当前位置: 仪器信息网 > 行业主题 > >

低温超导磁体系统

仪器信息网低温超导磁体系统专题为您提供2024年最新低温超导磁体系统价格报价、厂家品牌的相关信息, 包括低温超导磁体系统参数、型号等,不管是国产,还是进口品牌的低温超导磁体系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合低温超导磁体系统相关的耗材配件、试剂标物,还有低温超导磁体系统相关的最新资讯、资料,以及低温超导磁体系统相关的解决方案。

低温超导磁体系统相关的论坛

  • 低温超导测试系统中实现高精度液氦压力控制的解决方案

    低温超导测试系统中实现高精度液氦压力控制的解决方案

    [color=#ff0000]摘要:针对目前两种典型低温超导测试系统中存在的液氦压力控制精度较差的问题,本文提出了相应的解决方案。解决方案分别采用了直接压力控制和流量控制两种技术手段和配套数控阀门,结合24位AD和16位DA的超高精度的PID真空压力控制器和压力传感器,大幅提高了液氦压力控制精度,最终实现低温超导性能的高精度测试。[/color][color=#ff0000][/color][color=#ff0000][/color][align=center][img=低温超导测试系统中实现高精度液氦温度控制的解决方案,690,411]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031120120633_4214_3221506_3.jpg!w690x411.jpg[/img][/align][align=center]~~~~~~~~~~~~~[/align][size=14px][/size][size=18px][color=#ff0000][b]1. 项目概述[/b][/color][/size] 各种超导部件如超导磁铁和超导腔体在装机前都需要在低温超导测试系统中对其性能进行测试,为了使超导部件达到低温环境则需要将被测部件浸泡在液氦介质内,并采用低温杜瓦盛装液氦介质。在整个测试过程中,对低温测试系统内的液氦压力要求极高,即要求杜瓦顶部氦气压强(绝对压力)有极好的稳定性,否则会导致测试不稳定,给测试结果带来严重误差。 目前国内现有的很多低温超导测试系统都存在液氦压力控制不稳定的严重问题,有些客户提出了相应的技术升级改造要求。 如图1所示的低温超导测试系统中,采用了两个不同口径的第一和第二泄压阀来粗调和细调液氦压力,但这种调节方法的液氦压力只能控制在1.2~1.6Bar范围内,对应4.39~4.74℃范围的液氦温度变化,造成0.35℃的温度波动。目前客户提出要设法将温度波动控制在0.1℃以内或更高的稳定性上,以提高超导部件性能测试精度。[align=center][color=#ff0000][b][img=超导试件测试时氦压控制系统,500,356]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123466941_8802_3221506_3.jpg!w690x492.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图1 低温超导测试系统液氦压力控制装置[/b][/color][/align] 如图2所示的高场超导磁体低温垂直测试系统,其压力控制范围1~1.3Bar,尽管在图2所示系统中采用了液氦加热器来改变液氦压力,但由于压力控制阀的调节精密度不够,最终造成压力控制精度远达不到测试要求,客户也提出了技术改造要求。[align=center][b][color=#ff0000][img=高场超导磁体低温垂直测试系统,400,557]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123146762_3661_3221506_3.jpg!w522x728.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 高场超导磁体低温垂直测试系统[/color][/b][/align] 针对上述两种典型低温超导测试系统中存在的液氦压力控制精度不足的问题,本文将提出相应的解决方案。解决方案将分别采用直接压力控制和流量控制两种技术手段和配套数控阀门,结合超高精度的PID真空压力控制器和压力传感器,可大幅度提高液氦压力控制精度,最终减小低温超导性能测试误差。[b][size=18px][color=#ff0000]2. 解决方案[/color][/size][/b] 在图1和图2所示的两种典型低温超导测试系统中,它们各自的液氦压力变化起因不同,因此要实现液氦压力准确控制的技术手段也不同。以下是解决方案中对应的两种不同技术途径。[b][color=#ff0000](1)直接压力调节法[/color][/b] 在图1所示的低温超导测试系统中,造成液氦蒸发的因素并不可控,只能通过调节液氦上方的氦气压力来使得测试系统保持稳定。因此,为了实现液氦上方的压强控制,解决方案采用了直接压力调节法,如图3所示,即采用数控压力控制阀代替图1中的第一和第二泄压阀。此压力控制阀与高精度PID控制器和压力传感器构成闭环控制回路,实现自动泄压和高精度压力控制。[align=center][color=#ff0000][b][img=纯压力控制结构,500,350]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031124390427_8017_3221506_3.jpg!w690x483.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图3 直接压力调节法控制装置结构[/b][/color][/align] 数控压力控制阀是一种数控正压减压控制阀,正好可以满足低温超导测试系统的微正压控制需求。通过氦气源和减压阀提供的驱动压力,可在控制阀出口处实现高精度的压力控制,同时还保持很小的漏气以节省氦气。 另外,此数控压力控制阀具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,可将液氦压力控制在0.1%的高精度水平。[b][color=#ff0000](2)流量调节法[/color][/b] 在图2所示的低温超低测试系统中,其不同之处之一是具有液氦加热器,即通过液氦加热器和压力控制阀构成的控制回路可进行不同液氦压力的控制,由此实现不同液氦温度的控制。 为实现不同液氦压力的精密控制,解决方案在此采用了流量调节法。如图4所示,解决方案采用了电动针阀作为图2中的压力控制阀,电动针阀与双通道高精度PID控制器、压力传感器和液氦加热器构成闭环控制回路,可以按照任意设定值进行高精度的压力控制。[align=center][color=#ff0000][b][img=流量控制结构,500,290]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031125069440_4211_3221506_3.jpg!w690x401.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图4 流量调节法控制装置结构[/b][/color][/align] 电动针阀是一种数控的微小流量调节阀,可通过PID压力控制器自动调节针阀开度,流出的氦气可通向氦气回收气囊。电动针阀同样具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,同样可将液氦压力控制在0.1%的高精度水平。[b][size=18px][color=#ff0000]3. 总结[/color][/size][/b] 通过上述解决方案的技术手段,可实现低温超低测试系统中液氦压力的准确控制,控制精度最高可达±0.1%。 按照绝对压力进行计算,饱和蒸气压为1.2Bar时,液氦温度为4.4K。由此,如果压力控制精度为±0.1%,液氦压力的波动范围为±1.2mBar(相当于绝对压力±120Pa),对应的液氦温度波动范围为4.4mK,即所控的液氦温度为4.4±0.0044K。 由此可见,通过本文所述的解决方案,仅通过采用工业级别较低造价的PID真空压力控制器和压力传感器,结合数控压力控制阀和电动针阀,就可实现很高精度的液氦压力控制,温度控制精度可达到mK量级,完全能满足绝大多数低温超导测试系统的需要。[align=center]~~~~~~~~~~~~~~~~~[/align]

  • 【分享】NMR谱仪的磁体部分

    核磁共振波谱仪在空间上由两部分:磁铁或磁体(内含探头)和谱仪主体。高频谱仪采用超导磁体,它与谱仪主体相距较大,以降低磁场对操作人员的影响。 磁铁或磁体产生强的静磁场,以满足产生核磁共振的要求。按(6.10)式,谱仪的磁感强度B0和谱仪工作频率是成正比的。100MHz(以氢核计)的谱仪所需磁感强度为2.35T(特斯拉,1特斯拉等于10000高斯)。100MHz以下的低频谱仪采用电磁铁或永久磁铁。由于电磁铁不可避免地会消耗大量电能,已经停止生产,因此仅采用永久磁铁。200MHz以上高频谱仪采用超导磁体,它利用含铌合金在液氦温度下的超导性质。由含铌合金丝缠绕的超导线圈完全浸泡在液氦中间。为减低液氦的消耗,其外围是液氮层。液氦及液氮均由高真空的罐体贮存,以降低蒸发量。在液氮、液氦均灌装以后,由一套专用的连接装置,通过液氦导管下方的超导线圈电流输入插座,对超导线圈缓慢地通入电流。当超导线圈中的电流达到额定值(也即是产生额定的磁感强度时),使线圈的两接头闭合。只要液氦始终完全淹没线圈,含铌合金在此温度下的超导性则使电流一直维持下去。以上过程为谱仪安装过程中的升场。液氦需及时补充,视不同谱仪而定,约为3至10月。每7至10天则需补加液氮。  磁体的中心为探头,为使磁力线均匀,铅垂,设置有两大组匀场线圈。每大组匀场线圈又由多组线圈构成。后者每组线圈产生一组特殊的磁力线,由它们的综合作用,产生均匀的磁场。两(大)组匀场线圈为低温匀场线圈和室温匀场线圈。低温匀场线圈浸泡在液氦中,升场以后进行调节。室温匀场线圈由分析测试人员在放置样品管后进行调节。  无论是用磁铁或磁体,核磁共振谱仪均要求磁场高度均匀,若样品中各处磁场不均匀,各处的原子核共振频率不同,这将导致谱峰加宽,即分辨率下降。为使磁场匀均,除前面所讲的采用低温和室温两大组匀场线圈之外,还有后面将叙述的使样品管旋转。 我们还要求磁场随时间稳定,这就要采用锁场装置,在核磁共振谱图上显示的是吸收信号,即以频率(或磁感强度)为横坐标,以垂直于共振频率的轴为对称轴的对称信号。事实上,通过对信号"相位"的调整,可以得到色散信号,即以频率变量为横坐标,以共振频率为反对称中心的信号。锁场就采用某一参考信号的色散信号。当磁场未漂移时,色散信号值为零。磁场漂移后,色散信号不为零,产生一个与磁场变化成正比的输出电压,该电压被放大后反馈到适当的线圈,后者反过来给出一个方向相反的磁场。

