当前位置: 仪器信息网 > 行业主题 > >

电控下线检测系统

仪器信息网电控下线检测系统专题为您提供2024年最新电控下线检测系统价格报价、厂家品牌的相关信息, 包括电控下线检测系统参数、型号等,不管是国产,还是进口品牌的电控下线检测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电控下线检测系统相关的耗材配件、试剂标物,还有电控下线检测系统相关的最新资讯、资料,以及电控下线检测系统相关的解决方案。

电控下线检测系统相关的论坛

  • 【转帖】现代Sonata电控发动机的检测与调整

    现代Sonata电控发动机的检测与调整韩国现代Sonata1.8I、20iGL/GLS和Sonata 2.4iGLS型轿车,虽配置的发动机不同,但均采用HYUNDAI EC-MULTI电控多点燃油喷射系统,其主要部件的布置如图1所示。当电控系统发生故障时,仪表板上的CHECK警告灯会闪亮报警。一、故障码的读取与清除1.打开如图2.a所示的位于仪表板下方保险丝盒旁边的故障检测插座。HYUNDAI EC-MULTI电控多点燃油喷射系统,其主要部件的布置如图1所示。当电控系统发生故障时,仪表板上的CHECK警告灯会闪亮报警。2.将电压表正负表笔分别与插座内的A、B(见图2.b)插孔相连。3.接通点火开关,即可通过观察电压表指针的摆动规律读出故障代码。没有电压表时,也可用LED测试灯像电压表一样连接,通过闪烁规律读出故障代码。4.故障代码见表1。5.故障码的清除。当故障排除完毕后,可拆下蓄电池搭铁线15s以上,即可清除故障码。表1 现代Sonata轿车发动机故障码故障码 故障诊断 故障部位 11 氧传感器信号不正常 氧传感器损坏、线路断路、或短路、混合器太浓或太稀 12 空气流量计信号不正常 空气流量计损坏、线路断路或短路 13 进气温度传感器信号不正常 进气温度传感器损坏、线路断路或短路 14 节气门位置传感器信号不正常 节气门位置传感器损坏、线路断路或短路、怠速位置开关损坏 15 怠速控制阀位置传感器信号不正常 怠速控制阀位置传感器损坏、线路断路或短路 21 冷却液传感器信号不正常 冷却液传感器损坏、线路断路或短路 22 曲轴位置传感器信号不正常 曲轴位置传感器损坏、线路断路或短路 23 上止点位置传感器信号不正常 第一缸上止点传感器损坏、线路断路或短路 24 车速传感器信号不正常 车速传感器损坏、线路断路或短路 25 大气压力传感器信号不正常 大气压力传感器损坏、线路断路或短路 36 点火正时传感器信号不正常 点火正时传感器损坏、线路断路或短路 41 喷油泵线路不良 喷油泵损坏、线路断路或短路 42 电动燃油泵继电器线路不良 电动燃油泵继电器损坏、线路断路或短路 44 点火系统线路不良 点火线圈故障、线路断路或短路

  • 新能源电控检测中列管式换热器故障说明

    新能源电控检测设备中的配件比较多,为了新能源电控检测更加稳妥的运行,新能源电控检测中的配件就需要避免一些故障,其中列管式换热器的故障比较常见,我们也需要尽量避免以上故障。  新能源电控检测换热器的管束的腐蚀、磨损造成管束泄露或者管束内结垢造成堵塞引起故障,循环水中含有铁、钙、镁等金属离子及阴离子和有机物,活性离子会使循环水的腐蚀性增强,其中金属离子的存在引起氢或氧的去极化反应从而导致管束腐蚀。同时,由于循环水中含有Ca2+、Mg2+离子,长时间在高温下易结垢而堵塞管束。为了提高传热效果,防止管束腐蚀或堵塞,采取了以下几种方法:对循环水进行添加阻垢剂并定期清洗;保持管内流体流速稳定;选用耐腐蚀性材料(不锈钢、铜)或增加管束壁厚的方式;当管的端部磨损时,可在入口200mm长度内接入合成树脂等保护管束。  新能源电控检测设备造成振动的原因包括由泵、压缩机的振动引起管束的振动;由旋转机械产生的脉动;流入管束的高速流体(高压水、蒸汽等)对管束的冲击。降低管束的振动常尽量减少开停车次数;在流体的入口处,安装调整槽,减小管束的振动;减小挡板间距,使管束的振幅减小;尽量减小管束通过挡板的孔径。  新能源电控检测列管式换热器除了平时多注意保养,注意操作,还需要选择质量靠谱的换热器,这样才能更好的运行新能源电控检测。

  • 高速电主轴冷却系统中的电控针阀流量闭环控制解决方案

    高速电主轴冷却系统中的电控针阀流量闭环控制解决方案

    [b][color=#990000][size=16px]摘要:为解决电主轴热误差影响大以及预热和冷却响应速度慢的问题,本文基于改变冷却介质热容可调节散热量的原理,提出了高速和高精度冷却液流量调节的闭环控制解决方案。解决方案中的反馈式闭环控制系统主要包括非接触式位移传感器、高速电控针阀和高精度[/size][size=16px]PID[/size][size=16px]控制器,通过高速和高精度电控针阀对冷却介质流量进行实施调节,可快速改变作用在主轴上的散热量,使主轴轴向热变形快速达到最小值并始终保持稳定状态。[/size][/color][/b][align=center][size=16px][img=高速电主轴冷却系统中的电控针阀流量闭环控制解决方案,600,392]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060506528065_863_3221506_3.jpg!w690x451.jpg[/img][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 对于高速数控机床而言,热误差是机床最主要误差,而电主轴则是热误差的主要误差源之一。为有效降低电主轴发热的影响,研究工作主要集中在电主轴冷却结构和冷却控制方面,但仍存在以下两方面的技术难点需要攻克:[/size][size=16px] (1)冷却效果差:还需根据电主轴内部温度场的分布进行冷却结构设计以及差异化冷却。[/size][size=16px] (2)响应速度慢:缺乏主动热误差控制技术手段,需实现电主轴温度的自动闭环控制。[/size][size=16px] 目前国际上电主轴热误差控制的最高水平是瑞士FISCHER公司的电主轴及其主动式冷却技术,其关键是将冷却回路集成在主轴中而大幅降低了热误差,使轴向膨胀减少了70%。特别是响应速度极快,预热和冷却时间大幅减少,等待时间缩短五倍。其热误差控制效果如图1所示。[/size][align=center][size=16px][color=#990000][b][img=01.瑞士FISCHER公司电主轴冷却效果示意图,650,288]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060509497004_7930_3221506_3.jpg!w690x306.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 瑞士FISCHER公司电主轴冷却效果示意图[/b][/color][/size][/align][size=16px] 为解决国内电主轴热误差影响大以及预热和冷却响应速度慢的问题,本文基于改变冷却介质热容以调节散热的原理,提出了高速和高精度冷却液流量调节的闭环控制解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 在电主轴冷却过程中,除了需要电主轴具有合理的冷却结构之外,还要求能将主轴所产生的热量及时带走,并使主轴受热引起的膨胀量快速达到最小值且保持恒定。[/size][size=16px] 针对国内电主轴冷却响应速度慢的问题,本文的解决方案是基于改变冷却介质热容的原理,即改变冷却介质流量来改变冷却介质热容,这意味着快速改变了作用在主轴上冷却量,由此来主动调节主轴温度并快速达到稳定。解决方案的实施采用闭环控制系统,闭环控制系统包括检测电主轴热膨胀位移量的非接触位移探测器、接收主轴热膨胀变形信号的高精度PID控制、受PID控制器驱动并对恒温冷却介质流量进行高速精密调节的电子针阀,此闭环控制系统结构如图2所示。[/size][align=center][size=16px][color=#990000][b][img=02.电主轴主动冷却闭环控制系统结构示意图,500,287]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060510119009_2558_3221506_3.jpg!w690x397.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 电主轴主动冷却闭环控制系统结构示意图[/b][/color][/size][/align][size=16px] 在此解决方案中,闭环控制系统中每一个部件的精度和响应速度等技术指标都会影响到电主轴最终热误差的控制精度。[/size][size=16px] 对于非接触位移探测器而言,需要具有几个微米的测量精度和一秒量级的响应速度,对于高速高精度机场的电主轴则可能需要更高位移测量精度和响应速度。位移探测器一般选择激光式或电容式位移传感器。[/size][size=16px] 对于冷却介质流量的调节,需根据电主轴规格、发热量和冷却介质最大输出流量选择相应流量调节范围的电控针阀,但无论流量调节是什么范围,都要求电控针阀具有小于一秒的响应速度,并具有很好的线性度,为此在本解决方案中选择采用了NCNV系列电动针阀,可直接采用模拟信号0~10V进行控制,响应速度800ms,线性度0.1~11%,孔径范围为0.95~6.7mm,液体水的最大流量范围是0.94~62.4L/min,流量调节分辨率为0.1~2L/min,完全可以满足各种规格电主轴的快速冷却调节。[/size][size=16px] 对于PID控制器,解决方案选择了VPC2021系列超高精度PID控制器,此PID控制器具有24位AD、16位DA和0.01%最小输出百分比,可充分发挥位移探测器和电控针阀的高精度优势。同时此系列PID控制器还具有独立双通道控制、PID自整定、RS485通讯接口、串行控制和计算机软件等高级功能,可对两个冷却回路进行同时控制,便于进行调试以及后续的上位机通讯。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案所使用的直接冷却流量调节的闭环控制系统,结合合理的冷却结构设计,可大幅度减少电主轴的轴向膨胀,使预热和冷却速度更快,可大幅缩短等待时间。更重要的是采用了闭环控制方式,使电主轴始终处于稳定的热条件下,保证了加工精度的重复性,使得废品率更低。另外这种主动式冷却方案可有效散发主轴中产生的热量,提高了电机过载能力。[/size][size=16px][/size][align=center][size=16px][b][color=#990000]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 【分享】电控水力控制阀的工作原理及维护

