电压标准校正系统

仪器信息网电压标准校正系统专题为您提供2024年最新电压标准校正系统价格报价、厂家品牌的相关信息, 包括电压标准校正系统参数、型号等,不管是国产,还是进口品牌的电压标准校正系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电压标准校正系统相关的耗材配件、试剂标物,还有电压标准校正系统相关的最新资讯、资料,以及电压标准校正系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

电压标准校正系统相关的厂商

  • 上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。 “甄准 = 甄选标准” *服务理念:甄准,甄心倾听您每一个标准! *产品定位:甄准,甄选好标准品! *品牌形象:标准品,甄准大品牌! 自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。凭借世界一流的产品和服务,甄准生物与广大客户建立了长期稳定的战略合作关系,被众多企业和科研机构认定为“指定供应商”,得到了政府部门的关怀和有力支持。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。 甄准生物集后发优势与众多国际一流品牌合作,并陆续成为他们在中国区的总代理或者一级代理,现合作的优质供应商有:加拿大TRC、TLC,爱尔兰Reagecon、Megazyme,美国ChromaDex、Inorganic Ventures、Sigma-Aldrich、NIST、Sp2、Cayman,英国LGC、Ultra,日本和光WAKO、Shodex、JP、TCI,德国Witega、Dr.E、PSS 等。同时,还提供美国USP标准物质、欧洲药典标准物质EP等。 甄准生物将一如既往,关注您的研发生产项目,为您提供最高性价比产品和服务。------------------------------------------------------------------------------------------------------------------------------------------Striving for high quality products and immediate service, we, SHANGHAI ZZBIO CO., LTD, shall do our best to ensure that your experiments and projects will be successful.Our core business is to supply quality reference standard materials, high purity bio-chem reagents and technical consultancy to laboratories, universities, research institutions, hospitals, pharmaceutical companies, and drug manufacturers. These products can be supplied in quantities from a few milligrams to grams, and even to kilograms.If you have special requirements, please contact us freely. We have considerable experience in custom-made products and will be very glad to discuss your needs.
    留言咨询
  • 国家标准物质资源共享平台 标准物质作为测量参考标准,是用于测量过程控制和测量结果评价不可缺少的工具,是建立一致可比的全球测量互认体系的物质基础和保障。它的作用正如一把尺子,只不过衡量的对象不再是简简单单的长度,而是众多检测领域所涉及的化学、生物、工程、物理等众多特性量或成分量。作为化学测量标尺,标准物质所发挥的作用也是多维的,它可用于检测方法评价、检测仪器评价、待测样品测试、检测环境评价、实验人员与检测实验室能力的评价等。使用标准物质对于改进检测工作质量,提高检测准确度,保证检测结果的一致性和有效性具有重要意义,继而可为科技进步与创新、重大决策以及经济和社会发展中所涉及的公平贸易、标准制定、实施和验证、民生保障等提供坚实的支撑。2010年世界计量日宣传语中曾指出:“随着全球逐步从最近的金融危机中挣脱出来、随着政府对经济重建工作的展开.我们能够发现:科技已成为推动经济增长与繁荣的原动力。而经济的增长和繁荣依靠以相同的国际参考标准所进行的正确测量.一个世界.如果没有准确的计量,那它就是一个科技.贸易、社会无法交流的世界。就是一个充斥着错误与不确定的世界。” 国家标准物质资源共享平台主管部门为国家市场监督管理总局。牵头单位为中国计量科学研究院,具体由中国计量科学研究院化学计量与分析科学研究所(国家标准物质研究中心)承担,该所担负着研制基标准物质、建立和完善与国际等效一致的化学计量量值传递和溯源体系、建立并保持有国际竞争力的国家化学分析测量系统和能力的任务。 国家标准物质资源共享平台融标准物质信息查询、实物共享推广、研发应用技术交流、资源规划发展研究等功能为一体,系统构架了包括技术规范、资源研发、质量评价、实物与信息更新维护、共享在内的资源整合与共享服务体系,建立了设施功能完善、动态信息化管理的国家标准物质中心实物库,实现了全部6000余种国家有证标准物质资源的信息共享,资源品种数量居世界前列,并通过资源质量标准的国际接轨和广泛的国际交流合作,有力推动了资源的国际互认与共享。平台资源涉及环境、化工、钢铁、地质、物化、有色金属、核材料、食品、临床、煤炭、工程技术、建材和高分子材料等13个应用领域,累计实物资源共享量超200万单元,网站访问量超100万人次,用户黏着度在全部科技平台评比中排名第五,平台及平台资源在国内外均享有较高知名度,服务区域遍及全国各省市(含港、澳、台)和东南亚、欧美等20多个国家、地区,并成为我国标准物质的主要获取渠道。按1份标准物质支撑20次测量估算平台共支撑我国各领域约4000万次测量结果实现准确可比,避免了由重测、误测带来的大量检测成本浪费及连带损失,有利促进了国家科研、工农业生产、贸易等各项事业的发展。平台在重大检测领域中应用成效凸显,多次为奥运食品检测、奶粉中三聚氰胺检测、水资源调查等提供多方位、优质服务,为日常检测工作中存在的“检不准”的问题提供有效的解决办法,对支撑科技创新及我国环保、食品安全、大众健康等各项民生事业发展,发挥了关键的作用。 平台规模化建设同时提升了我国标准物质领域的整体研究水平与国际地位。与国际接轨的平台技术规范体系对本行业科技进步不断产生积极影响,其中,4项规范上升为国家计量技术规范,促进了我国高端国家级标准物质的规范化研制,标准物质互认能力跻身国际前列。以平台为依托,中国计量科学研究院成为我国标准物质研究领域唯一“国际科技合作基地”。 平台作为通过国家科技部认定和绩效考核的23家国家级科技平台之一,将在保障运行的同时,通过能力的持续提升,向国家标准物质发展战略中心、标准物质知识传播、成果转化与共享中心、标准物质共性技术储备中心、标准物质国际技术合作中心的方向不断前行!
    留言咨询
  • TILO天友利是规模化运作的集团公司,旗下包括1998年成立的首家颜色管理全系统专业化企业-—深圳市天友利标准光源有限公司、控股的研发生产销售服务四位一体行业唯一工商许可的生产型企业——深圳市三恩驰科技有限公司、上海卡罗卡超仪器有限公司、苏州天友利仪器有限公司、北京天友利仪器有限公司和卡罗卡超香港有限公司。注册商标有TILO、TAYOLE、天友利、3nh、三恩驰等;持续投资研发、技术不断创新,每年都要申请多项国家**和知识产权(已拥有各项**或证书31项,正在申请的**10余项)。不断壮大的人才团队目前有博士、硕士以上人才11人,本科学历以上47人。深圳总部拥有3666平方米的研发中心、营销中心和生产基地,全球各地设有分支机构或授权代理,在深圳、上海、北京、苏州、广州等地都有自购的办公物业。工厂通过ISO、CE、TUV、RoHS、SCM、SIMT认证。集团生产经营的主要产品系列有:TILO标准光源对色灯箱、3nh电脑色差仪、3nh分辨率测试卡ISO12233、光学影像测试用照明光源及解决方案、国际色卡和光泽度仪、光测量仪等。发展历程1998年,TILO天友利深圳公司成立。1999年,天友利研发成功全球第一台多功能标准光源箱,TILO产品开始替代进口。2000-2004年,天友利上海、北京、香港、江苏、浙江分公司相继成立,同时在福建、四川、山东、天津、广州等地设立办事处。2004-2005年,TILO品牌标准光源箱的产量首超国际老牌,产销量长期稳居全球第一。2005年,开始专业销售美国爱色丽(X-rite)分光测色仪和印刷密度仪。2006年,获得日本柯尼卡美能达(KONICA MINOLTA)电脑测色仪中国授权代理。2009年,冠名赞助第31届省港杯足球赛。2000-2012年,先后获得创新科技国家**和知识产权31项。2011年,通过ISO9001国际质量管理体系认证。2012年,TILO品牌对色灯箱和3nh品牌色差仪服务客户超十万家。
    留言咨询

