当前位置: 仪器信息网 > 行业主题 > >

等离子体监控系统

仪器信息网等离子体监控系统专题为您提供2024年最新等离子体监控系统价格报价、厂家品牌的相关信息, 包括等离子体监控系统参数、型号等,不管是国产,还是进口品牌的等离子体监控系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合等离子体监控系统相关的耗材配件、试剂标物,还有等离子体监控系统相关的最新资讯、资料,以及等离子体监控系统相关的解决方案。

等离子体监控系统相关的资讯

  • SEMICON现场直击:膜厚测量、等离子体监控等滨松系列解决方案
    2023年6月29日,半导体和电子行业年度盛会SEMICON China 2023在上海新国际博览中心隆重举行。展会现场,滨松也携最新半导体相关技术解决方案亮相。展会期间,滨松以倒金字塔产业链概念,立体地展示滨松在半导体行业,从元器件、模块、系统到大型设备的典型产品,围绕半导体量测、半导体检测、涂胶显影、静电去除、SEM、测光、GaN/Perovskite材料的IQE直接测量、GaN晶圆检等具体应用展开介绍。以下是现场视频:条纹相机、绝对量子效率测试仪、荧光寿命测试仪高分辨率微光显微镜、高分辨率倒置微光显微镜TDI 相机、CMOS图像传感器等膜厚测量系统、多波段等离子体加工监控器
  • 细胞分泌物的实时纳米等离子体成像 ——新的纳米等离子体成像系统允许对单细胞分泌物进行时空监测
    • Inara Aguiar来自生物纳米光子系统实验室(BIOS)、EPFL和日内瓦大学的研究人员开发了一种光学成像方法,可以在空间和时间上提供细胞分泌物的四维视图。通过将单个细胞放入纳米结构镀金芯片的微孔中,并在芯片表面诱导一种称为等离子体共振的现象,他们可以在分泌物产生时绘制分泌物的图谱。这项研究发表在《自然生物医学工程》(Nature Biomedical Engineering )杂志上,详细介绍了细胞的功能和交流方式,有助于药物开发和基础研究。芯片上的单个单元。(图片来源:BIOS EPFL)细胞分泌物(即蛋白质、抗体和神经递质)在免疫反应、代谢和细胞之间的交流中起着至关重要的作用。了解细胞分泌物的过程对开发疾病治疗至关重要;然而,现有的方法只能量化分泌物,而不能提供其产生机制的任何细节。BIOS负责人Hatice Altug表示:“我们工作的一个关键方面是,它使我们能够以高通量的方式单独筛选细胞。对许多细胞平均反应的集体测量并不能反映它们的异质性……在生物学中,从免疫反应到癌症细胞,一切都是异质性的。这就是为什么癌症如此难以治疗。”筛选细胞分泌物该方法包括一个1cm2的纳米等离子体芯片,由数百万个小孔和数百个用于单个细胞的腔室组成;该芯片由覆盖有薄聚合物网的纳米结构金基底组成。用细胞培养基填充腔室以在测量过程中保持细胞存活。Saeid Ansaryan说:“我们仪器的美妙之处在于,分布在整个表面的纳米孔将每个点都转化为传感元件。这使我们能够观察释放蛋白质的空间模式,而不考虑细胞的位置。”使用这种新方法,可以评估两个重要的细胞过程,细胞分裂和死亡。此外,还对分泌精细抗体的人类供体B细胞进行了研究。研究小组可以看到两种形式的细胞死亡过程中的细胞分泌,细胞凋亡和坏死。在后者中,内容以不对称的方式释放,产生了图像指纹——这是科学家首次能够在单细胞水平上捕捉到细胞特征。由于测量是在营养丰富的细胞培养基中进行的,因此与其他成像技术一样,它不需要有毒的荧光标记,并且所研究的细胞可以很容易地回收。根据作者的说法,“该系统的多功能性和性能及其与粘附细胞和非粘附细胞的兼容性表明,它可以为全面了解单细胞分泌行为铺平道路,应用范围从基础研究到药物发现和个性化细胞治疗。”原始出版物:Ansaryan, S., Liu, YC., Li, X., et al.: High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat. Biomed. Eng. (2023) DOI: 10.1038/s41551-023-01017-1作者简介Inara AguiarInara是一位拥有无机化学博士学位的科学编辑和作家。在获得计算化学博士后后,她开始在化学、工程、生物工程和生物化学领域担任科学编辑。她一直在几家科学出版商担任技术作家/编辑,最近加入威利分析科学公司,担任自由职业内容创作者。本文来源:Real-time nanoplasmonic imaging of cell secretions——New nanoplasmonic imaging system allows spatiotemporal monitoring of single-cell secretions。Microscopy Light Microscopy ,13 April 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 超快电镜助力等离子体研究重要发现 万亿分之一秒的等离子体场检测
    阿贡纳米材料中心的超快电子显微镜,图片自:阿贡国家实验室每个去过大峡谷的人都能体会到靠近自然边缘的强烈感受。同样,美国能源部(DOE)阿贡国家实验室(Argonne National Laboratory)的科学家们发现,当接近一层单原子厚的碳薄膜(石墨烯)边缘时,金纳米颗粒会表现异常。这可能对新型传感器和量子设备的发展产生重大影响。这一发现是通过美国能源部科学用户设施办公室——阿贡纳米材料中心 (CNM) 新建立的超快电子显微镜 (UEM) 实现的。UEM能够实现在纳米尺度和不到一万亿分之一秒的时间尺度内的可视化和现象研究。 这一发现可能会在不断发展的等离子体领域引起轰动,该领域涉及光撞击材料表面并触发电子波,称为等离子体场。多年来,科学家们一直致力于开发具有广泛应用的等离子体设备——从量子信息处理到光电子学(结合光基和电子元件),再到用于生物和医学目的的传感器。为此,他们将具有原子级厚度的二维材料(例如石墨烯)与纳米尺寸的金属颗粒相结合。而要想理解这两种不同类型材料的组合等离子体行为,就需要准确了解它们是如何耦合的。在阿贡最近的一项研究中,研究人员使用超快电子显微镜直接观察金纳米颗粒和石墨烯之间的耦合。“表面等离子体是纳米粒子表面或纳米粒子与另一种材料界面上的光诱导电子振荡,”阿贡纳米科学家Haihua Liu说, “当我们在纳米粒子上照射光时,它会产生一个短寿命的等离子体场。当两者重叠时,我们 UEM 中的脉冲电子与这个短寿命场相互作用,电子要么获得能量,要么失去能量。然后,我们收集那些使用能量过滤器获得能量的电子来绘制纳米粒子周围的等离子体场分布。”在研究金纳米粒子时,Liu和他的同事发现了一个不寻常的现象。当纳米颗粒位于石墨烯薄片上时,等离子体场是对称的。但是当纳米颗粒靠近石墨烯边缘时,等离子体场在边缘区域附近集中得更强烈。Liu说:“这是一种非凡的新思考方式,可以思考我们如何利用纳米尺度的光以等离子体场和其他现象的形式操纵电荷。” “凭借超快的能力,当我们调整不同的材料及其特性时,很难预测我们将看到什么。”整个实验过程,从纳米粒子的刺激到等离子体场的检测,发生在不到几百千万亿分之一秒内。CNM 主管 Ilke Arslan 表示:“CNM 在容纳 UEM 方面是独一无二的,该 UEM 对用户开放,并且能够以纳米空间分辨率和亚皮秒时间分辨率进行测量。” “能够在如此短的时间窗口内进行这样的测量,开启了对非平衡状态中大量新现象的研究,而我们以前没有能力探测到这些现象。我们很高兴能够提供这种能力给国际用户。”对于这种纳米颗粒-石墨烯系统的耦合机制的理解,将是未来开发令人兴奋的新型等离子体装置的关键。基于这项研究的论文“使用超快电子显微镜可视化等离子体耦合”(Visualization of Plasmonic Couplings Using Ultrafast Electron Microscopy)发表在 6 月 21 日的《Nano Letters》上,DOI: 10.1021/acs.nanolett.1c01824。除了 Liu 和 Arslan,其他作者还包括 Argonne 的 Thomas Gage、Richard Schaller 和 Stephen Gray。印度理工学院的 Prem Singh 和 Amit Jaiswal 也做出了贡献,武汉大学的 Jau Tang 和 IDES, Inc. 的 Sang Tae Park 也做出了贡献(日本电子于2020年初收购超快时间分辨电镜商IDES)。文:Jared Sagoff,阿贡国家实验室关于CNM新建立的超快电子显微镜 (UEM)CNM 的超快电子显微镜 (UEM) 是一种独特的工具,可供美国能源部纳米科学研究中心的用户使用。CNM超快电子显微镜实验室。左起顺时针:Thomas Gage, Haihua Liu和Ilke ArslanUEM 的应用是利用电子研究纳米级材料中的超快(亚皮秒)结构和化学动力学,这是一个广受关注的新兴科学领域。CNM的 UEM 结合了以下功能:■具有高重复率的可调谐飞秒激光器■产生脉冲电子束的多种途径■配备高灵敏度相机和电子能量过滤的同步激光泵浦脉冲透射电子显微镜CNM精心设计的UEM打开了通向任何标准电子显微镜都不具备的科学理解领域的大门,即理解亚纳米空间分辨率材料中的快速(亚皮秒到纳秒)动力学和短期亚稳态相。它代表了一种关键的分析工具,可以提供超快的结构和化学变化,以广泛的系统。在未来几年,通过开发超快的电气和机械触发机制,CNM期望开发具有基础和设备相关性的新型样品环境和样品激发途径。结合超快探测,这将允许深入了解电场和应变的非平衡现象。例如,人们可以探索声学声子模式在量子信息科学感兴趣的材料和系统中产生的应变随时间变化的影响,例如金刚石或碳化硅中的空位缺陷。在纳米科学的许多领域中,UEM 在促进对瞬态过程的理解方面具有很高的价值,例如激子定位、短寿命亚稳相、光致分离、拓扑材料动力学、等离子体系统、分子马达和磁波动等。连同理论建模,UEM 将为纳米科学界提供对纳米材料的前所未有的理解。阿贡国家实验室是 1946 年在伊利诺伊州杜佩奇县成立的第一个也是最大的国家实验室。 美国能源部资助阿贡国家实验室和芝加哥阿贡大学有限责任公司管理该实验室。 阿贡国家实验室前身是芝加哥冶金实验室,也是恩里科费米 (Enrico Fermi) 第一个受控核链式反应演示的所在地。 目前,阿贡实验室由阿贡先进光子源、阿贡串联直线加速器系统组成,开展基础科学研究、清洁能源实验、全国环境问题管理,最重要的是审查和监测国家安全风险。
  • 80万!大连海事大学电感耦合等离子体测试系统等设备采购
