当前位置: 仪器信息网 > 行业主题 > >

电脑控制反应装置

仪器信息网电脑控制反应装置专题为您提供2024年最新电脑控制反应装置价格报价、厂家品牌的相关信息, 包括电脑控制反应装置参数、型号等,不管是国产,还是进口品牌的电脑控制反应装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电脑控制反应装置相关的耗材配件、试剂标物,还有电脑控制反应装置相关的最新资讯、资料,以及电脑控制反应装置相关的解决方案。

电脑控制反应装置相关的论坛

  • 反应装置自动化控制系统

    反应装置自动化控制系统

    一Project 项目 反应装置自动化控制系统 (专利号:201520539855.1 201520444964.5)Time 时间 2012 年 11 月特点:1. 智能化自检和互检主机可对下位机和仪表进行自检,能显示故障类型和故障仪表的编号。上下位机能互检,当上位机或下位机出现故障时能停止加温和加压,能及时有效的避免二次事故的发生。2. 智能化管理本机用电安全,采用了无火花安全保护电路设计,能保障设备的安全可靠运行,不可能再产生二次事故。可实现无纸录仪功能,可记录温度压力流量阀况,对后期分析和改进产品很有帮助。3. 智能化控制当设备附近出现可燃气体超标时或出现了超温超压时,系统可及时自动的停止加热和加压,超压时可打开泄压阀主要参数 Main Date催化剂装填量:0 ~ 10 ml 气体物料: 0 ~ 300ml/min液体物料:0.001 ~ 10ml/min 反应压力: 0 ~ 10MPa反应温度:室温~ 650℃

  • 【求助】一套高压反应装置

    实验室想购买一套高压反应装置有完整的气体管路和检测产物由在线色谱检测主要想做CO+H2的高压反应不知道哪个厂家有这样完整的高压装置出售?谢谢!

  • 水煤气反应装置(甲烷/水蒸气反应)

    想在实验室搭建一套水煤气发生装置,但先前没有人做过类似方向,所以对实验所需装置不是很清楚。 目前是想做催化甲烷和水蒸气制水煤气,实验室目前已有气-固反应床,需要接通气体的装置,但现在不清楚该选用什么配件如何连接。请问有没有做过类似方向的朋友能给下建议。如果能给一个完整的反应装置图,就更加感激不尽了[img]http://simg.instrument.com.cn/bbs/images/default/em09505.gif[/img]

  • 反应釜控温机组,反应釜冷热一体机,反应釜温度控制机

    反应釜控温机组,反应釜冷热一体机,反应釜温度控制机反应釜控温机组综合本公司多年的冷热温控经验,引进国外先进技术,提供全方位的工业温度控制技术和解决方案,在反应釜行业可根据客户要求量身定控制调节反应釜的温度,提高产品的质量产量,环保安全,不需要专人操作.我们有着最专业的团队和最优的产品可供大家选择,反应釜控温机组,反应釜温度控制机的介绍:根据您反应釜的大小,所需要的温度来设计不同功率的油加热器,加热方式为循环加热,所以介质无损耗,多点温度控制机组可订做,温控范围大,温度精确均匀稳定,导热速度快,升降温速度快.能自动精确控温,可快速达到设定温度,设定值和实际值分别显示,进口微电脑双组PID温度控制机,触摸式内储自动演算,精确可靠省电35%以上.反应釜冷热一体机特点如下:1.换热面积大,升温和降温的速率很快,导热油的需求量也比较小.可实现连续升降温,制冷换热器采用高力板式换热器,换热效率高,占地面积小.整个循环是密闭的,高温时没有油雾挥发,导热油不会被氧化和褐化,低温时不会吸收空气中的水汽,延长了导热油的寿命.2.具有自我诊断功能,冷冻机过载保护,高压压力开关,过载继电器,热保护装置等多种安全保障机能,充分保证使用安全.3.温度自适应控制,适应控制系统在控制工艺(如化学反应工艺)的过程中,持续不断的调节PID参数来给予工艺最好的控制温度和响应时间,这种过程是通过有效的多方位的测定温度,温度变化和温度变化的速率来实现的.带有矫正外循环和内循环温度探头PT100的功能.4.精确控制化学反应的速度(选配:一体化机组,实现高温冷凝回流,根据温度控制加料速率,防止反应过快,同时精确控制加料量).5.程序功能系列,非线性和线性的温度跳跃功能,所有程序的每步选项包括控制外循环程序,都由PLC控制器电脑来控制.6.自动诊断和系统的监控功能系列,通过PLC触摸屏控制器,电脑实行监控和显示详细系统信息,可以监控和显示升温速率等所有信息.7.触摸屏控制器;可以选择显示信息,实时图表显示实时的夹套温度和反应釜体内温度,显示实时的变化曲线以及安全信息等.彩色屏幕,详细菜单以及详细自我诊断系统都是可用的,设备可以用触摸屏热键,选码器或者程序号来控制.反应釜控温机组根据反应釜行业的应用特点设计,反应釜温度控制机根据客户要求选择水或者油作为传热介质,水最高温度可达180度,最高温度可达350度.我公司是专业生产反应釜温度控制设备,反应釜加热器,反应釜加热设备,反应釜精密温控设备的厂家.主要产品;反应釜夹套油加热器,反应釜温控机,反应釜恒温机,反应釜冷却机等反应釜行业专用温度控制设备。

  • 微通道反应器和连续流反应器的精密压力控制解决方案

    微通道反应器和连续流反应器的精密压力控制解决方案

    [size=16px][color=#339999][b]摘要:针对目前连续流反应器或微反应器压力控制中存在手动背压阀控制不准确、电动或气动背压阀响应速度太慢、无法适应不同压力控制范围和控制精度要求、以及耐腐蚀和耐摩擦性能较差等诸多问题,本文提出了相应的解决方案。解决方案的核心是分别采用了低压和高压压力精密控制装置,低压控制采用电动针阀可实现0.7MPa以下压力控制,高压控制采用先导阀和气动背压阀可实现20MPa以下压力控制。[/b][/color][/size][align=center][size=16px] [img=连续流反应器和微通道反应器的精密压力控制解决方案,600,401]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151529297690_1768_3221506_3.jpg!w690x462.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 连续流反应是反应组分在受控的工艺条件下通过连续流动进行混合,并通过加热和加压可实现更快的反应速度,而物质之间的有限相互作用使得反应更安全、更易优化以及更易进行工艺放大。近些年来,连续流反应技术已经从小众的学术应用研究转变为一种公认的强大的工业技术,其优势在于该技术所表现出安全、高效、高质与低成本的特点。[/size][size=16px] 按照流动管路的粗细,连续流反应器分为管式反应器和微通道反应器两大类,如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.连续流反应器几种典型形式,650,175]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151534309713_433_3221506_3.jpg!w690x186.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 连续流反应器的几种典型形式[/b][/color][/size][/align][size=16px] 大多数连续流反应装置主要由八个基本部分组成:流体和试剂递送、混合、反应器、淬灭、压力调节、收集、分析和纯化,如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.标准双进料连续流反应过程示意图,650,175]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151534519826_773_3221506_3.jpg!w690x186.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 标准双进料连续流反应过程示意图[/b][/color][/size][/align][size=16px] 连续流反应面临的挑战之一是控制所有过程参数,如温度和压力。如图2所示,反应器压力是连续流化学反应的重要环节,要求在各种苛刻的条件下进行恒压控制,这使得连续流反应器压力控制过程面临着以下挑战:[/size][size=16px] (1)目前多采用手动背压阀进行压力控制,存在压力控制不准、手动调节频繁的问题。[/size][size=16px] (2)目前也出现了电动和气动背压阀进行压力控制,但存在响应时间太长的问题,不太适合连续流反应过程中的压力稳定控制。[/size][size=16px] (3)各种连续流反应过程中会要求不同的压力环境,这就要求压力调节阀仅能满足低压压力控制,又能满足高压压力控制要求。[/size][size=16px] (4)连续流化学反应会涉及到很多腐蚀性气体或液体,这同样对压力控制阀的材质提出很高的要求,要求压力调节阀具有耐腐蚀和耐摩擦的优异性能。[/size][size=16px] 针对上述连续流反应器中存在的上述技术挑战和问题,本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 如图2的连续流反应过程所示,连续流反应器的压力控制的工作原理非常简单,当传送系统以一定压力将流体和试剂传递到反应器中时,可以通过调节阀开度大小来改变反应器出口端的介质流动速度来调节反应器内的压力,调节阀开度的大小则是根据压力传感并采用PID控制器来进行调节,使得反应器的压力始终恒定在设定压力上。[/size][size=16px] 连续流反应器会涉及到从低压到高压的多种压力环境,为了满足不同压力条件的要求,本解决方案采用了低压和高压两个压力控制技术方案。[/size][size=16px][color=#339999][b]2.1 低压压力控制方案[/b][/color][/size][size=16px] 低压压力是指表压为0~0.7MPa的压力范围,反应器低压压力控制装置结构如图3所示。低压压力控制装置由压力传感器、电动针阀和压力控制器组成并构成闭环控制回路,其中压力控制器获得压力传感器信号并与压力设定值比较后,PID控制输出信号驱动电动针阀的开度变化,由此改变通过针阀的流量大小而最终实现反应器的压力恒定控制。[/size][align=center][size=16px][color=#339999][b][img=03.连续流反应器低压压力控制装置结构示意图,550,276]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151535125789_463_3221506_3.jpg!w690x347.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 连续流反应器低压压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 为了保证控制精度,低压压力控制系统三个器件的技术指标如下:[/size][size=16px] (1)压力传感器:根据压力控制精度要求,可在1%~0.05%内选择不同的压力传感器。[/size][size=16px] (2)电动针阀:电动针阀为步进电气驱动的针型阀,具有从0.9、2.25和2.75mm三种通径,工作压力范围为-1~7bar,其最大特点是具有1秒以内的高响应速度,采用FFKM全氟醚橡胶做密封件的超强耐腐蚀性和耐摩擦性,非常适应于微反应器的压力和流量控制。[/size][size=16px] (3)压力控制器:有单通道和双通道可选,双通道控制器还可同时用于温度的测量和控制,其中每个通道都为24位AD、16位DA和0.01%最小输出百分比。压力控制器具有程序控制和PID参数自整定功能,配备有具有标准MODBUS协议的RS485接口,并自带计算机软件,可通过计算机运行软件进行控制器的远程参数设置、运行和控制过程的曲线显示和存储。[/size][size=16px][color=#339999][b]2.2 高压压力控制方案[/b][/color][/size][size=16px] 高压压力是指表压为0.5~20MPa的压力范围,反应器高压压力控制装置结构如图4所示。高压压力控制装置由压力传感器、先导阀、背压阀和压力控制器组成并构成闭环控制回路,其中压力控制器获得压力传感器信号并与压力设定值比较后,PID控制输出信号驱动先导阀,先导阀再驱动背压阀的开度变化,由此改变通过背压阀的流量大小而最终实现反应器的压力恒定控制。[/size][align=center][size=16px][color=#339999][b][img=04.连续流反应器高压压力控制装置结构示意图,550,276]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151535309222_5324_3221506_3.jpg!w690x347.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 连续流反应器高压压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 在高压压力控制装置中采用了相同的压力传感器和压力控制器,其他器件的技术指标如下:[/size][size=16px] (1)先导阀:工作压力范围0~0.5MPa,综合精度小于±1.5%FS。[/size][size=16px] (2)背压阀:工作压力范围0.5~20MPa,综合精度小于±10%FS。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述的解决方案,可以很好的解决连续流反应器的压力准确控制问题,特别是采用了电动针阀和高精度压力控制器的低压压力控制装置,可广泛应用于低压低流量的微流道反应器中,可很方便的构成多通道微反应器压力控制系统,并能保证很高的压力控制精度和长期稳定性。[/size][align=center][b][color=#339999][/color][/b][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 【原创大赛】烟气脱硝测试装置控制系统改造

