当前位置: 仪器信息网 > 行业主题 > >

鼎式光催化反应釜

仪器信息网鼎式光催化反应釜专题为您提供2024年最新鼎式光催化反应釜价格报价、厂家品牌的相关信息, 包括鼎式光催化反应釜参数、型号等,不管是国产,还是进口品牌的鼎式光催化反应釜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合鼎式光催化反应釜相关的耗材配件、试剂标物,还有鼎式光催化反应釜相关的最新资讯、资料,以及鼎式光催化反应釜相关的解决方案。

鼎式光催化反应釜相关的资讯

  • 耐驰技术总监徐梁:级数反应与自催化反应
    p  strong仪器信息网讯/strong 仪器信息网近期开通了a href="https://www.instrument.com.cn/zt/thermalanalysiskinetics" target="_self"热分析动力学专题/a,邀请到了耐驰公司技术总监徐梁。span徐梁/span在热分析领域积累了十余年丰富的理论与实践经验,是行业内资深的热分析应用专家。谈及热分析动力学,徐梁重点介绍了热分析动力学中的级数反应与自催化反应,并以环氧树脂的热固化为例,讲解了如何进行机理函数的判断与选择。/ppstrongspan  /span一、热分析动力学概述/strong/pp  化学动力学是近代物理化学的一门重要分支,它对实践中千变万化的各类化学反应,从反应速率和反应机理角度进行抽象研究,涉及的重要变量有时间、温度、浓度、压强、催化剂、溶剂等。/pp  热分析动力学是对化学动力学的一种简化,它与DSC、TGA为代表的热分析技术结合紧密,将热分析测试手段中不常涉及、或很难研究的一些因子作了简化或合并,从而将反应速率仅仅表示为时间、温度与转化率三个变量的函数。其基本方程的微分形式为:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/dd7f9617-c2d7-47ae-9376-949a1b125dda.jpg" title="001.png" alt="001.png"//pp  这一方程用来唯象地描述如下表观反应:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/eba5cdc2-8760-4634-8422-c89a42750712.jpg" title="002.png" alt="002.png"//pp  在这里,t为时间,T为温度,α为归一化转化率。dα/dt(后文有时简写成img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/ede44961-202a-424f-9b38-08d5aea09178.jpg" title="003.png" alt="003.png"/span style="font-size:14px font-family:' Times New Roman' ,' serif' " /span)则为转化率随时间的变化率,在经典热分析动力学的范畴内,它仅取决于以下两项:/ppspan  strongk(T)/strong/span:速率常数项,表征反应速率与温度的相关性。一般使用阿伦尼乌斯方程的形式:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/73089899-f1c3-4dd4-a393-c110ee6b5e1d.jpg" title="78-3.png" alt="78-3.png"//pp  其中Ea是表观活化能,常用单位kJ/mol。从物理化学角度这一项与反应的激活能位垒有关,在现象层面则与反应速率随温度而变的特性直接相关。活化能越高,改变反应温度对速率的影响越大。A则为指前因子,又称频率因子,是一个直接的正比系数。R为气体常数,R=8.314 J/(mol*K)。/pp  strongf(spanα)/span/strong:机理函数项。表征反应速率与转化率的相关性,可视为对反应机理的数学描述。这一项最为灵活多变,有形形色色的机理函数用来描述不同的反应机理,常见的有级数反应、自催化反应、相边界反应、成核生长反应、扩散障碍反应等大的类别,每一类别包含多个不同的机理函数,用于细化对不同反应的描述。/pp  至于化学动力学中的其他变量,或被略去(如绝大多数热分析测试在常压下进行,因此压强因子被略去),或被归一化处理(如浓度的相对变化被归一化处理为转化率,见后文),或被简并到正比项A(例如分子摩尔浓度、体系粘度、分子截面积等其它影响分子碰撞几率的因素)、指数项Ea(由此Ea被称为“表观活化能”而与真正物化意义上的激活能有一定差异)、甚至机理函数(例如反应界面的几何特性)之中。/pp  由上分析可见,热分析动力学本质上是一种唯象科学,它仅用于对千变万化的热分析数据进行数学层面的抽象与处理,例如对于常见的TGA测试数据,由于失重比例(100%→x%)可归一化为转化率α(0-1),因此一条TGA曲线本质上就是(spanα,t,T/span)三者的函数关系,在转化率-时间曲线上取斜率则为转化速率 img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/a6b72a14-38db-4325-9bb2-c79e8a50caad.jpg" title="003.png" alt="003.png"/(类似于DTG)。DSC曲线与此相似,经一定的修正预处理后,峰面积比例可处理成转化率,对其求导可得到转化速率(形状上类似于DSC热流信号):/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 377px " src="https://img1.17img.cn/17img/images/201907/uepic/10b4065d-eb9f-4ef0-a19f-8d295064b81b.jpg" title="78-4.png" alt="78-4.png" width="600" height="377" border="0" vspace="0"//pp  由此,不管是TGA还是DSC,在数学上均可被抽象为(img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/874668a0-685d-49b1-81be-6b68bcd2042f.jpg" title="003.png" alt="003.png"/,spanα,t,T/span)关系曲线,然后被套入基本方程中进行求解。在求解方式上有无模型动力学与模型动力学两大体系,不管使用哪一种方法,最终都是要求得方程中的Ea、A、以及f(α)相关参数等项,即获取完整的、仅包含(spanα,t,T/span)三变量的动力学方程,此时反应(转化率spanα/span 、转化速率img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/d4f24016-3891-46c2-bad1-f6a68f5d6a26.jpg" title="003.png" alt="003.png"/)随时间(t)、温度(T)、以及温度微商(升降温速率dT/dt,一般写成β)的演变规律可视为已知。因此从方程出发,可对实际不同控温程序下的反应进程进行预测,或按照速率控制要求对控温程序进行模拟优化,用以指导实际控温工艺,获取期望的反应进程。/pp  以上是对热分析动力学作一全景式的概略介绍。热分析动力学作为物理化学与实验技术相结合的一门分支学科,所涉甚广。篇幅所限,下文仅对均相反应体系中常用的两大类机理函数:级数反应与自催化反应作进一步的讨论。/pp  strong二、均相反应体系/strong/pp  所谓均相反应体系,指的是反应物分子均匀地分布在反应体系中,宏观上各区域之间没有明显的浓度差,在任一时刻体系各处的反应速率相同的一种理想状态。在这种反应体系中,除温度之外,分子浓度及其变化是决定反应速率的主导因素。/pp  与之形成对比的是,异相(也称为非均相)反应体系有着明显的反应界面的概念,分子的化学反应仅发生在一定的反应界面上。在这种体系中,浓度的变化不再是速率的主导因素,事实上,在界面之外,分子始终保持原始浓度,而反应速率为零。除温度之外,决定界面上的反应速率的,仅仅只是反应界面的几何特性,及其随时间的演变方式(扩展,收缩,增厚)、演变维度(一维、二维、三维)。/pp  不管是均相还是异相体系,都只是一种理想化的数学模型。实际的化学反应体系往往更为复杂,但在小尺度反应(例如热分析的小量样品测试)、传质传热理想化的情况下,大体可归为这两类体系之一。在热分析领域,均一的纯液相反应(例如溶液中的反应)一般可归为均相反应,涉及多相的反应(气固、液固、气液、固固多相、液液多相)一般为异相反应,个别反应界面概念模糊的纯固相反应有时也可简化处理为均相反应。在获取了小尺度反应模型之后,对于实际工业应用的尺度放大,应附加传质传热的相关修正。/pp  需要注意的是,这里的均相、异相涉及的是反应物与产物的相态,而与材料本身是否成分均匀、单一无关。例如固体的结晶反应,虽然材料的化学成分很纯,但由于晶区与非晶区相态不同,反应为异相反应。而纤维增强预浸布中的液态树脂的固化反应,尽管宏观材料为复合材料,包含多种成分(树脂,纤维等等),甚至在小尺度上纤维增强体的分布都不一定均匀,但假如不考虑树脂与纤维之间的相互作用,把固化反应简化为主要在液态树脂内部进行,仍然可视为均相反应。/pp  strong三、级数反应/strong/pp  级数反应是最简单、也是最常用的一种均相反应模型。这里考虑的是反应过程中,反应物的浓度下降对反应速率的影响。其通式为:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/e20b9426-ee5c-4548-814b-e9587b553554.jpg" title="004.png" alt="004.png"//pp  在这里,相对的浓度变化,被归一化处理为转化率:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/b8206b8f-a3d3-4015-bfe4-41d8cb6aab49.jpg" title="005.png" alt="005.png"//pp  例如体系中反应物的初始浓度为0.7mol/L,反应结束时反应物浓度下降为0.2mol/L(实际反应中反应物不一定消耗完全)。则该浓度的相对变化被归一化处理为0-1的转化率。即:/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none" align="center"tbodytr class="firstRow"td width="202" valign="top" style="background: rgb(191, 191, 191) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"摩尔浓度/spanspan mol/L/span/p/tdtd width="202" valign="top" style="background: rgb(191, 191, 191) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"转化率α(无因次量)/span/p/tdtd width="202" valign="top" style="background: rgb(191, 191, 191) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan1 - /spanspan style="font-family:宋体"α/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.7/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan1/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.6/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.2/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.8/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.5/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.4/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.6/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.4/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.6/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.4/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.3/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.8/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.2/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.2/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan1.0/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0/span/p/td/tr/tbody/tablep  这里1-α与反应物在反应过程中的相对剩余量相对应,而我们似乎丢失了绝对摩尔浓度的相关信息。事实上,反应物浓度为0.7mol/L、还是7mol/L,对反应速率当然有影响,但该影响已被抽离、并归到正比因子A之中。摩尔浓度高的体系,分子碰撞几率大、或者说碰撞频率较高,反应速率通常较快,因此频率因子A会较大。由此使用经典的热分析动力学方法,对同一反应、不同摩尔浓度下的测试结果进行建模,指前因子很可能不同。这是需要注意的一点。/pp  在均相体系中,级数为整数、具有明确物理化学意义的级数反应,常见的有如下两种:/pp  strong一级反应(F1)/strong:n=1,strong style="white-space: normal "f(α)=1-/strong strong style="white-space: normal "α/strong。即在温度不变的情况下,反应速率与反应物的相对剩余量成正比,或者说在反应过程中,随着反应物的消耗与转化,反应速率同比下降。这种情况常见于均相体系中的单分子反应 A à B,例如分子内结构重排、自发衰变、部分液相分解反应等。/pp  strong二级反应(F2)/strong:n=2,strong style="white-space: normal "f(α)=(1-/strongspan /spanstrong style="white-space: normal "α)sup2/sup/strong 。在温度不变的情况下,反应速率与表观反应物相对剩余量的平方成正比,常见于液相中的双分子反应,例如 2A→B。/pp  我们再从数学上观察一下,对于/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/eecab12f-4820-4035-b6bb-97c15fb82280.jpg" title="004.png" alt="004.png"//pp  这个方程,当n取不同值时,f(α)随α的变化关系。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 490px " src="https://img1.17img.cn/17img/images/201907/uepic/4426359a-09c9-4068-860b-0856206ea040.jpg" title="78-7.png" alt="78-7.png" width="600" height="490" border="0" vspace="0"//pp  上图可见:/pp  1. 所有曲线的最大值均出现在起点处。这意味着在温度不变的情况下,级数反应以开始发生时速率最大,随后速率单调下降。/pp  2. 以n=1为对角线,n越大,f(α)随α衰减越快,表明反应级数越高,随着反应物的转化,反应速率下降趋势越明显。/pp  从物理化学角度,反应级数应为正整数,且很少超过3(多于三分子共同参与的合成反应很少见)。但从表观动力学的数学拟合意义上,反应级数可以是非整数,取值范围可以超过3,也可以小于1,但这种情况往往是内在非均相反应机理的表现。