当前位置: 仪器信息网 > 行业主题 > >

钉杆密水性试验仪

仪器信息网钉杆密水性试验仪专题为您提供2024年最新钉杆密水性试验仪价格报价、厂家品牌的相关信息, 包括钉杆密水性试验仪参数、型号等,不管是国产,还是进口品牌的钉杆密水性试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合钉杆密水性试验仪相关的耗材配件、试剂标物,还有钉杆密水性试验仪相关的最新资讯、资料,以及钉杆密水性试验仪相关的解决方案。

钉杆密水性试验仪相关的论坛

  • 水性涂料中乙二醇单丁醚的检测

    我们的水性涂料中含有乙二醇单丁醚,设备有GC-2014C,想要检测其中的乙二醇单丁醚的含量,请问谁有标准的方法,具体怎么做,谢谢,还有乙二醇单丁醚有限定要求吗乙二醇单丁醚属于VOC吗?求助

  • 水性涂料密度测定

    水性涂料密度测定

    请问水性涂料密度是怎么测定的?可以用液体密度计直接测定吗?我看到GB/T23985里面密度测定方法根据样品类型用GB/T6750。GB/T21862.2、GB/T21862.3、GB/T21862.4。我们的水性涂料有双组分的,那测密度取样是取整体混合样品的吧,粘度有点大,测试密度的时候是不是不能稀释后测的吗?请各位老师指教,多谢!

  • 【原创大赛】影响产品吸水性测试的因素有哪些

    【原创大赛】影响产品吸水性测试的因素有哪些

    日常我们用的很多产品都要求吸水性能要好,比如说婴儿用的纸尿裤、家庭用的毛巾等等都需要进行吸水性的测试,然而影响产品吸水性的因素有哪些哪?1. 产品本身的性能影响吸水性。所谓产品本身的性能主要指的是产品的成分、结构、密度、前处理等工艺会影响吸水性。织物成分就是指制成产品的材料,一般情况下可以根据成分的回潮率来判断:在标准状况下,各纤维的回潮率分别为:棉8.5%、羊毛16%、粘胶13%、麻10%、涤纶0.4%、锦纶4%、腈纶2%;从回潮率不难看出哪种成分的吸水性好,那中成分的吸水性差一看便知了,总体来看是天然纤维吸水性要好一些,合成纤维吸水性要差一些。织物的结构和密度吸水性对比,通常是对同一种纤维成分的产品来说的,一般来说密度大的产品渗水的速度要慢,自然吸水性要差,而密度大的产品吸水性自然要快。 http://ng1.17img.cn/bbsfiles/images/2012/12/201212250740_415266_1954597_3.jpg 图1——不同成分、不同密度的产品吸水性对比样品处理一般是在样品中加精炼剂、渗透剂等助剂,但是不同的助剂可能会有不同的反面效果,所以说加的量要适量。同时有的助剂可能洗涤前后吸水性的影响会很大,所以加助剂前要看客户是测试洗涤前的还是洗涤后的吸水性。2. 测试方法影响吸水性结构虽然说吸水性的性能是一样的但是不同的测试方法所呈现出的结果也是不一样的,另外测试过程中的操作不同,吸水性的结果也是不一样的。所以说吸水性的测试方法要根据销售的区域,产品的性能而定。常见的吸水性测试方法有以下几种:沉降法、水流试验法、毛细效应试验方法、可湿性及吸收法。一般而言沉降法、可湿性的单位是秒;水流试验法和称重法的单位是%;毛细效应试验方法是cm/30min; 2.1 沉降法测试吸水性这种方法是通过用秒表来计算产品从放入水面到沉入水底所用的时间来衡量产品的吸水性能,然而这种方法收到样品尺寸的影响,同时也与水温有很大的关系。一般来说相同的产品面积越大沉下去的时间越短也就是说所谓的吸水性越好,而同种测试方法下水的温度越高相对吸水的速率也越快。 http://ng1.17img.cn/bbsfiles/images/2012/12/201212250740_415267_1954597_3.jpg图2——沉降法测试吸水性 2.2 水流试验法是通过测试测量流过织物剩余水的体积来计算织物吸收百分率的一种方法,而这种方法所测试的结果与产品及缝边的厚度有直接关系,同时也与水的温度有一定的关系。 http://ng1.17img.cn/bbsfiles/images/2012/12/201212250740_415268_1954597_3.jpg图3——水流试验法 2.3 毛细效应试验方法毛细效应试验方法主要是针对半成品而言的,是将织前的缕纱或成品剪成长条装挂在仪器的横梁上,放入装有染料的槽中,看一定时间后染料上升的高度;这种方法主要关系到产品的材料,如果产品材料的均匀性差的话这种方法测试的结果可能会差。因为结果读取的是染料上升最低的高度。 http://ng1.17img.cn/bbsfiles/images/2012/12/201212250740_415269_19545

  • 水性环氧中间漆检测

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-36669.html[/url]水性环氧中间漆检测样品名称 水性环氧中间漆工程部位 2 号矿水性环氧中间漆检测判定依据:HG/T 4340-2012《环氧云铁中间漆》水性环氧中间漆检测项目1.不挥发物含量,2.干燥时间:表干,3.干燥时间:实干,4.在容器中状态,5.流挂性,6.贮存稳定性(沉降性),7.弯曲试验,8.耐冲击性,9.附着力。水性环氧中间漆检测标准:1.GB/T 1732-1993;2.GB/T 6742-2007;3.HG/T 4340-2012。

  • 【第二届网络原创大赛】水性树脂行业探秘——相关测试仪器篇

    【第二届网络原创大赛】水性树脂行业探秘——相关测试仪器篇

    [color=#DC143C]原创的热情一浪高过一浪,作为论坛新人看到铺坛盖版的原创大赛宣传,终于按捺不住也出来露个小脸~~为大家展示下水性树脂实验室设备![/color] 我们是一家专门生产水性树脂的厂家,主要致力于水性聚氨酯、水性丙烯酸系列产品的研制、开发和生产。水性树脂系列产品是新型绿色环保产品,因其卓越的性能、安全无毒无害不燃的特点而广受欢迎,产品广泛应用于汽车、机械、轻纺、建筑、通信、皮革、医疗、造纸、食品、蓄电池等领域。 虽然说实验室成立也就4、5年的时间,但是为了节约成本,我们所使用的仪器还是很简陋的,各位大侠轻拍啊~ 先为大家奉上实验室分布布局图,对我们实验室和仪器分布有一个宏观的了解~~[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912161520_190374_1947624_3.jpg[/img] 首先来介绍最为常规的仪器: 这个图中显示了我最常用的,反应所需的水浴锅 搅拌器 三口瓶和保障我尽量不短命的通风橱。 [img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912161352_190342_1947624_3.jpg[/img]

