当前位置: 仪器信息网 > 行业主题 > >

电化学气体传感器

仪器信息网电化学气体传感器专题为您提供2024年最新电化学气体传感器价格报价、厂家品牌的相关信息, 包括电化学气体传感器参数、型号等,不管是国产,还是进口品牌的电化学气体传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电化学气体传感器相关的耗材配件、试剂标物,还有电化学气体传感器相关的最新资讯、资料,以及电化学气体传感器相关的解决方案。

电化学气体传感器相关的资讯

  • 浅析电化学型气体传感器的工作原理和检测方法
    p  要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。/ppstrong1.电化学型气体传感器的结构/strong/pp  电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。/pp  电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。/ppstrong2.电传感器工作原理/strong/pp  电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。/ppstrong表1 各种电化学式气体传感器的比较/strong/ptable cellspacing="0" cellpadding="0" border="1"tbodytr class="firstRow"td style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"种类/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"现象/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"传感器材料/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"特点/span/strong/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"恒电位电解式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"气体扩散电极,电解质水溶液/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"通过改变气体电极,电解质水溶液,电极电位等可测量CO、Hsub2/subS、HOsub2/sub、SOsub2/sub、HCl等/span/p/td/trtrtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子电极式/span/strong/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电极电位变化/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子选择电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量NHsub3/sub、HCN、Hsub2/subS、SOsub2/sub、COsub2/sub等气体/span/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电量式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量Clsub2/sub、NHsub3/sub、Hsub2/subS等/span/p/td/trtrtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质式/span/strong/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"测定电解质浓度差产生的电势/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"适合低浓度测量,需要基准气体,耗电,可测量COsub2/subsub、/subNOsub2/sub、Hsub2/subS等/span/p/td/tr/tbody/tablep表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。/pp2.1 恒电位电解式气体传感器/pp  恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示:/pp    I=(nfADC)/ σ/pp  式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。/pp  在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。/pp  自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、Nsubx/subOsubY/sub(氮氧化物)、Hsub2/subS检测仪器等产品。这些气体传感器灵敏度是不同的,一般是Hsub2/subS NO NOsubb/sub Sq CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。/pp  以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如Hsub2/subS、NO、NOsubb/sub、Sq、HCl、Clsub2/sub、PHsub3/sub等,还能检测血液中的氧浓度。/pp2.2离子电极式气体传感器/pp  离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。/pp  现以检测NHsub3/sub传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NHsub4/subsup+/sup,同时水也微弱离解,生成氢离子Hsup+/sup,而NH4sup+/sup与Hsup+/sup保持平衡。将传感器侵入NHsub3/sub中,NHsub3/sub将通过隔膜向内部渗透,NHsub3/sub增加,而Hsup+/sup减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NHsub3/sub浓度。除NHsub3/sub外,这种传感器海能检测HCN(氰化氢)、Hsub2/subS、Sq、C0sub2/sub等气体。/pp  离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。/pp2.3电量式气体传感器/pp  电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。/pp  现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成Hsup+/sup,在两铂电极间加上适当电压,电流开始流动,后因Hsup+/sup反应产生了Hsub2/sub ,电极间发生极化,发生反应,其结果,电极部分的Hsub2/sub被极化解除,从而产生电流。该电流与Hsub2/sub浓度成正比,所以检测该电流就能检测Clsub2/sub浓度。除Clsub2/sub外,这种方式的传感器还可以检测NHsub2/sub、Hsub2/subS等气体。/ppstrong3.传感器的检测/strong/pp  电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NOsub2/sub、Osub2/sub、SOsub2/sub等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。/pp  综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。/p
  • 电化学VOCs气体传感器等两项行业标准编制完成 为首次发布!
    p  近日,工业和信息化部发布公告称,根据行业标准制修订计划,相关标准化技术组织已完成《钢制化工容器设计基础规范》等10项化工行业标准、《合成纤维厂供暖通风与空气调节设计规范》等10项石化行业标准、《有色金属矿山井巷工程质量检验评定标准》1项有色行业标准、《霍尔元件 通用技术条件》等62项机械行业标准、《纺织品 定量化学分析 牛皮纤维与某些其他纤维的混合物》等37项纺织行业标准、《工业用温轮胶》等17项轻工行业标准、《增雨防雹炮弹生产安全技术条件》1项民爆行业标准的制修订工作。/pp  在以上138项行业标准批准发布之前,为进一步听取社会各界意见,现予以公示,截止日期2020年8月20日。/pp  我们注意到,在138项行业标准中,有《JB/T 13999—2020 电化学VOCs气体传感器》和《JB/T 14000—2020 光学粉尘传感器》两项标准。/pp  《JB/T 13999—2020 电化学VOCs气体传感器》规定了电化学VOCs气体传感器的术语和定义、分类、要求、试验方法、检验规则、标志、包装、运输和贮存。标准中传感器按所测气体类型给出了醛类传感器系列、醇类传感器系列、苯系物传感器系列、其他VOCs传感器系列(以环氧乙烷最为常用)的技术参数。/pp  《JB/T 14000—2020 光学粉尘传感器》规定了光学粉尘传感器的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。/pp  两项标准的起草单位相同,包括:郑州炜盛电子科技有限公司、沈阳仪表科学研究院有限公司、汉威科技集团股份有限公司、国家仪器仪表元器件质量监督检验中心、传感器国家工程研究中心。/pp  两项标准均为首次发布。/pp  详情如下:/pp  a href="https://www.instrument.com.cn/download/shtml/954054.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《JB/T 13999—2020 电化学VOCs气体传感器》;/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/954056.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《JB/T 14000—2020 光学粉尘传感器》。/span/a/p
  • 俄罗斯院士驻哈研发电化学传感器
    7月17日,黑龙江省首个外籍院士工作站&mdash &mdash 哈尔滨盈江科技有限公司电化学传感器院士工作站在高新区科技大厦揭牌。俄罗斯科学院亚历山大· 布加耶夫(Alexander S. Bugaev)院士驻站与盈江科技公司合作,主要从事电化学传感器的研发,并为相关电化学传感元器件的产业化提供必要的技术支持。  物联网的兴起离不开传感器的广泛应用。其中,电化学传感器因为体积小、灵敏度高、装配便捷成为传感器领域的新兴高端产品。为更好地消化吸收该领域的新技术,盈江科技有限公司建立电化学传感器外籍院士工作站,采用联合攻关的方式,与亚历山大· 布加耶夫院士及其团队合作,主要从事电化学传感器的研发,包括新型电化学惯性传感技术的研发和电化学气体传感器检测仪器及系统的理论研究,为中国电化学传感器发展提供技术支撑。  在揭牌仪式上,盈江科技公司还与俄罗斯莫斯科物理技术学院签署了关于电化学传感器的技术合作协议。  盈江科技公司是以研发电化学气体传感器和电化学惯性传感器为主导的高科技企业,主要从事化学传感器研发及成果转化,产品质量已达到国际先进水平。
  • 我国研发成功新型电化学发光纳米生物传感器
    随着科技的进步,传感器和光学元件都将趋于小型化和集成化。有机低维纳米材料由于其独特的结构和新颖的物理、化学性质,在生物传感、纳米光子学领域中展现出广阔的应用前景。近日,据国际知名期刊《Advanced Materials》报道,中国科学院化学研究所光化学院重点实验室利用高比表面积的一维纳米材料,制备出一种更加灵敏的电化学发光纳米生物传感器。该项研究也为低维纳米材料制备生物传感器提供了重要的理论和实验依据。  从细菌到人,所有生物都在使用&ldquo 生物分子开关&rdquo 来监测环境。此类&ldquo 开关&rdquo ,即由RNA或蛋白制成、可改变形状的分子。这些&ldquo 分子开关&rdquo 的诱人之处在于:它们很小,足以在细胞内&ldquo 办公&rdquo ,而且非常有针对性,足以应付非常复杂的环境。受到这些天然&ldquo 开关&rdquo 的启发,纳米生物传感器应运而生。  据中科院相关人员介绍,生物传感器是用固定化的生物体成分,如酶、抗原、抗体、激素等,或者是生物体本身的细胞、细胞器、组织等作为传感元件制成的传感器。按所用分子识别元件的不同,生物传感器可分为酶传感器、微生物传感器、组织传感器、细胞器传感器、免疫传感器等 按信号转换元件的不同可分为电化学生物传感器、半导体生物传感器、测热型生物传感器、测光型生物传感器、测声型生物传感器等。其中,电化学生物传感器由于具有体积小、分辨率高、响应时间短、所需样品少、对活细胞损伤小等特点,广泛应用于医药工业、食品检测和环境保护等领域。  如今,纳米技术的介入更是为电化学生物传感器的发展提供了新的活力。纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等,使得其表现出奇异的化学、物理性质。例如常见的碳纳米材料,特别是碳纳米管、石墨烯等,就表现出优良的力学性能、导电性能、表面性能及独特的电化学性质。此前,研究人员就曾用琼脂糖将葡萄糖氧化酶和连接了二茂铁的单壁碳纳米管固定在玻碳电极表面,实现了对葡萄糖的快速灵敏检测。碳纳米管的引入还能够显著提高电化学敏感膜中电活性物质的氧化还原可逆性,同时消除了溶解氧对测定的干扰。纳米材料应用于电化学生物传感器领域后,不仅提高了传感器的检测性能,而且提升了传感器的化学和物理性质以及它对生物分子或细胞的检测灵敏度,检测时间也得以缩短,与此同时还实现了高通量的实时分析检测。  随着纳米技术和生物传感器交叉融合的发展,越来越多的新型纳米生物传感器涌现出来,如量子点、DNA、寡核苷配体等纳米生物传感器。未来纳米生物传感器的发展方向应该是集成多功能、便携式、一次性的快速检测分析机器,它可以广泛用于食品、环境、战场、人体疾病等领域的快速检测。例如,食品和饮料中病原体或者农药残留成分的快速灵敏检测 环境中污染气体或者污染金属离子等远程检测和控制 人体血液成分和病原体的快速实时检测,以及战场生化武器和爆炸物的快速检测。  但是与此同时,新一代纳米生物传感器同样面临诸多挑战,如更高灵敏度、特异性、生物相容性、集成多种技术、检测方法简化、制备工艺、批量化生产、成本效益等。对此,这一生物传感器的研发课题组专家表示,分子自组装加工工艺简单可控,可以实现快速复制,而且成本较低,对生物传感器的发展有很重要的促进作用,有利于高灵敏度、低成本、一次性纳米生物传感器的发展。而生物分子自组装技术更值得关注,它具有天然的生物兼容性、优异的结合性能,或将成为生物传感器发展的另一个全新领域。
  • “感”知世界——创造独特的电化学传感器
    瑞士万通DropSens,电化学传感器定制和生产的理想合作伙伴。现在,电化学传感器进入市场的机会近在眼前。 瑞士万通DropSens生产的定制化电化学传感器具有可扩展、低成本的制造工艺,并且可应对大规模生产。 一个想法、一个应用或是一个初期研究设想都可以变成一个理想的,经过权威认证的,可立即投入市场使用的解决方案。该解决方案可以满足各种需求,无论您处于哪个领域。 瑞士万通DropSens具有设计和定制化电化学解决方案的能力,且可以应对大批量生产,为开发小型传感器和生物传感器创造了巨大的机遇。专业制造能力可以确保较低生产成本,高水平的产品质量和稳定性以及无缺货风险的交付能力,为许多潜在的项目和研究拓宽视野。 由于传感器的可定制性,因此可以进行多种修改和选择,例如空间分布、形状、面积、基材或多种材料的使用。这种多功能性使该传感器适合于各种应用,以测量各种参数。 其中包括人类健康、污染、食品和饮料信息、环境分析、水污染、非法药物检测、病毒、农业和畜牧业等。 电化学传感器的定制和大批量生产能力是进入市场,响应新的分析范式并获得强大而准确结果的有力保障,同时也是各个行业所迫切寻找的。从小规模的原型制作到大规模的传感器生产,瑞士万通DropSens将在全过程中提供支持:概念化、原型设计和具有高质量标准的结果,另外还有服务于全球,可靠和专业的技术团队。
