员在微型高性能光谱仪研究中取得了新进展。研究团队提出了一种具有皮米量级分辨率的微纳光纤锥光谱仪。在这种光纤锥光谱仪中,精心设计的光纤锥几何参数使得输入光激发的少数传播模,可以随着光纤锥的非绝热形变发生耦合、演化过程,进而快速形成大量的高阶模式。这些新形成的高阶模式同时也会随着光纤锥的渐变直径被截止而转化为泄漏模,从而在探测面形成复杂的光学散斑。光谱信息也在这个过程里被编码进散斑图案之中。可以利用基于Transformer的MobileViT模型,快速、高效、准确的对输入光谱进行还原。经测试,光谱仪可以工作在450-1100nm的波段范围内,对输入光的分辨率可达1 pm 数量级。该光谱仪以相对较低的制造难度与成本,在毫米级的空间尺度下实现了皮米级的波长分辨能力。自牛顿利用棱镜观察到色散现象以来,针对光谱技术的研究就在人类发展历程中占据了重要地位。随着光谱分辨率的提高与光谱理论的完善,光谱技术逐步从科学实验领域扩展到了分析应用上,在生物传感、环境监测、天文、医疗等领域都发挥着重要的作用。但是传统光谱仪体积庞大、价格昂贵,因而在实际应用中较难推广。对光谱的测量往往需要使用非常专业的设备或者在专业的检测机构才能进行。近年来,随着微纳技术的发展,微型光谱仪凭借其体积小、重量轻、操作便捷、结构简单、价格低廉等特点,逐渐被人们所重视。但是,针对光谱仪的低成本、小体积、高性能等要求存在内在的制约关系:减小分光和探测元器件的尺寸将导致光谱仪的分辨率、灵敏度及动态检测范围显著下降,同时有可能增加器件的制造难度与成本。如何利用计算光谱技术进行光谱编码与解码是打破这一内在限制的重要前提。微纳光纤(MNFs)是研究纳米尺度光与物质相互作用的优秀平台之一。利用其简洁的几何形貌、强光场约束等优点,研究人员利用自制的光纤拉锥机精确控制光纤锥尺寸,对其内部的传导模式产生有效调控,如图1a所示。a) 基于微光纤锥的光谱编码结构利用非绝热近似下的陡变光纤锥,将输入的少量低阶模式快速转变为大量高阶模式。产生的高阶模式的数量和权重均为输入光场频率的函数。因而,随着高阶模式被光纤锥的渐变直径逐步截止,光谱信息就会随着泄漏的光场被编码进探测到的复杂散斑图案之中。多模光纤拉制的光纤锥内支持的传导模式众多,再加上锥区模式耦合带来的自由度,散斑结构非常复杂,波长的微小改变也会使得散斑有非常明显的变化,从而可以在较小的尺寸内实现高分辨的光谱识别如图1b、c所示。图1光谱仪结构。(a)微型光谱仪图片(b,c)微纳光纤锥区泄漏模图案映射在衬底上的侧视图和俯视图1. 光纤纤芯直径、光纤锥度、锥区长度、拉伸长度等结构参数对光线锥泄漏散斑具有重要的影响。输入光在芯径更大的光纤中,可以激发更多的模式,因此在后续的模式演化过程中可以产生更复杂的散斑,包含更多的光谱特征。图2的仿真结果也验证了这一点。图2 不同纤芯直径拉制得到的光纤锥的散斑仿真。纤芯直径分别为(a)8.2 μm(b)62.5μm(c)105μm2. 在微纳光纤束腰直径一致的情形下,锥区长度越短,锥区角度越大。如图3所示。随着锥区变短,散斑尺寸缩小,由Nyquist采样定理可知,对于一定大小的探测器单元尺寸,系统可以采集的散斑精细结构的质量会随之变低。例如当锥长为750 μm时,散斑尺寸仅为~2 μm。图3 不同锥区长度的光纤锥散斑仿真。锥区长度分别为(a)6000 μm(b)3000μm(c)1500μm(d)750μm3. 通过优化拉制光纤的纤芯直径,拉制过程中的拉伸长度与锥区长度等参数,研究人员在300*600 μm的小尺寸内,得到信息足够丰富的散斑。散斑图样由互补金属氧化物半导体(CMOS)传感器(CIS)直接获取,如图2a所示。利用自制的微纳光纤拉锥平台和转移平台,研究团队可以高效率、高精度地制备所需要的微纳光纤,并且将其与CIS探测器进行一体化集成。使得最终的样品在保证高集成度的同时,具有良好的稳定性与重复性。并且,制备的光谱仪核心元件的成本不到15美元。b) 基于深度学习的高精确度光谱复原研究人员发现重构型光谱仪的算法选择对重构结果也有较大影响,为了可以实现快速、低功耗的光谱重构,我们采用基于Transformer架构的MobileViT模型进行了训练,用于最终的图像分类与光谱重构。最终,光谱仪准确地恢复了450-1100 nm光谱范围内(受限于实验中采用的CMOS的工作带宽300-1100 nm 与神经网络训练过程中可用的输入光谱范围450-1200nm的交集)被测光谱信息,平均峰值信噪比(PSNR)为46.7 dB。重建的窄带光(彩色实线)和商用光栅光谱仪的地真光谱(图4(a)黑色虚线,Ocean Optics, LEDPRO-50)显示出很高的一致性。单色光的中心波长误差约为0.0223%。线宽误差约为7.37%。并且,光谱仪在图4b、c所示的性能极限测试中也展示出很好的表现:在工作带宽的测试中,可以准确恢复半高全宽为90 nm的光谱。在对于分辨极限的测试中,可以准确还原间隔1.53 pm的双峰信号。图4 光谱仪性能表征。(a)450-1100 nm波长范围内光谱恢复(b)连续光谱的恢复(c)窄双峰的恢复c) 高精度的高光谱探测能力因为微纳光纤尺寸小、光束缚能力强的特点,可以在一个传感器上集成多个微纳光纤锥,实现高光谱成像功能。图5a展示了在CIS上集成20个光纤锥的样品。结合机械扫描的采样方式,可以对例如图5b中的图像,进行高光谱采集。如图5c、d所示,采得的光谱信息具有很好的准确度和色彩还原度。图5 光谱仪高光谱表征。(a)20通道高光谱成像仪(b)彩色贴片图及高光谱复原结果(c)b中各个色块的光谱还原图(d)b中不同色块的CIE 1931色彩空间坐标研究团队利用轻量级Transformer架构的神经网络模型,对微纳光纤锥区泄漏模的干涉散斑进行优化与采集,简洁地实现了基于微纳光纤锥的光谱信息编解码架构,进而构建出一种尺寸在亚毫米量级,分辨率在皮米量级的低成本、高性能微型光纤锥光谱仪。此外通过在CIS上集成多个微纳光纤锥,可以实现高光谱成像的功能。未来,如果在标定过程中进一步考虑偏振态的影响,我们可以同时获得未知光的光谱和偏振态。论文所提出的光谱仪可应用于食品检验、药物鉴定、个性化健康诊断等领域,成本低廉。 本研究得到了国家自然科学基金和浙江省自然科学基金的资助。论文通讯作者为马耀光研究员,共同第一作者为硕士生岑青青和博士生片思杰。硕士生刘鑫航、唐雨薇、何欣莹也为论文工作做出了重要贡献。本论文的完成单位为浙江大学光电科学与工程学院、极端光学技术与仪器全国重点实验室、杭州国际科创中心、浙江大学嘉兴研究院智能光电创新中心。
  • 3D 白光干涉成像技术的创新及应用
    近年来,3D检测技术发展迅速,广泛应用于工业、国防、医疗、农业等领域。根据其是否应用人造光源作为照明系统,可分为主动式3D成像技术与被动式3D成像技术。无论是哪种方法,为了获得目标的高精度3D轮廓信息,都希望检测仪器具备高精度、高帧率、算法兼容性强、环境适应性强、稳定性强、操作简便、性价比高等特点,这在实际应用中,尤其在微纳米结构检测中有着重要意义。微纳米技术,是指对微纳级材料的测量、加工制造、设计、控制等相关研究技术,它与高精尖装备制造领域的发展息息相关。微纳结构测量最为基础和重要的是表面形貌的3D测量,它包括了轮廓的测量以及表面粗糙度的测量,目前常用的微结构表面形貌测量方法分为接触式和非接触式。接触式测量是目前工业领域内应用最为广泛的测量方法。这种方法在测量时有一个微小的触针,在被测样品表面上做横向移动;在这过程中触针会随着样品表面的轮廓形状垂直起伏,然后通过传感器将这微小的位移信号转换为电信号;对这些信号进行采集和运算处理后,就可以测得表面轮廓或形貌特征。测量中可以使用的传感器有很多,如光栅式、压电式、干涉式以及普遍应用的电感式。这种方法测量量程大,结果稳定可靠,并且仪器操作简单,对测量环境要求低;缺点是触针在测量时有可能会对被测表面造成损伤,且测量速度慢。非接触式测量技术大多基于光学方法,例如干涉显微法、自动聚焦法、激光干涉法等。光学测量方法具有非接触、操作简单、速度快等优点。然而在利用光学方法进行测量时,被测表面的斜率、光学参数等发生变化会引起测量误差。例如,若被测样品表面存在沟槽或其他微细结构,它们引起的散射、衍射等现象会对测量信号造成干扰。另外,若样品表面存在灰尘、细小纤维等,光学测量方法的结果也会有一定失真;而触针式方法由于测量时与样品表面接触,会划去部分表面污染物使测量结果不受影响。因此,根据不同测量要求,每种方法都有其适用性,常用的微纳结构三维测量方法如图1所示。图1:微纳结构三维测量方法接触式检测技术(1)扫描电子显微术利用物质与电子的相互作用,当电子束轰击表面时,会产生多种形式的电子和光电现象,扫描电子显微镜(SEM)利用其中的二次电子和背散射电子与表面具有的关系进行结构分析。SEM具有大视场、大倍率、大景深等优点,但其测量样品制备复杂,种类有限,常用于微结构缺陷检测等定性分析。(2)扫描探针显微术被测样品表面的相关信息利用探针与样品的相互作用特性获得,扫描探针显微镜(SPM)及其衍生而来其他测量方法,具有较高的测量分辨力,但其测量过程需要对测量表面逐点扫描,且只有微米级别成像范围,测试效率较低。(3)机械探针轮廓术探针始终与被测表面接触,被测表面结构的变化会使探针产生垂直位移,通过位移的感知即能获得被测表面特性。该方法在工业特别是制造业领域广泛使用,也是国际社会公认的表面粗糙度测量的标准方法。但是其作为接触式测量方法,容易对被测表面造成划伤,逐点测量的办法效率较低,也难以测量复杂器件。非接触式检测技术(1)激光干涉术通过干涉条纹变化与被测物位置变化的对应关系,获得位移信息,从而达到几何量测的目的。(2)自动聚焦法基于几何光学的物象共轭关系,当照明光斑汇聚在被测面时,进一步调整检测头与表面的距离,直至光斑像尺寸最小而得到该被测位置的相对高度。