例如用级数函数拟合,级数超过3或更高,表明反应速率随着反应物的转化而快速下降,有可能涉及到产物堆积于界面的界面扩散障碍反应 若级数小于1,有可能牵涉到界面收缩的相边界反应,例如n=2/3对应界面球状收缩的三维相边界反应,n=1/2对应界面柱状收缩的二维相边界反应,n=0(零级反应)对应界面面积不变的一维相边界反应。/pp  strong四、自催化反应/strong/pp  自催化反应,有时也称为自加速反应,是指随着反应的进行,产物的生成会对反应起到促进作用。这类反应的机理函数通式为扩展的Prout-Tompkins方程(Bna):/pp  这里1-α对应于反应物的相对剩余量,α对应于产物的相对生成量,而反应速率同时是这两者的函数,随反应物的消耗而速率下降,随产物的生成而速率上升。从物理化学角度,这类反应常见于发酵反应、聚合反应、链式反应等。/pp  最简单的自催化反应是Prout-Tompkins方程(B1),即上式中的n、m两个级数均为1:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/b05adcea-dcb1-4812-bee9-6ae7cacd54fb.jpg" title="006.png" alt="006.png"//pp  用以描述类似如下的反应过程:/pp style="text-align: center "span style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/e4cbeff3-d9c6-4b76-9fd1-9185c4fc2139.jpg" title="008.png" alt="008.png"/  /span/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 353px " src="https://img1.17img.cn/17img/images/201907/uepic/8a3c8f6e-3f53-4469-b33d-430da6f2c90a.jpg" title="78-8.png" alt="78-8.png" width="600" height="353" border="0" vspace="0"//pp  在这里,反应速率本应随着A的消耗而下降,但产物B一旦生成,即作为反应物之一,参与并促进了反应的进行。因此在反应的起始阶段,当B的量甚小时,反应速率不高 在反应的终止阶段,A的剩余量已降至甚低,反应速率也不高。反应最大速率点将出现在A与B的量均较充分的阶段,即反应的中期阶段。这一点可通过对B1方程的作图得到验证:/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 463px " src="https://img1.17img.cn/17img/images/201907/uepic/186c0a07-4589-4535-a641-283327e56493.jpg" title="78-9.png" alt="78-9.png" width="600" height="463" border="0" vspace="0"//pp strong 五、热分析曲线 - 级数反应与自催化反应的表现差异/strong/pp  级数反应与自催化反应的差异,在等温实验下表现最为明显。在理想的等温条件下,温度因子k(T)项为常数,动力学方程可简化为:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/9dee8d07-b05a-487d-b356-56848f5ca670.jpg" title="007.png" alt="007.png"//pp  即反应速率img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/75e4c46d-031e-4a70-8621-81ae0087dfd2.jpg" title="003.png" alt="003.png"/与spanf(α)/span直接成正比。而从之前的讨论可知,对于级数反应,f(α)随转化率α单调下降 对于自催化反应,f(α)的极值约出现在反应的中期阶段。实际的等温测试得到的是 (DSC、DTG)随时间t的演变关系,涉及到对上式进行积分,得到α(t)函数后再对t求导,稍微复杂一些,这里不作具体的数学推导。但不管怎样,由于α与t是同向变化关系,因此以上的规律依然存在。/pp  结合物化意义来讲,等温条件下,对于级数反应,反应速率与反应物的量相关,在起始反应时反应物浓度最高,此时反应速率最大,随后随着时间的演变、反应物的消耗而逐渐减速 而对于自催化反应,在反应早期,由于产物B的量很少,对反应的催化作用很不明显,因而此时反应速率甚低,而由于反应速率低,B的量积累很慢,体现在反应初期阶段漫长的低速“诱导期”。当B的量积累到一定程度时,对反应的催化加速效应逐渐明显,随着反应速率的加快又促成了B的大量生成,进一步加速反应,因此在反应中期,反应会有一个快速的提速期。到反应后期,随着反应物A的严重消耗,反应速率再度下降,直至反应完成。/pp  这两类反应的典型等温DSC结果对比如下:/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 300px " src="https://img1.17img.cn/17img/images/201907/uepic/d546d884-cd4a-4b89-8c1d-c0a2e13b14d6.jpg" title="78-10.png" alt="78-10.png" width="600" height="300" border="0" vspace="0"//pp  以上对比结果可通过对两类机理函数的img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/fb3bd5bc-d072-4434-ac01-96c48e0f4fa7.jpg" title="007.png" alt="007.png"/函数推导并作图得到验证。此处略过。/pp  对于动态升温测试,完整的动力学方程为:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/e58ea0fc-084c-4e8c-bd3c-f16861ec3774.jpg" title="78-11.png" alt="78-11.png"//pp  这里除了f(α)变化对速率的影响外,还混入了温度的连续上升对反应的加速作用。因此即使是级数反应,最大速率点也不再出现在反应起始处。事实上,以一级反应为例:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/f1c44c22-a8a2-4048-8eb0-bc188d2eb0b1.jpg" title="78-12.png" alt="78-12.png"//pp  在反应的前半程(spanα 0.5/span ),f(α)项的下降倍率不超过50%,而由温度T上升导致的指数式增速效应要显著得多。因此反应前期速率将逐渐增大。到反应后半程,f(α)将以越来越小的数字乘入到整个速率方程中,即f(α)倍率式减速效应占据主导,因此反应后期速率将逐渐减小。/pp  对于自催化反应,反应初期f(α)甚小,同时温度也较低,因此反应早期阶段整个反应速率都很低,呈现漫长的诱导期,直至随着产物的积累、f(α)的变大,加上温度上升的增速效应,反应可能出现较突然的加速。随后随着反应的快速转化、f(α)的快速减小而减速。/pp  因此在动态升温图谱上,这两种类型反应均体现为“峰”,而自催化反应往往“基线”更平、峰形更尖窄。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 300px " src="https://img1.17img.cn/17img/images/201907/uepic/dbdd1ee0-7a38-4cea-b733-36a4a53741f7.jpg" title="78-13.png" alt="78-13.png" width="600" height="300" border="0" vspace="0"//pp  strong六、复合式自催化反应/strong/pp  单纯的自催化函数,在实际应用中用得较少。道理很简单,若将Prout-Tompkins方程代入动力学方程:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/c65e211b-6ab2-4ced-a3cb-93d84bb7d18e.jpg" title="78-14.png" alt="78-14.png"//pp  在反应起始点,转化率α=0,此时反应速率 。而反应速率为零,意味着反应不会发生,α将始终为0!/pp  或者更具象地,结合Prout-Tompkins方程的化学模型:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/013de288-464b-49f5-be84-36b926d30a9c.jpg" title="008.png" alt="008.png"//pp  反应的进行必须有B的参与。除非在反应体系的初始状态下直接混入一定量的B,否则若以纯A作为起点,在没有B的参与下永远不会有第一个产物B生成,也就意味着反应永远不会发生。/pp  事实上,对于一个实际的反应体系,往往是两种转化路径并行存在:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/77082be0-a07d-4573-b41d-94e6a17904e5.jpg" title="78-16.png" alt="78-16.png"//pp  即A本身可以独立转化为B(或许速率较慢,但有一定的转化几率),而A也可在B的“催化”下生成B(通常更为有效)。/pp  这类反应可称之为复合式自催化反应,在假设两个路径活化能相同的情况下,机理函数通式为Cnm:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/7fa51b57-b7f6-401e-aa5f-50442e66789a.jpg" title="78-17.png" alt="78-17.png"//pp  仔细观察上式可知,这一方程是Fn与Bna两项的加和,在Bna项前加了权重因子(自催化系数)Kcat。/pp  该方程的简化函数有C1(级数项n、m均等于1,即F1与B1的组合)、Cn(m=0,反应物以级数n、而产物以一级形式参与自催化)。其中Cn较为常用。/pp  另如果考虑两个路径活化能不同,有Kamal-Sourour型动力学方程:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/07acd7bb-1aa4-4cd1-b1ef-932a7daca698.jpg" title="78-18.png" alt="78-18.png"//pp  这一方程是活化能不同的Fn与Bna按一定权重加和。/pp  作为级数反应与自催化反应的混合,复合式自催化反应在加速特性方面将介于纯级数反应与纯自催化反应之间,即存在一定的诱导期,在诱导期之后,其反应加速相比级数反应显得较为明显,但又不如纯自催化反应那么突然。当然具体加速表现还取决于两个路径之间的组合权重。/pp  strong七、实例:环氧树脂的热固化 - 机理函数的判断与选择/strong/pp  前文已详细讨论了对于均相反应体系,不同的反应类型(级数反应、自催化反应、复合式自催化反应),其反应进程的特性表现。这里我们将通过对某一环氧树脂固化反应的DSC曲线的动力学拟合,来帮助大家更直观地理解三者的差异。/pp  下图在三个不同的升温速率(5、10、20K/min)下进行了DSC测试,得到了环氧树脂的固化放热峰。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 370px " src="https://img1.17img.cn/17img/images/201907/uepic/5509108f-1f88-4390-bf53-05d1cd8bbe6a.jpg" title="78-19.png" alt="78-19.png" width="600" height="370" border="0" vspace="0"//pp  有相关论文表明环氧树脂的固化为自催化反应。但这里我们先将该论断放在一边,假设我们完全不了解该反应的内在化学机制,因此尝试用不同的机理函数进行拟合,通过拟合匹配的优劣来判断可能的反应类型。/pp  下图彩点为实测曲线,实线为使用级数反应Fn对实测曲线的拟合。我们先前已知DSC信号直接对应于反应速率。/pp  将拟合线与实测线相对比,重点关注反应前期阶段,可见级数反应没有明显的诱导期,加速较为温和,而实测信号左侧水平区较为明显,随后的加速也较为明显(实测线的峰左侧较拟合线更为陡峭),表明反应可能牵涉到自催化机制。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 367px " src="https://img1.17img.cn/17img/images/201907/uepic/20be0d43-239e-474c-bb48-17b5b7e282a2.jpg" title="78-20.png" alt="78-20.png" width="600" height="367" border="0" vspace="0"//pp  下图尝试用纯自催化函数Bna进行拟合。总体拟合质量得到了很大改善,但反应早期阶段仍拟合不佳。从拟合实线可见,纯自催化反应的诱导阶段更长、更接近水平,而随后的加速阶段上升更快。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 368px " src="https://img1.17img.cn/17img/images/201907/uepic/472faf29-bb1d-4f72-a380-1572d96362b9.jpg" title="78-21.png" alt="78-21.png" width="600" height="368" border="0" vspace="0"//pp  下图是用复合式自催化函数Cn得到的拟合结果。此处实测线与拟合线几乎完美吻合,表明反应机理可能为级数路径与自催化路径的组合:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/30deda48-aa86-4a2e-baa1-4d5faef7f4a7.jpg" title="009.png" alt="009.png"//pp  组合权重因子Kcat=1.34。/pp  其它动力学参数如下:/pp  Ea = 46.2 kJ/mol/pp  lgA = 2.5 1/s/pp  n = 1.7/pp  这些数值均在合理的取值范围内。表明该机理函数比较可信。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 367px " src="https://img1.17img.cn/17img/images/201907/uepic/7b27af1c-6991-4d5c-ab6a-8c94ce73c55a.jpg" title="78-22.png" alt="78-22.png" width="600" height="367" border="0" vspace="0"//pp  strong八、总结/strong/pp  热分析动力学是化学动力学与热分析实验手段相结合的一门分支学科,它将影响反应速率的各类因素进行筛选、提炼与抽象,简化为温度与转化率的函数,应用于实验数据的归纳,与不同控温程序下实验结果的预测,或按照速率控制要求对控温程序进行优化。/pp  反应体系可以分为均相体系与异相体系。均相体系中较为常见的反应机理有级数反应与自催化反应。除温度影响之外,级数反应的速率变化仅与反应物的消耗相关,自催化反应则额外引入了产物生成对反应的加速效应。/pp  不同的反应类型,在动力学上使用不同的机理函数进行表征,在热分析曲线上则有着不同的规律性表现(诱导期-加速-减速特性)。在对反应本身的化学机制缺乏了解的情况下,我们可以通过对实测热分析曲线选择不同的机理函数进行拟合对比,根据拟合效果、与动力学参数结果的合理性,来猜测可能的反应机理。/pp  strong参考文献/strong/pp  i1. M.E.Brown:Handbook of Thermal Analysis and Calorimetry, Vol 1, Chapter 3. (c) 1998 Elsevier Science B.V./i/ppi  2. 《化工工艺的热安全 -- 风险评估与工艺设计》 (瑞士)弗朗西斯.施特塞尔 著,陈网桦、彭金华、陈利平 译,刘荣海 审校,科学出版社,2009.8./i/pp style="text-align: right "  耐驰科学仪器商贸(上海)有限公司 应用实验室/pp style="text-align: right "  徐梁/pp style="text-align: right "  2019. 7./pp style="text-align: right "  /ppbr//p