  • 【原创】牛津仪器推出最新应用于中子散射研究的低温磁场环境仪器(2007年8月1日)

    牛津仪器纳米科学部推出一系列最新产品,可以为中子散射研究提供低温高磁场的样品环境(低温至25mk, 磁场至15T)。 牛津仪器有独一无二的多领域科研团队,与从事中子散射研究的科学家团体有着多年的合作。牛津仪器为能设计出应用于中子散射研究的低温磁场系统而感到骄傲,我们一直处于该领域的最前沿。牛津仪器超导部此次研发出的新仪器是 VarioxAc-TL, Tritontm DR制冷机 和新型超导磁体。 [color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 稳态强磁场实验装置测试系统产出新成果

    近期,中国科学技术大学朱弘教授小组利用稳态强磁场实验装置电子自旋共振等测试系统,研究了压缩应变(La,Ba)MnO3薄膜中的磁晶各向异性,其研究结果近期发表于《应用物理学杂志》(Journal of Applied Physics)。 中国科学院强磁场科学中心的科学实验测试系统包括输运实验测试系统、磁性实验测试系统、磁光实验测试系统、极低温实验测试系统、高压实验测试系统和组合显微系统。朱弘小组此次实验就是利用磁性实验测试系统中的“电子顺磁共振谱仪”,进行了一系列研究。其实验结果表明,在Sr或Ca掺杂的锰氧化物铁磁薄膜中容易磁化轴沿拉伸应变方向。该工作利用转角铁磁共振技术,发现在Ba掺杂的薄膜中情况正相反,易磁化方向对应面内的压缩应变方向。实验得到面外共振位置高达12千奥斯特(kOe),表明除了形状各向异性外,磁晶各向异性非常可观,且是易面的。这种磁晶各向异性“异常”的表现反映了锰氧化物与Bethe-Slater曲线的物理内容相一致。(La,Ba)MnO3和Co、Ni相同,易磁化轴沿压缩方向;而另两种掺杂的锰氧化物(LaCa),(LaSr)和a-Fe一样表现相反。 强磁场科学中心成立于2008年4月30日,是国家发改委支持的“十一五”国家重大科学工程。中心的长远预设目标包括强磁场的产生、强磁场下的物性研究以及依托强磁场实验装置进行科学技术发明,其实验设施包括磁体装置和科学实验测试系统。2010年,部分磁体装置及测试系统建成,已开始先期投入试运行并陆续向用户开放,基本实现“边建设边运行”。 稳态强磁场实验装置项目建设总目标是建立40T级稳态混合磁体实验装置和系列不同用途的高功率水冷磁体、超导磁体实验装置,使我国的强磁场水平跻身于世界先进行列。目前四台超导磁体中的SM3与配套核磁共振谱仪完成联调,并已开展了多项结构生物学和药物学方面的研究,SM2已调试成功,正与组合显微测试系统SMA联调。磁体装置方面,强磁场中心现已成功研制出国内首台铌三锡管内电缆导体的超导磁体以及我国首台井式真空充气保护大型铌锡线圈热处理炉系统。http://www.cas.cn/ky/kyjz/201208/W020120820347280715931.jpg

  • 【原创】低温科技,开辟物理研究新道路

    牛津仪器超导部在第十一届全国低温物理学术年会中展示其最新的低温超导技术和整体解决方案,为专业用户提供优质产品及服务2007年8月10日至14日,牛津仪器公司超导部参加在哈尔滨市举办的2007年第十一届全国低温物理学术年会,并于展示其最先进的低温制冷技术以及无液氦整体解决方案。本次年会由中国物理学会低温物理专业委员会主办,中科院物理研究所和哈尔滨工业大学凝聚态科学与技术研究中心承办,是中国最早最具权威的低温物理研讨会。作为此次年会的最大赞助商,牛津仪器不仅充分展示了其在低温技术研发方面的实力,而且还将展览一系列的未来技术,与与会学者共同探讨低温技术的发展趋势,以及如何在节省液氦的同时提高实验效率。牛津仪器超导部经理李俊云博士表示:“牛津仪器始终坚信低温技术的改善将为科学的发展带来更多的激动人心的发现。作为全球领先的低温超导技术提供者,牛津仪器多年来一直关注于低温超导领域的发展以及降低实验消耗的研究,致力于为科研,工业等各个专业领域提供量身定制的低温解决方案。“为专业人士提供专业的服务”是牛津仪器的品牌承诺,希望通过不断的科技创新满足科学家的实验需求,在减少实验消耗的同时提高仪器性能,为中国的低温物理发展贡献一份力量。 在本次的展会中,超导部门就公司的四个最新实验技术- 无液氦低温磁场测量环境、高效液氦杜瓦系统、无需液氦的稀释制冷机以及通用测量环境系统进行展示,并邀请相关的专家及研发人员就这四方面技术与发展进行探讨。首先,在全球液氦日趋紧张的今天,低温系统的液氦节约技术尤为重要。出色的无液氦技术使科研更简单、更轻松,从而降低了实验的经济成本和时间成本,提高了实验效率。牛津仪器专业的低温实验解决方案不仅针对具体研究进行度身定制的仪器设计,而且因地制宜采用多种液氦循环方式实现对实验系统有更简单更方便的维护。另外,良好的实验设备形成令人愉悦的科研环境还能够激励科研工作者进行更多的探索。当然,牛津仪器最为人所熟知的便是其领先业界的稀释制冷机系统和超导磁体,目前最新一代稀释制冷机——TritonDR ——采用了最新无液氦技术,利用内部气体自循环和无泄漏的管道实现可靠的实验操作。Triton 还采用了低振动脉冲冷头,自诊断电脑控制,飞瓦(10^-15w)温控技术,为低温实验提供了最佳的条件控制。牛津仪器已可以提供磁场强度至22T的超导磁体,与稀释制冷机共同提供低温强磁场的实验环境。 牛津仪器在中国的低温科研方面扮演了重要的角色,不断致力于为中国提供优质低温实验解决方案。

