当前位置: 仪器信息网 > 行业主题 > >

导电热物性测定仪

仪器信息网导电热物性测定仪专题为您提供2024年最新导电热物性测定仪价格报价、厂家品牌的相关信息, 包括导电热物性测定仪参数、型号等,不管是国产,还是进口品牌的导电热物性测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导电热物性测定仪相关的耗材配件、试剂标物,还有导电热物性测定仪相关的最新资讯、资料,以及导电热物性测定仪相关的解决方案。

导电热物性测定仪相关的论坛

  • 【求助】热物性参数的测定

    课题要求测几个典型钢种的热物性参数(高温比热,导热系数,热膨胀系数),测试温度需覆盖钢种的热轧温度区间(950-1200摄氏度)。而且各参数的测定还必须按照astm标准来进行。但是学校没有这种设备,想问一下那个测试机构能做这种测试?

  • 【原创】瞬态法材料热物性测量简介

    众所周知,固体材料的热导率、热扩散系数、比热等热物理性质,随着材料,材料的结构、密度、多孔性、导电性、含湿率和温度的不同而变化。有些材料还与方向有关。对应于不同的材料和不同的试验条件,测量值会有很大的差异。测量材料的热物理性质,在科学研究和工程应用上,具有至关重要的意义;热物性测量与力学测量、电学测量、光学测量等一样,是物性研究和应用的基本测量技术之一。材料热物理性质可以用稳态法或瞬态法进行测量。目前,国内、外主要使用稳态法测量材料的热导率。有仪器采用瞬态法测量材料的热扩散系数、热导率和定压比热等热物理性质。所谓瞬态测量,是指在加热升温,或停止加热后的降温过程中,实现对材料热物理性质的测量。瞬态测量不要求恒温环境,测量系统也无需达到或保持热平衡状态。瞬态法的理想模型为无限大介质中的一维非稳态导热问题,具体为无限大的热源在无限大介质中处于初始热平衡状态下受到瞬间加热脉冲而引起的热传导过程。瞬态法的测量时间极短。目前多用的方法有: 热线法; 平面热源法:1恒流法,2脉冲法; 热针法;热线法:很多仪器采用了热线法,具有代表性的是日本的一些仪器。但是热线法在后期的算法处理上损失的信息比较多,精度很低。平面热源法:平面热源法,是指加热热源为一理想平面的片状物,用于对无限大均匀材料进行加热测量的方法。对平面热源的基本要求:一是厚度可以略而不计;二是在有效加热面积范围内,单位面积发出的热量不随时间变化,即热源的热流强度保持均匀、恒定;三是加热片有效加热面积与试件的横截面积相等。用平面热源法加热测量时,只要加热片足够大,就可以认为热流只在垂直于热源平面的方向上传导。热针法:采用圆柱面热源的热针,是指将电加热元件、测温元件,集合在同一器件上,制成的针状探测器件。表面上和热线法很相似,但后期处理上相对热线法从理论上有很大的不同,精度大为提高。

  • 第一届中国热物性学术会议(第一轮通知)

    [align=center][b][color=#ff0000]第一届中国热物性学术会议[/color][/b][/align][align=center][b][color=#ff0000](第一轮通知)[/color][/b][/align] 根据 2017年 10 月 27 日中国计量测试学会热物性专业委员第一次会议的决定,拟每三年召开一次全国性的热物学术会议,旨在交流我国热物性测试表征方法的最新成果。第一届中国热物性学术会议定于2018年10 月中旬在陕西汉中召开。[b][color=#ff0000]一、会议主题 [/color][/b] 1、热物性测试技术与方法 2、热物性模拟与理论预测 3、新工质、材料热物理性及其应用 会议将邀请本领域著名专家做 Plenary 和 Keynote 学术报告。会 议上口头报告的优秀论文将推荐刊登于《 工程热物理学》、化工学报》等著名期刊。 [b][color=#ff0000]二、会议组织机构 [/color][/b] [color=#ff0000]组织委员会[/color] 名誉主席:王补宣 主席:何茂刚 共同主席: 何宁 张澎 委员:邱 萍 王晓坡 王晓坡 刘向阳 任亚杰 任亚杰 尹继武 张 磊[color=#ff0000] [/color][color=#ff0000]学术委员会[/color] 主席:张兴 委员:唐大伟 张金涛 戴景民 何茂刚 史 琳 程晓舫 杨莉萍 于 帆 何小瓦 谢华清 史 全 段远源 梁新刚 陈 勇 吴清仁 蔡 静 周孑民 段宇宁 胡 芃 朱育红 王照亮 张宇峰 张 磊 徐志华 谭志诚 邱 萍 祝 渊 [color=#ff0000]会议主办单位:[/color] 中国计量测试学会热物性专委会 [color=#ff0000]承办单位: [/color]西安交通大学 [color=#ff0000]协办单位:[/color] 陕西理工大学、隐身技术航空科技重点实验室 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  • 新一届中国计量测试学会热物性专业委员会成立

    新一届中国计量测试学会热物性专业委员会成立

    在中国计量测试学会指导下及各位专家老师们的支持下,新一届中国计量测试学会热物性专业委员会成立了。中国计量测试学会热物性专业委员会于2017年10月27日在江苏苏州召开新一届委员换届会议及材料热物性测量研讨会。 热物性专业委员会上一届主任王补宣先生已被中国计量测试学会聘为终身名誉董事,清华大学张兴教授担任新一届热物性专业委员会主任。[align=center][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/10/201710291529_01_3384_3.jpg!w690x517.jpg[/img][/align][b]新一届中国计量测试学会热物性专业委员会委员名单:[/b]张兴 主任 男 清华大学唐大伟 副主任 男 大连理工大学张金涛 副主任 男 中国计量科学研究院戴景民 副主任 男 哈尔滨工业大学何茂刚 副主任 男 西安交通大学史琳 女 清华大学程晓舫 男 中国科学技术大学杨莉萍 女 中国科学院上海硅酸盐研究所于帆 男 北京科技大学何小瓦 男 航天材料及工艺研究所谢华清 男 上海第二工业大学史全 男 中国科学院大连化学物理研究所段远源 男 清华大学梁新刚 男 清华大学陈勇 男 中国核动力研究设计院吴清仁 男 华南理工大学蔡静 女 中航工业北京长城计量测试技术研究所周孑民 男 中南大学段宇宁 男 中国计量科学研究院胡芃 男 中国科学技术大学朱育红 女 中国测试技术研究院王照亮 男 中国石油大学(华东)张宇峰 男 渤海大学张磊 男 沈阳飞机设计研究所徐志华 男 杭州盘古自动化系统有限公司谭志诚 顾问 男 中国科学院大连化学物理研究所邱萍 秘书 女 中国计量科学研究院