    项目概况大连海事大学电感耦合等离子体测试系统等设备采购项目 招标项目的潜在投标人应在大连机械设备成套有限公司(大连市沙河口区西南路350-2号)获取招标文件,并于2022年01月28日 09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:DCZ202201009项目名称:大连海事大学电感耦合等离子体测试系统等设备采购项目预算金额:80.0000000 万元(人民币)采购需求:电感耦合等离子体测试系统1台,高效液相色谱仪1台,总有机碳分析仪1台。合同履行期限:合同签订后3个月内。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:无。三、获取招标文件时间:2022年01月07日 至 2022年01月14日,每天上午8:30至11:30,下午13:00至17:00。(北京时间,法定节假日除外)地点:大连机械设备成套有限公司(大连市沙河口区西南路350-2号)方式:本项目不接受现场报名,投标人须将以下资料PDF扫描件(加盖公章)一套发至邮箱guochongjin@163.com:(1)投标人购买文件报名表(格式自拟,内容为项目名称、项目编号、投标单位名称、联系人、联系方式、电子邮箱等)(2)营业执照副本、法定代表人授权委托书(3)招标文件费用银行电汇凭证(回单)复印件。售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年01月28日 09点30分(北京时间)开标时间:2022年01月28日 09点30分(北京时间)地点:大连市高新园区黄浦路523号海事科技大厦A座(锦辉购物广场高新店漫咖啡后身)8楼会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜采购代理机构信息开户名称:大连机械设备成套有限公司.开户行:中国银行大连沙河口支行.帐号:314256319366.七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:大连海事大学     地址:大连市甘井子区凌海路1号        联系方式:石老师0411-84729221      2.采购代理机构信息名 称:大连机械设备成套有限公司            地 址:大连市沙河口区西南路350-2号            联系方式:郭崇瑾、张瑞宸0411-83608842-121、122            3.项目联系方式项目联系人:郭崇瑾、张瑞宸电 话:  0411-83609543-121、122
  • 敞开式等离子体辅助激光解吸质谱成像系统的构建和应用
    成果名称敞开式等离子体辅助激光解吸质谱成像系统的构建和应用单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度&radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产成果简介:质谱成像已经成为了质谱领域的研究热点,特别是在生命科学研究领域应用广泛,成为了病理学、生物化学以及制药分析等领域的强有力工具,具有非常广泛的发展前景。鉴于我国在质谱成像领域的研究基础较为薄弱,本项目拟从研究平台的搭建入手,开展等离子体辅助激光解析质谱成像研究。主要研究内容包括:1)利用DART、多波长激光以及三维移动平台搭建质谱成像研究平台,提高分辨率,为实际研究奠定基础。2)开发适用于成像平台的数据处理软件,并逐步改进和优化。3)探讨新型基质在质谱成像系统中的作用,以提高质谱成像检测结果。4)利用搭建的质谱成像研究平台,进行生命科学研究领域中相关样品组织的小分子目标物成像研究。目前,项目按照计划顺利进行。完成质谱成像平台的搭建和测试工作。将DART、多波长激光以及三维移动平台组合在一起形成了质谱成像技术平台,采用三维移动样品台自动控制样品分析位点, 质谱成像软件将样品位置和质谱数据整合在一起,可以绘出二维图像。并且改进激光仪器,提高激光的分辨率以提高质谱成像的分辨率。应用前景:质谱成像已经成为了质谱领域的研究热点,特别是在生命科学研究领域应用广泛,成为了病理学、生物化学以及制药分析等领域的强有力工具,具有非常广泛的发展前景。
  • 663万!华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目
    项目编号:0773-2240SHHW0019项目名称:华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目预算金额:663.0789000 万元(人民币)最高限价(如有):663.0789000 万元(人民币)采购需求:项目名称:华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目包件1:反应离子束刻蚀系统;数量及单位:1台;简要技术参数:3、等离子体源3.1、射频发生器:最大功率300瓦,13.56MHz,带自动匹配单元;★3.2、ICP源发生器:最大功率3000瓦,2.0MHz,带自动匹配单元;包件2:感应耦合等离子体增强化学气相沉积系统;数量及单位:1台;简要技术参数:★1、SiO2的标准沉积速率:≥40 nm/min;高速沉积速率:≥500 nm/min2、SiO2薄膜沉积厚度:≥6um。其余详见本项目招标文件。合同履行期限:自合同签订之日起250天内;本项目( 不接受 )联合体投标。
  • 140万!山东大学电感耦合等离子体质谱联用系统采购项目
    项目编号:SDQDHF20220119-H066/HYHA2022-2646项目名称:山东大学电感耦合等离子体质谱联用系统采购采购方式:竞争性磋商预算金额:140.0000000 万元(人民币)最高限价(如有):140.0000000 万元(人民币)采购需求:采购电感耦合等离子体质谱联用系统,具体参数详细见“第四章 采购内容及项目要求”合同履行期限:自合同签订之日起至质保期满。本项目( 不接受 )联合体投标。140万质谱联用系统附件.pdf
  • 精确跟踪芯片蚀刻过程,用高分辨率光谱仪监测等离子体
    在半导体行业,晶圆是用光刻技术制造和操作的。蚀刻是这一过程的主要部分,在这一过程中,材料可以被分层到一个非常具体的厚度。当这些层在晶圆表面被蚀刻时,等离子体监测被用来跟踪晶圆层的蚀刻,并确定等离子体何时完全蚀刻了一个特定的层并到达下一个层。通过监测等离子体在蚀刻过程中产生的发射线,可以精确跟踪蚀刻过程。这种终点检测对于使用基于等离子体的蚀刻工艺的半导体材料生产至关重要。等离子体是一种被激发的、类似气体的状态,其中一部分原子已经被激发或电离,形成自由电子和离子。当被激发的中性原子的电子返回到基态时,等离子体中存在的原子就会发射特有波长的辐射光,其光谱图可用来确定等离子体的组成。等离子体是用一系列高能方法使原子电离而形成的,包括热、高能激光、微波、电和无线电频率。实时等离子体监测以改进工艺等离子体有一系列的应用,包括元素分析、薄膜沉积、等离子体蚀刻和表面清洁。通过对等离子体样品的发射光谱进行监测,可以为样品提供详细的元素分析,并能够确定控制基于等离子体的过程所需的关键等离子体参数。发射线的波长被用来识别等离子体中存在的元素,发射线的强度被用来实时量化粒子和电子密度,以便进行工艺控制。像气体混合物、等离子体温度和粒子密度等参数都是控制等离子体过程的关键。通过在等离子体室中引入各种气体或粒子来改变这些参数,会改变等离子体的特性,从而影响等离子体与衬底的相互作用。实时监测和控制等离子体的能力可以改进工艺和产品。一个基于Ocean Insight HR系列高分辨率光谱仪的模块化光谱装置用于监测等离子体室引入不同气体后,氩气等离子体发射的变化。测量是在一个封闭的反应室中进行的,光谱仪连接光纤和余弦校正器,通过室中的一个小窗口观察。这些测量证明了模块化光谱仪从等离子体室中实时获取等离子体发射光谱的可行性。从这些发射光谱中确定的等离子体特征可用于监测和控制基于等离子体的过程。等离子体监测可以通过灵活的模块化设置完成,使用高分辨率光谱仪,如Ocean Insight的HR或Maya2000 Pro系列(后者是检测UV气体的一个很好的选择)。对于模块化设置,HR光谱仪可以与抗曝光纤相结合,以获得在等离子体中形成的定性发射数据。从等离子体室中形成的等离子体中获取定性发射数据。如果需要定量测量,用户可以增加一个光谱库来比较数据,并快速识别未知的发射线、峰和波段。监测真空室中形成的等离子体时,一个重要的考虑因素是与采样室的接口。仪器部件可以被引入到真空室中,或者被设置成通过视窗来观察等离子体。真空通管为承受真空室中的恶劣条件而设计的定制光纤将部件耦合到等离子体室中。对于通过视口监测等离子体,可能需要一个采样附件,如余弦校正器或准直透镜,这取决于要测量的等离子体场的大小。在没有取样附件的情况下,从光纤到等离子体的距离将决定成像的区域。使用准直透镜可以获得更局部的收集区域,或者使用余弦校正器可以在180度的视野内收集光线。测量条件HR系列高分辨率光谱仪被用来测量当其他气体被引入等离子体室时氩等离子体的发射变化。光谱仪、光纤和余弦校正器通过室外的一个小窗口收集发射光谱,对封闭反应室中的等离子体进行光谱数据采集(图1)。图1:一个模块化的光谱仪设置可以被配置为真空室中的等离子体测量。一个HR2000+高分辨率光谱仪(~1.1nm FWHM光学分辨率)被配置为测量200-1100nm的发射(光栅HC-1,SLIT-25),使用抗曝光纤(QP400-1-SR-BX光纤)与一个余弦校正器(CC-3-UV)耦合。选择CC-3-UV余弦校正器采样附件来获取等离子体室的数据,以解决等离子体强度的差异和测量窗口的不均匀问题。其他采样选项包括准直透镜和真空透镜。结果图2显示了通过等离子体室窗口测量的氩等离子体的光谱。690-900纳米的强光谱线是中性氩(Ar I)的发射线,400-650纳米的低强度线是由单电离的氩原子(Ar II)产生的。图2所示的发射光谱是测量等离子体发射的丰富光谱数据的一个例子。这种光谱信息可用于确定一系列关键参数,以监测和控制半导体制造过程中基于等离子体的工艺。图2:通过真空室窗口测量氩气等离子体的发射。氢气是一种辅助气体,可以添加到氩气等离子体中以改变等离子体的特性。在图3中,随着氢气浓度的增加添加到氩气等离子体中的效果。氢气改变氩气等离子体特性的能力清楚地显示在700-900纳米之间的氩气线的强度下降,而氢气浓度的增加反映在350-450纳米之间的氢气线出现。这些光谱显示了实时测量等离子体发射的强度,以监测二次气体对等离子体特性的影响。观察到的光谱变化可用于确保向试验室添加最佳数量的二次气体,以达到预期的等离子体特性。图3:将氢气添加到氩等离子体中会改变其光谱特性。