  • 永磁体测结构小谱仪的特色_我的个人体会比较

    永磁体测结构小谱仪的特色_我的个人体会比较目前在国内流行的检测结构的永磁体小核磁共振谱仪, 各具有功能特色, 以下是我个人对这些小谱仪的的体会比较情况:1. PicoSpin45 或 80:l 谱仪大小: 谱仪特别小, 像个大鞋盒, 约 20 公斤重, 随手可以抱起, 是目前所有小谱仪中最小巧的.但是谱仪的使用需要配置外挂电脑与屏幕, 从这点考虑, 体积比它略大但不必使用外置电脑与屏幕的 NMReady 或许更精巧些. 几年前 ThermoFisher 公司放置了一台 PicoSpin80 在我的核磁共振实验室供展示与功能开发, 为了担心仪器的丢失, 该公司特地钻孔接上了特殊防盗链条..l 进样: 不使用传统的 5 mm 核磁管, 而是利用微量注射器把样品溶液 (约 40 微升) 注入特殊毛细管道内, 进入磁体腔内检测. 这种微量进样检测的方式, 十分有特色. 厂家据此宣称可以节省氘代试剂并有环保的功能, 但是说服力不高.l 检测表现: 由于样品量少, 无法实现真正的快速检测. 其他小谱仪检测 0.5mL 样品溶液量扫描一两次可以得到足够信号, 本谱仪需要扫描数十次至数百次. 长时间的检测, 特别仰赖磁体的稳定性.l 存谱与谱图处理: 使用 MestreNova处理. 直接存谱得到的就是 mnova 后缀, 和 MestreNova 联结得特别紧密其他小谱仪的存谱文档有自己的后缀, 借用 MestreNova 打开处理.l 保养: 需要特别防备管道的阻塞问题.因此每日检测后, 必须使用水或乙醇充分冲洗管道移除杂质, 防止溶剂挥发后的样品残留阻塞管路. 毛细管路通到内部的检测界面, 更换价格昂贵, 带来心理的压力.2. HT-60 或 90:l 谱仪大小: 虽然远小于超导磁体的体积体重大小, 但是在所有小谱仪中是比较大号级别与笨重的的. 有两套设备单元: 磁体 (检测区) 和电器控制 (类似机柜), 两个单元的体积都大约是 0.7 x 0.7 x 1 米. 另外还需要配备空气压缩机.l 进样系统: 具有 spin 功能, 这是其他小谱仪没有的. 因此比较笨重. 旋转有助于匀场效果.l 检测表现: 虽然还没有见识谱仪实体, 但是久仰大名. 目前已经推出 200 兆以及宣传 300 兆多年. 就了解, 很大的弊病是谱图没有和 MestreNova 兼容.l 价格了解: 可能是所有小谱仪较便宜的, 在人民币-50 万元之内.3. SpinSolve-46 或 60:l 谱仪大小: 五个小谱仪中排名第三, 和 NMReady 大小相当, 为一两人可抱动范围, 需要配备外挂电脑做操作处理,接上笔记本电脑方便.l 进出样品: 使用 5 mm 的常规核磁管. 由于磁体深藏在底部, 进样时需要使用长塑料套管把核磁管倒入检测区, 操作上有些繁琐..l 检测表现: 使用重水 (90%) 的标样进行锁场匀场, 大约半个小时, 之后可以稳定使用几十个小时.亲自长时间使用的经验感觉, 很满意此谱仪磁体的稳定表现. 检测不含氘代试剂的简易核磁共振氢谱与碳谱效果良好.l 存谱与谱图处理: 感觉不够简明. 每次存谱都需要找寻指定文件夹并输入样品名, 存谱后数据的导出是个压缩包, 需要解压缩, 然后用较新版的 MestreNova 才能打开处理. 网络上广传多年的 6.1 版本无法处理, 是较不方便的地方.l 仪器精致容易操作, 可以建议厂商在展会中 (如仪器展 BCEIA 或波谱展摊) 展出实体当场演示, 必定吸引好奇注意.4. NMReady-60:l 谱仪的大小: 大约一个微波炉大小, 一个人可抱动 小巧性在五个小谱仪中排名第二望一, 比 PicoSpin 略大. 但是若考虑谱仪本身具有屏幕与操作功能, 不必外加电脑, 则胜过 PicoSpin.l 进出样方式: 使用一般常规的5 mm 核磁管, 直接用手拿捏着放入小磁铁上面的洞口或取出, 十分简明方便. 置入后核磁管还露出头约3 公分. 是目前所有小谱仪中, 进样出样最方便的. 比 SpinSolve 需要联结长通道管方便许多. 尤其需要使用到外标毛细管的检测时特别方便.l 检测表现: 有三种混合溶剂标样 (蓝/黄/红) 进行锁场与匀场, 比较复杂. 似乎不同的样品溶液得使用不同的标样管, 正在进一步了解中. 自动匀场有三个界别, 快速的 5 分钟, 中等的 15 分钟, 较长的 40 分钟. 也可以进行手动调匀场 也具有可即使小时匀场效果类似超导谱仪 GS 功能的检视效果 (每几秒自动显示匀场改变的更新谱图).l 存谱与处理过程简单方便: 是五个小谱仪中排名第一方便的. 存谱时自动给编号 (日期+顺序号), 回车就行 自然也可以输入命名, 但是先记录在笔记本, 以后进大电脑再改名就可. 存后的文档为 jdx 后缀, 约 300 KB. 可以方便的拷贝出来使用 MestreNova 打开..l 仪器精致容易操作, 可以建议厂商在展会中 (如仪器展 BCEIA 或波谱展摊) 展出实体当场演示, 必定吸引好奇注意.5. Pulsar-60:l 谱仪大小: 两个单元, 磁体与电子箱, 都大约 0.5 x 0.5x 0.5 米. 图片显示, 谱仪有些笨重,不是一个人能够轻易抱动的 (约 150 Kg).l 进样: 使用传统的 5 mm 核磁管.l 存谱处理: 使用MestreNova.l 检测表现: 目前中国北方没有实体谱仪供上机操作了解机会. 争取近期未来到上海使用了解.

  • 新闻资讯 中国制造打破国外垄断───美时医疗7T超高场成像磁体实现“零”的突破

    新闻资讯新闻资讯中国制造打破国外垄断───美时医疗7T超高场成像磁体实现“零”的突破发布时间:2016-01-25 2016年1月18日,美时医疗技术有限公司的励磁车间内一片欢腾,特斯拉计的读数停留在了激动人心的7.0366T,这标志着全亚洲首台自主研发生产的7T超高场成像磁体的诞生。 http://www.time-medical.com.cn/uploads/7Tesla.png 美时医疗的超高场磁体团队历时多年的研发、设计以及制造,通过大量的模拟和计算,制定了详尽的计划和方案,该款磁体第一次励磁测试便成功达到7T的磁场强度。该磁体通过特殊的磁体设计和精湛的制造工艺,使磁体总重量小于2吨,同时保证了液氦的零消耗,磁场漂移小于0.1ppm/h。 在过去三十年间,超导磁体技术一直被三家外国公司所垄断,尤其是4.7T以上的超高场磁体技术,全球范围内仅有2家企业具备研发和制造能力。而在这之中,用于成像的超高场磁体更是难上加难。核磁共振成像因其对被扫描对象的无创性,及在软组织成像上的高灵敏度,与其他软件平台和数学工具的自然紧密配合等独特优势,在大脑研究中被广泛应用,可以对大脑的代谢、运作、逻辑、语言和思维等各方面进行研究。分子成像可有效地揭示细胞的运作状态,揭示药物在活体细胞中的作用和机理,对于病理学和药理学的研究能起到关键作用。脑功能成像可研究人类的思维活动,了解大脑的运作机制,探索大脑学习和认知的秘密。核磁共振技术对于中风等一些脑部疾病的早期诊断和预防也能起到至关重要的作用。 由于超高场磁体的高度垄断和技术壁垒,使其价格始终居高不下,这严重阻碍了中国磁体技术、脑科学和生物制药等领域的应用研究。美时医疗通过多年的技术积累,经验沉淀和刻苦研发,终于打破了外国公司在超高场磁体领域的垄断,创立了中华第一的自主品牌,为中国科技的发展作出卓越贡献。© 美时医疗控股有限公司 2010‐2015版权所有首页 联系我们

  • 永磁体测结构小谱仪的特色_我的个人体会比较

    永磁体测结构小谱仪的特色_我的个人体会比较目前在国内流行的检测结构的永磁体小核磁共振谱仪, 各具有功能特色, 以下是我个人对这些小谱仪的的体会比较情况:1. PicoSpin45 或 80:l 谱仪大小: 谱仪特别小, 像个大鞋盒, 约 20 公斤重, 随手可以抱起, 是目前所有小谱仪中最小巧的.但是谱仪的使用需要配置外挂电脑与屏幕, 从这点考虑, 体积比它略大但不必使用外置电脑与屏幕的 NMReady 或许更精巧些. 几年前 ThermoFisher 公司放置了一台 PicoSpin80 在我的核磁共振实验室供展示与功能开发, 为了担心仪器的丢失, 该公司特地钻孔接上了特殊防盗链条..l 进样: 不使用传统的 5 mm 核磁管, 而是利用微量注射器把样品溶液 (约 40 微升) 注入特殊毛细管道内, 进入磁体腔内检测. 这种微量进样检测的方式, 十分有特色. 厂家据此宣称可以节省氘代试剂并有环保的功能, 但是说服力不高.l 检测表现: 由于样品量少, 无法实现真正的快速检测. 其他小谱仪检测 0.5mL 样品溶液量扫描一两次可以得到足够信号, 本谱仪需要扫描数十次至数百次. 长时间的检测, 特别仰赖磁体的稳定性.l 存谱与谱图处理: 使用 MestreNova处理. 直接存谱得到的就是 mnova 后缀, 和 MestreNova 联结得特别紧密其他小谱仪的存谱文档有自己的后缀, 借用 MestreNova 打开处理.l 保养: 需要特别防备管道的阻塞问题.因此每日检测后, 必须使用水或乙醇充分冲洗管道移除杂质, 防止溶剂挥发后的样品残留阻塞管路. 毛细管路通到内部的检测界面, 更换价格昂贵, 带来心理的压力.2. HT-60 或 90:l 谱仪大小: 虽然远小于超导磁体的体积体重大小, 但是在所有小谱仪中是比较大号级别与笨重的的. 有两套设备单元: 磁体 (检测区) 和电器控制 (类似机柜), 两个单元的体积都大约是 0.7 x 0.7 x 1 米. 另外还需要配备空气压缩机.l 进样系统: 具有 spin 功能, 这是其他小谱仪没有的. 因此比较笨重. 旋转有助于匀场效果.l 检测表现: 虽然还没有见识谱仪实体, 但是久仰大名. 目前已经推出 200 兆以及宣传 300 兆多年. 就了解, 很大的弊病是谱图没有和 MestreNova 兼容.l 价格了解: 可能是所有小谱仪较便宜的, 在人民币-50 万元之内.3. SpinSolve-46 或 60:l 谱仪大小: 五个小谱仪中排名第三, 和 NMReady 大小相当, 为一两人可抱动范围, 需要配备外挂电脑做操作处理,接上笔记本电脑方便.l 进出样品: 使用 5 mm 的常规核磁管. 由于磁体深藏在底部, 进样时需要使用长塑料套管把核磁管倒入检测区, 操作上有些繁琐..l 检测表现: 使用重水 (90%) 的标样进行锁场匀场, 大约半个小时, 之后可以稳定使用几十个小时.亲自长时间使用的经验感觉, 很满意此谱仪磁体的稳定表现. 检测不含氘代试剂的简易核磁共振氢谱与碳谱效果良好.l 存谱与谱图处理: 感觉不够简明. 每次存谱都需要找寻指定文件夹并输入样品名, 存谱后数据的导出是个压缩包, 需要解压缩, 然后用较新版的 MestreNova 才能打开处理. 网络上广传多年的 6.1 版本无法处理, 是较不方便的地方.l 仪器精致容易操作, 可以建议厂商在展会中 (如仪器展 BCEIA 或波谱展摊) 展出实体当场演示, 必定吸引好奇注意.4. NMReady-60:l 谱仪的大小: 大约一个微波炉大小, 一个人可抱动 小巧性在五个小谱仪中排名第二望一, 比 PicoSpin 略大. 但是若考虑谱仪本身具有屏幕与操作功能, 不必外加电脑, 则胜过 PicoSpin.l 进出样方式: 使用一般常规的5 mm 核磁管, 直接用手拿捏着放入小磁铁上面的洞口或取出, 十分简明方便. 置入后核磁管还露出头约3 公分. 是目前所有小谱仪中, 进样出样最方便的. 比 SpinSolve 需要联结长通道管方便许多. 尤其需要使用到外标毛细管的检测时特别方便.l 检测表现: 有三种混合溶剂标样 (蓝/黄/红) 进行锁场与匀场, 比较复杂. 似乎不同的样品溶液得使用不同的标样管, 正在进一步了解中. 自动匀场有三个界别, 快速的 5 分钟, 中等的 15 分钟, 较长的 40 分钟. 也可以进行手动调匀场 也具有可即使小时匀场效果类似超导谱仪 GS 功能的检视效果 (每几秒自动显示匀场改变的更新谱图).l 存谱与处理过程简单方便: 是五个小谱仪中排名第一方便的. 存谱时自动给编号 (日期+顺序号), 回车就行 自然也可以输入命名, 但是先记录在笔记本, 以后进大电脑再改名就可. 存后的文档为 jdx 后缀, 约 300 KB. 可以方便的拷贝出来使用 MestreNova 打开..l 仪器精致容易操作, 可以建议厂商在展会中 (如仪器展 BCEIA 或波谱展摊) 展出实体当场演示, 必定吸引好奇注意.5. Pulsar-60:l 谱仪大小: 两个单元, 磁体与电子箱, 都大约 0.5 x 0.5x 0.5 米. 图片显示, 谱仪有些笨重,不是一个人能够轻易抱动的 (约 150 Kg).l 进样: 使用传统的 5 mm 核磁管.l 存谱处理: 使用MestreNova.l 检测表现: 目前中国北方没有实体谱仪供上机操作了解机会. 争取近期未来到上海使用了解.