电压标准校正系统相关的仪器

  • 专用扫描透射显微镜HD-2700,配备了与德国CEOS GmbH公司(总经理Max Haider先生)共同开发的球差校正仪,显著提高了扫描透射电子显微镜的性能,更适合高级纳米技术研究。由于球差校正系统校正了限制电子显微镜的性能的球差,使其与标准型号显微镜相比,分辨率提高了1.5倍,同时,探针电流提高了10倍。最近,该显微镜还配备了高分辨率镜头和冷场发射电子枪,进一步提高了图像分辨率和电子束能量分辨率。同时,该型号系列还增加了一款不带球差校正的主机配置,可以以后加配球差校正进行升级。特点 高分辨率扫描透射电子显微镜成像HAADF-STEM图像0.136nm,FFT图像0.105nm(高分辨率镜头(*))HAADF-STEM图像0.144nm(标准镜头)明场扫描透射电子显微镜图像0.204nm(w/o球差校正仪)高速,高灵敏度能谱分析:探针电流× 10倍元素面分布更迅速及时低浓度元素检测操作简化自动图像对中功能从样品制备到观察分析实现无缝连接样品杆与日立聚焦离子束系统兼容配有各种选购件可执行各种评估和分析操作同时获取和显示SE&BF, SE&DF, BF&DF, DF/EDX面分布(*) 和DF/EELS面分布(*)图像。低剂量功能(*)(有效降低样品的损伤和污染)高精度放大校准和测量(*)实时衍射单元(*)(同时观察暗场-扫描透射电子显微镜图像和衍射图案)采用三维微型柱旋转样品杆(360度旋转)(*),具有自动倾斜图像获取功能。ELV-3000即时元素面分布系统(*)(同时获取暗场-扫描透射电子显微镜图像)(*) 选购件技术指标HD-2700球差校正扫描式透射电子显微镜项目描述图像分辨率w/o球差校正仪保证 0.204nm(当放大倍数为4,000,000时)w球差校正仪保证 0.144 nm(当放大倍数为7,000,000时)(标准镜头)保证 0.136nm(HAADF图像)保证0.105 nm(通过FFT)(当放大倍数为7,000,000时)(高分辨率镜头(*))放大倍数100倍 至 10,000,000倍加速电压200 kV, 120 kV (*)成像信号明场扫描透射电子显微镜:相衬图像(TE图像)暗场扫描透射电子显微镜:原子序数衬度图像(Z衬度图像)二次电子图像(SE图像)电子衍射(*)特征X射线分析和面分布(能谱分析)(*)电子能量损失谱分析和面分布(EV3000)(*)电子光学系统电子源肖特基发射电子源冷场致发射器(*)照明透镜系统2-段聚光镜镜头球差校正仪(*)六极镜头设计扫描线圈2-段式电磁感应线圈原子序数衬度收集角控制投影镜设计电磁图像位移± 1 &mu m试片镜台样品移动X/Y轴 = ± 1 mm, Z轴 = ± 0.4 mm样品倾斜单轴-倾斜样品杆:± 30° (标准镜头), ± 18° (高分辨率镜头(*))真空系统 3个离子泵,1个TMP极限真空10-8 Pa(电子枪), 10-5 Pa(样品室)图像显示个人电脑/操作系统PC/AT兼容, Windows XP监视器19-inch液晶显示器面板图像帧尺寸640 × 480, 1,280 × 960, 2,560 × 1,920 象素扫描速度快扫,慢扫(0.5至320秒/帧)自动数据显示记录序号,加速电压,下标尺,日期,时间 (*) 选购件
    留言咨询
  • 电压标准校正系统 400-860-5168转2623
    约瑟夫森电压标准系统Josephson Voltage Standard System产品描述 SupraVOLTcontrol是一个形成于耶拿物理高科技研究所的三通道微处理控制的10V约瑟夫森电压标准(JVS)系统。 它使得各种直流电压校准和测量功能变得容易。 ● 二次电压标准的校准●校准电压表线性和精度(在电压范围0到± 10 V间) SupraVOLTcontrol包含以下组件: 1. 机械制冷机,带有10伏特SIS约瑟夫森结数组和安装 在19英寸机架上的75 GHz微波电子2. JVS控制电子装置3. 寻找微波计数器的EIP578B源4. 吉时利纳伏计当作零位探测器5. 三通道极性开关6. 反应温度、湿度和气压的传感器7. 带有IEEE界面的主机电脑8. 2 kW 输入功率的压缩机组,GPS 10 MHz 参考频率接收器规 格典型校准精度(与二次约瑟夫森电压标准相比较)± 5nV @ 10V &Delta V/V10V= 5x10-10二次电压标准精度的典型校准(受二次电压规格噪声限制)± 20 nV @ 1V &Delta V/V1V=2x10-8± 20 nV @ 1V &Delta V/V10V=2x10-8 电线和反向开关的热电压 10nV@ 所有三通道外部电压表的典型增益系数g(取决于电压表的类型)&Delta g/g 3 x10-7
    留言咨询
  • 约瑟夫森电压标准系统Josephson Voltage Standard System产品描述 SupraVOLTcontrol是一个形成于耶拿物理高科技研究所的三通道微处理控制的10V约瑟夫森电压标准(JVS)系统。 它使得各种直流电压校准和测量功能变得容易。 ● 二次电压标准的校准●校准电压表线性和精度(在电压范围0到± 10 V间) SupraVOLTcontrol包含以下组件: 1. 机械制冷机,带有10伏特SIS约瑟夫森结数组和安装 在19英寸机架上的75 GHz微波电子2. JVS控制电子装置3. 寻找微波计数器的EIP578B源4. 吉时利纳伏计当作零位探测器5. 三通道极性开关6. 反应温度、湿度和气压的传感器7. 带有IEEE界面的主机电脑8. 2 kW 输入功率的压缩机组,GPS 10 MHz 参考频率接收器规 格典型校准精度(与二次约瑟夫森电压标准相比较)± 5nV @ 10V &Delta V/V10V= 5x10-10二次电压标准精度的典型校准(受二次电压规格噪声限制)± 20 nV @ 1V &Delta V/V1V=2x10-8± 20 nV @ 1V &Delta V/V10V=2x10-8 电线和反向开关的热电压 10nV@ 所有三通道外部电压表的典型增益系数g(取决于电压表的类型)&Delta g/g 3 x10-7*更多参数请参考或下载我们的资料
    留言咨询