    [font='宋体'][size=13px][color=#333333]烟气脱硝测试装置是模拟燃煤电厂烟气条件进行脱硝催化剂测试的非标装置,测试装置的参数按照[/color][/size][/font][font='宋体'][size=13px][color=#333333]DT/L1286要求进行控制。整个测试系统主要有:配气系统、制氮系统、反应器、控制系统、测试系统、取样系统等构成。[/color][/size][/font][font='宋体'][size=13px][color=#333333]1.控制系统作用及问题[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制系统单元主要由电源模块、传感器模块、质量流量计、继电器、电磁阀、P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制器等组成,主要[/color][/size][/font][font='宋体'][size=13px][color=#333333]作用是[/color][/size][/font][font='宋体'][size=13px][color=#333333]对系统参数的采集、控制及报警。全尺寸平台使用P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行控制,通过控制电脑提供人机交互界面,并结合软件平台实现控制元件参数的设定和自动化运行。随着对设备[/color][/size][/font][font='宋体'][size=13px][color=#333333]使用的不断积累[/color][/size][/font][font='宋体'][size=13px][color=#333333],以及检测能力扩大迫切的要求,伴随着多项技术改造,原始控制系统已经无法满足使用要求[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.系统改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]为完善自动控制功能,增强控制系统运行安全性和稳定性,对控制系统采取[/color][/size][/font][font='宋体'][size=13px][color=#333333]了如下的[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.1[/color][/size][/font][font='宋体'][size=13px][color=#333333]对P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行升级,增加一套冗余P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]专门用于分布式控制温控系统和电加热系统[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.2[/color][/size][/font][font='宋体'][size=13px][color=#333333]对模拟量数据采集和阀的控制等实现全局掌控,避免发生卡顿、宕机等隐患。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.3[/color][/size][/font][font='宋体'][size=13px][color=#333333]在空压机和制氮机端增加双绞屏蔽电缆和电脑通讯,既可以远程启停设备,还可以监视设备运行各项参数及状态,对冷干机使用基于L[/color][/size][/font][font='宋体'][size=13px][color=#333333]oRa[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术的远程控制方式。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.4[/color][/size][/font][font='宋体'][size=13px][color=#333333]对所有软件平台进行优化,整合线路,更换软件架构,采用无线与网线相结合的传输模式配合分布式多中央控制系统,增加系统运行的安全性。对设备控制根据各系统进行模块化布置,对测试过程按照逻辑顺序进行显示和监控。在保留和优化原有重要报警及保护程序的基础上,增加各系统分部锁定、多分布连锁,以及分布复位和总复位功能。有效发挥数据库管理系统作用,为组分配置提供数据参考[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.5[/color][/size][/font][font='宋体'][size=13px][color=#333333]对供气系统软件程序根据气源变化重新编辑公式以满足自动配气功能。根据管道加热器控制柜的改造,设计研发独立的控制软件,既能设定温度,还能控制交流接触器开断,实时监控温控表、电力调整器的各项参数,具备储存报警信息、三相电流异常数据、操作记录等功能。[/color][/size][/font][font='宋体'][size=13px][color=#333333]经过上述技术改造,控制系统更合理,可靠性和稳定性进一步增强,提高了测试效率。[/color][/size][/font]

  • 新型意识控制装置可以通过思维发送手机短信

    文章来源:腾讯科技 时间:2012.05.13http://www.cdstm.cn/attachments/2012/05/287332_2012051313045519L7m.jpg从大脑至屏幕:思维控制可以实现直接通讯,将生活与科学技术更简单有效地结合在一起(腾讯科技配图)http://www.cdstm.cn/attachments/2012/05/287332_201205131304552It91.jpg未来科技将人类梦想变为现实:Emotiv系统头盔现已进行商业销售(腾讯科技配图)  腾讯科技讯(悠悠/编译) 据英国每日邮报报道,最初,人们有了计算机键盘和鼠标;之后又普及了智能手机,人们可以自如地在手机屏幕上进行触摸屏操作;伴随着科学技术的不断发展,微软公司推出Xbox体感游戏系统,人们仅挥动肢体便能遥感控制游戏。目前,我们正准备进入意识控制世界,一种头盔装置可以“阅读”人类大脑思想,销售价格只有300美元,同时,该头盔装置的配套软件能够将我们的梦想转变为现实具体化。  IBM公司资深发明家凯文-布朗(Kevin Brown)最新设计的一种头盔装置,可以消除新兴科技与实际应用之间的差距,他致力于通过思想控制将日常生活任务变得更加简单,例如:使用Emotiv系统头盔。  Emotiv头盔零售价为299美元,可以简单地插入任何最新Windows操作系统进行运算,并能运行应用程序和游戏,其中包括愤怒的小鸟,人们只需简单地进行大脑意识控制即可。  布朗在IBM公司已工作15年,他说:“当前这个头盔装置能够获得来自人体大脑的感官触觉,它的功能将不断地升级提高。”  Emotiv头盔能够探测感知人们的情绪,无论是我们感到厌烦或者兴奋,以及我们是否集中精力地处理工作任务,或者处于放松休闲状态。同时,该装置通过大脑还能发现人体肌肉的状态,因此它能够发现笑容或者皱眉,以及一些相应的动作反应。  该系统最显著的特点是能够获得脑电图描记脑电波,使用者可以很快熟练这个软件系统,来理解不同的脑电波图案。布朗说:“这个系统并非‘阅读我们的思维’,而是识别一定的脑电波图案,通过这些信息来控制可以响应输入的目标单元。”例如:我们可以在IBM体验“数字家庭一体化”理念,人们可以思维意识来控制电灯开关。  未来我们可以通过大脑意志控制水壶开关,调选电视频道,或者“思考”手机短信发送给好友。这些应用将使我们懒散的生活变得更加懒惰,一些患有内部锁定综合症的人群将受益匪浅,患有这种疾病的人群大脑处于正常状态,但身体却无法移动。戴着这种头盔装置,他们有朝一日能够再次与世界进行沟通交流,发送短信至心爱的朋友,并与物体发生交互反应。  它们也具有一些实际性应用,会像所有先进的通讯系统,会触及大量的隐私问题,还能监控人们的行动。例如:参加音乐会的每个人都戴着一个头盔装置,能够发送他们的情绪变化状况。监控系统可以发现哪些群体对音乐会兴致勃勃,哪些群体对音乐会失去了兴趣。   当前,最好的头盔装置仅能学习四种完全不同的“脑电波类型”,伴随着这项技术更加完善,且体积缩小,其性能将不断提高。

  • 反应釜温度控制系统中为何存在空气?

    在制药化工行业中,反应釜温度控制系统是经常需要使用的,但是由于反应釜温度控制系统存在一定的空气、氢气、氮气、润滑油蒸汽等一些气体,这些气体是不利于反应釜温度控制系统运行的,那么到底是怎么一回事呢?反应釜温度控制系统中这些杂质气体是使制冷系统冷凝压力升高,从而使冷凝温度升高,压缩机排气温度升高,耗电量增加,制冷效率降低,同时由于排气温度过高可能导致润滑油碳化,影响润滑效果,严重时会烧毁制冷压缩机电机。反应釜温度控制系统中的这些气体产生可能是漏入的空气,可能是在充注制冷剂、加注润滑油的时候,外界空气趁机进入,或者反应釜温度控制系统密封性不严密导致空气进入系统内部。此外,冷冻油的分解、制冷剂不纯以及金属材料的腐蚀等原因也会产生气体。当然,无锡冠亚在反应釜温度控制系统上采用的是全密闭的循环系统,避免这些空气进入反应釜温度控制系统中。一般来说,反应釜温度控制系统中的气体表现在反应釜温度控制系统压缩机的排气压力和排气温度升高,冷凝器(或储液器)上的压力表指针剧烈摆动,压缩机缸头发烫,冷凝器壳体很热;反应釜温度控制系统蒸发器表面结霜不均匀,反应釜温度控制系统存在大量气体时,因装置的制冷量下降而使环境温度降不下来,压缩机运转时间长,甚至因高压继电器动作而使压缩机停车。反应釜温度控制系统是否存在这些气体的话,可以用压力表实测制冷系统的冷凝压力与当时环境气温下的饱和压力作比较。如果实测压力大于环境温度下的饱和压力,则说明该系统中含有气体了。如果发现了反应釜温度控制系统中存在上述的这些气体的话,就需要及时排除这些气体,及时解决故障。

  • 讨论光化学反应仪

    光化学反应仪,又称为光化学反应釜,多功能光化学反应器,光催化反应装置,OCRS-K型多功能光化学反应仪等OCRS多系列光催化装置是开封市宏兴科教仪器厂参考国外进口光化学反应仪的基础上和国内著名实验室实践合作共同开发的新一代光化学反应装置,主要用于研究气相、液相固相、流动体系在模拟紫外光、模拟可见光、特种模拟光照射下,是否负载TiO2光催化剂等条件下的光化学反应。同时我公司为客户提供纤维状、排列状物质特殊反应容器,解决不通物质在常规反应容器内的放置问题。OCRS-K型多功能光化学反应仪适合应用于化学合成、环境保护及生命科学等研究领域,该系统具有技术合理、结构简单、操作便捷、运行稳定、保护人体、自由组合、灵活定做等独特优势!  产品特点:  1、产品电气控制部分与保护反应暗箱分开,装配、维护、升级方便合理,整机大气美观!  2、该型号主控电源控制器光照时间数显灵活控制,适合记时作业和数据对比实验使用!  3、专业稳定的模拟光源和稳定、节省空间的体积设计,特别适合空间有限的实验室配备!  4、配套有多试管磁力搅拌器反应器功能,弥补了多试管围绕光源旋转不合理性和多试管自转机械性能差的弊端,可实现同时、部分试管充气功能,多试管磁力搅拌器反应器实际实用价值性能卓越!  5、配套有多口磁力搅拌反应容器功能,可以使反应过程具有强磁力搅拌、充气、放气、密封、测温等功能!  6、配套有固体反应装置,可以对固体物质进行光催化反应,高效聚光装置提升催化速度!  7、本型号光化学反应仪增添了非实验阶段自动遮光装置,将开启光源初灯光闪烁不稳定及阶段取样的光源遮住,使实验精度提高。  8、配套有缺水报警装置,当冷却水供给出现水压不足或者漏水严重影响到实验安全性时,发出报警声,提醒操作人及时检查水源供给状况。  9、配置有冷却水供给装置,进口压缩机无氟作业,确保光源长时间稳定运行,适合连续作业实验。该低温冷却水供给装置自身配备有静音外循环泵,提供冷却水循环增压,同时节约水源的浪费。  10、冷却水供给装置采用触摸按键控制,界面大方,无传统面板仪表外观呆板之感,防水防高温,可根据客户要求增添USB电脑接口和操作软件驱动,数字化作业感优越!  11、灵活多样的产品设计,可以根据客户的要求制定产品设计方案,弘扬科技以人为本理念!