  • 【求助】急问:核磁仪里的磁场

    我想问一下核磁共振仪器里面的两块超导磁体之间的磁场是匀强磁场吗?假设在其中放入一个带正电荷的粒子,磁场对它的作用力应该是什么方向的呢?怎么分析它的运动轨迹?谢谢

  • 超导核磁共振波谱NMR测试技术

    [font=黑体, SimHei][size=16px][font=等线]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-14046.html[/url]型号:[/font]AVANCE ⅢHD 400 MHz[/size][/font][font=等线][size=16px]生产厂家:德国Bruker公司[/size][/font][font=黑体, SimHei][size=16px]主要技术指标:[/size][/font][font=等线][size=16px]1.超屏蔽超导磁体,磁场强度为9.4特斯拉,2组数字化射频通道[/size][/font][font=黑体, SimHei][size=16px]2.BLAXH 500/300-高性能线性功放系统[/size][/font][font=黑体, SimHei][size=16px]3.B-SVT 高精度变温控制单元 温度设置幅度:+/-0.1oC[/size][/font][font=黑体, SimHei][size=16px]4.4mm CP/MAS 宽带固体探头 标准腔 温度范围: -50?C ~ +80?C [/size][/font][font=黑体, SimHei][size=16px][font=等线]频率范围:[/font]15N-31P+1H 13C灵敏度≥75:1 最高转速:15KHz[/size][/font][font=黑体, SimHei][size=16px]5.7mm CP/MAS 宽带固体探头 标准腔 温度范围: -50?C ~ +80?C [/size][/font][font=黑体, SimHei][size=16px][font=等线]频率范围:[/font]15N-109Ag+1H 15N灵敏度≥22.7:1 最高转速:7KHz[/size][/font][font=黑体, SimHei][size=16px]6.4mm高分辨魔角微量探头(HR/MAS):变温范围:-20?C~+80?C,容量50μl,魔角旋转。[/size][/font][font=黑体, SimHei][size=16px]应用范围:[/size][/font][font=等线][size=16px]CP/MAS可分析不溶固体物质以及一些虽能溶解但溶解后其结构发生变化的固体物质,了解样品在固体状态下的结构信息。用于各种材料的结构与性能方面的研究,如固体催化剂、玻璃、陶瓷、高分子、膜白质、骨头、羟基磷灰石等;在无机及聚合物材料化学、医药中间体及活性分子、沸石分子筛、有机发光中间体、表面化学及催化等研究领域广泛运用。[/size][/font]

  • 【原创】磁场系统(Magnet System)

    [size=3][font=宋体]磁场系统[/font][font=宋体]提供被加速的带电粒子在所控制的轨道中做圆周运动所需要的磁场强度,由磁铁、线圈、磁场电源配给系统([/font][font=Times New Roman]Magnet Power Supply PSMC[/font][font=宋体])等组成。[/font][/size][size=3][font=Times New Roman] [/font][font=宋体]现代医用回旋加速器的磁场结构设计根据粒子动力学和[/font][font=Times New Roman]LH Thomas[/font][font=宋体]的轴向聚焦理论采用与传统回旋加速器的平面磁极不同的扇形磁极,其形成的深谷磁场代替了传统的匀强磁场。常用的扇形磁极有直边扇形磁极、螺旋扇形磁极和分离扇形磁极等。[/font][/size][size=3][font=宋体]回旋加速器的磁体常见的有方形和[/font][font=Times New Roman]C[/font][font=宋体]形两种结构,[/font][font=宋体]前者由两个横梁和两个立柱组成的磁轭加上两个磁极构成,是普通回旋加速器普遍采用的结构。而分离扇形的等时性回旋加速器则常采用后者,它可提供较多的空间来安放束流的其它设备。回旋加速器的磁铁通常由含碳量极低的工业纯铁或低碳钢制成。[/font][color=#eaeaea][size=5][/size][/color][/size][size=3][font=宋体]回旋加速器的工作磁场[/font][b][i][color=blue][size=3][font=Times New Roman]B[/font][/size][/color][/i][/b][font=宋体]愈高,其基本造价就愈低。从经济的观点看,[/font][b][i][color=blue][size=3][font=Times New Roman]B[/font][/size][/color][/i][/b][font=宋体]愈高愈好。然而,磁场过高时,磁体钢材的导磁率将迅速下降,发生“磁饱和”现象,此时不仅磁体激磁的效率大大下降,从而可使造价和运行费用反而升高,更重要的是磁场的分布将随激励水平的高低而发生显著变化,这将会给加速离子能量和品种的调节造成巨大的困难。因此,通常将[/font][b][i][color=blue][size=3][font=Times New Roman]B[/font][/size][/color][/i][/b][font=宋体]选择在[/font][font=Times New Roman]1.2~2.0[b][color=blue][size=3]T[/size][/color][/b][/font][font=宋体]之间。离子种类和能量固定的加速器的磁感应强度往往选在[/font][font=Times New Roman]2.0[b][color=blue][size=3]T[/size][/color][/b][/font][font=宋体]附近,离子和能量可变的加速器则选择在低限附近。[/font][/size][size=3][font=宋体]回旋加速器的磁铁通常用磁钢的锻件制成,也可用若干厚钢板迭焊后再进行加工而制成。为了达到高的磁感应强度[/font][b][i][color=blue][size=3][font=Times New Roman]B[/font][/size][/color][/i][/b][font=宋体],所用的材料必须是饱和磁感应强度高的磁钢。钢材中的杂质(主要为碳)可造成饱和磁感应强度下降,因此通常采用含碳量极低的工业纯铁(“阿姆科”软铁)或低碳钢作为回旋加速器主磁铁铁芯的材料。[/font][/size][font=宋体]近年来,由于超导磁体技术的进展,已成功地将该技术应用于回旋加速器,建成了超导回旋加速器,这类加速器的磁体主线圈是用铌钛和铜的合金材料制成。当液氮将线圈冷却到[/font][font='Times New Roman']4.2K[/font][font=宋体]时,通过的电流高达[/font][font='Times New Roman']34000A[/font][font=宋体],可产生约[/font][font='Times New Roman']5.0T[/font][font=宋体]的强磁场。在这样的条件下,回旋加速器的尺寸只是常规型的[/font][font='Times New Roman']1/3~1/2[/font][font=宋体]左右,而磁体的运行费用仅为常规的[/font][font='Times New Roman']1/10[/font][font=宋体]。[/font]

  • UPS电源对核磁共振是否有影响?

    本人在给用户配置UPS电源,他们提出一个问题,就是UPS是不是对核磁共振有影响!主要是考虑到核磁共振本身超导磁体,而UPS本身也有电磁,请问是否影响核磁共振的工作?!请大家不吝赐教!SOS!我在给另外一个用户配置的时候,他们却没有提出这个问题!