  • 相变储能材料热物性的三种主流测试方法

    相变储能材料热物性的三种主流测试方法

    [color=#993399]摘要:本文介绍了国内外相变储能材料热物性的三种主流测试方法,对比分析了差示扫描量热法(DSC)、参比温度曲线法(T-History)和动态热流计法(DHFM)三种主流相变材料热物性测试方法的特点,简述了各方法在相变材料热分析测试时的注意事项,为相变储能材料研究、生产和使用中选择合适的热物性测试方法提供了参考。[/color][color=#993399]关键词:相变材料,储能,差示扫描量热法,参比温度法,动态热流计法[/color][hr/] [b][color=#993399]1. 引言[/color][/b]相变储能材料是利用相变过程中吸收或释放的热量来进行潜热储能的物质,其研究和开发经历了漫长的过程。与显热储能材料相比,相变材料具有储能密度大、效率高以及近似恒定温度下吸热与放热等优点,因而可以应用于很多领域,如太阳能利用、废热回收、智能空调建筑物、调温调湿、工程保温材料、医疗保健、纺织行业(保温衣服)、日常生活、航天与卫星等精密仪器的恒温等方面。相变储能材料的热物性是衡量其工作性能的标准,也是其应用系统设计及性能评估的依据。相变储能材料的热物性包括相变温度、相变潜热、热导率、比热、循环热稳定性、膨胀系数、储热系数等,而相变温度、潜热及热导率是衡量相变储能材料性能最关键的几个参数,因此对相变储能材料的热物性测试一般都围绕这几个参数进行。相变储能材料热物性测试方法众多,但常用的主要有三种方法,本文将介绍这三种测试方法及其应用。[b][color=#993399]2. 差示扫描量热法(DSC Method)[/color][/b]差示扫描量热法是在程序控制温度下测量输入到物质(试样)和参比物的功率差与温度的关系的一种技术,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度、熔融温度、结晶温度、比热容及热焓等。根据测量方法的不同又分为两种类型:功率补偿型和热流型,两种类型的测试仪器结构如图2-1所示。[align=center] [img=差示扫描量热法测试结构示意图,690,536]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252152_02_3384_3.png[/img][/align][align=center][color=#cc33cc][b]图2-1 差示扫描量热法测量原理图[/b][/color][/align]功率补偿型DSC:通过功率补偿使试样和参比物始终保持相同的温度,测量为满足此条件样品和参比物两端所需的能量差。热流型DSC:在给定样品和参比物相同的功率下,测量样品和参比物两端的温差,根据热流方程将温差换算成热量差作为信号输出。差示扫描量热仪是比较成熟的设备,其使用温度范围广,分辨能力和灵敏度高,数据采集和处理集中,能够通过电脑直接得到DSC曲线。差示扫描量热仪测试过程中的主要影响因素有:(1)实验条件:包括升温速率的大小对试样内部温度分布均匀性的影响,检测室气体成分和压力对试样蓄放热的影响,天平的测量精度对试样选取量的影响等。(2)试样特性:样品量必须与突然释放大量能量的潜力相一致,故应尽可能使用小数量的材料,通常为1~50mg,样品在几何形状、粒度大小和纯度等方面应具有代表性。(3)参考物质:参考物质在试验温度范围内不能发生任何热转变。典型的参考物质包括煅烧氧化铝、玻璃珠、硅油或空容器。(4)其他因素:如仪器的校正等。差示扫描量热仪测试过程中的注意事项有:(1)试样的选取:由于DSC测试需要的样品量很少,在几毫克到几十毫克,因此,试样的选取关乎实际应用中大块材料的热物性,应尽量选取粒度和纯度具有代表性的试样。为减小天平测质量时产生的相对误差,应尽量多的取样。(2)温度变化速率的控制:升温速率不宜过高,过高的升温速率会导致试样内部温度分布不均匀,易产生过热现象。[b][color=#993399]3. 参比温度法(T-History Method)[/color][/b]参比温度法是一种能够测定多组相变材料凝固点、比热、潜热、热导率和热扩散系数的方法,其基本原理是将相变材料样品和参考物质分别放在相同规格的试管内,并同时置于某一设定温度的恒温容器内进行加热,直至所有材料的温度都达到这一设定温度。然后将它们突然暴露在某一较低设定温度环境中进行冷却,则得到样品和参考材料的温降曲线,通过两者的降温曲线建立热力学方程得到材料的热物性。在各种热物性测试方法中,普遍现象的是测试装置越简单所对应的测试数学模型就越复杂,需要考虑的边界条件和假设就越多。参比温度法中所进行的假定为:(1)相变过程近似为准稳态过程。(2)在固液相分界面上液相相变材料通过对流传给固相相变材料的热量忽略不计。(3)近似为一维径向传热试管的径长比要远小于1。参比温度法测试仪器结构如图3-1所示。[align=center] [img=02.参比温度法测试仪器结构示意图,690,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252153_01_3384_3.png[/img][/align][align=center][b][color=#cc33cc]图3-1 参比温度法测试仪器结构示意图[/color][/b][/align]参比温度法是一种近十几年来发展起来的热分析技术,测试仪器要远比差示扫描量热仪简单,操作更简便,无需差示扫描量热仪那样的复杂培训和操作。一般采用用普通玻璃或石英试管装样品,使用方便且相变过程易被观察到,并能同时进行多样品的同时测量,样品个数取决于恒温容器的大小和数据采集系统的通道数。参比温度法测试过程中的主要影响因素有:(1)参比温度法中样品的用量为5~50g,为使样品在恒温容器内升温时受热均匀,需将样品粉碎,这破坏材料本身的结构,不能准确反映材料自身的热物性,因此会产生一定误差。(2)加热试管时,由于试管内材料分布不均等原因会导致试样内部温度不均匀,对实验结果的准确性会有影响。升温和降温过程的快慢影响试样的蓄放热,对实验结果产生一定的影响。参比温度法测试过程中的注意事项有:(1)测试条件:要求比奥数<0.1时,适用集总热容法建立热力学方程,故在测试之前应该对测试条件是否满足要求进行估算。(2)温度的选择:为了获得良好的降温曲线,加热温度要高于相变温度,冷却温度要低于相变温度。[b][color=#993399]4. 动态热流计法(DHFM Method)[/color][/b]动态热流计法是一种采用热流计测试装置来对试样热流进行动态测量的瞬态测试方法,首先测量装置中的两块加热板处于一个相同的、低于或高于样品相变温度的稳定温度,然后控制两块加热板步进升温或降温到一系列相同温度点并恒定,并实时测定每个步进温度变化过程中热流密度变化,根据热流密度变化测得每个温度点下的的热焓。动态热流计法是最近几年发展起来的新方法,此方法特别适合用于测量各种固态相变复合材料和制品、结合相变材料的混合材料以及相变材料颗粒在整个相变过程中的热物性测试评价。动态热流计法测试仪器结构如图4-1所示。[align=center] [img=03.动态热流计法测试仪器结构示意图,690,229]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252154_01_3384_3.png[/img][/align][align=center][b][color=#cc33cc]图4-1 动态热流计法测试仪器结构示意图[/color][/b][/align]动态热流计法同样是种多参数热物性瞬态测试方法,通过热流的瞬态变化过程可以测量相变材料的显热和潜热,由一块相变材料样品可以测量固相和液相比热、相变温度和相变焓,由此可以确定相变材料的蓄热能力。另外通过试验过程的控制,可以在稳态条件下测量相变材料相变区间前后的热导率动态热流计法测试过程中的主要影响因素有:(1)伴随着过冷现象,测试结果会是不太寻常的热涵-温度曲线。固液和固固相变的初始温度常取决于加热和冷却速率、相变材料纯度以及相变材料是不是非晶态。(2)相变材料及其复合材料大多表面粗糙,这会给测量带来很大的接触热阻,可以采用弹性薄片来减小接触热阻,这些弹性薄片热焓会带入测量,需进行校准修正以保证测量精度。(3)对于热导率较高的相变材料样品,样品边缘热损会给测量带来一定影响,要设法保证测量区域内尽可能为一维热流。动态热流计法测试过程中的注意事项有:(1)测试温度区间的设定:相变材料一般并未有精确的熔化温度或凝固温度点,因此必须大至的相变温度区间来对测试温度范围以及温度变化步长进行设定,既要保证测量精度,又要兼顾测试效率。(2)测试条件:在测试过程中要求测量装置在一系列温度点达到稳态,即在稳态条件下样品的整体温度均匀且相同,没有热流进出样品,在测试中要确保稳态条件形成后才能进入下一个温度点的测试过程。(3)热流计的选择:要选择合适的热流计使得整个测试过程中的热流都必须可测,热流传感器既要保证测量精度,又有具有较大的测量范围,避免出现热流值超出热流计量程的现象。(4)校准:动态热流计法测试中要保证热流计经过校准和测量精度,而且需要采用规定的校准程序来确定相应的修正因子。[b][color=#993399]5. 测量方法比较[/color][/b]通过对以上三种测量方法的原理分析、测试仪器的比较以及其各自的特点和适用范围选择,总结三种测试方法在相变材料热物性测量中的优缺点对比如表5-1所示。[align=center][b][color=#cc33cc]表 5 1 三种相变材料测试方法优缺点比较[/color][/b][/align][align=center][b][color=#993399][img=热分析三种主流测试方法对比,690,447]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252154_02_3384_3.png[/img][/color][/b][/align][b][color=#993399]6. 结论[/color][/b]通过对相变材料热物性当前三种主流测试方法的分析,探讨了各个测试方法的适用性和优缺点。针对相变储能材料热物性考核评价,对如何选择合理的测试方法所需关注的内容进行了总结。(1)三种测试方法各有优点和不足。DSC方法技术成熟度高,测量精度高,测量结果准确,但所用试样量偏少,导致样品热物性无法完全反映实际应用的大块材料的热物性。参比温度法的实验装置和操作过程都比较简单,试验过程易于观察,样品用量也较大,但样品结构不完整,受热可能不均匀。动态热流计法技术成熟度高,可直接对大块相变材料热物性进行测量,但测试周期较长。因此在实际应用中可以结合三种方法的使用,对比试验结果,以得到合理的测试结论。(2)对于粒度均匀,结构和组成单一,少量试样能够代表总体样品性质的材料宜选用测量精度高的DSC方法测量。对于松散材料,DSC测试取样无法具有代表性时,可以选用参比温度法测量其热物性。对于有完整性和代表性要求以及需要了解热导率性能的相变材料,可以选用动态热流计法。(3)这三种测试方法经过了不断的工程应用和实践,已经成为目前国际上的主流测试方法,通过这三种测试方法完全覆盖了从微量级样品到大尺寸产品级的相变储能材料热物性测试评价。这三种测试方法分别是相变储能材料不同生产阶段内的标准性测试方法,在具体应用中可根据实际情况进行合理的选择。[b][color=#993399]7. 参考文献[/color][/b] (1) ASTM E793 - 06(2012) Standard Test Method for Enthalpies of Fusion and Crystallization by Differential Scanning Calorimetry (2)Yinping, Zhang, and Jiang Yi. "A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials." Measurement Science and Technology 10.3 (1999): 201. (3)ASTM C1784-14 Standard Test Method for Using a Heat Flow Meter Apparatus for Measuring Thermal Storage Properties of Phase Change Materials and Products