  • 润滑脂中的抗水性有何作用

    [color=#333333]1、润滑脂抗水性的重要使用意义[/color][color=#333333]抗水性好的润滑脂,保证了润滑脂在有水存在的情况下,仍能够起到良好的润滑作用,而抗水性差的润滑脂则不宜用于与水接触的部位。例如轧钢工业的连续铸钢操作过程其特点是有大量冷却水直接喷淋于赤热的钢坯,其时不但有大量的水进入轴承,同时还有大量的水蒸气产生并存在于轴承表面,润滑脂则一直处于高温高湿状态,如果脂的抗水性欠佳则易被冲淋流失掉,失却润滑性。[/color][color=#333333]对于绝大多数的使用部位来说,都会要求润滑脂具有良好的抗水性。但有一些使用部位的要求则相反,如针织机、缝纫机上使用的润滑脂则常希望其具有水溶性 当油脂溅到织物上时,可以经过漂洗工序使油污痕迹容易洗除掉,而抗水性好的润滑脂,反而不容易洗除油污。因此,在具体选用润滑脂时一定要灵活对待。[/color][color=#333333]2、润滑脂的水分和抗水性[/color][color=#333333]润滑脂本身就含有水分,分为两种,一种是结构含水,此时水是润滑脂中的稳定剂,对润滑脂结构的形成和性质都有重要的影响。另一种是游离的水份,是润滑脂中不希望有的,必须加以限制。但润滑脂抗水性所指对象,水则来自外界。抗水性是指润滑脂在外界导入的水中不溶解、不乳化、并不易从周围介质中吸取水分、不被水洗掉和在与水接触时不会明显地改变它的自身性能的能力。[/color][color=#333333]润滑脂的抗水性主要取决于稠化剂,其次是基础油。一般来说,以硅油为基础油的润滑脂的抗水性较好,其次是矿物油、酯类油。聚醚类油的抗水性较差。对稠剂化来说,脲基脂、烃基脂的抗水性好,铝基脂、钡基脂、钙基脂以及复合铝、复合钡、复合钙基脂次之,再次是锂基脂,抗水性最差的是钠基脂和复合钠基脂。目前市场上既要保持润滑性又要有较好的抗水性和密封性的是虎头的HOTOLUBE全合成润滑硅脂[/color][color=#333333]3、润滑脂抗水性的评定方法概要[/color][color=#333333]润滑脂抗水淋性能测定法:SH/T0109。本标准参照采用ASTM D1264润滑脂抗水淋性能测定法,水淋试验机平面图见图1。[/color][color=#333333]试验时,将4g ± 0.5g试样装入204型球轴承中,以600r/min±30r/min的速度转动,控制水温为38[/color][color=#333333]℃[/color][color=#333333] ±2[/color][color=#333333]℃[/color][color=#333333] ,并以5ml/s±0.5ml的流速喷淋在轴承套的防护板上,以1h内被水淋洗掉的润滑脂量来衡量润滑脂的抗水淋能力。[/color][color=#333333]4、润滑脂抗水性的其他评定法[/color][color=#333333]简易判断法。方法规定:把润滑脂薄薄地涂在1mm厚的玻璃片上,然后分别浸在25[/color][color=#333333]℃[/color][color=#333333]、50[/color][color=#333333]℃[/color][color=#333333]、和90[/color][color=#333333]℃[/color][color=#333333]的蒸馏水中5h,观察润滑脂涂膜的变化及蒸馏水的变化,进行判断。[/color][color=#333333]加水剪切试验法。在试样中加入10%的蒸馏水进行1万次或10万次剪切,最后测定剪切后润滑脂的锥入度,试验结果以剪切后锥入度值表示。例如汽车通用锂基脂的抗水性就规定,其加水剪切后的锥入度值不大于375。[/color][color=#333333]润滑脂在热水中的安定性FS791B3463.1。在烧杯中放约500ml蒸馏水,加热到轻微沸腾,用搅拌棒的一端蘸取一小块样品约5g放在沸水中浸泡10min,然后检查水,并记录水是否混浊或样品乳化的其他迹象。[/color][color=#333333]润滑脂抗水和抗水-乙醇溶液性能测定法FS791B5415。一容器中盛200ml蒸馏水,另一容器中盛200ml乙醇蒸馏水,将两个小脂团分别放入到两个容器中,用塞子塞牢容器,静置一周,每个容器摇动一、二次,然后目测容器中脂团的解体现象[/color]

  • 【分享】疏水性荧光体掺杂微/纳米荧光探针的合成

    荧光体掺杂SiO2 微/纳米颗粒以其荧光强度高、光稳定性好、表面易修饰、生物毒性小等优点,为生物分析领域提供了新的荧光探针。迄今为止,用于掺杂的荧光体主要有荧光素衍生物、罗丹明衍生物、联吡啶钌等亲水性荧光体,通过StÖ ber 法和微乳液法[1]以共价或静电作用方式包埋于SiO2 微/纳米颗粒中。而对于许多光稳定性好、量子产率相对较高的荧光体,如芘(pyrene)、1,2,3,4,5-五苯基-1,3-环戊二烯(PPCP)、红荧烯(rubrene)等,由于疏水性强,不易衍生化,无法利用上述方法制备微/纳米荧光探针,限制了其在生物分析中的应用。

  • 【原创大赛】气相色谱法测定水性木器涂料中挥发性有机化合物、苯系物、乙二醇醚及其酯类含量

    【原创大赛】气相色谱法测定水性木器涂料中挥发性有机化合物、苯系物、乙二醇醚及其酯类含量

    [align=center][b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水性木器涂料中挥发性有机化合物、苯系物、乙二醇醚及其酯类含量[/b][/align]摘要:试样经稀释后,通过[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析技术使试样中各种挥发性有机化合物分离,定性鉴定被测化合物后,用内标法测试其质量。用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水性木器涂料中挥发性有机化合物、苯系物、乙二醇醚及其酯类含量,可一次测定30中组分含量;方法的回收率范围为84.16%-125.63%,相对标准偏差小于10%,方法检出限为21.20mg/kg。本方法简单、快速、准确,可用于室内装饰装修用水性涂料中有害物质含量的测定。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法,水性涂料,挥发性有机物,苯系物,酯类引言[color=#333333]水性木器涂料一般采用丙烯酸乳液制得,因丙烯酸乳液具有固体含量高、干燥速度快、硬度强、耐候性好和成本低等优点。水性木器漆中可能含有的有害物质有三苯 ( 苯、甲苯、二甲苯 ) 、卤代烃、甲醛及甲醛缩聚物,水性木器漆与溶剂型木器漆相比其最大优势在于其挥发性有机化合物总量低,因此此项应严格控制。水性木器涂料在生产过程中为提高其性能,添加了不少润湿剂、表面改性剂、全部或部分消泡剂,增稠剂等化学物质,这些物质或多或少会带来有机挥发物,特别是苯系物,VOC等的残留。本文通过[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-FID测定其中有害物质含量,为室内装修装饰材料有害物质是否满足标准限值提供有力佐证。[color=#333333][/color][/color]实验部分1.1[b]试剂[/b]甲醇、苯、甲苯、乙苯、二甲苯、乙二醇甲醚、乙二醇甲醚醋酸酯、乙二醇乙醚、乙二醇乙醚醋酸酯、二乙二醇丁醚醋酸酯、丙酮、乙醇、异丙醇、三乙胺、异丁醇(内标物)、1-丁醇、丙二醇单甲醚、二丙二醇单甲醚、乙酸正丁酯、二甲基乙醇胺、甲基异戊基酮、丙二醇正丁醚、乙二醇单丁醚、1,2-丙二醇、乙二醇、N-甲基吡咯烷酮、二丙二醇正丁醚、二乙二醇单丁醚、丙二醇苯醚、二乙二醇、乙二醇苯醚,共计30种。1.4[b]仪器[/b]安捷伦7890B [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-FID[img=,690,1226]http://ng1.17img.cn/bbsfiles/images/2017/09/201709261539_01_1657564_3.jpg[/img]湘仪离心机[img=,690,1226]http://ng1.17img.cn/bbsfiles/images/2017/09/201709261540_01_1657564_3.jpg[/img]梅特勒-托利多电子天平XSE204(精度0.1mg)[img=,690,388]http://ng1.17img.cn/bbsfiles/images/2017/09/201709261540_02_1657564_3.jpg[/img]色谱柱条件:HP-5 聚乙二醇毛细管柱,30x0.25mmx0.25μm;进样口温度:240°C,检测器(FID)温度:250°C;柱温:程序升温,60°C保持1分钟,然后以20°C/min升至240°C保持20分钟;分流比:10:1;进样量:1.0μL。1.5[b]分析步骤[/b]称取搅拌均匀后的试样1g(精确至0.1mg)以及与被测物质近似相等的内标物于配样瓶中,加入10mL稀释溶剂稀释试样,密封配样瓶并摇匀, 高速离心机离心15min后用0.45um过滤头过滤后上机测试 采用内标的相对校正因子进行计算 目标化合物采用各自的校正因子,未识别峰用异丁醇的相应因子计算。[b]1.试验结果报告[/b]2.1[b]出峰时间的确定[/b]分别称取各标准物质0.5g于32个50mL容量瓶中,用甲醇定容,摇匀;取各标准样品1mL于试样瓶中,进入编辑好方法的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分析,结果见表1。[img=,690,365]http://ng1.17img.cn/bbsfiles/images/2017/09/201709261457_01_1657564_3.png[/img]2[b].[/b]2[b]校正因子的计算[/b] 分别称取2.1鉴定出的各标准物质(异丁醇分开配制)0.5g(精确至0.1mg)于同一个50mL容量瓶中,用甲醇定容。取该溶液20uL及异丁醇20uL于有960uL甲醇的配样瓶中,摇匀(200ppm)上机测试结果见表2。[img=,642,428]http://ng1.17img.cn/bbsfiles/images/2017/09/201709261527_01_1657564_3.png[/img][b]2.3方法的检出限[/b]取20uL已配制好的内标物(异丁醇)加入980uL甲醇中上机测试10次,将峰面积加和作为TVOC结果,数据如表3;[img=,690,134]http://ng1.17img.cn/bbsfiles/images/2017/09/201709261531_01_1657564_3.png[/img]2.4[b]方法的准确度与精密度实验数据[/b]取已配制好的200ppm混标溶液(含内标)上机测试8次结果见表4。[img=,650,374]http://ng1.17img.cn/bbsfiles/images/2017/09/201709261533_01_1657564_3.png[/img][b]3.小结[/b] 用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水性木器涂料中挥发性有机化合物、苯系物、乙二醇醚及其酯类含量,可一次测定30中组分含量;方法的回收率范围为84.16%-125.63%,相对标准偏差小于10%,方法检出限为21.20mg/kg。本方法简单、快速、准确,可用于室内装饰装修用水性涂料中有害物质含量的测定。[b]4.参考资料[/b] GB24410-2009室内装饰装修材料 水性木器涂料中有害物质限量中附录A挥发性有机化合物、苯系物、乙二醇醚及其酯类含量的测试。GB18582-2008 室内装饰装修材料内墙涂料中有害物质限量。[align=center][/align]