电压标准校正系统相关的资讯

  • 新品速递 | 华盛昌推出两款专业高精度标准红外校正源
    红外测温技术作为我国科技创新规划和新兴战略产业的重点关注领域,近年来,国家和各级政府相继发布各项政策,助力和推动红外测温行业的高质量可持续发展。红外测温技术应用广泛,如何保障其测量准确性数据显示,在2021年,我国红外测温市场规模就达到650亿元。红外测温行业飞速发展,在研发、工业检测与设备维护的应用范围愈来愈广泛。市场对红外测温类产品的需求也在逐年增加之中,红外测温仪器在科研、医疗、电子建筑等各行各业中发挥着举足轻重的作用。众所周知,红外测温仪器的广泛应用与其测量准确密不可分。那么此类仪器的准确测量是如何实现的呢?这里不得不提到一款仪器——红外校准源,也就是我们俗称的黑体炉。为什么黑体炉被更多选择与其他红外校准方式相比,黑体炉这一仪器校准方式有诸多优势:1、温度稳定性高。黑体炉具有出色的温度稳定性,这意味着在红外校准过程中,其能够保持恒定的温度,从而提供稳定的红外辐射源。这有助于确保校准结果的准确性和可靠性。2、操作简便。黑体炉通常采用触摸屏操作,界面简洁直观,使得操作过程变得简单方便。此外,其体积小、重量轻的特点也便于携带,不仅适用于实验室校准,也适用于现场校准工作。3、抗干扰能力强。黑体炉采用先进的技术设计,具有强大的抗干扰能力。这有助于在复杂环境中保持校准结果的准确性和稳定性,提高红外测温的可靠性。除此,部分黑体炉还有测温范围广,升降温速度快,以及耐用性和可靠性强等优点。华盛昌提供优质解决方案华盛昌新推出了两款红外校准源——专业高精度标准红外校正源BXL-500和BXC-15很好地融合众多优点,用心打造研发,为用户提供一个高效、准确、稳定、耐用的红外校准体验。BXL-500是一款测重于高温段的专业高精度标准红外校正源,简洁大气的外观设计,体积轻便,配有可提的把手,方便移动位置,除此之外,它还具有诸多优点:1、超广高温量程。35°C到500°C的超广高温量程,可以适应多种辐射温度计、红外测温仪、红外热像仪等设备的检定需求,具有广泛的应用范围。2、大面源面板。配有6英寸的大面源面板,能够提供足够的辐射面积,提高校准的准确性和可靠性。3、升降温速度快。BXL-500升温、降温速度快,能够很好地提高工作效率,减少能源消耗,同时可获得更为准确的测量结果。4、高精度、重复率好。能够更好保证测量结果的稳定性和一致性,提高测试的精度和可靠性,有效降低校准成本和时间。5、读数清晰直观。采用彩色触摸大屏显示,数据、信息清晰可见,直观易读,而且操作简单方便,易上手。BXC-15则是一款偏重于低温段的专业高精度标准红外校正源,结构紧凑,配有可收缩的把手,整体造型简洁大方。同样采取彩色触摸大屏设计,方便读数和操作。它可以实现-15℃到120℃的超广量程测量,可满足多种需求场景的应用。另外,这款BXC-15使用的是3.26英寸(83*83mm)的面源,高精度,很好地保证了测量结果的准确和可靠,升温和降温速度也快,可有效降低能源消耗,大大提升工作效率。
  • 了解球差校正透射电镜,从这里开始
    p  作者:Mix + CCL br//pp strong前言:/strong/pp  球差校正透射电镜(Spherical Aberration Corrected Transmission Electron Microscope: ACTEM)随着纳米材料的兴起而进入普通研究者的视野。超高分辨率配合诸多分析组件使ACTEM成为深入研究纳米世界不可或缺的利器。本期我们将给大家介绍何为球差,ACTEM的种类,球差的优势,何时才需要ACTEM、以及如何为ACTEM准备你的样品。最后我们会介绍一下透射电镜的最前沿,球差色差校正透射电镜。/pp  strong什么是球差:/strong/pp  100 kV的电子束的波长为0.037埃,而普通TEM的点分辨率仅为0.8纳米。这主要是由TEM中磁透镜的像差造成的。球差即为球面像差,是透镜像差中的一种。其他的三种主要像差为:像散、彗形像差和色差。透镜系统,无论是光学透镜还是电磁透镜,都无法做到绝对完美。对于凸透镜,透镜边缘的会聚能力比透镜中心更强,从而导致所有的光线(电子)无法会聚到一个焦点从而影响成像能力。在光学镜组中,凸透镜和凹透镜的组合能有效减少球差,然而电磁透镜却只有凸透镜而没有凹透镜,因此球差成为影响TEM分辨率最主要和最难校正的因素。此外,色差是由于能量不均一的电子束经过磁透镜后无法聚焦在同一个焦点而造成的,它是仅次于球差的影响TEM分辨率的因素。/pp style="text-align: center"img style="width: 450px height: 246px " src="http://img1.17img.cn/17img/images/201803/insimg/565984ed-0352-4b62-8539-a16db18b6f6b.jpg" title="1.jpg" height="246" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong图1:球差和色差示意图/strong/pp自TEM发明后,科学家一直致力于提高其分辨率。1992年德国的三名科学家Harald Rose (UUlm)、Knut Urban(FZJ)以及Maximilian Haider(EMBL)研发使用多极子校正装置(图3)调节和控制电磁透镜的聚焦中心从而实现对球差的校正(图4),最终实现了亚埃级的分辨率。被称为ACTEM三巨头的他们也获得了2011年的沃尔夫奖。多极子校正装置通过多组可调节磁场的磁镜组对电子束的洛伦茨力作用逐步调节TEM的球差,从而实现亚埃级的分辨率。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/2080a2cf-4ab3-41ab-b731-7719f0c32d28.jpg" title="2.jpg"//pp style="text-align: center " strong 图2 三种多极子校正装置示意图/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/090bb4c0-aeea-4ab4-8601-79bcf74b7c8e.jpg" title="3.jpg"//pp style="text-align: center "strong图3 球差校正光路示意图/strong/pp  strongACTEM的种类:/strong/pp  我们在前期TEM相关内容已经介绍了透镜相关内容,TEM中包含多个磁透镜:聚光镜、物镜、中间镜和投影镜等。球差是由于磁镜的构造不完美造成的,那么这些磁镜组都会产生球差。当我们矫正不同的磁透镜就有了不同种类的ACTEM。回想一下STEM的原理,当我们使用STEM模式时,聚光镜会聚电子束扫描样品成像,此时聚光镜球差是影响分辨率的主要原因。因此,以做STEM为主的TEM,球差校正装置会安装在聚光镜位置,即为AC-STEM。而当我们使用image模式时,影响成像分辨率的主要是物镜的球差,此种校正器安装在物镜位置的即为AC-TEM。当然也有在一台TEM上安装两个校正器的,就是所谓的双球差校正TEM。此外,由于校正器有电压限制,因此不同的型号的ACTEM有其对应的加速电压,如FEI TITAN 80-300就是在80-300 kV电压下运行,也有专门为低电压配置的低压ACTEM。/pp  strong球差校正电镜的优势:/strong/pp  ACTEM或者ACSTEM的最大优势在于球差校正削减了像差,从而提高了分辨率。传统的TEM或者STEM的分辨率在纳米级、亚纳米级,而ACTEM的分辨率能达到埃级,甚至亚埃级别。分辨率的提高意味着能够更“深入”的了解材料。例如:最近单原子催化很火,我们公众号也介绍了大量相关工作。为什么单原子能火,一个很大的原因是电镜分辨率的提高,使得对单原子的观察成为可能。浏览这些单原子催化相关文献,几乎无一例外都用到了ACTEM或者ACSTEM。这些文献所谓的“单原子催化剂”,可能早就有人发现,但是因为受限于当时电镜分辨率不够,所以没能发现关键的催化活性中心。正是因为球差校正的引入,提高了分辨率,才真正揭示了这一系列催化剂的活性中心。/pp  strong何时才需要用球差校正电镜呢?/strong/pp  虽然现在ACTEM和ACSTEM正在“大众化”,但是并非一定要用这么高大上的装备。如果你想观察你的样品的原子级结构并希望知道原子的元素种类(例如纳米晶体催化剂等),ACSTEM将会是比较好的选择。如果你想观察样品的形貌和电子衍射图案或者样品在TEM中的原位反应,那么物镜校正的ACTEM将会是更好的选择。就纳米晶的合成而言,球差校正电镜常用来揭示纳米材料的细微结构信息。比如合成一种纳米核壳材料,其中壳层仅有几个原子层厚度,这个时候普通电镜下很难观察到,而球差电镜则可以拍到这一细微的结构信息(请参见夏幼男教授的SCIENCE,349,412)。/pp  strong如何为ACTEM准备你的样品:/strong/pp  首先如果没有合作的实验室的帮助,ACTEM的测试费用将会是非常昂贵的。因此非常有必要在这里介绍如何准备样品。在测试之前最好尽量了解样品的性质,并将这些信息准确地告知测试者。其中我认为先用普通的高分辨TEM观察样品是必须的,通过高分辨TEM的预观察,你需要知道并记录以下几点:一、样品的浓度是否合适,目标位点数量是否足量 二、确定样品在测试电压下是否稳定并确定测试电压,许多样品在电子束照射下会出现积累电荷(导电性差)、结构变化(电子束的knock-on作用)等等 三、观察测试目标性状,比如你希望测试复合结构中的纳米颗粒的原子结构,那么必须观察这些纳米颗粒是否有其他物质包覆等,洁净的样品是实现高分辨率的基础 四、确定样品预处理的方式,明确样品测试前是否需要加热等预处理。五、拍摄足量的高分辨照片,并标注需要进一步观察的特征位点。在ACTEM测试中,与测试人员的交流非常重要,多说多问。/pp  strong球差色差校正透射电镜:/strong/pp  球差校正器经过多年的发展,在最新的五重球差校正器的帮助下,人类成功地将球差对分辨率的影响校正到小于色差。只有校正色差才能进一步提高分辨率,于是球差色差校正透射电镜就诞生了。我们欣赏一下放置在德国Ernst Ruska-Centre的Titan G3 50-300 PICO双球差物镜色差校正TEM (300 kV分辨小于0.5埃)以及德国乌尔姆大学的TitanG3 20-80 SALVE 低电压物镜球差色差校正TEM (20 kV 分辨率小于1.4埃)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/04b96c4d-c6fe-40d2-85c0-b86ce091e6e8.jpg" title="4.jpg"//pp style="text-align: center "strong图4 Titan G3 50-300 PICO、TitanG3 20-80 SALVE及其矫正器/strong/p