在图 4 和 5 中,显示了在将保护气添加到腔室之前和之后测量的等离子体的发射光谱。 保护气用于减少进样器和样品之间的接触,以减少由于样品沉积和残留引起的问题。 在图 4中,氩等离子体发射光谱显示在加入保护气之前,加入保护气后测得的发射光谱如图5所示。保护气的加入导致了氩气发射光谱的变化,从400纳米以下和~520纳米处的宽光谱线的消失可以看出。图4:加入保护气之前,在真空室中测量氩等离子体的发射。图5:加入保护气后,氩气发射特性在400纳米以下和~520纳米处有明显不同。结论紫外-可见-近红外光谱是测量等离子体发射的有力方法,以实现元素分析和基于等离子体过程的精确控制。这些数据说明了模块化光谱法对等离子体监测的能力。HR2000+高分辨率光谱仪和模块化光谱学方法在测量等离子体室条件改变时,通过等离子体室的窗口测量等离子体发射光谱,效果良好。还有其他的等离子体监测选项,包括Maya2000 Pro,它在紫外光下有很好的响应。另外,光谱仪和子系统可以被集成到其他设备中,并与机器学习工具相结合,以实现对等离子体室条件更复杂的控制。以上文章作者是海洋光学Yvette Mattley博士,爱蛙科技翻译整理。世界上第一台微型光谱仪的发明者海洋光学OceanInsight,30年来专注于光谱技术和设备的持续创新,在光谱仪这个细分市场精耕细作,打造了丰富而差异化的产品线,展现了光的多样性应用,坚持将紧凑、便携、高集成度以及高灵敏度、高分辨率、高速的不同设备带给客户。2019年,从Ocean Optics更名为Ocean Insight,也是海洋光学从光谱产品生产商转型为光谱解决方案提供商战略调整的开始。此后,海洋光学不仅继续丰富扩充光传感产品线,且增强支持和服务能力,为需要定制方案的客户提供量身定制的系统化解决方案和应用指导。作为海洋光学官方授权合作伙伴,爱蛙科技(iFrogTech)致力于与海洋光学携手共同帮助客户面对问题、探索未来课题,为打造量身定制的光谱解决方案而努力。如需了解更多详情或探讨创新应用,可拨打400-102-1226客服电话。关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。
  • 159万!清华大学单细胞电感耦合等离子体质谱分析系统采购项目
    项目编号:清设招第2022186号项目名称:单细胞电感耦合等离子体质谱分析系统预算金额:159.0000000 万元(人民币)采购需求: 包号名称数量是否允许进口产品投标01单细胞电感耦合等离子体质谱分析系统1套是 设备用途介绍 :ICP-MS可以分析元素周期表中所有金属元素,检出限在1ppt以下。同时可以分析绝大部分非金属元素,例如As、Se、P、S、Si、Te等,检出限低于1ppb。实验室可完成现有重金属参数的检测,还能开展单细胞元素分布分析、重金属形态分析、纳米颗粒分析等应用。简要技术指标 :★1. 为了能够在碰撞或反应模式中引入质量筛选功能以实现更有效的多原子离子干扰去除效果,实现对复杂基体样品的准确分析,仪器供应商所提供的产品应具有两套可实现质量筛选功能的四极杆。★2. 雾化室:为了减少基体溶剂的引入量,抑制多原子离子干扰物的产率,同时消除温度波动对稳定性的影响,产品配备具有半导体制冷功能的小体积旋流型雾化室,制冷能力应小于-8℃,且制冷温度越低越好。提供证明文件。合同履行期限:交货时间:合同签订后3个月内本项目( 不接受 )联合体投标。
  • 138万!赛默飞中标山东大学电感耦合等离子体质谱联用系统采购项目
    一、项目编号:SDQDHF20220119-H066/HYHA2022-2646(招标文件编号:HYHA2022-2646)二、项目名称:山东大学电感耦合等离子体质谱联用系统采购三、中标(成交)信息供应商名称:上海高驰进出口有限公司供应商地址:上海市长宁区娄山关路555号1502室中标(成交)金额:138.1372080(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 上海高驰进出口有限公司 电感耦合等离子体质谱联用系统 赛默飞 ICAP RQ 1套 1381372.08
  • 基于多天线耦合技术的微波等离子体化学气相沉积系统,完美实现大尺寸金刚石制备
    化学气相沉积是使几种气体在高温下发生热化学反应而生成固体的方法,等离子体化学气相沉积是通过能量激励将工作物质激发到等离子体态从而引发化学反应生成固体方法。因为等离子体具有高能量密度、高活性离子浓度、故而可以引发在常规化学反应中不能或难以实现的物理变化和化学变化,且具有沉积温度低、能耗低、无污染等优点,因此等离子体化学气相沉积法得到了广泛的应用。微波等离子体也具有等离子体洁净、杂质浓度低的优点,因而微波等离子体化学气相沉积法(MPCVD)成为制备高质量金刚石的优先方法,也是目前有发展前景的高质量金刚石(单晶及多晶)沉积方法之一。MPCVD设备反应腔示意图金刚石具有优异的力学、电学、光学、热学、声学性能,在众多领域具有广泛的用途。而这些用途的实现在很大程度上依赖于高取向和单晶金刚石以及大面积透明金刚石膜。由于金刚石生长过程中普遍存在缺陷以及难以获取大面积范围内均匀温度场等参数,导致金刚石的取向发生改变,使高取向和单晶金刚石以及大面积透明金刚石膜的获得十分困难。因此,目前金刚石研究面临的大挑战和困难是如何制备优质单晶、多晶金刚石样品。 德国iplas公司基于 CYRANNUS 多天线耦合技术,解决了传统的单天线等离子技术的局限。CYRANNUS技术采用腔外多天线设置,确保等离子团稳定生成于腔内中心位置,减少杂质来源,提高晶体纯度(制备的金刚石单晶纯度可达VVS别以上)。MPCVD系统可合成饰钻石 同时稳定的微波发生器也易于控制,可以在10mbar到室压范围内激发高稳定度的等离子团,大限度的减少了因气流、气压、气体成分、电压等因素波动引起的等离子体状态的变化,从而确保单晶生长的持续性,为合成大尺寸单晶金刚石及薄膜提供了有力保证。 MPCVD系统可合成优质大尺寸金刚石薄膜 MPCVD同样适用于平面基体,或曲面颗粒的其它硬质材料如Al2O3,c-BN的薄膜沉积和晶体合成。德国iplas公司凭借几十年在等离子技术领域的积累,可以为用户提供高度定制的设备,满足用户不同的应用需要。相关产品链接 微波等离子化学气相沉积系统 http://www.instrument.com.cn/netshow/SH100980/C184528.htm
  • 最小耐高温的等离子体晶体管问世(图)
    美国犹他大学的研究人员研制了迄今为止最小的等离子体晶体管,其可承受核反应堆的高温和离子辐射环境条件,有助于研制在战场上收集医用X射线的智能手机、实时监测空气质量的设备、无需笨重的镜头和X射线光束整形装置的X射线光刻技术。  这种晶体管有潜力开辟适用于核环境工作的新一类电子器件,能用于控制、指引机器人在核反应堆中执行任务,也能在出现问题时控制核反应堆,在核攻击事件中继续工作。  作为当代电子设备的关键组成元件,硅基晶体管通过利用电场控制电荷的流动来实现晶体管的打开或关闭,当温度高于550华氏度时失效,这是核反应堆通常工作的温度。而此次美研究人员将利用传导离子和电子的等离子体空气间隙作为导电沟道,研制了可在极高温度下工作的等离子体晶体管。它的长度为1-6微米,为当前最先进的微型等离子体器件的1/500,工作电压是其六分之一,工作温度高达华氏1450度。核辐射可将气体电离成等离子体,因此这种极端的环境更易于等离子体器件工作。
  • 珀金埃尔默推出适用于Optima系列等离子体发射光谱仪的手机应用软件
    作为致力于不断改善人类健康和环境健康的全球领军企业,珀金埃尔默近日宣布,其最新研发的适用于Optima系列等离子体发射光谱仪的手机应用软件——INconX 移动应用软件 已经能够从Apple 应用软件商城免费下载获得。配合Apple的iOS-7操作系统,INconX 能够协助使用者在世界任何角落远程监控实验室中原子光谱仪器的运行和在线分析(如随时控制等离子体的开关)。这将大大节省使用者的时间,并提高实验室产量。INconX 移动应用软件拥有简便易用的操作界面,帮助使用者通过IP地址辨认和识别各自的Optima系列仪器。在互联网络条件允许的情况下,实验室通过加密的WinLab 5.5 软件接口,能够同时为多名用户进行授权并进行管理。 INconX 移动应用软件目前可从Apple应用软件商城内下载获得:https://itunes.apple.com/us/app/inconx/id787459888。欲了解更多关于INconX的信息,您可登陆以下链接:www.perkinelmer.com/INconX。关于PerkinElmer PerkinElmer是全球领先的,专注于改善人类健康和环境健康的跨国企业。2012年,公司营业收入约为21亿美元,在150个国家拥有超过7500名员工。同时,公司也是标准普尔500指数公司,欲了解更多信息请访问:www.perkinelmer.com.cn媒体联系: 薛萍:+86 21 60645609
  • 中国成立首个等离子体国家实验室
    中国首个航空等离子体动力学国家级实验室成立  5月12日,中国首个航空等离子体动力学国家级重点实验室在空军工程大学成立。对于大多数人来说,等离子体这种宏观的中性电离气体距离他们的生活实在是太遥远了。即使是热爱军事的网友,很多对这方面也仅仅是表面的了解。等离子体与军用航空的关系,流传最广泛的就是所谓的“俄罗斯战机使用等离子体隐身”这个说法了。  说到“等离子体隐身”,就要提到人类的载人航天。在一次次飞船、航天飞机返回地球的过程中,由于他们和大气层的剧烈摩擦,飞船表面产生了等离子层,形成了电磁屏蔽。很多中国人都会记得几次神舟飞船返回地球的时候都会有一段时间和地面暂时中断联系,就是这种现象的反映。当然,这种现象早就受到了军事技术人员的注意,就是有可能通过这种等离子体的电磁屏蔽来实现作战飞机的主动隐身。然而设想并不等于工程实践,实际上通过等离子体来实现隐身从工程角度来讲很难实现。因为想实现覆盖几十米长作战飞机的等离子层,要么会牺牲飞机的气动外形,要么会对飞机的电源和燃料提出了很难实现的要求。  现在对等离子体的研究,基本上已经可以确定。那种大气摩擦产生的热等离子,是不可能应用于飞机隐身的。即使在俄罗斯,现在也没有没有确凿的证据来证明有实用的等离子体飞机隐身技术。唯一在技术界流传广泛的,就是有传闻美国在B-2轰炸机上使用了一些由稳态电源或者微波产生的冷等离子体来实现隐身。这种传闻,和美国公开B-2采用飞翼和涂料来实现隐身的说法差异很大。由于B-2轰炸机涉及到美军的核心机密,等离子体隐身的说法只能是个疑问。  除了等离子体隐身,那么等离子体和军用航空的契合点又在哪里呢?  我们不妨再看看原来的那条新闻。