  • 大连化物所实现半导体光催化硼化反应
    近日,大连化学物理研究所精细化工研究室有机硼化学与绿色氧化创新特区研究组(02T6组)戴文研究员团队在多相光催化硼化方面取得新进展。团队选用易于制备的硫化镉纳米片作为多相光催化剂,利用光生电子—空穴的协同氧化还原作用,通过选择性硼化反应,实现了烯烃、炔烃、亚胺以及芳(杂)环的高值转化,合成了硼氢化和硼取代产物。氮杂环卡宾硼烷(NHC-BH3)由于其化学性质稳定且制备方法简单,近年来作为一种新型硼源,被应用于自由基硼化反应中。然而,大量有害的自由基引发剂或昂贵且无法回收的均相光催化剂的使用仍然阻碍其广泛应用。因此,发展一种通用、廉价且可循环的催化体系对NHC-BH3参与的自由基硼化反应的发展具有重要意义。在上述研究背景下,戴文团队发展了一种简单、高效的多相光催化体系。该体系利用易于制备的硫化镉纳米片作为多相光催化剂,NHC-BH3为硼源,在室温光照的条件下,实现了多种烯烃、炔烃、亚胺、芳(杂)环以及生物活性分子的选择性硼化反应。由于该转化过程充分利用了光生电子—空穴对,从而避免了牺牲剂的使用。进一步研究发现,该催化体系不仅能够实现克级规模放大,且催化剂多次循环后依旧保持稳定的收率,同时,该催化体系作为一个可循环的通用平台,回收后的催化剂仍可继续催化不同种类底物的硼化反应,这些结果可为以NHC-BH3为硼源的自由基硼化反应的发展提供新思路。此外,该工作还对所得到的有机硼化物进行了衍生化,合成了含有羟基,硼酸酯和二氟硼烷反应活性位点的合成砌块。  戴文团队一直致力于多相催化大宗化学品(烯烃、炔烃、有机硫化物和醇等)的高附加值转化并取得了一系列研究成果:在前期的工作中,分别发展了钴基氮掺杂介孔碳催化醇的氧化酯化制备酯(Angew. Chem. Int. Ed.,2020)、廉价锰氧化物催化醇的氧化氨化制备酰胺和腈(Chem,2022)、铁单原子纳米酶催化酮的氧化氨化制备腈(Science Advances,2022)、锰氧化物催化不饱和碳氢资源的氧化氨化制备酰胺和腈(JACS Au,2023)、钴纳米颗粒和钴单原子协同催化有机硫化物制备酰胺和腈(Nat. Commun., 2023)。  相关研究成果以“Facile Borylation of Alkenes, Alkynes, Imines, Arenes and Heteroarenes with N-Heterocyclic Carbene-Boranes and a Heterogeneous Semiconductor Photocatalyst”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)上,并被选为热点文章(Hot Paper)。该工作的共同第一作者是大连化学物理研究所02T6组博士后谢复开和科研助理毛展。上述工作得到了辽宁省优秀青年基金的资助。
  • 美国麦克推出全自动小型催化反应器
    美国麦克公司推出"Microactivity-Refference"全自动小型催化反应器     美国麦克仪器公司于近日发布了一款全自动小型催化反应器--Microactivity-Refference.它是一款全自动计算机控制的用于催化反应的微型反应器,温度高达1000℃,压力可达100bar。该反应器可实现诸多反应,如加氢裂化,氢化处理,异构反应,加氢反应,加氢脱硫,加氢脱氮,氧化反应,聚合反应,重整(芳构化),水蒸汽重整等等  MICROACTIVITY-Reference该装置为一体结构,包括了电路系统,控制系统和质量流量计系统及置于热箱中的六通阀和反应器。基于具有分布式控制结构的TCP/IP以太通讯技术,系统可以在线远程控制或面板控制。独立于计算机的微处理安全集成控制器。同时,该系统配置了各种选配附件供研究人员选择  如果需要了解更详细的资料,请登陆美国麦克公司中国区网站www.mic-instrument.com.cn或致电中国区各办事处
  • 固体核磁共振“超级放大镜”观察催化反应网络
    2016年,中国科学院大连化学物理研究所(以下简称大连化物所)院士包信和和研究员潘秀莲等提出的OXZEO催化技术发布于《科学》杂志。该项技术自提出以后就广受关注,并且入选了当年的“中国科学十大进展”。  近日,基于OXZEO催化剂设计概念,大连化物所院士包信和、研究员侯广进等利用固体核磁共振技术,在金属氧化物分子筛(OXZEO)双功能催化剂催化合成气转化机理研究领域取得了新进展。相应研究成果于6月23日发表在《自然-催化》上。  重要的催化过程与复杂的反应网络  催化技术在资源利用、能源转化和环境保护等诸多领域发挥着关键作用,是人类现代社会发展速度与质量的重要保证。而石油资源是当代能源和材料的核心来源。近年来,随着石油资源的日益匮乏,寻找补充性乃至替代性技术路径,以此满足现代社会发展日益旺盛的能源和材料需求尤为重要。  我国长期以来“富煤、缺油、少气”的资源结构,导致石油资源长期高度依赖进口。但是石油进口依赖国际环境,价格不可控,获取也容易受限。此外,人们对生态环境的保护意识也在不断增强,改良乃至废止高污染、高排放化工过程的呼声越来越高。但同时,生产效率又不能被牺牲,这使得催化研究领域面临很大的挑战。  针对国家的需求和能源现状,包信和从20世纪90年代回国起就全身心投入到能源小分子催化转化的科学研究中,带领团队深入的开展基础研究,聚焦“纳米限域催化”领域,一干就是二十余年。2016年,包信和与潘秀莲等在煤基合成气转化制低碳烯烃的研究中,创建了OXZEO催化过程。随着研究的不断深入,OXZEO催化概念已拓展成为碳资源转化的重要平台。  然而,OXZEO催化体系中涉及合成气经C1物种到多碳产物的转化过程,其反应网络非常复杂,包含催化剂表面众多的活化过程和复杂的多碳中间体,如何确定其活性组分和中间产物成为研究的难题,反应机理研究面临着挑战。  独特的设计思路  长期以来,基于在表界面催化及固体核磁共振谱学表征领域积累的丰富研究经验,包信和和侯广进等想到可以借助固体核磁共振方法对复杂多碳物种及其所处吸附相化学环境的原子超高分辨表征的优势,实现对OXZEO催化转化过程中催化剂表面活化多碳中间体的准确鉴别。  “在中科院和大连化物所的大力支持下,为研究团队搭建了优异的仪器平台,特别是前些年中科院的修购计划支持了包括高场800MHz固体核磁共振谱仪等的仪器装备,为催化反应机理研究提供了重要的设备保障。”侯广进说。  先进的表征技术和优秀的研究平台是团队在催化反应机理领域克难攻坚的利器。  基于对OXZEO催化过程的大量反应实践,研究团队发现,以甲醇催化转化为代表的传统C1转化反应机理并不能准确解释OXZEO催化体系中观察到的很多实验现象。为了充分论证OXZEO催化体系中包含的特殊反应路径,基于ZnAlOx金属氧化物是典型的合成气转化制甲醇催化剂,而H-ZSM-5分子筛是经典的甲醇转化制烃催化剂。于是团队提出要建立一个ZnAlOx/H-ZSM-5模型催化体系,可以说,这是一种独特的设计思路。  “如果我们可以在模型体系中观测到不同于甲醇直接转化过程报道过的中间体,并能够与OXZEO催化过程中观测到的独特反应现象相关联,”论文的第一作者纪毅说,“我们就可以说明OXZEO双功能催化概念是独特的,而我们观测到的关键中间体也对应了OXZEO催化中涉及的独特反应路径。”  研究人员利用模型催化体系,借助准原位固体核磁共振-气相色谱联用的分析检测方法,观测了从初始碳-碳键生成到稳态转化过程中,包括表面多碳羧酸盐、多碳烷氧基、BAS吸附环戊烯酮、环戊烯基碳正离子在内多种中间体的动态演化过程。检测到了数量众多、种类丰富的含氧化合物中间体物种,揭示了合成气直接转化的OXZEO过程与传统甲醇转化的重要区别,有力的解释了OXZEO合成气转化过程中烯烃及芳烃产物独特的高选择性。  接下来“向前也向后”  在上述研究的基础上,团队进一步提出和论证了一氧化碳和氢气在分子筛中也参与了含氧化合物的生成,并初步建立了OXZEO催化转化过程中C1中间体到多碳产物的反应网络和反应机理。  除了模型催化体系外,研究人员还在多种OXZEO催化剂上均观测到了关键中间体,验证了包括含氧化合物路径在内的反应机理的普适性。  但是,团队的研究工作不止于此,后续的基础研究会“向前也向后”。  “我们会进一步深入开展金属氧化物上C-O、H-H键活化以及C-H键形成的机理研究,进而拓展到其它碳资源转化领域如二氧化碳加氢等。”论文共同第一作者高攀告诉《中国科学报》。  与此同时,大家心里都有一个“梦”,就是将催化机理研究与实际反应密切结合,尽早实现OXZEO过程的工业化。  “基础研究需要一步一个脚印的积累,如果这些催化化学中基础科学问题的研究成果能够帮助应用研究学者建立一套完整的催化体系,设计出更高效的、理想化的催化剂,那我们的梦想就一定能实现。”侯广进提到。  有了前进的方向,整个团队将卯足精神,向前冲锋。侯广进对组内人员也提出了希望:“每个人都要有自己的思考,带着研究性思想去做工作,及时沟通交流,团队合作,协力攻坚,相信我们一定会取得更多、更好的研究成果。”  “作为包老师研究团队中的一个研究组,核磁共振是我们的特色也是优势,与其他几个研究组形成学科交叉、优势互补。最终目标,肯定是要从基础研究推向实际应用。”侯广进说。
  • 第四届能源与环境催化会议在长沙正式召开
    第四届能源与环境催化会议”重新启动,会议于2022年8月15-16日召开,我们在长沙等待与您相聚! 中教金源展品一览: 一、GPPCM微型光热催化微反系统;二、CEL-PECRS2000全自动光电催化流动反应系统;三、PCRD300-12光化学反应仪及气体分配仪;四、CEL-PF300-T9氙灯光源系统(高端一体);五、GC7920全自动系统气相色谱;六、HPRS-PEC250光催化光电反应釜;七、CEL-NP2000-2(10)A强光光功率计;八、CEL-GPRT100鼎式光催化反应釜;
  • 科学家首次“拍摄”到光催化剂光生电荷转移演化的全时空图像
    太阳能光催化反应可以实现分解水产生氢气、还原二氧化碳产生太阳燃料,是科学领域“圣杯”式的课题,并受到全世界关注。在过去半个世纪的光催化研究中,科学家在光催化剂制备和光催化反应研究方面做出了努力,但光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,因而关于该过程的基本机制一直不清楚。  日前,中国科学院院士、中科院大连化学物理研究所研究员李灿,研究员范峰滔等揭开了这一谜团。研究人员综合集成多种可在时空尺度衔接的技术,对光催化剂纳米颗粒的光生电荷转移进行全时空探测,揭示了复杂的多重电荷转移机制,“拍摄”到光生电荷转移演化全时空影像。该研究明确了电荷分离机制与光催化分解水效率之间的本质关联,为突破太阳能光催化反应的“瓶颈”提供了新的认识和研究策略。10月12日,相关研究成果发表在国际学术期刊《自然》(Nature)上。  光催化分解水的核心科学挑战在于如何实现高效的光生电荷的分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开这一全过程的微观机制颇具挑战性。“长期以来,我们的团队前赴后继致力于解决这一问题,在这个工作中,集成多种先进技术和理论,在时空全域追踪了光生电荷在纳米颗粒中分离和转移演化的全过程。”李灿说。  光催化过程中,光生电子和空穴需要从微纳米颗粒内部分离,并转移到催化剂的表面,从而启动化学反应。范峰滔介绍,在如此微小的物理尺度上,光催化剂往往缺乏分离电荷所需的驱动力,因此,实现高效的电荷分离需要一个有效的电场。为了在光催化剂颗粒中形成一个定向重排的电场,科研人员将一种特定的缺陷选择性地合成到颗粒的特定晶面,有效促进了电荷的分离。为了更好地剖析纳秒范围内高效电荷分离机制,科研人员使用了时间分辨光发射电子显微镜,发现了光生电子在亚皮秒时间尺度就可以选择性的转移到特定晶面区域,且电子在超快的时间尺度上可以从一个表面移动到另一个表面。  “长期以来光催化中的主导电荷分离机制很难解释跨越如此大空间尺度超快电荷转移。”范峰滔说,“我们将超快的电荷转移归因于新的弹道传输机制,其中载流子以极高的速度传播,在与晶格发生作用之前就已经跨越了整个粒子。”  进一步,为了直接观察电荷转移过程,研究人员进行了瞬时光电压分析,发现随着时间尺度从纳秒到微秒的发展,空穴逐渐出现在含有缺陷的晶面。研究表明,晶面上光生电子和空穴的有效空间分离是由于时空各向异性的电荷转移机制共同决定的,这一复杂机制可以通过各向异性晶面和缺陷结构来可控的调整。  “通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜(飞秒到纳秒)、瞬态表面光电压光谱(纳秒到微秒)和表面光电压显微镜(微秒到秒)等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。”李灿说,“时空追踪电荷转移的能力将促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。”  “未来,这一成果有望促进太阳能光催化分解水制取太阳燃料在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。  该项工作得到国家自然科学基金委“人工光合成”基础科学中心项目、中科院稳定支持基础研究领域青年团队计划、国家重点研发计划及大连化学物理研究所创新基金等的支持。
  • 最强光催化剂“出手”“水变氢”效率刷新世界纪录
    在太阳光或一缕LED紫外光照拂下,玻璃烧杯中加入一点点白色粉末,无须加热也无须其他能源,烧杯里的水便可源源不绝产生氢气,且经过数百小时的实验,这种白色粉末的量并未衰减。在云南大学材料与能源学院实验室,你能见到这样的“奇观”。  在碳达峰、碳中和背景下,洁净的氢成为未来的重要能源,高效、低成本制氢,特别是光解水制氢是科学家研究的方向。1月10日,国际著名期刊《自然通讯》发表了云南大学柳清菊教授团队与英国伦敦大学学院唐军旺教授团队、华东师范大学黄荣教授团队合作的一项重要研究成果——以单原子铜锚定二氧化钛,成功制备新型光催化剂,其分解水制氢量子效率高达56%,被审稿人称为“世界纪录”。这意味着“水变氢”有了一条可实用化的新路径。  提高催化效率 才能助推光解水制氢走向实用化  氢能是一种清洁无污染的可再生能源,燃烧值很高,可达每千克140兆焦耳,其具有来源丰富、燃烧产物无二次污染等优点,有望代替石油和天然气,因而受到世界范围的广泛关注。若能得以大规模实际应用,将为“双碳”目标的顺利实现作出贡献。  “目前,制备氢的主要方法有化石燃料制氢和电解水制氢,但两种方法都需消耗传统能源。”柳清菊向科技日报记者介绍,化石燃料制氢,二氧化碳排放量大,每生产1千克氢气,将产生10千克左右的二氧化碳;而电解水制氢也存在能耗和成本问题。“在环境和能源问题日益严重的今天,开发清洁、可持续、低成本的制氢技术,推进氢能的发展显得尤为迫切和重要。”柳清菊说,采用光催化技术,利用太阳能驱动水分解制氢是一种极具发展前途的新方法。  自1972年科学家发现二氧化钛半导体具有光催化性能以来,光解水制氢一直受到学术界及产业界的关注与重视。在能量大于或等于半导体禁带宽度的光照射下,光催化材料价带中的电子吸收入射光子的能量跃迁到导带,形成“电子—空穴”对,空穴和电子迁移到材料表面,与表面吸附的水分子发生氧化还原反应,也就是电子与水发生还原反应产生氢气,空穴氧化水产生氧气。  然而,由于电子带负电,空穴带正电,使得光催化材料中光照所产生的“电子—空穴”很容易复合,导致产氢量子效率低下,严重阻碍了光解水制氢的发展。因此,如何阻止“电子—空穴”的复合,提高光催化制氢效率,成为目前国际上光催化研究领域的重大挑战之一,也是制约光催化制氢技术实用化的瓶颈难题。  这其中,光催化材料是核心。而光催化材料的活性、稳定性和成本是决定光催化技术能否实际应用的关键。  铜离子“补位” 新型光催化材料设计制备突破瓶颈  金属单原子催化剂是近年来迅速发展起来的新型催化剂。相比传统金属催化剂,金属单原子催化剂中的原子以单个的形式负载在载体上,在催化反应中可充分参与反应,实现反应活性中心的最大化,利用效率可接近100%,在理论上可以同时提高催化活性并降低成本。然而由于单原子具有极高的表面能,在合成和催化反应过程中容易团聚、稳定性差、寿命短且制备成本高,阻碍了其实际应用。  “这次起光催化作用的二氧化钛,是一种钛和氧规则排列的晶体,我们通过独特的合成工艺,在其中生成大量的钛空位。”柳清菊向记者解释,有了这些钛空位,就可以请铜离子来帮忙“补位”。  “通过对钛基有机框架材料MIL-125中钛空位的设计和可控合成,我们研制出具有大比表面积和丰富钛空位的二氧化钛纳米材料,以此为载体锚定过渡金属铜单原子,使铜与二氧化钛形成了牢固的‘铜—氧—钛’键。”柳清菊介绍,在光催化制氢反应过程中,一价阳离子铜和二价阳离子铜的可逆变化,大大促进了光生“电子—空穴”的分离和传输,大幅提高了光生电子的利用率,使产氢量子效率获得突破,达到56%。这项突破获得了欧洲科学院院士、伦敦大学学院光催化和材料化学终身教授唐军旺团队的验证。  成本、工艺更“亲民” 光解水制氢产业已初露曙光  新研制的二氧化钛基光催化材料,具有性能稳定、无毒、无二次污染等优点,且生物相容性好、制备方法简单、成本低,与传统方法相比优势明显。通常含贵金属的催化剂,催化活性高,但相应的成本也极高。“新材料中,我们用的是‘贱金属’铜,它储量大、价格低、易获得,这是成本降低的第一个方面。” 柳清菊介绍,此外,原有的催化材料中单个金属原子活性很大,很容易形成团簇,使得催化活性降低。研发团队将铜原子牢固地锚定在钛空位上,不容易团聚,创新性地解决了这个问题,稳定时间很长,在常温常湿条件下,样品放置380天之久,仍然具有与新制备样品相当的产氢性能,进一步降低了产氢成本;另外,新型光催化材料制备工艺简单,无需昂贵的设备,使光催化制氢更加“亲民”。  近年来,柳清菊团队在实验室进行了大量的基础研究,包括材料设计、合成工艺、机理研究、性能优化等,已获得稳定的高性能光解水制氢光催化材料的实验室制备工艺,正准备开展放大工艺研发,为后续产业化奠定基础。虽然传统的光催化材料成本高、量子效率低,国内光催化产氢市场尚未成熟,但随着产业链衔接及相关政策的完善,光催化制氢产业化已是曙光初露。  对柳清菊团队而言,56%的产氢量子效率也不是终点。“我们还在继续努力,使效率进一步提高,如果能够提高到70%以上,对生产应用的意义将是不言而喻的。”柳清菊说,找准了方向,效率再提升将不是梦。随着光解水效率进一步提高和成本进一步降低,氢能时代将加速到来,人类也将还地球以绿水青山。