  • 【自传】像差校正电镜技术先驱之Harald Rose
    p style="text-align: center "span style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "【简介】/span/strong/spanbr//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/efc046ba-50b1-4340-87d3-9ae63656c042.jpg" title="Harald Rose.jpg" alt="Harald Rose.jpg"//span/strong/span/pp style="text-align: center "strongHarald Rose/strong/pp style="text-align: justify text-indent: 2em "Harald Rose是德国物理学家。他在达姆施塔特大学学习,并获得了博士学位,在Otto Scherzer的指导下从事理论电子光学工作,在1930年代做了一些电子显微镜的开创性工作。/pp style="text-align: justify text-indent: 2em "Harald Rose的研究生涯与达姆施塔特大学和他在美国的任命有着密切的联系。在达姆施塔特大学,从1980年到2000年退休,一直担任教授。在1970年代初期,他在STEM的发明者Albert Crewe的实验室里工作过一段时间。自1970年代后期以来,他在美国各机构担任过多个职位,包括芝加哥的阿贡国家实验室。/pp style="text-align: justify text-indent: 2em "他的研究主要集中在电子透镜的像差校正。在1990年,他设计了一种可行的透镜系统来提高TEM分辨率。然后,他与Maximilian Haider和Knut Urban合作,于1998年,以实验方式实现了他的建议。/pp style="text-align: justify text-indent: 2em "自2009年以来,Harald Rose一直担任乌尔姆大学的蔡司高级教授。他获得了多个著名的奖项,包括与Haider和Urban一起获得沃尔夫物理学奖和BBVA基础科学知识前沿奖,以及与Maximilian Haider、Knut Urban、Ondrej L. Krivanek一起获得2020年度科维理奖(Kavli Prize)。他还是英国皇家显微镜学会的荣誉院士。/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "【自传】/span/strong/span/ppspan style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "/span/strong/span/pp style="text-align: justify text-indent: 2em "1935年2月14日,我在不来梅出生,是父母Anna-Luise和Hermann Rose的第二个孩子。我的父母在数学上都很有天赋。父亲出生在一个奏乐世家,他本人擅长弹奏钢琴。由于20世纪20年代初的恶性通货膨胀,祖父破产,父亲被迫经商。父亲在商业上非常成功,在1937年成为黑森州著名公司Kaffee-Hag的销售代表。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 322px " src="https://img1.17img.cn/17img/images/202011/uepic/416726c6-966b-4f3b-b7dd-1d5755b7ee9a.jpg" title="图片1.png" alt="图片1.png" width="450" height="322" border="0" vspace="0"//pp style="text-align: center "strong5岁的我(右)、母亲Anna-Luise和7岁的哥哥。/strong/pp style="text-align: justify text-indent: 2em "1937年,我们搬到了达姆施塔特,在那里,父亲在一个名为Mathildenhohe的高档社区里建造了一栋非常漂亮的房子,这是德国新艺术(Art Nouveau)的聚焦点。1939年,我们搬进了这栋房子。span style="text-indent: 2em "一年后,希特勒发动了第二次世界大战,我父亲应征加入了德国军队。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "到1944年止,我只见父亲几次,最后一次有父亲的消息是1944年2月,也就是我9岁生日那天,父亲被报道在东线的行动中失踪,我们再也没有见过他。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "1944年9月11日,由于皇家空军袭击,我们的房屋被摧毁,12,000名平民也因此丧生。幸运的是,母亲和哥哥幸存下来了,并搬到了乡下的一个小村庄。1945年3月,美国士兵抵达这里时,对我们来说,战争结束了。/span/ppspan style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "/span/strong/span/pp style="text-align: justify text-indent: 2em "同年年底,我通过了达姆施塔特实科中学的入学考试,母亲在税务局找到了一份工作。由于没有住房,我们不得不搬到房子废墟里潮湿的地下室。每当下雨天,水从楼板上滴下来,母亲就将床移到干的地方。此外,食物很难买到,在二战结束和1948年5月德国货币改革期间,我们经常饿肚子。/pp style="text-align: justify text-indent: 2em "母亲不得不同时工作和照顾两个孩子,因此没有时间帮助我们完成学校作业。幸运的是,和德国其他大多数州一样,母亲不必支付黑森州文理高中(Gymnasium)的费用。在文理高中期间,我对数学越来越感兴趣。因为没钱买昂贵的数学书,所以我经常去达姆施塔特黑森州立图书馆(Hessische Landesbibliothek),该图书馆在指定时间内免费向学生提供科学书籍,学习书籍可以帮助我轻松地理解学校的数学知识。结果,我在学校几乎没有做过任何数学题,但在考试成绩中始终是最好的。1955年初,我以优异的成绩通过了自然科学的期末考试(Abitur)。/pp style="text-align: justify text-indent: 2em "因为成绩优秀,我被录取到达姆斯达特工业大学(现为Technical University Darmstadt)学习。 当时,由于大多数房屋物尚未修复,因此严格限制出入(numerus clausus)。 span style="text-indent: 2em "那时候,由于母亲不得不从银行借钱来重建我们的房屋,家里的财务状况仍然很危急。因为在黑森州读州立大学是免费的,所以我能够上得起大学。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "我想报读电气工程课程,但由于电学的基础知识很少被提及,该课程没有达到我的期望。因为对电动力学的基础更感兴趣,所以我决定遵从自己的喜好,在学期结束的时候转到了物理和数学课。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "当时,祖父和母亲对我的决定很不满意。课程的变化对我来说并不容易,因为我错过了第一学期的物理和数学课程,这两门课程一般在4月份开始。为了赶上进度,我学习了大学理论物理学教授Otto Scherzer的力学讲义课程。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "Otto Scherzer是20世纪上半叶最著名的理论物理学家之一Sommerfeld的学生和助手。和他的老师Sommerfeld一样,Scherzer在微积分领域也很出色,并且对物理现象的本质有着深入的了解。在量子力学课程中,他通过将数学的形式主义与对原子世界神秘本质的物理解释相结合,展示出了卓越的教学技巧。由于我正确解答了所有的习题,Scherzer给我提供了一个带薪职位,即作为理论物理习题助手。我非常高兴,因为这给我带来了足够的经济支持来养活自己,而不必在假期从事建筑工作。此外,我可以免费住在母亲的房子里,那里距离学校步行只有几步路。/span/pp style="text-align: center text-indent: 0em "span style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 450px height: 340px " src="https://img1.17img.cn/17img/images/202011/uepic/6379f81a-a42e-40a5-b9c5-52e65e4615a4.jpg" title="图片2.png" alt="图片2.png" width="450" height="340" border="0" vspace="0"//span/pp style="text-align: center text-indent: 0em "strong我于1997年在达姆施塔特工业大学应用物理研究所的研讨室中介绍六极校正器的功能。/strong/pp style="text-align: justify text-indent: 2em "我很钦佩Scherzer作为老师具有的杰出能力。因此,由于已经加入Scherzer的研究所,我决定在他的指导下完成Diplom论文,课题是找出通过利用电子显微镜不同的角度散射行为来检测不同原子的可能性。结果表明,由于当时的仪器技术水平不足,无法实现这一概念。