不难发现,这个实验室的全称是“航空等离子体动力学国家级重点实验室”,里面有动力学这个关键词。而新闻中还提到:“这个实验室的成立,是推进我国在航空动力发展领域实现理论和技术创新的重要举措,并为解决制约航空装备发展和空军战斗力生成的瓶颈问题提供了重要的研究平台……”答案已经很明显了,等离子体研究与“航空动力”这制约中国航空装备发展和空军战斗力生成的瓶颈问题有着直接的关系。  一些公开的资料表明,等离子体在航空动力上,可以有效地提高燃烧稳定性和燃烧效率,极大改善航空发动机压气机增压比升高后的工作稳定性,从而实现推重比10甚至更高涡扇发动机的生产;而在飞机气动力上,等离子体可以减少飞机阻力,增加升力,提高战机的失速攻角和机动性。  例如在航空发动机上,风扇、压气机是航空涡扇发动机的核心部件。提高航空涡扇发动机的推重比,只能增加压气机的增压比,而随之带来的问题就是压气机出口面积急剧缩小、效率严重降低。而通过在压气机的特定位置上布置等离子体激励装置,则会有效改善发动机内气体的流动效果。  毫无疑问,等离子体动力学的研究在全球范围内都是一个非常超前的领域。以至于在公开的资料中,只知道等离子体对空气的流动会产生作用,但是其作用的机理却不清楚。那么国外的一些先进航空动力,例如F-119、F-135发动机,是否使用了等离子体技术,也是一个谜。不过这次我国成立等离子体国家级重点实验室,显示我国在航空动力、飞行器气动力研究方面,已经进入了最前沿领域。随着我国在等离子体动力学研究上的不断深入,中国在研制推重比10以上的先进航空发动机的技术积淀,将更为深厚,从而为先进战机、空天飞行器、大型军用运输机的发展奠定坚实的基础。
  • 高能量约束先进模式等离子体运行研究取得重要成果
    实现高性能等离子体稳态运行是未来聚变堆必须要解决的关键科学问题。近期,中国科学院合肥物质科学研究院等离子体物理研究所核聚变大科学团队发挥体系化建制化优势,取得了系列原创性的前沿物理基础研究成果。1月7日,国际学术期刊《科学进展》(Science Advances)发表了团队在高能量约束先进模式等离子体运行方面取得的重要成果。   托卡马克先进运行模式是当前磁约束核聚变研究的热点之一。核聚变大科学团队在托卡马克装置等离子体物理实验研究中发现并证明了一种新的高能量约束和自组织模式,即超级I模(Super I-mode)。其特点是等离子体中心的电子内部输运垒和等离子体边界的I模共存,从而大幅度提高了能量约束。该先进模式具有芯部无杂质积累,便于聚变反应生成物排出,维持平稳温度台基等优点,并实现了芯部高约束与无边界密度台基及边界不稳定性的兼容,使得等离子体与壁相互作用同长时间尺度上的高性能等离子体运行方面的优势能够比较好地结合起来。这种无需通过外部控制来确保等离子体稳态运行的高能量约束模式,可应用于国际热核聚变实验堆长脉冲运行,对于未来聚变堆运行具有重要意义。   日前,核聚变大科学团队还首次证明了托卡马克等离子体中存在湍流驱动的电流成份,是保持高电子温度稳定运行的关键物理机制。借助湍流回旋动理学模拟计算证实了实验中观察到的湍流是电子温度梯度模,其产生的剩余协强可驱动这一电流。湍流驱动的电流和压强梯度共同驱动内扭曲模,形成湍流-湍动电流-内扭曲模自我调节系统,从而维持芯部电子温度梯度稳定。相关研究成果日前发表在《物理评论快报》(Physical Review Letters)上。   此外,核聚变大科学团队在托卡马克装置中外联合实验中利用封闭偏滤器下的杂质注入脱靶控制,以及高极向比压运行模式下双输运垒带来的约束增强,实现了高比压高参数芯部等离子体与偏滤器全脱靶状态的有效兼容集成。结合理论模拟揭示了偏滤器脱靶、边界输运垒和内部输运垒三者之间相互作用的物理机制。脱靶引起的双输运垒的自组织协同作用,改善了芯部与边界的兼容性,带来了能量约束的净增益。相关研究成果之前发表在《自然-通讯》(Nature Communications)上。   核聚变大科学团队通过发挥建制化、多学科、大平台的特点,结合开放共享的国际交流与合作,凝聚优势资源,组织开展体系化的等离子体物理实验基础研究。在引领核聚变前沿技术发展的基础研究深耕探索,发现了系列新的物理现象,揭示和验证了其中的相关物理机制,特别是在高性能稳态长脉冲等离子体运行模式方面开展的研究,为聚变堆建设和运行奠定了基础。   等离子体所核聚变大科学团队及国内外合作者在高能量约束先进模式、湍流驱动等离子体电流、偏滤器脱靶与高约束等离子体兼容集成等方面取得的系列重要成果,得益于与中国科学技术大学、法国原子能委员会、美国通用原子能公司、麻省理工学院、普林斯顿大学、加州大学洛杉矶分校、橡树岭联合大学、劳伦斯利弗莫尔国家实验室、橡树岭国家实验室等国内外核聚变研究机构开展的密切交流与合作。   相关工作得到中科院、科技部、国家自然科学基金委等的资助,以及安徽省、合肥市、合肥综合性国家科学中心的大力支持。
  • 75万!南平市产品质量检验所采购电感耦合等离子体发射光谱仪等设备
    项目概况 受南平市产品质量检验所委托,福建晖源工程咨询有限公司对[350700]fjhy[GK]2022001、南平市产品质量检验所省级建盏产品质量检验中心电感耦合等离子体发射光谱仪采购项目货物类采购项目组织公开招标,现欢迎国内合格的供应商前来参加。 南平市产品质量检验所省级建盏产品质量检验中心电感耦合等离子体发射光谱仪采购项目货物类采购项目的潜在投标人应在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目获取采购文件,并于2022-03-25 09:30(北京时间)前递交投标文件。一、项目基本情况 项目编号:[350700]fjhy[GK]2022001 项目名称:南平市产品质量检验所省级建盏产品质量检验中心电感耦合等离子体发射光谱仪采购项目货物类采购项目 采购方式:公开招标 预算金额:750000元 包1: 合同包预算金额:750000元 投标保证金:7500元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100404-光学式分析仪器电感耦合等离子体发射光谱仪1(套)否2技术参数部分2.1 光学系统▲2.1.1:整个中阶梯光学系统无任何移动部件,所有光学元件均密封于35℃恒温光室中,保证最低的检出限和优异的长期稳定运行。2.1.2:中阶梯光栅+CaF2棱镜交叉色散多色器系统,波长连续覆盖167?785nm,无任何波长断点。■2.1.3:光学系统需让每一个波长在通过这个独特的自由曲面镜时,让每一个波长都很完美的形成聚焦,使检测器边缘波长的边缘效应影响降到最低。2.1.4:测定方式:紫外和可见区由同一狭缝,同一检测器同时测定,一次分析测定全谱覆盖,真正的全谱直读,一个样品选择任意多的元素波长,测试时间都不变;■2.1.5: 波长校正: 采用氩的发射谱线自动进行周期性的波长校准, 保证分析波长的正确性,没有汞灯或氖灯校准的预热和耗材问题。每半年或需要的场合可采用15种元素标准混合溶液进行波长例行校核。2.1.6:吹扫型光室:对189nm以下波长测定,可选择氩气或者氮气进行光路吹扫。吹扫流量:标准的光室吹扫气体流量为0.7L/Min,测定低紫外波长谱线时,电脑控制,增加3L/min 的气体流量,所有光室吹扫气体流量均由质量流量计(MFC)控制。■2.1.7:分辨率:光学分辨率<0.007nm (在As 188.980nm 处实际测量半峰宽) 。2.1.8:杂散光:≤2.0mg/L(10000mg/L Ca溶液在As 188.980nm处测定)。2.2 检测器 2.2.1:需要检测器覆盖从167-785nm整个波长范围;整个波长范围内所有元素一次测定一次读出。 2.2.2:紫外区平均量子化效率:独特的背投照射技术,使平均量子化效率≥75%,检测器表面无任何光转换化学涂膜。 ▲2.2.3:检测器冷却:半导体制冷,-40℃,暗电流和背景噪音低。检测器充氮密封,无需气体吹扫,开机即可点火,提高分析效率,降低气体消耗。 2.2.4: 防饱和溢出:针对每一个像素进行防饱和溢出保护,彻底消除谱线饱和溢出问题。2.2.5:积分方式:智能化积分,同时以最佳信噪比获得高强度信号和弱信号,使高低含量元素可以同时检测。2.3 射频发生系统 ▲2.3.1: 自激式27.12MHz固态发生器,耦合效率大于75%。2.3.2: 功率范围:700?1500W,10W增量,连续可调,计算机控制进行功率调节。■2.3.3:高效强劲的自激式固态发生器轻松应对从无机到有机各种复杂基体的样品,快速的功率反馈速度确保样品基体变化时仍然获得稳定准确的结果。2.4 观测方式★2.4.1:垂直火炬双向观测方式;更快分析效率;更高样品分析通量▲2.4.2:尾焰去除:需要有能够高效去尾焰CCI冷锥接口。检出限较垂直观测提高5-10倍,具有高的分析灵敏度。2.4.3: 冷锥接口无切割气体的消耗,降低运行成本。2.4.4: 观测位置调节:等离子体观测位置由计算机控制。 2.5 样品导入系统■2.5.1:进样系统:标配双通道玻璃旋流雾化室和玻璃同心雾化器,其它多种类型的雾化器和雾化室可选。■2.5.2:炬管:标配一体化炬管,快速插拔式炬管,无需气体管路连接和炬管准直定位,便于安装和维护,其它多种类型的炬管可选,同时可配置中心管为陶瓷或者石英的可拆卸式炬管。▲2.5.3:气体控制:所有等离子体相关气体均为质量流量计(MFC)控制,软件在线调节:等离子体气:8?20L/min,增量0.1L/min;辅助气:0?2.0L/min,增量0.01L/min;雾化气0-1.5L/min,增量0.01L/min;补偿气(用于可选附件):0?2.0L/min,增量0.01L/min; ▲2.5.4:蠕动泵:5通道蠕动泵,转速0-80rpm可调,全计算机控制,具有快泵功能。2.5.5:雾化器压力可以由用户自己设定阈值,当压力低于阈值下限或超过阈值上限的时候,软件会弹框提示雾化器压力异常,需要用户去检查进样系统。3、软件性能:3.1:软件需易学易用,可快速进行方法的开发、顺序的编辑。 3.2:计算机全自动化控制,仪器设置和参数选择可自动完成,包括气体流量、功率、点火、诊断等。具有自动安全连锁系统。3.3: 背景校正功能:包含传统的单边、双边离峰法背景校正技术,同时,具备多点自动拟合法(FITTED)背景校正技术。 ▲3.4: 谱图自动解析功能:快速自动谱线拟合技术(FACT),在线校正基体谱线干扰。3.5: 多重检量限(Multical)功能:根据不同的元素含量范围选择不同的谱线,使仪器能够同时测定高低含量的元素,使仪器的动态线性范围得到扩展。3.6:提供多种光谱分析方法:如标准比较法、内标法、干扰元素校正系数法(IEC)、标准加入曲线法等,丰富了用户多种分析研究的手段。 ■3.7:软件系统需内置计数器,能够在系统需要维护时为用户提供指导,可以在方便的时间安排维护,而不必中断工作进程,最重要的是,它能够帮助您最大程度延长仪器正常运行时间。3.8:数据存取:所有结果、方法和顺序可以在同一工作页面一起保存和读取;谱图、结果和标准曲线同时显示;实时图形显示光谱信号、结果和曲线谱图;快速运行过往数据的编辑。3.9:数据输出:提供多种报告打印和数据输出格式。 3.10: 需有详尽的中文在线帮助功能和操作、维护录像。 3.11:远程诊断功能:远程诊断—Web连接使远端的技术服务部门和应用支持部门能够对仪器实现完全远程控制和维修诊断。3.12:符合电子签名管理的21 CFR Part 11管理法规。 3.13:需实现快速全谱扫描,对样品中所有元素进行定性和半定量分析,并且可以设定阈值,实现样品的快速筛选,并且可以跟样品定量分析在同一个工作列表中,实现每一个样品的全元素监测。▲3.14: 需有强大的开发工具,能够针对不同的基体样品,快速的实现全元素扫描,实时反馈,根据不同基体样品和不同元素波长的各种干扰判断,自动选择最佳元素波长,可以把选定的波长直接导入定量工作表开始定量分析,还可以针对不同基体和不同的标准创建模板,让结果更精确。3.15:需有内标监测图,可以更直观准确的监控做样过程,快速的做出响应。3.16:软件需支持集成的高级采集阀,该高级采集阀系统可以极大的提升样品通量,降低氩气消耗,延长进样系统(炬管,雾化器,雾化室,蠕动泵管)使用寿命,降低后期维护消耗。3.17:需有强大的诊断软件,支持简便的仪器诊断和仪器错误提示。清晰的“仪表盘”式仪器状态显示,以及自检功能,使可能维修费用大大降低,并使仪器正常运行时间最大化。4、仪器性能指标:■4.1: 长期稳定运行:8小时,RSD≤1%(不加内标,不采用基线飘移修正);4.2: 短期稳定运行:RSD≤0.5%;▲4.3:冷启动时间:从待机状态到等离子体点燃时间小于35分钟;▲4.4: 做样速度:60个元素或波长,每个元素或波长积分时间10秒,测试时间小于60秒,内标和待测元素必须同时积分;4.5: 测定谱线的线性动态范围:≥106(以Mn257.610nm 来测定,相关系数≥0.9996);4.6: Pb220.353nm 2ug/L,4ug/L,6ug/L,8ug/L,10ug/L 拟合曲线,线性相关系数999以上;5、工作条件:5.1环境温度: 10℃-30 ℃;5.2环境湿度:20%-80% (不冷凝);5.3 电源:仪器整体功率不大于2.9kVA, 电源: 220VAC+/-10% ,50 或60Hz+/-1Hz;5.4 通风系统:最小流量要求:2.5m3/min。6、仪器配置要求:1.仪器主机一台2.循环冷却水机一台3.气源一套4.输入输出设备一套5.仪器耗材包一套750000 合同履行期限: 按招标文件要求 本合同包:不接受联合体投标二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.本项目的特定资格要求: 包1 (1)明细:招标文件规定的其他资格证明文件(若有) 描述:1、(强制类节能产品证明材料,若有,应在此处填写); 2、(按照政府采购法实施条例第17条除第“(一)-(四)”款外的其他条款规定填写投标人应提交的材料,如:采购人提出特定条件的证明材料、为落实政府采购政策需满足要求的证明材料(强制类)等,若有,应在此处填写)。 ※1上述材料中若有与“具备履行合同所必需设备和专业技术能力专项证明材料”有关的规定及内容在本表b1项下填写,不在此处填写。 ※2投标人应按照招标文件第七章规定提供。 (2)明细:具备履行合同所必需设备和专业技术能力专项证明材料(若有) 描述:1、招标文件要求投标人提供“具备履行合同所必需的设备和专业技术能力专项证明材料”的,投标人应按照招标文件规定在此项下提供相应证明材料复印件。 2、投标人提供的相应证明材料复印件均应符合:内容完整、清晰、整洁,并由投标人加盖其单位公章。(如项目接受联合体投标,对联合体应提出相关资格要求;如属于特定行业项目,供应商应当具备特定行业法定准入要求。) 三、采购项目需要落实的政府采购政策 进口产品,不适用于(本项目),节能产品,适用于(合同包1),按照财库[2019]19号文所附品目清单执行。环境标志产品,适用于(合同包1),按照财库[2019]18号文所附品目清单执行。信息安全产品,适用于(合同包1)。小型、微型企业符合财政部、工信部文件(财库〔2020〕46号),适用于(合同包1)。监狱企业,适用于(合同包1)。促进残疾人就业 ,适用于(合同包1)。信用记录,适用于(合同包1),按照下列规定执行:(1)投标人应在(填写招标文件要求的截止时点)前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“投标人提供的查询结果”),投标人提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图)。(2)查询结果的审查:①由资格审查小组通过上述网站查询并打印投标人信用记录(以下简称:“资格审查小组的查询结果”)。②投标人提供的查询结果与资格审查小组的查询结果不一致的,以资格审查小组的查询结果为准。③因上述网站原因导致资格审查小组无法查询投标人信用记录的(资格审查小组应将通过上述网站查询投标人信用记录时的原始页面打印后随采购文件一并存档),以投标人提供的查询结果为准。④查询结果存在投标人应被拒绝参与政府采购活动相关信息的,其资格审查不合格。四、获取招标文件 时间:2022-03-04 08:15至2022-03-19 23:59(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至11:59:59,下午12:00:00至23:59:59(北京时间,法定节假日除外) 地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。 方式:在线获取 售价:免费五、提交投标文件截止时间、开标时间和地点 2022-03-25 09:30(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日) 地点:福建省南平市建阳市武夷新区建安大街318号赤岸统建房A区4号楼1104室晖源公司开标室六、公告期限 自本公告发布之日起5个工作日。七、其他补充事宜 无八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:南平市产品质量检验所 地 址:南平市文体路203号 联系方式:0599-8830407 2.采购代理机构信息(如有) 名 称:福建晖源工程咨询有限公司 地  址:南平市延平区八一路73号延水大厦6楼 联系方式:0599-8314701 3.项目联系方式 项目联系人:小刘 电   话:0599-8314701 网址:zfcg.czt.fujian.gov.cn 开户名:福建晖源工程咨询有限公司 福建晖源工程咨询有限公司 2022-03-04
  • 激光冷却造出零下273℃中性等离子体
    p style="text-indent: 2em text-align: left "据美国《新闻周刊》网站近日报道,科学家利用激光冷却,创造出温度达到零下273℃的中性等离子体,其比太空深处温度还要低。这一成果发表于《科学》杂志,显示了极端环境下(比如白矮星和木星中央)等离子体的新的可能性。/pp style="text-indent: 2em text-align: left "一般认为,激光可用于加热,但其实也可用于冷却物理系统。在实验中,英国莱斯大学的汤姆· 基利安和同事使用10台不同波长的激光器来冷却中性等离子体。等离子体是在固体、液体和气体之后,物质的第四种它通常在极热的地方(比如太阳内)产生。/pp style="text-indent: 2em text-align: left "研究人员先用一组激光器蒸发锶金属,这些激光器捕获并冷却了一组原子。然后,他们用第二组激光电离这些超冷气体,激光脉冲将这些气体转换成等离子体,这些等离子体迅速膨胀然后消散。/pp style="text-indent: 2em text-align: left "基利安解释说:“如果一个粒子(原子或离子)正在移动,我用一束激光来抵制它的运动,当该粒子从激光束中散射出光子时,就获得了动量来减慢速度。诀窍在于确保光子始终从与粒子运动相反的激光中散出来。”/pp style="text-indent: 2em text-align: left "1999年,基利安在美国国家标准与技术研究所进行博士后研究,开创了从激光冷却的气体中创造中性等离子体的电离方法。此后,他一直在寻求让等离子体更冷的方法,最新研究让他20年的追寻成为现实。目前,他们正努力制造更冷的等离子体。/pp style="text-indent: 2em text-align: left "基利安说:“我们将尝试开发新的温度探头来测量更冷的温度。如果能在不让密度变得太低的情况下,将温度降到足够低,该系统将形成结晶等离子体——维格纳晶体,据信白矮星中心的离子以这种状态存在。”/pp style="text-indent: 2em text-align: left "基利安表示,当科学家研究出如何冷却原子气体时,就打开了“超冷世界”的大门,这使他们能将原子气体冷却到比绝对零度(零下273.15℃)高出百万分之一摄氏度左右,“在此处,量子力学开始发挥作用”。通过研究超冷等离子体,有望回答有关物质在高密度和低温的极端条件下如何表现的基本问题。/p
  • 等离子体物理学家俞昌旋院士逝世
    p 我国著名的等离子体物理学家及教育家、中国科学院院士、中国科学技术大学教授俞昌旋先生,因病医治无效,于2017年5月23日4时5分在合肥逝世,享年76岁。/pp  俞昌旋,福建福清人,生于1941年7月7日。出生于印度尼西亚爪哇岛安褥埠,1948年随父母归国。1959年毕业于厦门集美中学,1965年毕业于中国科学技术大学近代物理系,同年加入中国共产党。大学毕业后留校任教,1979年晋升为讲师,1985年晋升为副教授,1992年晋升为教授,1993年被聘为博士生导师,2007年当选为中国科学院数理学部院士。1980至1983年、1989至1991年、2000至2001年,先后三次在美国加州大学洛杉矶分校、德克萨斯大学奥斯丁分校访问研究近六年。历任中国科学技术大学近代物理系主任、校学术委员会委员、中国核学会核聚变与等离子体物理学会理事、安徽省物理学会常务理事、国家磁约束聚变专家委员会委员、国家重大科技专项专家组成员、国家“863”计划专题专家组成员及顾问、高温高密度等离子体物理重点实验室学术委员会主任、全国归国华侨联合会委员、安徽省归国华侨联合会常务委员等职。/pp  俞昌旋是我国等离子体物理与受控热核聚变研究领域的领军人物之一。他开创了我国等离子体湍流实验研究、等离子体非线性现象实验研究等学科方向,在磁约束等离子体湍流和反常输运、等离子体非线性现象、等离子体诊断等领域取得了多项有重要创新意义的研究成果。他首次实验证实了湍流雷诺胁强是触发约束模式转换的主要机制,首次观察到了带状流完整的三维特征,实验发现线性欧姆约束等离子体中湍流色散关系与理论预言一致。他最先观察到了无外驱动等离子体向混沌态过渡的三条途径,首次利用小扰动方法实现了对无外驱动等离子体混沌的控制。他在国内率先研制了激光相干散射等系列诊断系统,发展了电子速度超高斯分布的汤姆逊散射理论以及考虑波阻尼效应的极小角散射理论。曾获中国科学院自然科学奖二等奖、中国科学院科技成果奖二等奖、中国科学院科技进步奖三等奖、军队科技进步奖三等奖等多项重要科技奖项。/pp /pp /p