  • 我国学者在有机污染物光催化降解及机理研究方面取得系列进展
    在国家自然科学基金委的持续支持下,中国科学院化学研究所赵进才课题组在光催化降解有机污染物及其机理方面进行了十几年的系统深入研究,取得一系列重要研究进展。  低浓度、高毒性、难降解有机污染物是一类普遍存在、具有长期危害性的环境污染物,用传统方法很难处理。TiO2光催化可利用洁净的太阳光驱动反应,利用环境友好的分子氧为氧化剂,是消除这类污染物最有应用前景的方法之一。TiO2耐腐蚀,光、热和化学稳定性好,是目前最好的光催化体系。但TiO2只能利用紫外光(约占太阳光5%),由于占太阳光主要部分的可见光的激发能较低,从传统半导体光催化的带-带激发原理上很难实现同时满足导带电子活化氧和价带空穴氧化水或污染物两个必需条件的可见光反应。因此,如何实现可见光反应是对TiO2光催化原理和应用提出的一个极大挑战。  赵进才课题组从1995年开始致力于染料污染物可见光光催化降解及其机理的研究。发现染料分子吸收可见光被激发后可以向TiO2导带注入电子实现电荷分离,通过半导体导带的媒介作用实现可见光照射下染料分子和空气中氧分子的同时活化,成功地将有机染料污染物氧化降解。揭示了一个与传统光催化有着本质区别的可见光光降解机理,该机理不涉及半导体的带-带吸收以及空穴的生成和反应,而是利用染料污染物分子吸收可见光诱发的活性自由基和分子氧的共同作用导致污染物降解。  通过对几十种染料污染物降解的研究,发现只要染料的电子激发态电位比TiO2导带电位更负,都能实现有效的电子注入进而降解,证明了该原理的有效性和普适性。该原理还在共存无色小分子污染物的氧化降解、卤代污染物的还原脱卤以及可见光光催化合成化学品等方面有着广泛的应用前景。相关研究成果先后在J. Am. Chem. Soc., Angew. Chem. Int. Ed., Environ. Sci. Technol.等刊物上发表系列论文。  最近应英国皇家化学会综述期刊Chemical Society Reviews的邀请,撰写了题为“Semiconductor-mediated photodegradation of pollutants under visible-light irradiation”的综述论文 (Chem. Soc. Rev. 2010, 39, 4206-4219),系统地介绍了该课题组取得的相关研究成果。  最近,他们在光催化活化分子氧机理研究方面取得新进展。光催化反应过程中分子氧如何活化一直是该研究领域的一个关键科学问题。他们利用同位素标记等实验研究TiO2 光催化氧化醇类分子时,发现在反应过程中醇分子中的氧原子完全被氧分子中的一个氧原子所置换(置换率99%)生成相应的羰基化合物。基于顺磁共振、氧同位素标记拉曼光谱、动力学同位素效应等实验结果,揭示了与以往贵金属等催化氧化机理完全不同的TiO2光催化氧原子转移机理(Angew. Chem. Int. Ed., 2009, 48, 6081-6084,被选为Highly Important Paper (HIP),并作为封面论文发表)。  在这一机理的指导下,他们进一步实现了通过TiO2表面吸附Bronsted酸来加速醇类分子的光催化转化,同时发现由于掺杂SiO2能增加酸的吸附位点,当用Bronsted酸对TiO2/SiO2复合光催化剂进行表面修饰后加速作用进一步加强。表面光谱滴定实验证实了质子能够有效促进TiO2表面形成的Ti-过氧化物中间物种的分解,进而使得表面光催化活性位点再生,因此加速了光催化循环和反应。该研究有助于深入理解TiO2光催化活化分子氧的微观机理,为今后制备新型光催化剂和调控光催化反应提供了重要的科学依据。相关研究成果发表在Angew. Chem. Int. Ed. (2010, 49, 7976-7979),被选为VIP论文并作为内封面(Inside Cover)做了专门介绍,Nature China对此研究成果也做了评述 (Highlight)。
  • 光催化领域新文章,水作为还原剂将氮气进行光催化固定
    1. 文章信息标题:stable ti3+ sites derived from the tixoy-pz layer boost cubic fe2o3 for enhanced photocatalytic n2 reductiondoi:https://doi.org/10.1021/acssuschemeng.1c058902. 文章链接https://pubs.acs.org/doi/10.1021/acssuschemeng.1c058903. 期刊信息期刊名:acs sustainable chemistry & engineeringissn:2168-04852021年影响因子:8.198分区信息:中科院1区top;jcr分区(q1)涉及研究方向:光催化4. 作者信息:第一作者是广州大学博士张文生。通讯作者为广州大学韩冬雪教授、广州大学何颖实验员。5. 正文中标记了“the photochemical reactor was installed on the cel-gppcl system (beijing china education au-light company) with a 300 w xe lamp.”.文中所述设备由北京中教金源科技有限公司提供,设备型号:cel-gppcl the photochemical reactor was installed on the cel-gppcl system (beijing china education au-light company) with a 300 w xe lamp. 利用水作为还原剂将氮气(n2)进行光催化固定是一种令人鼓舞的未来氨合成策略,这有助于人们开发高效的光催化剂,以提高太阳光利用率,并提高固定n2的催化效率。赤铁矿(α-fe2o3)是一种稳定性高、成本低廉、天然丰度高的半导体光催化剂,从经济效益上讲是可见光驱动n2-nh3转化的理想催化剂,但相关研究报道较少。这是因为单一组分fe2o3光催化剂的光生电子还原能力普遍较低、具有严重的电子空穴重组现象和有限的表面活性位点,限制了其在光催化固氮领域的发展。为克服这一问题,本文构建了表面磷掺杂含稳定ti3+位点的锐钛矿tio2(tixoy-pz)层,来增强α-fe2o3立方体的光催化n2还原反应(pnrr)性能。通过ph3处理,在tixoy-pz层上诱导不饱和ti3+物种来作为活性位点,实现对n2分子的高吸附和活化。同时,磷掺杂形成的部分金属钛缺陷使催化剂的结构更加稳定。此外,通过程序升温氮气吸脱附(tpd)和瞬态荧光衰变曲线证明了fe2o3@tixoy-pz的ti3+物种是n2化学吸附和活化的活性位点。fe2o3@tixoy-pz纳米杂化催化剂利用tixoy-pz层表面的ti3+位点和界面耦合的优势,实现了在环境条件下有效地将n2光还原为nh3;这为设计和开发具有优异光催化固氮性能的纳米催化剂提供了一种新的视角。文章doi : https://doi.org/10.1021/acssuschemeng.1c05890,原文链接:https://pubs.acs.org/doi/10.1021/acssuschemeng.1c05890原文下载:online acssuschemeng.1c05890.pdf:,。视频小程序赞,轻点两下取消赞在看,轻点两下取消在看
  • 天美仪器亮相全国太阳能光化学与光催化会议
    2016年8月21-24日由中国可再生能源学会光化学专业委员会和中国化学会催化专业委员会主办,由山东大学、中科院兰州化物所、青岛大学、石油大学联合承办的第十五届全国太阳能光化学和光催化会议在山东大学召开。此次会议主要在光催化反应及其在环境保护中的应用、光电化学及清洁能源的开发利用、光化学与光催化新材料研究等领域展开交流,其中包括太阳能电池的开发和利用、光解水制氢系统、可见光催化降解有毒难降解有机物等热点议题,来自全国各大高校、研究院所及海内外机构的1300余人参加了会议。  北京泊菲莱科技有限公司作为会议的主赞助方全程参与了此次会议。天美(中国)科学仪器有限公司作为泊菲莱公司在光催化行业的唯一合作方受邀参加了此次盛会,并展出了在光催化及相关领域的检测仪器:赛里安气质联用仪——Scion 456-SQ、上海天美气相色谱仪——GC7980。  天美(中国)总部分析及色谱仪器市场部和济南分公司人员参加了会议,并在展会期间向广大参会者介绍了以上两款仪器的优势特点及光催化行业检测应用。   第十五届全国太阳能光化学和光催化会议在精彩的学术交流与展会活动中圆满落幕,天美公司将一如既往的致力于分析仪器在环保及新生能源的检测应用。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 158万!广东工业大学催化及能源材料实验室设备采购项目
    项目编号:0724-2101D25N6043项目名称:广东工业大学催化及能源材料实验室设备采购项目(二次)采购方式:公开招标预算金额:1,576,900.00元采购需求:合同包1(新能源方向实验室设备):合同包预算金额:1,576,900.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表往复振荡摇床2(台)详见采购文件39,200.00-1-2其他专用仪器仪表高压视窗反应釜1(台)详见采购文件68,000.00-1-3其他专用仪器仪表行星式球磨机1(台)详见采购文件26,000.00-1-4其他专用仪器仪表高气密性自动在线光催化分析系统1(套)详见采购文件154,200.00-1-5其他专用仪器仪表多通道光催化反应系统(核心设备)1(套)详见采购文件135,000.00-1-6其他专用仪器仪表光电催化反应系统1(套)详见采购文件81,000.00-1-7其他专用仪器仪表旋转蒸发仪套装1(套)详见采购文件51,790.00-1-8其他专用仪器仪表水焊机1(台)详见采购文件8,300.00-1-9其他专用仪器仪表电化学工作站2(套)详见采购文件120,000.00-1-10其他专用仪器仪表四探针电阻率仪1(台)详见采购文件25,000.00-1-11其他专用仪器仪表扣电一体式恒温充放电检测系统1(台)详见采购文件107,500.00-1-12其他专用仪器仪表振实密度仪1(台)详见采购文件14,000.00-1-13其他专用仪器仪表热压机1(台)详见采购文件30,000.00-1-14其他专用仪器仪表铝塑膜成型机1(台)详见采购文件36,000.00-1-15其他专用仪器仪表手动切片机1(台)详见采购文件8,500.00-1-16其他专用仪器仪表手套箱(单工位)1(台)详见采购文件140,000.00-1-17其他专用仪器仪表多用途微波化学合成仪1(台)详见采购文件124,000.00-1-18其他专用仪器仪表冷冻干燥机1(台)详见采购文件35,910.00-1-19其他专用仪器仪表双光束紫外可见分光光度计积分球1(台)详见采购文件84,800.00-1-20其他专用仪器仪表十万分之一电子天平1(台)详见采购文件38,800.00-1-21其他专用仪器仪表万分之一电子天平1(台)详见采购文件16,900.00-1-22其他专用仪器仪表气相色谱仪2(台)详见采购文件216,000.00-本合同包不接受联合体投标合同履行期限:60天
  • 原位光照XPS携手SPM,助力复旦大学发表光催化领域知名SCI期刊
    导读太阳能以其取之不尽、用之不竭、清洁可再生等特点,有望成为化石燃料的替代能源之一,半导体光催化因其成功将太阳能转化为所需的化学能而引起了研究者极大的兴趣。光催化制氢是将太阳能转化为化学能的最重要途径之一,而其关键技术在于开发高效、高稳定性、低成本的光催化剂。基于此,复旦大学戴维林教授课题组设计了一种CdSe纳米棒@Ti3C2 MXene纳米片复合光催化剂,并结合SPM(扫描探针显微镜)及原位光照XPS(X射线光电子能谱)结果进行相关机理探讨,为进一步开发高效稳定的光催化体系提供了研究思路。岛津分析中心参与该项研究工作,相关合作成果发表于光催化领域国际知名SCI期刊《Applied Catalysis B: Environmental》(IF=24.3)上。图1. 期刊首页截图图2. 摘要译文研究内容概览CdSe(硒化镉)因其合适的带隙、在可见光区的强吸收和高化学稳定性而备受关注,然而由于光生载流子的快速复合,单独使用CdSe的产氢性能仍然不能令人满意。Ti3C2 MXene作为一种新型二维材料,具有独特的结构以及良好的物理化学性能,与合适的窄禁带半导体复合可以获得可见光催化活性并促进光生载流子的分离。XPS&SPM携手,探明电子转移机理本研究工作利用原位水热技术构建了由Ti3C2 MXene纳米片(采用岛津SPM测定得到的片层厚度为~1.45 nm,见图3)和CdSe纳米棒组成的二元异质结,通过光催化产氢活性测试发现,在可见光下,CdSe-Ti3C2 MXene(以下简称CdSe-MX)的最佳氢生成活性比原始CdSe高近六倍。图3. Ti3C2 MXene纳米片片层厚度测定图4. 岛津AXIS Supra+仪器及SPM-9700HT图5给出了CdSe-MX复合材料与纯CdSe的各元素高分辨XPS谱图,较于纯物质,复合后结合能的移动可反映出复合材料之间存在电子转移作用,一般失去电子的一方结合能升高,反之降低。图5(a、d)中,与纯MXene相比,CdSe-MX的C 1s中归属于C-Ti峰的结合能以及Ti 2p中Ti-C 2p3/2的结合能位置均降低;相应地,与纯CdSe相比,CdSe-MX的Se 3d5/2结合能以及Cd 3d5/2结合能位置均升高。以上结果表明CdSe-MX复合材料中电子由CdSe转移至Ti3C2 MXene表面。进一步地,采用岛津SPM获得了CdSe-MX的原子力显微镜图像和相应的表面电位分布(图6)。CdSe富集区域的较高电势表明失去电子的趋势更大,进一步表明电子转移是从CdSe到MXene。图5. CdSe-MX复合材料与纯CdSe的(a) C 1s、(b) Cd 3d、(c) Se 3d、(d) Ti 2p 高分辨率XPS谱图图6. CdSe-MX的原子力显微镜图像和相应的表面电位分布由于真实反应体系在光照下进行,故进一步采用原位光照XPS用于探索CdSe和Ti3C2 MXene之间的电荷转移,结果见下图7。与黑暗条件相比,Cd 3d的结合能在光照射下正向移动0.4 eV,Se 3d 峰的结合能在光照条件下也正向移动0.3 eV。同时,Ti 2p 峰的结合能在可见光照射下负向移动0.2 eV。这一发现证明了在原位光照条件下,电子进一步从CdSe转移到MXene。图7. 原位光照前后CdSe-MX的Cd 3d (a)、Se 3d (b) 和Ti 2p (c)的高分辨率XPS谱图客户心声复旦大学 戴维林教授复旦大学化学系戴维林教授表示:采用XPS与SPM技术联合成功证明了复合材料中的电子转移方向,为本篇文章的机理研究提供了有理论据。此外传统的非原位表征手段,只能体现催化剂反应前与反应后的状态,原位表征在催化反应中逐渐成为不可或缺的表征手段,原位光照XPS的引入更能体现反应状态下的材料特征,期望后续能够与岛津有更多关于原位表征的合作。撰稿人:崔园园、刘仁威本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士sshqll@shimadzu.com.cn
  • 安东帕康塔受邀参加第四届能源与环境光催化材料国际研讨会