    电动控制阀是一种以[color=#0000ff]电磁阀[/color][color=#0000ff]2W系列电磁阀[/color] 为向导阀的水力操作式阀门。常用于给排水及工业系统中的自动控制,控制反应准确快速,根据电信号遥控开启和关闭管路系统,实现远程操作。水力电动控阀并可取代闸阀和蝶阀用于大型电动操作系统。阀门关闭速度可调,平稳关闭而不产生压力波动。该阀门体积小、重量轻、维修简单、使用方便、安全可靠。电磁阀可选用交流电220V,或直流电24V,可根据各种场合选用常开或常闭型均可。电控水力控制阀结构特点和用途电控水力控制阀由主阀、电磁阀、针型阀、球阀、微形[color=#0000ff]过滤器[/color][color=#0000ff],风扇及过滤器FB-9804[/color]和[color=#0000ff]压力表[/color][color=#0000ff]数字式压力表SPG-063[/color]组成水力控制接管系统。通过电磁阀可以实现对阀门开启和关闭的遥控。加装附加装置后,可控制开启和关闭的速度。 电控水力控制阀利用导阀控制阀门的开启和关闭,节省能源。可代替其它阀门大型电动装置。电控水力控制阀产品广泛用于高层建筑、生活区等供水管网系统及城市供水工程。 电控水力控制阀工作原理 当阀门从进口端给水时,水流流过针型阀进入主阀控制室,当电磁导阀打开时,控制室内的水经电磁导阀、球阀流出。球阀开度大于针阀开度,主阀控制室内压力很低,主阀处于全开状态。 当电磁导阀关闭时,主阀控制室的水不能流出,控制室升压,推动膜片关闭主阀。 电控水力控制阀维护: 水力控制阀前要安装过滤器,并应便于排污的要求。 水力控制阀是一种利用水自润式阀体,无须另加机油润滑,如遇主阀内零部件损坏时,请按下列指示进行拆卸。(注:内阀内一般消耗损伤品为膜片和○型圈,其它内部零件损伤甚少)1.先将主水力控制阀前后端闸阀关闭。2.将主水力控制阀盖上的配管[color=#810081]接头[/color][color=#810081],铜制防水接头JG-T-M[/color]螺丝松开,释放阀内压力。3.将所有螺丝取下,包括控制管路中的必要铜管的螺帽。4.取水力控制阀阀盖和弹簧。5.将轴芯、膜片、活塞等取下,切勿损伤膜片。6.将以上各项东西取出后,检查膜片及○型圈是否损坏;如无损坏请勿再分自行争其内部零件。7.如发现水力控制阀膜片或○型圈有损坏,请将轴芯上的螺帽松脱,逐浙分解出膜片或型圈,取出后重新换上新的膜片或○型圈。8.详细检视主阀内部水力控制阀座、轴芯等是否有损坏,若有其它杂物在主阀内部将其清理出。9.依反向是顺序将更换后的零部件组合装好主阀,注意阀门不能有卡阻现象。

  • 锅炉水位检测与控制系统

    锅炉水位检测与控制系统主要包括水位的检测、显示、排污阀门和报警控制等环节。锅炉水位测控过程主要有:锅炉水位进入磁翻板接液内层、磁浮子的检测和进水阀门控制。系统通过磁翻板或翻柱主体检测锅炉内液位。当锅炉内水位下降至设定的下限水位值时,启动翻板显示报警系统;反之,水位上升超过上限水位设定值时,则启动上限报警,该磁浮子液位计可设置多个报警点,满足系统上多方面控制要求。该水位系统采用磁敏液位传感器测量锅炉内水位。磁敏液位传感器(UHZ-10C00液位计)的输出端可外接PC+PCL机自动化控制设备,驱动LED显示器,并可向远传装置发出4~20mA电信号或无线通讯输出信号。经过处理后,反馈给报警系统通过继电器动作控制电磁阀并报警。 燃气锅炉是一个大惯性、大滞后系统,为验证确保锅炉水位控制效果,在系统完成后通过数据进行验证,控制过程中响应初始阶段的超调大约12%,响应速度快,在300s内达总测量峰值,随后420s后达稳态。水位期望值与实际值最大误差为0.15cm,最大相对误差在0.5%以内,满足精度要求。通过试验证明,该磁浮子液位传感器具有良好稳态性能和动态性能。 测试次数 期望数位/cm 实测水位/cm 误差/cm 1 20 20.12 +0.12 2 25 25.07 +0.07 3 30 29.98 -0.02 4 35 35.09 +0.09 5 40 40.15 +0.15 表中 水位期望值和实测值及其误差本文提出一种用于锅炉水位智能控制系统,可达到水位控制的预期要求,能够实现锅炉水位实时显示、控制及报警,且该装置测量量程宽泛、准确度高、性能稳定、重复性好、操作简单、界面直观,完全可满足液位量值化传递需要。