  • 测定水性涂料中VOC含量时的几点建议

    测定水性涂料中VOC含量时的几点建议这种方法与美国 ASTM D3960 -98 对 VOC 的定义和计算方法相同,均为挥发性有机化合物与扣除水分后的样品体积的比值。两种计算方法的结果相差近一倍 ,以下为两种方法计算 VOC 值的比较。 第一、用 HBC12 -2002 方法计算的 VOC 值不因水分的多少而改变。而按国标计算的 VOC 值因含水量的增加而降低。 第二、如果按国家强制性安全标准对 VOC 的限值 200g / L 计算 ,那么内墙涂料中有机挥发物含量将近 20 %,只比溶剂型涂料 VOC 限值 500g / L 低 60 %,这与研制水性涂料的初衷 ( 减少对环境的污染 ) 相悖。由此得出,若非内墙涂料的 VOC 指标制定的不合理,就是计算方法不合理。 不同测试方法造成 VOC 的差异 除上述因计算方法造成 VOC 的差异外,测定方法的不同也是造成 VOC 差别的一大因素。 VOC 是挥发分、密度、水分这三项测定结果计算得出的,下面就不同标准对这三项的测定结果进行比较。 从列出的测定结果看:挥发分 ( 最大相对偏差 1 . 62 %) 、密度 ( 最大相对偏差 2 . 02 %) 以不同标准测定的结果相符合;而水分 ( 最大相对偏差 18 . 42 %) 的测定结果相差较大,虽然这两种方法都剂中游离水或结晶水的测定。不适用于能与卡尔费能测定水分,但是对不同的产品是有选择的。 GB 606 休试剂的主要成分反应并生成水的样品,以及能还原 -88 水分测定通用方法 ( Karl Fischer 法 ) 中规定了此碘或氧化碘化物的样品中水分的测定。测定方法的适用范围,适用于部分固体和液体有机试剂。 以下三个理由说明在测定 VOC 时利用 Karl Fischer 法测水是不合理的。 水性涂料中的体质颜料如白炭黑、云母粉、高岭土、滑石粉、膨润土都含有一定量的结晶水。如果涂料的配方中含有这些体质颜料,其结果包含了涂料中的水及这部分结晶水在用 Karl Fischer 试剂滴定试样时,试样溶 液出现结块、结片现象,对此现象还找不出原因 ( 无法做出解释 ),在不能确定其是否影响水的测定之前应慎重使用此法。 影响 VOC 测定的因素 样品均匀性对测定 VOC 准确性的影响:由于 水性涂料的特点,测定时所取试样是否能代表涂料整体就成为影响 VOC 值准确性的主要因素。如何 使水性涂料样品均匀,立邦涂料有限公司提供了如下试验结果:分别在 5L 、 1L 包装的白色涂料中加入一定量的颜料,用振动混合机 ( 型号:SO -40a 0.75 功率 / kW) 混匀样品和人工混匀样品进行比较。均匀程度是以下述试验判断的:在 1L 、 5L 包 装乳胶漆中加入 1 % 的黑色浆,并进行混样。取不同时间混样的涂料用 150 μ m 涂布器在 13cm × 15cm 的白纸卡上刮卡,流平 5min 后放入 55 的鼓风干 燥箱中干燥 15min ,用 CE -7000A 仪器进行测试 ( 光源为 D65 光源 ) 。相邻两个时间段的涂料色差平均值相比 VOC 值是否合理依据测试步骤是否合理,也 就是说在保障样品均一性的同时,采用合理的测试方法,并统一VOC值的计算方法,以消除因不同标准造成的VOC值的差异

  • VELP顶置式搅拌器在水性阻尼涂料制备中的应用

    为了降低车辆在行驶过程中因振动产生的噪声,提高车辆的乘坐舒适性和保温性,在喷涂底漆之后,一般在门板、顶盖、侧壁板和发动机罩等内表面和地板的上表面涂饰隔声阻尼涂料。隔声阻尼涂料具有减弱振动、降低噪声的功能。根据使用对象及使用环境的需要,阻尼涂料往往具有一定的阻尼、隔热、隔声等功能。其基本原理是利用高分子材料所具有的粘弹性能,吸收振动源的一部分振动能,再以“热”的形式释放出去,即发生所谓的力学损耗,以达到抑制振动、降低噪声的目的。实验室内试样制备选用苯丙乳液和纯丙乳液的共混物作为基料,并按一定比例添加填料、去离子水和助剂,搅拌均匀得到水性阻尼涂料。在制备水性阻尼涂料的过程中,一个重要的步骤是搅拌。目前广泛使用的搅拌器是意大利VELP 生产的顶置式搅拌器。VELP顶置式搅拌器采用防腐蚀材料, 环氧涂层金属结构。搅拌最大粘度可达50000mPa*s。VELP顶置搅拌器有两个清晰、易读的显示器展示当前速度和设定的速度。VELP顶置式搅拌器具备恒温控制,当样品的粘度发生变化,VELP顶置式搅拌器的搅拌速度始终保持恒定。当搅拌器发生错误运行时,系统会阻止操作继续运行,从而确保仪器的安全。