  • 新型电化学传感器|肿瘤外泌体检测研究新进展
    外泌体作为一种直径约30-150 nm的脂质双层膜囊泡,几乎所有的细胞均可分泌,广泛分布于人体体液中。外泌体携带着起源细胞的多种物质,如膜蛋白、核酸、脂质等,在肿瘤的发生、发展和转移中起着至关重要的作用,是早期癌症临床诊断中的一类重要标志物。电化学方法具有稳定性强、灵敏度高、易操作等特点,使其在临床诊断、生物传感、环境监测等方面得到了广泛的应用。采用电化学生物传感技术实现外泌体的高灵敏精准检测对于癌症的早期诊断、疗效评价及预后分析具有重要意义。  近期,中国科学院苏州生物医学工程技术研究所与中科院重庆绿色智能技术研究院研究人员开发了一种基于二维过渡金属碳/氮化物MXene材料的新型电化学传感器,用于外泌体的识别与检测。MXene作为一种新兴的二维材料,具备大的比表面积、高的导电性以及较强的催化能力,针对该材料的研究丰富了其在催化、电容器、生物传感和成像等领域中的应用。  在该研究中,研究人员通过真空辅助的方法制备二维MXene平面膜,并利用电化学外加电位作用在二维膜表面负载金(Au)纳米阵列,得到Au-MXene二维复合膜。一方面,该方法利用了MXene二维材料构筑成膜,能够负载大量的上皮细胞粘附分子蛋白适配体,特异性识别捕获外泌体;另一方面,通过超速离心分离纯化肺癌细胞(A549)分泌的外泌体,对其进行溶酶体相关膜蛋白适配体修饰,能够填充复合膜表面未结合的活性位点,进一步放大检测信号。结果表明,所构建的电化学传感器对外泌体的检出限可以达到每毫升58个,具有良好的重复性、宽的检测范围以及高的灵敏度。该研究为外泌体的精准检测提供了一种高灵敏的新平台,也拓宽了二维材料在生物传感领域的应用。  相关研究成果以Hierarchical Au nanoarrays functionalized 2D Ti2CTx MXene membranes for the detection of exosomes isolated from human lung carcinoma cells为题发表在Biosensors and Bioelectronics上。研究工作获得了国家重点研发计划、国家自然科学基金委、江苏省自然科学基金等的资助。二维材料复合膜用于外泌体检测示意图
  • HORIBA海外用户简讯|德国KUAS大学提出改善电化学传感器灵敏度新思路
    供稿:张昕编辑:小武老师、Jiang电化学传感器在工业生产及生活领域中的应用非常广泛,尤其在优化控制过程方面起到非常重要的作用。常见领域有汽车尾气检测、电厂工业废气监测、工业锅炉以及家用壁炉的优化控制等。近几年,使用复合材料(例如:贵金属+金属氧化物)电的混成电位电化学传感器成为研究重点。近期研究人员发现相较于均匀材料分布的电,采用非均匀材料制成的电展现出了佳的气敏性能和应用前景,但非均匀材料电过程以及气敏机理一直没有得到较为全面系统的论述。传感器 (图片来源于:https://www.lamtec.de/en)基于此背景,2017年德国卡尔斯鲁厄应用技术大学(KUAS)传感器与信息系统研究所做了新的尝试,采用层级结构的金+铂+氧化锆合成电,用于混成电位型气敏传感器,并对其电过程和气敏机理进行了深入研究和论证。卡尔斯鲁厄应用技术大学(KUAS)图片转自网络实验中采用辉光放电光谱仪和环境扫描电镜等表征手段,同时配合稳态(开路电位法)和动态(循环伏安法)电化学方法,发现该复合电材料可以提高气敏传感器的灵敏度。同时实验还揭示了这种新型层级结构电的非均匀材料分布特性,以及与电电化学性能之间的相互关联。本次实验采用GD-Profiler2辉光放电光谱仪超快速剖析了电中各元素随深度变化的情况。结果表明,电表面修饰的金层在高温烧结后不仅仅附着在电表面,还扩散到了电内部。结合开路电位法,研究人员还发现,采用厚膜工艺制备的铂+氧化锆电(微米级)在表面修饰纳米级别的金层后,其电化学催化性能发生了明显改变。修饰后的电在含有一氧化碳的气氛中呈现出混成电位特性。相较于修饰较薄金层的电,拥有较厚金层的电对一氧化碳的响应更灵敏,这是因为修饰的金层削弱了电对氧还原反应的催化性能。实验表明:修饰的金层越厚,氧还原反应被削弱的越明显。这一结果也得到了循环伏安法的验证。金+铂+氧化锆合成电横截面结构示意图该工作以《Mixed-potential gas sensor with layered Au,Pt-YSZ electrode: Investigating the sensing mechanism with steady state and dynamic electrochemical methods》为题,发表于Sensors and Actuators B:Chemical,原文作者为Xin Zhang/Heinz Kohler/Ulrich Guth。(扫描下方二维码可直达英文原文)扫一扫阅读英文原文如需了解该研究中的测试方法,可扫描如下二维码留言咨询,我们的应用专家将乐于为您提供解答服务。扫一扫咨询技术附:卡尔斯鲁厄应用技术大学(传感器与信息系统研究所)研究方向:基于半导体材料的化学气体传感器的研究,包括气敏机理,气敏纳米材料的合成制备,微单片阵列式传感器器件的结构与设计,以及该型传感器在生活及工业过程中的应用 基于氧化锆的全固态电化学传感器及其在烟道废气检测中的应用 化学催化放热式气敏传感器研究,包括器件设计、催化涂层材料制备及其在可燃气体检测中的应用。KUAS传感器与信息系统研究所图片转自网络HORIBA科学仪器事业部结合旗下具有近 200 年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 基于损失模式共振光纤传感器的增强型光谱电化学装置
    光谱电化学(SEC)测量在分析化学中起着至关重要的作用,利用透明或半透明电极对电化学过程进行光学分析。电化学读数提供了有关电极状态的信息,而透射光谱的变化有助于识别电化学反应的产物。 据麦姆斯咨询报道,近日,波兰华沙理工大学(Warsaw University of Technology)的研究人员开发了一种增强型光谱电化学装置,其中,基于双域(光学和电化学)光纤的传感器直接用作工作电极,同时像光谱电化学一样单独测量分析物的光学特性。该传感器采用反射(探针状)配置,其中只有短纤芯部分涂有氧化铟锡(ITO)并浸入分析物中。对ITO纳米涂层的性能进行了优化,以满足在期望的反射光谱范围内获得损失模式共振(LMR)的条件。基于LMR和分光光度计的测量在单独的光路中进行。这产生了一种具有电化学激活的两个垂直定向光谱通道的新形式。相关研究成果以“Enhanced spectroelectrochemistry with lossy-mode resonance optical fiber sensor”为题发表在Scientific Reports期刊上。 在这项工作中,ITO-LMR传感器是基于聚合物包层的石英(PCS,芯径 = 380 μm)多模光纤。由于传感器设计为反射(探针状)配置以有效地引导在光纤端面之一处反射的光,因此使用直流磁控溅射技术在其中一个光纤端面上沉积一层铝膜。必须注意的是,只有当LMR传感器用作工作电极时,传感器/电极的光学询问(通道2中的光学测量)才是可能的,而当使用铂网或ITO涂覆的载玻片时则不可能。增强型SEC装置(LMR传感器作为工作电极)的示意图 增强型SEC装置提供了三种类型的询问读数:电化学测量、与分析物体积相对应的光谱分析(类似于标准SEC)、反映传感器/电极表面状态的LMR光谱分析。在每个询问路径中,分别用铁氰化钾和亚甲基蓝两种氧化还原反应探针进行循环伏安法(CV)实验。随后,在传感器的计时电流(CA)测量期间进行同步测量,并检查读数之间的相互关系。(A)铁氰化钾和亚甲基蓝溶液中LMR传感器的CV扫描;(B)LMR光谱的演变,其中施加电压以诱导氧化还原探针的氧化和还原;(C)计时电流响应,显示LMR传感器在亚甲基蓝溶液中的可重复响应。LMR传感器支持的增强型SEC配置中的多步电流法测量结果(铁氰化钾作为氧化还原探针)LMR传感器支持的增强型SEC配置中的多步电流法测量结果(亚甲基蓝作为氧化还原探针) 总而言之,研究人员开发了一种基于ITO的损失模式共振光纤传感器的增强型光谱电化学测量系统。由于ITO膜的优化厚度和光学性质,在光学域中观察到了LMR,而ITO的电学性质允许将传感器也用作电化学装置中的工作电极。通过检测两种氧化还原探针,即铁氰化钾和亚甲基蓝,证明了该方法。由于LMR强烈地依赖于外部介质的属性和传感器表面发生的变化,因此外加电压的变化会引起共振波长的移动以及特定波长的透射。此外,外加电压引起的变化具有高度可逆性。与标准工作电极相比,“针状”形式的传感器结构紧凑,因此在测量系统内传感器的放置方面提供了很大的灵活性,并能够减小分析样品的体积。此外,这种传感器的制造具有可扩展性,高度可重复性和低成本。利用ITO-LMR增强型光谱电化学装置,增加了关于工作电极表面状态、氧化还原反应本身的信息,并交叉验证了获得的结果,从而提高了分析的灵敏度。这种三通道系统将来可以应用于其他分析,也可以应用于需要使用便携式系统的传感应用。论文信息:https://www.nature.com/articles/s41598-023-42853-0延伸阅读:
  • 叶建山:电化学传感器发展步入“春天”——访华南理工大学叶建山教授
    多年来,华南理工大学叶建山教授一直从事纳米电化学、传感器及生物传感器和电化学分析仪器等方面的研究工作,2001年至2006年间任职于新加坡国立大学,回国后任华南理工大学化学科学学院教授的同时,创建了广州盈思传感科技有限公司,并研制出国际领先、国内第一套拥有自主知识产权的高精度便携式重金属检测系统等高端设备和传感器。华南理工大学叶建山教授  叶建山教授不但是电化学传感器技术研究的资深专家,也是一家分析仪器企业的创始人。我们相信,拥有这两个不同身份的叶建山教授,对于电化学传感器这一学科的发展历程、现今热点乃至未来发展趋势,以及该技术的产业化等必然有着自己独特的视角以及看法。为此,仪器信息网于近期采访了叶建山教授。“纳米材料传感器与电化学仪器的结合,是目前研究热点”  Instrument:首先请您为我们介绍一下,电化学传感器发展过程中经历了哪些里程碑式进展?  叶建山教授:电化学传感器用来测定目标分子或物质的电学和电化学性质,从而进行定性和定量的分析和测量。电化学传感器的发展具有悠久的历史,它的基本理论和技术发展与电分析化学密切相关,最早的电化学传感器可以追溯到20世纪50年代,并随着微电子和材料加工技术不断更新而发展。  1959年,捷克科学家海洛夫斯基发明伏安分析法而获诺贝尔化学奖。伏安法之一的极谱法,可以区分不同价态的金属离子或键合态及游离的金属离子,因此可以对生物利用率和重金属毒性进行评估,使其成为环境分析所必须的技术。电极是伏安法仪器的核心部分,因为电极材料的限制,造成灵敏度低、检测时间长、操作较复杂或重现性差等缺陷,使得伏安法没有获得广泛的应用。  20世纪60年代离子选择性电极及酶电极相继问世,电化学传感器进入了稳定发展时期,在环境监控、医药分析、在线分析等方面获得广泛应用。20世纪70年代,科学家利用化学修饰电极,改变电极表面结构以控制电化学过程,标志着电化学传感器的功能化修饰和控制进入分子水平。  近年来,随着纳米材料科学和微电子技术的快速发展,新原理、新技术、新材料和新工艺的广泛采用,传感器在小型化、微型化、智能化方向得到了日新月异的发展,具有特殊性能和优点的电化学传感器不断涌现并进入实际应用。在欧美,伏安法已经取代了传统的原子吸收法大量应用于医药、生物和环境分析领域。  Instrument:目前,国内外电化学传感器的研究热点与难点都集中到哪些方面?  叶建山教授:目前,采用纳米技术,提高电化学传感器的选择性、灵敏度和多目标同时测定,成了国内外研究热点,具体地说,集中在碳纳米管和石墨烯传感器的制备和产业化。  碳纳米管被认为是一种性能优异的新型功能材料和结构材料,世界各国均在其制备和应用方面投入大量的研究开发力量,期望能占领该技术领域的“制高点”。碳纳米管传感器是目前纳米传感器的最重要平台,在航天、机械、仪器仪表、汽车制造、油气勘探、电子工程及医疗器械行业都有广泛用途,并已经成为相关技术发展的基础条件。而石墨烯的出现,要比碳纳米管更晚,但在近几年已经超越了碳纳米管成为国际新热点。  纳米材料传感器与电化学仪器的结合之所以成为热点,主要还是因为在构建物联网的成本和运营方面,比光谱类仪器有巨大的优势。随着新型功能化纳米材料的不断涌现,电化学传感器的一些缺陷将被克服,并在工农业、环境监控和医疗领域展示其应用价值,尤其是在新型的物联网建设中,可以应用到生命科学、环境、健康、国防等众多领域。  Instrument:目前,国内重金属污染事故频发,电化学传感器技术在重金属检测中又有哪些独特优势?  叶建山教授:近年来,重金属污染事故频发,造成了严重的环境污染和经济损失。各级政府对重金属污染的监控和治理十分重视。其中,重金属分析,特别是重金属污染事故的快速跟踪监测技术,一直是人们关注和研究的课题。  目前检测重金属的技术主要有光谱法和电化学法,光谱法包括AAS、ICP-MS、ICP-AES、AFS等 电化学法包括伏安法、极谱法、电位分析法等。这些方法在不同的领域和检测环境需求中发挥各自的优势。电化学传感器技术属于电化学法,在重金属检测中具有独特特点和优点,包括:  (1)便携和低成本  随着微电子技术和纳米材料科学的快速发展,电化学传感器朝着微型化和智能化发展,在重金属检测中具有便携和低成本的明显优势,特别是应对重金属突发事故,可以现场进行监控,而且其使用和维护成本比较低。  (2)操作简单、选择性好、灵敏度高和多元素同时检测  纳米材料,比如碳纳米管、金纳米颗粒等,处于宏观体系和微观体系之间的过渡区域,是由数目极少的原子或分子组成的原子群。这一结构特征使纳米材料具有独特的微尺寸效应、表面效应和量子效应,表现出不同于宏观材料的电化学催化、特殊电子转移性能等。纳米材料在电化学传感器的广泛应用,使电化学传感器在重金属检测中具有操作简单、选择性好、灵敏度高和多元素同时检测的优点,极大的拓宽其在重金属离子监测的应用范围,在重金属痕量分析方法中占有越来越重要的地位。“物联网技术,或将是电化学传感器获得大发展的契机”  Instrument:请您谈谈电化学传感器的未来发展前景?  叶建山教授:电化学传感器具有十分广阔的市场,仅经典的pH传感器,每年全球的市场近100亿美元,另外一种电化学传感器--血糖仪,其市场规模也达到50亿美元以上。随着无线技术、微电子技术和纳米材料的快速发展,电化学传感器在许多领域将获得前所未有的机会,尤其在环境监控、食品安全和原材料质控等领域将有着极广泛的应用前景。  国家在“十二五”规划发展期间,环保设备和监控领域的市场达5000亿元,并且以每年15%的速度增长。可以预见,利用新技术和新材料,紧密结合中国的市场实际,开发简单、实用、自动化、免维护的传感器,在水质、大气、工业过程监测和健康监控领域将具有十分广阔的市场。  Instrument:请介绍一下您在电化学传感器领域的相关研究成果情况?  叶建山教授:我多年来主要从事高灵敏度和高选择性的电化学传感器研究。在新加坡国立大学工作中,主要研制基于碳纳米管等材料的电化学传感器等高端传感器,并参与了新加坡国立大学、新加坡国防科技局和美国麻省理工学院联合的新型纳米传感器和生物传感器等国际领先的研发项目。例如,我们发现,利用强氧化的方法,打开碳纳米管的头部,将功能化基团修饰在碳纳米管的表面,大大提高了碳纳米管的电催化作用和加快电子传递速度,成功发展了阵列微传感器。同时,我们还研制了一系列电化学传感器配套仪器。  此外,我们还在石墨烯传感材料和传感器研发方面取得了国际领先的进展。石墨烯是2004年才被发现的一种新型二维平面纳米材料, 其特殊的单原子层结构决定了它具有丰富而新奇的物理性质。过去几年中, 石墨烯开始超越碳纳米管成为备受瞩目的国际前沿和热点,是新材料和凝聚态物理等领域的新增长点,发现者因此获得2010年度诺贝尔物理学奖。相应的各国投入了大量的科研力量到石墨烯的研究和产业化工作中,而我们也已经掌握了合成石墨烯纳米材料的多项核心技术。  Instrument:请谈谈此次广州开发区政府给予1500万资助的“物联网中的微纳米环境监测系统”项目前景、目前进展以及预期目标情况?  叶建山教授:物联网是“十二五”期间我国重点发战略性新兴产业之一。据不完全了解,目前全国已有28个省市将物联网作为新兴产业发展重点之一。