    第四届能源与环境光催化材料国际研讨会(EEPM4)于2021年7月25日至29日在西安建国饭店及延安大学举行;EEPM4是一个致力于营造跨学科、无国界、形式丰富的纯学术交流讨论会。会议涉及光吸收、太阳能转换和存储、环境修复、清洁技术和可持续化学,专注于光催化和光电催化反应等领域的基础研究与应用研究。通过各种形式讨论来自世界各地的跨学科研究,包括全体会议、主题演讲和邀请讲座、口头和快速演示、海报会议和商业展览。安东帕邀您莅临3号展位,期待您的到来,进行现场交流。安东帕康塔物理/化学吸附分析仪:Autosorb iQ气体吸附全分析平台,涵盖超低比表面、微孔、蒸汽吸附和化学吸附测量动力学模式及迟滞环扫描模式可提供样品孔结构的全方位信息自动液位传感器控制冷阱升降,确保样品管体积最小化,实现微孔分析的高分辨率真正实时P0测量,为全压力段提供高分辨率可扩展第2和第3分析站,脱气站多达4个安东帕康塔高压容量法气体吸附分析仪:iSorb储气、气体分离研究真正高压:最高200bar安全无忧的高压设计精确的温度控制安东帕康塔真密度仪:Ultrapyc系列TruPyc技术,数据更精准TruLock密封技术,重复性更高powderProtect模式,无惧细粉污染Peltier温控系统,温度更稳定超大触屏,图形用户界面安东帕康塔压汞孔径分析仪:PoreMaster用于介孔和大孔的孔分布测定,孔径范围可达1080 μm-3.6 nm内置独立的高低压站,可多达2个高压站和2个低压站可测定多种固体材料的孔体积,孔径分布,孔隙率,孔喉比等信息低压站可自动进汞,高压站自动液压油循环过滤内置冷阱,双保险内部锁定,样品池倾斜系统,安全可靠微波消解系列:Multiwave GO Plus | 5000 | 7000集微波消解、萃取、合成、氧燃烧、干燥、赶酸等为一体多种转子可选,高达64位的样品处理量最高300℃、80bar的消解条件最高等级的安全防护能力通过国际权威 ETL及GS双重安全认证微波合成系列:Monowave 450 | 400 | 200从0.5mL到1L的刻度范围多达192个的平行反应最高微波反应条件:300℃@80bar最快的加热速率9℃/s安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 上海比朗公司首家推出“气体光催化装置”
    Bilon品牌自2007年推出以来,一直不断地进行着技术的改良,为科研工作者提供着高品质的检测产品。继2010年7月推出Bilon光化学发反应仪,Bilon家族再度创新,于2011年8月,上海比朗公司首家荣耀推出BILON-R-BA型&ldquo 气体光催化装置&rdquo ,该装置系统由反应系统和分析系统组成。配合我公司生产的光化学反应仪可完成气体的在线反应。气体光催化装置特征 气体光催化装置是一全密闭的反应器,其内部装有200mm*100mm大小,外部可调节高度的支撑块,测试样片放置在支撑块上。支撑块上方有一与其平行的光路窗口,反应器外部的紫外光通过此窗口照射到样片表面。通过调节支撑块的高度使得样片表面与窗口之间的距离大于5.0mm。反应气只能在样片表面和窗口之间通过。光路窗口材料可选用石英玻璃或硼玻璃。 样品的光催化性能测试是在连续流动反应装置中进行,反应装置由反应气供应、光源、光催化反应器组成。由于反应物浓度很低,因此构成装置的材料必须满足低吸附性呵抗紫外线的要求,测试装置原理图见下图。产品详情请咨询:上海比朗仪器有限公司www.sh-bilon.com地址:上海市闵行区中春路988号7号楼5楼Tel:021-52965995/52965969
  • 157万!广东工业大学催化及能源材料实验室设备采购项目(三次)
    项目编号:0724-2101D25N6043项目名称:广东工业大学催化及能源材料实验室设备采购项目(三次)采购方式:公开招标预算金额:1,576,900.00元采购需求:合同包1(新能源方向实验室设备):合同包预算金额:1,576,900.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表往复振荡摇床2(台)详见采购文件39,200.00-1-2其他专用仪器仪表高压视窗反应釜1(台)详见采购文件68,000.00-1-3其他专用仪器仪表行星式球磨机1(台)详见采购文件26,000.00-1-4其他专用仪器仪表高气密性自动在线光催化分析系统1(套)详见采购文件154,200.00-1-5其他专用仪器仪表多通道光催化反应系统(核心设备)1(套)详见采购文件135,000.00-1-6其他专用仪器仪表光电催化反应系统1(套)详见采购文件81,000.00-1-7其他专用仪器仪表旋转蒸发仪套装1(套)详见采购文件51,790.00-1-8其他专用仪器仪表水焊机1(台)详见采购文件8,300.00-1-9其他专用仪器仪表电化学工作站2(套)详见采购文件120,000.00-1-10其他专用仪器仪表四探针电阻率仪1(台)详见采购文件25,000.00-1-11其他专用仪器仪表扣电一体式恒温充放电检测系统1(台)详见采购文件107,500.00-1-12其他专用仪器仪表振实密度仪1(台)详见采购文件14,000.00-1-13其他专用仪器仪表热压机1(台)详见采购文件30,000.00-1-14其他专用仪器仪表铝塑膜成型机1(台)详见采购文件36,000.00-1-15其他专用仪器仪表手动切片机1(台)详见采购文件8,500.00-1-16其他专用仪器仪表手套箱(单工位)1(台)详见采购文件140,000.00-1-17其他专用仪器仪表多用途微波化学合成仪1(台)详见采购文件124,000.00-1-18其他专用仪器仪表冷冻干燥机1(台)详见采购文件35,910.00-1-19其他专用仪器仪表双光束紫外可见分光光度计积分球1(台)详见采购文件84,800.00-1-20其他专用仪器仪表十万分之一电子天平1(台)详见采购文件38,800.00-1-21其他专用仪器仪表万分之一电子天平1(台)详见采购文件16,900.00-1-22其他专用仪器仪表气相色谱仪2(台)详见采购文件216,000.00-本合同包不接受联合体投标合同履行期限:60天
  • 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能
    1. 文章信息标题:Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation中文标题: 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能 页码:958-968 DOI: 10.1016/j.renene.2021.11.030 2. 期刊信息期刊名:Renewable EnergyISSN: 0960-1481 2022年影响因子: 8.634 分区信息: 中科院一区;JCR分区(Q1) 涉及研究方向: 工程技术,能源与燃料,绿色可持续发展技术 3. 作者信息:第一作者是 施伟龙(江苏科技大学)、孙苇(北华大学)(共同一作)。通讯作者为 林雪(北华大学),郭峰(江苏科技大学),洪远志(北华大学)。4. 光催化活性评价系统型号:北京中教金源(CEL-PAEM-D8,Beijing China Education Au-Light Co., Ltd.);气相色谱型号:北京中教金源(GC7920,Beijing China Education Au-Light Co., Ltd.)。本工作利用SiO2微米球为硬模板和三聚氰胺为前驱体,通过空气化学气相沉积 (CVD)方法合成洋葱圈状结构的g-C3N4(OR-CN),且基于溶剂热法与0D Bi3TaO7量子点(BTO QDs)复合,形成0D BTO QDs/3D OR-CN S型异质结复合物光催化剂,在λ 420 nm的可见光驱动下,讨论了不同质量比的BTO/OR-CN化合物催化剂在2小时内的析氢性能。其中,0.3wt% BTO/OR-CN样品赋予了最佳的光催化析氢速率为4891 μmol g-1,且在420 nm处的表观量子产率(AQY)为4.1%,约是相同条件下的OR-CN的3倍。其增强的光催化活性归因于0D BTO量子点与OR-CN之间形成了S型异质结,有助于促进光生电荷载流子的分散,且增强了可见光吸收强度,此外,通过4次循环实验,发现0D BTO QDs/3D OR-CN S型异质结复合物光催化剂具有优异的稳定性,有应用前景。图1. 制备BTO/OR-CN化合物的实验过程如图1所示,BTO/OR-CN的制备是通过加入0.2 g的OR-CN在BTO的合成过程中,合成的样品命名为xBTO/OR-CN,其中x代表BTO在化合物中的质量比,分别为0.1%,0.3%,0.5%,1.0%。此外,为了比较,合成了块体g-C3N4(B-CN)和0.3%BTO/B-CN复合物,B-CN的合成是通过一步煅烧3 g三聚氰胺,550 °C加热4小时,升温速率为2.3 °C/min,从而得到黄色的产物。0.3% BTO/B-CN复合物的合成类似于0.3% BTO/OR-CN复合物的合成过程,仅仅用B-CN代替OR-CN。图2. BTO、OR-CN和不同复合物的XRD图如图2示,OR-CN、BTO以及不同质量比的BTO/OR-CN化合物(0.1%、0.3%、0.5%和1.0%)的XRD图表征晶体结构和结晶度。对于BTO样品,2θ在28.2°、32.7°、46.9°和58.4°属于Bi3TaO7的(111)、(200)、(220)和(222)面(JCPDS:44-0202)。OR-CN拥有两个衍射峰在13.1°(100)和27.4°(002),分别归因于芳香单元的层内结构堆积基序和层间堆积基序。至于BTO/OR-CN化合物,引入BTO没有影响OR-CN的相结构,当负载0.1%、0.3%、0.5%和1.0%的BTO在OR-CN上,很难发现额外的BTO特征峰,这很可能是因为少量的BTO QDs。图3. OR-CN的SEM图(a)0.3% BTO/OR-CN复合材料的SEM图(b)TEM图(c)HRTEM图(d)和EDX图(e)如图3所示,通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析制备的样品的结构和形貌。OR-CN样品呈现了洋葱圈形状,尺寸大约在150-200 nm。负载BTO QDs在OR-CN的表面上形成BTO/OR-CN复合物之后,OR-CN的洋葱圈结构没有改变,但表面变得更粗糙。为了进一步清晰地观察BTO/OR-CN化合物,0.3%BTO/OR-CN的TEM图展现了BTO QDs均匀地分布在OR-CN表面上且与OR-CN底物亲密的接触,这有助于电荷的分散和转移。同时,化合物的高分辨透射图(HRTEM)反映了BTO和OR-CN之间有好的界面接触,其中,晶格间距为0.27 nm与Bi3TaO7晶格面(200)相匹配。展现了成功地构造了0D/3D BTO/OR-CN异质结催化剂。0.3%BTO/OR-CN的EDX图揭示了C,N,Bi,Ta,O元素的存在,进一步证实BTO QDs锚定在OR-CN的表面上。图4. 光催化产氢(a)析氢速率(b)B-CN、OR-CN、及其0.3%化合物光催化产氢(c)析氢速率(d)循环实验(e)循环实验前后的XRD图(f)如图4所示,以300 W的氙灯作为光源(λ 420 nm),研究了制备的样品的光催化析氢活性。结果表明制备的BTO样品几乎不产氢,而OR-CN在2小时辐照过程中产生了相对较低的氢气,约为1736 μmol g-1,这是由于BTO对可见光的吸收较低和电子-空穴的快速重组所致。当耦合OR-CN和BTO之后,光催化析氢活性显著的增强,其中,最佳的0.3% BTO/OR-CN复合材料展现了析氢量大约是4891 μmol g-1,是单组分OR-CN样品的3倍左右。同时,0.3% BTO/OR-CN异质结光催化剂在420 nm波长表现出较高的表观量子产率(AQY)为4.11%。当BTO QDs的加入量从0.1%增加到1.0%时,光催化析氢性能呈现出先增后减的趋势,其中,最优的0.3% BTO/OR-CN样品的光催化性能优于其他复合样品,这是因为构建了S型异质结,加速了光生电荷的传输和分布。此外,在OR-CN上引入BTO QDs可以增加比表面积、提供更多的活性位点、增强光响应强度和延长光诱导电荷寿命。随着进一步增加BTO QDs的量,光催化产氢速率减小,这是因为过量的BTO QDs负载在OR-CN表面可能会影响BTO QDs的分散,且由于屏蔽效应阻碍OR-CN的光吸收效率。因此,负载合适量的BTO QDs有利于光催化产氢。此外,最优样0.3% BTO/OR-CN的产氢速率为2445.5 μmol g-1。为了比较,还合成了0.3%BTO/OR-CN复合物,制备的样品的析氢量和析氢速率的排序:0.3%BTO/OR-CNOR-CN0.3%BTO/B-CNB-CN,这表明CN的洋葱圈结构和化合物的异质结界面有利于提高光催化活性。经过四次循环实验,可以清晰地发现光催化析氢有轻微的降低。同时,XRD图也用于评价样品的稳定性,循环前后的XRD图没有发生改变。这些结果展现了制备的 BTO/OR-CN样品拥有优异的稳定性和光催化析氢活性。图5. MS图(a和b)S型异质结机理(c)BTO/OR-CN复合物光催化析氢中光生电荷分离转移机理(d)利用Mott-Schottky(MS)图确定OR-CN和BTO的能带结构。OR-CN和BTO样品的质谱图在1000、2000和3000 Hz处呈现正斜率,说明OR-CN和BTO具有典型的n型半导体特征。OR-CN和BTO在接触前的带位置存在偏差,OR-CN是一种费米能级较高的还原型光催化剂,而BTO是一种费米能级较低的氧化型光催化剂。此外,通过紫外光电子能谱(UPS)计算了OR-CN 和BTO的功函数,分析了界面电荷转移过程。确定OR-CN和BTO样品的二次电子截止边的结合能(Ecut-off)分别为16.921 eV和16.054 eV。然后,BTO和OR-CN在黑暗中密切接触后,OR-CN的CB上的电子自发地流向BTO,直到二者的费米能级达到相同水平。因此,OR-CN组分失去电子并携带正电荷,导致OR-CN的CB边缘向上弯曲,同时,BTO组分得到电子,电子在其CB上积聚,BTO带负电荷,导致CB边缘向下弯曲,从而,OR-CN和BTO界面形成内部电场。在可见光的照射下,电子在内部电场和库伦相互作用的驱动下由BTO的CB转移到OR-CN的VB上与空穴复合,此外,保留在OR-CN的CB上的电子和BTO的VB上的空穴将分别参与光催化氧化还原反应。基于以上的分析,提出了BTO/OR-CN光催化反应的可能的S型机理,在可见光的照射下,BTO和OR-CN中价带(VB)上的电子跃迁到导带(CB)上,价带上形成空穴,BTO导带上的电子可以转移到OR-CN的价带上并与空穴结合。由于OR-CN导带的电势比H+/H2(0 eV vs. NHE)更负,所以,H2O分子可以与电子反应生成H2。用三乙醇胺(TEOA)猝灭BTO价带上积累的空穴。
  • 283.4万!浙江福立等中标广东工业大学催化及能源材料实验室设备采购项目
    一、项目编号:0724-2101D25N6043二、项目名称:广东工业大学催化及能源材料实验室设备采购项目三、采购结果合同包1(催化方向实验室设备):供应商名称供应商地址中标(成交)金额广州市诚屹进出口有限公司广东省广州市广州高新技术产业开发区科研路2号自编4栋3061,342,130.00元合同包2(新能源方向实验室设备):供应商名称供应商地址中标(成交)金额广州市诚屹进出口有限公司广东省广州市广州高新技术产业开发区科研路2号自编4栋3061,491,820.00元四、主要标的信息合同包1(催化方向实验室设备):货物类(广州市诚屹进出口有限公司)品目号品目名称采购标的品牌规格型号数量(单位)单价(元)总价(元)1-1其他专用仪器仪表催化剂评价装置(核心产品)昆仑永泰KLYT2010CP1(套)459,800.00459,800.001-2其他专用仪器仪表原位红外真空吸附系统上海零露PY-IR-Ⅱ1(套)165,000.00165,000.001-3其他专用仪器仪表高温高压微型反应装置昆仑永泰KLYT20-CP1(台)262,000.00262,000.001-4其他专用仪器仪表气相色谱仪浙江福立GC9720 Plus1(台)186,000.00186,000.001-5其他专用仪器仪表催化剂评价微型反应系统昆仑永泰非标定制1(台)172,000.00172,000.001-6其他专用仪器仪表多通道水质快速测定仪同奥TR-69001(台)29,800.0029,800.001-7其他专用仪器仪表BOD测定仪同奥TDR-50Z1(台)21,500.0021,500.001-8其他专用仪器仪表生化培养箱同奥TR-1501(台)7,680.007,680.001-9其他专用仪器仪表自动固相萃取仪艾维欧YGC-81(套)30,000.0030,000.001-10其他专用仪器仪表圆形氮吹仪艾维欧YGC-12D1(台)8,350.008,350.00合同包2(新能源方向实验室设备):货物类(广州市诚屹进出口有限公司)品目号品目名称采购标的品牌规格型号数量(单位)单价(元)总价(元)2-1其他专用仪器仪表往复振荡摇床IKAHS 260 basic2(台)18,900.0037,800.002-2其他专用仪器仪表高压视窗反应釜岩征YZWR-1001(台)67,500.0067,500.002-3其他专用仪器仪表行星式球磨机深圳济通PBM-2A1(台)21,200.0021,200.002-4其他专用仪器仪表高气密性自动在线光催化分析系统泊菲莱Labsolar-6A1(套)150,000.00150,000.002-5其他专用仪器仪表多通道光催化反应系统(核心设备)泊菲莱PCX50C Discover1(套)125,000.00125,000.002-6其他专用仪器仪表光电催化反应系统泊菲莱PEC2000A1(套)75,900.0075,900.002-7其他专用仪器仪表旋转蒸发仪套装IKA+IKA+长城科工贸RV10+VACSTAR digital + DLSB-5/20B1(套)51,200.0051,200.002-8其他专用仪器仪表水焊机今典605TH1(台)8,250.008,250.002-9其他专用仪器仪表电化学工作站广东鼎诚DC-EC-13002(套)46,000.0092,000.002-10其他专用仪器仪表四探针电阻率仪宁波瑞柯FT-3311(台)24,400.0024,400.002-11其他专用仪器仪表小型纽扣电池封装测试仪科晶MSK-1102(台)7,840.0015,680.002-12其他专用仪器仪表扣电一体式恒温充放电检测系统新威MIHW-200-160H1(台)106,000.00106,000.002-13其他专用仪器仪表振实密度仪宁波瑞柯FT-100E-21(台)13,600.0013,600.002-14其他专用仪器仪表热压机科晶HP-1001(台)29,600.0029,600.002-15其他专用仪器仪表铝塑膜成型机科晶MSK-1201(台)35,000.0035,000.002-16其他专用仪器仪表手动切片机科晶MSK-T101(台)8,290.008,290.002-17其他专用仪器仪表手套箱(单工位)VigorLG1200/750TS1(台)130,000.00130,000.002-18其他专用仪器仪表多用途微波化学合成仪北京祥鹄XH-8000plus1(台)123,000.00123,000.002-19其他专用仪器仪表冷冻干燥机上海叶拓YTLG-12A1(台)34,200.0034,200.002-20其他专用仪器仪表双光束紫外可见分光光度计积分球北京普析DIS150-11(台)82,800.0082,800.002-21其他专用仪器仪表十万分之一电子天平赛多利斯Secura-225D1(台)37,800.0037,800.002-22其他专用仪器仪表万分之一电子天平赛多利斯BCE224i-1CCN1(台)16,600.0016,600.002-23其他专用仪器仪表气相色谱仪浙江福立GC9790II2(台)103,000.00206,000.00