  • 多试样闪光法热物性测试技术发展历程

    闪光法作为一种经典的材料热物理性能测试方法,是所有热物性测试方法中应用最为广泛的方法,它基本覆盖了所有金属和金属基复合材料、陶瓷和陶瓷基复合材料等刚性高密度材料的热物性参数的测试,闪光法测试设备也成为了材料性能测试评价最常配备的仪器设备。 闪光法可测试多种材料的热物理性能,并且可以测试宽泛温度区间内热物理性能参数随温度的变化过程。在闪光法测试过程中,一般都是单个样品进行升温来测试试样在整个温度范围内的物性参数曲线,然后将被测试样温度降到室温,再装配下一个试样进行测量。这种常规的测试过程往往使得采用闪光法每个工作日只能完成1或2个试样的测试,这就使得很多机构面临着测试任务量巨大时一台闪光法测试设备根本无法满足进度要求的困境,这同时也对闪光法的测试效率提出了更高要求。 为提高闪光法测试效率,多年来闪光法测试设备厂家一直在进行着这方面的努力,并推出了相应的多试样闪光法测试设备。本文将详细介绍国内外闪光法测试技术在多试样功能方面的发展历程,由此可以更多的了解多试样闪光法测试技术和设备的特点,为今后更高效的闪光法测试技术发展提供参考和借鉴。由于文章较长不便发帖,发过多次也没成功,甚至账号被封。故将此文搁置在仪器网资料库中,有兴趣的朋友可以在仪器网上看到文章,地址是:www.instrument.com.cn/netshow/SH103383/s523192.htm

  • 美国安特公司的热物性仪器的汇汇总贴

    美国ANTER热物性测试仪ANTER生产的仪器种类超过25种类型,其中的几种又含有5种以上的子类型,一些仪器具有多样品同时测量功能,适用于各种材料如固体、液体、糊状物质、粉末、均匀或非均匀复合材料、刚性或可压缩材料、金属、陶瓷、玻璃、石墨/碳、塑料、木材、自然界形成的物质、涂料等等。以下是ANTER公司仪器的种类及使用的温度范围:仪器名称:高速疝灯热物性测试仪FlashlineTM 3000温度范围:-180℃─1100℃ 仪器名称:脉冲激光热物性测试仪FlashlineTM 5000温度范围:-180℃─3000℃仪器名称:热膨胀仪UnithermTM Models 1054,1101,1091,1161V,1252V,WorkhouseTM,QuicklineTM-05温度范围:-180℃─3000℃仪器名称:保护热流计法热导仪Unitherm TM Model 2022温度范围:-180℃─300℃仪器名称:保护热流计法热导仪QuicklineTM-10温度范围:室温仪器名称:非稳态快速热导仪Quinkline TM-40温度范围:-20℃─200℃仪器名称:热线法热导仪Unitherm TM Model 3141温度范围:室温─1500℃仪器名称:非稳态快速热导仪Quinkline TM-11温度范围:室温─900℃仪器名称:保护平板法热导仪Unitherm TM ModelS 6021,6010,6061温度范围:-180℃─550℃仪器名称:快速热物性分析仪QuinklineTM 30含探针及表面探头式温度范围:-20℃─70℃闪光法热导仪FlashlineTM 5000是模块组合式的脉冲激光热导仪系列,用户可以通过选择子系统。及其有关选项来组成一个最好满足应用需要的测量仪器。这种仪器可以测量从绝热材料到高导热材料,是应用最广泛的导热仪。通过选择一个或几个不同的炉子,可覆盖从-180℃到3000℃的温度范围,有从单样品到多样品的选择。配备最先进的高速电子系统以及建立在25年以来发展的最完善的理论和实际基础上的软件系统。提供准确的热扩散率、比热的测量及导热率的确定。FlashlineTM 3000是价格中等的闪光法热导仪,温度范围是-180℃到1100℃该仪器采用高速疝灯作脉冲加热光源,适用于从标准10mm直径到30mm直径、厚度达到7mm的样品,不仅可以测量各种陶瓷、金属、聚合物和复合材料等,还可以测量粗晶材料如耐火材料、碳、岩石等含孔隙材料,而这些材料过去用闪光法常常是不可测的。使用特殊的试样架,液体、糊状物质、薄膜、粉末及其直到熔融状态的聚合物等材料都可以得到测量。多样品同时测量功能提供了准确的比热测量,以及热导率的确定。Flashline系列产品受美国专利(U.S.Patent No.6,375,349.)保护。安特公司是ISO 9001验证合格单位远程(机器人)应用安特公司可对其仪器进行特殊的改进,在危险的环境中操作(如高辐射性物质工作场合,手套箱等),包括适合于用机械手进行远距离的维修。欢迎浏览我们的网页:www.haobobio.com,得到有关技术资料。热膨胀仪Model 1054棒状及板状的多样品测量仪器,可以同时测量4个样品。温度范围是-150℃─500℃,用于研究发展及质量控制应用方面的塑料、复合材料、玻璃、金属或合金等材料的测试。独特的设计使得样品与加热源的表面直接接触,较其它各类膨胀仪,更适合于低导热材料如塑料等材料的测量。Model 1101传统的立式石英玻璃膨胀仪,有单样品、双样品,一般尺寸样品及大尺寸样品选择。可以用一台计算机同时控制四台膨胀仪。有绝对或差分(双顶杆)两种操作方式。温度范围是-150℃到1200℃,由不同的子类型来覆盖。独特的设计仪器能够测量石墨电极等大尺寸样品Model 1091传统的卧式石英玻璃膨胀仪,有单样品及四样品配置,温度范围是-150℃到1200℃,由不同的子类型来覆盖。有快速升降温红外线加热炉选项。Model 1161高温立式氧化铝陶瓷膨胀仪,温度范围从室温到1650℃,具有反向平衡顶杆消重的特点,有绝对或差分(双顶杆)两种操作方式。可用于大尺寸样品测量。特别适用于烧结研究。有使样品在氢气氛围下进行安全实验的选项。Model 1252超高温立式石墨膨胀仪,温度范围从室温到2800℃,采用自行研制的专利光学高温计时(全量程的连续测温)。有绝对或差分(双顶杆)两种操作方式。反向平衡顶杆消重的特点使得该仪器为超高温烧结研究提供了有力的手段。WorkHorseTM热膨胀仪是特别适用于质量控制及一般研究发展应用的坚固耐用的产品。体积小、结构独立及其适宜的价格使得该产品成为很多的应用场合的合理选择。温度范围从室温1000℃或1550℃。QuicklineTM-05手动卧式热膨胀仪,温度范围从室温到500℃或1000℃,数字温度控制器及数字位移传感器,经济的价格适用于教学实验及质量控制的实验室。热导仪QuicklineTM-30是一种价格非常低廉的热物性分析仪。带有交替使用的表面及针状探头,适用于测量处于-20℃到70℃温度环境的多种材料。可携带式适合于现场实时测量及过程控制。测试时间为几分钟。Model 2022 保护热流计法导热仪可用于测量中、低导热率的高分子材料、陶瓷、金属及合金,也适用粘性液体。温度范围是-20℃到300℃。有手动及计算机全自动装置。该仪器遵循ASTM1530标准。QuicklineTM-10是低价格的保护热流计法导热仪,可在室温下使用。自动模式可用于质量检验等应用。该仪器遵循ASTM530标准。QuicklineTM-40是一种普适性强的仪器,适用于固体、液体、粉末、糊状物资及薄膜的材料。温度范围是-20℃到200℃。有USB的接口的计算机操作方式,测量快速,不需要配备冷水循环器。Model 3141应用非稳态热线方法,覆盖从室温到1500℃的几个温度区域可同时控制多个加热炉(1,2,或4),进行多样品同时测量。适用于测量绝热材料(耐火砖、耐火陶瓷纤维等材料)。遵循ASTM113标准。QuicklineTM-11是一种非稳态热线方法,适用于非固体料如粉末、粘性液体、糊状物资、油脂等材料。温度范围是从室温到900℃。计算机全自动化测量。Model 6000是用平板保护法测量绝热材料及其它低导热材料。三种子类型覆盖了从-180到550℃的温度范围。试样尺寸是300mm方形,最大厚度为75mm。全自动化计算机系统。遵循ASTM C177和ISO 8302标准。[em17] [em17] [em17]