该方法简单易操作,但水平分辨力受光斑大小的限制较大,且垂直高分辨力对成像分析和调节能力要求高。(3)激光共焦扫描显微术首先利用精密共焦空间滤波结构,通过物象共轭关系滤除焦点外的反射光,极大地提高成像的可见度。通过聚焦光对样品垂直扫描,样品在垂直方向被分层成像,光学切片图像经三维重构,可得到样品的三维结构。该方法一次测量过程就能实现该视场三维形貌的测量,兼具高效和高精度的优点,但其分辨率易受扫描步长和物镜数值孔径的限制。(4)光学显微干涉术传统的干涉测量方法,主要是通过观测干涉条纹的位置、间距等的变化来实现精确测量。典型方法是单色光相移干涉术和白光扫描干涉术。单色光相移干涉术的测量思路为:参考臂和测量臂的反射光发生干涉后,利用相移法引入相位变化,根据该相位变化所引起的干涉光强变化,求解出每个数据点的相位,其结果不连续,位于(-p,p]之间,因此需要对该结果进行解包裹运算,然后根据高度与相位的关系,得到被测样品的表面形貌。这种方法在测量时对背景光强不敏感,测量分辨率高;但无法确定干涉条纹的零级位置和相位差的周期数,存在相位模糊问题;若被测样品表面的相邻高度超过1/4波长则不能测准,因此只能应用于对表面连续或光滑的结构的测试。白光扫描干涉法由单色光相移技术发展而来,由于使用白光作为光源,在干涉时有一个确切的零点位置,其相干长度短,干涉条纹只出现在很小的范围内;当光程差为零时,干涉信号出现最大值,该点就代表对应点的高度信息,通过Z向扫描能够还原被测样品的整体形貌。光谱分光型白光干涉由上述方法发展而来的光谱分光型白光干涉技术,则是基于频域干涉的理论,利用光谱仪将传统方法对条纹的测量转变成为对不同波长光谱的测量。包含有被测表面信息的干涉信号,由含有色散元件和阵列探测器的光谱仪接收,通过分析该频域干涉信号来实现信息获取。相比于单色光干涉技术,光谱分光型白光干涉技术具有更大的测量范围,同时与白光扫描干涉术相比,它在测量时不需要大量的Z向扫描过程,极大提高了测量效率。利用光谱分光型白光干涉技术可以测量绝对距离、位移、微结构表面形貌、薄膜厚度等。在测量微结构三维形貌时,光谱分光型白光干涉技术,比于其他方法操作更简单,测量精度更高。在微纳测量领域,为了提高光学测量系统的水平分辨率,通常采用显微物镜放大的方法。在光谱分光型白光干涉测量系统中可以采用几种显微结构,如Michelson型、Mirau型和Linnik型,图2显示了这三种显微干涉结构的构成原理。图2:三种显微干涉结构的构成原理高精度仪器设备需求不断推动着微纳米技术向前发展,因此高精度的微纳检测技术也成为了必然需求。微纳结构测量的对象有表面形貌、电子特性、材料特性、力学特性等,其中表面形貌3D测量最为基础和重要,它包括轮廓测量(如长、宽、高等)和表面粗糙度等参数的测量。对于尺寸处于微纳米量级的微纳结构器件而言,其静电力、黏附力和结构应力等因素对其本身的影响,会随着其表面积和体积之比的增大而增加,使器件的功能和质量发生变化,从而影响器件的使用。因此,对微纳结构表面形貌的检测非常必要。光谱分光型白光干涉技术,用于测量微纳米结构三维形貌的研究及其进一步产业化,填补国内空白。光谱分光型白光干涉仪(见图3)具备高精度、高帧率、算法兼容性强、环境适应性强、稳定性强、操作简便、性价比高等优点,其在新型成像/检测系统中的应用及产业化,将打破国外垄断。图3:光谱分光型白光干涉仪整机系统原理图光源是超辐射发光二极管(SLD),从光源发出的光进入光纤耦合器,从耦合器输出的光经消色差准直器准直成平行光,使用分光棱镜将准直光分为参考光和样品光。参考光经透镜3聚焦于反射镜,样品光经XY扫描振镜和透镜4,聚焦于样品。经反射的参考光和样品光由光纤耦合器的另一端输出,进入光谱仪中。光谱仪由透镜1、光栅、透镜2以及相机组成。输出的光经透镜1准直为平行光,照射到光栅上;光栅衍射分光,经透镜2汇聚于线阵相机;线阵相机记录参考光和样品光的干涉光谱,传给电脑进行处理。该系统使用振镜代替昂贵的高精密位移台进行二维扫描,可用于位移、振动及厚度测量(点测量);线轮廓测量(线测量);表面轮廓成像(面成像)。中科行智最新研发的白光干涉仪,用于对各种精密器件表面进行纳米级测量,专业用于超高精度、高反光及透明材质的尺寸测量。该白光干涉仪采用非接触式测量方式,避免物件受损,可进行精密零部件重点部位的表面粗糙度、微小形貌轮廓及尺寸测量。目前,在3D测量领域,白光干涉仪是精度最高的测量仪器之一。中科行智重点开发的3D飞点分光干涉仪,重复精度达30nm,扫描速度70kHz,扫描范围广,最大直径可达40mm;适应性强,可适用于测量最强反射、弱反射及透明物体等;稳定性强,分光模块与光学振镜模块化设计,加入光学振镜扫描,可替代昂贵的高精密位移台。主要特点如下:大视野:采用高精度光学振镜扫描方案,实现水平方向大视野扫描,避免使用昂贵的高精度水平位移台;大景深:高分辨率光谱仪进行信号采集,经分光元件将白光分光,具备mm级测量深度特性,无需深度方向扫描装置;高精度:大测量深度高分辨率相敏谱域干涉调解算法,重复精度30nm;高速度:采用FPGA硬件加速设计,帧率70kHz;灵活性:信号采集端和接收端分离式设计,采集端安装更灵活;用户设置自定义扫描区域、扫描间隔,也可重点获取感兴趣区域;适用性:适用于透明、弱反光、高反光、狭缝等材料类型的表面形貌以及厚度检测(见图4、图5)。目前白光干涉仪相关技术处于国际领先,苏州中科行智智能科技有限公司已发布的3D飞点分光干涉仪为国内首家,可广泛应用于半导体晶片、微机电系统、精密加工表面、材料研究等领域,为国内半导体行业及高精密行业赋能,高质量解决环节价值,可趋于替代国外高精密传感器,赋能国内高精密、高价值智能制造!
  • 《中国药典》粒度和粒度分布测定法增订动态光散射法、光阻法
    目前《中国药典》0982 粒度和粒度分布测定法仅收载了激光光散射法测定样品中的粒度分布,尚未收载动态光散射法和光阻法。各国药典均已收载动态光散射法和光阻法,且在《中国药典》丙泊酚乳状注射液、脂肪乳注射液(C14~24)等品种标准中已有应用。为此,《中国药典》增订上述两种方法,将进一步满足相关品种质量控制的需要。2023年12月12日,国家药典委员会将拟修订的《中国药典》0982粒度和粒度分布测定法第三法动态光散射法、第四法光阻法公示征求社会各界意见(详见附件),公示期自发布之日起三个月。第三法(光散射法)新增动态光散射法、新增第四法光阻法;第三法用于测定原料药、辅料和药物制剂粉末或颗粒的粒度分布,第四法用于测定乳状液体或混悬液的微米级粒子数量、粒度分布及体积占比。国家药典委员会截图本次标准草案的公示意味着动态光散射粒度仪(俗称纳米粒度仪)与光阻法颗粒计数器将被写进《中国药典》。动态光散射法当溶液或悬浮液中颗粒做布朗运动并被单色激光照射时,颗粒散射光强度的波动与颗粒的扩散系数有关。依据斯托克斯-爱因斯坦方程,通过分析检测到的散射光强度波动可以计算出颗粒的平均流体动力学粒径和粒度分布。平均流体动力学粒径反映粒度分布中值的流体动力学直径。平均粒径直接测定,既可以不计算粒度分布,也可以从光强加权分布、体积加权分布或数量加权分布,以及拟合(转换)的密度函数中计算得到。动态光散射的原始信号为光强加权光散射信号,得到光强加权调和平均粒径。很多仪器可通过对光强加权光散射信号的分析计算得到体积加权或数量加权的粒径结果。 在动态光散射的数据分析中,假设颗粒是均匀和球形的。本法测量范围为 1~1000nm。光阻法单色光束照射到颗粒后会由于光阻而产生光消减现象。应用基于光阻或光消减原理的单粒子光学传感技术进行测定。应用单粒子光学传感技术时,当单个粒子通过狭窄的光感区域阻挡了一部分入射光线,引起光强度瞬间降低,此信号的衰减幅度理论上与粒子横截面(假设横截面积小于传感区域的宽度),即粒子直径的平方成比例。用系列不同粒径的标准粒子与光消减信号之间建立校正曲线,当样品中颗粒通过光感区产生信号消减,可根据已建立的校正曲线计算出颗粒的粒度大小和加权体积。本法测量范围一般为 0.5~400μm,使用具有单粒子光学传感技术的仪器时,需知道重合限和最佳流速。重合限为传感器允许的最大微粒浓度(个/mL)。 上述两种方法的内容包括对仪器的一般要求和测定法,详见附件。附件 0982 粒度和粒度分布测定法第三法动态光散射法、第四法光阻法草案公示稿(第一次).pdf
  • 爱色丽在医药行业的色彩解决方案—色彩色差仪测量仪器