  • 美国国家局规定的检测下限

    检测下限的定义比较混乱,各种说法都有。美国国家标准协会规定的ASTM(美国材料试验标准)噪声测定方法, 以峰对峰的测量为基础,按时间周期大小分为长期噪声、短期噪声和超短期噪声。长期噪声是指每小时内有6~60个变化周期的噪声,测定时间应至少lh;短期噪声是指每分钟内有1~10个变化周期的噪声,测定时间应在10min~60min内;超短期噪声是指每分钟内有10个以上的变化周期,测定时间应至少大于lmin。另外,在一个周期内应至少取7个数据点进行计算。在ASTM方法中,漂移的测定是以噪声对噪声的中间值为基础进行的。美国国家标准局把检测下限分为三类:1)仪器检测下限,即相对于背景,仪器检测的可靠最小信号,通常用信噪比来表示,当N/S≥3(或2)定义为仪器检测下限。2)方法检测下限,即某方法可检测的最小浓度。通常用外推法可求得方法的检测下限,其方法如下:在低浓度范围内(范围不要太大,否则外推法求得的结果容易造成错误)选择三个浓度,每一个浓度水平上分别重复测定,求出每个浓度水平的标准偏差S1,S2 ,S3。如图所示,用线性回归法做出回归线,然后把回归线延长,外推至与纵坐标相交,求得S0,定义3 S0为方法的检测下限。S0为浓度为零时空白样品的标准偏差。3)样品检测下限,即相对于空白可检测的最小样品含量,定义样品检测下限为三倍空白标准偏差,即3δ空。仪器检测下限和方法检测下限在选择仪器和方法时是个重要的参数。样品检测下限不仅与方法检测下限有关而且与空白样品中空白含量以及空白波动情况有关,只有当空白含量为零时样品检测下限等于方法检出限,然而空白含量往往不等于零。因此方法检测下限由外推法求的可能是很低的浓度(或含量),但由于空白含量的存在以及空白波动的存在,样品检测下限可能要比方法检测限大得多。实际使用中,样品检测下限要比方法检测下限要有意义得多。当被测样品种类变化时,测定所用的试剂和环境变化时,即时用同一分析方法,样品检测下限可能要相差很大。

  • 检测下限 定量限

    在看环境标准时,只有写检出限和检测下限,没有定量限,检测下限和定量限可以认为是一样的么??检测下限是检出限的4倍,是不是环境的标准都用的检测下限,不用定量限啊??

  • 采用电控针阀实现微量液体样品静态法饱和蒸气压高精度测量的解决方案

    采用电控针阀实现微量液体样品静态法饱和蒸气压高精度测量的解决方案

    [size=16px][color=#339999][b]摘要:针对目前静态法液体饱和蒸气压测量中存在测量精度差、自动化程度低以及无法进行微量液体样品测试的问题,本文提出了微量样品蒸气压高精度自动测量解决方案。解决方案基于静态法原理,采用了低漏率的测试装置和高精度电容真空计,微量样品测试装置和真空计整体放置在烘箱内进行加热,提高温度和蒸气压分布的均匀性,将饱和蒸气压测量精度提高到了1%以内。同时采用耐腐蚀的电控针阀,可实现整个快速测试过程的自动化。[/b][/color][/size][align=center][size=16px][color=#339999][b]====================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px]液体饱和蒸气压是指在密闭条件和一定温度下,与液体处于相平衡的蒸气所具有的压强。同一液体在不同温度下具有不同的饱和蒸气压,且随着温度的升高而增大。饱和蒸气压是液体的基础热力学数据,它不仅在化学、化工领域,而且在、电子、冶金、医药、环境工程乃至航空航天领域都具有重要的地位,而且是这些研究领域中必不可少的基础数据,尤其在工业化学品和石油行业的应用最为广泛。[/size][size=16px]目前有许多液体蒸气压测试方法,主要有但不限于静态法、沸点法、蒸腾法、逸出法等,通过这些方法以满足不同的压力状态、样品大小、温度范围和材料兼容性要求。但这些现有方法还是无法满足新材料研究的要求,一方面是测量精度较差,另一方面对于一些特殊工艺要求蒸气压测量时液体样品量小、测量精度高以及快速测量还是无能为力,最典型的就是采用迭代合成以获得所需的分子结构,这涉及到针对产物性质的最大数量化合物需使用最少量的合成质量进行筛选,由此对液体饱和蒸气压测量提出了以下三方面的要求:[/size][size=16px](1)微量液体样品(约0.5毫升)。[/size][size=16px](2)高精度测量,误差小于1%。[/size][size=16px](3)简单且自动化的测量装置。[/size][size=16px]为了解决诸如迭代工艺所需的蒸气压测量的上述特殊要求,特别针对高测量精度、短测量时间和微量液体样品用量,本文提出一种简便的静态法饱和蒸气压高精度自动测量解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px]解决方案的基本思路是基于传统的静态法,即将微量液体样品注入到样品管内,关键是将整个测量装置放置(包括高精度电容真空计)在烘箱内以保证整体温度和整体真空压力的一致性和准确性。整个微量液体饱和蒸气压高精度测量装置结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=微量液体饱和蒸气压高精度自动测量装置,690,523]https://ng1.17img.cn/bbsfiles/images/2023/10/202310071754271367_8815_3221506_3.jpg!w690x523.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 微量液体饱和蒸气压高精度自动测量装置结构示意图[/b][/color][/size][/align][size=16px]如图1所示,蒸气压测量装置主体由真空样品容器、两个316不锈钢卡套三通、真空样品容器、硼硅酸盐玻璃管、电容真空计和三只热电偶温度传感器构成。其中一个卡套三通用来向真有样品容器注入液体样品和抽气,另一个卡套三通用作连接电容真空计和抽真空接口。装置整体放置在烘箱内,以使得整个装置主体整体保持均匀的温度,以防止蒸汽在设置的任何部分冷凝,这是决定提高饱和蒸气压测量精度的关键措施之一,其中用了三只安装在不同位置处的热电偶检测装置主体的温度是否均匀。[/size][size=16px]装置中的一个卡套三通顶部连接一个电控针阀,此电控针阀用来控制液体样品的注入量并同时起到真空密封的作用;另一个卡套三通排气端也连接一个电控针阀,开启时抽取真空,闭合时起到真空密封作用。这两个电控针阀由一个真空压力控制器实施控制。[/size][size=16px]烘箱加热和温度调节由一个PID温度程序控制器控制,可以通过计算机软件进行不同温度设定点的编辑和自动程序控制。烘箱温度控制过程中,通过多通道数据采集器记录三只热电偶温度传感器的测量值以及电容真空计的真空压力测量值。[/size][size=16px]在蒸气压测量装置使用前,要使用氦气检漏仪来检测装置的漏率,即关闭顶部的电控针阀和开启右侧的电控针阀,开启真空泵对测量装置主体抽取真空,装置内的所有空气被泵出系统。然后关闭右侧电控针阀,并用检漏仪检测泄漏情况。整个测量装置要求具有很小的真空漏率,以免外部空气侵入,否则会对饱和蒸汽压准确测量带来严重误差。[/size][size=16px]微量样品饱和蒸气压测量分为以下几个步骤:[/size][size=16px](1)首先将液体样品瓶,或用透明玻璃管作为液体样品容器,连接到顶部电控针阀,调节此电控针阀的开度将约为0.5毫升的被测液体样品引入真空样品容器,然后关闭此电控针阀,即整个样品液体按照图1中的红色点线描绘的路径流动。[/size][size=16px](2)液体样品注入样品容器后,开启右边的电控针阀和真空泵抽取真空,气体按照图1中的橘黄色线描绘的路径排出。[/size][size=16px](3)当抽取真空达到极限真空度后,关闭右侧电控针阀使测量装置主体以及内部的液体样品处于室温和高真空状态。然后开启多通道数据采集器,分别采集三个位置处的温度和样品容器内的真空度。这三个位置处的温度应该基本一致,说明装置主体的温度均匀。这些温度值和真空度作为饱和蒸气压测量的起始值。[/size][size=16px](4)对温度程序控制器设置不同的设定点,设定点由小到大设置,且每个温度设定点需设置一定的恒温时间,然后使控制器控制烘箱温度按照设定程序进行变化。此时,数据采集器同时检测各个位置处的温度值和样品容器内的真空压力变化。在某一恒定温度下,样品容器内的真空压力变化过程如图2所示。随着烘箱温度按照设定程序的台阶式变化,通过多通道数据采集器可以获得一些列不同温度对应的图2所示真空压力变化曲线,由这些曲线的压力稳定值可得到对应的饱和蒸气压。[/size][align=center][size=16px][color=#339999][b][img=静态法饱和蒸气压测试过程,500,378]https://ng1.17img.cn/bbsfiles/images/2023/10/202310071756114873_5047_3221506_3.jpg!w690x522.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 静态法饱和蒸气压测试过程[/b][/color][/size][/align][size=16px]为了实现微量液体样品饱和蒸气压的高精度快速测量,具体实施过程中还需注意以下几点:[/size][size=16px](1)装置本体的设计和尺寸要首先保证装置温度的均匀性,以避免温度不均匀引起的蒸汽压力的非均匀性。同时,装置本体中的各个部件、电控针阀和任何接口都需要具有很好的真空密封性能,避免漏气对蒸气压的影响。[/size][size=16px](2)为了保证测量精度,真空计最好选择精度最高的可达到0.25%的电容真空计。[/size][size=16px](3)测量装置使用前和使用过程中,需采用纯蒸馏水和2-丙醇进行考核和定期校验,热电偶温度传感器也需进行定期校验。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px]综上所述,本文提出的解决方案尽管依然采用的是经典的静态法,但通过采用低漏率的真空结构、电控针阀、电容真空计和装置整体加热,很好的保证了温度均匀性和蒸气压测量准确性,减小了饱和蒸气压测量误差。本解决方案虽然设计用来测量微量液体样品,也可以推广应用到其它大容量液体的饱和蒸气压测量。[/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 疫苗冰箱温度监测与远程报警系统的搭建参考