  • 金属所材料热物理性能测试研究五十年

    金属所材料热物理性能测试研究五十年

    [color=#990000]本文转载自中科院沈阳金属研究所官网。[/color][color=#990000]编者按:中国的热物理性能测试技术的研究起步于1960年左右,基本与欧美处于同步发展水平,以中科院沈阳金属研究所何冠虎和周熙宁老师为代表的老一辈学者则是我国热物理性能测试领域的开拓者。这里转载两位前辈所撰写的文章,一方面是为了部分展示我国热物理性能测试技术的发展历史,另一方面是表达对前辈老师们的崇高敬意。[/color][hr/][b][size=18px]金属所材料热物理性能测试研究五十年[/size][/b]作者:何冠虎 周熙宁 准确的热物理性能数据是材料制备、热过程控制、热结构设计计算的基础。金属所建所之初,在开展金属物理基础研究的同时,十分重视物理性能测试方法和测试装备的研究工作。1958高温测试研究室正式成立,其任务是结合高温材料的发展与使用,在高温测试方面进行有关的系统研究,为金属所日后成为全国高温热物理性能测试基地的重要成员单位之一打下了坚实的基础。 1961年,国家科委决定成立包括一批研究所和高校在内的高温测试基地,承担科研,协作和仲裁任务,由李薰教授任领导小组组长,严东生教授和姚桐斌教授任副组长,周本濂和周熙宁等同志任组员。从此金属所在李薰所长的领导下,以该基地重要成员单位的面貌投入到热物性测试的研究工作中。 60年代,金属所在国外严密封锁和资料匮乏的情况下,依靠自己的力量,初步建成了一批测试装置,并有不少是创新性的研究工作。如1963年基本建成的纵向热流绝对法金属热导率测试装置,中心加热器上下试样组合方式有别于传统的热源与热汇两端设置,能充分利用中心热源功率,以工业纯铁为标准参考试样,所得结果表明在70℃~800℃范围内的热导率,接近文献结果;金属所于1963年基本建成比长仪直测法线膨胀仪。建成电热稳态法高温热导率测试装置。首先提出弹性模量测试的端点悬挂声频共振法。克服了高温下试样内耗大不易激发振动的困难。端点悬挂声频共振法高温弹性模量测试方法和装置与电热稳态法石墨高温热导率测试方法和装置于1965年通过委托单位专家的验收鉴定,全部合格。此外,1500℃电脉冲石墨高温比热,1000℃脉冲回波法钢材小试样弹性模量,1000℃声频共振弹性模量,1000℃示差线膨胀装置也都相继建立。 70年代在我国第一颗返地卫星研制任务的带动下,金属所的高温热物性测试研究进入全盛的发展时期。卫星裙部热控材料钼合金板材厚度仅几个毫米,热导、比热、模量、热膨胀、热辐射等性能均是必不可少的设计参数,1960年代建立的测试方法已不能满足板材热物性的需求。于是激光热导,铜卡计比热,板材示差法和直测法线膨胀,电热稳态法半球发射率,弯曲共振法弹性模量等一系列测试装置相继建成。1974年7月在北京召开的第一届空间热物理会议全面反映了卫星热控设计,热控材料制备,热模拟试验和热物理性能测试方法和装备的最新结果,金属所的热物性测试研究工作不仅满足了任务需求,而且测试研究水平上了一个新台阶。这一阶段的代表性成绩有: (1)金属所在国内首批合作研制激光脉冲热导仪,该项目在1978年获全国科学大会奖以后,金属所又在激光脉冲加热-降温测量比热容新方法和整机微机运控研究中取得成果。至今,金属所的激光脉冲法热导率装置已为所内和国内 70多个单位提供了400多种材料,包括金属,合金,陶瓷,石墨,橡胶,高聚物等的可靠数据。(图片1为仪器研制现场)。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010292119142790_2928_3384_3.jpg!w245x186.jpg[/img] [/align] (2)高温半球向全发射率测试装置的建立与发展,1971年至1974年热物性组在建成电热稳态法测试装置的同时,为一批批板材及时可靠地提供了大量数据,为金属所承担的卫星裙部蒙皮的研制和卫星的回收起到了重要作用。在此基础上设计制成的自动记录高温辐射仪是我国第一台三参数(温度,电流,电压)实现自动记录的半球向全发射率测试装置,该装置至今已为所内和国内高辐射率节能涂料,金属高辐射涂层材料,难熔合金管材和板材等提供了大量发射率测试数据。 (3)建成高精度真空自动绝热控制铜量热计比热测试装置,经对α-Al2O3标准参考试样热温测试表明与美国NBS、前苏联科学院数据相差3%,而且测量了它的熔化潜热。金属所的材料热物理性能测试研究始终以材料研制为背景,不断建立新方法和新装备,服务于材料研制的需求。目前金属所仍然保持着结构材料所必须的物理性能,如热扩散率和热导率、比热容、线膨胀系数、弹性模量、剪切模量、泊松比,低温DSC相变、熔点、密度等系列测试装备,并建立了碳-碳材料高温双向强度测试装置(图片2为双向试验装置)。测试服务范围已遍及所内和国内材料研制重点企业,研究院所和高等院校100多个单位600多种各类固体材料的高温(2600℃)和低温(-150℃)测试需求,金属所已经成为全国提供热物理性能测试数据最主要的单位之一。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010292120049613_8007_3384_3.jpg!w252x201.jpg[/img][/align] 90年代以来,周本濂同志在研究固体薄膜材料热膨胀动态过程中,发现了温度升高在先、热膨胀有滞后的现象,说明瞬态加热时薄膜材料内部存在巨大的热应力。与此同时,热物性研究组在中国科学院院长基金特别资助项目和多项国家自然科学基金项目资助下开展了二维材料热输运性的热膨胀的研究,取得了可喜的成果,并在863课题中得到应用。获得了不同工艺条件下金刚石膜的热扩散率,建立了由TEA CO2脉冲激光(0.1s脉宽),(HgCdTe)红外探测器(0.01s响应)和DAS 820M瞬态采集仪组成的测试系统,不仅测出了50um铝、铜薄膜的热扩散率,而且成功地探测了0.35mm金刚石膜的温升曲线和热扩散率。不同工艺制备的金刚石膜有不同的热扩散率。 采用CCD非接触法测量薄膜的热膨胀系数,创建了由准直卤素光源,光学放大系统、CCD采集处理系统组成的测试系统,试样因升温膨胀时,其像边缘移动,在CCD图像上出现两个边缘像,用滤波平滑处理和多点判据法可以确定移过的光敏元数,最终计算出试样伸长量。本方法的长度分辨率达到0.2um的高精度,已获得国家发明专利。 金属所的热物性测试研究之所以在国内有一定的地位,除了为材料研究提供测试数据外,是与周本濂教授力主创新,不断开拓新领域,促进国际学术交流,多次应邀在亚洲热物性会议上作大会邀请报告并获得热烈反响和好评分不开的。在一次于美国召开的国际热物性大会上,周本濂教授作了介绍我国热物性研究概况的报告及金属所多人作了热导率和比热容测试的报告后,美国信息及数据综合和分析中心(CINDAS)主任,著名科学家,美籍华人何焯彦(C.Y.Ho)教授十分感慨地说,想不到中国在热物性研究领域有如此高的水平。 在即将迎来金属所成立五十周年之时,回顾热物性测试研究的发展历程,抚今追昔,我们十分怀念已故著名科学家李薰院士和周本濂院士,是他们的高瞻远瞩和执着追求带来了金属所热物性测试研究的成就,是他们的拓展深化和求实创新精神为我们树立了榜样,激励着我们不断前进。我们相信,金属所热物性测试研究之舟,在改革开放的大潮中,一定能绕过礁石,冲破急流,在曲折中登上新的航程,驶向胜利的彼岸。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 开口闪点测定仪点火方式的优缺点