  • 杜克泰克受邀参加第十七届太阳能光化学与光催化学术会议
    第十七届太阳能光化学与光催化学术会议助力科研杜克泰克2023年7月28日至31日,第十七届太阳能光化学与光催化学术会议在内蒙古呼和浩特圆满落下帷幕。本届大会10个分会场共进行了39场主题报告、165场邀请报告、36场口头报告和110个墙报展交流,参会人数达1500人以上,是我国太阳能光化学与光催化科研工作者的一次盛会。作为两年一届的学术盛会,本次会议特别邀请到中科院大连化物所李灿院士、西湖大学孙立成院士、中国科学技术大学杨金龙院士、黑龙江大学付宏刚教授、中科院物理研究所孟庆波研究员、中国地质大学(武汉)余家国教授、中国科学技术大学熊宇杰教授、河北大学/NIMS叶金花教授、清华大学朱永法教授、中科院理化技术研究所张铁锐研究员作大会报告。杜克泰克作为国内光声光谱技术领导者,在本次大会中展示了光声光谱技术及自研催化反应装置在催化行业的应用。 杜克泰克催化过程气体分析监测系统,基于光声光谱痕量级多气体分析仪和光热催化反应箱,可用于为ppm、sub-ppm级微量浓度气体分析与监测。光声光谱气体分析仪 DUKE 光声检测器 DUKE催化反应箱 DUKE
  • 中科院大连化物所基于聚合物光催化剂提升了光合成过氧化氢效率
    近日,中科院大连化学物理研究所微纳米反应器与反应工程学创新特区研究组(05T7组)刘健研究员团队在利用聚合物光催化剂生产H2O2研究方面取得新进展,基于对间苯二酚—甲醛(RF)树脂的电荷分离能力的提升,以及光催化反应路径的调控,提升了RF树脂的光催化产H2O2性能,使其太阳能到化学能(SCC)的转化率达到1.2%。利用聚合物光催化剂将氧气和水转化为H2O2的方法具有低能耗、环境友好等特点,是非常有潜力的生产H2O2的方法。然而,在分子水平上设计光催化剂,调节光生载流子行为仍具有挑战。本工作中,该团队提出从分子尺度设计调控RF树脂中电子供体(D)与电子受体(A)比例的策略,将缺电子的1,4-二羟基蒽醌(DHAQ)分子引入到RF的骨架中。研究发现,DHAQ作为电子受体可以有效调节RF中的D/A比例,增强其电荷分离能力,同时调整了反应路径,通过水氧化和氧还原的双路径共同生产H2O2,使得该材料展现优异的光催化生产H2O2的催化活性,SCC效率达到1.2%,是目前文献报道最高的SCC效率。此外,团队与中科院大连化学物理研究所超快时间分辨光谱与动力学研究组(1110组)合作,结合飞秒瞬态吸收光谱等技术、原位表征实验以及理论计算模拟,阐析了DHAQ掺杂的RF树脂的微观结构以及促进电荷分离和双路径生产H2O2的机制。上述研究成果为在分子水平上设计高效人工光合作用的聚合物光催化剂提供了新思路。RF树脂作为一种窄带隙半导体聚合物,近年来在光催化生产H2O2方面展现出潜力。刘健团队长期致力于酚醛树脂纳米材料的合成策略创新及功能化研究,取得了系列代表性成果:发展了扩展St?ber法合成单分散的酚醛树脂微球(Angew. Chem. Int. Ed.,2011),制备了一系列孔径及粒度可控的多孔微球,以及中空结构、蛋黄—蛋壳结构、碗形酚醛树脂聚合物微纳材料(Nat. Commun.,2013;Adv. Mater.,2019;no.1c09864"ACS Nano,2022),发展了化学剪裁策略有效调控酚醛树脂微球的内部结构及功能基团分布(Adv. Mater.,2022)等。相关研究以“Molecular Level Modulation of Anthraquinone-containing Resorcinol-formaldehyde Resin Photocatalysts for H2O2 Production with Exceeding 1.2% Efficiency”为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。该工作的第一作者是中科院大连化学物理研究所05T7组博士研究生赵陈。以上工作得到了国家自然科学基金等项目的支持。
  • AEM:通过原位/操作电子显微镜观察反应条件下的多相催化剂
    清洁能源和环境的进步在很大程度上取决于在广泛的非均相催化反应中开发高效催化剂,这得益于透射电子显微镜技术在确定原子级形态和结构方面的作用。然而,催化反应条件下的形貌和结构决定了催化剂的性能,这引起了人们在多相催化中开发和应用原位/原位透射电子显微镜技术的兴趣。纽约州立大学宾汉姆顿分校钟传建教授和复旦大学车仁超教授、Cheng Han-Wen(助理)教授等人发表评述性文章。本综述的主要主题是强调使用原位/操作透射电子显微镜技术在相关反应条件下对非均相催化剂的一些最新见解。本综述不是对原位/操作技术的基本原理进行全面概述,而是侧重于深入了解在多相催化、电催化和光催化反应下从单组分到多组分催化剂的各种催化剂的原子级/纳米级细节涉及气固界面和液固界面的条件。在样品环境、支架和电池以及催化剂类型或电催化反应方面,在固体催化剂上与气体(上图)和液体(下图)反应物/产物的非均相反应条件下催化剂的原位/操作 TEM 研究说明。这一侧重点与原子、分子和纳米级形态、组成和结构与反应条件下催化性能的相关性的讨论相结合,揭示了设计用于清洁和可持续能源应用的纳米结构催化剂的挑战和机遇。文献链接:Insights into Heterogeneous Catalysts under Reaction Conditions by In Situ/Operando Electron Microscopy. DOI:10.1002/aenm.202202097
  • 直播预告|“光催化之父”藤岛昭:如何获得清洁能源——光催化与碳循环
    7月20日,仪器信息网(instrument.com.cn)与日本分析仪器工业会(JAIMA) 首次共同主办“中日科学家论坛之材料科学”线上科技论坛,以期为中日科学家们提供交流平台,促进两国科学技术的发展。此次在线科技论坛有幸邀请到国际著名光化学家、光催化研究的开创者、中国工程院外籍院士、诺奖热门人选、荣膺2019年度中国政府友谊奖的日本藤岛昭教授,中国科学院院士、北京大学博雅讲席教授、北京石墨烯研究院院长刘忠范教授,中国科学院大学教授,中国科学院物理研究所孟庆波研究员,北京工业大学闫鹏飞教授,国家纳米科学中心孟幻研究员,将分别围绕光催化材料、新能源、纳米材料等前瞻领域进行探讨。同时也邀请到日本电子株式会社(JEOL Ltd. )TEM应用部总经理助理大西市朗、岛津企业管理(中国)有限公司SPM产品担当陈强将分别为大家分享科学研究离不开的利器技术:最前沿的球差校正透射电镜技术、原子力显微镜技术。以下为藤岛昭教授报告预告,以飨读者:藤岛昭(Akira Fujishima)教授,东京大学特别荣誉教授、东京理科大学荣誉教授、中国工程院外籍院士。他于1972 年在Nature 上发表了二氧化钛单晶表面在紫外光照射下水的光分解现象,这一被称为“本多-藤岛效应”(Honda-Fujishima Effect)的开创性科研成果及其随后的一系列重要成果,使得藤岛昭教授 被公认为“ 光催化之父” 。报告形式:线上直播,30分钟报告+10分钟在线答疑报告时间:2021年7月20日9:40-10:20(北京时间)报告语言:英文PPT,英文报告,中文字幕报告题目:How to Get Clean Energy: Photocatalysis and Carbon Recycling如何获得清洁能源:光催化与碳循环报告摘要:Photocatalysis has been widely developed and put into practical use in the areas of antifouling and antifogging,research on artificial photosynthesis—the process of extracting hydrogen through photocatalysis—has also been garnering significant attention in recent years as a technology with the potential to contribute to a decarbonized society. Along with the shift to replace fossil fuels with renewable energies such as hydrogen ,another important measure to achieving a decarbonized society is carbon recycling, effectively using CO2 as a resource. In consideration of that viewpoint, I has proposed the following method: first, extract hydrogen through water electrolysis using the electricity produced from highly efficient solar cells. Next, combine the extracted hydrogen with the CO2 emitted from power plants and factories to produce methanol, which can be used as an energy source.报名参加:免费,点击报名扫码报名藤岛昭教授在央视《开讲啦》栏目演讲视频回顾:央视网:《开讲啦》 20191019 中国工程院外籍院士,日本著名光化学家藤岛昭教授:知之不如好之,好之不如乐之藤岛昭简介(主要摘自中国工程院)藤岛昭教授藤岛昭教授,1942年生于日本东京,致力于研究半导体电化学。2009年,藤岛昭教授当选欧洲科学院院士。不久前,他接受一项新的职位,担任东京理科大学校长。1971年获得日本东京大学应用化学专业博士学位。在东京大学,他发现水可以通过光电化学方式,经TiO2电极照射分解为氢气和氧气。他在神奈川大学任教四年,后到东京大学任教,并于1986年取得教授职称;其研究领域也扩展到更大的范围,包括光与无机材料及有机材料的相互关系。他于1990年开始研究基于二氧化钛的光催化自洁涂料。他认识到太阳光中少量的紫外线辐射可以被有效利用,通过充分氧化的以氧为基础的自由基作用,用于自洁与自消毒。藤岛昭教授对光诱导的亲水性的相关现象进行研究,在此种现象中,紫外光会导致TiO2表面具有超亲水性。藤岛昭教授依然对光催化基础研究和应用,以及光诱导亲水性保持浓厚兴趣,同时也热衷于开发新材料,包括带有光功能性质的纳米结构材料。藤岛昭教授已经发表了750多篇原始论文,440篇综述文章,拥有280项专利。主要奖项:朝日新闻朝日奖(1983)、井上春成奖(技术创新)(1998)、日本化学会奖(2000)、Heinz Gerischer奖(电化学学会欧洲分会,2003)、紫绶带勋章(2003)、日本奖(2004)、日本学院奖(2004) )、国家发明嘉奖(2006年)、神奈川文化奖(2006)、文化功勋人物(2010年)、路易吉伽伐尼奖章(2011年)、汤森路透引文奖(2012年)、文化勋章(2017年)。2003年,藤岛昭教授成为中国工程院外籍院士。2003年,藤岛昭教授从东京大学退休,担任神奈川科学与技术研究院主席一职。2005年,成为东京大学特别大学荣誉教授。2006年至2008年期间,担任日本化学会会长。高被引代表作Surface Science Reports:TiO2 光催化作用及相关的表面现象(TiO2 photocatalysis and related surfacephenomena. Surface Science Reports, 2008, 63, 515-582)光催化领域的历史可以追溯到80多年以前,主要是对二氧化钛基涂料的粉化现象的早期观察以及对与有机化合物在阳光下接触的金属氧化物变黑的研究。在过去的20 年中,由于对空气和水的修复,自清洁表面和自灭菌表面的影响,它已成为一个研究非常深入的领域。在同一时期,研究人员也一直在努力地将光催化用于光辅助生产氢气。在研究最多的光催化剂二氧化钛上光催化的基本方面仍在积极研究中,并且最近已得到相当广泛的了解。但是,某些方面(例如光致润湿现象)仍存在争议,其中一些人认为该效应是一种简单的分解有机污染物的效应,而另一些人则认为存在其他效应,其中固有的表面性质被光修饰。在过去的几年中,一些有效的工具,例如在超高真空下对单晶执行的表面光谱技术和扫描探针技术,以及超快脉冲激光光谱技术都可以解决这些问题,并且新的见解也变得可能。除此之外,量子化学计算也提供了新的见解。最近已经基于二氧化钛开发了新材料,并且对可见光的敏感度得到了提高。作者在这篇综述中提供了一些亮点的概述,在回顾一些起源的同时,并指出一些可能的新方向。
  • 大连化物所发展抑制光催化分解水制氢逆反应新技术
    近日,大连化物所催化基础国家重点实验室、太阳能研究部(DNL16)李灿院士、博士后李政和李仁贵研究员等在纳米颗粒光催化完全分解水制氢的逆反应(氢气和氧气复合生成水的反应)研究方面取得新进展,确认光催化完全分解水逆反应发生于低配位活性位点,并利用原子层沉积技术精准定点修饰抑制逆反应,从而显著提升了光催化完全分解水的性能。   太阳能光催化完全分解水制氢不仅具有重要的应用背景,更是基础科学领域的前沿课题。其中,光催化完全分解水体系中助催化剂表面的氢氧逆反应是该领域长期未解决的重要问题。逆反应的存在使得完全分解水光催化体系的效率很低,甚至无法实现分解水反应,是光催化完全分解水的“最后一公里”。李灿团队长期致力于光催化分解水中助催化剂及其表面的催化作用研究,取得了系列重要进展:在国际上较早提出并发展了双助催化剂概念(J. Catal.,2009;Catal. Lett.,2010;Acc. Chem. Res.,2013;Energy Environ. Sci.,2016),并开发出单核锰水氧化催化剂,活性可媲美自然界水氧化催化剂的产氧活性(Nat. Catal.,2018),受到学术界的广泛关注。本工作聚焦光催化完全分解水体系中助催化剂表面的氢氧逆反应问题,以典型的可见光催化完全分解水的催化剂Rh/GaN-ZnO作为研究对象,通过原子层沉积(ALD)的方式将氧化铝(Al2O3)沉积到光催化剂反应中心,可显著提升光催化全分解水的活性。研究发现,ALD沉积Al2O3可以使Rh/GaN-ZnO上的逆反应降低90%,进一步通过光谱表征结合理论模拟证明,Al2O3主要沉积在Rh纳米颗粒表面的低配位点上,揭示出Rh表面的低配位点是氢氧逆反应的主要反应位点。团队通过ALD选择性地将Al2O3沉积到Rh表面低配位点上,有效阻断了氢氧逆反应的发生,从而将Rh/GaN-ZnO上可见光催化完全分解水的量子效率从0.3%提升至7.1%。此外,本工作还发现ALD选择性沉积氧化物的策略还适用于其他贵金属助催化剂,证明了这一策略的普适性。该工作明确了光催化完全分解水中氢氧逆反应的活性位点和机制,为解决这一挑战性问题提供了一条新的普适性策略。   相关研究成果以“Blocking the reverse reactions of overall water splitting on a Rh/GaN–ZnO photocatalyst modified with Al2O3”为题,于近日发表在《自然—催化》(Nature Catalysis)上。该工作的共同第一作者是李政和李仁贵。该工作的理论模拟部分主要与催化基础国家重点实验室理论催化创新特区研究组(05T8组)肖建平研究员团队合作完成。上述工作得到了国家自然科学基金委人工光合成中心、国家重点研发计划等项目的支持。