    在生命科学领域,特别是医药行业,颜色是一个不容忽视的重要因素。药品的颜色不仅影响着产品的外观审美,更在很大程度上与药品的安全性和质量息息相关。然而,长期以来,在药物溶液颜色的测定中,人眼目视一直是主要的方法。但这种方法存在着明显的局限性和误差。由于人眼的主观性和视觉差异,以及外界环境因素的影响,目视溶液颜色的结果往往缺乏准确性和一致性。这种误差和不确定性不仅可能导致药品质量的不稳定,还可能对患者的用药安全构成潜在威胁。一、爱色丽药物溶液颜色测定仪的优势与益处为了解决医药行业中颜色管控的难题,爱色丽推出了先进的药物溶液颜色测定仪。这些仪器采用了先进的光学技术和精密的测量算法,能够实现对药物溶液颜色的精确测量。爱色丽药物溶液颜色测定仪的优势在于,它能够准确地测量药品溶液的颜色,并与中国药典标准液的色号进行精准对应。这不仅为药品生产企业提供了一种科学、客观的颜色测量方法,还大大提高了药品颜色管理的准确性和可靠性。使用爱色丽药物溶液颜色测定仪带来的益处是多方面的。首先,它有效地消除了人眼目视产生的误差,确保了颜色测量结果的准确性和一致性。其次,有助于提升品牌的形象和认知度,使消费者对药品的质量和稳定性更加信任。此外,它还能够显著减少因颜色误差导致的生产浪费和生产延迟,降低企业的生产成本,提高生产效率。更为重要的是,它能够保证药品在颜色上的一致性,加强质量控制,为患者提供更加安全、可靠的药品。二、爱色丽的全面色彩解决方案爱色丽的色彩解决方案不仅包括先进的药物溶液颜色测定仪,还涵盖了一系列功能强大的软件和硬件设备,为医药行业提供了全方位的色彩管理支持。在药品与药物溶液生产领域,爱色丽的 Ci7600 台式分光色差仪作为一款中端型台式分光色差仪,以其快速、准确的测量性能,成为药品生产过程中色彩质量控制的得力工具。手持式Ci64便携式色差仪则以其轻巧便携、多用途的特点,能够在不同的生产场景中进行可靠的数据采集和统计过程控制。而 Color iQC色彩管理软件软件则通过其基于作业的可配置功能,确保了全球供应链中色彩的准确一致,实现了从原材料采购到成品生产的全过程色彩管理。在药品包装领域,爱色丽同样提供了卓越的解决方案。eXact 标准版便携式色差仪能够精确地验证包装材料的色彩,帮助企业优化印刷过程控制,确保包装的颜色质量。带有 UV 选项的手持式Ci64便携式色差仪,能够有效评估荧光增白剂的使用效果,为药品包装的设计和生产提供了科学依据。ColorCert 记分卡服务器则通过提供客观的指标和数据,帮助企业确认包装的合规性,缩短印刷准备时间,提高包装生产的效率和质量。爱色丽凭借其先进的技术和全面的色彩解决方案,为生命科学领域的色彩管理提供了强有力的支持和保障。相信在爱色丽的助力下,医药行业将能够实现更加精准、高效的颜色管控,为人们的健康和生命安全贡献更大的力量。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 汽车颜色光泽的检测方法—便携式多角度分光色差仪
    随着时间的推移,人们对汽车的期望已经远远超越了仅仅是一台能够代步的交通工具。现代消费者关注的焦点,已经从最初的动力、稳定性和安全性逐渐转移到了汽车的外饰和内饰。他们希望所拥有的汽车在外观上独一无二,内部装饰富有特色,这无疑为汽车制造商提出了更高的挑战。汽车的外观颜色、光泽、以及内部的材质和颜色选择都已经成为决定消费者购买意愿的重要因素。不同的颜色和材质不仅代表着车主的个性和审美,也是汽车品牌形象和定位的体现。然而,如何确保每一款车的颜色和材质都能达到设计师的预期,并且在大规模生产中保持一致性,却是一大技术难题。当然,伴随着科技的发达,解决汽车内饰和外饰的色彩问题也有了解决方案,MA-T12便携式多角度分光光度仪成为解决这一问题的关键性工具。一、为什么说MA-T12便携式多角度分光光度仪能解决汽车外观内饰问题?首先,MA-T12便携式多角度分光光度仪是一款多角度色差仪,它可以同时测量汽车的外饰和内饰,确保车身颜色与内部装饰的和谐统一,这意味着从车身到座椅,从仪表盘到车顶,每一个部分都可以得到精确的颜色和光泽度测量。其次,MA-T12在色彩闪烁度和颗粒度的测量上具有超高的精确性,其重复性和重现性效能均是市场上其他设备的两倍。更为重要的是,它可以通过12个测量角度对特效饰面进行全面的特性表征和测量,测量结果更接近人眼的感知方式。二、MA-T12便携式多角度分光光度仪的性能描述MA-T12便携式多角度分光光度仪有着诸多性能,例如:①色彩闪烁度和颗粒度精确性:MA-T12的色彩闪烁度和颗粒度测量功能展现了其卓越的精确性。相比市场上其他设备,MA-T12的测量结果在重复性和重现性方面均达到了市场上其他设备的两倍水平。这使得MA-T12成为了一个可靠的工具,为制造商提供了精确测量和评估汽车色彩特性的能力。②完整表征和测量:MA-T12通过其12种测量角度,能够对特效饰面进行全面的表征和测量。这项功能使得设计师能够更准确地分析和理解色彩在不同角度下的变化,从而更好地控制和优化汽车外观的视觉效果。③接近人眼感知:MA-T12的测量结果更接近人眼感知颜色的方式,从而在设计和审批过程中能够更加直观地展示色彩特性。这项特性有助于简化审批流程,加快产品上市进程。④直观界面:MA-T12的直观界面大大降低了用户的学习难度,提高了测量效率。操作简便的界面使得用户能够快速上手,轻松完成色彩测量任务。⑤自动内部校准:设备内部的自动校准功能降低了因设备校准不足而导致测量不准确的风险。这有助于减少对外部校准的需求,为用户节省了时间和成本。⑥数据兼容性:MA-T12与爱色丽早期型号的设备兼容性良好,确保了平稳过渡,用户不会丢失旧有的数据。这为用户升级到新型号提供了更大的便利。⑦数字方式交流:MA-T12使得供应链上的色彩、闪烁度和颗粒度能够以数字方式交流。这有助于制定全球容差和测量程序,提高持续一致性,从而确保不同批次的产品具有相似的色彩特性。⑧监控色彩和谐:实时监控供应链上的色彩和谐是提高运营效率的重要手段之一。MA-T12能够帮助用户快速发现并调整不符合标准的产品,从而确保生产流程的顺畅进行。⑨视觉工具:新的视觉工具为用户提供了快速分析和解析不符合标准的产品的能力。这有助于用户更好地理解问题所在,并采取相应措施进行改进。三、MA-T12与PANTORA配套使用当MA-T12与PANTORA配套使用时,工业设计师可以在概念和设计期间使用手持式设备将复杂的材料表面数字化,从而准确捕获其色彩与外观特征,并将其渲染在PLM软件中。供应链则可以利用同一设备来确保其生产的产品处于容差范围内,且最终检验可以使用该设备来测量和捕获装配成品或车辆的所有外观。PANTORA材质软件专为简化大量复杂色彩和外观数据的管理而设计。它可作为外观工作流程的中枢,将数字材料输入源连接到第三方3D渲染软件和产品生命周期管理(PLM)系统等输出目标。消费者对汽车外饰和内饰的要求日益提高,如何在大规模生产中确保颜色和材质的一致性成为了汽车制造商面临的一大挑战。而MA-T12便携式多角度分光光度仪,无疑为他们提供了一个高效而精准的解决方案。四、关于爱色丽xrite“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 光致发光和可穿戴传感器研究获进展
    人们对电子设备的便携性、多功能性和集成性的期待推动了可穿戴电子设备的快速发展。最近,摩擦电纳米发电机(TENGs)在能力收集、人机交互、医疗监测和自供电传感等方面引起了关注。遗憾的是,这类交互设备多由分隔的传感器和显示单元组成,因而总是需要一些笨重的设备或有线连接来将输出信号转换为人类易读出的形式。色彩提供了简单的传输信息的方法,其可调的颜色属性有望与传感器集成,为交互式信号的可视化开辟了新途径。金属卤化物钙钛矿具有特殊的光物理性质,为未来的可穿戴电子产品提供了新机会。然而,构建自供能、应变传感和显示等多功能特性一体化的光致发光传感系统是巨大的挑战。中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室研究员李清文与项目研究员张其冲等,提出了高效窄光致发光金属卤化物固体的水合成策略,进一步将其应用于自供电的可穿戴式光致发光传感器。科研人员利用这一策略,仅使用水作为溶剂便制备了盐壳金属卤化物固体(具有高效和狭窄的绿色排放,PLQY为87.3%)。其中,KBr盐提供了一个富溴的环境来钝化钙钛矿的表面缺陷,且作为基质来提高其稳定性。该绿色环保的制备策略可用于制备无色水性油墨和柔性光致发光薄膜。另外,该固态化合物可作为聚乙烯醇(PVA)的填料,用于TENG中的高性能正摩擦材料,所制备的TENG的输出性能是原始TENG的2.3倍。研究进一步构建了电压响应范围为0-100kPa、响应时间为125ms的可穿戴光致发光传感器,以检测人体的各种运动。研究显示,运用简单的水蒸发结晶策略即可制备高发射窄半高峰宽的金属卤化物固体,巧妙地引入溴化钾盐使得难溶于水的溴化铅完全溶解在水中,不仅赋予了材料高量子产率,而且提升了产物光和热稳定性。得益于水蒸发结晶策略,前驱体水溶液可制备成水性墨水,通过与水性聚合物混合可以制备出柔性荧光薄膜,并可以通过喷墨打印技术打印相关的图案。作为概念验证,研究还构建了电压响应范围为0-100kPa,响应时间为125ms的可穿戴光致发光压力传感器,未来有望构建同时具有显示-传感一体化自供电集成器件,检测人体的各种运动。该研究为高发射的金属卤化物固体的合理设计提供了指导,并为扩展其在多功能可穿戴荧光传感器中的应用提供了参考。相关研究成果以Robust Salt-Shelled Metal Halide for Highly Efficient Photoluminescence and Wearable Real-Time Human Motion Perception为题,发表在Nano Energy上。研究工作得到中科院和江苏省青年基金项目的支持。该研究由苏州纳米所、华东理工大学、新加坡南洋理工大学、上海交通大学的科研人员合作完成。图1.固态盐壳金属卤化物的制备图2.固态金属卤化物的稳定性及其柔性应用图3.固态金属卤化物在传感领域的应用
  • 爱色丽RM200QC便携式影像分光色差仪新品上市