  • 电子流量控制装置的控制模式

    在上一节的内容中,我们介绍了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的电子流量控制装置的组成和简单原理。对于仪器的气路控制系统而言,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。我们将电子流量控制装置分别实现各种机械阀的功能的过程称之为电子流量控制装置的不同的控制模式。本节中将介绍电子流量控制装置常见的控制模式。本篇为《从气源到检测器》专题的第23篇,为《电子流量控制与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]》系列的第2篇。1 概述电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7b/91/97b91fc3c4cba5c6c10c77f71cfa877e.png[/img]2 电子流量控制装置常见的控制模式电子流量控制装置常见的控制模式主要包括三种,即流量模式、压力模式和背压模式,可以简单地对应稳流阀、稳压阀和背压阀。2.1 流量模式流量模式可以简单地认为是采用 流量传感器-控制电路-比例阀 来进行流量调节和控制的模式。通过比较仪器流量设定值和流量传感器的测定值来调节比例阀开度的大小,从而使实际流量达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/ad/c58ad91f72c9b9274cba998de8ed6d95.png[/img]流量模式的控制类似于稳流阀(请注意是类似但不等同),可以保证出口的流量在出口之后阻力发生变化情况下保持稳定。填充柱进样口的载气控制一般使用流量控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用流量控制模式,简单的示意图如下(没有安装压力传感器):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/56/ff/956ffb3ec7784d65bf857e77728c56a4.png[/img]当然,流量模式并不只是恒定流量模式;也可以实现程序流量模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/66/92a66118e06b902e02e9b1b54718f1d8.png[/img]通过仪器设置,可以设定仪器的初始流量,最终流量和变化速率等。2.2 压力模式压力模式可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/8d/02a8d7b2816440648820a2f35fb572d5.png[/img]压力模式的控制类似于稳压阀(请注意是类似但不等同),可以保证出口的压力在出口之后阻力发生变化情况下保持稳定。[color=#ff4c00]需要特别说明的是[/color],使用压力控制模式,如果要保证出口处压力控制稳定,出口之后应当安装有气阻或者起到气阻作用的色谱柱等以形成压降填充柱进样口的载气控制也可以使用压力控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用压力控制模式,简单的示意图如下(没有安装流量传感器,请注意图中气阻的位置和作用):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ac/74/cac743d48184d1389f5d0d850ea93fd9.png[/img]同样,压力模式并不只是恒定压力模式;也可以实现程序压力模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/60/bd460ab2ae094167ec51a6e9900b1f4f.png[/img]通过仪器设置,可以设定仪器的初始压力,最终压力和变化速率等。2.3 背压模式背压模式和压力模式类似,可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。区别在于背压模式比例阀在压力传感器之后,压力模式比例阀在压力传感器之前。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d3/7f/6d37f6454b1185a463e42057d8e04ed7.png[/img]背压模式的控制类似于背压阀(请注意是类似但不等同),可以保证比例阀前的压力在入口压力发生变化情况下保持稳定。背压模式可以用于毛细柱进样口柱前压的调节、阀进样时样品源的稳压控制等。可以参考下图的应用:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7a/33/37a336a54df9a1c56eb8ce2a3f9ab4fd.png[/img]上图所示,描述了六通阀在进样时候使用电子流量装置的背压模式,保证样品源压力波动时,气体采样阀可以在稳定压力下进样,从而提高了样品量的重现性。以上是本节的全部内容,对于电子流量控制装置常见的三种控制模式——流量模式、压力模式和背压模式而言,多数情况下只使用其中的一种模式,如填充柱进样口的流量和压力控制,检测器的燃气(氢气)、助燃气(空气)和尾吹气(氮气)的流量和控制。对于毛细柱进样口的流量和压力控制则较为复杂一些,是多种模式结合在一起。我们将在后续的文章中进行介绍,敬请关注

  • 冷水机制冷装置控制方式的设计

    在冷水机的实际运行中,由于外界条件的变化,热负荷和设备运行参数都会不断地波动变化,这就必须对整个冷水机制冷装置进行及时准确的调节,以保证冷水机制冷装置在安全、稳定和经济合理的条件下运行。 随着科技的发展,现在冷水机制冷系统中已经应用各种自动化装置。按照自动化程度的不同,大致分为:1、手动控制配合安全保护装置。2、局部自动控制:在实现安全保护的基础上,增加液泵回路和蒸发器回路的自动控制,它可以提高调节精度,稳定被冷却对象温度,节省能耗。目前,国内对冷库的局部控制应用越来越多,已经总结了成熟的设计管理阶段。3、半自动控制:除了局部控制内容外,主要体现在压缩机的自动启停和能量调节上。4、全自动控制:除了半自动控制的内容外,还实现辅助设备操作及湿度等自动控制,如制冷装置自动加油、自动放油、自动放空气、自动调节冷凝器冷却水量等。5、最佳工况调节控制:所控制的参数不是一个确定的数值,而是引入微型计算机随着实际运行条件的变化,按输入的程序对各种条年作出判断,从预定的同种工况中选出相对节能效率高的一种工况进行控制,使系统保持在最佳工况运行。这种控制方式要求对制冷装置运行有更深的认识,建立合理的数学模型,开发出更好的控制模式,这样才能使制冷装置的控制和节能提高到更高的水平。 随着自动控制程度的提高,控制精度越来越高,冷水机制冷产品质量也随之提高,装置能耗随之降低,同时还有效地降低了操作人员的劳动强度,防止事故发生,保障操作人员人身安全。但设备一次性投资将增加,装置的维护检修也将更加复杂。因此,在选择控制方式时,不要盲目追求自动控制的程度,而要从节能、经济、操作和维护等实际因素来综合考虑。

  • 关于恒湿的控制装置。

    由于工作需要制作一个超小型的恒温恒湿装置,恒温好解决,恒湿要达到90%,有些为难,请问谁有较好的恒湿控制装置方案?

  • ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    [color=#990000][size=16px]摘要:现有的[/size][size=16px]ARC[/size][size=16px]加速量热仪普遍存在单热电偶温差测量误差大造成绝热效果不好,以及样品球较大壁厚造成热惰性因子较大,都使得[/size][size=16px]ARC[/size][size=16px]测量精度不高。为此本文提出了技术改进解决方案,一是采用多只热电偶组成的温差热电堆进行温差测量,二是采用样品球外的压力自动补偿减小样品球壁厚,三是用高导热金属制作样品球提高球体温度均匀性,四是采用具有远程设定点和串级控制高级功能的超高精度[/size][size=16px]PID[/size][size=16px]控制器,解决方案可大幅度提高[/size][size=16px]ARC[/size][size=16px]精度。[/size][/color][align=center][size=16px][color=#990000][b]==============================[/b][/color][/size][/align][b][size=18px][color=#990000]1. 问题的提出[/color][/size][/b][size=16px] 加速量热仪(Accelerating Rate Calorimeter)简称ARC,是一种用于危险品评估的热分析仪器,可以提供绝热条件下化学反应的时间-温度-压力数据。加速量热仪(ARC)基于绝热原理,能精确测得样品热分解初始温度、绝热分解过程中温度和压力随时间的变化曲线,尤其是能给出DTA和DSC等无法给出的物质在热分解初期的压力缓慢变化过程。典型的加速量热仪的结构如图1所示。为了保证加速量热计的测量精度,ARC装置需要实现以下两个重要条件:[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热计典型结构,500,267]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121740385310_8045_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 ARC加速量热仪典型结构[/b][/color][/size][/align][size=16px] (1)被测样品始终处于绝热环境。绝热环境的实施需采用等温绝热方式,即样品球周围的护热加热器温度始终与样品球温度保持一致,两者的温差越小,样品散失或吸收的热量则越小,量热仪测量精度越高。[/size][size=16px] (2)空心结构样品球(样品池或样品容器)的壁厚越薄越好,以最大限度减少热惰性因子,减少球体吸热和放热影响。[/size][size=16px] 在目前的各种商品化ARC加速量热仪中,并不能很好的实现上述两个边界条件,主要存在以下几方面的问题:[/size][size=16px] (1)样品温度和护热温度仅采用了两只热电偶温度传感器,而热电偶的测温精度和一致性本身就较差,仅靠两只热电偶测温和控温,很难保证达到很好的等温效果,往往会造成漏热严重的现象,导致测量精度较差。热电偶在使用一段时间后,这种现象会更加突出。[/size][size=16px] (2)因为化学反应过程中会产生高温高压,使得现有ARC的样品球壁厚必须较厚以具有较大的耐压强度,避免样品球或量热池产生形变或破裂,但这势必增大了热惰性因子。这种壁厚较厚和较大热惰性因子,是造成ARC加速量热仪测量误差较大的另一个主要原因。[/size][size=16px] (3)由于首先要保证壁厚和耐压强度,量热池所用材质往往是高强度金属,但这些金属材质相应的热导率往往较低,较低的热导率则会影响量热池侧壁温度的快速均匀。这种低导热材质所带来的样品球温度非均匀性问题,又会造成周边护热温度控制的误差,所带来的连锁效果会进一步降低测量精度。[/size][size=16px] 为了解决目前ARC加速量热仪存在的上述问题,本文提出了以下解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案主要包括两方面的技术改进,一是采用多只热电偶构成温差热电堆来提高温差检测的灵敏度和更好的保证绝热环境,二是在样品球外增加气体压力自动补偿。改进后的ARC加速量热仪的结构及控制装置如图2所示。[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热仪温度和压力控制装置结构示意图,550,283]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121741195817_6742_3221506_3.jpg!w690x356.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 ARC加速量热仪温度和压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 在如图2所示的高温高压控制装置中,采用了4对热电偶组成的热电堆来检测样品球与护热加热器之间的温差,这样可以使温差测量灵敏度提高4倍,即可使原来采用单只热电偶的量热计测量精度得到大幅提高。在实际应用中,热电堆中的热电偶数量并不限制于4只,可以根据ARC结构和体积采用更多的热电偶,由此可进一步提高温差测量灵敏度,但在选择热电偶时,需要采用尽可能细的热电偶丝,以减少热量通过热电偶丝进行传递。[/size][size=16px] 对于补偿压力的控制,如图2所示,在ARC中增加了一路高压气路。压力控制回路由压力传感器、压力调节器和PID控制器构成,通过压力调节器将来自高压气源(如氮气)的压力进行自动减压控制,使得高温高压腔体内的压力始终跟踪样品球内的压力变化,从而尽可能降低样品球内外的压力差。压力调节器是一个内置压力传感器、PID控制器和两只高速进出气阀门的压力控制装置,可直接接收外部压力设定信号进行快速和准确的压力控制,非常适用于像ARC量热仪高温高压腔这样的密闭腔室的气体压力控制。压力调节器的压力控制范围为0~5MPa(表压),如需要更高压力调节,则需增加一个高压背压阀,但压力调节还是通过压力调节器。[/size][size=16px] 在图2所示的高温高压控制装置中,温差传感器的灵敏度、压力传感器测量精度以及压力调节器控制精度都决定了ARC加速量热计边界条件是否精确,但这些部件对ARC的最终测量精度贡献还需PID控制器来决定。PID控制器作为ARC绝热量热仪的核心仪表,需要满足以下要求才能真正保证最终精度:[/size][size=16px] (1)在量热仪绝热实现方面,采用温差热电堆,可灵敏检测出样品球与护热加热器之间的微小温差变化,但温差灵敏度最终是要通过PID控制器的检测精度得以保证,由此要求PID控制器应有尽可能高的采集精度。同样,绝热控制的最终效果是温差越小越好,这也对PID控制器的控制输出提出了很高的要求,即要求控制精度越高越好。本解决方案中选择了VPC2021系列的超高精度PID控制器,这是目前国际上最高精度的工业用小尺寸PID调节器,具有24位AD、16位DA和0.01%最小输出百分比,可完全满足微小温差热电势信号高精度检测和高精度温度控制的要求。[/size][size=16px] (2)在量热仪高压补偿控制方面,需要对高温高压腔室内的气体压力进行跟踪控制以尽可能的减小样品球内外的压力差。在压力控制回路中,压力传感器用来检测样品球内部的压力变化,同时此传感器的输出压力值又作为高温高压腔室压力控制的设定值,PID控制器根据此设定值来动态控制高温高压腔室压力,这就要求PID控制器具有远程设定点功能,并具有与压力调节器组成串级控制回路的功能,而本解决方案配置的VPC2021系列PID控制器则具备这种高级控制功能。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案采用了温差热电堆和压力补偿两种技术手段对现有ARC加速量热仪进行改进,改进后的ARC加速量热仪具有以下特点:[/size][size=16px] (1)温差热电堆可明显提高温差检测灵敏度,可更好的实现绝热效果。[/size][size=16px] (2)压力补偿可使得样品球的壁厚更薄,并降低了样品球材质的强度要求,样品球就可以采用高导热金属,在降低样品球热惰性因子的同时,更能提高样品球整体的温度均匀性,可显著提高量热仪测量精度。[/size][size=16px] (3)采用了具有远程设定点和串级控制这些高级功能的超高精度PID控制器,可充分发挥上述技术改进措施的优势,真正使ARC加速量热仪测量精度的提高得到了保障。[/size][size=16px] (4)所采用的技术手段,可推广应用到其它形式的热反应量热仪中。[/size][align=center][color=#990000][b][/b][/color][/align][align=center][b]~~~~~~~~~~~~~~~[/b][/align][size=16px][/size]