    疫苗冰箱温度监测与远程报警系统的搭建参考

    本系统主要监测医院/药企/疾控中心的冰箱,冰柜温度保证药品、疫苗、血液、检测样本等存储安全。 目前国内多数是用温度计温度计对冰箱(包括普通冰箱、冰衬冰箱、低温冰箱)进行温度监测,并且要人工上下午做温度记录,费时费力,如出现紧急情况无法及时解决,且容易造成不必要的损失。 冰箱温度监控系统目的 九纯健针医用冰箱对温度存储要求设计了”医药冰箱专用温度监控系统” 对疫苗/血液/药品/检测样本的存储安全提供了全自动化的升级。 通过温度的自动测控技术和数据通讯技术实现对冰箱的温度进行的24小时不间断的检测、报警、记录和数据存储、查询; 根据设置的温度参数进行现场报警,远程报警,定向报警等;各级疾控中心的管理人员可查询所负责区域的温度历史情况和实况; 最终达到对冰箱的集中控制,实现冰箱的温度的实时在线监管。 冰箱温度监控系统介绍 系统组成 监控系统由温度、温度传感器、数据管理主机、无线通信设备、监控系统软件等部分组成。可以选配LED电子屏或大面积液晶显示器,放于监测中心或其它位置,便于温度数据的查看或作为公共信息看板使用。 通过监测系统,对监测区域内的每个监测对象(冰箱)进行实时监测与管理,当有超过安全范围的温度情况发生,系统通过现场声光报警、远程短信报警等多种方式第一时间向相关人员发送报警,以达到第一时间发现问题并及时解决问题,将出现问题所产生的影响减小到最小,将风险消灭在萌芽状态。 九纯健冰箱温度监控系统优势 1.测温范围广/精度高 常见的低温冰箱一般分为 -20度,-40度,-90度 -110度,-140度 本系统测温范围为:-200℃-150℃ 温度精度:≦±0.5℃(20±5℃) 2.多级报警-超时递进报警 上限报警,下限报警,上限与下限超区间报警,上限及上限回差报警,下限及下限回差报警,上限报警及超上限某值后二次再报警(上上限报警),下限报警及超下限某值后二次再报警(下下限报警)。 3.自动记录便于查询 实时自动记录温湿值,可自动生成历史记录报表与曲线。可查询任意时段,任意被测点的温度值与温度曲线图。完整精确且灵活记录打印;有选择性的打印客户所需的历史数据 4.系统软件兼用强 系统运行采用当下主流配置计算机,系统支持从win98到最新的win7操作系统,兼容性非常好,可在不同配置和操作系统下平稳运行。 5.多种组网,灵活组网 系持485总线、以太网、GPRS无线网络、免费频段无线网络等目前各种通讯方式,不同现场可选择其中一或多种组网方式,实现灵活组网、方便组网,实现系统构架的最优化、简便化、实用化。 6.系统拓展性强 系统提供与其它系统平台对接接口(开放数据库互连接口(ODBC)),轻松实现与其它系统数据交互,实现监测信息共享。 系统结构示意图http://ng1.17img.cn/bbsfiles/images/2015/01/201501211323_532840_2975412_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/01/201501211323_532841_2975412_3.jpg 疾控中心温度监控系统软件介绍 九纯健科技采用物联网技术开发出一套云控冷链环境监测平台,采用该平台,每个用户无需再搭建自己的平台,只需要采用物联网温度终端设备即可方便实现,对自己企业的冷链运输存储环境的温度监测。用户只需要免费下载一个冷链管理电脑客户端,或手机客户端,通过注册登录自己的账户,即可对自己的设备进行无忧操作管理。历史数据的查询,冷链运输环节的gps定位查询,历史运行轨迹查询。由于监测数据是存放到了云服务器上,数据可靠性及真实性得到好的保障。同时,用户省掉了繁琐的系统维护工作,使对于电脑或电子没有任何专业知识的人也能很好的使用这套系统进行冷链的环境管理和监测。 温度监测软件为九纯健科技自主开发,满足疾控中心综合监控要求。 1、系统软件功能 实现对监测区域的温度实时监测、声光报警、短信报警、本地及指定地点的声光报警。 实时曲线、历史曲线、数据报表、数据存储、打印、数据导出EXCEL等。 2、丰富的软件图形界面 专用软件平台开发,具有功能丰富、性能稳定、界面生动、美观的特点,按监测单位来实现各区的数据监测,总控中心与各区域分权限管理。 3、功能全面的报警机制 灵活设定上下限报警数值, 超限声光报警、短信报警等。 4、软件参数设置 可以修改监测单位的属性、被测 名称、报警值、手机号码、报警延时、数据导出时间间隔等等。 5、安全的系统设计 系统停电不关机、系统故障数据不丢失、数据断电恢复上传、数据自动记录备份、数据多种数据导出格式。 6、系统远程监管条件 远程访问监控软件(需要通过授权方可访问),轻松实现与政府主管部门监控系统联网,实时稳定不间断上传监测数据。 7、系统升级、系统扩展、维护方便 模块化的设计,便于硬件设备扩展、软件升级、日常维护及相关服务。 8、综合监管:一套软件将室内温度、冷藏箱冷柜温度、冷库温度等据有需要监管的设备全都监管起来,功能丰富、管理方便。 软件界面图 http://ng1.17img.cn/bbsfiles/images/2015/01/201501211323_532842_2975412_3.jpg注:本软件可以适用于冰箱温度监控系统,同样适用与疫苗冷链运输车辆定位。医药新版GSP温湿度监控系统中。