    (X-RITE)近日在中国地区发布其全新便携式影像分光色差仪&mdash &mdash RM200QC。RM200QC是一款针对工业应用而设计的经济型手持式色彩检验工具,可满足质检人员频繁快速的现场测量作业并给出即时结果,避免了过去肉眼评估可能出现的由于经验及色觉差异造成的评估误差。该产品广泛适用于塑料、纺织、印染、家电、建材等行业,可帮助质检人员在工作现场轻松实施色彩质量控制、确保产品色彩的统一稳定。 爱色丽RM200QC的应用可贯穿产品开发和生产的全过程:从原材料检验、生产质检到最终产品的色彩检验,可提供覆盖全产业链的、高效、准确、便捷的色彩检测,从而 确保不同材质原料的色彩统一性、控制原料供应商的执行颜色质量稳定性,减少实验室小批量和生产大批量以及不同批次的颜色变化,极大程度上避免了由于产品形状、表明纹理、原材料色差及质检人员的主观判断而引起的颜色差异。从而满足原材料供应商、加工及制造商以及最终产品对于颜色的高效控制管理。 针对现场质检过程中可能遇到的各类问题与挑战,帮助企业实现高效管理供应商与产品质量控制,RM200QC在设计上具有多项创新的功能及扩展功能: 便携式影像分光色差仪&mdash &mdash RM200QC*无需连接软件即可独立完成质控工作;标准数据通过仪器采集,无需标准数据输出/输入*采用单一容差设置,即时显示样品通过或不合格,测量结果可以自动平均。*采用快速比较测色模式,无需存储样品;测量时间仅需 1.8秒,可以满足大工作量质检的需求*可视化样品检测与样品状态记录*采用了45/0 图像捕获光学结构和独立三方向图像捕获技术,可在1秒内准确获取27副颜色照片,并形成准确的三维图片,确保测量结果与目测的一致性更好。*采用25个 LED光源包括8个可见光从三个独立方向入射和1个UV*可储存20个标准和350个样品检测数据,标准数据可以直接通过RM200QC采集,而无需输出/输入*采用4&8mm可变测量孔径,可对样品形状和表面纹理有更好的适应性*人体工学设计确保了极佳的便携性与舒适的手握操作 除了上述特点有优势之外,RM200QC还配备了4.5cm TFT彩色显示屏 ,具有亮度高,层次感强、颜色鲜艳的显著特点。用户界面采用了模拟色块和色彩空间图,对使用者更为友好,使得操作更简便直观,并且专门为中国地区用户开发了简体中文系统。同时,配有USB数据接口以备数据存储装置模式输出打印检测报告,可快捷生成样品文本或语音标签。&rdquo 据悉,在近期举行的2012年荣格塑料行业技术创新奖评选中,RM200QC便携式影像分光色差仪凭借其出色的功能和创新技术赢得了权威专家的高度认可,一举摘得测量与检测类别技术创新奖。 作为全球领先的色彩解决方案提供商和以新产品研发为主导的公司,爱色丽长期致力于高精度颜色控制管理产品的创新,其全面的色彩解决方案被广泛应用于涂料、印刷、汽车、电器、纺织等重要行业。爱色丽以确保最终产品色彩的精准度和稳定性为主旨,利用其创新技术和丰富的行业经验,全力帮助客户实现高效的高效颜色控制管理。 更多关于X-Rite爱色丽RM200QC便携式影像分光色差仪的信息请登录东南科仪官方网站www.sinoinstrument.com或咨询020-66618088 400-113-3003
  • 第四届全国大学生光电设计竞赛8月举行,滨松中国提供产品及技术支持
    由中国光学学会和2013-2017年教育部高等学校光电信息科学与工程专业教学指导分委员会联合主办的第四届全国大学生光电设计竞赛将于2014年8月4日至6日在湖南长沙国防科技大学举行,预计参赛院校80所,参赛队500支。本届竞赛由国防科技大学光电科学与工程学院承办,湖南省光学学会协办。 本次大赛以光与测量为主题,由第四届全国大学生光电设计竞赛设立竞赛委员会,负责竞赛题目确定,竞赛宏观管理、竞赛可持续发展等重要事项。竞赛委员会主任由中国工程院院士、上海理工大学庄松林院士担任,国防科学技术大学刘泽金教授,浙江大学刘旭教授,天津大学郁道银教授,中国科学技术大学明海教授担任副主任。本次竞赛的宗旨皆在促进光电知识的普及,加强大学生实践、创新能力和团队精神的锻炼与培养,提高学生的培养质量和促进高等教育改革。 本次大赛的参赛作品是具有光电导航功能的智能车,要求从指定地点出发,沿轨道上铺设的“8”字形导航条走完全程,在行走过程中,利用光电技术测量、记录沿途所通过隧道的数目、各段隧道的长度及沿途路边树木的棵数。 滨松作为世界一流的光电器件生产商,经与第四届全国大学生光电设计竞赛组委会沟通,将向本次赛事提供专业的光电器件以及解决方案,并提供专业的技术支持,支持参赛的大学生选手设计参赛作品。 可供设计参赛作品的产品有:具有单点探测器功能的光电二极管;实现高速和高增益工作的雪崩二极管;自动控制、光信号识别的光IC;可以实现RGB三原色以及单色光探测的颜色传感器;用于光谱测量和微弱光成像的图像传感器;被用在光源准直、微小距离和微小位移的探测过程中的位置灵敏传感器;应用在光通讯以及光测绘中的光源产品LED和LD等。 滨松工程师为您推荐了相应器件,推荐信息可点击:http://www.hamamatsu.com.cn/activity/10003/works/list.html。滨松产品支持请联系:赵强(北京)010-65866006-662 13810222002 zq@hamamatsu.com.cn。您也可到滨松中国官方网站搜索相关器件:http://www.hamamatsu.com.cn/product/index.html。 报名参赛的同学请登陆全国大学生光电设计竞赛官方网站opt.zju.edu.cn/gdjs,点击右上角处的“网上报名”,滨松中国预祝各位大学生参赛顺利并取得优异的成绩。关于滨松中国: 滨松中国是滨松集团在中国的销售、技术支持、售后服务等市场活动中心,全面负责滨松集团在中国所有产品的销售业务。成立于1953年的滨松集团,是世界上科技水平最高、市场占有率最大的光科学、光产业公司。使用滨松集团11200支 20英寸光电倍增管的东京大学小柴昌俊教授的中微子实验获得2002年的诺贝尔物理学奖。滨松集团的产品被广泛的应用在医疗生物、高能物理、宇宙探测、精 密分析等产业领域,是光产业界的领军企业。全国大学生光电设计竞赛回顾: 全国大学生光电设计竞赛是由中国光学学会和2013-2017年教育部高等学校光电信息科学与工程专业教学指导分委员会联合主办的,面向国内高等院校光电专业学生开展的全国性命题竞赛,其宗旨是促进光电知识的普及,加强大学生实践、创新能力和团队精神的锻炼与培养,提高学生的培养质量和促进高等教育改革。全国大学生光电设计竞赛每两年举办一次,每届确定两个竞赛题目。第一届、第二届、第三届竞赛分别于2008年、2010年、2012年在浙江大学、长春理工大学、福建师范大学举办。全国大学生光电设计竞赛得到了全国众多高校的关注和支持,影响力逐年扩大,第一届有21所院校,134支参赛队约500人参赛;第二届有61所院校,335支参赛队约1000人参赛;第三届有70所院校、426支参赛队共约1200人参赛。
  • 立仪科技获数千万A轮融资,专注研发光谱共焦传感器
    3D工业视觉传感器供应商立仪科技获得浩澜资本独家投资的数千万人民币的A轮融资,据悉,本轮融资将主要用于市场拓展、新品研发及补充流动资金。立仪科技成立于2014年,是一家专注于精密光学检测的公司,旗下有光谱共焦传感器等产品。公司的点共焦传感器已经量产,且服务多家头部客户;线共焦产品原型机已打样,正研发商业量产版本。主流的3D工业视觉的技术路线包括线激光、光谱共焦、条纹结构光、TOF、双目等技术路线。光谱共焦传感器是目前市场精度最高且能应用于各种特性的表面和复杂形状测量场景的新型传感器,其市场主要被基恩士等国外厂商占据,但国产率较低。光谱共焦传感器的原理是通过使用特殊的透镜及光学系统,拉开不同颜色光的焦点分布范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长的光聚焦到被测物体上。通过测量反射波的波长,就可以得到被测物体到透镜的精确距离。光谱共焦目前正处于技术迭代周期。激光技术的研发目前已逐渐见顶,而市场对测量传感器的需求越来越广,市场需求正从人工监测向自动化监测产品发展。与传统的激光相比,光谱共焦技术精度较高,且材料适应性更广,稳定性更高。立仪科技创始人兼CEO刘杰波表示:“我们之前曾做过三维激光扫描研究,过程中意识到激光扫描很难完成一些对高精度扫描有需求的测试任务,便开始向光谱共焦转向。”目前,立仪科技有点共焦位移和线共焦位移两类传感器产品,产品型号超百种。点共焦传感器上,立仪科技在拿到天使轮融资后,于2019年完成点共焦原型产品的量产。至今,公司的点共焦已经迭代到第三代,进入华为、三星、苹果供应链。除在产品设计上有着多项创新外,公司还开发了为国外禁止出口的激光干涉光谱共焦校准仪等专用仪器工装,且工艺经过量产验证,能帮助产品更好生产。在性能上,其传感器可以做到光强提高200%,线性度提高200%,反射干扰降低50%。价格上,产品售价比国外产品低。产品示意图公司2020年开始研发线共焦产品,目前已有原型机,是已能完成三维形状物体的扫描,具有精度高材料适应性好、无盲区、效率高等优点,可广泛应用于半导体、新能源、3C等领域。本轮融资完成后,立仪科技也将集中精力,研发商业化量产版本线共焦产品。未来,公司还将继续研发高光谱+AI传感器和光纤传感器。
  • 从“彩虹”到光谱仪 聊聊检测新“利器”