  • 液质联用仪控制电脑维修感悟

    [align=center]Qtof6510[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]控制电脑维修感悟[/align] 该仪器控制电脑为惠普两款固定型号的工作站,其它品牌和型号的电脑均无法控制仪器。我们的电脑是HP XW4600 workstation,随仪器采购购置,直到最近在使用中突然无法正常进入系统,表现为开机界面中断、重启无线重复,无法进入XP操作系统。1、联系仪器厂家说是电脑本身系统问题不归仪器厂家负责,让找电脑厂家维修,要是能准备好仪器厂家要求的两款特定电脑,可以以付费上门安装仪器控制软件的方式解决问题。2、咨询电脑维修厂家,每家说法都不太一样,报价也不一样,最后带着电脑去了惠普售后,到了之后等了一会,然后给插上电试了一下,姑且说是给检测了一下,其实也没见有啥操作,就说主板坏了,老式电脑主板需要等配件半个月左右,到时再根据具体维修情况看哪里还需要更换,估计维修周期1个月吧,光一块主板费用就是2000元,价格让人无语。最后没有维修又拿回来。3、有其他老式电脑和新电脑但都无法替换,因为人家就用那两款,如何解决。自己找了一台与其类似的电脑hp Compaq,仪器控制软件居然能装上,按照提示装完后进行IP地址配置,instrument configuration配置仪器,都正常通过。打开控制软件进行调谐,基本正常,但是到最后调谐报告却无法正常完整弹出,先不管,反正调谐能通过,只是无法正常显示而已。在软件上建立方法运行样品正常,本以为问题解决,可是结果在序列进样时会突然中断,结果只是能用但用着闹心,可能这就是所谓的bug。考虑电脑系统不是那台坏电脑XW4600的系统,于是想直接复制那台电脑系统,问题又来了,XW4600电脑是磁盘阵列raid设置,常规Upan启动根本不行,于是开机又更改为正常形式,备份系统,还原到hp Compaq电脑,更新电脑驱动,问题依旧,还是存在调谐报告无法完整显示和序列中断。暂时先凑合用吧,就是别扭。4、维修方案又回到已经坏了的XW4600电脑,网上买了个二手主板,换上原来的CPU后开机又提示时间未设置无法进入系统,考虑可能是电池没电了,有换了一块主板电池,再次开机提示风扇未检测到,一看机箱风扇没转,用手试了一下,风扇比较卡,估计坏了,还是无法正常开机。从废旧电脑找了个四线调速风扇,换上之后还是提示风扇未检测到。找了个专业人士问了一下,原来风扇可以根据温度调整转速进而调节机箱散热风量,所以不是常规的两根线,而是四根接线。于是调整线序后风扇开机转了,但是还是没有进入系统,卡在开机内存检测过程,仔细核对手边的维修配件,原来工作站的内存条与一般电脑内存条不同,是专用的,换好专用内存条后,开机正常,然后继续装仪器控制软件,进行相关设置,正常使用。 维修过程耗时较长,也很是艰难,但是真的更加了解了电脑的结构,也提供一种电脑故障解决方案,可能这款电脑有其独到的配置和驱动程序,其它的电脑很难替换满足需要,同时也是建议厂家使用更通用的电脑,使得维修更便捷。

  • 在微流控系统中如何选择合适的流量控制装置

    在微流控系统中如何选择合适的流量控制装置

    [size=13px][b][color=#339999]摘要:针对微流控技术中的压力和流量控制,本文介绍了目前常用的两类装置:注射泵和压力泵,重点介绍了这两种装置的性能特点,并对这两种压力控制装置进行了简要的分析对比。分析结论是压力泵将逐渐替代注射泵的应用,特别是压力泵在结合各种传感器和切换阀等配件后,在实现超高的响应性、稳定性和可重复性等前提下,更能涵盖几乎所有的微流体应用,并拓展进入相关新兴领域。[/color][/b][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][b][size=18px][color=#339999]1. 引言[/color][/size][/b][size=13px] 微流控([/size][size=13px]Microfluidics[/size][size=13px])是一种精确控制和操控微尺度流体的技术,又称其为芯片实验室([/size][size=13px]Lab on a Chip[/size][size=13px])或微流控芯片技术。通过微流控技术可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块芯片上并自动完成分析的全过程。[/size][size=13px][size=13px] [/size]一个典型的微流控系统主要由流量控制装置和微流控芯片两部分组成,其中流量控制装置由多个部件组成,包括泵,阀门,传感器、储液管,管线等,用于气体、液体或液体混合物的微流量精密控制,流量一般低于[/size][size=13px]50ml/min[/size][size=13px]。[/size][size=13px][size=13px] [/size]微流体技术中微流量控制的基本原理是通过外力把所需要的气体或液体推入微流控芯片内,这些外力可由外部的驱动泵或压力控制装置提供。目前,研究人员主要使用的两种类型微流量控制装置分别是微量注射泵和高精度压力控制器,本文将针对这两种微流量控制装置进行分析比较,为微流控技术的实际应用提供有效的技术支持。[/size][b][size=18px][color=#339999]2. 微量注射泵[/color][/size][/b][size=13px][size=13px] [/size]微量注射泵是以往微量蠕动泵和循环泵的升级替代产品,是微流控领域经常使用的一种流量控制系统。微量注射泵可分为两类:价格便宜但会产生流量振荡的普通注射泵和价格偏贵但可以提供更高流量稳定性的无脉动注射泵。几种典型的微流量注射泵如图[/size][size=13px]1[/size][size=13px]所示。[/size][align=center][b][color=#339999][img=微流控压力泵和注射泵性能的详细分析和比较,690,138]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932237145_4550_3221506_3.jpg!w690x138.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]1 [/size][size=13px]几种典型的微流量注射泵[/size][/color][/b][/align][size=13px][size=13px] [/size]微量注射泵的主要优势是易于使用。无脉冲注射泵的主要弱点是时间响应性太慢,微流控芯片内的流量变化需要几秒到几个小时后才能达到稳定的流速,这种慢响应的弊端也是微量注射泵在数个应用领域如微液滴的制备内应用的主要限制因素。但随着采用能达到微米或纳米步长的步进电机技术,以及增加注射泵微机械部件接触的精密度,注射泵机械部件的生产质量,实验装置的流阻,实验用导管和芯片的弹性与高流阻特性等,可解决上述问题。注射泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])可以快速实现微流控实验装置的搭建。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])新型无脉冲的注射泵可产生低于[/size][size=13px]1%[/size][size=13px]的流动稳定性。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])注射液体量对于长时间的实验来讲是可知的。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵产生的最大压力可达几百个[/size][size=13px]bar[/size][size=13px]左右。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])器件内的平均流量不会因器件流阻的实际变化而发生变化(注射泵因高压而发生停止运动除外)。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])流量的响应时间在几秒到几小时内变化,这依赖于流体的阻力。响应时间的快慢可通过使用特定的微流体导管来进行调节。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])因没有流量计,在暂态过程(几秒到几个小时)中,用户不知道实际的液体流量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])如果器件的流阻增加(如因通道堵塞或灰尘产生),微量注射泵产生的压力会无限制的增加。产生的压力增加到一定程度便会反过来损坏器件。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵无法实现死端通道(类似集成微流控阀)内流体的流量控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])注射泵驱动的液体体积总量是有限制的,而不是无限的。[/size][size=13px][size=13px] [/size]([/size][size=13px]6[/size][size=13px])如果需要知道流体系统内部的压力,需要配备压力传感器。[/size][size=13px][size=13px] [/size]([/size][size=13px]7[/size][size=13px])即使是使用无脉冲的微量注射泵,也需要根据具体的实验条件来仔细的选择注射器的大小,以此来避免注射泵的步进电机造成的液体流量的周期性脉动。[/size][size=13px][size=13px] [/size]([/size][size=13px]8[/size][size=13px])流量的脉冲振荡效应可以通过使用一致性较好的微流体导管来进行降低。[/size][size=13px][size=13px] [/size]([/size][size=13px]9[/size][size=13px])环境的温度变化会对引起管路材料收缩并改变管路的内径,而内径的微小变化会导致流速发生四次方的巨大变化。同时温度改变也会引起流体内气泡的体积变化而产生不希望的流体位移,这些最终都会对微流体注射泵性能带来严重影响。[/size][b][size=18px][color=#339999]3. 微量压力泵(压力控制器)[/color][/size][/b][size=13px][size=13px] [/size]微量压力泵是一种控制容器中样品流量的新型装置,即通过在压力下将样品平稳注入微流体芯片。目前多数微流控研究都是通过使用压力控制器来完成的,因为它们可以在微流控芯片中以快速响应时间([/size][size=13px]80ms[/size][size=13px])建立无脉冲流。压力驱动的流动装置无延迟地传播流体中的压力变化,允许快速流动切换。由于没有移动的机械部件,压力驱动流的平稳运行得到进一步增强。[/size][size=13px][size=13px] [/size]目前市场上有许多不同类型的精密压力调节器,各有特点。压力调节器类型的选择取决于特定需求和应用,然而,所有压力调节器都需具备一个特点,那就是能够高精度的控制液体的流动。下图是几种典型的国外微流体压力调节器产品。[/size][align=center][b][color=#339999][img=02.几种典型的微流量压力泵,690,141]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932511670_1765_3221506_3.jpg!w690x141.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]2 [/size][size=13px]几种典型的国外微流量压力泵[/size][/color][/b][/align][size=13px][size=13px] [/size]压力和流量是一个对应关系,即通过控制施加在液体上的压力,也可以控制流体的流速,至于采用压力控制模式,还是采用流速控制模式,需要根据具体应用需要进行选择。下面是微流控装置中这两种控制模式的结构示意图。[/size][align=center][b][color=#339999][img=03.微流控装置中的压力和流量两种控制模式,690,289]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933358798_241_3221506_3.jpg!w690x289.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]3 [/size][size=13px]微流控装置中的压力和流量两种控制模式[/size][/color][/b][/align][size=13px][size=13px] [/size]如图[/size][size=13px]3[/size][size=13px]所示,在压力控制模式中,压力控制器通过调节样品储液容器上方的气体压力,将样品流体注入到微流控芯片中。为了解微流控芯片中所注入样品流体的流量,需要在微流控芯片的进口端或出口端增加一个流量传感器。如果此流量传感器作为压力控制器的测量信号,则会形成一个反馈闭环控制回路,可实现样品流体的精密流量控制。[/size][size=13px][size=13px] [/size]由此可见,与高精度注射泵相比,如图[/size][size=13px]4[/size][size=13px]和图[/size][size=13px]5[/size][size=13px]所示,通过将压力控制器与流量传感器相结合,可以实现超精确和快速响应的流量控制。[/size][align=center][b][color=#339999][img=04.注射泵和压力泵的微流控流量控制时间响应效果对比图,350,294]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933539524_3049_3221506_3.jpg!w400x337.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]4 [/size][size=13px]注射泵和压力泵的微流体流量控制时间响应性效果对比图[/size][/color][/b][/align][align=center][b][color=#339999][img=05.注射泵和压力泵的微流控流量控制稳定性效果对比图,690,321]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250934166653_4218_3221506_3.jpg!w690x321.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]5 [/size][size=13px]注射泵和压力泵的微流体流量控制稳定性效果对比图[/size][/color][/b][/align][size=13px][size=13px] [/size]压力控制泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])压力源允许无脉冲的流量流动。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])驱动液体的体积量可达到几升的液体量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])响应时间最快可达到[/size][size=13px]9 ms[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])允许死端或者封闭通道内的液体控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])当使用流量计时,允许同时控制液体的流量和压力。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])最高压力会受到限制,目前常用的压力控制器的最高输出压力仅能达到[/size][size=13px]8bar[/size][size=13px],但采用新型的压力控制器,最高输出压力可达[/size][size=13px]50bar[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])当压力不平衡时,尤其是在多个输入口进行流量切换时,压力控制器可能会产生倒流(可使用开关阀门来解决这种倒流现象)。[/size][b][size=18px][color=#339999]4. 总结[/color][/size][/b][size=13px][size=13px] [/size]综上所述,每种微流体控制系统都有各自的缺点和优点。注射泵方便,并且已经使用了很长时间,然而当面临复杂或需要精细控制微流体时,性能会受到限制(响应时间,波动和温度等等),这在微流体实验中经常碰到这种情况。[/size][size=13px][size=13px] [/size]压力泵越来越多地被使用,因为它是为微流体开发的,它完全满足用户的期望(响应性、稳定性、可重复性等等)。压力控制技术几乎涵盖了所有的微流体应用([/size][size=13px]97%[/size][size=13px]以上),并开始进入其它相关领域,如生物学和化学。同时,配套压力控制器的可选配件如传感器和切换阀等非常广泛,可以针对实验的需求而加以选择,同时这些选配件的价格下降使得其应用领域更加广泛。[/size][align=center][size=13px]~~~~~~~~~~~~~~~~~[/size][/align]