尽管这令人沮丧,但量子力学散射的深入研究为我以后的电子显微镜成像工作奠定了基础。/pp style="text-align: justify text-indent: 2em "1961年初,我获得了学士学位。那时,大多数学生和科学家都渴望在科学的中心,即美国的一个科学研究机构待上一段时间。因此,我很高兴收到了正在Scherzer研究所休假的Fischer博士的录用通知,在马萨诸塞州贝德福德的空军剑桥研究所担任为期一年的研究顾问。我的研究重点是极短光脉冲半导体光电探测器。虽然这个课题很有实际意义,但并不符合我的兴趣。/pp style="text-align: justify text-indent: 2em "1962年回到达姆施塔特,我很高兴Scherzer同意我再次加入他的研究所攻读博士学位。按照Scherzer的建议,我在自己的论文中详细研究了非旋转对称电光系统的成像特性。目的是研制能够以另一种方式实现补偿球面像差的可行系统,就像在Scherzer-Seeliger校正器中实现的那样,并研制针对圆形透镜不可避免的球面和色差进行校正的系统。这个性质被称为Scherzer定理,它阻碍了电子显微镜在低于原子位移阈值的电压下工作时的原子分辨。/pp style="text-align: justify text-indent: 2em "Scherzer用非相对论近似推导了这个结果,我花了一些时间证明它在相对论下仍然有效。此外,我还证明了在任何光轴为直线的磁性系统中,色差校正是无法补偿的,但附加的电四极子是必不可少的。/pp style="text-align: justify text-indent: 2em "尽管Gottfried Mollenstedt在一个独创性的实验中表明,Scherzer-Seeleger校正器可以补偿球差,但这种校正并没有提高电子显微镜的分辨率,因为它受到了机械和电磁不稳定性的限制,而不是透镜光学缺陷的限制。/pp style="text-align: justify text-indent: 2em "为了能真正的改进,我计算了稳定性标准,必须满足此标准才能使像差校正提高分辨率。如今,不稳定性的影响在对比传递理论中被称为信息极限。计算表明,校正元件的数量必须尽可能少,并且必须机械固定,以最大程度地减少由不稳定性引起的非相干像差。我设计了一个电磁多极校正器,该校正器由四个电磁八极元件组成,每个元件都可以激发四极和八极场以及偶极和六极场的磁场以补偿寄生对准像差,从而避免了机械运动。/pp style="text-align: justify text-indent: 2em "获得博士学位后,Scherzer为我提供了一份薪酬丰厚的助理职位,为德语国家教授资格考试工作,这需要获得“venia legendi”,即在大学任教和成为教授的资格。/pp style="text-align: justify text-indent: 2em "在我题为“球面校正消色差透镜的性能”的“取得在大学授课资格的论文(habilitsschrift)”中,我论述了当时所有已知的校正器都有巨大的离轴昏迷,从而过度地减小了视野范围。因此,这些校正器不适用于常规透射电子显微镜(TEM)。/pp style="text-align: justify text-indent: 2em "为了补偿球差和色差和轴外彗差,并尽可能减少元素数量,我设计了一种利用对称特性的新型五元素校正器。后来证明,在设计高性能的滤光器、单色仪、镜面电子显微镜中的光束分离器以及六极校正器时,引入对称特性是关键。/pp style="text-align: justify text-indent: 2em "校正器是在1972年至1982年由德国研究基金会(DFG)资助的达姆施塔特项目框架内在Scherzer研究所成功制造和测试的。实验表明,该校正器引入了过大的五阶像差。为了充分减少这种像差,于1980年加入我团队的Max Haider用十二极杆元件替代了校正器的中央八极杆元件,该元件是在他的“毕业论文(Diplomarbeit)”中研制的。但是,由于没有计算机控制,他无法在短于光学系统稳定持续的时间内校准系统。结果就是显微镜的分辨率没有得到提高,尽管该项目在1982年Scherzer去世后结束并取得了成功。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 313px " src="https://img1.17img.cn/17img/images/202011/uepic/425afc87-d62b-403e-82d4-661f1809265b.jpg" title="图片3.png" alt="图片3.png" width="450" height="313" border="0" vspace="0"//pp style="text-align: center "strong1998年,我在测试SMART项目的镜像校正器。/strongbr//pp style="text-align: justify text-indent: 2em "在通过教授资格考试一年后,我于1970年被任命为达姆施塔特工业大学(TU)理论物理学的二级教授。1972年,Albert Crewe邀请我到芝加哥大学(University of Chicago)他的小组里待了一年。在此期间,我设计了一个新的探测器,可以在扫描透射电子显微镜(STEM)中实现高效相衬。而且,我计算了由非弹性散射电子形成图像中的非局部性。结果由Mike Isaacson和John Langmore在Crewe实验室使用STEM进行了证实。之后的20年里,我一直致力于解决与非弹性散射有关的相位问题,并与Helmut Kohl合作,他在其博士学位论文中对图像形成进行了深入的量子力学描述。/pp style="text-align: justify text-indent: 2em "1976年初,我离开达姆施塔特移居美国,被任命为纽约州奥尔巴尼市卫生局首席研究科学家以及纽约州特洛伊市RPI物理系的兼职教授。在奥尔巴尼期间,我遇到了辐射损伤问题,这限制了生物样品的电子显微镜图像的分辨率。为了尽可能的降低这种不良影响,电子显微镜小组的主要任务之一就是找到在可耐受电子剂量下提供有关样品最大信息的方法。一种可能性是,许多相同粒子(如核糖体)的低剂量图像的相关性。/pp style="text-align: justify text-indent: 2em "比我早几个月加入该小组的Joachim Fran研究了该方法很多年。他的成功的开创性工作于2017年获得了诺贝尔化学奖。我研究的是寻找方法提高仪器的光学性能,可以让所有散射电子都被利用。在该项目中,我设计了几种新的电子光学元件,如磁单色仪、象限STEM探测器和像差校正的Ω成像滤镜,它们由柏林的Dieter Krahl制造并成功测试,后来被纳入蔡司的TEM中。此外,我提出了STEM中的集成差分相衬成像技术,该技术已在几年前由FEI在商用仪器中实现。我们和同事Jü rgen Fertig首次研究了聚合电子波在STEM中通过厚晶物体的传播,结果表明,如果入射波的锥角超过布拉格角,相邻原子柱之间会发生强串扰。/pp style="text-align: justify text-indent: 2em "1980年,我回到达姆施塔特大学,成为应用物理研究所的全职教授,长期从事像差校正的研究。直到1986年,我每年都要回到奥尔巴尼几个月,以保持与奥尔巴尼的联系。/pp style="text-align: justify text-indent: 2em "回到达姆施塔特后不久,我在1980年夏季发现了一种出乎意料的简单校正器,可用于消除采用对称条件的电子透镜的球差,这是我在达姆施塔特四极八极杆校正器中使用的。众所周知,六极除了有三倍像差外,还有一个小的球差,其符号与圆形电子透镜的相反。因此,如果有可能以某种方式消除大的寄生三倍像差,则该系统可以用作校正器。计算表明,如果系统对近轴射线表现出双重对称性而不受六极场的影响,这确实是可能的。这种最简单的设置可以用作STEM的校正器,它由被两个六极杆包围的两个相同的圆形透镜组成。但是,没有足够的资金来实现这种校正器,因为那时所有高分辨率电子显微镜的分辨率都受到不稳定性的限制,而不是受到透镜缺陷的限制。到1980年代末,仪器的稳定性已不再是阻碍原子分辨的主要限制因素。/pp style="text-align: justify text-indent: 2em "1989年,通过在物镜和六极校正器之间增加另一个圆透镜二倍体,我发现了一个类似光学平面系统,该系统没有球差和离轴彗差。根据这一特性,校正器可以在稳定的TEM中实现大视野的原子成像。由于电子-光学平面的高对称性和简单性,我请教了Max Haider对利用这种新型校正器成功实现像差校正的看法。/pp style="text-align: justify text-indent: 2em "当时,Max正在海德堡的欧洲分子生物学实验室开发和试验用于低压扫描电子显微镜的四极八极校正器的性能,因此,他可以对我观点的可行性做出最好的判断。令我惊讶的是,Max从一开始就坚信校正器可以提供真实的原子分辨率。但是,需要足够的资金才能实现该校正器。/pp style="text-align: justify text-indent: 2em "幸运的是,在1989年9月于萨尔茨堡举行的Dreilä ndertagung会议上,我们与Knut Urban就材料科学成功进行像差校正的前景进行了成果颇丰的讨论。Knut Urban意识到校正像差的重要性,建议向大众基金会提交一个共同的(Rose, Haider, Urban)提案,因为美国暂停了对实现像差校正的资助,其它资助机构都拒绝了该提案。与其它机构做出的令人沮丧的决定相反,大众基金会冒险于1991年开始筹资。这种支持成就了Max Haider在1997年6月成功降低基础(未校正)的点分辨率后,大众基金会有史以来最成功的一个项目。/pp style="text-align: justify text-indent: 2em "1997年,柏林电子同步加速器BESSY II投放市场,并为开发新型光子源功能的新项目提供了资金。SMART项目的组织者Alex Bradshaw和Eberhard Umbach希望我成为致力于开发像差校正电子显微镜的科学家中的一员,该电子显微镜可以作为一个使用反射电子的低能量电子显微镜(LEEM)来工作,还可以作为一个由光子从表层发射的电子来形成图像的光发射电子显微镜(PEEM)来工作。