    p  1666年,23岁的牛顿在幽暗房间的护窗板上开了一个小孔,一束太阳光进入并从放置好的玻璃棱镜上传过,诞生了科学史上有名的“人造彩虹”——那束折射到墙上的光不仅是变宽的光点,更是红、橙、黄、绿、蓝、紫排列的彩色光带。牛顿又将这条“人造彩虹”通过反向放置的第二个棱镜重新结合,又变成了白色的光。/pp  基于便携式光谱模块的食品安全检测仪/pp  一直以来遵循着“日出而作,日落而息”的人们,第一次认识到了习以为常的“光”也是一个神秘的复杂体。/pp  随着科学的不断进步与教育的广泛普及,现代的人们早在孩提时代就知道了下雨过后的彩虹并不是天上神仙的“拱桥”,而是由于光线照射到空气中的水滴形成反射和折射后产生的。/pp  人们日常生活中所见的光,是由多种颜色构成的复色光,通过棱镜,或者类似棱镜功能的水滴等分光后显现的就变成了颜色各异的单色光。这些单色光按不同波长(或频率)大小依次排列形成的图案,就是光谱。/pp  光谱分析是人类借助光认知世界的重要方式。地球上不同的元素及其化合物都有自己独特的光谱特征,光谱因此被视为辨别物质的“指纹”。如果说肉眼能看到物质的形状、尺寸等信息,光谱分析则能获取物质的成分信息,帮助我们看清事物的本质。/pp  光谱仪又叫分光仪,是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成。通过光谱仪分析不同物质的光谱,可以探查出许多重要信息,比如未知星球的表体信息、钢材和宝石的品质、爆炸物特性等等。/pp  前段时间火爆的纪录片《我在故宫修文物》中就有这样一个例子:描绘乾隆皇帝的母亲崇庆皇太后八十大寿时现场祝寿实景的《崇庆皇太后八旬万寿图》,历经250多年之后非常残破,绢面有缺损断裂,甚至还有霉迹。要想恢复原作风貌,修复时就要了解当时所用的颜料。/pp  科研人员利用光谱扫描仪对古画颜料进行了扫描,提取了古画颜料信息,由此推算出当初绘画所用矿物原料的种类。根据不同颜料产地光谱曲线的差异,科技人员甚至还能反推出颜料的产地——这就为修复选用精准颜料提供了依据。/pp  其实,光谱仪的应用不止于此,光谱仪的研发离我们也并不遥远。有专业调查机构预测,在2015至2021期间,整个光谱仪器市场年增长率为7%,而小型/微型光谱仪的复合年增长率将达11%,2021年市场将达3亿美元。从这些数据可以看出,光谱市场发展前景较好。/pp  伴随我国经济迅速发展,人民生活水平提高,不论是在工业还是生活方面,产品质量愈加受到关注,各类检测需求不断涌现,这就促使光谱仪器的市场逐渐扩大。中科院深圳先进院集成所精密工程中心副研究员林慧博士及其团队就一直致力于光谱仪器的核心器件、仪器的整机设计和应用解决方案的研发。在过去的7年里,他的团队研发的食品安全快速检测仪已经在贵州省食品药品监管部门推广应用 药物质量在线监控系统已在三九皮炎平生产线顺利运行。/pp  林慧博士介绍,光谱仪的应用方向包括食品药品检测、生化检测、环境监测、照明检测、石油化工、航天军工等,关乎我们生活的方方面面。根据检测目标的要求,才能从技术上精准定义最适合的光谱仪器方案。比如有的场合适合用高精度的大中型光谱仪,有的场合适合用便携式或超微型光谱仪 有的样品对光谱分辨率要求高,有的样品对光谱重复性要求高。/pp  光谱仪是如何帮助人们进行检测的呢?以市面上销售的橄榄油、核桃油等高端油品为例,由于这些油营养价值丰富,所以相应价格也较一般食用油更贵,所以有的不法分子在其中掺入其他便宜油种来欺骗消费者,从而赚取利润。如何不通过人的视觉、嗅觉、味觉等感官体验来检测油品是否掺假呢?通过近红外光谱方法有望建立起一套快速有效的评价标准。研究人员将主要的橄榄油品类进行光谱扫描,基于采集的数据建立起标准光谱数据库,在此基础上开发一套定性鉴别或定量检测的化学计量学分析算法和准则。有了这样一个准则,之后的油品检测都可以与此进行比较,鉴别真伪。/pp  从光谱仪的发展趋势来看,实验室级大型光谱仪器的市场已趋于稳定,而工业和生活中的光谱检测应用不断扩大,因此,林慧博士和团队将重点放在适合于现场快速检测的光谱仪器,尤其是便携式光谱仪的研发上。如团队历时一年多开发的多功能食品快速检测仪,其内嵌了便携式光谱仪模块,利用不同化学物质的特征光谱吸收峰,可以在一台机器上实现农药残留、化学添加剂、重金属等多个项目的定量快速检测,从而大大提高了食品监管部门的效率。该产品已经获得广东省计量院校准证书,并在市场上推广应用。再如前文提到的已在三九皮炎平生产线中使用的近红外药物质量在线检测系统,通过对皮炎平乳膏混匀过程中的光谱信号的实时采集和分析,能够监控醋酸地塞米松、樟脑、薄荷脑等三种主药的成分是否在合格范围,从而判断药物是否进行了充分混合。该系统已在华润三九制膏生产线顺利运行,提高了三九皮炎平的生产质量控制水平。/pp  最近,林慧博士和团队关注便携式光谱仪在健康检测中的应用,正在研发面向心脑血管疾病监测的血小板功能检测仪。心脑血管疾病已成为目前全球死亡率最高的疾病,且有越来越年轻化的趋势。服用抗血小板聚集药物如阿司匹林、氯吡格雷等是临床上预防、治疗血栓性疾病的普遍措施,但目前的抗栓药物治疗基本上采用普适原则,从而会引发两个不同方向的问题。一方面,对于约10%的患者而言,抗血小板药物剂量过大,在缺血事件得到控制的同时,出血事件概率增加。另一方面,约有30%的患者会出现用药抵抗,血栓概率增加5倍!通过研发基于散射光谱技术的血小板功能检测仪,可以监测患者的血小板聚集情况,将为个性化科学用药提供依据,也有利于提前发现隐患并进行干预。/pp  随着光谱应用外延的不断扩大,便携式光谱仪也许还不够,能够被更多人使用的超微型光谱仪已经成为产业界与学术界关注的焦点。超微型光谱仪实际上就相当于一个传感器,被誉为“口袋中的实验室”,具有体积小(U盘大小)、价格低廉的优势。只有超微型光谱仪能成功并推广,光谱仪器才有可能跳出仪器的范畴,走进千家万户。目前,只有日本滨松公司在2015年推出了超微型光谱仪模块产品,而我国尚属空白。林慧博士及其团队已经将未来的目标瞄准了超微型光谱仪这一前沿课题,以应用为导向,以微纳技术为核心,力求帮助人们实现日常检测的愿望。比如对一些高端的酒类产品的快速鉴别,由于造假技术越来越“出神入化”,单凭嗅觉和视觉去判断真假已经很困难,但如果只有通过饮用才能判断真伪又“为时晚矣”,超微型光谱仪技术有望为类似场景提供参考依据。此外对于爱美的女士和妈妈,美容类产品和母婴类产品的检测需求也越来越多,超微型光谱仪可以快速检测相关产品的有害成分、也可以测定皮肤健康度等等。/pp  超微型光谱仪本身就是一个高度集成的模块,从技术和成本上都不可能复制购买核心器件再集成的方式,需要从设计、工艺上一气呵成。目前,我国与国际先进水平的差距主要是在基础零部件,因此必须掌握器件技术,包括衍射光栅和微纳工艺,才能建立核心竞争力,为产业化奠定基础。/pp  可以想见,未来,人们携带着超微型光谱仪,能够对食品的营养成分和品质进行快速分析,能够对健康指标进行快速监测,人们的健康就有了科技手段做保障。林慧博士说:“光谱仪器体积越来越小,价格越来越低,应用越来越广,光谱仪器微小型化后,价格会变得非常低廉,总有一天可以走向普罗大众。”/p
  • 造纸工业颜色测量使用在线分光色差仪提升质量
    造纸业在工业生产中起到核心作用,同时也是现代文化和技术创新的象征。随着技术的进步,纸张质量的标准变得更为严格,特别是颜色的控制。为确保纸张的颜色不仅满足实际应用需求,还能为用户带来愉悦的视觉体验,采用颜色测量技术成为了关键。这种测量确保了纸张颜色的一致性和优质性。为了在生产过程中维持纸张的颜色和亮度的恒定,行业已经开始使用在线纸张颜色测量系统。这种系统确保从原料到最终产品的每一个阶段都符合既定的质量标准。ColorXRA 45和ERX40分光色差仪是此系统中的核心技术,专为在线颜色和亮度测量而设计。这些先进的仪器能够实时监测生产线上纸张的颜色和亮度,确保每一卷纸都达到了高质量标准。一、关于ColorXRA 45白度仪ColorXRA 45白度仪,一个专为工业纸张和塑料产品设计的在线色彩测量设备。这款白度仪可以在生产过程中进行无缝的色彩测量,大大提高了生产效率,并减少了浪费。结合ESWin软件,它能自动调整色彩,降低重做次数,从而提高产出。其高标准的光学测量结构和实时的监测功能确保了整个生产过程的色彩精度和稳定性。此外,ColorXRA 45采用了高标准的45°:0°光学测量结构和1 nm的光谱分辨率,这确保了其在整个生产流程中都能维持出色的色彩精度。其还包括实时的温度和灰尘监测功能,能够及时警告任何可能影响最终产品色彩的外部因素。更为出色的是,该白度仪可以精确测量基本颜色和荧光增白剂的强度,确保在不同生产环境下,所有材料的色彩都得到了最佳的调整和优化。二、ERX40分光色差仪ERX40色差仪 是一款专门为纸浆生产环境设计的在线测量设备。这款仪器能在纸浆阶段就获取初步的色彩、白度和明亮度信息,以及检测光学增白剂(OBA)的活性水平。尽管这些初步数据与最终产品存在一定差异,这一早期阶段的测量却是诊断潜在问题的关键,能及时进行纠正,从而减少资源浪费和提高生产效率。这款色度仪的设计考虑了工业需要,采用不锈钢保护罩,并能通过旁路系统直接在纸浆中(浓度为3%-5%)进行在线测量。当与ESWin QC软件结合使用时,ERX40不仅能自动进行精确的色彩调整,还能提高生产效率和产品质量。ERX40带来多重益处,包括早期识别和纠正生产过程中的问题、实现不同生产线原材料的标准化混合、有效控制废物添加,以及优化染料使用。此外,其先进的双光束测量技术和自动波长调整功能确保了高度的测量准确性和长期稳定性。需要强调的是,这款仪器仅每4周需要一次外部调整,保证了设备的最佳性能和正常运行时间。总体而言,ERX40色度仪是纸浆制造过程中不可或缺的工具,是造纸机中ERX50在线测量系统的理想补充。三、在线颜色测量系统的重要性随着现代工业生产技术的持续进步,颜色在纸张制造过程中的重要性逐渐被凸显。这不仅关乎产品的外观和视觉吸引力,更是关于生产的质量和效率。颜色的一致性和优质性是保证纸张质量的关键指标,因此,在生产过程中对其进行实时监测和调整变得尤为重要。在线纸张颜色测量系统的应用确保了从原料开始,到最终产品出厂,整个生产过程中的每一步都严格遵循颜色和亮度的质量标准。其中,ColorXRA 45和ERX40分光光度仪作为该系统的核心部分,展现了技术特点和优势。它们为现代纸张生产提供了有效的在线颜色和亮度测量方案,确保了每一卷纸都能满足或超越预期的质量要求。ColorXRA 45的设计初衷是为工业用纸和塑料产品提供高精度的在线色彩测量。而ERX40则针对纸浆生产环境进行了专门优化。两者都可以与ESWin软件系统集成,实现自动化的颜色调整和优化,从而大大提高生产效率,并确保产品质量。总的来说,随着技术的进步和生产要求的提高,颜色测量技术在纸张制造中的角色变得越来越不可或缺。ColorXRA 45和ERX40等高端设备为纸张生产企业提供了有效的解决方案,帮助他们满足严格的质量标准,并为消费者带来更好的产品体验。“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 现场领心动礼品,卓立汉光与您相约深圳光博会2号馆2C33