广东省政府2010年12月发布了《关于加快发展物联网建设智慧广东的实施意见》,《广州市“十二五”信息化发展规划》也计划5年内广州物联网产业产值将达千亿元。《物联网“十二五”发展规划》明确提出加快推进重点行业和重点领域的物联网先导应用。  我们“物联网中的微纳米环境监测系统”项目希望抓住这个契机,为我国物联网产业做出自己的贡献,也使企业有飞跃式的发展。和3G网络结合,我们计划构建全面的智慧型环境和健康监测无线传感网,实现检测的远程传送、反馈、监控。  传感器处在物联网金字塔的塔座,所以我们项目重点发展的基于碳纳米管和石墨烯的纳米传感器,致力于研究、开发和制造基于新型纳米传感器的环境保护、分析测试等领域的高端产品,如pH传感器、气体分子传感器、分子传感器和水体毒性传感器等,从而提供全面、专业的环境和健康应用解决方案及服务。“众多科研成果急需产业化,国外先进理念值得借鉴”  Instrument:据了解,您在回国后创建了广州盈思传感科技有限公司。有了自己的公司,那么您的科研成果产业化就有了很好的途径,请您介绍一下这方面的情况?  叶建山教授:这些年来,公司利用纳米科技自主研发了高灵敏度和选择性的重金属传感器,掌握了重金属监控的核心关键技术。该传感器具有选择性好、所需试样少,且操作简便的优点,其测定结果与ICP-AES所测结果相比,具有非常好的一致性。国际上,同类产品与我们达到同一技术水平的只有一、二家外国仪器公司。IGS10M系列重金属便携式检测系统  公司目前已产业化生产便携式重金属检测系统、台式和在线式重金属检测系统,并获得了国家计量认证,进入重金属环境监控市场,取得了良好的经济和社会效益。  公司充分发挥在纳米材料和电化学领域的长期积累,开发出了若干具有国际领先水平的在线和便携式水常规监测仪器。例如,我们的便携式和在线COD监测仪,采用独有的纳米羥自由基电极法,既不外加氧化剂,也不加热消解水样,测定过程无需校正,极大缩短了分析流程,还克服了传统方法中“二次污染”的问题,代表了COD测定方法的突破。采用羥自由基电化学传感器的便携式COD仪器,国际上仅有盈思公司拥有,技术国际领先,在环境监控领域已得到较广泛的应用。  此外,公司的水中持久性有机污染物(POPs)电化学自动在线检测平台、氰化物自动监测仪及生物毒性预警监控设备也已基本完成产业化前期的研发工作。这几种仪器都是我国急需的,列入了《国家鼓励发展的重大环保技术装备目录》(2011年版)。广州盈思传感科技有限公司研发部  Instrument:请谈谈您在创业过程中所面临的困难与挑战?  叶建山教授:在创业的最初几年,我们团队专注于技术研发和做好、做精每一个产品,忽视了企业的商业运作,对于国内的政策和环境也了解得不够,在“做”企业的思路上没有很快适应国内的要求。  我本人作为一个专注技术领域的科研人员,企业经营和管理不是我的强项。在国内往往要求科技企业的创业者,至少在早期是全能型选手,即要有较强的科研能力,也要能够把握外部资源并有效运用。我们有很好的产品和技术,但是当重大的市场机会出现时,企业往往缺乏抓住市场机遇的能力,所以要求我们去学习很多以前不了解的东西,找准发力点。  Instrument:您在新加坡学习工作了5年多,请谈谈新加坡在科研成果产业化方面都有哪些经验值得我们国内借鉴?  叶建山教授:新加坡的科技创新能力很强,在世界各机构和媒体的排名中,都稳居前五。其政府对科技扶持力度强,大量投入科研资金并对资金使用进行科学管理,整个国家研发投入在GDP中的比重达到了3%,科研以实用技术为主,强调科技创新和科研成果商业化。  新加坡的科技体系很开放,通过国家的资金、软硬环境,建立了大批的国际一流研发基础设施,从而引来众多的跨国公司和国际专家。以国防领域为例,国立大学获得约4%的国防经费用于研发,相关机构又与澳大利亚、法国、以色列和美国等国防科技发达的国家建立了大规模的国防科技合作关系。  如果总结一下特点,我觉得可以概括成:基础设施好、科研资金充足、发展方向明确、法律环境优异、开放合作等等。中国在很多方面,都在借鉴国外的先进理念和做法,虽然有个时间差,但一定会有后发优势。采访现场  撰稿编辑:刘丰秋 审校:王海  附录:华南理工大学叶建山教授简介  叶建山,1990年在华东师范大学化学系获得学士学位,1993年获得硕士学位,1999年获得香港科技大学化学系博士学位,2000年至2001年在香港大学医学院从事博士后研究,2001年至2006年在新加坡国立大学生物科学系任研究员,2006年至今为华南理工大学化学科学学院教授。目前主要从事纳米电化学、传感器和电化学分析仪器等方面的研究工作。
  • 上海应物所电化学生物传感器研究取得系列进展
    生物传感器为基因分析、传染病检测和食品安全等领域提供了一种廉价、便携检测生物分子的新工具。中国科学院上海应用物理研究所物理生物学研究室樊春海课题组长期致力于电化学生物传感器的研究,取得了系列研究进展。近日,应化学综述杂志Accounts of Chemical Research邀请,裴昊、左小磊等撰写了相关综述论文,并发表于Acc. Chem. Res.,2014, 47, 550&ndash 559。  生物分子探针在传感界面上的组装过程很大程度上决定了生物传感检测的性能。如何调控生物分子在界面上的密度和取向,减少生物分子与界面的非特异 性吸附并避免界面分子间的侧向作用力则已成为该领域的挑战性问题之一。针对这一问题,樊春海课题组对DNA分子在宏观和纳米界面上的组装过程进行了系统研 究。由于DNA是一种软物质,常规使用的一维单链探针容易产生链间纠缠而聚集。2003年发展出了具有一定刚性的二维结构DNA探针,在一定程度上解决了 这一问题(Fan et al. PNAS 2003, 100, 9134) ,并在DNA和核酸适配体检测方面展现出明显的优越性。近年来,通过引入DNA纳米技术发展出刚性的三维结构DNA探针,实现了DNA探针之间距离的精确 调控。这为构筑有序的生物分子界面提供了新的途径,提高了界面生物识别能力,进而显著提升了生物传感器的检测能力。在这一新型生物传感平台上深入研究了界 面识别和电子传递等物理化学机制,并实现了核酸、抗原和小分子的超高灵敏检测,相关结果相继在JACS, Angew. Chem.,Adv. Mater., Sci. Rep.等杂志发表。
  • 科学岛团队设计出一种检测铅离子的高灵敏度电化学传感器
    近期,中科院合肥物质院智能所吴正岩和张嘉团队设计出一种可检测铅离子(Pb2+)的便携式电化学传感器,实现了铅离子的精准和便捷检测。相关研究成果已被电化学分析领域权威期刊Journal of Electroanalytical Chemistry接收发表。   重金属离子对环境的污染被认为是全世界最严重的环境问题之一。铅离子作为一种高毒性的重金属离子,排放到环境中可造成较严重的污染,被动植物吸收后,通过食物链进入人体,会显著影响人体的健康,因此对铅离子的检测也受到越来越多的关注。然而,传统的检测方法具有样品预处理过程复杂、耗时长和仪器昂贵等缺点,研发特异性高、灵敏便捷、检测步骤简单的铅离子检测方法尤为迫切。   针对此类问题,课题组开发出基于钴掺杂的普鲁士蓝结合MXene材料的便携式电化学传感器。该传感器可以检测纳摩尔浓度的铅离子,同时也展现出较高的抗干扰能力,良好的稳定性,并在瓶装水、自来水和湖水等真实样品检测中均表现出出色的铅离子检测性能。   该研究工作得到国家自然科学基金和安徽省科技重大专项的资助与支持。传感器的制备及检测机理图
  • 简化水中微塑料检测流程,南华大学团队研发出这个光电化学传感器
    近日,南华大学化学化工学院 " 低维纳米材料光电技术实验室 " 团队成功研制了一种基于蛋白质冠诱导聚集效应的便携式光电化学传感器,用于水生环境中聚苯乙烯微塑料的检测。相关研究成果以 " 基于蛋白质冠诱导聚集效应的水生环境微塑料检测平台 " 为题,在高水平 SCI 期刊《生物传感器和生物电子学》上发表研究论文。微塑料是指直径小于 5 mm 的塑料颗粒。它们广泛分布于河流、湖泊、海水和沉积物中,常被称为水中的 "PM 2.5"。微塑料具有较大的表面积,可携带致病菌,使人出现感染、头晕、呼吸困难等症状,甚至引起死亡。为了解决微塑料带来的不可预测的威胁," 低维纳米材料光电技术实验室 " 团队创新性地运用蛋白质冠诱导聚集效应,设计了一种检测微塑料的便携式光电化学传感器。在不破坏微塑料结构的前提下,该传感器可选择性快速捕捉水生环境中的微塑料,实现对微塑料灵敏地原位检测。该传感器具有灵敏度高、重现性好、检测能力强等优点。在 0.5 ~ 500 μ g/mL 的线性范围内,其方法检出限为 0.06 μ g/mL,定量限为 0.14 μ g/mL。该传感器在真实水样中的表现也十分出色,其日内精度和日间精度的相对标准偏差分别为 0.56% ~ 4.63% 和 0.84% ~ 3.36%,平均相对回收率为 100.39% ~ 104.48%。此外,该团队对光电化学传感系统进行集成,可以通过蓝牙或无线传输的手段将检测数据实时传输到智能手机上,大大提升了检测效率。这种创新方法解决了传统检测方法对大型仪器设备过度依赖的问题,简化了检测流程。相关研究成果为微塑料的现场实时检测提供了新的方法,并在水生环境的微塑料污染分析中具有广阔的应用前景。南华大学在读硕士生肖子祯为第一作者,南华大学张也教授为该研究论文的通讯作者,南华大学化学化工学院为第一单位。该研究得到了南华大学科研启动经费、国家自然科学基金等项目的支持。
  • 上海微系统所在基于CRISPR的电化学传感器研究方面取得进展
    CRISPR近年来被广泛专注,Cas 13a在crRNA的引导下识别靶RNA后,对单链RNA表现出“附带切割”能力。较之荧光检测方法,电化学生物传感技术具有成本低,高效,灵敏,易于微型化和集成化的优势。基于CRISPR的电化学检测方法在生物分子检测方面显示出极大的应用前景。   近日,中国科学院微系统与信息技术研究所第八研究室宓现强课题组构建了一种基于CRISPR的电化学传感器(CRISPR-E)。该研究将DNA四面体框架结构修饰在印刷电极上,进一步与RNA探针杂交,最后连接HRP分子构建TCP探针。通过将电化学技术、DNA四面体框架结构与CRISPR技术相结合,实现了对miRNA的无扩增、高灵敏度检测。由于整个反应过程可以在电极上实现,因此有望推动miRNA的及时快速(POC)检测。   相关论文“Tetrahedral DNA framework based CRISPR electrochemical biosensor for amplification-free miRNA detection”发表于国际生物传感著名期刊Biosensors and Bioelectronics。该论文的第一通讯单位为中科院上海微系统所,通讯作者为上海微系统所宓现强研究员。   该工作得到得到上海市优秀学术带头人计划项目(20XD1404600),中国科学院项目(KFJ-STS-QYZD-2021-08-002 )上海市科委项目(20511107600, 19511107100, 19511107102)等支持。基于CRISPR的电化学传感器原理图
  • 巴西科学家开发电化学免疫传感器,可在五分钟内检出新冠抗体
    快速、廉价和准确的检测对于流行病学监测以及遏制新冠肺炎的传播至关重要。巴西科学家通过开发一种检测病毒抗体的电化学免疫传感器,为这一领域的努力作出了贡献。最近发表在《ACS生物材料科学与工程》杂志上的一篇论文描述了这项创新。为寻找一种新颖的诊断方法,研究小组选择了一种经常用于冶金的材料氧化锌,并首次将其与掺氟氧化锡(FTO,用于光伏电极的导电材料)玻璃相结合。论文第一作者、圣保罗州ABC联邦大学化学家温代尔埃尔维斯称,通过这种不寻常的组合和添加生物分子——病毒刺突蛋白,研究人员开发了一种能够检测新冠病毒抗体的表面,结果以该表面捕获的电化学信号显示。新制造的电极在大约5分钟内检测出血清中的新冠抗体,灵敏度为88.7%,特异性为100%,甚至优于目前的黄金标准临床诊断工具酶联免疫吸附试验。这一平台能将病毒刺突蛋白与氧化锌纳米棒静电结合。氧化锌因其多功能性和独特的化学、光学和电学特性而越来越多地用于制造生物传感器。该免疫传感器易于制作和使用,生产成本相对较低。纳米棒在FTO的导电表面形成一层薄膜,为固定S蛋白创造了一个有利的分子微环境,构建出检测病毒抗体的简单方法。用刺突蛋白修饰的氧化锌结构及其与样品中抗体相互作用的图示。图片来源:DK DESIGN研究共分析了107份血清样本。样本被分为4组:疫情前(15人)、新冠康复者(47人)、先前未对该病呈阳性结果的情况下接种疫苗(25人)以及在阳性后接种疫苗(20人)。该设备可检测因病毒感染和疫苗接种而产生的抗体,并显示出作为监测血清转化和血清阳性率工具的巨大潜力。研究人员强调,检测对疫苗接种的反应,对于帮助公共卫生部门评估不同疫苗以及免疫计划的有效性非常重要。此外,该电极的优点是其灵活的结构,这意味着也可使用不同生物分子,轻松定制用于其他诊断和生物医学应用。未来研究人员计划调整该平台,使其便携并可连接到移动设备,以用于诊断新冠和其他传染病。
  • 【HORIBA学术简讯】电化学、传感器、医药、环境领域相关文献推荐 | 21年44期
    本周我们推荐5篇前沿学术成果,针对电化学、传感器、医药、环境领域,涉及拉曼、荧光、粒度技术。电化学传感器医药环境“学术简讯”栏目旨在帮助光谱技术使用者时时掌握新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等,帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。更多光学光谱文献欢迎访问Wikispectra
  • 【HORIBA学术简讯】钙钛矿、制药、电化学、传感器、地质领域 | 2021年第29期
    “学术简讯”栏目旨在帮助光谱技术使用者时时掌握新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等。帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。如您对本栏目有任何建议,欢迎留言。本周我们推荐5篇前沿学术成果,针对钙钛矿、制药、电化学、传感器、地质领域,涉及荧光光谱、颗粒分析、拉曼光谱、OSD技术。钙钛矿制药电化学传感器地质更多光学光谱文献,欢迎访问Wikispectra 文献库。
  • 表面分子印迹聚合物电位型传感器构建成功 实现蛋白分子快速高灵敏电化学检测
    p  发展适合于现场快速检测海洋生物大分子及海洋细菌的生物传感器技术,对于及时快速地开展海洋环境监测和评价具有重要意义。目前,对生物大分子的检测,一般采用酶联免疫法、生物化学测试法、聚合酶链式反应法等技术 对全细胞的检测,则通常需要通过细胞培养实验来完成。然而,上述方法存在仪器复杂、设备昂贵、检测耗时长等缺点,仅适用于实验室分析。/pp  在海洋环境中,贻贝可通过其足丝分泌贻贝粘蛋白,该蛋白具有优越的粘滞性和良好的生物相容性。近期,中国科学院烟台海岸带研究所研究员秦伟课题组利用聚多巴胺类仿贻贝粘蛋白材料,成功构建了表面分子印迹聚合物电位型传感器,实现了对蛋白质分子及细胞体的高灵敏、高选择、快速电化学检测。他们采用基于仿贻贝粘蛋白的表面分子印迹技术,在电位型传感器表面原位构建了生物分子选择性识别印迹层 利用表面分子印迹层与待测生物分子之间的高选择性识别作用,实现了样品中生物分子在传感器表面的高选择性分离与富集 利用聚离子作为指示离子,指示富集前后传感器膜界面的电位变化,从而实现了对蛋白质分子及细胞体的免标记电化学检测(如下图)。该方法有效解决了电化学生物传感器难以实现免标记分析的难题,有望应用于海洋病毒及海洋致病菌的现场快速检测中。/pp  相关研究成果已于近日发表在化学期刊《德国应用化学》(Rongning Liang, Jiawang Ding, Shengshuai Gao, Wei Qin*. Mussel-Inspired Surface-Imprinted Sensors for Potentiometric Label-Free Detection of Biological Species. Angew. Chem. Int. Ed., 2017, 56, doi: 10.1002/anie.201701892)。此外,秦伟课题组也于近期在该期刊发表了关于电化学生物传感研究的其它成果(Angew. Chem. Int. Ed., 2016, 55, 13033–13037)。/pp style="text-align: center "img width="600" height="495" title="W020170526571669789953.jpg" style="width: 600px height: 495px " src="http://img1.17img.cn/17img/images/201705/insimg/dfa6e65f-ceeb-4ed3-8f15-be9f33a61853.jpg" border="0" vspace="0" hspace="0"/ p/pp 基于海洋贻贝粘蛋白的仿生电化学生物传感器检测原理/pp/pp/p/p