  • 专家指出等离子体技术成热点研究方向
    “近年来,随着应用需求的不断拓宽,大气压放电等离子体技术成为目前电气工程领域最活跃的热点研究方向之一。”在日前举行的中国科协第66期新观点新学说学术沙龙上,清华大学教授王新新说,这项集基础研究与应用研究为一体的前沿课题,已成为当前国内外学术界和工业界探索的一个多学科强交叉的新研究领域。  据了解,物质除了固体、液体、气体三态以外,还有一种平常人不了解的聚集态——等离子体。等离子体主要由电子、离子、原子、分子、活性自由基及射线组成,占据了整个宇宙的99%。从19世纪中叶起,人类就开始利用电场和磁场,来产生和控制等离子体。  中国电工技术学会副理事长、中科院电工所所长肖立业介绍,根据等离子体中离子的温度与电子的温度是否达到热平衡,等离子体又可分为平衡态等离子体和非平衡态等离子体。目前,非平衡态等离子体技术的研究被广泛应用于高分子聚合物材料改性、生物医学、航空器动力推进等国民经济重要领域。  王新新说,该学科涵盖了高电压技术、电力电子技术、材料学等诸多技术领域,具有重要的应用预期和广阔的发展前景。  据了解,自上世纪90年代开始,国外放电等离子体技术及应用研究发展迅速,放电等离子体机理与特性的研究与应用产业衔接日益密切。  “国内研究起步较晚,大气压放电等离子体的科技开发与产业布局脱离,限制了这种绿色节能无污染技术的广泛应用。”中国电工技术学会副秘书长奚大华说,针对这一现状,目前多家科研单位正在对此进行联合研究。
  • 西安光机所等在激光等离子体光谱研究中获进展
    近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室汤洁研究员课题组联合美国劳伦斯伯克利国家实验室教授Vassilia Zorba团队,在激光等离子体光谱研究领域取得重要进展。相关研究成果发表在Cell Reports Physical Science上。激光诱导击穿光谱(LIBS)是基于原子发射光谱学的元素分析技术,在多元素分析、实时快速原位测量等方面具备优势,且在定性识别物质与定量物质成分分析等领域具有重要的应用前景。目前,该技术在深空深海探测、地质勘探、生物医药以及环境监测等领域广泛应用。D-LIBS即放电辅助LIBS技术,通常是将火花放电或电弧放电与LIBS技术相结合来实现。以上两种放电模式具有放电功率密度大和电子数密度高的特点,在辅助元素定性和定量分析方面具有独特的技术优势。因此,利用放电辅助可以显著增强LIBS信号强度,从而达到提高分析灵敏度的目的。然而,D-LIBS在放电时电能消耗过大,同时从交变电压和电流中产生电磁脉冲,导致能源浪费和环境污染相关问题。这一负面因素加大了安全隐患和运行风险,更不利于社会倡导的节能减排和环境保护要求,进而限制了D-LIBS技术的进一步应用。因此,开发一种“两低一高”(低环境危害、低能耗、高分析灵敏度)的D-LIBS技术仍是物质分析领域中难度较大的挑战。针对上述问题,该团队提出离子动力学调制方法,对克服传统D-LIBS放电能耗大、安全风险高、环境危害大等不利因素,同时提高分析灵敏度具有显著改善效果。该工作借助这一方法,合理优化电极配置,有序调控放电模式,在有效增强光谱信号强度的同时,大幅降低放电能耗。关键创新点在于:(1)首次提出并利用激光诱导等离子体冲击波与外加电场空间零弧度耦合方式,实现有效放电区域全方位覆盖激光等离子体中粒子的扩散方向,离子的动力学特征从原始的向外扩散变更为放电空间内阳极和阴极之间的漂移运动。这种调制使得大部分离子被抓捕、约束在有效放电空间内,促进电能与激光等离子体耦合,大幅降低放电能耗。(2)突破传统D-LIBS方法,即仅在电容器放电过程中辅助LIBS,将放电增强LIBS拓展到电容器放电和充电的两个过程。采用直流电源与充电电容共同作用等离子体间隙的策略,使约束的带电粒子在电容放电结束后继续在电极之间漂移,并在毫秒尺度维持带电粒子电迁移运动特性,大幅延长等离子体寿命,进而实现火花和电弧放电的有序调控以及原子和离子光谱信号的选择性增强。上述研究有效解决了在D-LIBS中同时具备“两低一高”特性的关键技术难题。实验测试结果表明:与传统D-LIBS对比,该成果对于非平坦样品实现了在维持光谱信号2个数量级提升情况下,放电能耗降低了约1个数量级。结合经改进的小波变换降噪方法,D-LIBS中谱线信噪比、信背比以及稳定性相比原光谱均获得了显著提升。微量元素(Mg)的检出限从近百ppm降低至亚ppm量级。此外,与传统D-LIBS及其他LIBS增强技术相比,微量元素(Mg、Si)探测灵敏度提高近2个数量级。该研究有助于推动节能环保建设以及D-LIBS的广泛应用,同时,在低烧蚀激光功率密度的极端条件下,为D-LIBS微量或痕量元素定性与定量分析提供了有力的理论依据和技术支撑。研究工作得到国家自然科学基金、陕西省自然科学基金、瞬态光学与光子技术国家重点实验室自主课题、中科院光谱成像技术重点实验室开放基金等的支持。离子动力学调制LIBS增强原理和思路
  • 大连理工大学突破等离子体工艺腔室仿真软件,助力半导体关键设备研发
    超大规模集成电路(ULSI)产业直接关系到国家的经济发展、信息安全和国防建设,是衡量一个国家综合实力的重要标志之一。在半导体芯片制备过程中,约有三分之一的工序要使用等离子体技术,因此配备等离子体工艺腔室的材料刻蚀和薄膜沉积设备是ULSI制造工艺的核心。目前,半导体工艺中最常用的两种等离子体源是CCP(容性耦合等离子体)和ICP(感应耦合等离子体)。等离子体工艺腔室制造过程极为复杂,不仅涉及精密机械加工技术,还要统筹考虑电源、气体、材料等外部参数的优化,以及与晶圆处理工艺的兼容性。如果采用传统的“实验试错法”,不仅成本巨大,而且延长了设备的研发周期,将严重制约我国ULSI产业的快速发展。因此,采用建模仿真与实验诊断相结合的方式、为等离子体工艺腔室的研发与优化提供方案,成为一种必然趋势。等离子体放电过程是极其复杂的,受到多种外界参数的控制,如电源功率与频率、气体成分与压强、腔室尺寸及材料属性等。此外,等离子体系统还包含了多空间尺度和多时间尺度的变化,以及多物理化学场的耦合过程。例如等离子体、鞘层、表面微槽等空间特征尺度相差10个量级;电磁场、带电粒子、中性气体及化学反应等时间特征尺度相差9个量级。如此复杂的等离子体工艺环境,给物理建模和数值仿真都带来了巨大挑战。物理学院PSEG团队在王友年教授的带领下,自2005年开始,历经近二十年时间,在国内率先研发出具有自主知识产权的等离子体工艺腔室仿真软件——MAPS(Multi-Physics Analysis of Plasma Sources)。通过采用物理建模、数值仿真与实验诊断相结合的方法,解决了制约等离子体工艺腔室设计和制造中的一些关键技术难题,为我国研发具有自主知识产权的等离子体工艺腔室提供了技术支撑。MAPS是一款专门面向等离子体工艺腔室的数值模拟软件平台,可以同时为等离子体工艺腔室的参数设计和表面处理工艺(材料刻蚀和薄膜沉积)的结果预测提供模拟服务。基于不同的等离子体模型,MAPS包含不同的数值模拟方法,如粒子/蒙特卡洛碰撞模拟方法、流体力学模拟方法、流体力学/蒙特卡洛碰撞混合模拟方法、整体模型模拟方法等。软件平台包含输入部分、输出部分以及七大模块,分别是等离子体模块、中性气体模块、电磁模块、鞘层模块、化学反应模块、表面模块及实验验证模块。此外,PSEG团队研制了结构可变的大面积、多功能等离子体实验平台和多套CCP和ICP放电平台,并自主研发了射频磁探针、微波发卡探针、光探针、吸收光谱诊断系统、布拉格光栅测温系统、悬浮双探针等诊断工具和集成了商用的Langmuir探针、质谱仪、离子能量分析仪、光谱仪、ICCD及光致解离负离子诊断系统等。这些诊断手段为等离子体源多参数诊断提供条件。大量研究表明,MAPS的模拟结果与实验测量结果在量级和变化趋势上达到一致,证明了MAPS仿真软件的可靠性。近期,针对工业中常用的CCP源,MAPS仿真软件提供了一种新的快速仿真算法:基于多时间步长、泊松方程的半隐式修正、超松弛迭代等,可以将模拟速度提高几十倍。此外,针对ICP源,PSEG团队也建立了一种新的双极扩散近似模型,可以对带有射频偏压的感性耦合放电过程进行仿真。该方法不仅模拟速度快,还适用于低气压放电。MAPS仿真软件具有外界控制参数多、耦合物理场多、数值求解器多、数值仿真模型多等优势,能够对ICP刻蚀机、CCP刻蚀机、PECVD(等离子体增强化学气相沉积)和PVD(物理气相沉积)工艺腔室进行仿真,支持对优化工艺过程参数的进一步探索,受到了国内的多家半导体设备制造企业的青睐。近十年中,MAPS仿真软件已分别为北方华创、中微半导体设备(上海)、拓荆科技、苏州迈为、武汉长江存储及理想能源设备(上海)等多家企业提供仿真服务。未来,PSEG团队将继续专注于对MAPS仿真软件的完善和升级,希望可以为半导体、光伏及平板显示等产业的创新与发展注入源源不断的强劲动力。
  • 使用泰伯劳干涉仪测量HED等离子体相衬像