    为期四天的第20届中国国际光电博览会(CIOE 2018)于2018年9月5日在深圳会展中心盛大开幕。 作为中国光电仪器行业的知名厂商,北京卓立汉光仪器有限公司(以下简称“卓立汉光”)将携多款新老产品亮相本次展会,届时更有精彩的有奖活动回馈现场观众,欢迎广大新老客户到场参观交流。(展位号:2号馆2C33) 同成长、共发展 卓立汉光积极参展CIOE中国光博会创办于1999年,是光电行业具有规模及影响力的光电全产业链的综合大展。发展至今,CIOE中国光博会已成为众多企业进行市场拓展、品牌推广的首选平台。 同样于1999年诞生的卓立汉光,已连续多年参加光博会,与展会同成长、共发展。凭借高超的光电技术及先进的仪器产品,公司历届参展均受到光电行业人士及海内外客户的高度关注。 北京卓立汉光仪器有限公司通过近20年的一路前行,成长为光电仪器知名厂商。自主研发生产:光谱仪、光谱测量系统、荧光光谱仪、拉曼光谱仪、太阳能电池检测设备、各种光源、电控精密位移台、手动精密位移台、光学调整架、光学平台、光学元件等系列产品。 如下特色产品,请您先睹为快:运动控制产品:BR及TBRF系列耐磨电动旋转滑台 优势:专为严苛的工业自动化环境设计;锡青铜蜗轮,突出的耐磨特性;高频淬火处理,硬度高、刚性好;相信在CIOE 2018,TBR及TBRF系列耐磨电动旋转滑台将“吸睛无数”。 光谱分析产品:新一代Finder Insight小型拉曼光谱仪 优势:小巧便携、功能多样:除快检外,还可做显微拉曼光谱仪使用,满足用户显微分析需求;独有的自由空间光路设计,更强的灵敏度;想要更加深入了解这款产品的参展观众,不妨届时到卓立汉光展位进行“零距离”接触。 更多产品应用介绍清洁能源测试应用卓立汉光提供完整的IV、QE系统,能够适用于钙钛矿、染料敏化等各种太阳能电池 光电传感器、手机摄像头测试:均匀可调单色光源:宽光谱范围,均匀性优于2%(40mm*40mm) 光学、激光等相关领域科研及自动化、航天航空、汽车制造等应用领域卓立汉光可提供多品类光学平台、精密位移台、光学调整架、光学元件等系列产品,满足您的不同应用需求,品质优异,远销海外市场。 卓立汉光不仅将展出更多优质仪器产品,还为广大新老客户准备了奖品丰厚的“微信扫一扫,幸运抽大奖”活动。届时只要扫描二维码关注相应的微信公众号,并转发最新的历史消息到朋友圈,就可以参加“幸运大抽奖”,有机会赢得DESLON保温杯、富光牌运动水壶、四合一便携多功能激光笔、NICI毛绒公仔等神秘奖品。精美奖品送完为止,先到先得,还望广大参展观众不要错过!展位号2号馆2C33,卓立汉光与您不见不散!部分活动礼品如下:
  • 奥林巴斯研发新型原型图像传感器 可同时捕捉可见光和红外信息
    奥林巴斯正联合东京工业大学开发一款新型的图像传感器原型,能够同时捕捉可见光和近红外线图像信息。据Digital Trends解释,实现此功能的原理是通过定制版RGB拜耳滤色器(Bayer RGB Filter)来实现,Bayer模式通常用来获取彩色的图像信息,像素根据RGGB排列,每种像素都规定只进入一种色彩的光,捕捉可见光图像信息。  而奥林巴斯最新的影像传感器使用了近红外像素来取代R或者B像素排列,近红外像素捕捉近红外线信息,这就使得图像传感器能够同时获得可见光和近红外线图像信息。据悉这种新型图像传感器能够应用于许多专业领域,比如机器人、建筑、医学影像和安保等。希望这种技术能够尽早实现商业应用。
  • 高光谱技术高在哪?未来还可能随时检测雾霾
    不同物质有它独属的“指纹光谱”,高光谱遥感技术可准确捕获这一重要信息,提高人眼及遥感观测能力。中科院遥感地球所岑奕绘图  看过纪录片《我在故宫修文物》的观众或许会对如下场景有印象:技术人员用一台仪器扫描古字画,扫描信息经过专业处理后,文物修复专家就能发现字画上肉眼看不见的信息,甚至还能分析出绘画技法和当时用的颜料。  这台神奇的仪器就是中科院遥感与数字地球研究所(以下简称中科院遥感地球所)研发的高光谱扫描仪。高光谱遥感为何有如此的超能力?除文物检测修复外还有哪些应用?我国在高光谱遥感领域的研发水平又如何?  利用高光谱技术能提取古画的颜料信息,推算颜料产地,从而能在修复时精准选用颜料  人们日常生活中所见的光,是由多种颜色构成的复色光,通过棱镜等分光后显现的是单色光。这些单色光按不同波长(或频率)大小依次排列形成的图案,就是光谱。  光谱分析是人类借助光认知世界的重要方式,地球上不同的元素及其化合物都有自己独特的光谱特征,光谱因此被视为辨别物质的“指纹”。如果说肉眼光学成像能看到物质的形状、尺寸等信息,光谱分析则能获取物质的成分信息。  要获取更丰富、精细的物质成分信息,除了提升分光系统性能外,还可以改进分光方法、呈现方式等——高光谱遥感就是这样一种思路。中科院遥感地球所高光谱遥感研究室主任张立福介绍说,高光谱遥感的特点是能在可见光到短波红外的光谱区间连续成像,传统的彩色相机只能记录红绿蓝三个通道的影像,且每个通道的带宽很宽,而高光谱成像所记录的通道数量可以达到数百个,且光谱通道很窄,分辨率很高,其光谱探测范围远远超过了人类肉眼的感知范围,能够探测人眼无法看到的大量信息,提高人们对自然和物质的认识。  因为能在非常窄的光谱波段内获取丰富的信息,利用高光谱技术获取的信息分辨率很高,甚至能分辨出观测物质的分子和原子结构,这是普通的光学遥感所达不到的。  如何运用高光谱技术鉴定、修复古字画?在中科院遥感地球所高光谱研究室实验室,张立福画了一张图,并为记者解释高光谱遥感成像的原理:高光谱仪器扫描字画表面,获取图像上每个点的光谱数据 因为高光谱连续成像的特征,能够获得目标数百张不同波长的图像,这些图像叠加起来,在三维空间上就能形成一个图像立方体,将每个像素对应的数百张数字图像的数值连接起来,就成为一条光谱曲线。  “不同物质甚至不同年代的物质反映出的光谱信息也有差异,也就是有一条独属于它的‘指纹’光谱。如果两个物体的成分信息一致,得出来的曲线应该基本吻合 如果某一条曲线的局部有较大波动,就能推算出其中有异常。”张立福说。  以故宫藏品《崇庆皇太后八旬万寿图》为例,该画描绘的是乾隆皇帝的母亲崇庆皇太后八十大寿时现场祝寿的实景,历经250多年之后非常残破,绢面有缺损断裂,甚至还有霉迹。要想恢复原作风貌,修复该画时就要了解当时所用的颜料。中科院遥感地球所高光谱研究团队利用高光谱扫描仪对古画颜料进行了扫描,提取了古画颜料信息,由此推算出当初绘画所用矿物原料的种类。根据不同颜料产地光谱曲线的差异,科技人员甚至还能反推出颜料的产地——这就为修复选用精准颜料提供了依据。  张立福说,中国古书画所用材料,大多为绢和纸,质地纤薄,年代久远容易破损、掉色。高光谱分析技术不损害文物本体,能帮助修复专家了解古书画的颜料组成、绘画技法,甚至能及早发现书画潜在的病害信息。  借助高光谱技术可检测果蔬农药残留,未来还可能随时检测雾霾  高光谱这双“火眼金睛”的本领可不仅仅是帮助鉴定、修复文物。因其能呈现人眼看不到的细节、辨别不同成分的物质,因此该技术在国防军事、精准农业、水环境监测、地矿勘察等领域都有广阔应用价值。  在中科院遥感地球所高光谱研究室实验室,张立福向记者展示了一盆绿萝。从表面看,这盆绿萝的叶子没有什么特别之处,但经过高光谱仪的“眼睛”观察,一块白色区域就在电子屏上显示出来。“绿萝中有几片塑料做的叶子,肉眼几乎难以发现,但由于它和正常叶子的光谱信息有很大差别,就躲不过高光谱的‘眼睛’。”张立福说。  利用该原理,高光谱还能用在果蔬农药残留的检测上。有没有残留农药、残留多少农药,呈现的光谱特征会有细微的差别,通过分析这些差别,专业人员就能做出科学的判断。  张立福说,相较于传统食品安全取样化验等检测方式,高光谱技术检测具有无接触、无损伤的优点,可以大大提升检测效率。此外,根据不同生长日期或产地的果蔬光谱特征也不同的原理,高光谱技术还能用于检测果蔬新鲜度、进行产地溯源等。  张立福介绍,基于高光谱原理,科研人员目前正在研发可供智能手机使用的高光谱检测应用系统。他希望未来手机有高光谱检测功能,结合云计算、大数据,人们能够随时随地用手机快速检测食品安全问题。这样,农民拿手机就能检测果蔬病虫害信息,并把这些数据发送到云端,后方科研人员可以根据这些信息预知哪里可能爆发病虫害。  “从果蔬农药残留检测到化妆品重金属检测,水体、土壤等环境污染监测,再到牙齿、皮肤等医学检测,高光谱技术应用有很大的想象空间。”张立福说,不同空气颗粒反射的光谱不同,未来人们甚至都能通过手机及时、准确地监测雾霾。  高光谱技术属于遥感技术范畴。通常人们提到遥感,就往往联想到卫星遥感、航空遥感等,认为遥感和老百姓的日常生活没有直接关系,其实不然。3S技术(地理信息系统、全球定位系统、遥感)中,前两个“S”已经与人们的生活息息相关,人们已在手机中普遍应用,现在缺少的是第三个“S”与老百姓的生活关联起来。高光谱遥感技术的应用,表明遥感技术正在走进人们的生活。“我们所做的,就是要使高光谱遥感技术飞入寻常百姓家。遥感与智能手机的结合,将使‘遥感’无处不在。”张立福说。  我国在高光谱遥感研究上处于国际领先地位  巨大的应用前景,使高光谱遥感技术成为当前国际上遥感技术的前沿领域。  据专家介绍,我国在高光谱遥感研究上,处于国际领先地位。  上世纪90年代,中国科学院遥感应用研究所与上海技术物理研究所合作,研制了系列航空高光谱传感器,并前往日本、澳大利亚、马来西亚等国进行国际合作,为当地环境、农业、海洋、地质等领域的研究提供了重要数据,受到高度评价。  张立福说,受制于科研经费支持等原因,本世纪初我国高光谱研究一度发展缓慢。近年来我国加大了对高光谱的支持力度,科研人员也取得了一系列成果。他介绍,我国在高光谱基础研究及信息数据积累等方面走在国际前列 同时,科研人员不断扩大高光谱的应用领域,在成像光谱地面测量与光谱图像模拟、高光谱图像智能处理与信息提取、新的应用领域拓展等多方面取得了系列国际领先的研究。  “我国在高光谱技术方面有较强的积累,但光谱仪器的一些关键器件还需要进口,一定程度上影响了我国高光谱技术应用的自主性。”张立福说,高端科学仪器设备制造方面的不足与我国在材料学、制造工艺等方面整体水平不高有关,他呼吁我国有更多的、不同领域的科研人员参与到高光谱的研发中,提高光谱仪器制造能力,使我国成为高光谱研究强国。