  • 【第三届原创参赛】GB/T 22799-2009毛巾吸水性B法的测试不确定性因素分析

    维权声明:本文为dahua1981原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。GB/T 22799-2009毛巾吸水性B法的测试不确定性因素分析 摘要:本文对标准《GB/T 22799-2009 毛巾产品吸水性测试方法》中的评定毛巾吸水性能的B法进行了测试分析,指出吸水性测试中不确定因素对测试结果的影响,并就此提出相应建议。Abstract:This article analysises the standard of GB/T 22799-2009 towels in water test method of performance evaluation of towel water test method of B, points out that water imbibition uncertainty factors in the test, the influence of the test results and puts forward the corresponding proposal.关键词:吸水性 不确定性 准确性Keywords: Water imbibition uncertainty accuracy吸水能力的强弱是考核毛巾品质的重要因素之一,GB/T22799-2009中给出了A法和B法来测定毛巾的吸水能力,笔者在测试中发现B法测试结果有较大的不确定性,究其原因发现影响测试结果的不确定因素较多,标准中对一些试验参数或因素未作出明确规定,从而造成测试结果较大的测量不确定度,及不同试验室间吸水性的较大偏离,本文就这些问题进行分析和阐述。 1样品前处理1.1 使用仪器:Wascator FOM 71 CLS 水洗尺寸变化测试仪M223/2数字式烘干机,   洗涤剂:AATCC1993美标洗涤剂WOB,23 g。1.2 洗涤程序:采用Wascator FOM 71 CLS的仿手洗程序,洗涤温度设为40 ℃;  洗涤水位13 cm;  洗涤时间1 min;  冲洗1的水位13 cm,冲洗时间2 min;  冲洗2的水位13 cm,冲洗时间2 min,脱水时间2 min。2 吸水率测试  2.1测试设备:表1中用的是我中心的SDLATLAS吸水性测试仪,卡环高度是12mm;表2中是另一实验室模仿SDLATLAS自做的吸水性测试仪,只是卡环高度有所不同,卡环高度是18mm;统一用BL2200H电子天平进行测量;2.2测试过程:将水温为(20±2)℃的50mL三级水从测试样品上流过,测量三级水的减少量,计算出测试样品吸水的多少(含水率)。计算式如下式。  其中,P—样品吸水率,%,(P1为洗前样品吸收率, P2为洗后样品吸收率);  m0—试验前水槽质量,g;   m1- —试验后水槽质量,g;  d— 试验用水的密度,g/mL。测试结果如下(表一为我中心测试结果,表二为我中心B测试结果):表一 毛巾样品[

  • 水性紫外光固化涂料的性能研究进展

    分享一篇紫外的文献,希望对大家有所帮助崔芙红(兰州石化职业技术学院应用化学工程系,甘肃兰州)水性紫外光固化涂料结合了传统水性涂料和紫外光固化涂料的优点,成为环保型涂料研究的一个主要方向。本文综述了水性紫外光固化涂料的特点,主要组成部分以及其最前沿的发展方向,并介绍了这种涂料的应用情况和面临的挑战。水性紫外光固化涂料;组成;研究进展TQ A 1007-1865(2013)10-0099-02由于水性涂料对环境无污染,对人体健康影响小,粘度易调节,挥发度低使之适合于喷涂,但它仍存在不抗碱、不抗水、干燥慢、易造成基材收缩等弊病。紫外光(UV)固化涂料的优点之一是涂料的固化时间短而且可以控制,因其不含溶剂,从而大大消除了有机挥发分(VOC)对环境的污染。但其主要成分低聚物一般均具有较高的粘度,在涂布时必须加入稀释剂以调节其粘度和流变性。传统的丙烯酸酯类活性稀释剂对眼睛有较强的刺激作用,影响人体健康。因此,UV光固化涂料技术总的发展趋势是以水代替反应性稀释剂,一方面可以消除因挥发分导致的污染、刺激等问题,另一方面也为水性涂料提供了一种新的固化手段。因而综合了两者优点的水性紫外光固化涂料,成为极具开发和应用前景的新的涂料技术。1·特点与传统的油性紫外光固化涂料相比,水性紫外光固化涂料具有以下优点。(1)用水替代活性稀释剂,黏度更方便调节。(2)减少活性稀释剂的使用,使其毒性和刺激性大大降低。(3)以水为稀释剂可降低固化膜的收缩率,有利于提高固化膜对底材的黏附性。(4)可以得到超薄型固化膜。(5)涂装设备和装置可用水进行清洗。(6)可以使用相对分子质量高的预聚物,克服了传统紫外光固化涂料不能兼顾高硬度和高柔韧性两者的问题。2·组成2.1 低聚物水性低聚物是水性光固化材料最重要的组成部分,它决定固化膜的力学性能,如硬度、柔韧性、耐磨性、耐化学药品性等,也影响紫外光固化的灵敏度。水性低聚物在结构上要有参与UV固化反应的不饱和基团,如丙烯酰氧基、乙烯基等,由于丙烯酰氧基反应活性高,固化速度最快,所以各类丙烯酸树脂的为其主要品种;另外分子链上需含有一定数量的亲水基团,如羧基、羟基、氨基、磺酸基等。按低聚物的化学结构,目前最常用的水性紫外光固化树脂主要包括环氧丙烯酸酯(EA)、聚氨酯丙烯酸酯(PUA)、聚丙烯酸酯(Acrylatedacrylic oligomer)和聚酯丙烯酸酯(PEA)。表1列出了这些常用水性紫外光固化涂料低聚物的性能。表1 常用水性紫外光固化涂料低聚物的性能2.1.1 环氧丙烯酸酯环氧丙烯酸酯是一种广泛使用的低聚物,原料价格便宜,机械性能优良。环氧树脂分子链上的羟基赋予它良好的极性,促使其对金属材料表面有良好的粘附力。并且环氧树脂聚合物链含有稳定的C-C键和醚键,这使得它耐化学药品性优良。此外,可以通过环氧树脂的环氧基和羟基将甲基/丙烯酸单体接入从而引入反应双键,来提高其固化活性。而且环氧树脂中的羟基也可以作为接入酸酐的反应点而引入羧基,用碱中和便可得到具有亲水性的树脂。