  • 【资料】更多核磁资料与您共享

    核磁共振仪被誉为分子结构显微镜,在有机化合物的结构解析中能同时提供多方面的结构信息,是目前确定有机物结构时最重要和最有效的手段和方法。按磁体分类: 永久磁体:60MHz 电 磁 体:60~100MHz 超导磁体:200MHz以上按工作方式: 连续波(CW) 脉冲傅立叶变换(FT)研究对象:凡自旋量子数不为零的核都可以被研究,如 1H1、13C6、31P15、19F9、27Al13、7Li3、11B5、23Na11…….

  • 【转帖】国产散射系统问世 聚变实验堆有了新型"体温计"

    记者9日从中科院合肥物质研究院等离子体所了解到,国际公认的最为准确的电子温度和密度诊断系统——汤姆逊散射诊断系统在我国新一代“人造太阳”实验装置EAST成功建成并调试运行。  中科院合肥物质研究院等离子体所汤姆逊散射研究小组专家介绍,目前这套25道汤姆逊散射诊断系统,为国内最先进水平,已基本可以提供等离子体电子温度和密度分布结果。  汤姆逊散射诊断系统可以在热核聚变实验中给出等离子体电子温度和密度的空间分布,是国际公认的最为准确的测量电子温度的方法,也是技术难度最高的几个热核聚变装置诊断之一。由于其重要性,几乎所有热核聚变装置都大力发展汤姆逊散射诊断系统。  EAST芯部25道汤姆逊散射诊断系统将为EAST物理研究、运行及其他诊断的标定提供可靠的手段。从事核能聚变实验研究长达35年,专门从事物理实验工作与诊断技术发展的美国通用原子公司等离子体物理实验学家谢中立教授说,这些进展来之不易。  等离子体所专家介绍,EAST芯部25道汤姆逊诊断系统的研制是等离子体所几代科技人员经过十多年的努力取得的阶段性成果。目前该系统离世界最先进水平尚有距离,项目组成员还将继续努力进一步对该系统进行改进和完善。  中国是国际热核聚变实验反应堆(ITER)的参与国之一。2006年9月,中国科学家耗时8年、耗资2亿元人民币的EAST建成并投入运行。在第一轮实验中,科学家们获得了电流超过500千安、时间近5秒的圆形截面高温等离子体。EAST成为世界上第一个同时具有全超导磁体和主动冷却结构的核聚变实验装置。它的建成使中国迈入磁约束核聚变领域先进国家行列。

  • 室温超导离我们还有多远

    在极端高压下变成金属态的氢元素极可能是室温超导体2013年08月08日 来源: 科技日报 作者: 罗会仟http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130807/051375868865125_change_wtt3837_b.jpg图为超导悬浮滑板http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130807/051375868865125_change_wtt3836_b.jpg生活中处处都是超导材料,如铝、钙、锡、铅等,一些非金属材料在高压下也是超导体,如硅、硫、磷等。 科幻电影《阿凡达》不仅仅给我们带来了3D的震撼视觉享受,也为我们构想出了一个奇幻美丽的潘多拉世界。其中最令人难忘的场景莫过于一座座悬浮在云端的哈利路亚山,山上爬满粗壮的藤蔓,还有壁挂飞天的瀑布和神秘的大鸟,神奇的哈利路亚悬浮山还时常在空中发生移动! 究竟是什么神秘的力量能够悬空“托起”这一座座大山呢?电影中解释道,是因为山中蕴藏着一种叫做“Unobtanium”的神奇室温超导矿石,它借助母树附近的强大磁场悬托起了哈利路亚山。为了掠夺这种奇珍异宝,疯狂的人类甚至不惜一切代价欲摧毁那威人的家园。 那么,什么是超导材料?它为何有如此强大的磁悬浮力量?我们现实中的地球是否存在室温超导体呢? 超导的力量 一块超导板甚至可以悬浮起相扑选手 超导,顾名思义就是超级导电的意思。超导材料具有许多独特的电、磁、热等物理特性,其中最典型的就是当降到足够低温度(该温度点称作超导临界温度)的时候,超导材料的电阻会突然变为零,假如在超导环中诱导出电流的话,电流将永久环流而几乎不衰减,而且也不会有任何发热现象。如果将超导体置于磁场环境下,超导感应电流的存在将使超导体内自动形成一个如“金钟罩”、“铁布衫”一样的屏蔽磁场,这有效抵消了外界磁场,导致超导体内磁场为零。这便是超导体的另一种特性——完全抗磁性。 超导体对外磁场的“抗拒”会产生作用力,同时磁场对超导体也存在反作用力,而且越靠近磁体,该作用力增加得越多,因此将超导体置于磁场上方的合适高度就可以达到抗磁力与重力的平衡,从而把超导体悬浮在空中——这就是超导磁悬浮的原理。尽管悬浮现象在生活中比比皆是,但来自完全抗磁性的超导磁悬浮无疑是最强的悬浮力量之一,一块见方大小的超导板甚至可以悬浮起重量级的相扑选手。 超导的条件 临界温度“低得可怜” 超导材料具有如此奇特的物理性质,它们很罕见吗?其实生活中处处都是超导材料,因为元素周期表中的大部分单质金属元素都是超导体,如铝、钙、锡、铅等,一些非金属材料在高压下也是超导体,如硅、硫、磷等。可是生活中却很少用到它们的超导特性,关键问题在于要实现超导,就必须将温度降到超导临界温度之下。遗憾的是,金属单质和合金超导体的临界温度都低得可怜。 例如1911年发现的第一个超导体——金属汞的临界温度在4K(热力学温标,相当于-269℃)左右,可以说它已经接近宇宙中的最低温度——绝对零度0K(-273℃),直到1986年以前,科学家发现的最高临界温度的超导体是Nb3Ge(中文名铌三锗),也仅为23K(-250℃)。要达到如此低的温度,用空调、冰箱来制冷是绝对不行的,它们顶多到-100℃左右,这需要依赖昂贵的液氦来制冷,就算在科研实验中也存在诸多局限,更何况大规模应用到生活中。 一个预言曾让高温超导研究陷入迷茫 超导体的零电阻和抗磁性让人们对其应用充满渴望,因为它将大大节约电力传输和使用过程中的损耗、可以提供持续稳定的强磁场、实现安全快捷的高速磁悬浮运输等等。因此,寻找到更高超导临界温度的超导体,乃至室温(300K或25℃左右)下的超导材料,势必将对人类未来的生活带来翻天覆地的革新。 1957年,物理学家巴丁、库伯和施里弗成功建立理论解释了传统金属单质和合金中的超导现象。他们认为:实现超导的关键在于低温下材料中的电子会“两两牵手配对”并且所有电子对能够和谐一致地运动,从而相互抵消了各自运动过程的能量损耗而实现超级导电的目的。据此理论,人们预言超导临界温度将不可能超越40 K(-233℃),这个预言曾经一度让寻找更高临界温度的超导体之路陷入迷茫。 超导的希望 高温超导家族正在壮大 然而实验物理学家并没有放弃对更高转变温度超导体的探索。功夫不负有心人,1986年,IBM的工程师柏诺兹和穆勒在La-Ba-Cu-O陶瓷材料中发现了35K(-238℃)的超导电性。随后,华人科学家朱经武、吴茂坤以及中国科学家赵忠贤等人发现了具有93K(-180℃)超导的Y-Ba-Cu-O体系。最终,这类铜氧化物超导体最高临界温度提高到了165K(-108℃)附近,从而被称为高温超导体(这里的高温,只是相对常规金属超导体的低超导临界温度而言的)。 高温超导体的临界温度迈入了液氮温区,大大降低的研究和应用成本。然而,高临界温度只是超导应用中的重要指标之一,为大规模应用,超导材料还需要具有良好的可塑性和承载大电流的本领等,为寻找到更多更适合应用的超导材料,科学家加快了超导探索的脚步,陆续发现了许多超导新家族。例如:2001年,日本科学家发现临界温度高达39K的MgB2超导体;2008年,日、中、美、德等多国科学家在铁砷族化合物中发现55K以上的超导电性,这类超导体被称为铁基超导体,是个极其庞大的家族。 氢元素被“寄予厚望” 如今,超导体的种类已经覆盖各种金属、合金、非金属化合物、氧化物,乃至有机物等多种物质形态,似乎暗示“条条大路通超导”。随着诸多新超导体的不断涌现,超导研究领域高潮迭起,人类对超导的不断深入认识也极大地推进了现代基础物理的前沿研究,人们对室温超导体的发现更加充满期待和厚望。 从理论上,已经预言在极端高压下的氢元素将变成金属态,它就极可能是室温超导体。从实验上,人们在各种化学形态物质开展深入探索和研究,已经在寻找更高临界温度超导体积累了丰富的经验。 相信在不久的将来,只要我们不断努力前行,现实中的哈利路亚山——室温超导体也许不再是梦想。到那时,你或许可以用超导磁悬浮技术在云彩之中练瑜伽或在悬空的“白云”沙发上酣睡,那是何等地惬意和美妙!(文·罗会仟) (作者系中科院物理研究所理学博士,中科院物理研究所副研究员,主要从事高温超导体的中子散射研究。本文转自蝌蚪五线谱网站) 《科技日报》(2013-8-8 五版)