  • 铝型材与光伏行业的色彩解决方案—爱色丽的色彩色差仪测量仪器
    在铝型材与光伏行业中,色彩扮演着至关重要的角色。对于铝型材而言,精准的色彩控制是确保产品外观质量与耐腐蚀性的关键;对于光伏产品,色彩不仅影响着外观美感,更与发电效率和产品性能紧密相连。然而,长期以来,在铝型材与光伏产品的色彩管控中,传统的测量方法存在诸多问题。人眼目视的方式主观性强,易受环境光线、个人视觉差异等因素影响,导致色彩测量结果的偏差和不一致。这种不稳定性不仅影响产品的整体质量,也给企业的生产效率和成本控制带来挑战。一、爱色丽色彩测量仪器的优势与益处为解决铝型材与光伏行业的色彩管理难题,爱色丽推出了专业的色彩测量仪器。这些仪器运用先进的光学技术和精密的测量算法,为色彩测量提供了高精度的解决方案。爱色丽色彩测量仪器的突出优势在于能够精确测量铝型材的表面色彩和光伏产品的光学特性,并将测量结果与行业标准进行精准匹配。这为企业提供了科学、客观的色彩评估方法,大大增强了色彩管理的准确性和可靠性。使用爱色丽色彩测量仪器带来的好处是显著的。首先,它有效克服了人眼目视的误差,保障了色彩测量数据的准确性和一致性。其次,能够帮助企业提升产品的外观质量,增强品牌市场竞争力和认知度。再者,通过精确的色彩管控,能够减少因色彩误差导致的生产废品和返工,降低生产成本,提高生产效率。更为重要的是,它确保了铝型材和光伏产品色彩的稳定性和一致性,提升产品质量,为用户提供更优质的产品。二、爱色丽的全面色彩解决方案爱色丽为铝型材与光伏行业量身定制的色彩解决方案,整合了先进的硬件设备和专业的软件系统,为企业提供了全方位、多层次的色彩管理支持。在铝型材生产领域,Ci7800台式分光色差仪凭借其卓越的测量性能和稳定性,能够对铝型材的表面涂层、氧化膜等进行精确的颜色分析和质量控制,确保每一批次的铝型材颜色都达到设计要求和质量标准。手持式Ci64便携式色差仪则具有轻巧便携、操作灵活的特点,方便在生产现场、仓库、销售终端等不同场景快速获取色彩数据,及时发现和解决色彩问题。在光伏行业,爱色丽的测量仪器可以对光伏板的封装材料、边框、背板等部件的颜色和光学特性进行全面、深入的测量分析。例如,eXact 标准版便携式色差仪能够精准测量光伏组件的颜色参数,确保不同批次产品的颜色一致性,提高产品的外观质量和市场竞争力。带有UV选项的Ci64便携式色差仪可以准确评估光伏材料在紫外线环境下的色彩变化和性能表现,为产品的研发、生产和质量控制提供科学依据。爱色丽凭借其先进的色彩测量技术和全面的解决方案,成为铝型材与光伏行业色彩管理的得力助手。相信在爱色丽的支持下,这两个行业能够实现更加高效、精准、稳定的色彩管理,推动产业的创新发展和品质升级。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 罗维朋/罗威邦发布TRA520 分光色差仪/分光测色仪多功能套装新品
    TRA520 分光色差仪/分光测色仪多功能套装 产品概述 Lovibond品牌一直以来都是液体颜色分析的佼佼者。100多年来,Lovibond也一直在专注和追求颜色分析的高精度化和最快捷化,从目视比色计,到全自动色度仪。而新近推出的Lovibond 多功能色差仪套装,更是专门针对多形态的样品色差分析而进行了创新。作为全新的色差仪套装,搭配多功能适配器,操作灵活,数据精确可靠。巧妙的设计和高性能的内部结构,使得英国lovibond这款色差仪将成为更多食品,化工,汽车,医药,化妆品等客户的首先考虑的选择。资料下载区 可获取TRA520 分光色差仪/分光测色仪多功能套装pdf版本 详细介绍 和 技术参数TRA520 分光色差仪/分光测色仪多功能套装 产品介绍• 采用独特设计的移动台式适配器,与Lovibond TR520/TR500主机联用。• 为液体,胶体,粉末和其他样品色差分析提供统一的照明环境和对应的样品比色皿。• 比色皿槽配有严密的遮光盖,避免环境光线干扰读数。• 支持多种样品测试,比色皿光程可选10mm,20mm 和30mm。• 配有白色参比板,以确保读数的一致性,在适配器内可快速进行仪器校正。• 全新人体工学设计,便于手持操作,新型、直观的界面图标• 独特设计的适配器适用于测量粉末,液体,凝胶,浆料,颗粒和固体材料。• 集成摄像头定位器易于观察,确保得到稳定、高重复性的测量结果• TR520允许您轻松切换孔径,测量大面积或小面积的样品• 标配的免费软件允许图形分析,统计控制过程,搜索色调、色差和颜色指数等• Bluetooth 蓝牙连接功能• 荧光材料可选择是否使用UV测量TRA520 分光色差仪/分光测色仪多功能套装 应用领域和测量原理广泛应用于各行各业,塑胶电子、油漆油墨、纺织服装印染、印刷纸品、食品、医药、化妆品、光学影像调试等行业,色差仪的原理主要是根据CIE色空间的Lab,Lch原理,显示出标准与被测样品的色差△E以及△Lab值。通俗的说就是如果单纯以一组Lab值来判断某个颜色并没有太大的实际意义,但是当人们对两个颜色进行比较时,人们可通过这两个颜色的Lab差值来判断出它们之间的差别。另外,通过两组Lab值人们可计算出两颜色间的色差,如果色差大于1人们的眼睛就可分辨出来。由此人们可事先设定一定的容差范围,在进行品质控制时,量测的样本与标准颜色之间色差值在容差范围内即为合格品,超出范围即为不合格产品。通过使用Lab色空间,人们的生产控制实现了数据化。TRA520 分光色差仪/分光测色仪多功能套装 技术参数技术参数TR 520TR 500光学结构d/8°积分球尺寸48mm光源组合光源 LED 和 UV组合光源 LED 分光模式分光模式 凹面光栅传感器256图像元 双阵列CMOS传感器波长范围400-700nm波长间隔10nm半带宽10nm反射率量程0-200%测量孔径双孔径模式:10mm/8mm & 5mm/4mm定制固定孔径: 8mm/4mm/1x3mm镜面反射SCI & SCE颜色空间CIE Lab, XYZ, Yxy, LCh, CIE LUV, Hunter Lab色差测量ΔE*ab, ΔE*uv, ΔE*94, ΔE*cmc (2:1), ΔE*cmc (1:1), ΔE*00v, ΔE (Hunter)其他颜色指数WI (ASTM E313, CIE/ISO, AATCC, Hunter) YI (ASTM D1925, ASTM 313, TI (ASTM E313, CIE/ISO),同色异谱指数 MI, 色牢度, 染色牢度, 颜色强度, 不透明度观测角度2° / 10°照明体D65, A, C, D50, D55, D75,F1, F2, F3,D65, A, C, D50, D55, D75, F2, F7, F11显示数据光谱图/光谱数据,样品色值,色差数据/色差图谱,合格/不合格标志,偏色测量时间2.6s重复性MAV/SCI: ΔE* ≤0.03MAV/SCI: ΔE* ≤0.05台间差MAV/SCI: ΔE* ≤0.15MAV/SCI: ΔE* ≤0.2测量模式单次测量,平均测量定位模式内置摄像机取景定位器电池锂离子电池. 5000 次测量,续航8小时尺寸184mm L x 77mm W x 105mm H重量600g光源寿命5年,超过300万次测量显示3.5 英寸 TFT- LCD彩色触屏数据接口USB, 蓝牙Bluetooth 4.0数据存储2000个标准样品, 20000个样品语言英语,中文,法语,德语,西班牙语,葡萄牙语操作环境0~40°C, 0~85% 相对湿度 (无冷凝), 相对高度 2000m存储环境-20~50°C, 0~85% 相对湿度 (无冷凝)标配配置PC OnShade软件, 黑白校准板,电源, 内置电池,用户操作手册选购配件多功能TR适配器 (用于液体,粉末和胶体)TRA520 分光色差仪/分光测色仪多功能套装 创新性产品设计TRA500 / TRA520 采用的多功能适配器,依照TR500 /TR520 分光色 差仪主机尺寸精确设计生产,优化人体工学装载角度,便于触屏操作和样品色差测量。 提供10, 20 和 30mm 光学玻璃比色皿,用于放置液体,胶状和粉末等不同类型的样品。TRA520 分光色差仪/分光测色仪多功能套装 订购信息403225 Lovibond TRA 520 403220 Lovibond TRA 500 (8mm aperture) 创新点:对于色差测定来讲,精度固然重要,但是仪器的广泛适用性同样决定了仪器的发展趋势。TRA520色差仪多功能套装,最大的创新点有以下两点:1. 独家研发设计的多功能适配器,将便携仪器瞬间切换为台式操作效果。2. 这款多功能适配器,设计简洁,集多个适配功能于一体,使得仪器应用从固体轻松扩展至液体,粉末和半固态样品,并能适用于不同比色皿光程。TRA520 分光色差仪/分光测色仪多功能套装
  • 这也行?完美复原破损古画?拉曼光谱竟然如此神奇!