  • 有效光合成苯甲醛耦合光催化析氢
    1. 文章信息标题:Efficient benzaldehyde photosynthesis coupling photocatalytic hydrogen evolution 中文标题: 有效光合成苯甲醛耦合光催化析氢页码:52-60 DOI:10.1016/j.jechem.2021.07.0172. 期刊信息期刊名:Journal of Energy Chemistry ISSN:2095-4956 2021年影响因子9.676 (2022年影响因子:13.599) 分区信息:中科院一区TOP 涉及研究方向:综合性期刊 3. 作者信息:第一作者是 华东师范大学罗娟娟 。通讯作者为 中国科学院上海硅酸盐研究所施剑林院士、华东师范大学陈立松副教授。4. 光源型号:CEL-HXF300E7光功率计型号:CEL-NP2000文章简介:为应对严峻的能源和环境危机,各国不断加大开发清洁和可再生能源的力度。氢气(H2)作为一种能量密度高、最有发展前景的可再生绿色能源引起了广泛关注。然而,迄今为止,传统的蒸汽甲烷重整制氢仍是制氢的主要方式,这导致了巨大的能源消耗和严重的温室气体排放。自1972年Fujishima和Honda首次报道在TiO2电极上光电化学分解水以来,光催化水裂解制氢一直被认为是将太阳能转化为化学能的潜在方法之一。然而,析氧反应(OER)动力学迟缓是水裂解的另一种半反应,已成为光催化水裂解商业化应用的最大障碍之一。同时,O2价值较低,在光催化水裂解过程中不可避免地会混入H2,存在潜在的爆炸风险和分离困难问题。为了克服这些,牺牲试剂如乳酸、抗坏血酸、三乙醇胺、甲醇、甘油、乙醇和Na2SO3/Na2S被用来抑制OER,通过消耗光产生的空穴并加速H2的产生,在此过程中这些牺牲剂被氧化。遗憾的是,这样的策略会大大增加制氢的总成本,并不能充分利用光生空穴的氧化能力。综上所述,寻找促进析氢反应(HER)的新策略具有重要意义。光合成是一种传统的利用可再生太阳能作为能源的方法,具有光能直接转化为化学能、反应路径短、不受苛刻的反应条件和有机试剂的影响等优点。为在温和的反应条件下合成药物、精细化学品和高附加值产品提供了一条绿色、清洁的途径。选择性氧化是继聚合反应后的第二大工业工艺,占化学工业总产量的30%,近年来在光合成领域引起了广泛关注。在众多的选择性氧化反应中,芳香醇转化为相应的醛被认为是最重要的官能团转化过程之一。此外,醛是一种高价值的中间体,用于有机合成广泛的化学物质,如糖果香精、染料、香水和药物。传统的醛类合成需要化学计量氧化剂,如铬酸盐、高锰酸盐等,具有剧毒、强腐蚀性,造成严重的环境问题。并极大地阻止了它们的大规模应用。然而,大多数基于光催化材料的醛的光催化合成,尽管比传统的合成方法更加环保,但都是在有机溶剂中操作或在以氧气作为一种温和氧化剂存在的情况下进行的,因此仍然存在光生电子还原能力浪费,环境不友好和效率低下的问题。因此,采用无氧化剂(或无O2)光合成的方法在水介质中氧化芳香醇选择性合成芳香醛将是最理想的环保工艺,具有重要意义。在该策略中,芳香醇氧化制取有价值化学品的过程不是简单的牺牲剂消耗,而是以高效氧化制取有价值化学品为主,并与制氢结合,尽管有众多优点但这仍然是一个巨大的挑战一种高性能的光催化氧化芳香醇并促进产氢的光催化剂是上述策略的前提。本文采用两步水热法合成了一种高效的非贵金属双功能光催化剂,NiS纳米颗粒修饰CdS纳米棒复合材料(NiS/CdS)。该催化剂对在水溶液和无氧气氛围下光合成苯甲醛同时促进产氢具有高效的活性,这归因于NiS和CdS间的协同作用。最优的光催化30% NiS/CdS在可见光照射下有显著的光催化产氢速率和苯甲醛合成速率分别为207.8μmol h-1, 163.8μmol h-1,比单独硫化镉性能高139和950倍。该研究极大地利用光产生的空穴和电子用于生产高附加值精细化学物质和氢气,因此在绿色可再生能源技术的发展及光催化合成领域中具有重要的意义。
  • 新光电子能谱仪助力研究氨生产催化反应机理
    瑞典斯德哥尔摩大学研究人员首次研究了氮和氢生成氨时铁和钚催化剂的表面特性。这一成果为更好了解催化过程,找到更高效材料,为化工行业绿色转型打开了大门。研究结果发表在1月10日的《自然》杂志上。哈伯法是一种通过氮气及氢气产生氨气的方法。利用该方法生产的氨年产量为1.1亿吨,而氨是目前生产化肥的基础化学品之一。《自然》杂志在2001年提出,哈伯法是20世纪人类最关键的科学发明之一。因为有了哈伯法大量生产化肥后,预防了大规模饥饿,拯救了大约40亿人的生命。不过,在真实的氨生产条件下,科学家还无法通过表面敏感方法对催化剂表面特性进行实验研究。在足够高的压力和温度下具有表面敏感性的实验技术尚未实现。斯德哥尔摩大学化学物理学教授安德斯尼尔森表示,关于铁催化剂的状态是金属的还是氮化物的不同假设,以及对反应机理重要的中间物种的性质,都无法得到明确的验证。研究人员此次建造了一台光电子能谱仪,可研究高压下的催化剂表面特性。因此,他们能观察到当反应直接发生时会发生什么,可检测反应中间体,并为反应机理提供证据。新仪器为理解氨生产催化打开了一扇新的大门。研究人员表示,新工具可开发用于生产氨的新型催化剂材料。这些材料可更好地与电解生产的氢气配合使用,实现化学工业的绿色转型。
  • 358万!广东工业大学催化及能源材料实验室设备采购
    项目概况广东工业大学催化及能源材料实验室设备采购项目招标项目的潜在投标人应在广东省政府采购网https://gdgpo.czt.gd.gov.cn/获取招标文件,并于 2022年02月17日 09时30分 (北京时间)前递交投标文件。一、项目基本情况项目编号:0724-2101D25N6043项目名称:广东工业大学催化及能源材料实验室设备采购项目采购方式:公开招标预算金额:3,579,460.00元采购需求:合同包1(催化方向实验室设备):合同包预算金额:2,002,560.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表催化剂评价装置(核心产品)1(套)详见采购文件482,800.00-1-2其他专用仪器仪表原位红外真空吸附系统1(套)详见采购文件170,000.00-1-3其他专用仪器仪表高温高压微型反应装置1(台)详见采购文件280,000.00-1-4其他专用仪器仪表气相色谱仪1(台)详见采购文件225,000.00-1-5其他专用仪器仪表催化剂评价微型反应系统1(台)详见采购文件180,000.00-1-6其他专用仪器仪表多通道水质快速测定仪1(台)详见采购文件31,800.00-1-7其他专用仪器仪表BOD测定仪1(台)详见采购文件24,000.00-1-8其他专用仪器仪表生化培养箱1(台)详见采购文件7,800.00-1-9其他专用仪器仪表自动固相萃取仪1(套)详见采购文件32,000.00-1-10其他专用仪器仪表圆形氮吹仪1(台)详见采购文件8,800.00-本合同包不接受联合体投标合同履行期限:60天内(详见标的提供时间)合同包2(新能源方向实验室设备):合同包预算金额:1,576,900.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他专用仪器仪表往复振荡摇床2(台)详见采购文件39,200.00-2-2其他专用仪器仪表高压视窗反应釜1(台)详见采购文件68,000.00-2-3其他专用仪器仪表行星式球磨机1(台)详见采购文件26,000.00-2-4其他专用仪器仪表高气密性自动在线光催化分析系统1(套)详见采购文件154,200.00-2-5其他专用仪器仪表多通道光催化反应系统(核心设备)1(套)详见采购文件135,000.00-2-6其他专用仪器仪表光电催化反应系统1(套)详见采购文件81,000.00-2-7其他专用仪器仪表旋转蒸发仪套装1(套)详见采购文件51,790.00-2-8其他专用仪器仪表水焊机1(台)详见采购文件8,300.00-2-9其他专用仪器仪表电化学工作站2(套)详见采购文件120,000.00-2-10其他专用仪器仪表四探针电阻率仪1(台)详见采购文件25,000.00-2-11其他专用仪器仪表小型纽扣电池封装测试仪2(台)详见采购文件16,000.00-2-12其他专用仪器仪表扣电一体式恒温充放电检测系统1(台)详见采购文件107,500.00-2-13其他专用仪器仪表振实密度仪1(台)详见采购文件14,000.00-2-14其他专用仪器仪表热压机1(台)详见采购文件30,000.00-2-15其他专用仪器仪表铝塑膜成型机1(台)详见采购文件36,000.00-2-16其他专用仪器仪表手动切片机1(台)详见采购文件8,500.00-2-17其他专用仪器仪表手套箱(单工位)1(台)详见采购文件140,000.00-2-18其他专用仪器仪表多用途微波化学合成仪1(台)详见采购文件124,000.00-2-19其他专用仪器仪表冷冻干燥机1(台)详见采购文件35,910.00-2-20其他专用仪器仪表双光束紫外可见分光光度计积分球1(台)详见采购文件84,800.00-2-21其他专用仪器仪表十万分之一电子天平1(台)详见采购文件38,800.00-2-22其他专用仪器仪表万分之一电子天平1(台)详见采购文件16,900.00-2-23其他专用仪器仪表气相色谱仪2(台)详见采购文件216,000.00-本合同包不接受联合体投标合同履行期限:60天内(详见标的提供时间)二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:提供在中华人民共和国境内注册的法人或其他组织的营业执照或事业单位法人证书或社会团体法人登记证书复印件,如投标人为自然人的提供自然人身份证明复印件;如国家另有规定的,则从其规定。(分支机构投标,须取得具有法人资格的总公司(总所)出具给分支机构的授权书,并提供总公司(总所)和分支机构的营业执照(执业许可证)复印件。已由总公司(总所)授权的,总公司(总所)取得的相关资质证书对分支机构有效,法律法规或者行业另有规定的除外。)2)有依法缴纳税收和社会保障资金的良好记录:提供2020年至今任意1个月缴纳税收凭据证明材料复印件;如依法免税的,应提供相应文件证明;提供2020年至今任意1个月缴纳社会保险的凭据证明材料复印件;如依法不需要缴纳社会保障资金的,应提供相应文件证明;3)具有良好的商业信誉和健全的财务会计制度:提供2019年度(或2020年度)财务状况报告或2021年任意1个月的财务 状况报告复印件,或银行出具的资信证明材料复印件;4)履行合同所必须的设备和专业技术能力:按投标(响应)文件格式填报设备及专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(较大数额罚款按照发出行政处罚决定书部门所在省级政府,或实行垂直领导的国务院有关行政主管部门制定的较大数额罚款标准,或罚款决定之前需要举行听证会的金额标准来认定)2.落实政府采购政策需满足的资格要求:合同包1(催化方向实验室设备)落实政府采购政策需满足的资格要求如下:无,本项目不属于专门面向中小企业采购的项目。合同包2(新能源方向实验室设备)落实政府采购政策需满足的资格要求如下:无,本项目不属于专门面向中小企业采购的项目。3.本项目的特定资格要求:合同包1(催化方向实验室设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以采购代理机构于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加本采购项目(包组)投标。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参与本项目投标。 投标(报价)函相关承诺要求内容。(3)已在线获取招标文件。(4)本项目不接受联合体投标。合同包2(新能源方向实验室设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以采购代理机构于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加本采购项目(包组)投标。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参与本项目投标。 投标(报价)函相关承诺要求内容。(3)已在线获取招标文件。(4)本项目不接受联合体投标。三、获取招标文件时间: 2022年01月14日 至 2022年01月21日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年02月17日 09时30分00秒 (北京时间)地点:广州市东风东路726号国义招标股份有限公司2楼1号会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过400-1832-999进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。本项目支持电子保函,可通过登录项目采购电子交易系统跳转至电子保函系统进行在线办理。电子保函办理办法详见供应商操作手册。七、对本次招标提出询问,请按以下方式联系。1.釆购人信息名 称:广东工业大学地 址:广州市广州大学城外环西路100号联系方式:393400322.釆购代理机构信息名 称:国义招标股份有限公司地 址:广东省广州市越秀区东风东路726号16-18楼联系方式:蔡工、陈工020-37861053、05413.项目联系方式项目联系人:陈工电 话:020-37860541国义招标股份有限公司2022年01月14日
  • 光催化N-杂螺环的多组分直接组装
    你能想象有*化学也能玩成“乐高积木”吗?2022年10月5日,2022年诺贝尔化学奖授予了三位科学家:Carolyn R. Bertozzi、K. Barry Sharpless和Morten Meldal,奖励他们在发展“点击化学”和“生物正交化学”中的贡献。 问:什么是点击化学?“点击化学(Click chemistry)”是指一类能够高效生成“碳原子-杂原子链”的化学反应。点击化学有以下优势:1.区域特异性和立体特异性;2.对溶剂参数不敏感;3.反应得率高、副反应少,且原料充分反应4.实验条件简单;5.大的热力学驱动力。与点击化学的优势类似,流动化学也具有高效混合、简便*的温度控制、收率高、减少副产物等优势。 图1:发表在JOC杂志上的文章“可见光驱动光催化促进的N-异质螺环的多组分直接组装”今天为大家介绍在2022年9月,Steven V.Ley教授在JOC上一篇题为《可见光驱动光催化促进n杂螺环的多组分直接组装》的文章,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。1、螺环化合物20世纪六十年代起,生物学家和药物学家逐渐发现,从自然界分离得到的具有生物活性的化合物中拥有螺环结构的化合物占有很大的比例。随着研究的深入,螺环化合物的性质使他在药物研发中占据非常重要的地位。螺环化合物是指两个单环共用一个碳原子的多环化合物;共用的碳原子称为螺原子。杂环螺环结构在一定程度上改变药物分子的水溶性、亲脂性、优势构象等,使优化后的药物分子更容易成药。不同的螺环具有丰富的三维立体结构,从而提供了改善药效的可能性和药物*的创新性;既可以突破现有药物的*,又能设计全新结构或者骨架的小分子化合物。 图2:螺旋内酯固醇 图3:灰黄霉素已上市药物中,也有很多含有螺环结构的小分子药物,比如利尿剂螺旋内酯固醇(Spironolactone)(如图2所示)和抗真菌药物灰黄霉素(Griseofulvin)(如图3所示)。N-异螺旋环是在天然产物和药物中发现的有趣的结构单元,但其合成的可靠方法相对较少。传统合成方式 图4:获取螺旋环吡咯烷的策略 图5:从N-烯丙磺酰胺和烯烃中构建β-螺旋吡咯啶现有的方法通常需要几个步骤,并使用昂贵的催化剂,如钌或铑,以获得所需的产品。在过去,靠传统的办法合成目标分子,往往需要绕很多弯路。步骤越多,意味着产率越低,浪费越大。2、更高效的合成方式使用Vapourtec UV-150光反应器放大合成N-异象螺旋循环 图6:使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物Steven V. Ley教授是世界*的有机化学家,剑桥化学系研究主任,皇家化学会RSC的前任会长,教授在有机合成方法学和全合成领域中的成就斐然。Ley教授在“可见光驱动光催化促进n杂螺环的多组分直接组装”一文中,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。