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "我团队的任务是设计、构造和测试磁物镜浸没透镜、分离入射和反射电子束的无像差分束器以及补偿透镜球差和色差的镜校正器。四年后,这些任务完成,主要是由我的非常优秀且有远大志向的学生Dirk Preikszas、Peter Hartel和HeikoMü ller实现的。除SMART项目外,我团队还参与了由ManfredRü hle发起的Sub-eV Sub-Angstroem显微镜(SESAM)项目,以开发具有高空间和高能量分辨率的电子过滤电子显微镜(EFTEM)。Stefan Uhleman的博士论文中设计了高性能的MANDOLINE滤光片,该滤光片由Zeiss制造,并结合到SESAM显微镜中。直到今天,显微镜在斯图加特的Max Planck研究所一直以出色的性能在运行。/span/pp style="text-align: justify text-indent: 2em "尽管我所在的团队取得了巨大的成就,在国际上享有很高的声誉,也获得了许多科学家和行业的称赞,但在2000年4月,达姆施塔特技术大学却在我退休后放弃了我的研究领域。由于和美国的许多同事保持良好的联系,应美国同事的邀请,我在橡树岭国家实验室(Oak Ridge National Laboratory)担任了一年的研究员。在这里,我遇到了来自阿尔贡(Argonne)的Murray Gibson,他的目标是研制一种可以进行任何形式原位实验的高分辨率电子显微镜。因为只有大的物镜室才能满足此条件,所以必须校正物镜的球差和色差,以在中压下获得约0.2 nm的高分辨率,这对于减少辐射损伤是必需的。/pp style="text-align: justify text-indent: 2em "我接受了Murray提出进行经校正物镜设计的邀请,于2001年9月移居阿尔贡。但是,2002年4月,因为检查出患有早期前列腺癌,我不得不停止在阿尔贡的工作。幸运的是,癌症尚未扩散,存活的机率很高。在美因兹大学(the University of Mainz)接受手术后,我花了一年多的时间进行康复。与此同时,随着Murray换任高级光子源主任,Lawrence Berkeley国家实验室(LBNL)的Uli Dahmen成为TEAM项目主任。美国能源部改变了该项目的目标,要求使用彩色球面校正的中压电子显微镜提供0.05 nm的分辨率。/pp style="text-align: justify text-indent: 2em "2003年9月,我搬到伯克利,成为LBNL高级光源(ALS)的一名研究员。由于ASL距国家电子显微镜中心(NCEM)仅几步之遥,所以我接受了Uli的邀请成为TEAM项目顾问,该项目始于2004年,并于2009年成功以0.047 nm的分辨率结束,这大约是氢原子的半径。我与CEOS公司合作设计了TEAM校正器,通过用电磁四极八极杆五联体替换六极校正器的每个六极杆,所得校正器通过保持双重对称性来补偿色差、球差和彗差。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/ae3742be-568d-4dcb-8b7c-780a1720ceaf.jpg" title="图片4.png" alt="图片4.png"//pp style="text-align: center "strong2009年,我在M&M会议上与Hannes Lichte教授讨论问题。/strong/pp style="text-align: justify text-indent: 2em "2007年,乌尔姆大学(University of Ulm University)的Ute Kaiser教授邀请我就像差校正进行演讲,特别是关于六极校正器的设计和功能。该校正器是其新TITAN电子显微镜的一部分,该电子显微镜是FEI公司在2005年提供的第一台商业像差校正TEM。/pp style="text-align: justify text-indent: 2em "Ute Kaiser对二维物体(如石墨烯)的原子结构可视化很感兴趣。然而,在300 kV电压下操作显微镜时,样品立即被破坏。幸运的是,由于进行了像差校正,显微镜能够提供在80 kV(仪器的最低可调电压)下的原子分辨率。由于该电压低于石墨烯中原子位移的阈值电压,因此能够对其原子结构进行成像。该结果证明辐射损伤也限制了材料科学中许多物体的分辨率。由于很多对辐射敏感的二维物体的撞击阈值在20 kV至80 kV之间,因此对像差校正低压电子显微镜的需求很明显。因为在这种低电压下,色差超过了物镜的球差,并且需要大的可用孔径角才能获得原子分辨率,所以有必要开发新型的校正器。高性能SALVE校正器是通过将达姆施塔特四极杆-八极杆校正器的中央多极杆分成两个在空间上分离的元素而获得的。以该系统为起点,CEOS公司成员在由Ute Kaiser发起和领导的Sub-Angstroem低压电子显微镜(SALVE)项目的框架内开发了校正器。SALVE项目于2009年开始,在蔡司终止TEM生产后于2011年中断。2013年,FEI与CEOS公司一起继续了该项目,并于2017年结束,取得了意想不到的成功,显微镜的分辨率比合同所要求的提高了近30%。在SALVE项目开始时,我成为Ute Kaiser团队成员,并于2015年被任命为Ulm大学的高级教授。/pp style="text-align: justify text-indent: 2em "除了和在量子力学基础上设计电子光学组件和发展电子显微镜成像理论外,我对了解电子的基本性质也一直很感兴趣。特别是,我花了20多年的时间尝试了解自旋的起源、电荷和电子的质量。为此,我采用了一种相对论的量子力学方法,其与相对论电动力学和狄拉克理论密切相关。可能是因为我不属于基本粒子领域,所以我解释基本粒子结构的新理论被忽略了,投稿的文章未经审查就被拒绝。不过,2019年12月10日,我可以在乌尔姆大学的一次特殊物理座谈会上发表我的新理论,并希望我的演讲能引发对该主题富有成果的讨论。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/544effa6-64ee-4899-92ad-11a4ff02c2d1.jpg" title="图片5.png" alt="图片5.png"//pp style="text-align: center "strong80岁生日之际,与蔡司的代表一起在乌尔姆大学2015学术研讨会展示半块欧米茄过滤器。/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/646ca763-0f23-4140-b909-ca5cd73c8a0e.jpg" title="图片6.png" alt="图片6.png"//pp style="text-align: center "strong2012年,与网球伙伴聚会。/strong/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 374px " src="https://img1.17img.cn/17img/images/202011/uepic/23d35705-a80e-44f2-b9f4-38127f463ad5.jpg" title="图片7.png" alt="图片7.png" width="450" height="374" border="0" vspace="0"//pp style="text-align: center "strong2012年2月14日,我和Dorothee在一家餐厅庆祝生日。/strong/pp style="text-align: justify text-indent: 2em "在我上学后的所有时间里,我都热衷于打曲棍球、冬天滑雪和秋天在阿尔卑斯山远足。曲棍球是一项非常苛刻的运动,但会有严重受伤的风险,且这种风险随着年龄的增长而增加。因此,我不得不在50岁时放弃这个爱好,并寻找其他活动。/pp style="text-align: justify text-indent: 2em "我选择学习网球是很自然的事,因为我的妻子Dorothee是一位非常有才华的网球运动员,曾在当地一家体育俱乐部的球队中打过球。她愿意给我上网球课,因为没有其他人愿意和初学者一起玩。在她的帮助下,我能够找到合作伙伴并成为团队成员。尽管由于年龄大而不能进行单打,我每周与几个伙伴打双人网球。此外,我和Dorothee每年都会与前曲棍球队友及其妻子一起远足数天。/pp style="text-align: justify text-indent: 2em "在我的科学生涯中,我与世界各地的许多同事都有联系,这些年来,许多联系也变为了友谊。我非常感谢这些友谊,它们是宝贵的礼物。最后,我要感谢我的妻子,多年来在我周末的工作期间所给予的支持和耐心。/ppbr//pp style="text-align: justify text-indent: 2em "strong延伸阅读:/strong/pp style="text-align: left text-indent: 0em "span style="color: rgb(0, 112, 192) text-decoration: underline "a href="https://www.instrument.com.cn/news/20200608/540683.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "【自传】像差校正电镜技术先驱之Maximilian Haider/a/span/pp style="text-align: left text-indent: 0em "a href="https://www.instrument.com.cn/news/20201112/564599.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "【自传】像差校正电镜技术先驱之Ondrej L. Krivanek/span/a/pp style="text-indent: 0em text-align: left "a href="https://www.instrument.com.cn/news/20201204/566735.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "【自传】像差校正电镜技术先驱之Knut Urban/span/a/ppbr//p