    中国传统绘画颜料迄今已有7000多年的历史,矿物颜料由于其色彩鲜艳、洁净、经久耐用的特点,在我国古代绘画作品中被广泛应用。作为一种不易变色的天然石色颜料,矿物颜料在绘画颜料中的应用范围越来越广泛。在外界环境因素及内部绘画材料发生性态变化情况下,古画的长期保存工作难度较大,往往需要不断对其进行定期修复。而作为古画的主要载体的颜料,在进行古画修复时一般都需要事先对颜料成分、特征等进行鉴别,制定针对性强的修复计划,保证修复工作顺利进行。图1 古画拉曼光谱分析利用拉曼光谱定量分析法对石绿矿物颜料在各种无机颜料样品的占比和面积比进行测量,最终得到某绘画作品中的无机颜料组成配比。拉曼效应是一种非常弱的散射效应,是分子散射光相对入射光频率发生较大变化,在非均匀介质或存在悬浮状颗粒的待检测物质或介质中发生的光的散射作用。当频率为ν的单色光照射到物质表面时,入射光会在样品表面发生散射。拉曼光谱分析主要是利用散射效应对待检测物质的性质、成分等进行测量的综合方法。图2 奥谱天成ATR8800科研级显微拉曼光谱成像仪采用显微拉曼光谱仪对几种颜料矿物和相对应的市售矿物颜料进行了拉曼光谱的采集。在对拉曼光谱的分析中,分辨了主要指纹信号及伴生矿物可能在颜料中产生的干扰信号,对矿物及颜料的主要指纹信号给出了分子结构及振动模式的指认。在所有矿物颜料中,石绿是使用极其普遍的。通过对古代绘画颜料的解读,并重点对石绿的两种异构体进行优化,探究其稳定结构、紫外吸收等性质,并进一步分析了不同光谱波段的归属。采用软件特殊算法得出两类石绿分子的紫外可见吸收光谱,如图3所示。图3 两种稳定石绿分子的紫外可见吸收光谱对比图3对两种伴生矿物可能存在的颜料中的共存问题通过拉曼特征光谱的指认给出了分辨。分析了敦煌研究院赠予的青金石矿物及青金石末矿物颜料,通过分析天然矿物、矿物颜料及人工合成颜料之间拉曼光谱1100cm -1 以上光谱特性的差别,对青金石颜料的应用及来源给出鉴别。本文为快速确定石绿颜料在阳光作用情况下的的特性给予数据支持,同时可以促进颜料质量的提高,为更好地保护古代文物做贡献。
  • 爱色丽推出经济型RM200QC 成像分光色差仪
    爱色丽有限公司现已推出 RM200QC 手持成像分光色差仪,为用户提供经济实惠但却功能强大的方式来记录和交流色差,帮助用户加速新产品推出,并减少报废情况。手持式 RM200QC 简化了纺织品、涂料、化工、塑料成型及其他行业的生产部件与实验室样品或颜色标准进行色彩比较的方式,然后创建可与供应链合作伙伴共享的检测报告。 新仪器的能力已远远超出了市面上现有的色差计的功能,它能识别样本和标准品的色差、测量遮盖力和灰尺评级,以及显示在 D65 日光光源和家用钨丝灯光源(A光源)下色彩外观可能的变化。 RM200QC 物美价廉,公司可购买多件并在每个机器或工作流程的关键步骤中使用,以便质量控制人员在生产过程中及时发现问题。用仪器将原材料来料或成品与标准色块、扇形卡或标准样品进行颜色比较,特别适合生产现场的颜色管理。 作为全球最大的颜色管理和交流系统设计师及制造商, 爱色丽在设计RM200QC 时采用专利图像捕获技术,光源从三个不同方位照亮测量表面,仪器同时在 1.8 秒内记录 27 种颜色精确的图像,避免在图案及纹理材料和表面产生固有的阴影及干扰。RM200QC 拥有 8 种不同可见灯光和 1 种紫外线灯光,相比通常只用三个光源(红色、绿色和蓝色)的传统色差仪,它能在色彩空间内更精确地定义色彩位置。 只需几分钟,质量控制人员或质量保证人员便可学会如何操作 RM200QC。操作者可选择 4 毫米和 8 毫米孔径并在仪器的全彩色显示器上预览样品,然后按下按钮,2 秒内便可测量。然后,仪器以简单的合格/不合格信息或 CIE L*a*b* 值和差值 E 色差的形式显示结果。同时也可以用常用标准色差公式和容差的方式来报告结果,如 CIELAB、CMC、CIE 94 或 CIE 2000。 RM200QC 内存可创建保存 20 个标准及高达 350 个样品记录. 样品记录包括测量时间,日期及测量值,并保存为 PDF 和 CSV 格式文件.通过 USB 数据线连接仪器,即可轻松输出报告,将信息与供应链中的其他相关者共享。另外,RM200QC测量结果还包含测试样品表面的图像、文字说明或语音信息,且报告可以多种语言输出。 爱色丽为客户提供范围最广的实用又实惠的解决方案,东南科仪作为其在中国的一级代理商,我们倍感自豪。RM200QC 便是我们值得骄傲一款简单可靠的解决方案,可提供制造商质量控制所需的全部功能,物美价廉,可在流程重要步骤中的多个设备上配备。 更多关于RM200QC便携式成像分光色差仪的信息请登陆东南科仪官方网站www.sinoinstrument.com或致电020-66618088 400-113-3003咨询
  • 微型光谱仪之吸光度检测
    p strong 1、技术简介/strong/pp  根据比尔-朗伯定律一束单色光照射于吸收介质表面,在通过一定厚度的介质后,由于介质吸收了一部分光能,透射光的强度就会发生减弱。吸光度是指光通过溶液或某一物质前的入射光强度与该光通过溶液或物质后的透射光强度比值并以10为底的对数。吸光度分光光度法可识别不同物质经单色光照射后的特异性,或定量测量透明溶液中有色物质(发色基团)的浓度,利用探测器对样本进行吸光度检测与对照组进行比较。/pp style="TEXT-ALIGN: center"img title="1.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/d2328b20-29b6-4efb-9d57-47522bac4416.jpg"//pp style="TEXT-ALIGN: center"strong图2.1 光与物质作用原理图/strong/pp style="TEXT-ALIGN: center"(里面包含了吸收,透过,散射的示意)/pp strong 2 、应用说明/strong/pp  光谱仪测量吸光度的方法是将某一波长的平行光通过一块平面平行物体,然后对透过物体的光束进行检测。由于一部分能量被样品中的分子吸收,检测的入射光的强度要高于透过样品的光强。吸光度被广泛运用于液体和气体的光谱测量技术中。吸光度光谱可以对物质进行定量鉴别或者对物质进行指纹认证,也可以对溶液中的分子进行浓度定量分析。吸光度检测的样品不再局限于使用比色皿作为载体,流动池、浸入式探头、微量进样器、气体存储皿、微量比色皿等等都可以作为采样装置。影响比尔-朗伯定律效力的因素很多,可通过检测一系列标准品的吸光度来确认某一发色基团的线性,以消除实验、设备和试剂批次造成的误差 当平行光照射到物体表面时光的反射与吸光都会降低光强,通过将空白样品或对照样品的光进行定量分析,可以消除这些因素的影响。/pp  食品安全:橄榄油纯度分析,酒发酵特性分析 /pp  自然环境:钻石真伪分析,珍珠真伪分析,汽车尾气分析,大气污染等 /pp  加工工艺:材料特性分析,半导体稳定性分析 /pp  基础研究:微流控领域分析 /pp  医学诊断:葡萄糖测定,DNA分析等。/pp style="TEXT-ALIGN: center"img title="2.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/cf719052-ada2-4dce-8f28-f03a768836bb.jpg"//pp style="TEXT-ALIGN: center"strong图2 太阳眼镜吸光/strong/pp style="TEXT-ALIGN: center"img title="3.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/06e3e5c3-d152-485e-a776-6590bef2e34c.jpg"//pp style="TEXT-ALIGN: center"strong图3 汽车尾气排放检测/strong/ppstrong  3、典型产品和配置/strong/pp  吸光度检测配置:/pp  3.1. 光谱仪/pp  3.2 光源/pp  3.3.采样附件(光纤,探头,流动池)/pp  3.4.吸光度测定标准参考/pp  3.5 光谱仪控制软件/pp style="TEXT-ALIGN: center"img title="4.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/e03709e6-5141-4b36-8744-e7ddfe9e5aeb.jpg"//pp style="TEXT-ALIGN: center"strong图4 吸光度检测基本配置/strong/pp style="TEXT-ALIGN: center"典型产品:高灵敏度光谱仪,光源,探头,流动池/pp strong 4 、应用/strong/pp  4.1 基于超小体积的紫外光谱仪的DNA的吸光度检测/pp style="TEXT-ALIGN: center"img title="5.1.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/f8a2a66d-58d7-4c8f-8c4f-e48a0c80e5e9.jpg"//pp style="TEXT-ALIGN: center"img title="5.2.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/ba436475-de7f-44b9-883f-80a3f8636311.jpg"//pp style="TEXT-ALIGN: center"img title="5.3.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/f21baef6-da02-4ddf-9b39-7a9ecd6f1906.jpg"//pp style="TEXT-ALIGN: center"img title="5.4.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/b5c32046-fb47-45eb-8825-57382cf0d535.jpg"//pp style="TEXT-ALIGN: center"strong图5 DNA吸光度光谱/strong/pp  4.2 用固态光学光谱传感器鉴别橄榄油纯度及真伪 /pp style="TEXT-ALIGN: center"img title="6.1.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/320d06e5-e149-48d4-a629-5086597e842d.jpg"//pp style="TEXT-ALIGN: center"img title="6.2.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/9c3cfb38-6866-4a1d-bda0-d43da7c9ef2f.jpg"//pp style="TEXT-ALIGN: center"strong图6 不同食用油样吸收光谱图/strong/pp  4.3 吸光度检测在微流控领域的应用/pp style="TEXT-ALIGN: center"img title="7.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/7946fabd-1c8f-49aa-acd6-cd8d3cafbe08.jpg"//pp style="TEXT-ALIGN: center"strong图7 样品组分检测应用/strong/pp style="TEXT-ALIGN: center"img title="8.jpg" style="HEIGHT: 232px WIDTH: 350px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/f6f4c159-3bbe-4e6e-9c3c-30cd95d2c92f.jpg" width="350" height="232"//pp style="TEXT-ALIGN: center"strong图8 微流控技术在细胞分离中的应用/strong/pp  4.4 测试聚合物半导体材料的稳定性 /pp style="TEXT-ALIGN: center"img title="9.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/f0f4b098-82a9-4753-9fed-0c74e791c3fa.jpg"//pp style="TEXT-ALIGN: center"strong图9 分别在UV/VIS测量中使用的降解反应室和光路和探测射束/strong/pp  4.5 基于光谱学的酒发酵特性分析。/pp style="TEXT-ALIGN: center"img title="10.1.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/f1700b3a-04a2-4798-9ff0-ee8657678ab9.jpg"//pp style="TEXT-ALIGN: center"strong图10-1 14种酿酒酵母的LWUV-VIS吸收谱相关图,图(b) 给出筛选出的28种的吸收谱的重现性分析/strong/pp style="TEXT-ALIGN: center"img title="10.2.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/b075e26a-11c6-4e47-bc2c-15035dc5ffb2.jpg"//pp style="TEXT-ALIGN: center"strong图10-2 28种酿酒酵母VIS-SWNIR波段PLS-R校准/strong/pp  4.6 汽车尾气分析/pp style="TEXT-ALIGN: center"img title="11.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/15acb085-4e6a-4733-9e60-f3e3c3906aaf.jpg"//pp style="TEXT-ALIGN: center"strong图11 汽车尾气检测装置/strong/pp  4.7 基于紫外可见吸收法检测钻石 /pp style="TEXT-ALIGN: center"img title="12.1.jpg" style="HEIGHT: 200px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/c007dbd0-c555-4821-ac8f-787c54ba9deb.jpg" width="200" height="200"/img title="12.2.jpg" style="HEIGHT: 199px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/3091e6c2-0132-49f8-833b-22014a71e362.jpg" width="400" height="199"//pp style="TEXT-ALIGN: center"strong图12 钻石样品光谱/strong/pp  4.8 紫外可见吸收法检测黄珍珠/pp style="TEXT-ALIGN: center"img title="13.1.jpg" style="HEIGHT: 150px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/7078af63-84b8-473a-ad1d-a39f0b6d938d.jpg" width="200" height="150"/img title="13.2.jpg" style="HEIGHT: 179px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/0a7d9706-500c-45d5-9add-ee1df9ae71f8.jpg" width="400" height="179"//pp style="TEXT-ALIGN: center"strong图13 天然黄珍珠光谱/strong/pp style="TEXT-ALIGN: center"img title="14.jpg" style="HEIGHT: 221px WIDTH: 500px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/54300efd-d8c6-45f2-a5de-cf9cfa770b99.jpg" width="500" height="221"//pp style="TEXT-ALIGN: center"strong图14 染色黄珍珠光谱/strong/pp  4.9 新型有机电致变色彩色电子纸/pp style="TEXT-ALIGN: center"img title="15.jpg" style="HEIGHT: 350px WIDTH: 350px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/3a82a198-3d55-4e4b-b7a6-ade1ea0b1770.jpg" width="350" height="350"//pp style="TEXT-ALIGN: center"strong图15 彩色电子纸光谱/strong/pp  4.10 DNA杂交与DNA蛋白质相互作用的光纤SPR传感/pp style="TEXT-ALIGN: center"img title="16.1.jpg" style="HEIGHT: 241px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/b6470c80-cb28-4e1e-8328-0ea933d88f35.jpg" width="200" height="241"/img title="16.2.jpg" style="HEIGHT: 313px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/b4d15136-fd47-4f0f-ad76-fea795a624b7.jpg" width="400" height="313"//pp style="TEXT-ALIGN: center"strong图16 光纤传感设备图和检测光谱/strong/pp  4.11 多孔硅纳米材料检测低浓度葡萄糖/pp style="TEXT-ALIGN: center"img title="17.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/b6dd821b-738d-40b8-87ba-b6aa0047ba7f.jpg"//pp style="TEXT-ALIGN: center"strong图17 不同浓度葡萄糖光谱/strong/pp style="TEXT-ALIGN: right"(来源:海洋光学)/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制