  • 低压微型反应实验装置

    低压微型反应实验装置

    Project 项目 http://ng1.17img.cn/bbsfiles/images/2016/08/201608010811_602766_3122077_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/08/201608010812_602767_3122077_3.pngTime 时间 2014 年 10 月说明:本装置适用于固定床金属反应器模拟绝热过程,测控精确,拆装方便。冷却器,可选用低温致冷,致冷温度可以设定和控制。反应后气相产物可在线分析。装置使用上、下位机控制结构,可以选用单独上位机实现自控操作,也可选用先进的计算机控制软件操作系统实现简洁,方便的人、机对话,调节、显示、记录一体化,无须专业特殊培训。主要参数 Main Date反应压力:0 ~ 5 Mpa液体流量:0.001 ~ 10sccm 或自选气体流量:1 ~ 1000sccm 或自选反应炉温度:室温~ 800℃冷却器温度:-20 ~ 0℃催化剂装量: 2 ~ 10 ml大连中嘉瑞霖流体技术科技有限公司真诚期待与您的合作,为您服务是我们的荣幸,真诚期待您的垂询。

  • 智能补水装置——水位控制设备

    智能补水装置——水位控制设备

    [size=24px][font=宋体]智能补水装置(自动补水器)采用的是光学原理,主要用于检测缺水和满水状态,控制水泵和电磁阀。通常用在鱼缸、水族馆等需要自动补水换水设备。[/font][font=宋体]智能补水器是由控制器和磁性吸盘组成,将磁性吸盘部分安装在内侧,控制器部分安装于外侧,对准安装在需要检测的水位线上,然后将电源插入控制器通电,即可检测。[/font][font=宋体]智能补水器检测原理是:当水位下降到低于补水器检测点时,补水器接收到无水信号时,则会自动控制水泵抽水,当水位升到设定位置时,补水器就会自动停止加水。[/font][font=宋体]智能补水器稳定性高、光学感应原理、免调试、安装方便(磁铁吸附安装)、可供定制服务。[img=,682,440]https://ng1.17img.cn/bbsfiles/images/2022/11/202211110938197388_4044_4008598_3.png!w682x440.jpg[/img][/font][/size]

  • 双层反应釜冷热源动态恒温控制机组压缩机启动故障说明

    双层反应釜冷热源动态恒温控制机组是制药化工行业中使用比较多的设备之一,其压缩机在无锡冠亚整个双层反应釜冷热源动态恒温控制机组中性能是比较重要的,那么在发现压缩机启动不了之后需要做好检查工作。  先检查双层反应釜冷热源动态恒温控制机组电源是否正常。电源电压不应超过或低于机组额定电压的±10%,常用的电压有3相380V、单相220V。当电压过低或过高时,不能启动双层反应釜冷热源动态恒温控制机组。有水系统的双层反应釜冷热源动态恒温控制机组压缩机组,仔细检查冷却水系统和冷冻水系统是否有水、水压是否正常,冷却水、冷冻水的管路系统是否畅通。  检查双层反应釜冷热源动态恒温控制的各种压力表、温度计、流量计、电磁阀、继电器、能量调节阀是否完好未失灵。检查双层反应釜冷热源动态恒温控制机组传动装置,若用带传动,其各种防护装置是否完全可靠,各种做错用具、防护用具是否齐全有效。检查工业双层反应釜冷热源动态恒温控制高压系统、低压系统的各类阀门,在起动或运转时的开关状态是否正确。  检查双层反应釜冷热源动态恒温控制机组曲轴箱润滑油。油面不应低于指示油位,也不应高于指示油位。若润滑油不够,应加足相同规格、型号的润滑油。检查工业双层反应釜冷热源动态恒温控制制冷剂系统是否有泄漏现象,润滑油系统是否漏油。检查储液罐的液位液面是否正常,液面应保持在三分之一到三分之二之间。  双层反应釜冷热源动态恒温控制机组在遇到简单的故障就需要及时处理,如果解决不了,联系双层反应釜冷热源动态恒温控制机组厂家-无锡冠亚进行售后故障解决。

  • 电子流量控制装置的流量校准

    一般认为,电子流量控制装置通过压力传感器和流量传感器可以获得相应的压力值和流量值。但实际上,对于从供应商处购买的传感器,都需要进行校准——因为未经校准的传感器测得的数值和实际数值可能并不一致。压力传感器稍微好一些,流量传感器则可能偏差较大。[font=微软雅黑, sans-serif]校准[/font][font=微软雅黑, sans-serif]在计量上的定义是在规定条件下,为确定计量器具示值误差的一组操作。即是在规定条件下,为确定计量仪器或测量系统的示值,或实物量具或标准物质所代表的值,与相对应的被测量的已知值之间关系的一组操作。在本文中,只进行简单的示意和举例,[color=red]说明流量传感器如何使示值接近真实值[/color],可能并不严格的遵循相应的法律和法规,同时与计量上的检定和校准也略有区别。[/font][font=微软雅黑, sans-serif]简单举例,对于未经校准的流量传感器,其信号值对应的流量是30ml/min,但通过精度和准确度较高的流量计测量,其实际流量可能是40ml/min,也可能是25 ml/min。见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/40/7e/a407ea8c51458ec224ca27729516c8e8.png[/img][/align]依上图所示,初始的流量传感器可以依据流量值-信号值做一条曲线(上图右中的实线);实际中,流量传感器在某一确定的信号输出值处,其流量可能会在一定范围内有偏差(上图右中的虚线)。换句话说,对于某一确定的实际流量(如200ml/min,见图中红线),流量传感器的信号输出值可能是3,也可能是3.5 —— 那么,电子流量控制装置流量的校准,指的就是找到其组成部件流量传感器在某一流量时的真正的信号输出值。实际操作中,一般在一定的温度、压力等条件下,为电子流量控制装置/流量传感器设定一个信号值,通过精度和准确度更高的流量计测量其实际流量;通过测定一系列的点形成信号-实际流量曲线,并将其存入电子流量控制装置内部,从而完成电子流量控制装置的流量校准。[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ae/f1/2aef1c833fcb9d04d71b14b1f3509ac3.png[/img][/align]简单来说,电子流量控制装置/流量传感器的校准就相当于色谱分析中的标准曲线法:信号值相当于峰面积,气体流量相当于样品浓度。完成校准以后,电子流量控制装置则可以正常工作。当在仪器上设定一定的流量值之后,电子流量控制装置的比例阀调节开度,使流量传感器的信号值达到曲线上设定流量对应的信号值,从而完成调节。以上是本节的全部内容,最后需要说明的是,压力传感器和流量传感器校准的方法类似。对于电子流量控制装置而言,其校准极为重要,保证准确度可以确保分析的重现性,同时也便于分析方法的比较、讨论和移植。