    点测定仪电点火方式的优缺点  随着闭口闪点测定仪的技术发展,越来越多的闭口闪点测定仪摒弃了原来的明火气点火方式,改为更加简便的电点火方式。但电点火方式的使用也造成了很多的使用问题。本文根据在电点火方式的日常使用中,对电点火方式与气点火方式的优缺点进行对比。  电点火方式的优点显而易见。首先,电点火方式相比气点火方式,取消了点火用的气源,大大提高了使用安全性。其次,电点火方式使用更为简便,无需连接管路、调节火焰大小,大大提高了使用效率。此方法十分适用于闪点在200摄氏度以下的馏分油、燃料油、润滑油等油品及甲醇、乙醇等挥发性液体。对于某些高危化验室,如不允许有明火或煤气罐的化验室,电点火方式成为了使用人员的必然选择。  但电点火方式也有着许多未知和已知的缺点。  电点火方式是以电热丝通电发热的方式来进行引火,电热丝在使用过程中会逐渐氧化损耗,所以电热丝作为一种耗材需要定期进行更换。而普通的镍络丝通电很难达到引火所需的温度,并且发热后氧化较为迅速,需要使用更加稳定耐用且造价更高的电热材料,所以定期的更换点火丝势必会增加使用成本。  相比于明火点火方式,电热丝是通过发热方式来引火的。但在实际使用过程中,有很多样品的性质不确定,通过电点火方式根本无法或很难引燃,只能通过明火引火方式来进行试验。这类样品大多集中在五花八门的化工领域,以及闪点在300度或更高的润滑油、抗燃油等高闪点样品。  闪点测定仪电点火方式的优缺点  随着闭口闪点测定仪的技术发展,越来越多的闭口闪点测定仪摒弃了原来的明火气点火方式,改为更加简便的电点火方式。但电点火方式的使用也造成了很多的使用问题。本文根据在电点火方式的日常使用中,对电点火方式与气点火方式的优缺点进行对比。  电点火方式的优点显而易见。首先,电点火方式相比气点火方式,取消了点火用的气源,大大提高了使用安全性。其次,电点火方式使用更为简便,无需连接管路、调节火焰大小,大大提高了使用效率。此方法十分适用于闪点在200摄氏度以下的馏分油、燃料油、润滑油等油品及甲醇、乙醇等挥发性液体。对于某些高危化验室,如不允许有明火或煤气罐的化验室,电点火方式成为了使用人员的必然选择。  但电点火方式也有着许多未知和已知的缺点。  电点火方式是以电热丝通电发热的方式来进行引火,电热丝在使用过程中会逐渐氧化损耗,所以电热丝作为一种耗材需要定期进行更换。而普通的镍络丝通电很难达到引火所需的温度,并且发热后氧化较为迅速,需要使用更加稳定耐用且造价更高的电热材料,所以定期的更换点火丝势必会增加使用成本。  相比于明火点火方式,电热丝是通过发热方式来引火的。但在实际使用过程中,有很多样品的性质不确定,通过电点火方式根本无法或很难引燃,只能通过明火引火方式来进行试验。这类样品大多集中在五花八门的化工领域,以及闪点在300度或更高的润滑油、抗燃油等高闪点样品。  综上所述,电点火方式十分适合于不允许存在明火或煤气罐的高危化验室,和闪点在200摄氏度以下的馏分油、燃料油、润滑油等油品及甲醇、乙醇等挥发性液体,以及试验次数较少的化验室等。

  • 石油产品灰分测定仪使用时需要注意什么?

    石油产品灰分测定仪使用注意事项 1.请详细阅读完本说明书后,再进行操作。2.在使用时,设备必须可靠接地,以免发生危险。3.第一次使用或长期停用后再次使用时,必须进行烘炉,烘炉时间共为八小时,应分别设定200℃、300℃、400℃各烘二小时。4.所接电源线、负载线要连接正确,必须要有足够的线径,并接好40A的保险。安装好后,在通电试验之前,请仔细检查炉丝接线是否牢固,尤其是绝对不能短路,也不准接壳和接地。热电偶的正负极要正确连接。如果接反,则在升温时,温度显示值下降。5.本仪器在做“灰分”、“快灰”、“罗加粘结”、“挥发分”等试验时,应根据要求按【?】键,增加进程。以使试验顺利进行。另外,也可根据试验的需要,使用【?】键和【?】键(增加和减少进程)手动调整试验进程。6.当正在开机工作时,一旦仪器产品发生故障时,应立即关闭电源,停机检查。重大故障应保护现场,以便故障分析。7.使用时,设定炉温不得超过额定工作温度,此时炉丝寿命较长。设定炉温最高不得超过最高工作温度,以免烧毁电热元件。8.热电偶不要在高温时骤然拔出,以防外套炸裂。9.禁止向炉内灌注各种液体及易熔解的金属,凡附有油质类的金属材料进行加热时,会有大量的挥发性气体将影响和腐蚀电热元件表面,使之烧毁和缩短寿命,因此,加热附有油质类的金属材料时,应做好金属材料的密封工作。10.应定期检查接线连接是否良好。11.保持炉膛清洁,及时清除炉内氧化物之类滞留物。[font=&]得利特(北京)科技有限公司专注于油品分析仪器的研发和销售活动,公司产品有:石油产品灰分测定仪、抗乳化测定仪、泡沫特性测定仪、空气释放值测定仪、氧化安定性测定仪、密度测定仪、自燃点测定仪、氯含量测定仪、微量残炭测定仪、表观粘度测定仪、机械杂质测定仪、浊点测定仪、四球机等多种燃油分析仪器、润滑油分析仪器、绝缘油分析仪器,水质分析检测仪器、气体检测仪器,型号多,质量保证,可定制。[/font]

  • 对美国麦克公司的比表面积测定仪的感受如何?

    我们单位是中央驻地方单位,拥有数台大型仪器。其中物性表征使用的是美国麦克公司的比表面积测定仪,使用了很多年了,感觉该仪器测试结果准确、测试数据可信。请问大家对美国麦克公司的比表面积测定仪的感受如何?

  • 【求助】材料高温软化荷重测定仪可以代替电阻炉吗?

    做镁砂氧化镁含量的EDTA滴定法实验。样品熔融温度为1000℃,4~5分钟。实验室的电阻炉坏了,可以用材料高温软化荷重测定仪代替吗?熔样的坩埚为白金坩埚,会不会和材料高温软化荷重测定仪里面的电热偶反映?先谢谢各位了!

  • SH0305石油产品密封适应指数测定仪

    SH0305石油产品密封适应性指数测定仪适合测定各类石油产品,但不适合测定含水的石油产品。用锥形量规测量橡胶环的内径,然后将橡胶环在一定温度的试样中浸泡24小时,取出冷却,用锥形量规测量橡胶内径的变化。[b]主要特点[/b]不锈钢内衬,带风扇,内尺寸350 x 350 x 350 mm。高效热绝缘;微电脑液晶PID控制温度,精度0.1°C,温度传感器为Pt100 RTD;工作范围:室温 ~ 200°C ± 1°C(试验温度为100°C);过温安全保护;不锈钢加热器;在双层门上装有300 x 200 mm的玻璃窗,便于观察;标准合金钢量规;仪器包括1个按标准设计的对流烘箱,最高温度可达200°C[b]技术参数[/b]适用标准:SH/T0305 IP278电 源:AC220±10% 50Hz±5%加热方式:电热丝加热控温方式:PID温度控制器控温范围:常温~200±1℃工作电压:10KV±2%

  • 绝缘油试验测试中酸值测定仪的应用不可少

    在做和绝缘油有关的试验时,酸值测定仪的应用不可少。绝缘油的酸值是表明油品中含有酸性物质,即有机酸和无机酸的总值,一般酸中和1g绝缘油中酸性物质所需的氢氧化钾mg数来表示。对于未使用过的新变压器油几乎不含酸性物质,其酸值相当小,但油品在长期储存下,尤其是充人电器设备投入运行后,难免会与空气中氧接触,油品易被老化。氧化初期时主要生成低分子有机酸,进一步氧化产生高分子有机酸以及酸陛产物,在绝缘油中存在上述各类酸性物质后,则会提高油品的导电性、降低油的绝缘性能,还可能产生对金属的腐蚀。在运行温度较高(80~C以上)的情况下,促使固体纤维纸绝缘材料发生老化现象,从而缩短设备的使用寿命。一般未用过的(新的)变压器油几乎不含酸性物质,其酸值较低,pH值在6~7范围内,pH值主要用来表示绝缘油水溶性酸的指标。 根据我国现场调查情况、模拟试验以及实验室内老化试验结果的油分析,对运行中变压器油一般酸值大于0.1m鲋)H/g,pH值等于或小于4.0时变压器运行油析出油泥的可能性增加,反之则变压器油可基本保证变压器良好可靠地工作,当酸值升到0.2mgK()}L/g以上或pH值低于3.8时,油质劣化显著,会有较多油泥产生。因而对运行油规定pH值应大于4.2。国内常用的酸值测定仪器中北京得利特的酸值测定仪型号挺多的,[font=&][size=12px][color=#444444]适用于很多标准且能广泛适用于石油、化工、电力、商检、科研、环保等领域。 [/color][/size][/font]

  • 倾点测定仪、凝点测定仪、浊点测定仪、冷滤点测定仪都属于低温测定仪,适配的仪器都有哪些呢?