2.1.2 聚氨酯丙烯酸酯聚氨酯丙烯酸酯的制备方法是将带有羟基的丙烯酸酯类单体与异氰酸酯基团反应,引入C=C双键,使之具有UV活性;再用带有羧基的扩链剂对聚氨酯分子链进行扩链;最后经碱中和得到可UV固化的水性聚氨酯丙烯酸酯树脂。聚氨酯分子链上除了含有大量氨基甲酸酯链段外,还含有醚键、酯键、脲键等活性基团,这些结构赋予了聚氨酯材料良好的物理机械性能,优异的弹性、耐寒性、耐有机溶剂及良好的温度适应性,是近年来发展较快的高分子材料。2.1.3 聚丙烯酸酯水性UV固化聚丙烯酸酯体系一般由多种丙烯酸(酯)类单体共聚,并利用共聚物侧链的活性基团,如:羟基、羧基等,与丙烯酸(酯)类单体反应,获得具有不饱和双键的聚丙烯酸酯树脂。这种方法环保且无需分散可直接得到水乳液,但是通常其接枝率比较低,涂膜固化后性能提高,其另一个缺点是此类树脂丙烯酸所含的双键在共聚反应中被消耗,其光固化活性较差。2.1.4 聚酯丙烯酸酯聚酯丙烯酸酯可由聚酯端羟基与丙烯酸酯化或由聚酯端羧基与甲基丙烯酸缩水甘油醚反应而得。其双键位于分子链末端,活性相对较高,同时较低分子量使其易于进行流变调节。在超支化聚酯的末端可以接入丙烯酸酯或聚氨酯丙烯酸酯,得到水基超支化UV固化树脂,可以稳定的分散在水中。2.2 光引发剂光引发剂是光固化涂料的重要组成,是决定紫外光固化涂料是否能够迅速交联固化的关键。与传统油性紫外光固化涂料不同的是用于水性体系的光引发剂必须要与水性环境有一定的相容性,而且挥发性较低,按其产生活性中间体的不同,可分为自由基光引发剂和阳离子型光引发剂两类。自由基光引发剂根据产生自由基的机理不同,又可分为裂解型自由基光引发剂和夺氢型自由基光引发剂两类。裂解型自由基光引发剂从结构上看,多是芳基烷基酮类化合物,主要有安息香及其衍生物、苯偶酰及其衍生物、苯乙酮及其衍生物、酰基膦氧化物等。夺氢型自由基光引发剂多为芳香酮类。阳离子光引发剂包括芳香重氮盐、二芳基碘翁盐、三芳基硫翁盐、二茂铁盐、烷基翁盐、三芳基硅氧醚、磺酰基酮等,其优点是不受O2的影响。较先进的光引发剂固化方式可采用双重固化体系,即通过两个独立的体系完成交联聚合,一个阶段是光固化反应,另一个阶段是暗反应,暗反应包括湿气固化、热固化、氧化固化或厌氧固化反应等。2.3 功能助剂在涂料的实际应用中,为达到应用要求,还需加入各种功能助剂。常见的有助溶剂、润湿剂、分散剂、消泡剂、成膜助剂。助剂可以改变涂料的某些性能,但在使用时不能破坏涂料的稳定性和其耐水性,要控制其用量达到性能平衡和低VOC含量。近年来由于纳米无机粒子其独特的表面界面效应,使纳米复合材料呈现出许多新颖的特点,成为紫外光固化涂料的一个研究热点。刘红波等在紫外光固化涂料中加入无机纳米抗菌剂,制得了抗菌型的木器漆。3·发展方向3.1 超支化体系采用超支化技术可制备多官能度树脂。超支化树脂不仅低熔点、低黏度、易溶解且支链上可含有更多的官能基团,是作为水性光固化树脂的理想材料。超支化低聚物可利用端羟基超支化聚合物与丙烯酸通过酯化反应,或与二异氰酸酯和丙烯酸羟基酯半加成物反应,引入丙烯酸基团,成为光固化超支化低聚物。也可利用端羧基超支化聚合物与甲基丙烯酸缩水甘油酯反应,引入甲基丙烯酸基团制得。3.2 双重固化体系为了改善水性紫外光固化涂料在不透明介质、形状较复杂的部件上的固化性能,可利用杂化的方式合成含有两种不同活性基团的低聚物,开发出兼有两者优良特性的体系。汪存东等以聚氨酯丙烯酸酯为乳化剂制成了紫外光固化的水性环氧丙烯酸酯/聚氨酯丙烯酸酯复合涂料。一方面,通过聚氨酯丙烯酸酯与环氧丙烯酸酯复合改善了涂膜性能;另一方面,由于阴离子型聚氨酯丙烯酸酯本身为一种高分子乳化剂,加入后可使疏水性的环氧丙烯酸酯形成一种稳定的水分散体系。3.3 有机-无机复合体系有机/无机杂化体系在保持有机高分子成膜性、透明性的同时又具有耐溶剂、高硬度及耐磨性的优点,是水性紫外光固化涂料很有前景的一个发展方向。水性紫外光固化体系可以通过直接分散、插层或溶胶/凝胶等手段引入纳米SiO2、蒙脱土等无机粒子,来改善涂层的硬度、耐磨性、耐热性或光学性能等。4·结语随着人们环保意识的不断增强,水性紫外光固化涂料越来越多的进入到人们的生活当中。在国外,已广泛应用于建筑涂料、体育用品、电子通讯等不同领域;在我国它每年都以20%~30%的速度增长,在纸张、木器、塑料、金属、光盘和光纤等基材上获得了很好的应用。当前水性紫外光固化涂料技术不足之处主要包括涂料水分散体系的长期稳定性有待提高,光引发剂品种不多,对于颜料着色涂料,选择余地更小,增设干燥除水装置对该技术的推广应用有不利影响。针对上述问题,我们应加大基础性研究,进一步完善相关技术,使它更大程度的应用到我们的生活当中。参考文献金养智,洪啸吟.紫外光固化涂料的进.涂料工业,1999,29(12):30-33.姚伯龙,罗侃,杨同华.国内外水性紫外光固化涂料的研究进展.涂料技术与文摘,2007,28(11):1-4.李红强,曾幸荣.紫外光固化涂料及其研究进展.涂料技术与文摘,2007,28(4):8-11.殷海龙,卿宁.水性聚氨酯丙烯酸酯紫外光固化低聚物研究进展.化工新型材料,2011,39(4):51-54.周钢,陈建山,奚海,等.紫外光固化光引发剂研究进展.精细化工中间体,2003,33(2):6-8.姚桃花.紫外光固化涂料用光引发剂的研究进展.甘肃石油和化工,2007,(3):8-13.李海燕,谢川.阳离子光引发剂研究进展.信息记录材料,2004,5(4):35-39.丁立朋,李拥军,马兴法.阳离子聚合光引发剂及其阳离子反应机理.热固性树脂,1997(2):47-54.戴洪义,王少君,高学明.用于辐射固化的特种丙烯酸酯单体及其发展动向.山东化工,2000,29(1):25-26.刘红波,李荣先,缪国元.紫外光固化纳米抗菌木器漆.涂料工业,2007,37(5):14-16.汪存东,王久芬.紫外光固化环氧-丙烯酸酯/聚氨酯-丙烯酸酯复合型水性涂料的研制.涂料工业,2005,35(2),1-4.张高文,褚衡,李纯清.水性紫外光固化涂料的研究进展.现代涂料与涂装,2008,11(1):16-19.王坚,苟小青,沈雪峰.水性UV涂料在塑料上的应用.涂料工业,2009,39(11):49-52.何京.UV固化涂料及其发