  • 【原创大赛】超导量子干涉仪SQUID磁性测量的基本功练习

    【原创大赛】超导量子干涉仪SQUID磁性测量的基本功练习

    [align=center][color=#3366FF][b]超导量子干涉仪SQUID磁性测量的基本功练习[/b][/color][/align][align=center][color=#00b050]原创:王利晨 博士,美国Quantum Design公司[/color][/align][align=center][color=#00b050]推荐:陆俊 工程师,中科院物理所磁学室[/color][/align][align=center][color=#00b050]2017年7月27日[/color][/align][align=left][color=#00b0f0]一、引言[/color][/align][align=left]当今直流磁矩测量最精确的技术是SQUID(superconductor quantum interference devices, 超导量子干涉仪),尤其是DC-SQUID(直流超导量子干涉仪)最低可探测 1e-10 Oe数量级的磁场,即地磁场的百亿分之一,与胎儿的大脑产生的磁场相当。DC-SQUID的工作原理由两个完全一样的超导体-绝缘体-超导体组成的约瑟夫逊结(SIS Josephson junction,简称约结,如Nb-Al2O3-Nb,)并联而成,在没有外场的情形下,超导电流在两个约结中无差别的隧穿(tunneling of Cooper pairs),似乎绝缘体的阻挡并不存在。而当垂直SQUID环面方向存在外加磁通量时,假设SQUID自身电感不计,这两个约结因为在感应电流环路中分处磁通两侧而对外加磁通的响应电流刚好相反,于是引起超导电流在两个约结中的相位产生差异,该相位差随外加磁通量的变化线性变化。SQUID的总超导电流根据基尔霍夫定律(Kirchhoff's law)等于两个约结超导电流之和: I = I1+I2,在特定外磁通大小比如等于磁通量子(flux quantum, Φ0=h/2e=2.07×10-15 Wb)半奇数倍的情况下I1 和I2相位相差π/2,总超导电流I将恒为零,除非SQUID脱离超导态而变成普通导体,也就是说此时不存在贯穿SQUID的超导电流;而在外磁通为量子磁通的整数倍时I1 和I2相位一致,此时可贯穿SQUID的最大超导电流和单个约结能够传导的超导电流一致;这样,在外磁通变化时可贯穿SQUID的最大超导电流(SQUID两端电压保持为 0)与外磁通的依赖关系相当于形成干涉(Fraunhofer diffraction),这种相干干涉的结果是SQUID的有效最大超导电流随外场微小变化而剧烈震荡,如图01所示,因而可以实现超灵敏磁探测。前面简单介绍了DC-SQUID的工作原理,实际上还有一类射频超导量子干涉仪RF-SQUID,它与DC-SQUID的不同在于它只有一个约结,在单约结环路中不可能象DC-SQUID那样可通过贯穿电流来应用,而只能通过电磁感应引入交变电流加以应用。RF-SQUID在使用过程中同样通过磁通变换器和磁通锁相技术提高测量灵敏度,但由于其自身不存在象DC-SQUID的本征差分结构,其灵敏度相比没有DC-SQUID高(相差约一个数量级),不过由于RF-SQUID制作简单且成本较低,它在商用设备中常被应用。对于纳米磁性材料与反铁磁材料等磁矩较弱的样品,SQUID通常是不可替代的磁性测量仪器。目前国际上商用SQUID磁性测量仪器主要由美国的Quantum Design公司与英国的Cryogenic公司,在国内市场份额100%由前者占领,中国有几家单位做SQUID器件,但可惜尚未见整套SQUID磁性测量仪器产品推向市场。[/align][align=left]因为SQUID属于高冷的小众化产品,其制样、测量过程鲜见有人公开,本文考虑到制样过程涉及到磁性测量注意事项不仅仅用于SQUID,而且适合其他类似磁测量仪器比如振动样品磁强计VSM,进行详细的讨论和分享。[/align][align=center][img=,690,520]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_01_1611921_3.png[/img][/align][align=center]图01 SQUID器件高灵敏磁测量原理图[/align][align=left][color=#00b0f0]二、开关机[/color][/align][align=left]开关机是任何设备操作的必要过程,需要注意次序合乎规范,分别简介如下。[/align][align=left]1. 开机:开总电源开关(主机背面左侧)→开系统控制开关(主机正面右侧)→开计算机控制开关(主机正面左侧)→ 登陆计算机(初始密码为空)双击桌面上的MultiVu 图标进入测量操作系统系统→初始化过程大约1~2分钟→关闭自检结果提示消息框,准备测量。[/align][align=left][/align][align=left]2. 电网停电前,进行关机操作:关闭MultiVu测试系统关闭过程,1~2分钟自动完成关计算机→关系统控制电源(主机正面右侧)→ 关总电源(主机背面左侧)。[/align][align=left][/align][align=left]3.怀疑是信号端口等软件问题时,执行重启操作:退出MultiVu操作系统→关计算机→关系统控制电源→开系统控制电源→开计算机→进入MultiVu操作系统,此过程不需要关闭总电源。[/align][align=left][color=#00b0f0]三、样品制备[/color][/align][align=left]制备过程分为以下几步。[/align][align=left]1、取样称量,需要mg级精度,铁磁性样品最好少于1mg(否则较高磁场下SQUID探测器容易饱和失真),形状接近球形或正方形。[/align][align=left]2、做实验前准备好各种工具,如图02所示,需要注意:自己洗手,防止油性物质;擦洗剪刀等工具上的脏东西;尽量使用塑料镊子。[/align][align=center][img=,304,538]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_02_1611921_3.jpeg[/img][/align][align=center]图02 制样工具图片[/align][align=left]3、样品固定架尺寸很重要,为避免样品在测量过程中移动或晃动,需要有较稳固的固定措施,最方便的是借助胶管自身做固定支架,如图03所示,胶管内径6毫米,所以中间插的横向胶管尺寸7毫米最合适,太小容易卡不紧,太大做交流磁化率测量的时候放不进腔体。[/align][align=center][img=,287,509]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_03_1611921_3.png[/img][/align][align=center]图03 样品固定支架示意[/align][align=left]4、张飞也得会穿针,使用胶带将样品与固定支架绑劳,将胶带一头折叠,这样避免了胶带到处粘东西的问题,在穿过空管的时候也不会粘到空管,如图04所示。[/align][align=center][img=,526,290]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_04_1611921_3.png[/img][/align][align=center]图04 胶带穿过固定支架[/align][align=left]5、固定样品,排除胶带与样品之间的空气,如图05所示。[/align][align=center][img=,290,437]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_05_1611921_3.png[/img][/align][align=center]图05 将样品封进胶带[/align][align=left]6、使用另一片胶带固定样品,保证样品在测试过程中不会乱动,平行垂直皆可实现,如图06所示。[/align][align=center][img=,267,449]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_06_1611921_3.png[/img][/align][align=center]图06 将样品通过固定支架安装进测量柱[/align][align=center][img=,669,528]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281810_01_1611921_3.png[/img][/align][align=center]图07 薄膜样品垂直膜面样品安装示意图[/align][align=left]7、样品也要透透气,样品卡入胶管中,为了快速实现热平衡,在胶管上下各开几个小洞,如图07所示。此处需要非常注意,小洞尽量开在胶管两段,这样在震动或者提拉测试的过程中小洞不会出现在鞍区。测试过程中要保证测试区域内背景一致,这样才可以减小误差。[/align][align=center][img=,296,444]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_07_1611921_3.png[/img][/align][align=center]图08 在样品柱上扎热、气交换孔[/align][align=left]8、腰杆要摆直。要保证胶管和所连接的测试杆两截成一条直线,否则在测试过程中非常容易碰壁。如图08所示。[/align][align=center][img=,265,470]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_08_1611921_3.png[/img][/align][align=center]图09 确认样品柱与测量杆准直[/align][align=left][/align][align=left][color=#c24f4a]注意:使用[/color][color=#c24f4a]SQUID[/color][color=#c24f4a]磁性测量杆时,无论安装样品托还是卸载样品托,均应将样品杆放置好,一只手固定住蓝色的接头部分,另一只手拧石英或铜样品托的塑料接头部分。不合理用力容易导致其折损,此杆属于特制无磁纤维材料制成,质脆,一旦造成损坏,修复起来有难度,买根新的需要人民币约[/color][color=#c24f4a]7000[/color][color=#c24f4a]元。[/color][/align][align=left][color=#00b0f0]四、样品安装[/color][/align][align=left]保证测量数据的正确性,样品的安装调试尤为重要。即待测样品正确安装固定在样品托(sample holder)上后,主要要做到以下几点:[/align][align=left]1、样品在杆上:要同心[/align][align=left]样品托(sample holder)固定到样品杆(sample rod)上后,要保证两者在一条直线上。[/align][align=left]2、样品在腔内:别偏心[/align][align=left]样品放入样品室后,进行水平方向360度旋转测量,找一最小值,对应的位置就是样品在水平方向最靠近样品室中心的位置。[/align][align=left]3、样品测量前:调中心[/align][align=left]样品杆在300K~5K时,杆的长度变化大约有1.4mm,故请在起始测量的温度点上再调一把中心。[/align][align=left]4、注意测量杆的关节:别松动[/align][align=left]所谓关节就是可以拆卸连接的地方。测量杆上一共有4处:①样品杆顶端与柔性接头的连接、②柔性接头与磁性碰锁的连接、③样品杆底端与蓝色接头的连接、④蓝色接头与样品托的连接。[/align][align=left]测量杆放入样品室前一定要检查这4处连接的地方是否固定牢靠,不能松动。[/align][align=left]5、注意样品的磁矩:别太大[/align][align=left]样品的磁矩最好在10emu以下,太大容易产生跳点。[/align][align=left]6、总结:为了便于记忆,以上几点归纳为四个字“三心二意”。五个关键词,十个字:“同心、偏心、中心、松动、大小”。[/align][align=left][color=#00b0f0]五、开始测量[/color][/align][align=left]测量控制过程的序列文件编写注意事项[/align][align=left]1、测M-H曲线,低温高场下磁矩跳动特别厉害的情况,可以在测试过程中进行改善。具体如下[/align][align=left] i) VSM振幅不宜调的过大,因为振幅过大虽然有利于测试小信号,会机械的引入误差。对于样品信号较小的情况,一般也建议调到4就可以。[/align][align=left]ii) 建议修改大家之前用的普遍的程序,MH测量扫场的过程中,每一个磁场点停顿(3-5)秒钟,具体根据自己的样品测试决定。[/align][align=left]iii) 加长平均测量时间,系统默认是2s,可以改为4s,这个时间也是根据自己的样品来决定。这样的话测量时间就会变长,所以应根据自己的样品和需要选择等待和采点的时间,尽量用较短的时间测量出可靠的数据。[/align][align=left][/align][align=left]附上一张工程师的调试图,左图为大家普遍用的程序做出来的。左图上方是MH曲线,下方是测量中的Standard error。右图是在每个磁场点等待5s,平均时间为4s,振幅为4时的数据,可以看到有明显的改善。[/align][align=left] [/align][align=center][img=,649,487]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271931_09_1611921_3.jpeg[/img][/align][align=center]图10 测量平均时间效果对比图[/align][align=left]2、高级设置:调整完中心以后记得在advanced选项里设置auto tracking选项。设备调中心的时候是在300K,但实际测试的时候会根据自己的样品特性来选择合适的温度。材料都有热胀冷缩,测试杆也不例外,但Quantum Design公司的测试杆出厂之前都对杆子的热胀冷缩系数进行了标定,在测试过程中会根据温度的不同来自动修正中心位置,如图11所示。[/align][align=center][img=,334,445]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281813_01_1611921_3.png[/img][/align][align=center]图11 调中心设置[/align][align=left]3、选择合适的量程:杀鸡焉用牛刀。根据自己样品的特性来选择振幅的大小,如果超过量程太多会造成误差,量程设置界面如图12。[/align][align=center][img=,554,738]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281813_02_1611921_3.png[/img][/align][align=center]图12 测量振幅设置[/align][align=left]4、统一度量衡:秦始皇统一了度量衡,而Quantum Design的程序中为了满足大家对不同单位的使用,提供了emu和Am2的单位选择,设置入口如图13所示。[/align][align=center][img=,554,738]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281813_03_1611921_3.png[/img][/align][align=center]图13 单位制切换[/align][align=left]5、量体裁衣:测试过程中需要根据自己样品磁性的强弱和特殊温区或者磁场区间来进行程序的编写。如果磁性较弱,建议采取Stable模式,反之可采用sweep模式,如图14所示。[/align][align=center][img=,690,531]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281814_01_1611921_3.png[/img][/align][align=center]图14 温度磁场设定[/align][align=left]6、漂亮收尾: 因为SQUID用的是超导磁体,会存在剩磁,而减少剩磁的方法就是在程序结束后将磁场振荡到0场。注意:需要从2T以上磁场开始振荡降磁场,不然几乎没有效果。测试过程中大家可以根据测试的需要使用Linear或者No Overshoot模式,如图15所示。[/align][align=center][img=,554,738]http://ng1.17img.cn/bbsfiles/images/2017/07/201707281814_02_1611921_3.png[/img][/align][align=center]图15 程序结束关场设置[/align][color=#ff00ff]注意:每次测量要养成客观登记的习惯,有任何问题或异常都要有书面登记并向维护人员报告。[/color][align=left][color=#00b0f0]六、致谢[/color][/align][align=left]感谢磁学实验室胡明高级工程师在实验过程中提供的帮助和讨论。[/align][align=left][color=#00b0f0]七、参考文献[/color][/align][align=left]【1】 Tinkham M. Introduction to superconductivity (2nd edition) . 2ed. New York: McGraw-Hill Inc, 1996.[/align][align=left]【2】Fossheim K, Sudbo A. Superconductivity: physics and applications . Hoboken, New Jersey: John Wiley, 2004.[/align][align=left]【3】Quantum Design. San Diego: MPMS XL User's Manual, 2000.[/align]