电压标准校正系统相关的方案

电压标准校正系统相关的资料

电压标准校正系统相关的试剂

电压标准校正系统相关的论坛

  • 红外光谱仪内置校正用的标准物质,都有哪些呢?

    看资料:PE的红外光谱仪内置甲烷气作为波长校正标准,自动校正。布鲁克的红外光谱仪内置校验单元,带标准物质,自动校验。尼高力的红外光谱仪集成NG-11和NIST可溯源标准化合物的自动验证系统。看上去,都可以自动校准波长?

  • 现行的电压互感器技术标准

    本文子总结现行的电压互感器技术标准,包括目前常见的电力电压互感器、电磁式电压互感器、电容式电压互感器等等的技术标准。 DB42/T 397-2006 电压互感器二次回路压降测试仪检验规范 DL/T 1152-2012 电压互感器二次回路电压降测试仪通用技术条件 DL/T 1186-2012 1000kV罐式电压互感器技术规范 DL/T 1251-2013 电力用电容式电压互感器使用技术规范 DL/T 312-2010 1000kV电容式电压互感器设备检修导则 DL/T 726-2013 电力用电磁式电压互感器使用技术规范 DL/T 866-2004 电流互感器和电压互感器选择及计算导则 GB 1207-2006 电磁式电压互感器 国家质量监督检验检疫 GB 20840.3-2013 互感器 第3部分:电磁式电压互感器的补充技术要求 GB/T 20840.5-2013 互感器 第5部分:电容式电压互感器的补充技术要求 GB/T 20840.7-2007 互感器 第7部分:电子式电压互感器 GB/T 22071.2-2008 互感器试验导则 第2部分: 电磁式电压互感器 GB/Z 24841-2009 1000kV交流系统用电容式电压互感器技术规范 JB/T 10433-2004 三相电压互感器 JB/T 10667-2006 微型电压互感器 JB/T 5357-2002 电压互感器试验导则 JB/T 6300-2004 控制用电压互感器 JB/T 8510.2-2007 交流电气化铁道牵引供电用互感器第2部分:电压互感器 JJG (沪) 51-2007 测量用电压互感器现场检定规程 JJG 314-2010 测量用电压互感器 国家质量监督检验检疫 NB/T 41001-2011 电容式电压互感器产品质量分等 Q/GDW415-2010 电磁式电压互感器用非线性电阻型消谐器技术规范 Q/GDW 531-2010 高压直流输电直流电子式电压互感器技术规范 TB/T 3038-2002 电气化铁道50kV、25kV电压互感器