  • 光这仪器水性雾产生的原因

    [font=微软雅黑]水性雾是由于潮湿空气在温度变化下而形成,主要分布在零件的全面积上,产生原因主要是潮湿气体所致,但与仪器密封性能、光学玻璃的化学稳定性,以及玻璃表面的清洁程度有关,在较高的相对湿度下,霉菌易生长,有些霉菌生长状大后,便在菌丝体周围产生分泌物,这些分泌物有的是液状的,在液状分泌物外围便形成水性雾。[/font][font=微软雅黑]不管何种原因形成的雾,由于雾滴以曲率半径极小的球形分布于光学零件表面上、使入射光线产生散射现象,除了降低仪器的有效透光率外,并使成象质量差影响观测。有的光学零件因长期起雾,被腐蚀的玻璃表面形成很多微孔,严重的会使玻璃零件报废。[/font][font=微软雅黑]光学仪器起雾不仅在我国东南地区严重存在,就是较干燥的地区,由于温差变化,也会起雾,它比光学仪器生霉的影响范围更大,而且更难防止。[/font]

  • 水性环保脱脂剂(粉)的选材注意事项

    水性环保脱脂剂(粉),尽量选择无磷、无氮除油剂、分散剂和缓蚀剂,选择生物降解的表面活性剂为除油剂,将产品制成粉状易于运输、储存和使用,从原材料选择和配方组配方面,采用环保型原料代替磷酸盐,EDTA,难降解表面活性剂。 1)用正硅酸盐代替磷酸盐,这是由于正硅酸盐比目前无磷脱脂粉中采用的偏硅酸盐具有更好的除油效果;选用易生物降解的生物质原料螯合剂替代EDTA等;用葡萄酸钠替代磷酸盐,它不含N、P等原子,不会产生富营养化作用,能起到络合清洗液中金属离子作用,增加去污能。 2)用更易生物解解的脂肪醇聚氧乙烯醚硫酸盐、脂肪醇聚氧乙烯醚代替较难生物解解的烷基酚聚氧乙烯醚和烷基苯磺酸盐等,既起到乳化、渗透、分散作用,同时对使用硅酸盐可能产生材料表面形成硅垢具有分散和抑制作用,避免了硅酸盐垢的形成。杏树胶、葡萄糖酸盐、脂肪酸盐、脂肪醇聚氧乙烯醚(AEO)、烯基磺酸盐(AOS)、α-磺基脂肪酸甲酯钠盐(MES)和具有直链结构的烷基苯磺酸盐(LAS)等适宜生物降解,又能有效除去金属重垢油脂的表面活性剂,只要配比合理,主导主洗地位是可行的。 3)杏树胶、葡萄糖酸盐、脂肪酸盐亦称生物表面活性剂,亲水性强,能形成O/W乳液,同时黏度较大,有利于增加乳液的稳定性。 4)AEO-9和AEO-20具有良好的乳化和分散能力,耐酸、碱性较强,其生物降解性能好,基本属无毒物质。 5)AOS去污性能佳,对酸、碱稳定,有优良的水溶性,对水的硬度也不敏感,对皮肤刺激性小,它的生物降解性接近100%,与非离子和阴离子表面活性剂都有良好的配伍性能。 6)MES是以天然油脂为原料制得的表面活性剂,所以它的生物降解性能十分优良。它对水中钙、镁等金属离子螯合能力很强,去污和分散能力很好,但容易水解,所以不宜在强碱性体系中应用,但可以在低碱性、中性或酸性介质中使用。 7)LAS属中性物质,它对水硬度较敏感,起泡力高,去污力强,易与各种助剂复配,生物降解性大于90%,对环境污染程度小。

  • 水性油墨前处理

    对于一些水性油墨,用烘箱175度,两个小时,干不了,用电热平板烧两个小时也干不了,这种样品做总铅测试,你们是怎样处理的?

  • 液压试验机碟阀密封性能以及阀杆轴衬的设计要求

    液压试验机碟阀密封性能以及阀杆轴衬的设计要求一、对液压试验机碟阀密封性能的要求1. 液压试验机阀门产生泄漏的原因主要有两种情况,一是内漏;二是外漏,当介质温度下降到使材料产生相变时造成体积变化,使原本研磨精度很高的密封面产生翘曲变形而造成液压密封不良。我们曾对DN250阀门进行液压试验,液压试验机阀门产生内漏主要原因是密封副在液压状态下产生变形所致。介质为液氮(-196℃)蝶板材料为1Cr18Ni9Ti(没经过液压处理)发现密封面翘曲变形量达0.12mm左右,这是造成内漏的主要原因。2. 新研制的液压试验机蝶阀由平面密封改为锥面密封。阀座是一个斜圆锥椭圆密封面,与嵌装在蝶板上的正圆形弹性密封环组成密封副。密封环可在蝶板槽内径向浮动。当阀门关闭时,弹性密封环首先和椭圆密封面的短轴接触,随着阀杆的转动逐渐将密封环向内推,迫使弹性环再和斜圆锥面的长轴接触,最终导致弹性密封环与椭圆密封面全部接触。它的密封是依靠弹性环产生变形而达到的。因此当阀体或蝶板在液压下产生变形时,都会被弹性密封环来吸收补偿,不会产生泄漏和卡死现象。当阀门打开时这一弹性变形立即消失,在启闭过程中基本没有相对磨擦,故使用寿命长。二、阀体、阀杆轴衬的设计要求1. 液压阀门壳体结构形状。材料选择的正确与否对阀门的正常可靠工作有着极其重要的意义。蝶阀的结构特点与截止阀、闸阀相比,不但避免了因形状不规则,壳体壁厚不均匀,在液压下产生的冷缩,温差应力所引起的变形,而且由于蝶阀体积小,阀体形状左右基本是的称的,因而热容量小;予冷量消耗也小;形状规则又便于对阀门的保冷措施。如新研制的DD363H型碟阀为保证阀门在液压下的可靠使用,完全按照液压阀的特殊性进行设计和制造,如:壳体材料选择了具有立方晶格的1Cr18Ni9Ti奥氏体不锈钢等。2. 阀杆衬套的选择:根据用户反映,液压试验机有些液压阀门在运行当中,阀门的转动部位发生粘滞,咬合现象时有发生,主要原因是:配对材料选择不合理,予留冷间隙过小,以及加工精度等原因所致。在研制液压阀门时,采取了一系列措施,防止出现以上现象。例如:我们对阀杆上、下轴衬选用了具有摩擦系数小及自润滑性能的SF-1型复合轴承,这样可以适用于液压阀门的一些特殊需要。3. 金属密封型蝶阀具有的特点是一些普通阀门所不具备的。尤其是流阻小、密封可靠、启闭迅速、使用寿命长等。本公司研制的三偏心金属密封蝶阀的密封力来自弹性环的变形达到密封,因而不需要借助介质作用力,故可做双向密封用。根据蝶阀的一些特点将会被更多的人所重视。今后也会有更多的蝶阀应用到液压设备中。

  • 乙二醇单丁醚如何检测

    我们的水性涂料中含有乙二醇单丁醚,设备有GC-2014C,想要检测其中的乙二醇单丁醚的含量,请问谁有标准的方法,具体怎么做,谢谢,还有乙二醇单丁醚有限定要求吗请各位专家给点意见!