  • 美首次观察到超导体中重电子形成过程 有助于解释物质为何具有超导性

    2012年06月29日 来源: 中国科技网 作者: 常丽君 本报讯在 某些超导体中,运动电子的性质极为奇特。它们好像比真空中的自由电子重1000倍,但同时电子运动却是毫无阻力的。据物理学家组织网近日报道,美国普林斯顿大学领导的一项最新研究显示,产生这种现象是由于“量子纠缠”的过程,该过程决定了晶体中运动电子的质量。这一发现有助于人们理解超导性的成因,并有望在提高电网效率、加快计算速度等方面获得应用。相关论文发表在近日出版的《自然》杂志上。 将电子冷却到超低温形成某种固体物质时,这些极轻的粒子就会增加质量,好像变成了重粒。把它们冷却到接近绝对零度时,这种固体就有了超导性。其中的电子尽管很重,却能毫无阻力地流动,不会浪费任何电能。 研究小组还包括洛斯阿拉莫斯国家实验室(LANL)和加州大学欧文分校的科学家,他们利用专门设计的低温扫描隧道显微镜(STM)拍摄晶体中的电子波。晶体经过了处理,表面包含一些原子瑕疵。他们将温度降低到实验需要,观察到了电子波纹,这些波纹围绕着瑕疵之处扩散开来,就像在池塘里投入石头散开的涟漪。 “这是首次获得重电子形成的精确画面。在降低温度时,我们看到晶体中的运动电子演变成了更重的粒子。”领导该研究的普林斯顿大学物理学教授阿里·雅兹达尼说。他们通过直接拍摄的电子波图像,不仅看到了电子质量是怎样增加的,还看到了重电子是由两个纠缠电子构成的复合体。 他们还把实验观察和理论计算数据进行了对比,解释了电子为何会出现这种性质。由于量子纠缠,电子糅合两种截然相反的行为。在晶体中,重电子产生于两个行为相反的电子的纠缠,其中一个被困住绕着一个原子,而另一个在各个原子之间自由地跳跃。 研究人员解释说,量子力学原理控制着微小粒子的行为,形成了量子纠缠,这一过程决定了晶体中运动电子的质量。轻微调整这种纠缠,就能极大地改变材料的性质。而纠缠度是决定重电子形成和进一步冷却时行为表现的关键。调整晶体的成分或结构,就能调整纠缠度和电子重量。如果让电子太重,它们就会被冻成磁化状态,黏在每个原子旁边,以相同的方向自旋。但如果只是轻微调整,让电子获得合适的纠缠数量,这些重电子就会在冷却时变成超导体。“我们的研究证明了,只有当处在‘迟缓’和‘迅速’这两种行为的边界时,才能获得超导性。这是最有利于产生重电子超导性的条件。”雅兹达尼说。 许多磁性材料在它们的成分或晶体结构发生了微妙改变之后,变成了超导体。哈佛大学理论物理学家苏伯·萨奇戴伍说,该实验有助于揭开高温超导的秘密,理解这种磁性和超导性之间的转变,即量子临界点,有助于解释物质为何会具有超导性。(常丽君) 《科技日报》(2012-06-29 二版)

  • 半导体系统专用高精度控制电源的水泵相关说明

    半导体系统专用高精度控制电源应用在国内半导体行业中,无锡冠亚的半导体系统专用高精度控制电源中每个配件都是很重要的,其中,关于水泵是比较重要,我们也需要对其有一定的认识。  半导体系统专用高精度控制电源是一类广泛应用于国内工业生产领域的专业制冷设备,在半导体系统专用高精度控制电源中,水泵的运行是否正常对于保证低温半导体系统专用高精度控制电源设备的正常运转是非常重要的,定期对低温半导体系统专用高精度控制电源的水泵进行检测是非常关键的,那么,怎样合理的评估和检测低温半导体系统专用高精度控制电源水泵的情况好呢?  半导体系统专用高精度控制电源水泵的情况在较大程度上影响着低温半导体系统专用高精度控制电源设备的整体运行。在半导体系统专用高精度控制电源工作的时候,水泵在运行中,应注意检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大,过小应立即停机检查。  另外,半导体系统专用高精度控制电源设备的水泵相关工作系统能够较好的反映半导体系统专用高精度控制电源设备的工作状态。比如,水泵流量是否正常,检查出水管水流情况,根据水池水位变化,估计水泵运行时间,及时与调度联系。同时,还要检查水泵填料压板是否发热,滴水是否正常,每班不得少于八次。  半导体系统专用高精度控制电源的水泵性能是很关键的,需要我们认真对待,认真保养,只有每个配件的性能都可以的话,半导体系统专用高精度控制电源才能更好的使用。