  • 【转帖】检出限与检测下限

    色谱分析中的检出限和测定下限及其确定方法(包头出入境检验检疫局,内蒙古 包头 014010)摘 要: 文章在对检出限和测定下限的概念进行阐述和区分的基础上,介绍了目前国内外色谱 分析中普遍采用的检出限和测定下限的计算方法,为色谱分析中以二者作为分析方法及测试 仪器性能比较标准时的实际应用提供了参考。关键词:色谱分析;检出限;测定下限中图分类号:O657.7 文献标识码:A 文章编号:1007—6921(2009)06—0062—02检出限和测定下限是评价一个分析方法及测试仪器性能的重要指标,特别是在痕量分析中, 检出限和测定下限的确定对于分析方法的选择具有重要意义。在色谱分析实际应用中,检出 限及测定下限的概念经常混淆,笔者对检出限和测定下限的概念进行了阐述和区分,并且对 适合色谱分析的检出限和测定下限的计算方法进行了介绍。1 概念1.1 检出限的基本概念检出限(Detection Limit, DL或Limit of Detection, LOD)是衡量一个分析方法及测试仪器 灵敏度的重要指标,国际纯粹与应用化学联合会(IUPAC)确定的定义是:检出限为某特定方 法在给定的置信度内可从样品中检出待测物质的最小浓度或量。所谓“检出”是指定性检出 ,即判定样品中存在有浓度高于空白的待测物质。美国化学学会 (ACS) 将这一定义简明地 概括为:检出限是一个分析方法能够可靠地检测出被分析物的最低浓度。《食品卫生检验方 法 理化部分 总则》附录A检验方法中技术参数和数据处理中对检出限的表述为:“把3倍空 白值的标准偏差(测定次数n≥20)相对应的质量或浓度称为检出限” 。检出限可分为仪器检出限和方法检出限。1.1.1 仪器检出限(Instrument Detection Limit,IDL)。仪器检出限是指无样品基质存在,不考虑任何样品前处理步骤的影响,在与样品测定完全相 同的分析条件下,分析仪器能够检测的被分析物的最低浓度或最低量,这个浓度或量与特定 的仪器能够从背景噪音中辨别的最小响应信号相对应。因此,其值总是比方法检出限要低。 仪器检出限一般用于不同仪器的性能比较。1.1.2 方法检出限(Method Detection Limit,MDL)。方法检出限是指在通过某一分析方法全部处理和测定过程之后,被分析物产生的信号能以99 %置信度区别于空白样品而被测定出来的最低浓度。方法检出限是在有样品基质存在、考虑 了样品分析前所有制备过程的影响的情况下进行测定的,是建立分析方法时较重要的一个参 数,特别是评估一个分析方法对于低浓度样品的检测质量具有重要意义。1.2 测定下限( Limit of determination )在测定误差能满足预定要求的前提下,用特定方法能准确地定量测定待测物质的最小浓 度或量,称为方法的测定下限。测定下限反映出分析方法能准确地定量测定低浓度水平待测 物质的极限值,是痕量或微量分析中定量测定的特征指标。在没有(或消除了)系统误差的前 提下,它受精密度要求的限制,分析方法的精密度要求越高,测定下限高于检出限越多 。2 检出限的确定方法国内外有关资料规定的色谱分析中检出限的计算方法有数种,其计算原理都是在规定的 置信水平下,以样品测定值与零浓度样品的测定值有显著性差异为检出限。由于方法和要求 的不同,得出的检出限也不一样,其单位既可以用浓度(如μg/kg、g/mL)表示,也可用绝 对量(如μg、ng)来表示。2.1 通用分析方法配制一份浓度为,接近于空白值的标准溶液,测量20次以上,得到平均信号,求出测量信号的 标准偏差Sb。 式中K为置信因子,一般取3。在色谱分析中,配制低浓度的标准溶液进行空白值测定,可获 得更有实际意义的数据,这种空白一般称为接近空白,接近空白的加标样品其测定平均值一 般为预期检出限的1~3倍,同时,加标样品的响应信号还要能够从背景噪音中 分辨出来,即还需考虑信噪比(S/N),一般应大于或等于3。2.2 气相色谱法检出限的确定方法在气相色谱分析中,检出限是指在色谱图上可清楚辨别的被分析物的色谱峰的下限,通常认 为恰能辨别的响应信号,最小应为噪音的3倍(尚有S/N最小应为2的提法),此时进入色谱 柱的被分析物的浓度。2.3 国标方法《食品卫生检验方法 理化部分 总则》附录A中对色谱法(GC、HPLC)检出限的规定为:设色 谱仪最低响应值为=3(为仪器噪音水平),则检出限按下式进行计算: 式中为标准曲线回归方程中的斜率,响应值/μg或响应值/ng;为仪器噪音的3倍,即仪 器能辨认的最小的物质信号。以上三种方法,在确定仪器检出限和方法检出限时的区别在于:仪器检出限直接是对标 准溶液或试剂空白,按照样品的色谱分析条件进行测定;而方法检出限则需要将标准溶液添 加到空白样品中,或者是对不添加被分析物的空白样品,按照给定分析方法的全过程进行预 处理和测定,对于第一法和第二法,被分析物的回收率应在70%~120%之间,以添加浓度进 行计算。3 测定下限的确定方法美国EPA SW-846(固体废弃物化学物理分析方法)规定4MDL为测定下限,其测定值的相对标准 偏差约为10%。日本JIS规定定量测定下限为10倍MDL。国内一般都采用IUPAC的建议,以空 白测量值标准偏差的10倍相对应的浓度值作为分析方法的测定下限,约为3.3倍MDL,其置信 水平约为90%。也有资料将色谱分析中的测定下限分为仪器测定下限和方法测定下限,方法 测定下限的确定方法如上所述,而对于仪器测定下限,其计算公式同公式(1),其中k一般取 6,即仪器测定下限=,表示仪器进行定量分析时所能达到的最低 界限。4 结语检出限和测定下限是两个不同的概念,检出限是一个定性概念,而测定下限是一个定量概念 ,搞清二者的概念和相互关系,可以提高色谱分析中检测结果的准确性和可靠性,对于实验 室质量控制具有重要的意义。 GB/T 5009.1-2003,食品卫生检验方法 理化部分 总则. 吕涛,冯奇,史利涛,王新.分析方法检出限的确定.漯河职业技术学 院学报,2007,6(4):191~192. 杨惠芬,李明元,沈文.食品卫生理化检验标准手册.北京:中国标准 出版社,1997:22. 田强兵.分析化学中检出限和测定下限的探讨.化学分析计算,2007, 16(3):72~73.