  • 【原创】新型水性油墨企业标准与仪器采购

    【原创】新型水性油墨企业标准与仪器采购

    [center]新型水性油墨企业标准与仪器采购[/center]最近根据课题组实验需要采购了一批关于水性油墨检验的仪器,本文分析了《新型水性油墨企业标准》,就该标准中所涉及的标准和仪器采购进行的总结。新型水性油墨企业标准1、范围 本标准规定了柔性版印刷新型水性油墨的品种、技术要求,试验规则及标志、包装、运输和贮存。 本标准适用于以水溶性树脂为主原料,再添加颜料、填料及助剂等经复合研磨加工而得的水性油墨,产品可广泛应用于食品、烟酒、药品、化妆品、儿童玩具等印刷包装柔印和凹印领域。 2、引用标准 在下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。ZAB17005 印刷油墨产品分类、命名和型号 GB/T1723—1993涂料粘度检验方法仪器:粘度计生产厂商:上海现代环境工程技术有限公司(http://www.moderner.com),天津市建仪试验仪器厂(http://www.jysyyq.com)[center][IMG]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624072_1642290_3.jpg[/IMG][/center] GB/T13217.5-1991凹版塑料油墨检验标准方法初干性检验仪器:镜面光泽度仪(60度角)生产厂商:上海现代环境工程技术有限公司(http://www.moderner.com),天津市建仪试验仪器厂(http://www.jysyyq.com)[center][IMG]http://ng1.17img.cn/bbsfiles/images/2017/10/2008121918471259505_01_1642290_3.jpg[/IMG][/center] GB/T14624.1-1993油墨颜色检验方法仪器:调墨刀 生产厂商:上海现代环境工程技术有限公司(http://www.moderner.com),天津市建仪试验仪器厂(http://www.jysyyq.com)[center][IMG]http://ng1.17img.cn/bbsfiles/images/2017/10/2008121918475182909_01_1642290_3.jpg[/IMG][/center] GB/T14624.2-1993油墨着色力检验方法仪器:调墨刀 生产厂商:上海现代环境工程技术有限公司(http://www.moderner.com),天津市建仪试验仪器厂(http://www.jysyyq.com)QB559-1983油墨细度检验方法仪器:刮板细度计生产厂商:上海现代环境工程技术有限公司(http://www.moderner.com),天津市建仪试验仪器厂(http://www.jysyyq.com)[center][IMG]http://ng1.17img.cn/bbsfiles/images/2017/10/2008121918481921465_01_1642290_3.gif[/IMG][/center]QB568-1983油墨耐乙醇、耐碱、耐酸、耐水检验方法QB567-1983油墨稳定性检验方法仪器:流动度测定仪,平磨仪生产厂商:上海现代环境工程技术有限公司(http://www.moderner.com),天津市建仪试验仪器厂(http://www.jysyyq.com)[center][IMG]http://ng1.17img.cn/bbsfiles/images/2017/10/2008121918484896076_01_1642290_3.jpg[/IMG][/center][center][IMG]http://ng1.17img.cn/bbsfiles/images/2017/10/2008121918492489591_01_1642290_3.gif[/IMG][/center]QB573-1987油墨光泽检验方法仪器:目视比色箱,油墨印刷打样机(适用于柔板水墨)生产厂商:上海现代环境工程技术有限公司(http://www.moderner.com),天津市建仪试验仪器厂(http://www.jysyyq.com)[center][IMG]http://ng1.17img.cn/bbsfiles/images/2017/10/2008121918502051408_01_1642290_3.jpg[/IMG][/center][center][IMG]http://ng1.17img.cn/bbsfiles/images/2017/10/2008121918510823291_01_1642290_3.jpg[/IMG][/center]3、产品分类 按产品颜色可根据要求专色调制,其型号符合ZBA17005的要求。4、技术要求 本产品各项技术指标应符合下表要求 项目 指标颜色 近似标样细度(um)≤20着色力(%)90~110粘度(涂料4号杯、秒/25℃)50±30初干性(cm)30~50耐碱、耐水良好贮存稳定性(5~30℃) 良好光泽(反射光泽仪60℃)﹥40% 5、检验方法 5.1颜色按GB/T14624.1中规定的方法进行检验。5.2着色力按GB/T14624.2中规定的方法进行检验。5.3细度按QB559中规定的方法进行检验。5.4粘度按GB/T1723中规定的方法进行检验。5.5初干性按GB/T13217.5中规定的方法进行检验。5.6油墨耐碱、耐水按QB568进行检验。具体检验方法为:取实干后印样分别浸泡于1%的氢氧化钠和水中,浸泡24小时后取出,与色样对比变化。5.7贮存稳定性按QB567中规定的方法进行检验。5.8光泽按QB/T573中规定的方法进行检验。6、检验规则6.1产品出厂前应由生产厂检验部门进行检验,检验合格并附有合格证,方可出厂。6.2出厂检验项目为颜色、细度、粘度。6.3型式检验有下列情况之一时,应进行型式检验。a.新产品或老产品转厂生产的试制定型鉴定;b.正式生产后,如结构、材料、工艺有较大改变,可能影响产品质量时;c.正常生产时,每半年进行一次;d.产品长期停产后,恢复生产时;6.4型式检验项目为着色力、光泽、耐碱、耐水和贮存稳定性。6.5同一颜色,同期生产的产品为一批,每批取样不少于50克。并注意样品的清洁和密封。6.6检验结果如有不合格项目,应从同批产品中重新取双倍样进行复验,以复验结果为准,若仍不合格,则判该批产品不合格。6.7供需双方对检验结果有异议,无法协商解决时,可由产品质量监督检验机构进行仲裁检验。7、标志、包装、运输、和贮存7.1水性油墨用塑料桶或铁盒密封包装,铁盒再装入外包装箱内。7.2塑料桶外应贴或印有商标、生产厂家、产品名称、型号、产品标准号、重量、批号及出厂日期。7.3外包装表面也应有商标、生产厂名、产品名称、型号、产品标准号、数量、重量、批号、出厂日期及不得倒置的标志。7.4产品在符合7.1的包装要求下,可用车、船、飞机等交通工具运输。7.5在运输及搬运过程中,不得抛、摔、碰、撞,以防包装破损、油墨溢出。7.6产品不得露天存放,应在5~53℃温度的范围内存放,库房必须干燥、通风、防止受潮、远离火源。7.7产品在符合7.6的存放条件下,自生产之日起,有效贮存期为一年,期满后应重新检测各项指标是否符合本标准要求。附件是相关标准。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=125419]相关标准[/url]