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 酒驾新标准将实施,从气相色谱法增加至电化学传感器法
    关于酒驾,国家近日发布了最新标准,将于2024年3月1日起实施。国家标准全文公开系统截图  公共安全行业标准《生物样品血液、尿液中乙醇、甲醇、正丙醇、乙醛、丙酮、异丙醇和正丁醇的顶空-气相色谱检验方法》等标准发布实施以来,为机动车驾驶人血液酒精含量检测提供了技术依据。  全国刑事技术标准化技术委员会在进一步丰富优化该项行业标准检测分析方法、细化完善有关技术要求的基础上,组织制定了《血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验》(GB/T 42430-2023)国家标准。  将进一步支撑法律和强制性国家标准落地实施,为各类鉴定机构开展血液中酒精含量检验技术工作提供标准方法。  同时,该国家标准可适用于五种醇类物质及丙酮的中毒、死亡检验、医疗急救检验、科学研究等其他更为广泛的场景。  该标准将于2024年3月1日起实施。  新规酒驾和醉驾的区别在于违法程度和处罚力度方面  更严:  新国标将血液中乙醇的含量分为三个等级,而旧国标只分为两个等级。新国标将饮酒驾驶的上限从50mg/100mL降低到了20mg/100mL,也就是说,只要血液中乙醇含量超过了20mg/100mL,就属于违法行为。血液中乙醇含量大于或等于80mg/100ml的认定为醉驾。醉驾属于犯罪行为。  更准:  新国标将血液和尿液中乙醇的检测方法分为两种,分别是气相色谱法和电化学传感器法。旧国标只规定了气相色谱法作为实验室检测方法,而没有规定现场检测方法。  更公:  新国标将血液中乙醇含量与呼吸中乙醇含量之间的换算系数从2100调整为2300。这是基于最新的科学研究和统计数据,更符合中国人的体质和代谢特点。
  • 4款传感器,满足工业气体安全还看MOCON
    众所周知,人类长期接触挥发性有机化合物(VOC)会导致呼吸系统问题、癌症和神经损伤;自然环境如空气、水和土壤等会造成破坏和污染。挥发性有机化合物(VOC) 是由工业和自然过程产生的潜在危险化合物。这些有害气体通常在正常大气条件下会蒸发,但室内环境中的VOC水平要高得多,因为许多制成品(如地毯、油漆和清洁用品等)都可能会排放这些物质。室外来源可能包括垃圾处理场、工业和碳氢化合物排放过量等。光电离检测器(PID) 是检测VOC水平的最简单、最有效的方法。在不靠气相色谱柱的情况下,膜康(MOCON)独立的PID可以使用便携式或固定式对许多挥发性有机化合物进行实时测量。1 易用型检测器VOC-TRAQ II 基于最新的Baseline piD-TECH eVx™ 光电离传感器,VOC-TRAQ II没有组合部件,采用简单的扩散方法,仍提供了快速的响应时间,既紧凑又实惠。一种灯能量之间有5个不同的检测级别,提供了广泛的检测功能。附带的VOC-TRAQ II pc软件可以轻松进行校准、设置参数和显示数据图形。 特点及优势:紧凑型设计广泛的检测功能附带pc软件可编程报警级别和采样频率简单的设置和校准存储多达36,000个样品读数2带流动腔的VOC光电离检测器 VOC-TRAQ II与流通式外壳结合在一起变成Baseline VOC-TRAQ II流动腔,进出口流道可用于远程样品输送,当与加压源或泵一起使用时,该装置可实现受控样品输送。VOC-TRAQ II流动腔借助带有windows操作系统软件的pc能够远程监测和记录总挥发性有机化合物的存在。装置的高灵敏度归功于piD-TECH eVx™ 光电离检测器。 膜康(MOCON)光电离检测器应用:环境监测:洁净室AMC、空气质量监测、无组织排放监测有毒气体监测:室内空气质量、检漏、OEM PID传感器工业过程分析和控制:饮料气体监测、工业气体混合控制、工艺气体分析、特种和工业气体监测、地面测井分析膜康(MOCON)的VOC-TRAQ总挥发性有机化合物(TVOC) 检测器是一种极具性价比的解决方案,使用基于windows的pc主动监测非爆炸性气体泄漏,通过存储多达36,000个样本读数随时间记录数据。VOC-TRAQ使用piD-TECH eVx™ 光电离传感器来监测用户所需范围内的汽化气体。3OEM的首选piD-TECH eVx™ 膜康(MOCON)屡获殊荣的专利piD-TECH eVx™ 插入式传感器具有全面的光电离检测功能,其设计与大多数品牌的电化学传感器机械结构相似。其出色的特性使piD-TECH系列传感器成为想要在手持、移动或固定式设备中集成voc检测功能的oem制造商的理想选择。piD-TECH eVx™ 的检测能力和最小检测量(MDQ)分为五个范围,对oem市场来说它具有更高的性价比和灵活性,同时兼具了市场上无法比拟的先进技术。 特点及优势:提供OEM集成支持可靠的长寿命灯泡:6000 小时易于清洁和现场维修,无需工具本质安全:UL、CAN/CSA、ATEX、IECEx认证内部输入电压调节,提高信号稳定性双重过滤,防止气溶胶和颗粒物的侵害4灵敏型传感器piD-POD piD-POD结构紧凑,由一个圆柱形外壳组成,可组装piD-TECH eVx™ 光电离传感器和进/出样口。它适用于高达300 cc/min的进气流量,并配备了一个带配套适配器的PC接头。piD-POD采用膜康(MOCON)piD-TECH eVx™ 传感器系列(单独出售),允许用户为应用选择所需的灵敏度和灯能量。光电离检测器(PID)不会破坏样品,因此piD-POD对于原始设备制造商来说是一种在其仪器设计中集成TVOC测量的直接手段。 特点及优势:用于piD-TECH传感器低死角密封设计集成到气体监测仪器中提供光电离检测的灵敏度几十年来,AMETEK MOCON一直是气体检测设备监测水平远低于OSHA行动限值的领先供应商。这得益于稳定、快速的检测结果可以让工作人员有足够的时间对日益增加的健康风险做出反应。
  • 有机核壳纳米线实现化学气体高效传感
    中科院化学所光化学院重点实验室的科研人员利用有机纳米光子学材料,实现了高效化学气体传感,相关成果发表在近期出版的国际期刊《先进材料》杂志上,并被作为即将出版的《先进光学材料》的内封面文章重点介绍。  据了解,光波导传感器具有普通传感器无法比拟的灵敏度高、体积小、抗电磁干扰、便于集成等优点,在气体与生物传感中扮演着越来越重要的角色。  中科院化学所光化学院重点实验室的研究人员近年来一直致力于低维有机光子学方面的研究,围绕光子学集成器件中所需要的光波导、微纳光源、光子路由器等开展了一系列探索工作。  近来,他们又在有机纳米材料电化学荧光转换方面取得突破,相关工作证实了低维有机材料在纳米光子学领域的巨大潜力,为实现有机纳米光子学传感器件奠定了基础。  最近,在国家自然科学基金委、科技部和中科院的支持下,科研人员在前期工作的基础上,通过超分子自组装方法制备出二元有机复合纳米带,利用荧光共振能量转移中受体的杠杆效应,制备出高效的酸碱气体传感器。他们进一步将有机金属配合物的单晶纳米线引入电化学发光传感体系,实现了对生物分子多巴胺的高效、灵敏检测,相关工作发表在《先进材料》杂志上。  在此基础上,研究人员与活体分析化学实验室合作,制备出有机核/壳纳米结构作为光波导传感器,利用核壳之间的消逝波耦合,有效地放大了波导材料对气体的响应,从而实现了对H2O2气体的快速、高灵敏、高选择性的原位检测。
  • 气体传感器企业汉威电子与第三方检测机构华测检测创业板上市
    气体传感器企业汉威电子创业板首批上市  在首批公布招股说明书的10家创业板公司中,河南汉威电子股份有限公司因其产品具有较高技术壁垒,且主要应用于政府监管和重视的工业安全生产领域,公司表现出的稳定持续的高速成长性,受到了机构投资者的广泛关注。公司昨日在上海举办的现场路演推介会吸引了众多机构投资者的积极参与。  机构投资者纷纷给予公司较高的评价,并就公司产品的核心技术、市场竞争情况、应用领域、政策扶持力度、募投项目的发展前景等问题与公司的高管层进行了充分的交流。  气体传感器是气体检测仪器仪表的核心部件。汉威电子掌握了大量的关于气体传感器选型、气敏材料配方、生产工艺、工业设计等方面的专利或者是非专利技术,成为国内唯一能够同时生产半导体类、催化燃烧类、电化学类及红外光学类四大主要类别气体传感器产品的企业,从源头上摆脱了对国外厂商的技术依赖,成为行业内填补国内空白、替代进口的领跑者。由于公司掌握了传感器的核心技术及生产能力,拥有生产检测仪器仪表的技术优势和成本优势,同时所处行业技术壁垒较高,需要严格的行业认证才能进入,因此公司毛利率达到50%以上,高于可比上市公司的平均水平。  传感器产业是国内外公认的具有广阔发展前途的高技术产业。作为该产业的一个重要分支,气体传感器在燃气、冶金、航天、石油石化、煤炭、化工、环保、煤气化等十个行业均有广泛的应用。随着国家和人民对健康和安全的日益重视,以及各大产业振兴规划都将推动国内气体检测仪器仪表市场的高速增长,预计未来三年将保持30%以上的增长率,2012年需求量超过1500万台,市场规模为30亿元以上。  面对未来几年巨大的市场需求,汉威电子将是传感器行业发展最大的受益者之一。公司的成长性和盈利能力在电子板块处于领先水平,自成立以来始终保持快速的发展势头,在2006年至2009年的三年发展中,营业收入由2910万元增长到9733万元,复合增长率达到82%,净利润由734万元增长到2969万元,复合增长率达到101%,公司的核心传感器产品的市场份额由29%增长到53%。  汉威电子此次募投项目主要投入红外气体传感器和检测器产品以及电化学气体检测仪器仪表。前者主要用于工矿企业中危险气体的检测,后者中的电化学酒精传感器可以用于各类呼出气体酒精浓度监测仪表,便于交通警察对机动车驾驶员进行饮酒检测。随着政府监管部门和民众对安全生产的日益重视,未来工矿企业必将加大对危险气体的检测投入,使得红外气体传感器具有良好稳定的成长性 而政府加大对酒后驾车的监管力度后,未来电化学酒精传感器的需求也有较大的增长空间。  据悉,目前汉威电子是国内唯一有能力产业化生产电化学传感器和红外传感器的企业,而国内其他竞争对手均需进口相关核心器件,公司具备明显的技术和成本优势。随着募投项目的逐步投产,预计2012年产量将占仪器仪表总产量的30%以上,销售收入达到仪器仪表总销售收入的50%以上,公司营业收入和净利润年均复合增长率均在30%以上,高于行业平均增速。华测检测登陆创业版 拟募集资金2.75亿元  据央视新闻频道消息,21日上会的五家创业板企业四家过会一家被否。过会的四家企业为北京北陆药业股份有限公司、西安宝德自动化股份有限公司、深圳市华测检测技术股份有限公司、武汉中元华电科技股份有限公司。  深圳市华测检测技术股份有限公司是一家全国性、综合性的独立第三方检测服务机构,主要从事工业品、消费品、生命科学以及贸易保障领域的技术检测服务,目前在国内拥有近30家分支机构组成的业务网络,拥有化学、生物、物理、机械、电磁等领域的30个实验室,取得了CMA计量认证与CNAS国家合格评定委员会实验室认可资格和检查机构认可资格,并依据ISO17025、ISO17020进行管理。本次发行股数为2100万股,发行后的总股本为8177万股,主承销商为平安证券。  在发行前,万里鹏、万峰父子合计持有公司45.74%股权,是公司控股股东和实际控制人。万峰为公司董事长,万里鹏任公司董事。  本次发行A股预计募集资金2.75亿元,主要用于建设华东检测基地和华南检测基地,项目建成后将极大地充实实验室检测网络,扩大市场份额,提高市场占有率。另据消息:  10月30日,随着创业板开市宝钟的敲响,CTI华测检测正式在深交所挂牌上市,CTI华测检测不仅成为深圳市首家在创业板上市的公司,也是国内首家成功上市的第三方检测机构。  此次,CTI华测检测成功登陆创业板,其股票代码为300012,本次公开发行股票2100万股。  作为国内最大的民营第三方测试、检验和认证服务的开拓者和领先者,其业务范围涵盖了工业品检测、消费品检测、贸易保障和生命科学四个领域。一直以来,CTI华测检测坚持为众多行业和产品提供一站式的质量解决方案,提升企业竞争力,以满足其对品质的更高要求。  目前,CTI华测检测已经拥有30多家分支机构组成的服务网络,取得了中国合格评定国家认可委员会CNAS认可及计量认证CMA资质,并获得了英国UKAS,新加波SPRING,美国CPSC认可,检测报告具有国际公信力。  以上市为契机,CTI华测检测将持续提高其检测能力,更好的为各行各业提供全面的、高质量的服务,此次成功上市,不仅标志着华测检测在成长的道路上迈出了重要的一步,更重要的是为CTI华测检测以后全方位服务能力的提升打下了坚实的基础。  深圳市华测检测技术股份有限公司:http://www.cti-cert.com/
  • 智能气体传感器探测化学药品灵敏度更高
    据美国媒体报道,美国密歇根大学研究人员正在开发一种便携式可调节的二维微型气体(气相)色谱仪,能识别并检测化学气体成分,更加灵敏智能,可用于探测爆炸物、化学武器挥发气体,还能通过病人的呼吸诊断病情,侦查矿井是否安全等。仪器也非常节能,对矿井作业和偏僻地区医疗室具有很大优势。相关论文近日发表在《分析化学》杂志上。 该校生物医学工程系教授范旭东(音译)解释说,挥发气体中的各种成分就像一团团微小的云重叠在一起,检测之前要把它们分开,而在挥发性混合气体中,要识别各种成分非常困难。目前大部分传感器是让混合气体依次通过两个试管(仪器信息网注:这里可能是指色谱微柱),第一个试管内涂有一层聚合物,会减缓较重分子速度,大致把各种气体按重量分开。 研究人员正在开发的传感器在分离各种化学成分方面更有效。让气体先通过第一个试管获得初步线索,然后用一个泵和压缩机从第一个试管中收集气体,间隔规律地送入第二个试管中,进行第二道检测。第二个试管内涂有一层极化聚合物,一端带正电另一端带负电,会减慢那些被极化了的气体分子的速度,未极化的分子能以更快速度通过。根据这些信息,研究人员就能识别出气体中的化学成分。再给这套系统加上一个决策装置并连接计算机,通过计算机能看到各种化学成分逐步分离的整个过程。 在决策装置引导下,一小团云完全通过后,压缩机才能再次运作,这种方法能让同一种分子聚集在一起,分析数据更容易。第二道检测过程还可以增加一个轮换试管,让气体更快通过,此时决策装置还充当&ldquo 接线员&rdquo ,当一个试管正&ldquo 忙&rdquo 时就把气体送入另一个试管。这样气体从第一个试管出来进入二道检测试管时就不会停顿。 二道检测试管还可以专门定做,用不同涂层做成各种长度的试管来分离特殊气体,比如一种专用分子&ldquo 热线&rdquo ,可以探测某些特殊分子。范旭东说:&ldquo 如果怀疑某地有化学武器泄露,我们就送一批这种专用分子&lsquo 热线&rsquo 过去,能极灵敏地识别出这些成分。&rdquo 目前,研究小组已经证明了新装置能在两个检测试管之间分配气体,智能传感器能识别包含20种不同成分的化学气体,以及植物释放的混合物成分。 无论是探查爆炸物、化学武器,还是监测矿井安全,对于化学气体检测仪器而言,最重要的一条就是灵敏度。如果不能迅速准确地检查出目标物,即使是再尖端的技术也可以说意义不大。本文介绍的这套仪器一方面能使不同分子尽可能分开并分别聚集,另一方面通过轮换试管和定做试管的方式使检测过程更加高效和具有针对性,这些都是强化灵敏度的关键因素。与此同时,这种仪器似乎并不复杂,也大大提高了它作为实用技术进行推广的可能性。
  • 智能气体传感器探测化学药品更灵敏