  • 煤质在线实时检测分析与监控系统简介

    “煤质在线实时检测分析与监控系统”(以下简称为煤质在线检测系统)是我们在国际上率先开发的,用于电厂入炉煤炉前煤质在线实时检测分析、入厂煤全程实时监测的绿色环保、低能高效、无辐射的高科技产品。该系统应用高精的红外检测分析技术,在国际上率先真正实现了原煤的热值及灰份、挥发份等工业分析值的在线实时检测与分析,其检测分析方法于一九九九年通过全国鉴定,结论为国际领先水平,在没有应用推广及经济效益的情况下,获辽宁省科技进步三等奖。煤质在线检测系统采用全封闭恒温保护设计,于二零零三年六月十二日在阜新发电厂通过在线实时检测分析现场验收。为我国乃至世界的原煤检测分析技术尤其是热值的直接检测,开辟了一种快速、简便、高效、实时、全程监控的新方法。一、 主要技术路线及技术关键煤质在线检测系统采用傅立叶变换红外光谱分析技术,红外光是一种电磁能量,当其照射到样品时,由于样品内有机成份在不同波数对红外光吸收能量不同,将这些不同记录下来,既得到红外光谱,当对红外光谱所包含的信息进行分析后,就会得到样品内不同有机成份的性质及含量。煤质在线检测系统是利用红外探测光对在线(输煤皮带上)原煤样品进行实时测量,通过对燃煤中各种官能团对红外光吸收各有差异的特点,应用计算机将这些差异进行识别处理,从而准确地测量出燃煤的热值及灰份、挥发份等工业分析值。 煤质在线检测系统的技术关键是根据样品光谱中的信息特征,利用设计开发的软件及建立的数学模型系统,通过计算机识别,进行定性与定量分析。定性分析是利用模式识别与聚类的一些算法,主要用于将所测到光谱进行分类。定量分析是根据比耳定律,应用化学计量学的方法,建立全谱区的光谱信息与含量及性质间的数学关系,通过严格的统计验证并选择最佳数学模型,计算出对应成分的含量或性质。 该技术是将硬件和软件相结合,特别是利用软件,解决红外光谱中谱峰重叠、高背景底强度的信息、图谱不稳定等难点,充分提取红外光谱的信息,达到分析的目的。二、达到的指标 此前,由于没有有效的在线实时检测手段,火力发电厂入炉原煤检测只是每天在炉前进行抽样,经混样、缩分、制样,化验分析等步骤,要二十四小时后才能出具一份工业分析值报表,供生产调度参考。这种方式,使得燃煤在已经燃烧后很长时间才得到其工业分析值,不能起到指导生产、节约成本的目的,使燃煤成本的结算始终处于负平衡态,因此,无法实现发电厂竟实时竟价上网的目标。 煤质在线检测系统完全改变了原始的离线检测方法与手段,实现了在线、实时、连续检测分析与监控:1. 检测与分析时间:全程连续跟踪检测一组数据(包括低位热值、弹筒热值、空干基灰份、干燥基灰份、收到基灰份、干燥无灰基挥发份、空干基挥发份等),需时间约为60s;2. 检测指标为:(1) 热值(低位、弹筒):±1000J/g;(2) 灰份(空干基、干燥基、收到基):±2%;(3) 挥发份(空干基、干燥无灰基):±1%。 由于上述指标的实现,可使燃煤结算达到分时及炉前预知燃煤成本的正平衡态,从真正意义上实现了指导生产,从而为实现竟价上网提供了重要的手段。三、 傅立叶变换红外光谱仪的原理傅立叶红外光谱仪的原理是把光源发出的光,经迈克尔逊干涉仪调制成干涉光,再让干涉光照射样品,由检测器获得干涉图,由计算机把干涉图进行傅立叶变换,得到全波段吸收光谱. 傅立叶变换红外光谱仪在整个检测过程中,只有一个可动镜在实验过程中运动;它的测量波段宽,光通量大,检测灵敏度高,具有多路通过的特点,故所有频率可同时测量;它的扫描速度最快可达60次/秒,因使用调制音频测量,故杂散光不影响检测;因样品放置于分束器后测量,大量辐射由分束器阻挡,样品接受调制波,故使热效应极小;因检测器仅对调制的声频信号有反响,其自身的红外辐射不会被检测器吸收。 四、 傅立叶变换红外光谱仪的特点 付立叶变换红外光谱仪共具备六个特点,既高光通量的特点,采用光能量损失很小的反射镜,以使入射光全部通过光孔,使光通量很大;高信噪比的特点,将入射光按不同的频率被干涉仪调制成不同的声频信息值,使所用检测器既获得强度的信息,又获得频率的信息,使各种频率光同时落在检测器上,无须分辨测量既测完全部光谱;高测量精度的特点,使动镜在无摩擦的空气轴承上移动,通过激光干涉图零点取样,用计算机自动完成数据输出及绘图,无人为因素干扰;高分辨率的特点,采用多路通过的方法,使分辨率随采样数据增加而加多;测量速度快的特点,采用多次扫描类加法消除光谱噪声,改善信噪比,提高灵敏度;测量波段宽、全波段分辨率一致的特点,用干涉法采集数据,以数字形式存储运算,使采集范围广且达到全波段分辨率一致。五、现场应用情况“阜新发电厂煤质在线实时检测”科研课题测试工作于二零零三年四月十二日在二十万机组五段输煤栈道进行。装置开机时间九点零六分,结束时间十三点五十八分;现场在线实时采集原煤样品六十四个,实际得到四十九组化验室化验数据,在线实时采集光谱十六组。对比数据见下表:测试指标化验室化验 平均值装置检测 平均值绝对 误差低位热值(g/J)19984.319924.3-60弹筒热值(g/J)22607.323106.8499.5空干基灰份(%)25.8827.791.91干燥基灰份(%)26.5027.951.45收到基灰份(%)23.5423.690.15空干基挥发份(%)29.8830.350.47干燥无灰基挥发份(%)41.6941.38-0.31 阜新发电厂参加建模原煤样品离线化验按照化验室的工作要求进行,建模用原煤样品光谱采取周累计采集方法进行;建模时温度控制在24~26℃,其中低位热值分布范围为10508J/g至29588J/g;弹筒热值分布范围为12392 J/g至29388 J/g;干燥基灰份分布范围为8.49%至55.33%;空干基灰份分布范围为8.1%至53.16%;收到基灰份分布范围为7.27%至50.86%;空干基挥发份分布范围为19.21%至35.55%;干燥无灰基挥发份分布范围为28.26%至52.8%,在建模的过程中,严格按照设备的使用要求进行测试,既设备预热时间大约为40分钟。目前阜新发电厂已正常使用煤质在线检测系统。 综上,煤质在线检测系统以高精的技术、稳定的模型、实时的测量、全程的监控等技术,完全实现了原煤的在线实时检测,它不仅可用于发电厂发电燃煤成本的实时结算,还可用于入厂煤的实时检测监控,一定会为我国的燃煤企业及电力系统的节能带来无穷的经济效益和广泛的社会效益。