    倾点测定仪、凝点测定仪、浊点测定仪、冷滤点测定仪是很多行业都会需要测定的指标,他们的共同点就是同属于低温测定仪 。在查关于国产的油品分析仪器资料发现,北京得利特公司的仪器对于这四个指标都有涉及,涉及很全面,仪器相对也是比较稳定 。其中倾点测定仪,凝点测定仪 可以集合成一台仪器,有一个A1120自动凝点倾点测定仪符合GB/T510-83及GB/T3535-2006标准用于测定变压器油、润滑油及轻质油的凝固点值倾点值,液晶屏幕中文人机对话图形显示界面,制冷深度、试油标号、检测气压、试验日期等参数具有菜单导向式输入,方便直观。汉字操作软件提示修改功能,界面清晰,易操作,打印试验数据,实现了试验全过程微机自动化,是理想的进口仪器替代产品。图形动态模拟工作过程,屏幕在现试验过程,实时跟踪油质温度的变化状态,半导体制冷,测试速度快,结果准确,可单独测试凝点、倾点值,也可同时测试,一机两用,注油、测试、放油、打印微机自动完成 配有时钟等多种参数表示。浊点测定仪则对应能找到A2180全自动浊点测定仪适应标准GB/T6986《石油产品浊点测定法》,采用现代高新微电子控制技术,采用MCS-51系列单片机作为系统控制核心。冷滤点测定仪则能找到A2030冷滤点测定仪符合SH/T 0248,适用于测定馏分燃料包括含有流动改进剂或其它添加剂的柴油发动机燃料、民用取暖装置使用燃料的冷滤点。

  • 超高温3000℃热物理性能测试中的红外测温计在线校准

    超高温3000℃热物理性能测试中的红外测温计在线校准

    [color=#990000]摘要:本文将针对超高温3000℃热物性测试中红外测温仪的在线校准,提出了采用高温固定点的在线校准方法,介绍了用于超高温条件下的几种固定点,并针对典型超高温测试设备描述了具体固定点单元形式和校准实施方法。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、在线校准的必要性[/color][/size] 在超高温1500~3000℃范围内的材料热物理性能测试中,普遍使用非接触式红外测温仪进行样品温度测量。温度测量精度决定了热物性参数的测量准确性,所以红外测温仪要定期进行校准。但在实际使用中,校准过的红外测温仪还存在以下几方面因素对温度测量精度带来影响: (1)如在激光闪光法热扩散系数和热膨胀系数等测试设备中,测温仪一般直接测量样品表面温度,但往往测温仪的焦点位置并未与样品测温面重合,或测温仪的对准没有完全集中在样品上,而是部分聚焦在靠近样品周围的部分样品支架上,这些测温仪的轻微错位都会导致温度测量出现重大误差。 (2)如在超高温下落式量热计比热容测试设备中,很多时候测温仪是对装有被测物的样品盒表面温度进行测量,样品盒的表面温度与内部被测样品的实际温度还有一定差别,测温仪获得的并不是样品的真实温度。 (3)红外测温仪普遍对被测物表面的发射率比较敏感,如果没有进行特殊的黑体空腔处理,对于未知发射率表面的温度测量则很难测准。 (4)超高温下的温度测量,红外测温仪一般需要透过加热炉光学观察窗和内部保护气体监测温度,光学窗口和气体的透射率通常是未知的,并且可能会随着加热炉使用过程中蒸发材料的沉积而演变。 由此可见,在实际应用中,为了保证温度测量的准确性,需要对红外测温仪进行现场校准,而不仅仅是将它们从实验装置中取出进行定期校准。 本文将针对超高温3000℃热物性测试中红外测温仪的在线校准,提出采用高温固定点的在线校准方法,还将介绍用于超高温条件下的几种固定点,并针对典型超高温测试设备说明具体固定点单元形式和校准实施方法。[size=18px][color=#990000]二、高温固定点在线校准方法[/color][/size] 高温固定点在线校准方法是一种典型的对比法,原理是基于准确已知被测样品温度来校准接触和非接触式测温仪。具体方法是按照被测样品的外形测试和外表材质制作固定点单元,然后将固定点单元作为被测样品进行升温和升降试验,通过对已知的固定点标准温度与测温仪的测量值进行对比,达到对红外测温仪进行校准的目的。 固定点是国际温标中规定的可复现的平衡温度,是纯物质的三相点、沸点和凝固点,固定点都是根据物质的相变过程实现的,所选用的固定点绝大部分都是纯物质的变相点。 ITS-90温标在-189.3442℃~961.78℃温度范围共有九个定义固定点,分别为:纯银、纯铝、纯锌、纯锡、纯铟五个固定点,水、汞、氩三个三相固定点 以及镓熔点。 高温固定点是一系列金属的碳共晶与碳包晶固定点,主要有Pd-C(1492℃)、Rh-C(1657℃)、Pt-C(1738℃)、Ru-C(1954℃)、Ir-C(2292℃)、Re-C(2474℃)、WC-C(2749℃)和HfC-C(3185℃),由此可覆盖1500℃ 至3200℃范围内的红外测温仪在线校准。[size=18px][color=#990000]三、高温固定点单元[/color][/size] 固定点单元是一种样品尺寸大小的坩埚,坩埚内通过熔融灌装或直接镶入的方法植入了固定点材料。高温固定点单元要求满足以下几方面条件: (1)耐高温,且高强度避免损坏; (2)只有纯度最高的材料金属和石墨,不能有其他杂质; (3)外形尺寸与被测样品一致,且密封严紧避免熔液泄露; (4)集成有黑体空腔,降低发射率影响; (5)整体结构设计和布局要保证温度的均匀分布。 针对超高温热物性测试中的红外测温仪在线校准,需要根据相应的样品摆放形式和尺寸采用不同结构的固定点单元,如在各种超高温3000℃热物理性能测试设备中,样品的摆放主要有立式和卧式两种结构,那么就需要采用相应不同结构的高温固定点单元。 在很多超高温3000℃激光闪光法热扩散系数和下落式量热计比热容测试设备中,样品是立式摆放形式,红外测温仪一般从下至上或从上至下对样品的底部或顶部进行测温,相应的固定点单元结构如图1所示。固定点主体和端帽为高纯石墨,图中的多个长孔内浇灌固定点材料,或直接插入固定点材料细棒,图1(a)中左侧的黑体空腔朝向红外测温仪。[align=center][img=红外测温仪在线校准,690,170]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060915316401_7706_3384_3.jpg!w690x170.jpg[/img][/align][align=center][color=#990000]图1 立式结构高温固定点单元:(a)主体剖面图;(b)主体顶视图;(c)端帽剖面图;(d)端帽顶视图[/color][/align][align=left][/align][align=left] 对于一些样品是卧式摆放形式的超高温3000℃热物性测试设备,如热辐射性能以及顶杆式和光学热膨胀仪,红外测温仪或高温热电偶一般在样品的水平方向上进行测温,相应的固定点单元结构如图2所示,固定点材料一般是直接熔灌入石墨坩埚内。图中的黑体孔对准红外测温仪,也可以插入被校热电偶。[/align][align=left][/align][align=center][color=#990000][img=红外测温仪在线校准,500,327]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060916391456_3774_3384_3.jpg!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图2 卧式结构高温固定点单元[/color][/align][size=18px][color=#990000]四、采用固定点在线校准过程[/color][/size] 在超高温热物性测试设备中采用固定点进行红外测温仪或热电偶在线校准的过程,首先是确定需要校准的温度测量范围,并选择不同的标准温度固定点单元尽可能的覆盖此温度范围,然后分别采用相应的固定点单元单独进行校准。 在每个固定点单元校准时,首先是用固定点单元代替被测样品,然后以低速率加热至固定点温度10℃以上并恒温,恒温一段时间后再以低速进行降温。在整个升降温过程中被校温度计连续测量温度,并将测量值随时间的变化曲线识别固定点单元的相变温度。图3示出了温度计测量纯铜固定点熔化和凝固过程的原始温度变化曲线。[align=center][color=#990000][img=红外测温仪在线校准,600,353]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060917182923_7753_3384_3.jpg!w690x407.jpg[/img][/color][/align][align=center][color=#990000]图3 采用纯铜固定点单元在线校准升降温过程[/color][/align] 得到随时间变化的原始温度变化曲线后,对原始曲线进行一阶微分和二阶微分处理得到相应的微分曲线。根据一阶微分曲线中的极大值点可确定第一起始点和第一终止点,根据二阶微分曲线可确定第二起始点和第二终止点。基于得到的四个温度位置点,可最终确定原始温度变化曲线中在此加热速率下固定点单元熔化温度的测量值,此测量值与固定点标准值相差就是校准值。 为了减小升降温速率对校准精度的影响,可采用不同升降温速度进行更精确的校准,即采用不同的加热冷却速率进行加热冷却,得到不同速率下的校准值(测温仪误差),将此温度误差外推至加热或冷却速率为零的情况。[size=18px][color=#990000]五、总结[/color][/size] 综上所述,高温固定点技术可为各种超高温3000℃热物理性能测试设备中的温度测量提供全温区范围内的准确校准,而且高温固定点技术具有良好的重复性、再现性和长期稳定性,并可溯源到国际温标,由此彻底解决了超高温热物性测试中一直困扰着的温度测量准确性评估难题,为材料高温热物理性能准确测量提供了可靠的技术保障。[align=center]=======================================================================[/align]