    据美国科学促进会网站5月2日(北京时间)报道,美国密歇根大学研究人员正在开发一种便携式可调节的二维微型气体色谱仪,能识别并检测化学气体成分,更加灵敏智能,可用于探测爆炸物、化学武器挥发气体,还能通过病人的呼吸诊断病情,侦查矿井是否安全等。仪器也非常节能,对矿井作业和偏僻地区医疗室具有很大优势。相关论文近日发表在《分析化学》杂志上。  该校生物医学工程系教授范旭东(音译)解释说,挥发气体中的各种成分就像一团团微小的云重叠在一起,检测之前要把它们分开,而在挥发性混合气体中,要识别各种成分非常困难。目前大部分传感器是让混合气体依次通过两个试管,第一个试管内涂有一层聚合物,会减缓较重分子速度,大致把各种气体按重量分开。  研究人员正在开发的传感器在分离各种化学成分方面更有效。让气体先通过第一个试管获得初步线索,然后用一个泵和压缩机从第一个试管中收集气体,间隔规律地送入第二个试管中,进行第二道检测。第二个试管内涂有一层极化聚合物,一端带正电另一端带负电,会减慢那些被极化了的气体分子的速度,未极化的分子能以更快速度通过。根据这些信息,研究人员就能识别出气体中的化学成分。再给这套系统加上一个决策装置并连接计算机,通过计算机能看到各种化学成分逐步分离的整个过程。  在决策装置引导下,一小团云完全通过后,压缩机才能再次运作,这种方法能让同一种分子聚集在一起,分析数据更容易。第二道检测过程还可以增加一个轮换试管,让气体更快通过,此时决策装置还充当“接线员”,当一个试管正“忙”时就把气体送入另一个试管。这样气体从第一个试管出来进入二道检测试管时就不会停顿。  二道检测试管还可以专门定做,用不同涂层做成各种长度的试管来分离特殊气体,比如一种专用分子“热线”,可以探测某些特殊分子。范旭东说:“如果怀疑某地有化学武器泄露,我们就送一批这种专用分子‘热线’过去,能极灵敏地识别出这些成分。”  目前,研究小组已经证明了新装置能在两个检测试管之间分配气体,智能传感器能识别包含20种不同成分的化学气体,以及植物释放的混合物成分。
  • 第11届全国化学传感器学术会议日程
    第十一届全国化学传感器学术会议第三轮通知  各位参会代表:  2011年是国际化学年。好消息!金秋时节,由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,湖南大学、上海师范大学和江苏江分电分析仪器有限公司联合承办的2011年第十一届全国化学传感器学术会议定于10月22-25日在湖南长沙市芙蓉华天大酒店召开。现将有关与会的具体安排通知如下:  一、大会学术安排  10月22日:全天报到  10月23日:大会开幕式,大会报告  10月24日:大会报告,闭幕式  10月25日:代表离会或参加考察  二、大会报告安排  1、陈洪渊 院士 南京大学 细胞图案化与细胞传感研究  2、张玉奎 院士 中科院大连化学物理研究所 色谱分离与蛋白质组学的最新研究进展  3、庄乾坤 国家自然科学基金委员会 (NSFC) 国家自然基金委分析化学学科发展战略与项目资助情况  4、杨秀荣 中科院长春应用化学研究所 双偏振干涉测量技术研究生物分子相互作用:基于功能化脱氧核酸实时无标检测小分子  5、周飞艨 加利福尼亚州州立大学洛杉矶分校,中南大学电化学和光谱学方法用于生命体系中动态过程研究  6、王柯敏 湖南大学 基于氧化石墨烯的DNA聚合酶检测新方法  7、周道民、章宗穰 美国Second-Sight公司,上海师范大学 生物医学植入器件的刺激电极和传感电极  8、陶农建 Arizona State University,USA Plasmonic-Based Electrochemical Current and Impedance Imaging and Applications  9、鞠熀先 南京大学 纳米生物传感新策略  10、钟传健 State University of New York at Binghamton Biomolecular Recognition with Functional Nanoprobes  11、庞代文 武汉大学 量子点标记多靶单病毒示踪研究流感病毒侵染动态过程  12、谭蔚泓 湖南大学 生物传感的基石:分子识别  三、会务安排  1. 报到  报到时间:10月22日8:00—22:00, 会议代表在报到处确认注册后,领取代表证、会议指南、论文集、就餐券、纪念品等。  报到地点:芙蓉华天大酒店,地址:长沙市湖南省 芙蓉区五一大道176号  电话:(0731)84401888。  2. 住宿  会议期间与会人员住宿费用自理,住宿费标准:芙蓉华天大酒店单人间,标准间:268元/间 银河大酒店双标间:160元/天,豪华双标:200元/天。  四、会议注册  与会代表的食宿统一安排,差旅、住宿费用自理。注册费包括资料费、会务费和餐费等,报到时以现金交付。会议代表每位900元(在读研究生代表每位600元,注册时请出示学生证件)。  五、会议日程安排  请见本通知附件及会议网站,如有疏漏、问题或希望调整,望及时反馈,谢谢!  六、会议联系方式  会议主页(http://huiyi114.cn)  联系人:吴海龙 庞新宇  联系方式:0731-88821848 传真:073188821848  E-mail:cbsc@hnu.edu.cn  七、会议考察  会议协助旅行社安排三条考察线路,费用自理。  八、友情提示  1. 由于参会代表较多,会务组无法安排接送,对此我们深表歉意。  2. 提供交通信息如下:  (1)、从火车站乘坐 113路(或 7, 118, 104, 105, 111, 117, 12), 乘2站在 曙光路口站 下车 或沿五一路步行约10分钟   (2)、从高铁火车站乘148路公交车至终点火车站,乘坐 113路(或 7, 118, 104, 105, 111, 117, 12), 乘2站在 曙光路口站 下车 或沿五一路步行约10分钟 打出租车约25-30元。  (3)、从机场乘坐机场大巴到终点站:民航大酒店,步行横穿五一路人行通道即到。打出租车约70元。  中国分析仪器学会化学传感器专业委员会  第十一届全国化学传感器学术会议组委会  2011年10月 10日第十一届全国化学传感器学术会议会 议 程 序 初 步 安 排2011年10月22日 星期六 全天 报到注册时间内容地点08:00-22:00注册芙蓉华天大酒店18:30-晚餐 (自助餐) 21:00-学术委员会会议 2011年10月23日 星期天 上午时间内容地点07:00-早餐 08:20-08:50会议开幕式主持人:章宗穰 芙蓉华天大酒店---华天全厅08:50-09:20合影酒店正门前 主持人:杨秀荣、王柯敏时间类型报告人单位报告题目09:20-09:45PL1陈洪渊 院士南京大学细胞图案化与细胞传感研究09:45-10:10PL2张玉奎 院士中科院大连化学物理研究所色谱分离与蛋白质组学的最新研究进展10:10-10:35PL3庄乾坤国家自然科学基金委员会 (NSFC)国家自然基金委分析化学学科发展战略与项目资助情况10:35-11:00PL4杨秀荣中科院长春应用化学研究所双偏振干涉测量技术研究生物分子相互作用:基于功能化脱氧核酸实时无标检测小分子11:00-11:25PL5周飞艨加利福尼亚州州立大学洛杉矶分校,中南大学电化学和光谱学方法进行生命体系中的动态过程研究11:25-11:50PL6王柯敏湖南大学基于氧化石墨烯的DNA聚合酶检测新方法11:50-12:15PL7周道民、章宗穰美国Second-Sight公司,上海师范大学生物医学植入器件的刺激电极和传感电极 12:10-午餐 (自助餐) 14:00-18:00报展 I(尺寸为 高120厘米、宽90厘米) 2011年10月23日 星期天 下午第一分会场: 主持人:李根喜、于聪时间类型报告人单位报告题目14:00-14:20IL1李根喜南京大学基于蛋白质电化学研制的若干生物传感器14:20-14:40IL2于 聪中国科学院长春应用化学研究所核酸诱导的小分子探针的集聚及自组装14:40-15:00IL3郑建斌西北大学生物电化学与生物传感器的研究15:00-15:20IL4王进义西北农林科技大学微流控芯片细胞分析15:20-15:30OP1贾能勤上海师范大学基于有序介孔材料的生物传感应用15:30-15:40OP2李钟卉南京大学基于蛋白质芯片的雌激素受体药物多靶点筛选方法15:40-15:50OP3赵伟洁浙江大学基于多孔硅光子晶体的微流控体系实现细胞的实时非标记分析15:50-16:00OP4赖国松湖北师范学院基于银沉积电化学溶出分析的高灵敏多通道免疫传感 16:00-16:10茶歇 主持人:叶邦策、袁若时间类型报告人单位报告题目16:10-16:30IL5袁 若西南大学电化学蛋白质生物传感器的研究16:30-16:50IL6叶邦策华东理工大学生物纳米传感器设计及在生化分析中的应用16:50-17:10IL7胡乃非北京师范大学可开关的生物电催化与生物传感17:10-17:20OP5董俊萍上海大学基于硅钼酸柱撑水滑石复合材料的电化学传感器研究17:20-17:30OP6李珏瑜浙江大学HA修饰对细胞捕获的影响17:30-17:40OP7甘 峰中山大学基于镍纳米线的过氧化氢传感器的研究17:40-17:50OP8汪庆祥漳州师范学院基于一步电沉积壳聚糖-ZrO2-CeO2复合膜的DNA电化学传感器17:50-18:00OP9陈建平漳州师范学院基于富勒烯衍生物修饰玻碳电极的电化学免疫传感器18:00-18:10OP10李周敏南京大学基于纳米银生物探针的IgE可视化检测方法的研究 第二分会场: 主持人:由天艳、朱俊杰时间类型报告人单位报告题目14:00-14:20IL8朱俊杰南京大学量子点功能化与电化学生物传感14:20-14:40IL9蒋兴宇国家纳米科学中心基于微纳尺度技术传感器的应用研究14:40-15:00IL10许丹科南京大学生物微阵列芯片检测新方法的研究15:00:15:20IL11由天艳中国科学院长春应用化学研究所电纺碳纳米纤维及其复合材料在电分析化学中的应用15:20-15:30OP11刘清君浙江大学中华蜜蜂化学感受蛋白阻抗传感器的研究15:30-15:40OP12孙兆辉华侨大学基于石墨烯增敏的印迹电化学传感器的制备15:40-15:50OP13荆 莉华东师范大学基于链接反应的碳纳米管功能化及其应用15:50-16:00OP14曹 忠长沙理工大学钆掺杂纳米二氧化钛修饰平板金电极测定火腿肠中微量亚硝酸根 16:00-16:10茶歇 主持人:施国跃、王坤时间类型报告人单位报告题目16:10-16:30IL12牛 利中国科学院长春应用化学研究所石墨烯纳米组分电化学传感器应用16:30-16:50IL13王 坤江苏大学基于介孔TiO2修饰电极实现多巴胺的选择性测定16:50-17:10IL14施国跃华东师范大学新型复合纳米材料的电催化行为研究及其在活体分析中的应用17:10-17:20OP15吴 硕大连理工大学虾中4-己基间苯二酚的高灵敏电化学检测17:20-17:30OP16崔 亮厦门大学基于变构探针设计的荧光偏振技术用于小分子的高灵敏检测17:30-17:40OP17彭 晖华东师范大学PEDOT修饰的微通道硅电极用于多巴胺、抗坏血酸及尿酸的同时测定17:40-17:50OP18孙芳洁大连理工大学基于YSZ和Au敏感电极的混合电位型NO2传感器的特性17:50-18:00OP19赵 路南京师范大学氯霉素复合分子印迹膜的制备及电化学研究18:00-18:10OP20羊小海湖南大学一种基于G四聚体自身猝灭能力的新型单标记DNA探针用于Hg2+及半胱氨酸的检测 第三分会场: 地址:主持人:杨黄浩、屠一锋时间类型报告人单位报告题目14:00-14:20IL15王振新中国科学院长春应用化学研究所功能化金纳米粒子的合成与应用14:20-14:40IL16何治柯武汉大学规模合成水溶性低毒量子点用于疾病诊断及可视化检测14:40-15:00IL17杨黄浩福州大学基于切刻内切酶的荧光型核酸适体传感器用于放大检测蛋白质15:00-15:20IL18屠一锋苏州大学 基于纳米增敏电化学发光的氧传感技术15:20-15:30OP21姜大为华东师范大学氮掺杂二氧化钛/石墨烯复合材料的制备及其光催化性能的研究15:30-15:40OP22王 颖南京大学一种新颖的基于银纳米粒子荧光增强的适配体传感器15:40-15:50OP23张 妍福州大学多壁碳纳米管表面茶碱印迹材料的制备与吸附性能15:50-16:00OP24代 昭天津工业大学固相有机合成对基于无机纳米材料的荧光DNA探针微结构的控制作用 16:00-16:10茶歇 主持人:冯锋、赵睿时间类型报告人单位报告题目16:10-16:30IL19赵 睿中国科学院化学研究所以石英晶体微天平研究尿液中三聚氰胺与三聚氰酸层层自组装相互作用16:30-16:50IL20徐静娟南京大学新型电致化学发光生物传感器研究16:50-17:10IL21冯 锋山西大同大学基于表面等离子体共振技术用鸡蛋黄抗体IgY测定转铁蛋白17:10-17:20OP25姜 晖东南大学CdSe纳米颗粒的电化学发光动力学及其检测应用17:20-17:30OP26李 慧南京大学聚合纳米银荧光探针检测人IgE的新方法17:30-17:40OP27李 娟福州大学以氧化石墨烯为平台研究多肽和蛋白质的相互作用17:40-17:50OP28王 荣上海师范大学基于TPAA载体的Fe3+离子选择性电极研究17:50-18:00OP29陈荣生武汉科技大学核壳结构TiO2/C纳米纤维阵列的制备、微观结构及电化学行为18:00-18:10OP30杨海峰上海师范大学钯纳米粒子修饰电极对过氧化氢电催化性能研究 时间内容地点14:00-18:00报展 I(尺寸为 高120厘米、宽90厘米) 18:30-20:00欢迎晚宴 20:30-专业委员会和刊物编委会联席会议 2011年10月24日 星期一 上午时间内容 地点07:00-早餐 8:00-12:00报展 II (尺寸为 高120厘米、宽90厘米) 第一分会场: 地址:主持人:双少敏、张文时间类型报告人单位报告题目08:00-08:20IL22张 文华东师范大学双酶传感器对大鼠血清与腹腔巨噬细胞内葡萄糖和胆固醇的同时检测08:20-08:40IL23双少敏山西大学基于酶固定的新型抗坏血酸传感器的研究08:40-09:00IL24王利兵湖南出入境检验检疫局一种测定双酚A的弛豫开关免疫传感器09:00-09:20IL25王升富湖北大学电化学生物传感器用于Fenton反应产生羟自由基对蛋白质损伤的监测研究09:20-09:30OP31刘文娟山西大学基于酶固定的新型抗坏血酸传感器的研究09:30-09:40OP32韩根亮甘肃省科学院传感技术研究所碳纳米管增强的谷氨酸生物传感器09:40-09:50OP33艾仕云山东农业大学基于石墨烯-纳米金-锁核酸修饰的分子信标及酶催化放大反应的电化学microRNA传感器的设计09:50-10:00OP34李 臻浙江大学用于微生物快速检测的微通道免疫分析芯片 10:00-10:10茶歇 主持人:夏兴华、何品刚时间类型报告人单位报告题目10:10-10:30IL26夏兴华南京大学生物分子的界面行为及生物传感 10:30-10:50IL27杨小弟南京理工大学石墨烯和碳纳米管修饰电极间接测定生物体液中的铝10:50-11:10IL28何品刚华东师范大学基于重氮功能化直立碳纳米管阵列的核酸适配体传感器的制备及其应用于凝血酶的检测11:10-11:20OP35丁应涛漳州师范学院基于靛蓝胭脂红为杂交指示剂的高选择性电化学DNA传感器11:20-11:30OP36胡涌刚华中农业大学伪狂犬病毒抗体磁性免疫传感器的研制11:30-11:40OP37刘志敏河南工业大学基于石墨烯-纳米金复合物的乙酰胆碱酯酶生物传感器于马拉硫磷的测定11:40-11:50OP38高峰安徽师范大学A DNA Sensor Based on FRET between Fluorescent Silica Nanoparticles and Gold Nanoparticles11:50-12:00OP39张旋漳州师范学院空心球状CeO2–ZrO2–壳聚糖在金电极表面的一步电沉积及DNA传感分析应用12:00-12:10OP40嵇海宁等湖南大学基于纳米金颗粒增强/猝灭荧光效应的多目标物检测及其逻辑门操作 第二分会场: 地址:主持人:刘松琴、李景虹时间类型报告人单位报告题目08:00-08:20IL29李景虹清华大学石墨烯的电化学传感器研究08:20-08:40IL30刘松琴东南大学掺氮碳空心微球制备及其电催化性质08:40-09:00IL31胡文平中国科学院化学研究所自组装纳米材料与纳米器件/分子器件的研究?09:00-09:20IL32宋世平中国科学院上海应用物理研究所生物传感器与生物芯片在现代分子诊断学中的应用?09:20-09:30OP41陈旭北京化工大学新型石墨纳米材料修饰电极电化学生物传感研究09:30-09:40OP42何婧琳长沙理工大学结合金纳米的层层自组装膜用于致癌基因c-myc蛋白的检测09:40-09:50OP43丁亚平上海大学基于石墨烯氧化钴萘酚膜修饰玻碳电极的L-色氨酸电流型传感器09:50-10:00OP44杨园园西南大学基于聚甲基丙烯酸-聚咔唑杂化型分子印迹聚合物的手性电化学传感器 10:00-10:10茶歇 