  • 电控针阀在定容法梯度充气式SF6气室容积测定中的应用

    电控针阀在定容法梯度充气式SF6气室容积测定中的应用

    [size=16px][color=#339999][b]摘要:在目前的六氟化硫气体精密计量中普遍采用重量法和定容法两种技术,本文分析了重量法中存在的问题以及定容法的优势,同时也指出定容法在实际应用中还存在自动化水平较低的问题。为了提高定容法精密计量过程中的自动化水平,本文提出了增加电控针阀和可编程压力控制器的解决方案,由步进电机驱动的电控针阀来精密调节气体压力,不同压力值的控制过程则由可编程压力控制器来进行控制操作,从而实现了定容法的自动化精密计量。[/b][/color][/size][align=center][size=16px][color=#339999][b]===================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 六氟化硫气体(SF6)是一种优异的绝缘介质,广泛应用于电力行业,同时六氟化硫气体也是六种严禁排放的温室气体之一,世界各国明令禁止六氟化硫气体排放,特别是各级电网公司为了减少六氟化硫气体的排放量,会对运行中的六氟化硫电气设备进行六氟化硫气体重量统计,严格控制使用量和泄漏量。为了普查变电站六氟化硫气体使用量,需要一种检测变电站中六氟化硫用气量的方法。目前六氟化硫用气量有两种检测方法,一是重量法,二是定容法。[/size][size=16px] 有关重量法,在广东电网有限责任公司实用新型专利“CN208953045U:一种SF6气体计量装置”以及河南省日立信股份有限公司发明专利“CN112611439B:一种测量六氟化硫气体重量的装置及方法”中给出了典型的描述,其测试过程和装置如图1所示。[/size][align=center][size=16px][color=#339999][b][img=六氟化硫气体重量法充气计量装置结构示意图,690,339]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241519317761_2690_3221506_3.jpg!w690x339.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 六氟化硫气体重量法充气计量装置结构示意图[/b][/color][/size][/align][size=16px] 重量法的基本原理是通过天平或承重仪器检测向高压电气设备中充入的六氟化硫气体重量,并同时观察安装到高压电气设备上的压力传感器升高的压力值。在已知温度下六氟化硫气体密度后,由重量计算出补气的六氟化硫气体体积,结合压力传感器计算出的压力变化,可以推算出高压电气设备内部的有效容积。但在实际应用中,这种重量法存在以下明显的缺点:[/size][size=16px] (1)在重量称量中,一般是承重六氟化硫气体钢瓶的重量变化,而实际消耗的六氟化硫气体静重量要比钢瓶皮重小很多,这种“大质量小称量”方法对所消耗的气体重量测量精度极为不利,测量误差很大。[/size][size=16px] (2)当气室原有一部分气体时,此时该装置进行充补一部分气体入气室中提高气室内气体压力,却无法有效得知气室中原有的SF6气体量,无法对气室内部体积进行精确测算。另外重量法携带称重装置至现场给气体钢瓶进行称重,不方便搬运,且各地的地理位置不同,因海拔等不同导致重力系数不同,使得通过检测重力得出的质量有所偏差。[/size][size=16px] (3)对于部分体积较小的六氟化硫电气设备,采用气体钢瓶直接对其进行充气,由于气体钢瓶的压力较大,对于体积较小的六氟化硫电气设备来说很容易发生充气过压,引起过压危险。[/size][size=16px] 为了解决上述重量法中存在的不足,国内外新开发了一种定容积法,在国家电网有限公司的发明专利“CN112556777B:基于定容法的梯度充气式SF6气室容积测定方法”中对这种方法进行了介绍,其测量装置的结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=六氟化硫气体定容法精密计量装置结构示意图,690,457]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241519534784_89_3221506_3.jpg!w690x457.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 六氟化硫气体定容法精密计量装置结构示意图[/b][/color][/size][/align][size=16px] 定容法是流量测量中的一种经典测试方法,在对六氟化硫充气量计量测试中,有以下优点:[/size][size=16px] (1)这里的定容法是根据气室压力设定值分配多个阶段充气阈值,分阶段对气室进行充气并测量数据,各个阶段分别计算气室的体积与内部原有的气体质量,再区各个阶段测得的数据的平均值,可消除由于压力传感器的测量精度限制,对气室进行充气时,一次性从初始值充到设定值进行一次测量存在的较大偶然误差问题,可提高计算结果的精确度。[/size][size=16px] (2)能够精确测量气体的实时压力,在接近设定压力数值时能控制充气流量,使得压力传感器能在气体稳定时进行检测,检测数据更加精确,且不会使气室充入气体过多导致气体压力过高造成安全隐患。[/size][size=16px] (3)采用定容积的充气罐替代称重装置,通过温度、压力传感器和控制阀组,实现不同条件下的温度、压力测量,使得测算得出的气室体积和气体量结果更加精确。[/size][size=16px] 尽管定容法具有上述明显优点,但定容法要进行多个不同压力的充气过程和测量,即需进行多次标定试验,这就要求整个标定过程自动化程度很高,如果采用人工调节费事费力且精度无法保证。而在自动化测控方面,国家电网有限公司的发明专利“CN112556777B:基于定容法的梯度充气式SF6气室容积测定方法”并未给出详细描述。[/size][size=16px] 为了解决六氟化硫定容法精密计量中的自动化测控问题,本文提出了采用电控针阀的解决方案,即采用NCNV系列高速低漏率电动针阀来作为图2所示定容法装置中的调节阀门,并结合可编程程序控制器,从而实现定容法中多个不同压力下的充气过程中的全自动标定。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 定容法可编程压力自动控制的结构如图3所示,即将图2的流量调节阀更换为NCNV电控针阀,并增加一个VPC2021可编程压力控制器。压力控制器采集压力传感器信号,并根据设定好的不同压力设定值对电控针阀进行控制,从而在不同压力下实现准确恒定。压力控制器与计算机连接,通过控制器软件进行操作。[/size][align=center][size=16px][color=#339999][b][img=电控针阀可编程压力自动控制结构示意图,600,293]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241520124219_8385_3221506_3.jpg!w690x338.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 电控针阀可编程压力自动控制结构示意图[/b][/color][/size][/align][size=16px] 解决方案中所采用的NCNV系列电控针阀具有一系列不同的孔径,范围从0.9mm~4.1mm,可满足不同容积的充气需要。另外,电控针阀具有小于5×10[sup]-9[/sup]Pa.m[sup]3[/sup]/s的极低漏率,基本消除了六氟化硫的泄漏现象。而且电控针阀具有很高的线性度和重复精度,可保证压力控制和重复性测量的精度。[/size][size=16px] 解决方案中所采用的VPC2021系列可编程压力控制器,具有24位AD、16位DA和0.01%最小功率输出百分比的高性能指标,并具有多段折线程序设定功能,通过手动或软件界面操作进行控制程序设置,软件可驱动压力控制器的运行并记录过程参数和曲线变化,避免了再编写控制程序的繁琐。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 通过本解决方案中增加的电控针阀和可编程压力控制器,可有效提高六氟化硫气体定容法计量的自动化水平,并保证计量精度,使得定容法在六氟化硫充气过程的准确计量技术中能得到真正的推广应用。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align]

  • 急:购买电控万能材料试验机

    我们单位准备购买一台美国或德国生产的电控万能材料试验机,要求性价比高,在成都或重庆设有维修服务站为最好。详细技术指标将于近日确定。有意者请尽快与我联系。站内信联系

  • 【原创】环境监测监控管理信息系统

    一、 概述 《环境监测监控管理信息系统》是厦门思拓科技有限公司针对城市环境监测站业务而开发的一套管理信息系统,它集大气,噪音,污水处理监测于一体、主要含盖了环境监测站所监测监控的城市污水处理厂、工业污染源和地表水三个方面的业务;该系统综合利用计算机、数据库、Internet、PLC、SCADA、GPRS无线数据通信、地理信息等技术实现监测信息从收集、处理、分析到发布的整个管理过程;实现了环境质量信息实时查询、站内业务管理、领导远程监测;在Internet上动态发布环境质量、环境监测和污染源监测信息;为环境监测站管理业务提供了科学的依据和手段。 系统特点:1、高效、监测周期的设置,它能够控制各个环境监测点仪器的工作状态。2、现场配置SCADA软件,使现场人员与的工艺过程之间建立了方便的HMI接口。3、GPRS无线数据传输和Internet数据传输相结合,实现了环境监测信息和污染源信息从数据采集、传输处理、分析、上报到发布的全过程管理。4、丰富的信息表征方式,将环境监测数据和污染源数据在地图上表征出来,通过地图可以直接访问监测数据,实现了监测点空间信息与监测结果的完美结合。5、功能强大的数据分析与决策支持。建立了大气自动监测数据、常规监测、城市污染源、污染源污染情况的数据仓库,实现了环境监测数据的多维分析。6、环境监测监控信息的WEB发布。 系统结构(图一): 系统分三层结构:底层是现场监测仪器、仪表等;根据其不同的输出,我们测得的工程量分模拟量和数字量两种形式; 模拟量信号又分为4-20mA和0-10V两种情况;数字量输出的仪器有各自不同的通讯协议。第二层为数据处理和传输层,根据现场所要求的监测设备和工艺过程不同其结构也有变化,如PLC完成工艺过程控制、配置SCADA软件的工控机为操作人员实现了HMI、数据处理和与上层的数据通讯功能。顶层是MIS层,主要由SQL2000数据库、监测监控管理信息子系统、地理信息子系统、WEB发布子系统和紧急情况应急子系统等诸多功能构成,其信息传输界面如图二 二、 环境监测监控管理信息系统功能简介1、现场监测数据的采集(以水质监测为例) 根据监测性质的不同主要分为三个方面,地表水站(河流、水库等饮用水)、城市污水处理厂和工业污染源;主要检测的物理量有:流速、流量、PH值、COD、氨氮、硝氮、亚硝氮、总磷等;由于所检测的物理量较多,所配置的仪器也比较繁杂,即有国内仪表,也有国外仪器,即有模拟量输出,也有数字量输出,各个仪器的通讯协议也不统一,为了完成信号采集、处理及传输任务,我们自行开发了基于GPRS网络数据传输的无线数据采集仪ST-2518,它不仅支持工业上通用的MODIBUS标准协议,同时也支持市场上主流监测仪器的传输协议,如WTW的IQ Sensor Net、TresCon、北京环科的流量计和COD、日本HORIBA-OPS-150 COD仪器等。也支持各种模拟量的传输4-20mA和0-10V等。2、监测数据接收子系统 监测数据接收子系统是整个系统中至关重要的一个子系统,它肩负着各种现场实时数据的监测及数据接收的作用,具有无人职守自动工作功能.其罗列如下:1.自动启动(在停电后/系统重启后自动启动,不用人为操作.2.数据过滤(本系统从安全考虑,仅接收经系统认证后的数据).3.使用于各种数据类型输出的现场检测仪表(开关量、模拟量、数值等).4.将接收到的监测数据保存到后台数据库.5.现场反控(通过修改监测采集方案来启动现场设备(包括对自动采样器的操作等).6.查看各监测站连接状态3、数据分析、统计子系统 数据分析统计子系统是监测系统中的核心部分.是用户直接操作和感受到的部分,采用 C/S模式在监测部门内部供工作人员直接操作使用。具有安全、快捷方便的特点、系统即具有综合性、集成性的特点(如:将水质、烟气、等污染源集成一个系统)、又有各模块独立操作的有点。其功能包括如下:A、现场实时监测原始数据的查询、偏离修正、监测数据有效性审核、预报数据录入(如空气预报)B、监测数据历史记录的维护。C、GIS电子地图实时显示环境污染变化趋势 D、结合历史数据生成环境污染指数曲线图 E、监测数据异常分析、软件报警、实时通过短信通知报警信息F、各种数据汇总报表、统计报表、上报表格,包括特殊格式报表:如空气日报格式 G、默认、自定义监测采集方案维护 H、现场自动采样器操作I、现场样本试验数据录入、与自动监测数据对比、偏离报告J、现场维护记录K、监测站点、监测项目等基础信息自由配置、兼容性好 L、人员权限分配 M、数据备份N、WEB用户认证、权限分配、及其web访问统计情况等4、报警短信子系统报警短信子系统是利用目前广泛使用的移动通讯技术进行开发的一个及其有用的功能系统。它可以及时发现某种监测项目异常而在第一时间发送报警信息到相关项目负责人、监督人的手机,也可以定时将某个统计汇总数据、分析结果发送到相关负责人,让相关项目负责人、监督人在出差、外出等情况下第一时间了解其负责的监测情况。5、WEB发布子系统Web数据发布子系统是环境自动监测系统中对外公布的网页查询系统,是提供普通市民了解居住城市环境质量的窗口,也是被监测企业、工厂对自己排放污染程度的要求。A、历史、当前环境污染报告、预告(如空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量)B、环境测试数据查询、曲线图C、监测站点明细监测分析报表等