  • 微波等离子体高温热处理工艺中真空压力的下游控制技术及其装置

    微波等离子体高温热处理工艺中真空压力的下游控制技术及其装置

    [size=14px][color=#cc0000]  摘要:本文介绍了合肥等离子体所研发的微波等离子高温热处理装置,并针对热处理装置中真空压力精确控制这一关键技术,介绍了上海依阳公司为解决这一关键技术所采用的真空压力下游控制模式及其装置,介绍了引入真空压力控制装置后微波等离子高温热处理过程中的真空压力控制实测结果,实现了等离子体热处理工艺参数的稳定控制,验证了替代进口真空控制装置的有效性。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 问题的提出[/b][/color][size=14px]  各种纤维材料做为纤维复合材料的增强体在军用与民用工业领域中发挥着巨大作用,例如碳纤维、陶瓷纤维和玻璃纤维等,而高温热处理是提高这些纤维材料性能的有效手段,通过高温可去除杂质原子,提高主要元素含量,可以得到性能更加优良的纤维材料,因此纤维材料高温热处理的关键是方法与设备。[/size][size=14px]  低温等离子体技术做为一种高温热处理的新型工艺方法,气体在加热或强电磁场作用下电离产生的等离子体可在室温条件下快速达到2000℃以上的高温条件。目前已有研究人员利用高温热等离子体、直流电弧等离子体、射频等离子体等技术对纤维材料进行高温热处理。低温等离子体具有工作气压宽,电子温度高,纯净无污染等优势,且在利用微波等离子体对纤维材料进行高温处理时,可利用某些纤维材料对电磁波吸收以及辐射作用,通过产生的微波等离子体、电磁波以及等离子体产生的光能等多种加热方式,将大量能量作用于纤维材料上,实现快速且有效的高温热处理。同时,通过调节反应条件,可将多种反应处理一次性完成,大大降低生产成本。[/size][size=14px]  中国科学院合肥物质科学研究院等离子体物理研究所对微波等离子体高温热处理工艺进行了大量研究,并取得了突破性进展,在对纤维材料的高温热处理过程中,热处理温度可以在十几秒的时间内从室温快速升高到2000℃以上,研究成果申报了国家发明专利CN110062516A“一种微波等离子体高温热处理丝状材料的装置”,整个热处理装置的原理如图1-1所示。[/size][align=center][size=14px][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202228157595_5464_3384_3.png!w690x416.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图1-1 微波等离子体高温热处理丝状材料的装置原理图[/color][/size][/align][size=14px]  等离子体所研制的这套热处理装置,可通过调节微波功率、真空压力等参数来灵活调节温度区间,可在低气压的情况下获得较高温度,但同时也要求这些参数具有灵活的可调节性和控制稳定性,如为了实现达到设定温度以及温度的稳定性,就需要对热处理装置中的真空压力进行精确控制,这是实现等离子工艺平稳运行的关键技术之一。[/size][size=14px]  为了解决这一关键技术,上海依阳实业有限公司采用新开发的下游真空压力控制装置,为合肥等离子体所的高温热处理装置较好的解决了这一技术难题。[/size][size=14px][b][color=#cc0000]2. 真空压力下游控制模式[/color][/b][/size][size=14px]  针对合肥等离子体所的高温热处理装置,真空腔体内的真空压力采用了下游控制模式,此控制模式的结构如图2-1所示。[/size][align=center][color=#cc0000][size=14px][img=,690,334]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202229013851_5860_3384_3.png!w690x334.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-1 下游控制模式示意图[/color][/align][size=14px]  具体到图1-1所示的微波等离子体高温热处理丝状材料的装置,采用了频率为2.45GHz的微波源,包括微波源系统和上、下转换波导,上转换波导连接真空泵,下转换波导连接微波源系统和样品腔,上、下转换波导间设有同轴双层等离子体反应腔管,双层等离子体反应腔管包括有同轴设置的外层铜管和内层石英玻璃管,内层石英玻璃管内为等离子体放电腔,外层铜管与内层石英玻璃管之间为冷却腔,外层铜管的两端设有分别设有冷媒进口和出口以形成循环冷却。真空泵、样品腔分别与等离子体放电腔连通,样品腔设有进气管,工作气体及待处理丝状材料由样品腔进气管进入等离子体放电腔。微波源系统采用磁控管微波源,磁控管微波源包括有微波电源、磁控管、三销钉及短路活塞,微波由微波电源发出经磁控管产生,磁控管与下转换波导之间设置有矩形波导,矩形波导安装有三销钉,下转换波导另一端连接有短路活塞,通过调节三销钉和短路活塞,得到匹配状态和传输良好的微波。[/size][size=14px]  丝状材料由样品腔进入内层石英层玻璃管,从两端固定拉直,安装完毕后真空泵抽真空并由进气管向等离子体放电腔通入工作气体。微波源系统产生的微波能量经三销钉和短路活塞调节,通过下转换波导由TE10模转为TEM模传输进入等离子体放电腔,在放电腔管内表面形成表面波,激发工作气体产生高密度微波等离子体作用于待处理丝状材料,同时等离子体发出的光以及部分泄露的微波也被待处理丝状材料吸收,实现多种手段同时加热。双层等离子体反应腔管外围环绕设有磁场组件,外加磁场可调节微波在等离子体中的传播模式,同时可以使得丝状材料更好的重结晶,提高处理后的丝状材料质量。[/size][size=14px]  装置可以通过调节微波功率、工作气压调节温度,变化范围为1000℃至5000℃间,同时得到不同长度的微波等离子体。为了进行工作气压的调节,在真空泵和上转换波导的真空管路之间增加一个数字调节阀。当设定一定的进气速率后,调节阀用来控制装置的出气速率由此来控制工作腔室内的真空度,采用薄膜电容真空计来高精度测量绝对真空度,而调节阀的开度则采用24位高精度控制器进行PID控制。[/size][size=14px][b][color=#cc0000]3. 下游控制模式的特点[/color][/b][/size][size=14px]  如图2-1所示,下游控制模式是一种控制真空系统内部真空压力的方法,其中抽气速度是可变的,通常由真空泵和腔室之间的控制阀实现。[/size][size=14px]  下游控制模式是维持真空系统下游的压力,增加抽速以增加真空度,减少流量以减少真空度,因此,这称为直接作用,这种控制器配置通常称为标准真空压力调节器。[/size][size=14px]  在真空压力下游模式控制期间,控制阀将以特定的速率限制真空泵抽出气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整抽气流量。压力过高,控制阀会增大开度来增加抽速,压力过低,控制阀会减小开度来降低抽速。[/size][size=14px]  下游模式具有以下特点:[/size][size=14px]  (1)下游模式作为目前最常用的控制模式,通常在各种条件下都能很好地工作;[/size][size=14px]  (2)但在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化、等离子体事件的开启或关闭使得温度突变而带来内部真空压力的突变。此外,某些流量和压力的组合会迫使控制阀在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。[/size][size=14px]  (3)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。[/size][size=14px][b][color=#cc0000]4. 下游控制用真空压力控制装置及其控制效果[/color][/b][/size][size=14px]  下游控制模式用的真空压力控制装置包括数字式控制阀和24位高精度控制器。[/size][size=14px][color=#cc0000]4.1. 数字式控制阀[/color][/size][size=14px]  数字式控制阀为上海依阳公司生产的LCV-DS-M8型数字式调节阀,如图4-1所示,其技术指标如下:[/size][size=14px]  (1)公称通径:快卸:DN10-DN50、活套:DN10-DN200、螺纹:DN10-DN100。[/size][size=14px]  (2)适用范围(Pa):快卸法兰(KF)2×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]/活套法兰6×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]。[/size][size=14px]  (3)动作范围:0~90°;动作时间:小于7秒。[/size][size=14px]  (4)阀门漏率(Pa.L/S):≤1.3×10[sup]?-6[/sup]。[/size][size=14px]  (5)适用温度:2℃~90℃。[/size][size=14px]  (6)阀体材质:不锈钢304或316L。[/size][size=14px]  (7)密封件材质:增强聚四氟乙烯。[/size][size=14px]  (8)控制信号:DC 0~10V或4~20mA。[/size][size=14px]  (9)电源供电:DC 9~24V。[/size][size=14px]  (10)阀体可拆卸清洗。[/size][align=center][color=#cc0000][size=14px][img=,315,400]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202231249739_6263_3384_3.png!w315x400.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图4-1 依阳LCV-DS-M8数字式调节阀[/color][/align][size=14px][color=#cc0000]4.2. 真空压力控制器[/color][/size][size=14px]  真空压力控制器为上海依阳公司生产的EYOUNG2021-VCC型真空压力控制器,如图4-2所示,其技术指标如下:[/size][size=14px]  (1)控制周期:50ms/100ms。[/size][size=14px]  (2)测量精度:0.1%FS(采用24位AD)。[/size][size=14px]  (3)采样速率:20Hz/10Hz。[/size][size=14px]  (4)控制输出:直流0~10V、4-20mA和固态继电器。[/size][size=14px]  (5)控制程序:支持9条控制程序,每条程序可设定24段程序曲线。[/size][size=14px]  (6)PID参数:20组分组PID和分组PID限幅,PID自整定。[/size][size=14px]  (7)标准MODBUS RTU 通讯协议。两线制RS485。[/size][size=14px]  (8)设备供电: 86~260VAC(47~63HZ)/DC24V。[/size][align=center][size=14px][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232157970_4559_3384_3.jpg!w500x500.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图4-2 依阳24位真空压力控制器[/color][/size][/align][size=14px][b][color=#cc0000]5. 控制效果[/color][/b][/size][size=14px]  安装了真空压力控制装置后的微波等离子体高温热处理系统如图5-1所示。[/size][align=center][size=14px][color=#cc0000][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232573625_5179_3384_3.png!w690x395.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-1 微波等离子体高温热处理系统[/color][/align][size=14px]  在热处理过程中,先开启真空泵和控制阀对样品腔抽真空,并通惰性气体对样品腔进行清洗,然后按照设定流量充入相应的工作气体,并对样品腔内的真空压力进行恒定控制。真空压力恒定后开启等离子源对样品进行热处理,温度控制在2000℃以上,在整个过程中样品腔内的真空压力始终控制在设定值上。整个过程中的真空压力变化如图5-2所示。[/size][align=center][size=14px][color=#cc0000][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234216839_5929_3384_3.png!w690x419.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-2 微波等离子体高温热处理过程中的真空压力变化曲线[/color][/align][size=14px]  为了更好的观察热处理过程中真空压力的变化情况,将图5-2中的温度突变处放大显示,如图5-3所示。[/size][align=center][size=14px][color=#cc0000][img=,690,427]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234347767_4036_3384_3.png!w690x427.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-3 微波等离子体高温热处理过程中温度突变时的真空压力变化[/color][/align][size=14px]  从图5-3所示结果可以看出,在300Torr真空压力恒定控制过程中,真空压力的波动非常小,约为0.5%,由此可见调节阀和控制器工作的准确性。[/size][size=14px]  另外,在激发等离子体后样品表面温度在几秒钟内快速上升到2000℃以上,温度快速上升使得腔体内的气体也随之产生快速膨胀而带来内部气压的升高,但控制器反应极快,并控制调节阀的开度快速增大,这反而造成控制越有超调,使得腔体内的气压反而略有下降,但在十几秒种的时间内很快又恒定在了300Torr。由此可见,这种下游控制模式可以很好的响应外部因素突变造成的真空压力变化情况。[/size][size=14px]  上述控制曲线的纵坐标为真空计输出的与真空度对应的电压值,为了对真空度变化有更直观的了解,按照真空计规定的转换公式,将上述纵坐标的电压值换算为真空度值(如Torr),纵坐标换算后的真空压力变化曲线如图54所示,图中还示出了真空计电压信号与气压的转换公式。[/size][size=14px]  同样,将图5-4纵坐标放大,如图5-5所示,可以直观的观察到温度突变时的真空压力变化情况。从图5-4中的转换公式可以看出,由于存在指数关系,纵坐标转换后的真空压力波动度为6.7%左右。如果采用线性化的薄膜电容式真空计,即真空计的真空压力测量值与电压信号输出值为线性关系,这种现象将不再存在。[/size][align=center][color=#cc0000][size=14px][img=,690,423]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236297989_3820_3384_3.png!w690x423.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][align=center][size=14px][img=,690,421]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236397212_4575_3384_3.png!w690x421.jpg[/img][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-5 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][size=14px][b][color=#cc0000]6. 总结[/color][/b][/size][size=14px]  综上所述,采用了完全国产化的数字式调节阀和高精度控制器,完美验证了真空压力下游控制方式的可靠性和准确性,同时还充分保证了微波等离子体热处理过程中的温度调节、温度稳定性和均温区长度等工艺参数,为微波等离子体热处理工艺的推广应用提供了技术保障。另外,这也是替代真空控制系统进口产品的一次成功尝试。[/size][size=14px]  [/size][size=14px][/size][align=center]=======================================================================[/align][size=14px][/size][size=14px][/size]