在近年来发展的叠杂杂螺环的大多数制备方法中都需要多步步骤。然而,光催化的最新应用可以使合成步骤大大减少。作者利用光催化生成N-中心自由基,可构建多种β-螺环吡咯烷,包括药物衍生物。利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。光催化能够在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构。在开发的螺环吡咯烷的制备方法中,大多数都能够制备α-螺环吡咯烷,克服了制备α-三级胺的一些困难。简化合成路线的解决方案之一是采用无试剂化学方法。从光化学上讲,以氮为中心的自由基的产生相对简单,并被证明可以激活N-H和N-X键。通过在合成螺旋环化合物时使用这种方法,可以避免四元碳中心引起的立体问题,从而改善整体过程。使用VapourtecE系列进行流动反应和放大实验,该系列由三个蠕动泵和一个光反应器组成,BPR输出为8bar。使用的光源是Vapourtec 61W(辐射功率)365 nm(峰值强度)LED灯光,辐射带范围为350&minus 400nm。利用在线监测,大大的缩短了研究时间,提高研究效率。作者使用配有365nm高功率LED灯的E-photochem演示了一系列螺环吡啶的合成。在合成双叠氮杂螺环的过程中,该方法使用光化学反应器UV-150进行了放大,产量达到了100克/天。3、实验总结1、相比传统的的反应,该反应具有操作简便、条件温和、反应时间短等优势;2、利用在线监测,大大的缩短了研究时间,提高研究效率;3、在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构;4、利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。4、关于Vapourtec Vapourtec是一家专业设计和制造流动化学设备的公司。Vapourtec公司的连续流动化学系统质量可靠、性能成熟、高效能模块系统可随您的流动化学生产能力的扩大而拓展。反应器可进行组合,实现多步合成。无需使用任何工具数秒内即可完成反应器更换。UV-150反应器UV-150反应器消除了传统批次光化学的问题,可以充分发挥光化学的潜力。在连续流动操作下,它提供了安全、精确、高效、一致和可扩展的光化学。 图7:vapourtec UV-150光化学反应器● UV-150光化学反应器与Vapourtec R系列和E系列流化学系统兼容,操作简便;● Vapourtec提供3种不同的光源,提供220纳米至650纳米之间的精确波长;● 可以在-20°C到80°C之间设置反应温度。参考文献[1] Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven PhotocatalysisOliver M. Griffiths and Steven V. LeyThe Journal of Organic Chemistry 2022 87 (19), 13204-13223 DOI:10.1021/acs.joc.2c01684[2] Total Synthesis of Phytotoxic Radulanin A Facilitated by the Photochemical Ring Expansion of a 2,2-Dimethylchromene in FlowBruce Lockett-Walters, Simon Thuillier, Emmanuel Baudouin, and Bastien NayOrganic Letters 2022 24 (22), 4029-4033 DOI: 10.1021/acs.orglett.2c01462
  • 张新星团队JACS新成果:微液滴电场“催化”的化学反应
    电场,一种非实物的物理场,已被证明能对化学反应产生重大影响。使用电场作为化学反应的催化剂是当今最前沿的化学研究领域之一。早在2016年,在Nature 杂志上就有论文指出,109 V/m数量级的电场可以作为一种“非实物”的新型催化剂。当电场方向与反应中电子的重新分布或偶极矩的变化方向一致时,反应势垒将会降低,化学反应速率将会被显著提高。虽然将电场作为催化剂有很多优势,但如何在实验中产生高达109 V/m数量级的电场一直是一个棘手的问题,阻碍了该领域的进一步发展。  目前产生如此之高的电场的实验手段并不多,现存的研究包括扫描隧道显微镜,其针尖和基底之间产生的电场只能作用于有限数量的分子,导致它在反应放大和实用性方面有很多局限性 又如利用带电官能团和金属离子的净电荷可以创造分子尺度的短程电场,目前已经在光催化、酶催化等领域得到了新的认识和应用。微液滴化学是近几年来引发众多学者争相研究的新兴领域,许多实验与理论工作已经表明微液滴表面能够自发产生高达109 V/m的电场,这为研究者们提供了一个崭新且便利的创造外部电场的思路。  对于大多化学反应体系来说,宏观的水是一种非常稳定的介质。然而近几年来,众多科学家们研究发现,当把宏观的水分散成微米尺寸的微液滴后,将会出现很多与体相水截然不同的奇特性质,其中最引人注目的性质之一就是其表面能够自发形成超高电场,其产生或由于其表面水分子偶极结构的统一自发取向,或由于其内部的阴阳离子形成了双电层结构,强度可高达109 V/m(相比之下,在空气中生成闪电的击穿电压仅有106 V/m数量级),此电场是如此之高,以致于可以撕裂水中的氢氧根,进一步生成羟基自由基(•OH)和自由电子。自由电子具有极高的还原性,而•OH具有极高的氧化性,这看似完全矛盾的两种性质竟然可以同时存在,使得微液滴成为了“神奇的矛盾统一体(unity of opposites)”。在微液滴表面的两个•OH还可以重新组合进一步自发生成双氧水H2O2。然而“将纯水喷雾就可以自发产生H2O2”的说法似乎会令人感觉“天马行空”,但近几年来的多篇论文均证实了这项研究成果。  图1  近日,为了拓展微液滴表面电场的适用范围从而解决真空中电场技术的放大问题,南开大学张新星研究员通过利用微液滴表面极高的电场,实现了定向加速亲核试剂(Nu:)进攻卤素(X2)并打破卤素键(X-X)。在非极性或极性溶剂中,Nu:(吡啶或奎宁环)会与卤素(Br2或I2)迅速结合,生成卤键复合物(Nu…X-X)。在极性溶剂中,该复合物会缓慢解离为 (NuX)+和X-,前者可以再结合一个Nu:分子生成(Nu2X)+(图1)。然而,在体相溶液中,该解离过程因具有较高的能垒而进行得十分缓慢,以至于需要数天甚至数周。在该工作中,作者使用十分简便的氮气喷雾和质谱检测的方法,将Nu:与Br2或I2的混合溶液喷洒为微液滴,无需底物和水之外的任何物质的加入,随后即可在质谱中观测到 [Nu1,2(Br/I)]+的质谱峰,证明在微液滴中该反应只需微秒级的时间就可自发发生,将反应速率提高了数个数量级。当作者改变反应距离由10 mm增加至30 mm时,可以发现反应产物 (Py1,2Br)+ 的产率显著提高,进一步验证了反应是在微液滴中发生的(图2c)。由图1中的反应步骤(4)可以推断,反应的发生将会促进Br3-阴离子的生成,作者在相同条件下,持续向质谱仪中分别喷雾同一浓度的纯Br2溶液和Py+Br2混合溶液2 min,通过对比Br3-阴离子的相对强度,可以发现在Py+Br2混合溶液中Br3-阴离子的强度约为纯Br2溶液的6倍,进一步验证了该反应的机理(图2d)。为了进一步阐释气-液界面在反应中确实扮演重要角色,作者通过改变鞘气压力由60 Psi至100 Psi,由计算发现反应产物(Py1,2Br)+会随着鞘气压力的增加而显著提高,这是由于增大鞘气压力会减小微液滴的尺寸,进而能增大微液滴的比表面积,进一步说明了气-液界面在化学反应中的重要性(图2e)。  图2  在理论计算方面,作者利用密度泛函理论,分别对PyBr2、PyI2、(QNL)Br2和(QNL)I2 (将奎宁环简写为QNL) 四个不同体系进行了理论预测。当电场达到~109 V/m,且与NuX-X键断裂的方向一致时,(NuX)+上的正电荷以及X-上的负电荷能够得以稳定,从而降低甚至消除了卤素键异裂的能垒。如果将电场的方向倒置,X-X键将被重新稳定,从而会增大反应能垒(图3)。因此,这些理论结果解释了实验中的超高反应速率,证明了微液滴自发产生的超高电场可以显著降低卤键断裂的能垒,从而使反应速率明显加快。值得注意的是,在水中电场降低能垒的效应要比在气相中更明显,这可能是由于被水分子包围的NuX-X键更容易被极化导致。  图3  综上所述,通过结合实验与理论计算,作者证明了在水微液滴的气液界面处自发的高电场可以显著促进亲核试剂与卤素之间的反应。本研究不仅拓宽了微液滴电场可催化反应的适用范围,还为微液滴合成方法学的进展提供了最新的范例。  该研究成果发表在Journal of the American Chemical Society 上。值得一提的是,这已是该课题组在2023年度发表的第四篇JACS。南开大学硕士研究生朱乘慧为本论文的第一作者,澳大利亚弗林德斯大学博士后Le Nhan Pham为第二作者,南开大学硕士研究生苑旭为本文第三作者,南开大学本科生欧阳浩然为第四作者。南开大学张新星研究员和弗林德斯大学Michelle L. Coote教授为本文通讯作者。其中张新星研究员入选了本年度的国家杰出青年基金。仪器信息网在近期也专访了张新星研究员,详情点击了解(气液界面+质谱,点燃新引擎)  原文:  High Electric Fields on Water Microdroplets Catalyze Spontaneous and Fast Reactions in Halogen-Bond ComplexesChenghui Zhu, Le Nhan Pham, Xu Yuan, Haoran Ouyang, Michelle L. Coote*, and Xinxing Zhang*J. Am. Chem. Soc., 2023, DOI: 10.1021/jacs.3c08818  张新星课题组官网:http://www.zxx-lab.com/
  • 用户之声丨光催化水氧化过程的分解机理研究
    韩国西江大学Kyung Byung Yoon教授 岛津拜访了韩国西江大学的Kyung Byung Yoon教授。他是人工合成领域的顶尖研究人员之一。Yoon团队曾在《Science》上报道了一种不怕水的CO2捕获新材料,为低成本捕获CO2并再利用研究提供了方向。他的实验室配备许多分析仪器,包括Tracera GC-BID系统和QYM-01光反应量子产率评价系统*,QYM-01系统可实现对吸收光子准确而快速的定量测量。 * QYM-01 为岛津今年6月刚发布的Lightway PQY-01光反应评价系统的前序机型。 Q 请介绍一下您的研究内容。 这个广泛用于均相光催化水氧化过程的系统包含作为光泵的水氧化催化剂RuⅡ(bpy)32+和作为电子牺牲受体的S2O82?。但是,因为RuⅡ(bpy)32+会发生非常快速的分解,导致在所有S2O82?消耗完之前,反应过程就停止,所以该系统还远不够理想。就这一点而言,如果能研究清楚RuⅡ(bpy)32+的分解途径和产物,就可以设计出更高效的光催化水氧化系统。 我们发现,在光-RuⅡ(bpy)32+-S2O82?系统中存在两种RuⅡ(bpy)32+分解途径。第一种是通过黑暗环境中,在pH>6条件下,RuⅢ(bpy)33+氧化OH?而下形成OH• 自由基,OH• 自由基攻击RuⅡ(bpy)32+的bpy配体。这个在黑暗中分解的途径是次要的。在辐照过程中,RuⅡ(bpy)32+和RuⅢ(bpy)33+都受到光激发,并且光激发的RuⅢ(bpy)33+与S2O82?反应生成一种中间体。当中间体浓度较低时,中间体分解为催化活性的钌μ-氧代二聚体,当中间体浓度较高时,中间体分解为催化惰性的寡聚钌μ-氧代物。光诱导分解途径是主要途径。当RuⅡ(bpy)32+浓度较低时,即使在没有任何添加催化剂的情况下,光-RuⅡ(bpy)32+-S2O82?系统也会通过类似在黑暗中生成氧气的途径产生氧气。当RuⅡ(bpy)32+浓度较高时,由于光诱导分解途径的总速率比生成氧气的暗途径的总速率要快得多,因此系统中不会生成氧气。 Q “QYM-01”和“Tracera(GC+BID检测器)”是否正高效地用于您的研究?它们有多大用处? QYM-01可以在每分钟或更短的时间内获得紫外-可见光谱。这使我们能够监测光反应过程中物质的反应速度有多快。QYM-01还可以测量光敏剂吸收的光子数量。当我们检测到产物时,通过绘制吸收光子数量与生成产物的关系曲线来计算反应的量子产率。Tracera可高效检测液体产物,检测灵敏度较高。几乎检测到了柱内所有物质。 Q 您认为“QYM-01”和“Tracera(GC+BID检测器)”有哪些优点? 我们可以在光解过程中获得紫外-可见光谱,无需改变任何其他反应系统。我们可以测量我们正在使用的激发光的功率,这就是QYM-01的优点。至于Tracera,检出限很好。 Q 请告诉我们您对“岛津”的印象。 你们提供前所未有的产品和优质服务。 我们与Kyung Byung Yoon教授的交谈很愉快,通过这次采访,我们了解了Yoon教授对我们仪器和我们公司的看法。我们必须努力,争取越来越好。也非常感谢Yoon教授接受岛津的采访! 关于采访的评论 采访之后,Yoon教授说:“虽然QYM-01还有一些地方有待改进,但是岛津拥有QYM-01等前所未有的独特性创新技术,这令我印象深刻,我也期待这些技术的未来发展。”
  • 开讲啦!新仪参会光催化中青年学者论坛
    2016光催化中青年学者论坛暨中国感光学会光催化专业委员会2016年学术年会,于2016年10月21-23日在上海师范大学举行。大会以“光催化的未来与青年学者的职责”为主题,为广大致力于光催化科学技术研究的中青年学者提供一个交流探讨、展示成果的机会,同时为促进光催化行业产学研结合提供平台。本次会议吸引了光催化行业相关学者和工作参加。 上海新仪也参与了本次会议,在光催化会议现场我们与上海硅酸盐研究所的黄富强老师,以及华东理工大学杨化桂老师交流了微波合成在材料制备上的应用,其中UWave-2000多功能微波合成萃取引起了老师们的兴趣。 其创造性地结合了常压,带压反应,微波,超声波和紫外辐照等多种功能为一体,为微波化学研究提供给了前所未有的兼具灵活性与可靠性的微波合成萃取工作站。并且广泛应用于有机萃取、制药研究、蛋白质化学、新材料科学、石墨烯的研发,聚合物合成等众多领域。 本次会议,在交流与探讨中,我们受益匪浅。坚持研发与创新,不断满足用户朋友们所需,解决更多个性化需求,是新仪不懈的追求!
  • 大连化学物理研究所开发新型宽光谱捕光催化材料
    近日,大连化物所太阳能制储氢材料与催化研究组(DNL1621组)章福祥研究员团队与日本东京工业大学Kazuhiko Maeda教授团队合作,设计合成了一种层状结构的宽光谱捕光催化新材料β-ZrNBr,其吸光带边可至530nm,表现出较优异的光催化水分解半反应制氢和放氧、光催化半反应还原CO2制甲酸等功能。宽光谱捕光催化材料的设计合成是实现太阳能高效光—化学转化的基础,其吸收带边越宽,太阳能 转化理论效率越高。   在前期氮氧化物设计合成基础上,本工作中,科研人员通过氮元素与卤素离子共取代氧原子策略,合成了氮卤化物(β-ZrNBr),解决了以往单纯氮取代氧过程中,由于电荷不匹配(N3-,O2-),导致产生不可避免缺陷态的弊端,实现了兼具宽光谱响应和低缺陷密度的新型可见光催化材料的开发。该新型宽光谱捕光催化材料为层状结构化合物,其结构单层为双面Br-离子夹棱形ZrN层板的结构,且通过插层剥离后可得到纳米片结构。此外,科研人员通过在β-ZrNBr表面分别修饰Pt、RuOx、RuRu’分子,实现了该材料光催化还原水产氢、光催化水氧化产氧、光催化还原CO2产甲酸等半反应功能,展示了较好的光化学转化应用潜力。   大连化物所太阳能研究部长期致力于具有较宽可见光利用的新光催化材料开发,先后设计合成了氮氧化物类(J. Mater. Chem. A,2013;J. Mater. Chem. A,2017;Chem. Commun.,2014;Angew. Chem. Int. Ed.,2015;Appl. Catal. B,2019;Adv. Mater.,2021;J. Energy Chem.,2021等)、含氧酸盐类(Adv. Energy Mater.,2018)、金属有机框架类(Adv. Mater.,2018;Sci. China Chem.,2020;J. Am. Chem. Soc.,2022)等不同类型、具有我国自主知识产权的新材料,在光催化分解水制氢方面展现了良好性能。   上述工作以“Layered β-ZrNBr Nitro-Halide as Multifunctional Photocatalyst for Water Splitting and CO2 Reduction”为题,于近日发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该论文的第一作者是大连化物所DNL1621组毕业生鲍云锋博士和博士后杜仕文,以上工作得到了国家自然科学基金、国家科技部等项目资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制