  • 高低温(-180~1500℃)和真空环境下的隔热材料热物理性能测试系统初步设计

    高低温(-180~1500℃)和真空环境下的隔热材料热物理性能测试系统初步设计

    [size=14px][color=#ff0000]摘要:针对各种柔性和刚性隔热材料对变温和变真空环境下热物理性能参数的测试要求,本文介绍了采用准稳态法ASTM E2584 进行的测试系统初步设计方案,拟实现的高低温测试温度范围为-180~1500℃,真空度范围为0.05Pa~0.1MPa,样品尺寸为300mm×300mm×50mm,可实现导热系数、热扩散系数和比热容三个热物理性能参数的快速连续测量,并同时可通过热扩散系数的连续测量确定复合材料的固化度及优化固化工艺。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、概述[/color][/size][size=16px]随着空间技术和半导体行业的发展,对各种高温隔热材料的热物理性能测试提出了更高的要求,如温度范围要宽可覆盖高低温、可变真空以模拟空间环境和真空炉气氛环境。在目前的全球商用热物性测试设备中,具有高低温和变真空功能的只有德国耐驰公司和上海依阳公司的产品。如图1所示,采用稳态保护热板法,耐驰公司设备最高温度达到600℃,测试样品冷热面温差为20℃左右的导热系数。如图2所示,采用稳态热流计法,上海依阳公司设备最高温度达到1000℃(热流计法),测试样品冷热面温差最大可达1000℃的等效导热系数,可更接近实际隔热工况的对隔热材料中导热、辐射和对流复合传热机理共同作用结果做出测试评价。[/size][align=center][size=14px][color=#ff0000][/color][/size][/align][align=center][size=14px][color=#ff0000][img=高低温隔热材料热物性测试,690,460]https://ng1.17img.cn/bbsfiles/images/2022/05/202205101124340854_8773_3384_3.jpg!w690x460.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图1 德国耐驰公司GHP 456保护热板法导热仪[/color][/align][align=center][size=14px][color=#ff0000][/color][/size][/align][align=center][size=14px][color=#ff0000][img=高低温隔热材料热物性测试,650,504]https://ng1.17img.cn/bbsfiles/images/2022/05/202205101125290599_6589_3384_3.jpg!w500x388.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图2 上海依阳公司TC-HFM-1000热流计法导热仪[/color][/align][size=16px]目前上述两种设备都在进行繁忙的常规测试,尽管都可以对隔热材料进行准确测试,但面对目前的各种新型高温隔热材料的发展,还是存在以下不足:(1)测试温度范围基本已经达到稳态法的极限,受材料和其他技术限制,再提升稳态法测试温度难度极大,同时会大幅提升造价。(2)稳态法只能测试导热系数一个参数,无法测试存在挥发和相变过程的热物性变化。(3)稳态法测试周期漫长,无法满足高通量隔热材料性能测试需求。为解决上述隔热材料热物理性能测试中存在的问题,本文将介绍采用准稳态法ASTM E2584 进行的隔热材料热物理性能测试系统初步设计方案。[/size][size=18px][color=#ff0000]二、拟达到的技术指标和初步方案[/color][/size][size=16px]拟达到的技术指标如下:(1)测试参数:导热系数、热扩散系数和比热容,测量不确定度±5%。(2)温度范围:-180℃~1500℃,发热体设计温度最高2000℃,测量不确定度±1%。(3)气氛环境:真空度0.01Pa~0.1MPa,可充各种惰性气体。(4)样品尺寸:截面积200×200mm~300×300mm,厚度20~150mm。(5)升降温速度:1~10℃/分钟。(6)测试方法:ASTM E2584。为实现上述技术指标,设计了隔热材料热物理性能测试系统,系统整体结构的初步设计如图3所示。[/size][align=center][size=14px][color=#ff0000][img=高低温隔热材料热物性测试,690,509]https://ng1.17img.cn/bbsfiles/images/2022/05/202205101126124993_1958_3384_3.png!w690x509.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图3 高低温和真空环境下隔热材料热物理性能测试系统[/color][/align][size=16px]整个测试系统设计为高低温分体结构,即分为高温测试和低温测试两套装置,高温覆盖室温~1500℃,低温覆盖室温~-180℃。两套装置分别安装在卧式真空腔体的前后推拉腔门上,公用一个真空腔体,整个真空腔体和前后门通过循环水进行冷却保护,并同时保证环境温度恒定。真空腔体内的气体种类和气压大小通过腔体侧面布置的真空系统进行精确控制。为实现1500℃甚至更高温度2000℃的材料热物性测试,测试系统的高温发热体为矩形钼加热片结构。为实现最低温度-180℃下的测试,采用液氮作为冷却介质,并结合矩形电加热薄膜进行温度精密调节和控制。高温和低温测量装置中的热源和冷源都采用薄片结构,可保证样品表面温度的均匀性和满足一维热流条件,同时可降低侧向高低温热防护装置的复杂程度。在测试系统中,高温加热装置和低温冷却装置都为升降结构,通过升降来完成被测样品的放入、取出和压紧,并实现不同厚度样品的测试。对于柔性隔热材料,可在测试过程中准确恒定样品厚度。在高低温真空试验设备中,高温发热体一般采用极易氧化的高温材料,同时频繁的高低温冷热交变会带来很大的热变形和热损伤等不利影响,这些都要求高低温设备的结构设计要便于维护和维修。因此本文所述高低温测试系统的设计采用了分体结构,非常便于拆装和维护。本文所述的高低温热物理性能测试系统,采用了准稳态测试方法,主要有以下优势:(1)可测量多个热物性参数,如导热系数、热扩散系数和比热容,特别是可以在整个相变过程中测试材料热物性的连续变化情况。同时还可以通过热扩散系数测试来确定固化度。(2)测试温度可以达到很宽的范围,而且测试速度快,通过一个完整的线性升降温过程就可以得到整个温区范围内的热物性随温度变化曲线,大幅缩短测试周期提高测试效率。(3)准稳态法测试原理是基于平板样品的一面线性温度变化,另一面绝热的边界条件,因此会在平板样品厚度方向上会形成更接近实际隔热应用时的较大温差,测试结果会包含导热、辐射和对流的复合传热效应,测试结果更能表征隔热材料的真实性能。[/size][align=center]=====================================[/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align]