主持人:杜丹、杨荣华时间类型报告人单位报告题目10:10-10:30IL33杨荣华湖南大学茎部可控核酸探针设计策略10:30-10:50IL34徐国宝中国科学院长春应用化学研究所三联吡啶钌电化学发光免疫分析和核酸测定?10:50-11:10IL35杜丹华中师范大学磷化蛋白phospho-p5315的电化学免疫传感器11:10-11:20OP45龚静鸣华中师范大学纳米增效型固相提取剂在典型环境污染物的净化和电化学检测中的应用11:20-11:30OP46华亮上海师范大学碳纳米管复合材料修饰电极对芦丁和抗坏血酸的同时检测11:30-11:40OP47王海霞山西大学基于β-环糊精接枝的磁性纳米共聚物修饰电极对色氨酸的化学传感器研究11:40-11:50OP48费俊杰湘潭大学葡萄糖氧化酶在-环糊精共价键修饰SWCNTs/CTAB复合膜中的直接电化学及电催化11:50-12:00OP49亓秀娟福州大学一种简单、快速、高灵敏检测痕量铜离子传感器的研制12:00-12:10OP50马嘉悦等湖南大学基于大孔/中空碳球修饰玻碳电极的硝基苯高灵敏电化学传感研究 第三分会场: 地址:主持人:杨朝勇、赵书林时间类型报告人单位报告题目08:00-08:20IL36杨朝勇厦门大学An Agarose Droplet Microfluidic Approach for Highly Efficient Single Molecule mplification and Its Application to Aptamer Selection08:20-08:40IL37赵书林广西师范大学基于CdTe/CdS量子点与金纳米粒子的荧光共振能量转移测定三聚氰胺08:40-09:00IL38肖丹四川大学金纳米颗粒的绿色制备及其在生物传感器中的应用09:00-09:20IL39李向军中国科学院研究生院表面等离子共振法研究β淀粉样蛋白和金属离子相互作用09:20-09:30OP51秦利霞华东理工大学CdTe/ZnS 量子点的表面修饰及在细胞中的应用09:30-09:40OP52徐章润东北大学PDMS气动喷射混合器用于微流控芯片量子点合成09:40-09:50OP53卢丽敏江西农业大学基于电聚合荧光素的高灵敏度和高选择性亚硝酸盐电化学传感器的研究09:50-10:00OP54张海娟浙江大学基于离子液体修饰的多孔硅光学气体传感器 10:00-10:10茶歇 主持人:谢青季、卢小泉时间类型报告人单位报告题目10:10-10:30IL40卢小泉西北师范大学Photoelectrochemical Study Based On The Functionalized-Metalporphyrin10:30–10:50IL41谢青季湖南师范大学生物传感和生物燃料电池研究10:50-11:10IL42徐景坤江西科技师范学院基于导电高分子复合材料的抗坏血酸氧化酶电化学生物传感器的开发和农业应用11:10-11:20OP55汪海燕华东理工大学基于纳米通道传感技术对老年痴呆症致病蛋白的结构特性研究11:20-11:30OP56马 巍华东理工大学选择性识别糖-蛋白作用的荧光传感器11:30-11:40OP57余 刚湖南大学交流电沉积自组装金铂和金钯合金纳米线及传感性能11:40-11:50OP5, 8邬建敏浙江大学基于多孔硅的光学传感器研究11:50-12:00OP59魏广芬山东工商学院基于压缩传感的气体传感器检测技术新框架12:00-12:10OP60张晓兵湖南大学新型荧光化学生物探针研究 12:10-午餐(自助餐) 时间内容地点8:00-12:00报展II (尺寸为 高120厘米、宽90厘米) 2011年10月24日 星期一 下午 主持人:谭蔚泓、鞠熀先时间类型报告人单位报告题目15:00-15:25PL8陶农建Arizona StateUniversity,USAPlasmonic-Based Electrochemical Current and Impedance Imaging and Applications15:25-15:50PL9鞠熀先南京大学纳米生物传感新策略15:50-16:15PL10钟传健State University of New York at Binghamton Biomolecular Recognition with Functional Nanoprobes 16:15-16:40PL11庞代文武汉大学量子点标记多靶单病毒示踪研究流感病毒侵染动态过程16:40-17:05PL12谭蔚泓湖南大学生物传感的基石:分子识别 17:05-18:00会议闭幕式主持人:吴海龙总结、颁奖、下一届代表发言 18:30-晚餐 (自助餐) 2011年10月25日 星期二 全天时间内容地点06:20-早餐 市外考察: 7:00 出发选项项目备注1.市外考察I韶山 (1天)详见会议网站2.市外考察II凤凰 (2天)详见会议网站3.市外考察III张家界 (3天)详见会议网站4.市内考察长沙市内 附件:报展目录.doc
  • 得利特深度研究工业溶氧仪电化学法测量方法
    得利特近日关于工业在线溶解氧测量方法做了具体的研究讨论,技术员工进行了内部会议。他们提到以下内容:水中的氧含量可充分显示水自净的程度。对于使用活化污泥的生物处理厂来说,了解曝气池的氧含量非常重要,污水中溶氧增加,会促进除厌氧微生物以外的生物活动,因而能去除挥发性物质和易于自然氧化的离子,使污水得到净化。  工业溶氧仪测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量,荧光法。水中溶氧量一般采用电化学法测量。  氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利定律和道尔顿定律确定,亨利定律认为气体的溶解度与其分压成正比。  氧量测量传感器由阴极和带电流的反电极、无电流的参比电极组成,传感器有隔膜覆盖,覆膜将电极和电解质与被测量的液体分开,只有溶解气体能渗透覆膜,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵人而导致污染和毒化。  电流的大小与被测污水的氧的分压成正比,该信号连同传感器上热电阻测出的温度信号被送人变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。参比电极的功能是确定阴极电位。
  • 第十三届全国化学传感器学术会议会议指南(大会日程安排)
    第十三届全国化学传感器学术会议  会议指南  (初稿)  主办单位:中国仪器仪表学会分析仪器分会化学传感器专业委员会  承办单位:桂林电子科技大学(材料科学与工程学院)  西南大学(化学化工学院)  协办单位:湖南大学化学生物传感与计量学国家重点实验室  上海师范大学  江苏电分析仪器有限公司  广西师范大学  桂林理工大学等  2017年11月  广西桂林  组织机构  大会学术委员会和组织委员会  学术委员会  顾问:汪尔康院士、姚守拙院士、陈洪渊院士、张玉奎院士、程京院士、董绍俊院士、杨秀荣院士、谭蔚泓院士、马立人教授  主席:俞汝勤院士  副主席:吴海龙章宗穰王柯敏沈国励鞠熀先庞代文  委员(以拼音为序):  曹忠关亚风范清杰何品刚胡效亚黄杉生蒋健晖晋卫军鞠熀先  孔继烈李根喜李景虹陆祖宏卢小泉毛兰群缪煜清牛利庞代文  邱建丁邵元华沈国励孙立贤王建秀王利兵王柯敏王荣魏琴  吴国强吴海龙吴荣坤吴霞琴吴旭明夏兴华肖丹谢青季徐静娟  羊小海杨海峰杨黄皓杨荣华叶邦策殷传新由天艳袁若张晓兵  庄乾坤  组织委员会  主席:孙立贤周怀营  副主席:吴海龙袁若杨海峰吴荣坤徐华蕊徐芬王仲民马传国  委员:褚海亮邹勇进向翠丽张焕芝张坚苗蕾闫二虎彭洪亮黄鹏儒  秘书:于芳韦思跃  参会须知  尊敬的来宾:  欢迎您参加“第十三届全国化学传感器学术会议”。祝您在参会期间工作顺利,身心愉快,敬请注意以下事项:  1.本会议指南为参会代表们提供了本次会议的相关信息,供参会时参考。未尽事宜、日程与议程变更及临时活动,请留意会场临时通知。  2.出席会议各项活动时,请佩戴代表证。  3.请在会场内关闭手机等通讯工具,会场禁止吸烟、大声喧哗。  4.会议代表凭会务组统一分发的餐券在指点地点用餐。餐券只能在会议指定的时间和地点使用,餐券遗失不补,结余不退。如自行安排餐饮,费用自理。  5.参加会议各项活动请量力而行,并注意随身财物安全。  6.遇有紧急情况或特殊问题,可与会务组工作人员联系:工作人员联系方式工作职责褚海亮13367739152报到现场闫二虎13788589330会场韦思跃13649430852接待/住宿张焕芝18877317790墙报/展台/奖状夏永鹏15507838038餐饮于芳15907884599收费和收据发票   交通信息  1.起点:桂林两江国际机场——漓江大瀑布酒店(约1小时30分钟/30.4公里)  乘坐机场大巴在民航大厦站下车,在安新小区北口站换乘2路在漓江剧院站下车,步行420米至漓江大瀑布酒店。(备注:机场打车费用约130元)  2.起点:桂林北站——漓江大瀑布酒店  乘坐100路在阳桥站下车,步行430米至漓江大瀑布酒店。(备注:打车费用约25元)  3.起点:桂林西站——漓江大瀑布酒店  乘坐22路在十字街(解放西路)站下车,步行1000米至漓江大瀑布酒店。(备注:打车费用约45元)  4.起点:桂林站——漓江大瀑布酒店  乘坐11路在阳桥站下车,步行430米至漓江大瀑布酒店。(备注:打车费用约15元)  5.起点:桂林汽车客运总站——漓江大瀑布酒店  乘坐10/11路在阳桥站下车,步行430米至漓江大瀑布酒店。(备注:打车费用约10元)  6.杉湖大酒店与漓江大瀑布酒店紧挨着,步行3~5分钟。  一、会议基本事项  会期:2017年11月5日—8日  报到时间:2017年11月5日08:00——22:00  会议开始时间:2017年11月6日上午08:30  地点:桂林漓江大瀑布酒店  早餐用餐地点:桂林漓江大瀑布酒店和杉湖大酒店  午餐、晚餐用餐地点:2017年11月6日晚宴设在漓江大瀑布酒店2楼中堂  其他时间午餐、晚餐均在好吃堡自助餐餐厅(凭餐卷)  (漓江大瀑布酒店出门左转往前走100米)  开幕式及大会报告会场:桂林漓江大瀑布酒店(3楼银河厅)  第一分会场:(3楼银河厅)  第二分会场:(4楼漓江厅)  第三分会场:(12楼独秀厅)  第四分会场:(12楼清湘书屋)  墙报及仪器展览时间:2017年11月5日10:30-18:30  2017年11月6日08:30-18:30  2017年11月7日08:30-18:00  (特别是6日的17:30-18:20,第一批墙报作者必须参与)  7日的13:50-14:30,第二批墙报作者必须参与)  地点:2楼中堂  墙报分两批展示(会务组提供材料,协助张贴墙报):  第一批墙报(P1-P73)参会者报道后马上张贴,展览时间为11月5日和6日,11月6日晚上6点之前撤下   第二批墙报(P74-P145)参会者于11月6日晚上8点之前张贴好,展览时间为11月6日和7日,7日晚上6点之前撤下。  二、会议议程(初步安排)2017年11月5日星期日全天报到注册时间内容地点08:00-23:00注册桂林漓江大瀑布酒店大堂18:00-20:00晚餐(自助餐)好吃堡自助餐餐厅21:00-会议学术委员会扩大会议地点:2楼象山厅圆桌会议2017年11月6日星期一上午主会场地点:3楼银河厅时间内容08:30-08:50会议开幕式开幕式议程主持:孙立贤教授1.桂林电子科技大学校领导致欢迎辞;2.化学传感器专业委员会主任致辞;3.中国仪器仪表学会分析仪器分会领导讲话;4.桂林电子科技大学材料科学与工程学院院长致辞08:50-09:10合影及茶歇大会报告主持人:俞汝勤、汪尔康时间类型报告人单位报告题目09:10-09:40PL01汪尔康中国科学院长春应用化学研究所水质检测生物化学需氧量(BOD)研究09:40-10:10PL02董绍俊中国科学院长春应用化学研究所基于新型能源的自供能生物电化学传感器10:10-10:40PL03俞汝勤湖南大学化学计量学与传感技术促推分析化学数学化、信息化及研究范式转换10:40-11:05PL04鞠熀先南京大学生物传感中的信号放大策略11:05-11:30PL05袁若西南大学电致化学发光生物传感器构建新方法进展11:30-11:55PL06樊春海中国科学院上海应用物理研究所DNA纳米结构与生物传感器12:00-午餐2017年11月6日星期一报展、仪器展8:30-18:30第一批墙报展2楼中堂8:30-18:30仪器展3楼银河厅门口走廊分组报告2017年11月6日星期一下午第一分会场:地点:3楼银河厅主持人:杨海峰、肖丹时间类型报告人单位报告题目14:00-14:20IL01肖丹四川大学几种化学传感器研究进展14:20-14:40IL02杨海峰上海师范大学基于拉曼探针构筑的生物化学传感14:40-15:00IL03翟艳玲青岛大学荧光光谱电化学器件构建及在分析传感中的应用15:00-15:20IL04王宗花青岛大学新型比率电化学传感器的构建及其在生化分析中的应用研究15:20-15:30OP01杨盛(杨荣华)长沙理工大学细胞自助式原位信号放大与超灵敏荧光成像分析15:30-15:40OP02戚鹏中国科学院海洋研究所腐蚀微生物快速检测技术的开发及评价15:40-15:50OP03陈玉凤湖南大学化学调控凝胶的形成:构建仿生细胞外基质的三维人工细胞成像平台15:00-16:00茶歇主持人:黄昊文、吴再生时间类型报告人单位报告题目16:00-16:20IL05黄昊文湖南科技大学基于金纳米簇模拟酶构建高灵敏度可视化分析检测乳腺癌抗原的生物传感方法16:20-16:40IL06吴再生福州大学核酸探针与分子诊断16:40-17:00IL07叶邦策(尹斌成)华东理工大学DNA分子机器及生物成像分析17:00-17:10OP04李春艳湘潭大学近红外碱性磷酸酶荧光探的构建及生物成像研究17:10-17:20OP05曹宇扬州大学多级孔Cu-BTC超灵敏传感器用于非电活性有机磷农药检测17:30-18:20第一批报展集中参观讨论时间主持人:袁若张晓兵要求报展作者站在报展前与与会代表面对面集中讨论,同时评比优秀墙报奖(各10)第二分会场:地点:4楼漓江厅主持人:陈卓、王赪胤时间类型报告人单位报告题目14:00-14:20IL08陈卓湖南大学基于石墨纳米囊的拉曼生化分析14:20-14:40IL09周翠松四川大学皮摩尔级单碱基错配的可视化识别14:40-15:00IL10王赪胤扬州大学自驱动自传感微悬臂传感器15:00:15:20IL11陈时洪西南大学基于功能化聚芴衍生物的超灵敏电致化学发光传感器检测Cu2+15:20-15:30OP06刘剑波湖南大学基于三棱柱DNA纳米结构的多目标检测及其级联酶固定研究15:30-15:40OP07张培盛湖南科技大学高选择性荧光探针设计及生物成像研究15:40-15:50OP08刘松杨湖南大学红细胞膜包被的团聚体颗粒作为微反应器用于NO的催化产生15:50-16:00茶歇主持人:朱志、王建秀时间类型报告人单位报告题目16:00-16:20IL12朱志厦门大学生物传感的信号转化与放大新策略16:20-16:40IL13王建秀(衣馨瑶)中南大学卟啉抑制β淀粉样蛋白聚集的SPR研究16:40-17:00IL14苏磊北京科技大学荧光金纳米簇的刻蚀化学及分析新方法研究17:00-17:10OP09吴国强深圳市凯特生物医疗电子科技有限公司临床电解质分析用标准物质的研制及应用17:10-17:20OP10邵娜北京师范大学银纳米颗粒比色法用于碱性磷酸酶及卵巢癌肿瘤标志物的检测17:30-18:20第一批墙报面对面交流第三分会场:地点:12楼独秀厅主持人:王桦、刘宇明时间类型报告人单位报告题目14:00-14:20IL15王桦曲阜师范大学金银纳米功能材料的制备及其化学生物传感应用14:20-14:40IL16刘宇明北京卫星环境工程研究所碳纳米管气体传感器在火星大气探测中的潜在应用14:40-15:00IL17王文中国科学院声学研究所声表面波化学传感器研究进展15:00-15:20IL18孟子晖北京理工大学功能化光子晶体检测有机磷的研究15:20-15:30OP11周建华中山大学Plasmonicbiosensingbasedonwell-definedmetalnanostrucutres15:30-15:40OP12吴一萍上海师范大学金纳米花的可控合成、组装、敏化和SERS检测应用15:40-15:50OP13努尔古丽· 