  • 气相色谱中的电子流量控制装置概述

    1 概述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用电子流量控制装置进行流量/压力控制的装置和技术,岛津称作AFC和APC,安捷伦称作做EPC,瓦里安称作EFC,PE则称之为PPC。无论使用什么样的名词,一言概括,就是可以对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的载气(以及氢气、空气等各种辅助气体)进行自动化的流量设定和压力设定,避免了重复性的、简单繁琐的使用皂膜流量计手动测定流量;同时,也可以有更多的流量/压力操作模式,如使用压力编程、流量编程等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/85/8b/5858b3500c995683ff3ef85201d0e334.png[/img][img]https://img.antpedia.com/instrument-library/attachments/wxpic/02/52/50252701047c00b67f30eef56f064434.png[/img]国内厂家对应用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的电子流量控制装置的研究起步较晚,早期多集中在单个比例阀和传感器构成的简单电子流量控制模块的使用上,类似于质量流量计的模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/06/cf/206cf3f6eff14718ef9d9bd8abc8be8e.jpeg[/img]上述模式主要应用于单气路通道的填充柱载气控制、检测器的燃气(氢气)、检测器的助燃气(空气)以及尾吹气的使用上;对于毛细柱进样口等需要多气路通道(载气、分流、隔垫吹扫)的结构而言,初期时候是将多个上述模块分别安装的载气、分流、隔垫吹扫气路上,但是实际使用效果很差;后期则逐渐在模块中安装压力传感器,使用压力控制柱前压和毛细柱的载气流量,使用上述模块控制分流流量;目前,多数厂家已经抛弃上述模式,逐渐转向多气路通道(载气、分流、隔垫吹扫)整体和关联调节的集成式的气路模块。二 组成部件和简单的工作原理使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/5c/56/55c562d04af13eec09a42850ee170c6a.png[/img]其中:气路部件用以气体穿过,同时在气路部件上安装比例阀、流量传感器、压力传感器等其他部件;气路部件一般为金属材质;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/be/63/3be636931161170518396a8f833014ba.png[/img]比例阀通过调节开度的大小来调节出口处的流量或者压力;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/bd/5e/2bd5eed5a52e4b81c88d76c8bdfd5be3.png[/img]流量传感器用以测量比例阀前或者比例阀后流量的大小;压力传感器用以测量比例阀前或者比例阀后压力的大小;在一个电子流量控制模块中,可能只安装流量传感器或者压力传感器,也可能两者同时安装。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/3c/ec/63cec76faee1a7d47079b33fad1de5bf.png[/img]另外,在出口之后根据实际需要,还可能安装有气阻等部件电子流量装置工作的简单原理是:控制电路获取仪器设定的流量或者压力的数值,通过比较压力传感器或者流量传感器的实测值,来调节比例阀的开度大小,从而使设定值和实测值相同。以上是本节的全部内容,在随后的文章中将介绍电子流量控制装置的具体工作模式和其他相关内容,敬请关注

  • 更安全、精密和快速的一次性生物反应器袋充气压力控制的解决方案

    更安全、精密和快速的一次性生物反应器袋充气压力控制的解决方案

    [color=#000099][b]摘要:目前的一次性生物反应器袋充气压力控制普遍只使用了电气比例阀或双阀压力控制器,此种充气控制方式中,压力安全监控无法自动反馈和响应、所控压力并不是真正的反应器袋压力,且充气速度较慢。本文针对现有技术存在的问题进行了改进,提出采用串级控制法,通过外置压力控制器和传感器,以比例阀作为执行机构组成双闭环控制回路,可大幅提高控制精度和充气速度,更重要的是可实现充气压力安全监控和报警自动处理。[/b][/color][align=center][/align][align=center]~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#000099]一、问题的提出[/color][/size][/b]一次性生物反应器(Single Use Bioreactor)或用后可弃生物反应器(Disposable bioreactor)是使用一次性袋的生物反应器,代替由不锈钢或玻璃制成的培养容器,简称SUBs。与可重复使用的生物反应器相比,一次性生物反应器(SUBs)具有的重要优势是减少了工艺认证难度,无需清洁认证,缩短了停机时间和周转时间。在所有的一次性生物反应器使用过程中,都存在一个充气步骤,需要将反应器充气到指定压力。但一次性生物反应器生物反应器袋并不属于压力容器,过度加压会造成反应器袋的破裂、泄漏或其他故障。因此,一次性反应器袋的准确充气加压必须考虑到在生长期间引入、消耗和产生的气体,以及培养基、消泡剂和其它引入流体的影响。目前常用的SUB充气控制装置是采用电气比例阀,也有采用类似电气比例阀的双阀压力控制器,整个充气压力控制装置如图1所示。[align=center][img=一次性生物反应器典型充气压力控制系统结构示意图,690,246]https://ng1.17img.cn/bbsfiles/images/2022/11/202211011730388558_6420_3221506_3.jpg!w690x246.jpg[/img][/align][align=center][color=#000099]图1 一次性生物反应器袋典型充气压力控制系统结构示意图[/color][/align]在实际应用中,图1所示的充气压力控制系统存在以下两方面问题:(1)安全性问题:在图1充气压力控制系统中,双阀压力控制器或电气比例阀都内置有压力传感器,此传感器测量的是出压口处的压力,并不代表一次性生物反应器袋的内部压力。因为,出于安全性考虑,还需增加一个压力表来监控反应器袋的真实压力。因此,很多SUB制造商希望更准确的直接控制一次性生物反应器袋的内部压力,并同时具有报警功能。(2)准确性和滞后问题:由于压力控制器和电气比例阀远离反应器袋,所控压力与反应器袋希望的压力值有一定偏差,而且这种充气控压方式存在明显滞后现象,充气速度较慢。[b][size=18px][color=#000099]二、串级回路充气压力控制[/color][/size][/b]为了解决上述一次性生物反应器袋充气压力控制中存在的问题,本文提出一种更精确可靠且快速的充气压力控制方法,其核心技术是采用串级控制方法,即对图1所示的压力控制系统进行了改良,增加一个独立的压力控制器。新型充气压力控制系统如图2所示。[align=center][img=生物反应器袋新型串级双回路充气压力控制系统结构示意图,690,346]https://ng1.17img.cn/bbsfiles/images/2022/11/202211011731023461_8401_3221506_3.jpg!w690x346.jpg[/img][/align][align=center]图2 生物反应器袋新型串级双回路充气压力控制系统结构示意图[/align]图2所示的升级改良后的新型充气压力控制系统,主要有以下几方面的特点:(1)所采用经典的串级控制法,以电气比例阀作为独立的内部执行回路,再外接独立的压力控制器和压力传感器,结合电气比例阀组成外部控制回路,由此构成的串级控制结构形式,可充分发挥串级控制法能提高控制精度和加快充气速度的优势,有效提高压力控制精度和缩短充气时间,此特性对大容积一次性反应器袋的充气过程尤为具有优势。(2)外接的压力传感器直接安装在反应器袋上,更能准确监测反应器袋的内部压力。(3)外接的压力控制器具有超压报警功能和相应的开关控制信号输出。如果反应器袋内部压力超过设定警戒线后,可立刻报警并输出开关信号驱动安全阀放气。(4)压力控制器采用的是24位ADC和16位DAC,具有超高的压力测量和控制信号模拟量输出精度,另外通过双精度浮点运算,可实现最小0.01%的超高精度压力控制调节。(5)压力控制器可存储多个充气压力控制参数,便于不同容积大小的一次性生物反应器袋的充气压力控制而无需再进行设置和调整。(6)控制器可具有两通道形式,即一个压力控制器可同时控制两个电气比例阀实现两个一次性生物反应器袋的充气压力控制。(7)压力控制器带RS 485通讯,标准MODBUS协议,即可独立运行,也可与上位机通讯。(8)随机配的软件可方便采用计算机对压力控制器进行遥控,避免繁复的仪器按钮操作。[b][size=18px][color=#000099]三、总结[/color][/size][/b]综上所述,通过上述新型串级控制系统,可有效提高一次性生物反应器袋充气过程中压力控制的安全性、精度和速度,并具有操作便捷和可扩展的特点。同时此种串级双回路结构适用于各种形式和规格的电气转换器、电气比例阀和双阀压力控制器。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~[/align]

  • 在线脉冲清灰电脑控制仪

    在线脉冲清灰电脑控制仪

    SXC系列化产品:SXC-8A(在线脉冲)、SXC-8B(离线脉冲和气箱脉冲)、SXC-8C(反吹风)等,是我厂2004年开发的新产品,适用于各类袋式除尘系统的电脑控制仪。从2005年起将全面替代原有AL-8和SXC-1型及部分PLC程控柜老产品。中小除尘系统用的SXC型电脑控制仪,其中央控制单元选用美国microchip公司生产的新PIC单片机,充分发挥了它的物美价廉的软硬件资源;电源选用强抗干扰的开关型净化电源、电路进行了优秀的简化设计;中央控制单元与输出用光电隔离器,输出选用超大功率输出管(15A)或固态继电器,以大马拉小车来确保工作的高可靠性,从而实现了上述的四大特点。大除尘系统用的SXC型电脑控制仪,是PIC单片机、PLC、固态传感器三者的电子数字集成系统,与单独的单片机或PLC相比,具有功能更强、操作更灵活、可靠性更高,而且价格比PLC大幅度下降,是我厂开发的又一高新技术产品。8A1-8为1~8路(门)输出,8A1-16为1~16路(门),8A1-128为128路(门)。1、脉冲电磁阀阀数选择:1~8、9~16、17~40、40~128门四种(具体数字由用户订货时提出);2、每门输出功率:DC24V / 1.5A (一个电磁阀的电流为0.6~0.8A,需AC220V或110V输出请用户订货时提出);3、脉冲宽度: 0.01~0.25秒±0.001(出厂时已设置在通用值0.08秒); 4、脉冲间隔: 1~255秒±0.01(出厂时已设置为10秒)5、脉冲周期(循环间隔): 0~255分钟±1秒(出厂时已设置在0分) 上述三个时间设定范围,可根据用户特殊要求修改软件而确定。6、定时/ 定差压(或本地/远程)两种清灰控制方式任选(出厂时已设置为定时)。7、交流输入电源电压允许大范围波动:AC160~260V。[img=,200,126]http://ng1.17img.cn/bbsfiles/images/2017/05/201705051209_01_3163882_3.jpg[/img]