  • 烧蚀防热材料高温热物理性能新型测试方法的初步研究

    烧蚀防热材料高温热物理性能新型测试方法的初步研究

    [color=#ff0000]摘要:文本针对高温下存在热化学反应的烧蚀防热材料,提出一种新型测试方法——恒定加热速率法,以期准确测试烧蚀防热材料的高温热物理性能,由此得到烧蚀防热材料在热化学反应过程中的热导率、热扩散率和比热容随温度的变化曲线。[/color][align=center][img=烧蚀防热材料导热系数测试,600,390]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011700416434_107_3384_3.png!w690x449.jpg[/img][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]烧蚀防热材料的高温热物理性能是高温下的传热管理和热化学烧蚀建模的必要参数,但因为烧蚀材料具有特殊性:它们具有相当低的热导率,加热过程中会产生气体,热性能非单调变化,甚至材料的热性能还取决于加热速率。这种特殊性造成目前的各种稳态法和瞬态法都不适合烧蚀防热材料的热物理性能测试,主要是因为在测试之前的温度稳定期间就已经发生了热化学反应。因此,烧蚀防热材料的高温热物理性能测试一直是个技术难题,需要开发一种新型测试方法,对整个使用温度范围内含有热化学反应过程的烧蚀防热材料热物理性能进行准确测量,甚至测试出不同加热速率下烧蚀防热材料的热物理性能。文本将针对高温下存在热化学反应的烧蚀防热材料,提出一种新型测试方法——恒定加热速率法,以期测试烧蚀防热材料的高温热物理性能,由此得到热化学反应过程中的热导率、热扩散率和比热容随温度的变化曲线。[size=18px][color=#ff0000]二、测试方法[/color][/size]测试方法基于热物理性能测试中一般都需要测量热流和温度的基本理念,由此建立了如图1所示的传热学第二类正规热工工况测试模型,即对被测样品表面进行恒定速率加热,样品表面温度呈线性变化,样品背面为绝热条件。[align=center][img=烧蚀防热材料导热系数测试,350,369]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011702158319_7823_3384_3.png!w625x659.jpg[/img][/align][align=center]图1 恒定加热速率法测量原理[/align]在图1所示的测试模型中,假设其中的热传递为一维热流,根据傅里叶传热定律,样品厚度方向上的传热方程为:[align=center][img=烧蚀防热材料导热系数测试,500,140]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011702541092_2146_3384_3.png!w690x194.jpg[/img][/align]式中: ρ为样品密度, C为样品比热容, λ为样品热导率,T为温度,t 为时间 ,T0 是 t=0 时的样品初始温度, b是加热速率。当加热速率b为一常数时,通过测试样品前后两个表面温度,并求解上述传热方程,可得到被测样品的等效热扩散率随平均温度的变化曲线。在这种恒定加热速率测试方法中,金属板起到热流传感器的作用,即在线性升温过程中测量金属板前后两表面的温度,并结合金属板的已知热物理性能参数,可计算得到流经金属板的热流密度,由此间接测量得到流经被测样品的热流密度。通过测量得到的热流密度,结合测量得到的被测样品两个表面温度,求解上述传热方程,可得到被测样品的等效热导率随平均温度的变化曲线。根据上述测量获得热扩散率和热导率,并依据比热容、密度、热扩散率和热导率之间的关系式λ=ρ×C×α,可计算得到被测样品的质量热容随温度的变化曲线。如果采用热膨胀仪和热重分析仪精确测量被测材料在不同温度下的密度变化,通过关系式就可获得被测样品的比热容随温度变化曲线。对于上述恒定加热速率法测试模型,我们采用有限元进行了热仿真模拟和计算,证明了此方法对于低导热隔热材料热物性测试的有效性。[size=18px][color=#ff0000]三、今后的工作[/color][/size]尽管进行了详细的测试公式推导和有限元仿真计算,但对于这种新型的恒定加热速率热物性测试方法,还需进一步开展以下研究工作:(1)采用无热化学反应的高温隔热材料进行测试,以考核测试方法的重复性和进行测量不确定度评估。(2)采用无热化学反应的高温隔热材料与其他高温热物性测试方法进行对比,如稳态热流计法、热线法和闪光法等。(3)采用烧蚀防热材料进行高温测试,以考核测试方法的重复性,并结合其他热分析方法、热模拟考核试验(石英灯、氧乙炔、小发动机火焰和风洞)和建模分析,验证新型测试方法的有效性。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 微量水分测定仪使用时的注意事项

    微量水分测定仪是一种以卡尔费休试剂为滴定液,以库仑法来测定试样中水分的仪器,现在正以其使用方便、快捷、精度高等优点,在石油产品及原料、化工溶剂、助剂、精细化工、电力行业的电力用油、医药、农药、农产品、科研、高等院校等各方面得到非常广泛的应用。所需要分析的样品也是种类繁多,有液体状的、糊状的(如乙醇、甲醇、变压器油、汽轮机油、树脂,新兴的产业如,锂电池中的电解液等等)、还有粉末状的、颗粒状的(比如PVC管的原料塑料粒子等)、气体的等等,可以说,只要是涉及对水分含量有要求的,都需要测定。 在实际使用过程中,我们应该注意哪些事项,来提高仪器的稳定性和结果的准确性、重现性呢?(一).使用环境的注意事项1.使用环境的湿度要保持在合理的范围内,要尽量避免电解液受潮。电解液受潮后会使空白电流增大,不容易达到平衡点.测试结果不稳定,数据忽高忽低。2.使用环境的温度要在合理的范围,避免低温或高温,温度过高(35度以上)就会使电解液的电导率升高,会造成测试数据偏高。温度过低(0度以下)就会使电解液的导电率降低,测试数据就会偏低。3.避免阳光直射,阳光直射在试剂上会使试剂发生光合反应,试剂自动过碘。微量的过碘会造成数据偏低。(二).进样操作的注意事项1.卡式库伦法(电量法)的典型测定范围是10μg~10mg,为了得到准确的测定结果,要适当地根据样品的含水量来控制样品的进样量。  2. 进样之前要保证所用的进样器是干燥的,一个样品有一个专用的进样器。如果是多个样品共用一个进样器,3.进样之前一定要用滤纸从末端到前端的擦拭进样气的针头部分,避免针头附着的水分带入到试剂中或附着在进样垫上。造成测试结果的不准确。4. 进样时,按下开始键后要尽量快的将样品匀速注入试剂中。5. 把样品注入电解池时,液体进样器的针头要插入到电解液中,液体、固体、气体进样器及样品不应与滴定池的内壁及电极接触。6.要保证每次进样量的一致性。一致性越好,数据重复性越好。

  • 采购氨氮测定仪和总氮测定仪~~~~

    因公司发展需要,需采购氨氮测定仪(120-250ppm)和总氮测定仪(1000-2000PPm),不知哪家的氨氮分析仪质量好,分析速度快,请各位大神提提意见啊~~~~

  • 水份测定仪

    大家都用什么样的水分测定仪?我们做酚醛树脂的,想买2万以下的容量法的水分测定仪,给推荐个好用的吧,谢谢

  • 自燃点测定仪安装方法

    自燃点测定仪,依据《DL/T706中华人民共和国电力行业标准--电厂用抗燃油自燃点测定方法》,为各大、中型发电企业及电厂用抗燃油的生产、检验部门专门设计制造,本仪器仅适用于执行DL/T706的试验、检验部门。(吉分已用 05.20)仪器安装1仪器在严寒和酷热高湿环境中运输、贮存后,应在5℃~40℃的正常工作温度下放置12小时后,方可使用。2开箱后,应按装箱单所列各项认真清点,确认备件是否齐全,并仔细检查仪器外观有无损伤,如有异常,请及时与本公司或售卖给您的经销商联系。3将仪器放置在实验室试验平台上。4将仪器的接地端子(在仪器后部)与大地良好、牢固地连接。5确认仪器上所有开关均处于关闭状态,然后接好电源线。自燃点测定仪的国产生产厂家北京得利特的就符合多种标准,型号也比较多。他们主要产品仪器有动粘度测定仪,微量水分测定仪,颗粒计数器,酸值测定仪、界面张力测定仪、石油密度测定仪,自燃点测定仪,空气释放值测定仪、馏程测定仪等多种润滑油分析仪器、燃料油分析仪器、绝缘油分析仪器,水质分析检测仪器、气体检测仪器。

  • atp测定仪如何选择合适的

    atp测定仪如何选择合适的

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]atp测定仪如何选择合适的[/color][/font]选择合适的ATP测定仪需要考虑多个因素,包括检测范围、精度要求、使用环境、便携性、数据管理和报告生成、可靠性和稳定性、技术支持和售后服务以及成本效益等。首先,要明确自己的需求,比如需要检测的样品类型、检测范围、精度要求等。这些因素将直接影响选择ATP测定仪的型号和配置。其次,要了解ATP测定仪的技术特点和优势,包括灵敏度、准确性、检测速度、操作简便性、便携性和移动性等方面。比如,高灵敏度的ATP测定仪能够检测到低浓度的ATP,从而更准确地评估样品的生物活性。同时,操作简便性也是一个重要的考虑因素,仪器应该具有直观的操作界面和用户友好的设计,使得操作人员能够轻松上手。此外,还要考虑ATP测定仪的品牌信誉和售后服务。选择知名品牌和有良好售后服务的厂家,可以确保仪器的质量和可靠性,并获得更好的技术支持和维护服务。最后,要综合考虑ATP测定仪的成本效益。除了仪器本身的价格,还要考虑相关试剂和耗材的费用,以及使用和维护成本。选择具有合理价格和性能的ATP测定仪,可以实现长期的成本效益。总之,选择合适的ATP测定仪需要综合考虑多个因素,包括需求、技术特点、品牌信誉、售后服务和成本效益等。通过仔细评估和比较不同品牌和型号的ATP测定仪,选择最适合自己的仪器,可以提高工作效率,确保食品和环境的卫生质量。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403040955368729_9767_6098850_3.jpg!w690x690.jpg[/img][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制