    诊断高能量密度(HED)等离子体的特性,例如存在于惯性约束聚变(ICF)中的等离子体,对于理解它们的演化和相互作用至关重要。然而,考虑到所涉及的通常极端的温度和密度条件,以及其中一些相互作用发生的小时间和空间尺度,获得这些测量结果是具有挑战性的。干涉测量法是目前等离子体最灵敏、最成功的诊断方法之一。然而,由于最常见的干涉测量系统的设计,工作波长有限,因此可以探测的密度和温度范围受到严重限制,难以测量对于可见光波段不透明的 HED 等离子体。基于 Talbot 效应的 Talbot-Lau 干涉法,提供了将干涉测量扩展到 X 射线波长的可能性。另一方面,在光子能量从几 keV 到几十 keV 的范围内的硬 X 射线,低 z 物质的弹性散射截面远大于衰减截面,相位对比度比传统的衰减度对比对电子密度的变化更敏感。因此,在成像机制上,基于折射的方法相较于基于吸收的方法有更高的固有对比度。即,基于相位变化的 X 射线成像方法,包括 Talbot-Lau 偏折测量方法,尤其适用于低 z 生物组织、聚合物、纤维复合材料和 HED 等离子体等的表征。约翰霍普金斯大学物理与天文学系的 M. P. Valdivia 与 D. Stutman 等人提出了将TL莫尔光束偏转技术扩展到8 keV 能量,用于 HED 等离子体实验中的密度梯度测量。[http://dx.doi.org/10.1063/1.4885467]该实验采用低能 TL 干涉仪装置采用焦斑为 ~ 15 μm FWHM 的铜阳极管作为 X 射线源。当在 22 kV 下工作时,该管产生 Kα 特征线主导的光谱,在 8 keV 处有一个强峰。同时使用了 30 μm 厚度的 Ni 滤波器,进一步提高特征线与轫致辐射之间的比率。对于微周期 Talbot-Lau 光栅的设计与制造工艺,对于高能量X射线(如20~100keV),难点在于得到高厚度/深宽比的光栅结构;对于低能 X 射线(如10keV),则应在设计上更多的考虑光栅衬底的影响,即必须使用自支撑结构或者薄衬底的光栅.该实验中使用了由德国 Microworks 公司制造的基底为10 μm 厚聚酰亚胺膜的光栅。如下图所示,源光栅 G0 周期为 2.4 μm,直径有效尺寸为 7 mm,金高度为 21-24 μm;相位光栅G1的周期为 4.0 μm,直径有效尺寸为 9 mm,镍条高度为 3.0 μm。分析光栅 G2 周期为 12 μm,直径有效尺寸为 35 mm,金高度为 17-22 μm。1. Microworks GmbH 提供的 Talbot-Lau 光栅:a)源光栅;b)相位光栅;c)分析光栅该小组使用多种形状(棱柱,圆柱,球型)的多种材料(丙烯酸,铍,PMMA)作为材料进行实验验证。其中,以 PMMA 球形样品的测试结果为例:2. 直径1.5mm的 PMMA 球的 Moiré 条纹像(a)及其偏移映射图(b)结果表明,在 8 keV 下的测量足够灵敏,可以测量几到几十微弧度范围内的折射角,从而提供 10-20 到 10-21 mm&minus 2范围内的面密度。在静态模式下论证得出该技术能够为 HED 相关物体提供密度诊断。上述小组进一步改进该实验,使用短脉冲(30–100 J, 10 ps)激光轰击 Cu 箔产生 X 射线作为测量光源,由于激光的脉冲特性,使得对 HED 的时间分辨测量成为了可能。(doi: 10.1063/1.5123919)3. 超短脉冲时间分辨 X 射线 Talbot-Lau 干涉实验前端光路示意图4. Talbot-Lau X 射线干涉法诊断平台波尔多大学的 G. P´ erez-Callejo 与 V. Bouffetier,对特定靶结构在激光作用下产生的 HED 瞬时密度进行了模拟和测量,并提供了相应的干涉图像的后处理工具。(DOI: 10.1063/5.0085822)5. 等离子体靶材结构设计示意图(左);模拟轰击靶材后30ns 瞬时密度图像6. 瞬时状态下的干涉图像(a)与空光路参考图像(b)7. 经数据处理后的吸收像(a),暗场像(b)与相位像(c)相关阅读- Microworks光栅助力新冠病毒肺部诊断- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(上)- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(下)Microworks 德国 Microworks GmbH 基于其独特的 LIGA 技术,向广大科研用户提供定制化的微结构加工服务。其中,它的X射线透射光栅在相衬成像领域,有着极高的声誉。Microworks为X射线无损检测(NDT)提供标准化和定制产品。在微纳米技术领域,Microworks代表着高精度,其最高纵横比和精度可以远低于 1 µ m。北京众星联恒科技有限公司作为 Microworks 的中国大陆全权代理商,为中国用户提供所有的售前咨询,销售及售后服务,同时 TALINT EDU 干涉仪套件目前我们开放国内试用, 如果您想体验这款模块化、操作简易的 X 射线相衬、暗场成像套件, 欢迎联系我们。免责声明:此篇文章内容(含图片)部分来源于网络。文章引用部分版权及观点归原作者所有,北京众星联恒科技有限公司发布及转载目的在于传递更多行业资讯与网络分享。若您认为本文存在侵权之处,请联系我们,我们会在第一时间处理。如有任何疑问,欢迎您随时与我们联系。
  • 研究发现等离子体可有效破坏致命病毒传染性
    新浪科技讯 北京时间12月7日消息,据物理学家组织网报道,也许用不了多久,我们就可以利用一种与众不同的新方法对抗艾滋病毒、非典、肝炎和流感等致命病毒,因为研究人员已经证实,等离子体在破坏腺病毒的传染性和防止它复制等方面的效果不凡。研究发现,当病毒接触等离子体(除固体、液体和气体以外的第四种物质状态)仅仅240秒后,只有百万分之一的病毒仍在复制,实际上所有病毒的传染性都已被破坏。离子体可有效破坏致命病毒传染性  该研究成果发表在英国物理学会出版社(IOP Publishing)的《物理学学报D辑:应用物理学》杂志上,它是第一项着眼于病毒和已经显示出等离子体对根除皮肤上的细菌及净化水非常有效的研究。在医院里,等离子体产生装置能够杀灭依靠寄主生物体复制和传播的潜在致命病毒。从长远来看,可以直接吸入等离子体,用来杀灭肺里的病毒,或者用来清除抽出体外的血液里的任何病毒,然后把干净血液重新输入人体。德国马克斯-普朗克地外物理研究所的研究人员特意选择腺病毒,看一看它们是不是最难消除活性的一种病毒。例如,由这种病毒引发的疾病,只能通过治疗感染症状和并发症来治愈它,而不是把病毒本身作为攻击目标。  腺病毒主要会引起肺炎和支气管炎等呼吸道疾病,由于整个病毒被一层蛋白质包裹,因此很难破坏它的传染性。在这项最新研究中,腺病毒被稀释到特定浓度,然后让它们接触等离子体240秒,接着培养1小时。腺病毒受控组未接触等离子体,但接受了其他相同处理。随后用这两批腺病毒(接触等离子体的一组和受控组)感染两种不同的细胞系。为了检测一个细胞是否包含这种病毒,研究人员通过特殊处理,让该病毒产生一种在特定光线照射下能发出绿色荧光的蛋白质。目前还不清楚等离子体产生这种效果的机制,不过它们是等离子体和周围空气产生化合作用的结果,当我们的免疫系统遭到微生物袭击时,也会产生类似物质。(孝文)
  • 179万!涞水县疾病预防控制中心电感耦合等离子体质谱仪等采购项目
    项目编号:HBTH-2022-103项目名称:涞水县疾病预防控制中心完善能力建设项目实验室仪器设备采购预算金额:1795000最高限价(如有):1795000采购需求:电感耦合等离子体质谱仪;全自动碘元素分析仪;全自动核酸提取仪;微波消解仪;薄层色谱成像分析系统;液氮罐;具体详见招标文件。合同履行期限:自签订合同后30日内完成供货本项目不接受联合体投标。
  • 岛津:融合创新等离子体技术 引领色谱科技未来
    仪器信息网讯 2013年2月,岛津公司推出了高灵敏度气相色谱系统Tracera。Tracera一经推出就受到了业内的关注,在5月15日召开的CISILE2013上,仪器信息网就Tracera的研发背景、特点及应用等采访了岛津分析仪器事业部市场部温焕斌。高灵敏度气相色谱系统Tracera  Tracera是基于岛津GC-2010 Plus平台构建,最大的创新在于融合全新开发的介质阻挡放电等离子体检测器(BID)。据温焕斌介绍,“传统情况下,进行气体分析时,常常需要配置FID和TCD等多个检测器的系统气相,仪器结构复杂,分析灵敏度有限 在分析液体样品时,又常常需要根据不同的化合物更换不同的检测器,很多物质,如甲酸、甲醛、水等,我们无法用FID分析,这个时候会用到TCD,但是TCD又存在灵敏度不够的问题。还有痕量含卤素化合物,在FID上响应也很小,这又得换ECD检测器进行分析,总之,这些因素都会影响我们实验效果和效率。正是基于此背景,岛津开发了BID检测器技术,BID可同时分析无机气体和有机气体,也可分析液体样品,且灵敏度高于FID和TCD,对于以往需要同时使用FID和TCD的复杂分析而言,单独BID检测器就可以满足要求。BID检测器是岛津与大阪大学Katsuhisa Kitano博士的合作研究成果,5年前大阪大学开发了微型等离子体技术,然后岛津将其商品化,并结合岛津的气相色谱系统推出。目前,BID检测器已获得3项美国专利,还有4项专利在审批中。”  BID检测器主要具有以下三大特点:  (1)高灵敏度。BID检测器能够产生具有极高光子能量的氦等离子体。氦等离子体能够使样品成分离子化,从而实现高灵敏度分析。此系统比TCD的灵敏度高100倍以上,比FID的灵敏度高2倍以上,可以满足0.1ppm含量水平上所有类型痕量成分的分析需求。  (2)高通用性。单检测器解决方案轻松应对复杂分析需求。BID检测器可以满足除氦气和氖气之外所有有机和无机化合物的分析要求,比如,FID检测器对含C-H键化合物响应良好,是烃类化合物分析的理想选择。但FID检测器对羰基碳(C=O)化合物无响应,因此不能分析甲酸和甲醛。另外,FID对含有羟基(-OH)、醛基(-CHO)、卤素(F、Cl等)等化合物响应不好。相比较而言,BID检测器可以极大提高上述化合物的灵敏度,且灵敏度较为均一。  (3)高稳定性。 BID检测器的一个重要特点就是介质阻挡放电。使用低频电源从绝缘介质外部电极上放电,产生接近室温的低温氦等离子体,且和电极无任何接触,因此电极不用处于高温环境中,避免了“溅射”损伤,不会发生电极老化现象。  除了这三个特点外,BID检测器只使用氦气,无需氢火焰,因此对于限用FID检测器的实验室来说,BID检测器可以放心应用,非常安全。岛津公司在CISILE 2013的展台  目前,市场上也有其他供应商提供同类型产品,谈及BID检测器的优势及区别,温焕斌说,“BID检测器采用了很多岛津独创的技术:首先,BID等离子体产生部位使用交流放电,而其他同类产品大多采用直流放电,相对来讲交流放电产生等离子体的稳定性更好。第二,BID采用了介质阻挡放电技术,此耐用式结构设计使BID检测器可以长期保持稳定分析状态,完全不需要仪器维护或消耗品更换。第三,从结构上讲,BID采用了优化的双吹扫流路设计,化合物从吹扫流路2流出,不会到达等离子体发生室,因此不会污染检测器池。这种设计最大限度降低了流路对检测器响应的影响。”  关于市场定位,温焕斌表示,“BID属于高灵敏度通用型检测器,主要还是应用于痕量、微量分析,可以弥补使用FID或TCD时的很多不足,对于常规的分析实验来说,如果能简单的使用FID或者TCD完成,那一般来说还是推荐使用常规检测器。但是如果常规检测器不能满足要求,或者需要联合使用FID和TCD等,操作非常复杂时,我们推荐用户选择BID检测器,此时只要选择合适的色谱柱后,就可以使用BID一个检测器完成,它可以带给分析工作者不一样的分析体验。目前,BID是作为岛津气相色谱标准检测器,既可以整机配置销售,也可以后追加配置。所有GC-2010 Plus的现有用户都可以追加配置BID检测器。”  “过去,BID这种类型的检测器一直被认为比较娇贵,吹扫时间长,而且成本较高。如今,BID的推出可能会使这类型检测器与用户的距离更近,而且和同类产品相比,BID检测器稳定的时间更短,因此用户体验比较好,更易于这种类型检测器的普及。”温焕斌说。(撰稿:杨娟)