  • 小于检测限还是小于测定下限?

    当样品的测定结果未检出时,结果应报小于检测限还是小于测定下限,如石油类测定的新方法中是报0.04mg/L(检测限),还是0.16mg/L(测定下限)?

  • 检测下限的问题

    你好,各位大神,本人是小白,问一个简单的问题,现在我用的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]是戴安的ICS-900,主要是检测水中的氟离子,氯离子,硝酸盐,硫酸盐,请问下,这四种离子各自的检测下限是多少?

  • 惠检-疾控检测lims系统解决方案

    惠检-疾控检测lims系统解决方案

    疾控中心是担负卫生监测、检验出证、技术仲裁、预防医学研究等重要职责的疾病预防控制机构。疾控中心检测任务主要包括对公共场所、居住环境、作业环境的空气和水质样本的检测,对食品、化妆品、饮用水、消毒杀虫产品及其相关产品的检测。 随着疾病预防控制中心的环境和卫生检测项目日益增多,传统的手工管理模式已不能适应日常工作需要,开发一个环境卫生检测管理信息系统势在必行。本文结合疾控中心检测业务的实际要求,对检测业务流程进行了分析,系统采用浏览器/服务器(Browse/Server)结构模型,功能包括检测流程管理和质量体系管理两大部分,其中前者包含样品登记、样品通知、样品分配、任务分配、样品检测、报告编制、报告审核、授权签字、报告发放、报告查询等功能;而后者包括检测人员、设备仪器、检测项目、服务供应商的管理等功能。河北网星惠检LIMS解决方案http://ng1.17img.cn/bbsfiles/images/2015/11/201511201600_574513_3054715_3.png一、管理:1.对于质量与服务没有有效的监管措施,仅仅停留在人为因素或者是纸面上,最后如同一纸空文,人为影响大;2.工作效率低下,检测环节多,重复劳动,重复抄写,容易出错,时间浪费在简单的劳动中;3.难于追溯,很难从如山般的文档中去查询某个数据,更不能进行分析或者有效利用;4. 对市场、业务、客户情况等难于把握;5. 难于协调各个部门与人员,并使之成为一个有效的团队;6. 实验室内的各种资源、设备、人员、材料、经验、知识等难以管理和继承;二、质量:1.收样、传递、发放、报告编制等环节数据重复录入,容易出错,质量难于保证;2.出检验报告的方式简单,不能自动化完成,质量难于保证,检验报告是实验室的产品,这很关键;3.各种质量措施、手段仅仅停留在当时的操作层面上,难于实施溯源与控制;4.仪器检定不能定期、有效的进行、试剂的有效期控制难于保证;很多工作停留在原始方式,效率低下,质量难以保证;5.检验过程难于真实、有效、实时的再现,人为因素影响大;三、工作效率:1.收样、报告编制等信息重复录入,工作效率低下,并且容易出错;2.信息、资源、数据、经验的共享停留在传统纸面上或者是单一的层面上;3. 查询数据麻烦;4.原始记录手写工作量大,手工计算修约费事耗力。

  • 【求助】容量法中检测下限的计算

    请教高手,容量法中检测下限的如何计算?这个问题一直困扰着我。有标准系列的方法很好计算,既三倍标准偏差除以斜率,如ABS,AAS,AFS等等。而容量法中,如果用一滴滴定剂的量(0.05mL)来算,那么称样量不同,或分取量不同都会有不同的检测下限。期待高手的赐教!!![em0818]

  • 【求助】示差折光检测器带有温度控制系统吗?

    [size=4]请问用过示差折光检测器的同仁,示差折光检测器带有温度控制系统吗?如果没带温度控制系统该如何进行温度控制呢?这个检测器大概价位是多少?当然这与生产品牌有关,准备购买,所以想多了解一下性能和价位,希望能得到更多的信息。[/size]

  • 目前检测结果能否输入控制管理系统?如何实现的?

    [font='Times New Roman'][font=宋体]可以,制药企业通常采用的控制管理系统是[/font]DCS[font=宋体]、[/font][font=Times New Roman]SCADA[/font][font=宋体]、[/font][font=Times New Roman]MES[/font][font=宋体]、[/font][font=Times New Roman]ERP[/font][font=宋体]系统等[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]目前[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]主流的通讯协议为[/font]OPC[font=宋体]协议,近红外检测数据会通过[/font][font=Times New Roman]OPC[/font][font=宋体]协议与控制管理系统进行实时传输。[/font][/font]

  • 方法验证之--检测下限3

    方法验证之--检测下限3

    HJ/T 400-2007中,附录C,C 9.1 有一个检测下限的描述:http://ng1.17img.cn/bbsfiles/images/2016/05/201605271439_595029_2368716_3.png那猫在做方法验证的时候,直接套用这个公式去计算就可以了吗?还是说用HJ/T 168-2010 中4倍检出限作为测定下限呢?

  • 【求助】检测限(最低捡出限)和测定上下限

    请问各位(急切)怎样测定方法在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]上的检测限(最低捡出限)和测定上下限?检测 限测定时,多少峰面积以下,就认为是没有要测的东西?还是只要有峰面积,哪怕是5,也算是有要测的东西? 测定上下限 怎么测?对标准曲线的R2有没有要求?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制