喀日新疆大学卟啉及其络合物在光波导传感器中的应用15:50-16:00茶歇主持人:汪正、余堃时间类型报告人单位报告题目16:00-16:20IL19汪正中国科学院上海硅酸盐研究所液体阴极辉光放电光谱用于元素分析研究16:20-16:40IL20余堃中国工程物理研究化工材料研究所钯镍合金薄膜型氢传感器研究16:40-17:00IL21袁智勤北京化工大学荧光贵金属纳米簇制备及其分析应用17:00-17:10OP14漆奇北京艾立特科技有限公司功能材料特性分析的标准化研究17:10-17:20OP15曹成河西学院含腙氟离子检测试剂的开发与性能研究17:30-18:20第一批墙报面对面交流第四分会场:地点:12楼清香书屋主持人:曹忠由天艳时间类型报告人单位报告题目14:00-14:20IL22曹忠长沙理工大学基于二氧化锡中空微球的硫化氢气体传感器研究与应用14:20-14:40IL23由天艳江苏大学基于碳纳米点复合材料的传感器研究及应用14:40-15:00IL24邓健秋桂林电子科技大学高倍率长循环寿命的钠离子电池电极材料15:00-15:20IL25黄磊上海师范大学印制式气体传感器的研究进展15:20-15:30OP16陈佳中国科学院兰州化学物理研究所基于功能化核酸的光学传感新方法用于几种生物标志物的检测15:30-15:40OP17杨治庆中国科学院海洋研究所基于纳米金功能化BiOI薄膜的信号抑制光电传感器检测硫酸盐还原菌15:40-15:50OP18王佳明新疆大学四苯基卟啉锰光波导气体传感器在气体检测方面的应用15:50-16:00茶歇主持人:杨占军、刘万卉时间类型报告人单位报告题目16:00-16:20IL26刘万卉烟台大学智能制剂与化学生物传感16:20-16:40IL27刘继锋天津科技大学多肽自组装结构在生物催化与分子识别中的应用16:40-17:00IL28杨占军扬州大学无标记化学发光免疫分析新方法研究17:00-17:10OP19张如月石河子大学基于纳米多孔金膜和环糊精的双信号电化学传感器用于双酚A测定17:10-17:20OP20王银芳上海师范大学基于铂镍纳米立方体-鲁米诺纳米复合材料的电化学发光免疫传感器17:30-18:20第一批墙报面对面交流时间内容地点18:30-20:30晚宴2楼中堂20:30-22:00化学传感器专业委员会和刊物编委会联席会议2楼象山厅分组报告2017年11月7日星期二上午第一分会场:地点:3楼银河厅主持人:李平、魏琴时间类型报告人单位报告题目08:00-08:20IL29魏琴济南大学功能化纳米界面的组装及其在传感与能源催化领域的应用08:20-08:40IL30李平山东师范大学活体内活性氧的荧光成像研究08:40-09:00IL31谭亮湖南师范大学血管内皮细胞损伤标志物的多方法检测09:00-09:20IL32王旭东复旦大学Fully-reversiblehydrogenperoxideopticalsensorwithfastresponse09:20-09:30OP21王新锋中国工程物理研究院化工材料研究所钯合金氢气传感器定量关系研究09:30-09:40OP22王丹丹上海中医药大学ABioluminescentSensorRevealsthatCarboxylesterase1isaNovelEndoplasmicReticulum-derivedBiomarkerforLiverInjury09:40-09:50OP23郑来宝中国科学院海洋研究所基于对巯基苯硼酸功能化银纳米粒子的比色传感器及其在微生物检测中的应用09:50-10:00OP24许钬福州大学临床疾病的早期诊断的新方法10:00-10:10茶歇主持人:谢青季、黄行九时间类型报告人单位报告题目10:10-10:30IL33谢青季湖南师范大学基于电子转移短程效应的高敏电分析10:30-10:50IL34黄行九中国科学院合肥物质科学研究院纳米环境电分析化学中的晶面效应10:50-11:10IL35刘英菊华南农业大学基于纳米生物双重模拟酶的免疫传感器对微囊藻毒素的检测11:10-11:20OP25严正权曲阜师范大学可视性阳离子比色传感材料及其功能化试纸的设计制备与应用11:20-11:30OP26胡校兵上海第二工业大学Disposableelectrochemicalaptasensorbasedoncarbonnanotubes-V2O5-chitosannanocompositefordetectionofciprofloxacin11:30-11:40OP27陈建湖南科技大学基于FRET机制的荧光纳米粒子传感器11:40-11:50OP28张雨上海师范大学可见光驱动检测多巴胺的纳米Au/P25复合材料光电化学传感器12:00-午餐第二分会场:地点:4楼漓江厅主持人:陈显平、杨大驰时间类型报告人单位报告题目08:00-08:20IL36陈显平重庆大学Multi-scaleModellingBasedSelectionof2DGermaniumMonosulfideChemicalsensors08:20-08:40IL37杨大驰南开大学电化学法设计铜钯纳米拓扑结构提高氢气传感器的稳定性和气敏性08:40-09:00IL38刘锴清华大学基于二氧化钒相变的新型驱动器件09:00-09:20IL39葛广波上海中医药大学Isoform-specificenzymmaticbiosensors:designstrategiesandbiomedicalapplications09:20-09:30OP29李雪萌中山大学生物医学学院金纳米棒-二硫化钨复合结构在氨气检测上的应用初探09:30-09:40OP30韩海涛中国科学院烟台海岸带研究所基于功能纳米材料的海岸带水体不同形态铁电化学传感器09:40-09:50OP31冯德芬广西民族大学基于MOFs@CdS和SiO2@Au复合物之间能量转移的增强型敌百虫电致化学发光传感器09:50-10:00OP32邹立伟上海中医药大学Ahighlyselectivenear-infraredfluorescentprobetodetectdipeptidylpeptidaseIVinlivingsystems10:00-10:10茶歇主持人:张友玉、王家海时间类型报告人单位报告题目10:10-10:30IL40王家海广州大学纳米孔传感器10:30-10:50IL41张友玉湖南师范大学纳米探针在生物分析中的应用10:50-11:10IL42杨光明红河学院表面分子印迹聚合的制备与应用11:10-11:20OP33张丙青湖北工程学院基于TiO2光阳极的无酶葡萄糖光电化学传感器的研究11:20-11:30OP34姜晖东南大学电位敏感和电位分辨型纳米电化学发光传感器11:30-11:40OP35蔡光旭山东卓越生物技术股份有限公司离子选择性电极的微型化和集成化11:40-11:50OP36张姣陕西科技大学液晶型非标记免疫传感器检测天蚕素B12:00-午餐第三分会场地点:12楼独秀厅主持人:只金芳、魏琴时间类型报告人单位报告题目08:00-08:20IL43只金芳中科院理化技术研究所基于微生物的电化学传感器的水体生物毒性检测技术的开发08:20-08:40IL44薛中华西北师范大学生命相关重要离子和分子的可视化及电化学传感08:40-09:00IL45万逸海南大学基于丙酮酸激酶与便携式荧光仪超灵敏检测微生物09:00-09:20IL46黄晋湖南大学核酶探针用于细胞内传感09:20-09:30OP37付菲西南大学基于肽聚糖稳定的金纳米颗粒的等离子共振光散射检测溶菌酶09:30-09:40OP38王鹏山东卓越生物技术股份有限公司手持式血气分析仪测试芯片的研制09:40-09:50OP39李雨晴长沙理工大学基于三角形金纳米片的复合膜修饰电极高灵敏检测L-色氨酸09:50-10:00OP40李圣凯西南大学基于双倍输出的目标物转换策略以MoS2纳米花作为模拟过氧化无酶构建ECL适体传感器检测MUC110:00-10:10茶歇主持人:陈卫、何治柯时间类型报告人单位报告题目10:10-10:30IL47陈卫中国科学院长春应用化学研究所三维碳-金属氧化物复合材料气体传感性能研究10:30-10:50IL48何治柯武汉大学一步法合成Rox-DNA功能化CdZnTeSQDs及其在葡萄糖可视化检测中的应用10:50-11:10IL49汪洪武肇庆学院新型碳材料-电化学传感器的研制及应用11:10-11:20OP41陈丽英仪器信息网互联网+仪器助力化学分析学科发展11:20-11:30OP42卢莹安徽农业大学基于交流阻抗技术的可再生型核酸适配体电化学传感器的研究11:30-11:40OP43曾卫佳西南大学Hemin为电化学可再生共反应促进剂用于构建高灵敏电致化学发光传感器12:00-午餐2017年11月7日星期二报展、仪器展13:50-14:30第二批报展集中参观讨论时间主持人:袁若张晓兵要求报展作者站在报展前与与会代表面对面集中讨论,同时评比优秀墙报奖(各10)2017年11月7日星期二下午大会报告及闭幕式主持人:卢小泉、樊春海地点:3楼银河厅时间类型报告人单位报告题目14:40-15:05PL07卢小泉西北师范大学卟啉及纳米材料的电化学研究15:05-15:30PL08孙立贤桂林电子科技大学功能材料与化学传感器15:30-15:55PL09逯乐慧中科院长春应化所有机纳米探针的设计及应用15:55-16:20PL10张晓兵湖南大学高性能荧光生物成像探针的研究16:20-16:45PL11牛利中科院长春应化所电化学传感及分析仪器设计16:45-17:10PL12吴海龙湖南大学高阶化学传感与复杂体系精准定量17:10-17:30茶歇17:30-会议闭幕式主持人:吴海龙1.化学传感器杂志执行主编讲话;2.会议优秀论文和优秀报展论文颁奖;3.会议总结(组委会);4.下一届会议承办单位代表发言18:30-晚餐2017年11月8日星期三全天时间内容地点:06:30-早餐  报展目录  报展:  2017年11月6日8:30-18:30  2017年11月7日8:30-14:30  (特别是6日17:30-18:20和7日13:50-14:30,所有墙报作者都必须参与)  地点:2楼中堂  主持人:袁若张晓兵编号题目第一作者通讯作者作者单位P1钯纳米粒装饰硅纳米线及其氢气传感器的应用高敏KoreaAdvancedInstituteofScienceandTechnologyP2基于多孔碳纳米微球构建4-氨基苯酚电化学传感器李阳王海波信阳师范学院P3项链状纳米粒子在饮料检测中的应用向媛杨海峰上海师范大学P4基于电纺丝修饰CuO葡萄糖传感器徐汀文颖上海师范大学P5高粘、柔性SERS条以及快速检测应用汪丹王丰,杨海峰上海师范大学P6离子液体辅助的二氧化锡为基底制备的平面钙钛矿膜用于无标记的光电化学传感器裴建英吴一萍,杨海峰上海师范大学P7基于聚合物纳米粒子修饰碳纳米管构建化学传感器与性能研究许升刘晓亚江南大学P8基于金/无规共聚物组装体系的分子印迹传感涂层赵伟刘晓亚江南大学P9磁珠辅助的催化发夹组装和双供体荧光共振能量转移用于核酸检测羊小海湖南大学P10热线半导体型传感器气敏响应机理研究高健高健郑州大学P11Determinationofcatechinsbasedonnitrogendopedgraphene/Au@Ptcore-shellnanomaterialsmodified陈显兰红河学院P12一种集核酸提取、等温扩增、结果判读的一体化A群轮状病毒快速诊断纸芯片叶辛方雪恩,孔继烈复旦大学P13垂直定向ZnO纳米棒阵列的制备及表征蒋建朋蒋建朋西安邮电大学P14基于聚左旋多巴/MWCNTs复合材料构建电化学传感器的研究卫志强杨晖河南科技大学P15鳞状细胞癌抗原和癌胚抗原在免疫层析分析装置上的同时检测刘燕毛勋西北大学P16基于酶促金属化信号放大的碱性磷酸酶液晶生物传感器字琴江周川华云南大学P17基于三维多孔类石墨烯的对乙酰氨基酚和对氨基苯酚电化学检测冯岩龙郭慢丽华南师范大学P18快速响应的双光子荧光探针用于细胞内内源性甲醛成像辛芳云敬静,张小玲北京理工大学P19NiO/ZnOp-n结酶生物传感用于海水有机磷检测赵明岗赵明岗中国海洋大学P20基于目标循环及核酸纳米结构信号放大的miRNA非标记电化学测定熊梅赵晶瑾广西师范大学P21基于解磷定/二硫化钼量子点的电化学传感器用于有机磷的检测尹文青彭娟宁夏大学P22基于Ir/MnO2标记型前列腺特异性抗原免疫传感器的研制马玉洪杨云慧云南师范大学P23DetectionofFourTetracyclineVeterinaryDrugsinMilkBasedonFluorescentAptasensorandCatalyticHairpinAssemblyReaction周琛YongxinLi四川大学华西公共卫生学院P24基于石墨烯量子点构建银离子的比率传感平台雷翠华朱树芸曲阜师范大学P25α-取代丙烯酸酯模板分子工程用于多硫化氢快速荧光成像郭敬儒杨盛,杨荣华长沙理工大学P26基于二硫化钼量子点荧光共振能量转移检测有机磷张慧佳彭娟宁夏大学P27基于7,7,8,8-四氰基喹啉甲烷与氧化石墨烯的谷胱甘肽电化学传感研究袁柏青袁柏青安阳师范学院P28一种用于高效光动力治疗的硅基纳米材料王荣贵陈惠,孔继烈复旦大学P29硫化铅纳米晶基电化学发光免疫传感高灵敏检测甲胎蛋白沙海峰贾能勤上海师范大学P30基于二氧化钛-石墨烯纳米复合物的光电化学适体传感器测定土霉素封科军封科军惠州学院P31DNA纳米机器构建及其分析应用郑姣何治柯武汉大学P32近红外成像介导的协同光动力学/化学癌症治疗的前药设计刘红文张晓兵湖南大学P33海胆状氧化酶活性钴酸镍微球的制备及其比色检测对苯二酚的应用宋亚文赵明岗,陈守刚中国海洋大学P34基于酶致碱式碳酸铜矿化的高灵敏比色免疫分析黎波赖国松湖北师范大学P35多壁碳纳米管和金纳米粒子修饰的辛基酚可抛式传感器的制备及应用李海玉张庆中国检验检疫科学研究院P36脱嘌呤/脱嘧啶核酸内切酶1活性的简便灵敏免标记荧光检测李雪君张亮亮广西师范大学P37表面等离子体共振铝纳米锥阵列及其生物传感应用张力周建华中山大学P38基于BSA-AuNCs/AChE高灵敏度荧光传感器检测有机磷农药罗庆娇邱萍南昌大学P39双亲聚合物改性碳纳米管在亚硝酸盐检测的应用朱晓洁刘晓亚江南大学P40基于片状Fe:TiO2复合Bi2S3纳米材料的光电适配体传感器检测卡那霉素陈全友谭学才广西民族大学P41金三角-量子点复合物在心肌肌钙蛋白I检测的应用王瑛姝婷周建华中山大学P42聚L-甲硫氨酸修饰电极测定碘刘旭孙登明,高慧淮北师范大学P43基于卟啉近红外光谱结合化学计量学方法快速判别33种茶叶原产地尹桥波付海燕中南民族大学P44磁珠辅助的催化发夹组装和双供体荧光共振能量转移用于DNA的检测方红梅羊小海,王柯敏湖南大学P45一种快速检测苯硫酚的近红外荧光探针及其应用高倩曾荣今湖南科技大学P46可视化生物传感器用于环境污染物的快速检测分析陈俊华陈俊华广东省生态环境技术研究所P47凝集素微阵列芯片在活细胞表面糖基化合物靶标筛选中的应用田荣荣ZhenxinWang中国科学院长春应用化学研究所P48AnenhancednonenzymaticelectrochemicalglucosesensorbasedonPddopedCumodifiedelectrode李崭虹Zhi-GangZhu上海第二工业大学P49Polyacrylamide-PhyticAcid-PolydopamineConductingPorousHydrogelforEfficientRemovalofWater-SolubleDyes赵珍LinaMa,ZhenxinWang中国科学院长春应用化学研究所P50基于3D石墨烯-普鲁士蓝构建的电化学尿酸传感器李鹏威贾能勤上海师范大学P51基于二氧化锡和还原氧化石墨烯纳米复合材料传感器对SF6分解产物的气敏特性研究褚继峰杨爱军西安交通大学P52一种基于双波长快速区分和检测GSH与Cys/Hcy的荧光探针杨贇山曾荣今湖南科技大学P53碳量子点荧光探针及其对丙酮的选择性检测赛丽曼黄磊上海师范大学P54基于无定型配位聚合物的近红外碱性磷酸酶纳米荧光探针的构建周东叶李春艳湘潭大学P55基于氟硼吡咯的近红外半胱氨酸荧光探针的构建江文丽李春艳湘潭大学P56介孔纳米金修饰的高灵敏拉曼免疫探针黄亚齐林大杰,王舜温州大学P57金纳米颗粒催化增长增强表面等离子体共振用于microRNA的高灵敏检测聂文艳王青,王柯敏湖南大学P58血红蛋白的电化学检测侯嘉婷韩国成桂林电子科技大学P59基于多孔纳米花结构的Co3O4葡萄糖电化学传感器胡婧婷胡婧婷国网吉林省电力有限公司电力科学研究院P60基于局域表面等离子体共振的表面增强紫外可见吸收光谱探索王阳阳周建华中山大学P61基于金纳米颗粒的裂开型脱氧核酶探针用于细胞内microRNA的放大检测吴亚楠黄晋,王柯敏湖南大学P62基于金/银合金的比率型SERS纳米探针用于细胞内一氧化氮的成像分析司艳美李继山湖南大学P63双通道电化学分析系统对β-淀粉蛋白寡聚体和纤维丝的同步测定于妍妍于妍妍徐州医科大学P64类石墨烯碳材料修饰玻碳电极用于亚硝酸盐的高灵敏安培检测杨玫郭慢丽华南师范大学P65一种新型咔唑席夫碱荧光探针的制备及高效识别铝离子(Ⅲ)的性能研究张献张献