  • 升级试验机的拉伸装置中的控制器

    改造升级方案加热炉的改造将原有的一个固定对开式电阻加热炉,改造升级为两个移动对开式电阻加热炉。具体改造方法是在试验机上增加旋转臂炉架,如所示。旋转臂炉架分前臂和后臂两部分,分别与试验机底座上的立柱和加热炉连接。通过调节旋转臂炉架的位置不仅能相对试验机调整加热炉的高度,而且能方便地将高温炉炉膛和试验机的夹头中心轴线调整到适当的位置。  可旋转的对开式电阻加热炉示意图两个可移动对开式电阻加热炉的主要参数如下:外形尺寸320mm440mm,炉膛尺寸80mm320mm,均热带150mm,加热炉上、中和下三段发热体(镍铬电热合金丝)的直径均为1.0mm,绕制成螺旋体。加热炉上、中和下三段发热体的最大功率分别为1000,2000和1000W,试样上绑扎热电偶(K型热电偶)与加热炉上、中和下三段发热体和各段温度控制器对应。高温拉伸夹具的改造改造前拉杆和试验机保持相对的固定关系,在进行完一次高温拉伸试验后要等待高温拉杆冷却到室温状态(或接近室温)后,才能进行下一次高温拉伸试验的控温过程。为提高工作效率,对试验机的高温拉伸夹具也进行了改造。重新设计了高温拉伸夹具,在夹具的上部分增加隔热板,在隔热板上增加可以调节高度的悬挂固定杆,从而有效地解决了高温拉杆和试验拉棒在高温环境中产生的热膨胀变形问题。悬挂固定杆(根据不同试样的长度调节以保证试样位于加热炉的中央)可以保证高温夹具位置在高温炉中保持相对固定,解决了不同试样造成的在加热炉内的相对位置不同的问题,提高了控温过程中的精度。另外,加入悬挂固定杆后,相当于增加了一个把手,实现了在高温试验过程结束后将已拉断试样快速拿出,将另一支含有高温试样的拉杆装入加热炉内,从而有效地提高了加热炉的利用效率。  同时把以上设计为两个可以移动的加热炉,在试验机后侧两端分别增加一个支柱,可以再次提高一倍的工作效率。最后,将高温夹具设计为上下两部分可以与拉伸试验机分离的结构部件,待保温结束后再与拉伸试验机连接进行高温拉伸试验,其他时间可以利用该试验机进行常温拉伸等试验,从而可以实现试验机的最大利用率。温度控制器的升级该试验机高温装置原温度控制仪表功能很简单,主要存在如下缺点:由于其控制方式为加热、保持和停止三位式控制,存在着温度控制波动大、温度控制精度差和加热功率不可调节等缺点,因而能源浪费大,加热效率低;该温度控制仪表老化严重,存在着温度控制失灵等故障,仪表控制精度难以满足相关高温拉伸试验标准的精度要求,而且此仪表要求日常频繁维护。因此,对试验机高温拉伸装置中的温度控制器进行了升级,优化了控制器的控制参数。通过调研,笔者决定采用国产宇电A1-808P仪表替代原控制仪表,主要增加了程序控制和手动调节等方便试验控制的功能。A1-808P仪表属于智能型控制仪表,在整个温度控制中可以人工干涉控制参数,以保证试验的精度要求。在应用人工智能调节算法功能后,能自动学习系统特性。当自整定完成后,虽然初次控制时效果不太理想,但第二次使用时便能获得非常精确的控制。

  • 【原创】[第二届原创大赛]-----厂家总工程师/高级工程师处理焦炭反应性及反应强度测定装置故障

    【原创】[第二届原创大赛]-----厂家总工程师/高级工程师处理焦炭反应性及反应强度测定装置故障

    [img]http://bbs.instrument.com.cn/images/affix.gif[/img][url=http://bbs.instrument.com.cn/download.asp?ID=194675]厂家总工程师高级工程师处理焦炭反应性及反应强度测定装置故障.doc[/url]厂家总工程师/高级工程师处理焦炭反应性及反应强度测定装置故障一、用途焦炭反应炉用于高炉炼铁用焦的焦炭反应性及反应强度的测定。二、原理整套仪器由特制高温反应电炉、计算机控制系统。N2、CO2气体供给箱,Ⅱ型转鼓自动升降装置等组成。计算机控制系统控制高温反应电炉按规定速率升温并按给定温度控温。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001062220_194731_1630106_3.jpg[/img]控制系统流程图 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001062220_194732_1630106_3.jpg[/img]三、故障及处理通过实验室内部比对测试及实验室间的比对分析测试发现其焦炭反应性CRI及反应后强度CSR的重复性均超过下列数值: CRI: r≤2.4% CSR: r≤3.2%到现场处理故障时发现,计算机不能启动,随即认为是控制仪表有问题,于是将其发往供货厂家进行维修,但过几日控制仪表修复返回后经厂家技术人员安装、调试、数据测试后仪器运行正常。运行一个月后,再次出现数据超差的现象,于是申请采购部门进行退货处理,将该控制仪表和计算机再次退回原厂家,经过厂家一周的鉴定,厂家决定技术总工程师进行处理,到达现场后,首先,对返修的控制仪表和电脑进行安装、调试,直接给控制仪表一个毫伏信号,对控制仪表的准确度、精度和稳定性进行测试,结果发现控制仪表一切正常,后将热电偶和补偿导线接好,在测温端用温度计进行测量后发现,测量温度和计算机显示温度不一致,于是对热电偶和补偿导线进行检查和测试,结果发现,补偿导线无信号,热电偶插入的深度不够,热电偶的热电极和保护套管位置相差太远,之后,将热电偶和补偿导线移交质检部门进行质量检定,随即更换厂家指定的热电偶和补偿导线,并由厂家指导插入深度的操作,经最后的检查发现一切就位后,开始送电取样测试,到第二天,返回测试结果后发现,反应性偏低,于是,厂家对气路系统进行检查,发现,连接胶管由于化学药品的腐蚀均已老化变硬,难以起到连接作用,导致密封不严而产生漏气,据此,厂家认为这样故障点和现象就对应起来了,由于漏气而产生的反应性偏低这是相一致的。之后,更换新胶管对仪器进行测试,做平行试验分析,做实验室内部和实验室间的平行试验,通过数据对比,均满足误差要求。四、总结与体会关于此次由厂家总工来厂维修的整个过程,确实暴露出了一些问题,一开始总是认为控制仪表的问题,其实应该将维修思路拓展一下,不能局限于一个圈子,另外,应该确定故障的大体方向,即从总的方面确定故障到底出现在那一部分,是控制部分、测量部分、气路部分还是操作部分,所以,应锁定范围,这是第一,其次,才是具体的检测和诊断,针对本次维修,和操作有关、和测温部件的质量也有关系,另外,由于气路部分的胶管受到化学药品的腐蚀会发生老化变硬,因此,应该经常对其进行检查和更换。特别是测温部件应有严格的入库产品的质量检定手段和程序,对于操作也严格按照试验方法或培训来进行,只有以上几点都达到要求和标准,仪器才能正常工作,数据才准确、精度才能上去。 综上,操作、日常维护、维修、入库部件质量的把关、仪器的定期检定都是影响试验数据超差的原因。建立一套完整的管理体系对于避免该类事件的发生具有重要意义,另外,提高个人的维修水平也是很重要的一环。

  • 控制仪器的电脑大家使用什么系统?

    前段时间听一个岛津的安装工程师说用户电脑是64位的win7系统,装不了工作站。控制仪器的电脑大家使用什么系统?winXP、win7、win98、win2000……使用过程当中是否有什么奇奇怪怪的问题,例如链接不上仪器之类的。

  • 【国产好仪器讨论】之北京祥鹄科技发展有限公司的电脑微波催化合成/萃取仪(XH-100A)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C44721%2Ejpg&iwidth=200&iHeight=200 北京祥鹄科技发展有限公司 的 电脑微波催化合成/萃取仪(XH-100A)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 仪器简介:XH-100A型祥鹄电脑微波催化合成/萃取仪获得国家发明专利号:200820079378.5,是应用先进的微波技术作为物理催化手段的新型化学反应装置。主要由微波催化仪主机、微电脑智能控制系统、高精度温度传感器、回流冷凝系统等组成。仪器使用先进的温度传感器,对反应温度进行实时精确监测;采用独创的电脑自学习技术,自动调节微波功率,智能控温保温,控温精度达±1℃。大容量不锈钢腔体,耐腐蚀,耐高温,微波泄漏符合国家标准。仪器操作简单,界面友好,您可轻松制订各种实验方案,并对实验过程进行全程监控。XH-100A的优越性能,使您的实验过程更简单,实验结果更加理想,让您真正体验到化学实验的新感觉。 该仪器能催化加成、取代、酯化、水解、烷(酰)基化、聚合、缩合、环合和氧化等许多类型的有机、药物和生物化学反应及食品、天然产物和矿物的溶剂萃取等物理过程。 适用于有机合成化学、药物化学、食品科学、检疫防疫、军事化学、分子生物学、分析化学、无机化学、石油化工、材料科学、生物医学等相关领域。该仪器在上述领域中具有重要的应用价值,通过焓效应和熵效应诱导或加速化学反应和物理过程,使反应速度比常规方法加快数百倍甚至数千倍,同时提高反应选择性和收率,使过去许多难以发生或速度很慢的化学反应或物理过程变得容易实现和高速完成。技术参数:1.功率:100~1000W 10档自动可调 2.测温和控温范围:0~300℃ 3.测温精度:≤±0.2℃ 控温精度:≤±1℃ 4.大容量不锈钢腔体耐腐蚀、耐高温,外观美观大方 5.反应容积:10~1500mL 6.液晶显示反应条件、温度曲线 7.可储存10个反应条件,可随时进行打印 8.提供不同速度磁力搅拌,使反应更加充分,温度更加均匀 9.友好的人机界面和简便的键盘操作:通过简明的屏幕提示,轻易完成操作过程 10.高精度接触式镀铂金防腐温度传感器,实时监测反应温度,准确控制反应进程 11.先进的电脑温控自学习功能,全自动智能调节保温功率 12.开放式反应体系,可安装滴液漏斗和冷凝管等进行回流反应,微波泄漏符合国家标准,安全可靠。主要特点:祥鹄XH-100A电脑微波催化合成/萃取仪,是专门为催化合成萃取开发研制的产品,具有以下优势和特点: 1. 功率100-1000W,可根据实验的要求和反应容积进行调整。 2....【了解更多此仪器设备的信息】

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制