  • 生物分析研究必备神器:XelPleX全自动表面等离子体共振成像仪
    从事生物研究的科研工作者们,你们在实验中是否遇到过类似的疑惑?用于分析研究的工具还是一台陈旧的已然跟不上时代发展的“老人机”。实验中,检测筛选、出结果时间长不说,还提高了试剂成本;只能检测小范围的样品溶液不说,每年维护还需要不少费用;手动不环保不说,还不稳定......horiba 科学仪器事业部近来推出新品:xelplex全自动表面等离子体共振成像仪(生物大分子相互作用仪)是一款免标记、多通道生物分析和研究的理想工具。它与传统的spri表面等离子体共振成像仪相比,该系统自动化程度高,设计精巧,可实时监测数百个相互作用并获得动力学参数;适用于实时物理化学相互作用研究和动力学研究;高度自动化的表面等离子体共振成像系统,适用于多种应用要求。另外,高精度温度控制系统和自动脱气装置确保低背景噪音和低信号漂移,可便捷地获取在不同温度下的分子相互作用及反应的亲和力和动力学数据。 如此多的优点,作为生物学科研者,你们还用为实验效率不高,实验结果受外界影响严重,而担忧吗?不仅如此,下面还有更多优异的功能,可以直接秒杀实验过程中遇到的种种难题~1阵列式检测,同一芯片可同时获得多达400种相互作用创新的阵列式芯片设计,同一芯片可同时分析超过400组相互作用,与传统的通道-技术相比,所需时间缩短百倍,并节约试剂和人力成本,特别适用于快速筛选。2无标记,实时生物分子相互作用分析与成像基于spr技术、新型的生物传感技术,实时跟踪分子间结合和解离的过程,每秒可采集芯片表面5幅图像,提供完整动力学信息。成像技术,提供时空分布信息,直观判断相互作用是否发生;辅助解释动力学数据。3适应复杂样品优流体系统设计,全芯片表面检测,可直接注入复杂样品,不易堵塞,并耐受有机溶剂,拓展传统spr应用范围,适用蛋白质、dna、多糖、细胞、血清和培养基等多种粘稠样品以及纳米材料溶液。每年节约数万维护费用。 4智能全自动,48h无人看守实验全新超级软件,可以同时监测几百对相互作用,定量及统计分析,便于筛选和排序。5原位质谱联用,无需洗脱和浓缩独特芯片设计-质谱直接联用,无需洗脱和浓缩,同一芯片即可实现spr分析和质谱检测。进而实现动力学分析和物质鉴别。 6引导式软件设计,易于统计分析多功能软件包,全程引导式操作,批量处理数据及快速分类,方便调用实验模板及数据处理模板。7自动化样品回收与循环,环保节能自动化样品回收技术,节约珍贵样品,回收样品可用于交叉验证等实验。独特的样品循环技术,可检测低样品浓度,并维持动态平衡。 以下是xelplex全自动表面等离子体共振成像仪的主要技术参数,可以帮助大家更详尽的了解这款产品。技术参数 检测技术:耦合棱镜的表面等离子体共振成像 通道数:可以同时监测400组相互作用过程 样品体积:120μl-820μl 流速控制范围:1-3000μl/min 流通池温控范围:10-50°c 检测下限:3pg/mm2另外,附上与xelplex相匹配的核心附件,让xelplex展现出优的性能,发挥出大作用。可选附件 spri-cfm连续流动微量点样仪 spri-array快速台式点样仪 spri-biochips™ 生物芯片(cs/co/cse/coe/ctg/ch功能化)
  • 新型表面等离子体共振光谱仪研制成功
    4月10日,中科院计划财务局组织专家对长春应用化学研究所承担的院科研装备研制项目“集成电化学方法的表面等离子体共振及其高通量分析仪器”进行了现场验收。验收专家分别听取了项目的结题、财务和用户使用报告,审阅了项目组提交的验收材料,并实地考察了研制样机的示范性实验操作,一致同意该项目通过验收。专家现场考察样机  表面等离子体共振光谱(SPR)技术是一种全新的生物化学分析方法,具有实时、免标记等独特的检测优点,可广泛应用于生物分析、无机材料、化学分析和材料科学等领域,逐渐成为国际传感器领域的研究热点。实现具有时间分辨采集功能的SPR仪器方法,开发具有我国自主知识产权的新型电化学传感器、检测器和联用仪器是当前科技生产的迫切需求。  项目组以开发研制具有时间分辨测量能力、电化学检测系统、高通量成像分析模块的表面等离子体共振分析检测系统为目标,经过2年多的努力,研制开发出具有自主知识产权的具有时间分辨、电化学联用、成像测量等功能模块的表面等离子体共振光谱仪,可应用于界面小分子吸附反应动力学及涉及小分子相互作用的分析测量中,并可实现与多种电化学暂态、稳态技术方法的联用;该仪器设计新颖,利用二像素光学位置阵列传感器件,极大地提高了SPR光谱测量的时间响应;通过与多种电化学暂态及稳态技术方法的联用,拓宽了SPR光谱仪器的应用领域。  该项目研制开发的表面等离子体共振光谱及其联用仪器设备已经通过长春市产品质量监督检验院技术测试认证,现已小规模研制工程样机15台,并在清华大学、吉林大学、长春应化所、化学所、西北师范大学、东南大学、福州大学等科研和教学单位试用,效果良好。  该集成仪器系统将可广泛应用于电极界面纳米结构复合材料的电化学制备、修饰、电化学衍生及电极界面的自组装、生物芯片分析、医疗卫生、食品、毒品毒物分析等领域,是对目前SPR领域仪器方法的有益补充,具有广阔的市场前景。  该项目研制期间发表科研论文21篇;申请发明专利7项,4项已获授权;培养博士研究生7名,硕士研究生2名。
  • EAST装置实现1056秒长脉冲高参数等离子体运行
    记者从中科院合肥物质科学研究院获悉,2021年12月30日晚,中科院合肥研究院等离子体所EAST控制大厅里,正在运行的国家重大科技基础设施EAST全超导托卡马克装置(东方超环)再次创造新的世界纪录,实现了1056秒的长脉冲高参数等离子体运行,这是目前世界上托卡马克装置实现的最长时间高温等离子体运行。  据悉,EAST装置运行15年来,先后实现了1兆安、1.6亿度、1056秒的等离子体运行,通过开放共享的建制化管理模式,全面实现了EAST设计参数指标,在稳态等离子体运行的工程和物理上继续保持国际引领。EAST装置取得的系列创新成果,为自主建造聚变工程实验堆提供了重要的实验基础。近年来,在合肥综合性国家科学中心等部门支持下,EAST装置进行了系列性能升级,本轮实验于2021年12月初开始,将持续至2022年6月。EAST大科学团队将在未来聚变堆类似条件下向高参数稳态高约束等离子体运行等科学目标发起冲击。  核聚变能源具有资源丰富、无碳排放和清洁安全等突出优点,是人类未来最主要的清洁能源之一,可为实现碳达峰碳中和作出重大贡献。近年来,核聚变研究事业受到党和国家领导人的高度关注,在国家部委以及安徽省、合肥市、合肥综合性国家科学中心等大力支持下,合肥科学岛上的磁约束核聚变研究取得了突飞猛进的发展,物理实验成果和工程技术能力引领国际前沿。
  • 西安光机所在等离子体研究方面取得新成果
    p  7月5日,国际应用物理类学术期刊《应用物理学杂志》(JAP)发表了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室等离子体学科研究论文A diffuse plasma jet generated from the preexisting discharge filament at atmospheric pressure,论文通讯作者为该所博士汤洁。文章的创新性和重要性受到了期刊编委会和评审专家的高度评价,被遴选为当期的封面文章和亮点文章。/pp  作为一种新型、经济、便捷的等离子体发生技术,大气压低温等离子体射流在材料加工与改性、薄膜层积、纳米颗粒制造、器械表面洗消、生物组织结构与功能恢复、微生物诱变育种等领域都具有独特的技术优势和良好的应用前景。均匀、弥散、大面积低温等离子体射流的研发,一直以来是该学科领域研究的重点和难点。该论文打破传统气体放电中采用降低电离率或提高预电离水平来获取均匀弥散等离子体的思维,建立不同学科领域(光学与等离子体)物质传播与输运相同或相似性理念,首次将“透镜扩束”概念引入低温等离子体领域,提出“电场透镜模型”,构建大气压均匀弥散放电新的基础理论,通过巧妙合理的电极结构设计,在大气压环境中成功实现气体放电从细丝到弥散的转变,并基于Possion模型,阐释了气体放电中弥散等离子体形成机制。/pp  该成果为生成大气压均匀弥散等离子体提供了又一重要指导思想,将对低温等离子体技术应用的推广起到重要促进作用。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/9291bafc-42d5-4e1a-88a1-90fc9b5e86ea.jpg"//pp style="text-align: center "strong当期期刊封面/strong/p
  • 德国开发出等离子体快速消毒仪
    为解决医务工作者每天花大量时间洗手消毒的问题,德国研究人员最近开发出一种等离子体快速消毒仪,可在几秒钟内对皮肤进行一次安全快捷的消毒处理。  德国马克思普朗克宇宙物理学研究所研究人员在新一期英国《新物理学杂志》(New Journal of Physics)上报告说,等离子态是物质在固体、液体、气体之外的第四种存在状态,宇宙中的许多恒星就处于等离子态。研究人员将少量高温等离子态原子混入大量低温普通原子中,可以得到低温等离子态物质,它产生的自由基和紫外线等具有杀菌效果。  研究人员说,在此基础上开发出的消毒仪使用的等离子体可像空气一样与消毒对象全面接触。例如,人们将双手伸入消毒仪中,几秒钟之内就能对双手实施一次安全快捷的消毒,并可杀灭近年来多次引发感染事故的“超级细菌”耐甲氧西林金黄色葡萄球菌等。消毒过程中,除了需要电力之外,并不需要别的流体和容器。  研究人员说,如果按外科医生一次标准洗手程序需3到5分钟计算,那么在一个繁忙的工作日里医务人员可能要花上几个小时来洗手,如果使用这种等离子体消毒仪,可将这一时间缩短到10分钟。  在同一期杂志上,德国和日本研究人员还报告了另一种杀毒强度可调节的等离子体消毒仪,它形似手电筒,可以专门用来“照射”人体伤口,为缓慢愈合的伤口进行消毒。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制