电压标准校正系统相关的耗材

  • ASTM 校正标准件 6.07501.010
    ASTM 校正标准件订货号: 6.07501.010ASTM 标准的 50:50 (v:v) 甲苯/乙腈,用于校正 Mira M-3 光谱仪的波数轴。
  • 校正用标准样品
    校正用标准样品沃特世提供用于脂溶性和水溶性GPC/SEC分离的校正用标准品。标准品既有按单个分子量供应的单个标准品,也有按分子量范围供应的由多个标准品组成的套装。有如下三类:1、脂溶性校正标准品2、水溶性校正标准品3、ReadyCal聚乙烯标准品脂溶性标准样品套件描述 数量/分子量* 数量/部件号聚苯乙烯套件, 4 x 10 2 /10 g, 5.3 x 10 2 /10 g, 9.5 x 10 2 /10 g, WAT011588低-中等分子量 2.8 x 10 3 /5 g, 6.4 x 10 3 /5 g, 1 x 10 4 /5 g, 1.7 x 10 4 /5 g, 4.3 x 10 4 /5 g, 1.1 x 10 5 /5 g, 1.8 x 10 5 /5 g聚苯乙烯套件, 4.3 x 10 5 /5 g, 7.8 x 10 5 /5 g, 1.3 x 10 6 /1 g, WAT011610中等-高分子量 2.8 x 10 6 /1 g, 3.6 x 10 6 /1 g, 4.3 x 10 6 /1 g, 5.2 x 10 6 /1 g, 6.2 x 10 6 /1 g, 8.4 x 10 6 /1 g, 2 x 10 7 /1 g聚苯乙烯套件, 5.8 x 10 2 , 9.5 x 10 2 , 1.2 x 10 3 , 1.8 x 10 3 , 500mg/每个SL-105 2.47 x 10 3 , 3.77 x 10 3 , 5.1 x 10 3 , 7.6 x 10 3 , WAT034208 1.25 x 10 4 , 1.7 x 10 4聚苯乙烯套件, 1.2 x 10 3 , 3.25 x 10 3 , 1.02 x 10 4 , 2.8 x 10 4 , 500mg/每个SM-105 6.8 x 10 4 , 1.95 x 10 5 , 4.9 x 10 5 , 1.08 x 10 6 , WAT034209 1.75 x 10 6 , 2.75 x 10 6聚苯乙烯套件, 4.5 x 10 5 , 1.27 x 10 6 , 2.3 x 10 6 , 3.26 x 10 6 , 500mg/每个SH-75 4.34 x 10 6 , 8 x 10 6 , 1.5 x 10 7 WAT034210聚甲基丙烯酸甲 2.4 x 10 3 , 9.5 x 10 3 , 3.1 x 10 4 , 500mg/每个酯,中分子量套 5.2 x 10 4 , 1 x 10 5 , 1.7 x 10 5 , 2.7 x 10 5 , WAT035706件 4.91 x 10 5 , 7.3 x 10 5 , 1 x 10 6聚甲基丙烯酸甲 1 x 10 3 , 1.7 x 10 3 , 2.5 x 10 3 , 500mg/每个酯,低分子量套 3.5 x 10 3 , 5 x 10 3 , 7 x 10 3 , 1 x 10 4 , WAT035707件 1.3 x 10 4 , 2 x 10 4 , 3 x 10 4聚丁二烯套件 1 x 10 3 , 3 x 10 3 , 7 x 10 3 , 1 x 10 4 , 3 x 10 4 , 500mg/每个 7 x 10 4 , 1 x 10 5 , 3 x 10 5 , 7 x 10 5 , 1.1 x 10 6 WAT035709聚异戊二烯套件 1 x 10 3 , 3 x 10 3 , 1 x 10 4 , 3 x 10 4 , 7 x 10 4 , 500mg/每个 1 x 10 5 , 3 x 10 5 , 5 x 10 5 , 1 x 10 6 , 3 x 10 6 WAT035708水溶性标准样品套件描述 数量/分子量* 数量/部件号支链淀粉 5.8 x 10 3 , 1.22 x 10 4 , 2.37 x 10 4 , 1 x 10 5 , 200mg /每个(pullulan) 1.86 x 10 5 , 3.8 x 10 5 , 8.53 x 10 5 WAT034207葡聚糖(Dextran) 5 x 10 3 , 1.2 x 10 4 , 2.4 x 10 4 , 4.8 x 10 4 , 500mg/每个套件 1.48 x 10 5 , 2.73 x 10 5 , 4.1 x 10 5 , 7.5 x 10 5 WAT054392聚氧化乙烯 2.4 x 10 4 , 4 x 10 4 , 8 x 10 4 , 1.6 x 10 5 , 500mg/每个(PEO)套件 3.4 x 10 5 , 5.7 x 10 5 , 8.5 x 10 5 WAT011572聚乙二醇 1 x 10 2 , 2 x 10 2 , 4 x 10 2 , 6 x 10 2 , 1 x 10 3 , 1gram/每个(PEG)套件 1.5 x 10 3 , 4.3 x 10 3 , 7 x 10 3 , 1.3 x 10 4 , 2.2 WAT035711 x10 4聚丙烯酸套件 1 x 10 3 , 3 x 10 3 , 7 x 10 3 , 1.5 x 10 4 , 3 x 10 4 250mg/每个 ,7 x 10 4 , 1 x 10 5 , 3 x 10 5 , 7 x 10 5 , 1 x 10 6 WAT035714 脂溶性聚苯乙烯(PS)标准物(单标 )近似分子量范围LS** GPC 重量 部件号— 4 x 10 2 10 g WAT011590— 5.3 x 10 2 10 g WAT011592— 9.5 x 10 2 10 g WAT0115942.8 x 103 2.8 x 10 3 5 g WAT0115966.2 x 103 6.4 x 10 3 5 g WAT0115981.03 x 104 1.01 x 10 4 5 g WAT0116001.67 x 104 1.73 x 10 4 5 g WAT0116024.39 x 104 4.30 x 10 4 5 g WAT0116041.07 x 105 1.06 x 10 5 5 g WAT0116061.86 x 105 1.84 x 10 5 5 g WAT0116084.22 x 105 4.27 x 10 5 5 g WAT0116127.75 x 105 7.91 x 10 5 5 g WAT0116141.26 x 106 1.30 x 10 6 1 g WAT0116162.86 x 106 2.80 x 10 6 1 g WAT0116183.84 x 106 3.61 x 10 6 1 g WAT0116204.48 x 106 4.27 x 10 6 1 g WAT0116225.48 x 106 5.20 x 10 6 1 g WAT0116246.77 x 106 6.20 x 10 6 1 g WAT0116268.42 x 106 — 1 g WAT0116282.0 x 107 — 1 g WAT011630** 光散射( Light scattering)聚氧化乙烯(PEO)水溶性标准样品近似分子量范围LS** GPC 重量 部件号2.5 x 10 4 2.4 x 10 4 0.5 g WAT0115744.0 x 10 4 4.0 x 10 4 0.5 g WAT0115767.3 x 10 4 7.9 x 10 4 0.5 g WAT0115781.5 x 10 5 1.6 x 10 5 0.5 g WAT0115802.8 x 10 5 3.4 x 10 5 0.5 g WAT0115826.6 x 10 5 5.7 x 10 5 0.5 g WAT0115848.5 x 10 5 8.5 x 10 5 0.5 g WAT011586** 光散射( Light scattering)ReadyCal聚苯乙烯标准样品30个自动进样样品瓶-每瓶含有4个聚苯乙烯标准样品,每套包括三个不同的分子量范围,每个分子量范围的标样有10组。只需向瓶中加入溶剂,静置2小时后,轻轻摇动,即可放到自动进样器进行分析。每一套都配有详细的使用说明。类型 标准 近似分子量范围 部件号ReadyCal, 4 mL自动进样样品瓶 12 4 x 10 2 , 2 x 10 6 WAT058930ReadyCal, 2 mL自动进样样品瓶 12 4 x 10 2 , 2 x 10 6 WAT058931
  • 瑞典NCS校正标准色卡
    NCS校正标准色卡 型号:A-7 色号举例:NCS S 9000-N 【详细信息】 NCS校正标准1950 NCS Calibrated Matching Standards 1950 Original 产地:瑞典 产品介绍 高质量的NCS校正标准1950,每个色样都经过NCS质量实验室根据NCS质量管理要求单独且仔细地检测、检查和校正。使用NCS校正标准可以得到完美的色彩对照和质量控制。 该产品需要定制。 产品说明 颜色数量:1950个NCS标准颜色,由NCS质量中心根据NCS标准级质量水平要求进行监制。 色样规格:105× 148 mm (A6) 检测仪器:MacBeth Color Eye 7000 分光光度仪,源于Zeiss DMC 26。 视觉检查:每个色样在不同光源下进行视觉检查,以避免仪器检测照明局限产生的问题。 产品质量:基于NCS第2版质量管理,符合ISO 9001认证。 质量保证:100% Delta-E (CMC 1:1)光泽:100%在13-22之间(60° ) 纸张:200gms铜版纸 印刷:每页NCS标准级色样都另存有该色样的检测数值,以及与NCS的基础标准(NCS Primary Standard)之间的色差(如图所示)。并且标注了该标准级色样的有效日期(有效期2年)。 排列:按色相排列,不同色相之间有索引区分。 包装:色样置于特制黑色盒子中以避免光照,运输时另有专用硬质纸盒加以保护。 重量:12.00公斤 规格:510× 260× 130 mm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制