  • 【分享】中国永磁体再次“出征”大宇宙

    中国永磁体再次“出征”大宇宙http://www.gov.cn/jrzg/images/images/001aa04b41620f3bf5e101.jpg5月16日,高精度粒子探测器——“阿尔法磁谱仪2”搭乘美国“奋进号”航天飞机驶入寰宇。未来10年或更长时间里,“阿尔法磁谱仪2”将在国际空间站运行,寻找反物质和暗物质。据介绍,“阿尔法磁谱仪2”体内有一颗强大的“中国心”——一块“MADE IN CHINA”、内径约1.2米、重约2.6吨、中心磁场强度1370高斯的环形巨大永磁铁。它选择新型高磁能积钕铁硼材料,采用独特的“魔环”结构磁路设计,64个磁化方向连续变化的永磁条安装其中。这种结构使永磁体磁场约束在AMS磁体内部,使它符合太空运行要求,帮助“阿尔法磁谱仪2”寻找反物质和暗物质。

  • 疑似石墨室温超导性发现:或颠覆现有超导技术

    2012年10月02日 08:59 新浪科技 http://i2.sinaimg.cn/IT/2012/1002/U5385P2DT20121002084835.jpg  悬浮中的超导体:物理学家们对于超低温超导,即所谓“标准超导”背后的原理已经基本搞清,但是对于“高温超导”领域,比如室温环境下如何实现超导的原理仍然知之甚少  新浪科技讯 北京时间10月2日消息,最近科学家们在室温超导研究方面取得了一项发现,这一结果如果得到证实,将大大加快无损远距离输电和磁悬浮列车的研制的进程。  尽管物理学家们已经搞清楚了在超低温超导,即所谓“标准超导”,比如零下275摄氏度低温环境下实现超导背后的原理,在“高温超导”领域,比如在高出绝对零度140度的环境下如何实现超导的原理仍然知之甚少。研究人员们仍然不清楚为何这些“温暖”的物质可以实现零电阻导电,科学家们也无法知道在相对高温的环境下,如室温环境下物质是否可以实现超导。而这正是此次的这项发现所要解答的。  根据一份发表在《先进材料》杂志上的文章,价格便宜且容易获取的石墨粉似乎显示出超导特性的信号。并且这一切并不需要价格昂贵的低温冷却设备——让石墨粉显示超导性所需的材料仅仅是一盆水即可。  德国来比锡大学的帕布罗·艾斯奎纳兹(Pablo Esquinazi)和其它物理学家最先于2012年发表在arXiv网站上的一篇文章中探讨了石墨的超导性。这些石墨材料中的一部分表现出约瑟夫逊效应,也就是在隔绝两块超导体之间的障碍中形成电子隧道的现象。这一效应说明这些石墨样本中包含具有超导特性的区域。  艾斯奎纳兹表示:“基于这项工作,以及在过去3年间我们所做的工作,我们坚信这其中蕴藏着超导区域的可能性是存在的。”为了验证这种想法,研究人员用水处理石墨粉:他们将其与水混合23小时,将其取出过滤,并在100摄氏度环境中干燥。随后他们将这一经过水处理的石墨粉样本在改变的磁场环境中进行实验,观察其反应。  石墨和其它一些材料在此之前便代表着室温超导研究的希望。在过去也曾有一些文章报告在经过硫或氧处理后的石墨粉中检测到微弱的,间接的超导信号。但是没有任何人,包括报告这些现象的科学家们,没有任何人能够真正制造出一个室温环境下的超导体——一种符合教科书定义的真正的超导体——可以实现零电阻导电的特性。  然而超导体还有其它一些特征:一种材料。当其温度低于某一阈值,并经历某种相变时一般就会显示出超导性。而约瑟夫逊效应也是超导性的另一种信号,除此之外还有麦士纳效应,一般也被称为“反磁性”。当暴露于外部磁场中时,超导体会会推开这一磁场,从而阻止该磁场通过材料体内部。而超导体内部的磁场会比外部磁场更弱一些。这一特性让超导体得以悬浮半空,同时在外部磁场中形成可探测到的变化,同时也提供了一种对于超导性的可探测性信号。  物理学家们此次正是利用了这一特点:他们将经过处理的石墨粉置于变化中的外部磁场,并测量其反磁性特征。结果显示样本的一小部分确实显示出超导性特征,但是这样的比例非常小,大约仅占0.01%。  这样的比例可是一点都不让人感到振奋。艾斯奎纳兹表示:“这样的量实在太少了,这让我们很难进行进一步的研究。然而这一实验中给出了这样一种理念,那就是任何材料都可能在室温下实现超导,尤其是那些便宜而又容易获取的材料,如石墨和水。这一点具有重要意义。”  加州大学圣迭戈分校物理学家伊凡·舒尔(Ivan Schuller)表示:“如果你能制造出一种零电阻材料,而且这种材料的原料非常容易获取,制造出来之后也不需要将其用液氮冷却。超导材料可以改变能量的传导量,将列车悬浮半空,还有其它很多很多事情。”它们迅速且高效的导电能力将让远距离无损输电甚至手持式电子设备从中受益。但是很难想象超导体被应用于电网结构之中,因为当下的超导技术还需要在低温下进行,而电网或是你的电脑是不太可能经常浸泡在液氮之中的。而如果石墨粉这样一种便宜而容易获得的材料果真能在室温下实现超导,那么这将彻底革新我们的现有技术。  舒尔表示:“可以说,这一发现一旦证实,就将是一项重大发现。但问题就在于这究竟是不是真实的。这一点首先需要进行科学的判定。”舒尔认为由于这项发现意义重大,因此它更加需要更多的证据。研究人员目前还尚未能展示出这些样本具备了零电阻的特性,转变温度,甚至是约瑟夫逊效应。这些石墨粉样本所展示出的目前还仅仅是轻微的反磁性而已。  舒尔表示:“这一现象必须在同样的样本中被重现,然后是从实验室的不同样本之间进行验证,再然后是在不同的实验室中进行验证。科学家们必须相互讨论和争论,以便最终确认这究竟是否真实。这就是科学运作的方式。如此一来,或许会有人得出正确的结论。”  著名物理学家,美国斯坦福大学荣誉退休教授特雷多·加布雷尔(Theodore Geballe)同意这样的说法,即:当涉及室温超导问题时,仍然存在诸多的不确定性,仍然有很多工作需要去完成。尽管此次石墨粉材料表现出了初步的超导特性,他的意见是“在它们被证实之前,需要进行确认工作。我希望在本次报告之后就会有所突破,但是我对此一点都不感到乐观。”  事实上,研究人员自己也认为石墨粉室温超导材料的研究还需要更多的证据才能得出结论。艾斯奎纳兹表示:“其它人必须进行相类似的实验并最终证明这一超导现象是确实存在的。这是一项非常精细的实验,信号非常微弱。”在此之后,他本人的研究小组将致力于增加石墨材料中具有超导属性的部分所占比重,并以此实现对其属性性质的分析。他说:“这样一来,如果这些超导材料的性质在室温下表现的足够好,足够稳定,这将是一场革命。我们真的只是刚刚起步。”(晨风)

  • FT-Orbitrap和FT-ICR-MS的技术比较

    FT-Orbitrap和FT-ICR-MS的技术比较Orbitrap是2005年Finnigan公司新出的超高分辨质谱,它与原有的“超导磁铁傅立叶变换离子回旋共振质谱”(SC FT-ICR-MS,常说的FTMS)有类似的地方也有许多不同。Orbitrap相当于一台轻量级FTMS,它的维护简单,相当于TOF;指标方面略逊于FTMS,Orbitrap的分辨力随m/z下降的比FTMS慢。随着质量数的改变,Orbitrap在m/z500处的分辨力会超过FTMS。如果进一步加大检测的离子,Orbitrap的分辨力就占优势了。有实验结果表明,Ion spec的4.7TFTMS在Vasopressin542出分辨力为15万左右,orbitrap在9万左右(最高24W的分辨率)。如果m/z超过2万,两种质谱的分辨力都不如TOF;小分子方面(m/z1000),FT-Orbitrap和FT-ICR-MS的分辨力占据着绝对优势。目前FT-Orbitrap的测试范围最大只能达到4000,远远小于TOF的20000,但是thermo公司针对需要做大分子的用户提供orbitrap前面串接一台线性离子阱LTQ对打分子可以进行多级MSn打碎,然后再用orbitrap进行高准确度分子量的测定,所以目前在国外较先进的实验室应用也比较多。FTMS的维护和使用比Orbitrap复杂的多。FTMS的液氮、液氦需要定期补充,超强磁场的隔离还需要按照要求做足。即使不开机FTMS也做好维持超导磁体的能量,否则升场是非常费时费力的工作。Orbitrap是彻底的即插即用,只需要380V和220V电就能工作了。没有超导磁体,Orbitrap的体积和重量都小得多。当然冷却水和超高真空是两种质谱都需要的。稳定的220V市电和稳定环境温度,对Orbitrap的高压电源的稳定性十分重要,这一点与TOF是类似的。orbitrap整体上在质谱领域算是一项比较革新的技术,有不少专家预计在不久会像发明ESI,MALDI等技术的几位一样会获得诺奖。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制