齐鲁工业大学P66光子晶体水凝胶传感器陈千山吴朝阳湖南大学P67基于功能核酸的液晶生物传感研究蒋婷婷吴朝阳湖南大学P68葫芦脲与叠氮基共功能化石墨烯用于构建超灵敏电致点击化学传感器韦天香韦天香,戴志晖南京师范大学P69化学计量学辅助液相色谱全扫描质谱同时检测奶粉中多种雌激素孙小东吴海龙湖南大学P70基于聚亚甲基蓝颗粒的唾液隐血可逆检测罗崇岱周建华中山大学P71基于多功能血红素/G-四链体纳米线的电化学生物传感器检测铅离子卿敏袁若,张进西南大学P72比率型双光子荧光纳米探针用于细胞内pH检测于欣艳李继山湖南大学P73微波辅助制备碳量子点荧光及其应用于茶多酚含量的检测吴春莲韦庆益华南理工大学P74基于Ag/Au核壳纳米颗粒修饰单壁碳纳米管的比率型SERS探针用于细胞内核酸内切酶的检测分析覃小洁李继山湖南大学P75氧化石墨烯/金纳米颗粒/四苯基卟啉纳米复合材料用于镉离子电化学传感器的构建刘静李继山湖南大学P76SilverNanoclusterswithEnhancedFluorescenceandSpecificionRecognitionTriggeredbyAlcoholSolvents:AHighlySelectiveFluorimetricStrategyforIodideIonsinUrine冯路平HuaWang曲阜师范大学P77MesoporousSilver?MelamineNanowiresFormedbyControlledSupermolecularSelf-Assembly:ASelectiveSolid-StateElectroanalysisforProbingMultipleSulfidesinHyperhalineMediathroughtheSpecificSulfide?ChlorideReplacementReactions刘敏HuaWang曲阜师范大学P78基于交替三线性分解的二阶标准加入法建模液相色谱-质谱数据用于检测血浆中抗癌药:克服基质干扰和基质效应胡勇吴海龙湖南大学P79LC-MS结合二阶校正方法快速测定面膜中非法添加的15种糖皮质激素龙婉君吴海龙湖南大学P80三维荧光结合二阶校正方法测定辣椒中三种罗丹明类染料的含量常月月吴海龙湖南大学P81化学计量学辅助HPLC-DAD快速测定蜂胶中十八种多酚类物质刘倩吴海龙湖南大学P82可实时再生的共反应促进剂控制增强苝四甲酸/过硫酸根体系用于电化学发光分析雷燕梅袁若西南大学P83HPLC-DAD结合二阶校正方法同时测定中成药保健品中非法添加的11种非甾体抗炎药王童吴海龙,俞汝勤湖南大学P84基于炔基的比率型SERS纳米传感器用于活细胞和组织中Caspase-3的检测吕梦李继山湖南大学P85化学计量学辅助HPLC-DAD策略用于同时定量分析中药川穹的中6种活性成分肖蓉吴海龙湖南大学P86生物素化抗体-无机盐杂化纳米花三维ELISA用于甲胎蛋白的快速高效检测刘宇澄何治柯武汉大学P87基于SBA-15/氧化苏木精/青霉素酶/nafion修饰玻碳电极的青霉素电化学传感器罗晴谭学才广西民族大学P88Ag纳米粒子/壳聚糖/石墨烯修饰电极与HIV相互作用的研究弓巧娟弓巧娟运城学院P89基于ATP促进目标物循环的新型荧光检测法检测MicroRNA-21文智斌袁若,柴雅琴西南大学P90基于功能化β环糊精—二茂铁主客体识别复合物构建电致化学发光传感器谢西月袁亚利,袁若西南大学P91基于DNA酶剪切循环驱动的DNA镊子来构建高效酶级联放大的可再生传感器寇贝贝袁亚利,袁若西南大学P92基于p型硫化铅量子点猝灭富勒烯-纳米金包二硫化钼构建光致电化学传感器李孟洁袁若,柴雅琴西南大学P93Fully-reversiblehydrogenperoxideopticalsensorwithfastresponse丁龙江Xu-dongWang复旦大学P94基于卟啉锰同时作为猝灭剂和模拟酶构建光致电化学适体传感器黄廖静袁亚利,袁若西南大学P95Anactivity-basednear-infraredfluorescentprobefornativehumanalbuminanditsbio-imagingapplicationinlivingcells金强葛广波上海中医药大学P96一步法构建基于分子印迹-丝网印刷电极的可抛式农残快检传感器刘江李迎春哈尔滨工业大学(深圳)P97生物质炭基NiCo2O4的制备及室温下NH3气敏性研究吕贺史克英黑龙江大学P98级联放大的高灵敏CEA荧光适体传感器研究杨文婷许文菊西南大学P99基于Ni3N-Co3N纳米棒阵列的葡萄糖电化学传感器尤超熊小莉四川师范大学P100基于红绿蓝模型的金纳米团簇可视化检测汞离子邓文清熊小莉,黄科四川师范大学P101金团簇纸片氢化物发生-顶空固相萃取荧光可视化测锌代蕊黄科,熊小莉四川师范大学P102非标记型荧光和电化学生物传感器用于鸟嘌呤及其衍生物的检测陈敬华陈敬华福建医科大学P103液相色谱-单级质谱结合数学分离用于食品中8种塑化剂的同时绿色定量分析方焕吴海龙湖南大学P104荧光素@ZIF-8复合材料的比率荧光传感器用于铜离子的检测刘楠汪莉江西师范大学P105COFs@罗丹明-B复合材料的比率荧光传感器检测银离子蔡可莹宋永海江西师范大学P106人血清白蛋白-染料结合的荧光自助放大策略用于血清中前列腺特异性抗原的检测齐鹏邹振,杨荣华长沙理工大学P107基于3D氮掺杂石墨泡沫构建的无支撑电化学传感器用于检测H2O2和葡萄糖张玉李迎春石河子大学,哈尔滨工业大学(深圳)P108基于Ce@ZnO中空微球修饰的光纤气体传感器用于室温下丙酮气体的检测张路李迎春哈尔滨工业大学(深圳)P109P110多孔分层Co3O4/CuO纳米片的合成及其室温NOx气敏特性研究刘思宇李丽,史克英黑龙江大学P111电化学传感器中引入肖特基势垒:一种构建电化学传感器的新策略王兴涛赵明岗,陈守刚中国海洋大学P112石墨烯量子点-核酸适体生物传感器的制备及其用于癌胚抗原检测研究文为文为,王升富湖北大学P113Au修饰SnO2超薄纳米片的水热法合成及其低温甲醛气敏性能张乐喜张乐喜,别利剑天津理工大学P114钌硅纳米粒子表面增强的分子印迹电化学发光传感器超灵敏检测伏马菌素B1张修华张修华,王升富湖北大学P115基于铜纳米簇和核酸外切酶信号放大的电化学适体传感器用于miRNA21的超灵敏检测王升富王升富湖北大学P116构建新型双光子比率型荧光探用于快速检测SO2衍生物杨晓光杨盛,杨荣华长沙理工大学P117杂交链式反应的生物条形码放大技术检测CEA吴媛晋晓勇宁夏大学P118基于银片和上转换纳米颗粒间能量转移原理检测鱼精蛋白和胰蛋白酶陈洪雨张友玉湖南师范大学P119光电化学检测用无定型a-MoSx/RGO异质膜宋文波宋文波吉林大学P120一种脂滴定位的聚集发光荧光探针对碱性磷酸酶的检测以及成像应用李雅倩李海涛湖南师范大学P121卤键在分子识别中的应用李丽丽晋卫军北京师范大学P122化学修饰的DNA荧光探针用于乳腺癌细胞中miRNA-21的检测和抑制李静黄晋*,王柯敏*湖南大学P123基于碳点及I-的类酶催化反应构建双信号传感器用于尿样中I-的检测王海燕张友玉湖南师范大学P124氧化镁/中空碳球复合材料的制备及CO2吸附性能研究焦成丽江河清中国科学院青岛生物能源与过程研究所P125运用CCD荧光传感技术对DNA在2D界面上的游走过程进行跟踪与监测闫安杜民,李春艳福建医科大学P126基于P型BiOCl/TiO2复合材料的光电化学传感器检测毒死蜱罗燕妮谭学才广西民族大学P127基于染料-钴纳米片的荧光传感器用于焦磷酸根检测与细胞成像黄伟涛黄伟涛湖南师范大学P128银-分子印迹微球的制备及在表面增强拉曼散射中的应用任晓慧李欣哈尔滨工业大学P129食用农产品质量安全在线检测传感器黄家怿黄家怿广东省现代农业装备研究所P130离子液体功能单体的分子印迹荧光传感器与2,4,6-三氯苯酚选择性识别研究卢星李蕾浙江师范大学,嘉兴学院P131制备碳量子点-分子印迹复合材料分析硝磺草酮陈立钢陈立钢东北林业大学P132基于双发射碲化镉量子点介孔分子印迹聚合物的比率型荧光探针用于三聚氰胺的可视化检测张靓陈立钢东北林业大学P133制备碳化氮分子印迹复合材料检测奶粉中金霉素王尚书陈立钢东北林业大学P134分子印迹-碳量子点荧光探针的制备其对蜂蜜中土霉素的检测刘浩驰丁兰吉林大学P135氮氧化物化学电阻气体传感器进展与讨论赵将赵将国民核生化灾害防护国家重点实验室P136ApH-resolvedcolorimetricbiosensor:thenewdimensionformultipletargetsdetection郝楠KunWang江苏大学P137基于纳米金/碳量子点的荧光适体传感器用于ATP检测刘帅王慰郑州轻工业学院P138基于碳量子点和核酸适体的多巴胺检测传感器魏星姜利英郑州轻工业学院P139荧光素/铜纳米簇复合物比例荧光探针用于比率和可视化检测盐酸吗啉王本乾桂日军,王宗花青岛大学P140一种基于双金属和氧化石墨烯/硫堇复合物生物传感用于尿酸的测定高小惠桂日军,王宗花青岛大学P141用于L-组氨酸检测的酶扩增DNA-铜纳米簇荧光探针研究王星星何婧琳,曹忠长沙理工大学P142基于蚀刻引发电化学发光恢复构建氰化物传感器冯莹莹池毓务福州大学P143基于铜离子调控纳米金氮化碳复合物蚀刻与发光性能的电致化学发光传感器吴海山池毓务福州大学P144碳量子点纳米荧光探针的制备及其在细胞色素c成像分析中的应用研究张海娟邱洪灯中科院兰州化物所P145肿瘤标志物化学传感分析及药物运输的研究郭英姝张书圣临沂大学第十三届全国化学传感器学术会议会议指南20171025-chl(1).pdf
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 2012年上半年发布仪器新品:电化学仪器
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。  电化学分析是利用物质的电化学性质测定物质成分的分析方法。它是仪器分析法的一个重要组成部分,以电导、电位、电流和电量等化学参数与被测物质含量之间的关系作为计量的基础。根据所测量电化学参数的不同,常见的电化学分析仪器有:pH计、电位滴定仪、电化学工作站、卡尔费修水分仪、电导率仪、库仑仪、极谱仪等。  电化学仪器是实现电化学分析与电化学测量的基本工具,量大面广。电化学信号可直接使用,无须精密的机械和光学系统,方便经济,是企事业单位及科研机构实验室常用的一类分析仪器。目前电化学仪器不仅作为实验室基础研究的科学仪器,也拓展到现场分析技术和仪器仪表等领域,在线分析、便携化、多功能化等亦是其未来的发展方向。  2012年的上半年,电化学领域新产品新技术不断推出。仪器信息网新品栏目和相关资讯中发布了8款电化学仪器新品及相关设备。  pH 计日本堀场 HORIBA F-70 LAQUA PH计上市时间:2012年3月(汕头市科技设备供应公司代理)  HORIBA F-70 LAQUA系列PH计是一款操作简单而有趣的新形仪表,采用宽屏静电容量式触摸屏,触感操作;智能导航可以及时指引进而解决校准及测量故障等问题;此外,该款仪器的玻璃管电极易清洗。  卡氏水分测定仪上海禾工科学仪器有限公司 全自动卡尔费休水分测定仪AKF-1上市时间:2012年3月  AKF系列全自动卡尔费休水份测定仪在传统产品上进行了大量的创新,增加了仪器稳定性,降低了仪器故障,消除了运行噪声,同时改良了操作界面,加入自动打空白,自动清洗装置,自动保持检测状态等技术,仪器操作的简便、自动、安全、高效。上海禾工科学仪器有限公司高 精度智能卡尔费休水分测定仪AKF-2010(升级型)上市时间:2012年4月  AKF-2010卡尔费休水分测定仪采用Windos操作系统,5.6寸高精度触摸屏;操作简单直观,可以外接键盘鼠标,并且可以连接到网络,直接用网络传输数据,可以实现对仪器的远程控制和远程数据传输处理及监管;该款仪器还具有极大的扩展性,可方便升级为电化学自动滴定系统;其全封闭滴定池,使用户无需直接接触有毒试剂即可完成整个分析过程以及仪器的日常维护等工作。  自动电位滴定仪日本京都电子公司 AT-700自动电位滴定仪上市时间:2012年4月(上海今昊科学仪器有限公司代理)  AT-700自动电位滴定仪采用了新的液路设计,更换试剂、日常维护更加简单;并且可以扩展为双管滴定,最多可连接10组滴定单元;可配套专用多样品转换器使用,经济实用;该电位滴定仪使用通用的USB接口连接各种外部设备,U盘存储,键盘输入,条码扫描;精确的液滴控制保证了实验的精度;多种规格的测试电极和多种外设极大扩展了电位滴定仪的应用范围;仪器设计紧凑,体积为原来型号仪器的一半。  电化学工作站、恒电位仪美国青藤 DY2116B微型恒电位仪/恒电流仪上市时间:2012年4月(雷迪美特中国有限公司代理)  DY2116B是美国Digi-Ivy, Inc.公司生产的一款袖珍式恒电位仪/恒电流仪。该仪器采用最新的半导体芯片科技,通过独特的电路设计大大缩小了仪器的体积,应用更为便捷;噪声低,稳定性高,精心设计的硬、软件的有机结合,在不用Faraday屏蔽罩的情况下也很容易获得pA的电流测量分辨;信号发生和采集通过16-bit DAC和16-bit ADC来完成,最小电流分辨可达0.76pA;操作简单,功能多样化,易于使用,控制界面一目了然。美国Gamry电化学公司 Interface1000电化学工作站  Interface 1000具有9个电流范围,3个增益范围,很灵活地适用于从腐蚀到电池,从传感器到超级电容的应用领域;高性能:电池充放电、极化实验,Interface 1000可以达到1A电流,槽压可以达到20V;和Gamry其他系统一样,Interface 1000采用浮地技术设计,使用与接地的工作电极系统;Interface 1000 可以达到 20 uV 噪声效果;不需要添加任何模块,Interface 1000 可以测量到1 MHz的交流阻抗;多台Interface 1000可以方便的组合为多通道的电化学工作站,并且比传统的多通道使用起来灵活。  电化学仪器部件、外设美国pine光谱电化学装置上市时间:2012年2月(理化(香港)有限公司代理)  Pine公司的光谱电化学装置可以实现电化学方面的检测,并同时能实现光谱的检测。整套装置中,关键在于蜂窝状的电极和薄层石英电解池的配合使用,实现了电化学与光谱的同时检测;蜂窝状电极由三电极系统集成,以铂、金等贵金属作为工作电极,蜂窝状的制作工艺使光线穿透电解池,让研究者能够了解实时光谱及电化学数据。美国pine光电化学石英电解池上市时间:2012年2月(理化(香港)有限公司代理)  PINE公司的光电化学石英电解池顶端有一较大的端口,可插入光电阳极(通常是硅晶片)。电解池周围的端口可插入对电极(通常为铂环)和参比电极;并且专门设计有气体喷射和净化的配件。可见光及紫外光可以通过电解池的任一两侧玻璃。在需要光学窗口的情况下,一侧或两侧的玻璃可以更换为可移动的光学窗口;除了在光电化学研究中应用,石英电解池也广泛应用在溶剂体系研究中(如强碱)。  了解更多电化学仪器,请访问仪器信息网电化学仪器专场  了解更多新品,请访问仪器信息网新品栏目
  • 前沿电化学研究的热点--微区扫描电化学新技术讲座
    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临! 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。 本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。 Dr. John Harper (AMETEK GROUP 科学仪器部)Dr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。 主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用 王佳教授 (中国海洋大学)中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。 主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法 新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论 联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn 回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿

厂商最新资讯

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制