  • 【转帖】乙烯基单体改性水性聚氨酯的研究

    乙烯基单体改性水性聚氨酯的研究关键字:乙烯,单体,聚氨酯,研究 0引言 聚氨酯具有突出的力学性能,但水性聚氨酯的耐水性、耐化学品性等性能有待提高,而乙烯基树脂具有较好的耐水性、耐化学品性等,因此,聚氨酯和乙烯基树脂两者的有机结合,可使材料的力学性能有显著提高。本文采用种子聚合的方法,用甲基丙烯酸甲酯和苯乙烯对聚氨酯进行共混接枝改性,并用红外光谱分析了聚氨酯及改性聚氨酯中的微相分离和氢键,揭示结构与性能的关系。 1实验部分 1.1原料 甲苯二异氰酸酯(TDI):上海化学试剂厂 聚醚多元醇(PPG):上海高桥石化三厂 二羟甲基丙酸(DMPA):国产 三乙胺(TEA):广州化学试剂厂 乙二胺(EDA):广州化学试剂厂 苯乙烯(St):广州化学试剂厂 N-甲基-2-吡咯烷酮(NMP):Nacalal.TesqueInc 甲基丙烯酸甲酯(MMA):广州化学试剂厂。 1.2水溶性聚氨酯树脂(PUR)分散体的合成 将聚醚多元醇装入配有温度计、搅拌器的250mL三口烧瓶中,在120℃,660Pa真空下脱气脱水2h。通入氮气并加入计量好的甲苯二异氰酸酯于65℃左右反应1.5h左右,用正丁胺滴定法判断反应终点。加入溶有适量DMPA的NMP反应1.5h左右。降温至40℃,加入TEA和适量NMP溶剂,反应40min。降温并向体系中加入去离子水,然后加入TEA扩链。制得呈微蓝光的水乳液。 1.3甲基丙烯酸甲酯(MMA)改性 取一定量的PUR分散体、MMA和溶有引发剂的水溶液,加入三口烧瓶中,升温到65℃,反应2.5h,然后补加一定量的引发剂水溶液并升温至75℃,反应0.5h。 1.4苯乙烯(St)改性 过程同1.3甲基丙烯酸甲酯改性。 1.5性能测试 1.5.1分散体黏度测试 用NDJ-79型旋转式黏度计,测得各分散体在(25±1)℃下的黏度。 1.5.2拉伸强度测试 将制备好的聚氨酯乳液胶膜用80×4型的裁剪刀裁好,放在真空干燥器中真空干燥24h,然后在XLL-100A型拉力试验机上测定其拉伸强度及延伸率。延伸率的计算公式如下: E=(L2-L1)/L1×100% 式中:E——延伸率/%,L1——试样的原长,L2——试样断裂时的拉伸长度,拉伸速度为室温下300mm/min。 1.5.3粘接强度的测定试片采用PVC薄片,尺寸为100mm×25mm,粘合部分为12.5mm×25mm,表面先用砂纸打磨,再用工业丙酮处理表面污物,粘合的试片在接触压力下于45℃热烘48h,然后在室温下真空干燥24h,用XLL-100A型拉力试验机测定T型剥离强度,室温下拉伸速率为100mm/min。1.5.4吸水率的测定 把样品膜在真空下干燥24h,室温测定样品膜的质量,然后把样品膜浸泡于室温下的去离子水中,24h后再称其质量,两者的质量差即为吸水率(Ω)。其计算公式如下: Ω=(m2-m1)/m1×100% 式中:Ω——样品膜的吸水率,m1——样品膜的原来质量,m2——样品膜浸泡后的质量。 1.5.5FTIR实验 实验装置为PERKIN-ELMER-1700红外光谱仪,扫描方式,噪音过滤。红外样品的制备是将样品制成薄膜,在60℃下真空除水。实验数据由仪器上的微机处理。 2结果与讨论 2.1甲基丙烯酸甲酯共混接枝改性的影响MMA改性水性分散体的配方及性能见表1。 表1 MMA改性水性PU分散体的配方及性能 由表1可见,随着MMA用量的增加,分散体的黏度呈现下降趋势。根据内乳化聚合机理分析:MMA含量的增加能更有效地抑制离子化作用,这一作用使得一些键卷曲,分散粒子膨胀,分散颗粒单位面积的离子数目减少,使体系的黏度下降。 由表1还可看出,在固含量基本不变的情况下,用MMA改性水性PU能较大程度地降低体系的黏度。这意味着可以通过用MMA改性的方法来提高水性PU的固含量,同时保证体系稳定。MMA改性PU对膜的机械性能影响见表2。 表2 MMA改性PU对膜的机械性能的影响注:-因脆性太大,无法成膜。 1—拉伸强度 2—延伸率图1MMA/PU的比值与膜的拉伸强度和延伸率的关系 图2MMA/PU的比值与T型剥离强度和吸水率的关系 1—T型剥离强度 2—吸水率 图1和图2表明,由于PMMA本身有较强的粘附性能,与水的亲合能力比PU材料低,硬度比PU材料大,用MMA对PU进行改性处理后,膜的拉伸强度、T型剥离强度以及吸水率都得到明显的改善。制品膜的延伸率随着MMA的用量增加而降低。2.2苯乙烯共混接枝改性的影响 St改性水性PU分散体的配方及性能见表3。 表3 St改性水性PU分散体的配方及性能注:St/PU为固含量比 表3显示:用St对PU改性对体系黏度的影响与用MMA改性PU的影响相同。这也证明了应用内乳化机理解释该现象的合理性。 值得注意的是,用MMA和St分别对PU分散体改性,均在乙烯基单体/PU的比值为0.5的时候,观察到分散体的黏度出现一个较大的值,这可能是由于乙烯基单体与PU水分散体在种子聚合的条件下,提高了粒子的粒径和分散性。因为粒子表面存在着—COOH和三乙胺中和后形成的盐基离子对存在,并且由于总表面积增大,使原来包埋在分散体颗粒内部的盐基分布到分散体颗粒的表面,导致分散体颗粒和水的缔合作用增强,使自由水减少,从而使黏度升高。当乙烯基单体用量多到一定程度时,分散体颗粒粒子表面的盐基离子对数量相对单位表面积减少较多,而且乙烯基单体的极性相对PU较低,其含量的增加会使分散体粒子与水的缔合作用减弱,同时由于粒径增大,黏度下降。 1—拉伸强度 2—延伸率图3 St/PU的比值与拉伸强度和延伸率的关系 1—T型剥离强度 2—吸水率图4St/PU的比值与膜的T型剥离强度和吸水率的关系 从图3和图4可见,用St对PU改性和用MMA对PU改性的影响大致相同,不同的是用St对PU改性在St/PU为0.6和0.8之间时,拉伸强度和T型剥离强度都出现一个最大值,然后减小。这是由于当St用量较小时,接枝-共混的共聚组成在同步互穿网络中起内增塑剂的作用,固化收缩诱发产生的内应力能较低[6],使强度提高 随着用量的增大,根据Gnaffith理论,如St、MMA一类的刚性分散相在结构上存在缺陷,而且分布不均匀,在受到应力时,起应力集中剂的作用,产生大量的小裂纹及剪切带,使强度降低。然而在用MMA改性时未出现这种现象,可能的原因是MMA中的羰基的存在使它与PU之间的界面相容性好,降低了应力集中作用。2.3红外光谱分析 对MMA改性、St改性和未改性的样品进行FTIR分析,谱图如图5、6、7所示。 图5 未改性膜的红外光谱 图6 MMA改性膜的红外光谱 图7 St改性膜的红外光谱 本文主要研究3个特征谱带,即VNH、VCO、VO吸收带,VNH的吸收峰在3460cm-1处,氢键化的VNH-B约在3310cm-1左右而且为反式结构,VCO的吸收峰在1660~1780cm-1处,氢键化约在1724cm-1而且为无序区的氢键化 1000~1110cm-1处吸收峰属于C—O—C的伸缩振动(VO),氢键化约在1050cm-1处,2856~2960cm-1处的峰归属于VCH(对称和反对称)。 从以上3个谱图上可以看出,在3300cm-1左右处有强的吸收峰,而在3460cm-1处几乎看不到吸收峰存在,这说明脲基上的NH已几乎完全氢键化。St改性的谱图在3306cm-1处的氢键化吸收峰相对于PU来说向波数低的方向移动,在图6的红外图谱中也看到了同样的现象,这说明在改性材料中—NH—形成的氢键作用力比PU更大。其原因可能是:St和MMA的分子极性与脲基的极性相去甚远,相对于脲键而言,与聚醚软段的极性更接近,并且由于St和MMA在聚氨酯软段上接枝,“埋没”大量的醚氧键和软段微区中的部分羰基,St和MMA的加入将导致—NH—与—O—之间形成的氢键数目相对减少,因为—NH—与—O—之间形成的氢键要弱于—NH—与—CO—之间形成的氢键,所以导致吸收峰向低波数移动。 另外还可以看到,在1724cm-1左右处有一明显的吸收峰,说明硬段相溶有一定数量的软段,这表明乙烯基聚合物与PU中的硬段链有一定的相容性,使得PU硬段有序程度降低。这种有序程度的降低,反映了PU与乙烯基聚合物之间形成了化学键能,提高了它们之间的相容性与共混程度。3结语 采用种子聚合的方法,乙烯基单体改性水性聚氨酯能提高水性PU的力学性能、降低吸水率。改性后的水性聚氨酯材料中均存在着氢键行为,其中甲基丙烯酸甲酯的氢键作用强,有较好的相容性,苯乙烯的氢键作用小,相分离程度最大。 涂料附着力不理想,本文就此问题进行了研究,分析了影响附着力的因素,并提出了相应的解决方法。 目前,关于树脂在金属表面附着的原理很多。如机械咬合粘接理论、静电理论、吸附理论、扩散理论、酸碱使用理论和化学键理论等[1]。总的说,附着力是机械连接、静电吸引和化学键合共同作用的结果。附着力强度是润湿程度、两表面的相对表面力学能和润湿动力学的函数,在附着力的定义上,附着力应该是指涂装金属暴露在高湿环境或溶液中的附着力,俗称湿附着力,即指将涂装金属置于介质环境后,表现出来的附着力,目前通用的一些测定涂层附着力的方法,大多测试的是干涂层体系的数值,本实验所描述的附着力数值是用划圈法所测定的干涂层数值。

  • 光学仪器起水性雾的原因及危害

    [font=微软雅黑][font=微软雅黑][b]水性雾[/b][/font]水性雾是由于潮湿空气在温度变化下而形成,主要分布在零件的全面积上,产生原因主要是潮湿气体所致,但与仪器密封性能、光学玻璃的化学稳定性,以及玻璃表面的清洁程度有关,在较高的相对湿度下,霉菌易生长,有些霉菌生长状大后,便在菌丝体周围产生分泌物,这些分泌物有的是液状的,在液状分泌物外围便形成水性雾。[/font][font=微软雅黑]不管何种原因形成的雾,由于雾滴以曲率半径极小的球形分布于光学零件表面上、使入射光线产生散射现象,除了降低仪器的有效透光率外,并使成象质量差影响观测。有的光学零件因长期起雾,被腐蚀的玻璃表面形成很多微孔,严重的会使玻璃零件报废。[/font][font=微软雅黑]光学仪器起雾不仅在我国东南地区严重存在,就是较干燥的地区,由于温差变化,也会起雾,它比光学仪器生霉的影响范围更大,而且更难防止。[/font][font=微软雅黑][/font][font=微软雅黑][/font]

  • 润滑脂中的抗水性有何作用

    [color=#333333]1[/color][color=#333333]、润滑脂抗水性的重要使用意义[/color][color=#333333]抗水性好的润滑脂[/color][color=#333333],[/color][color=#333333]保证了润滑脂在有水存在的情况下[/color][color=#333333],[/color][color=#333333]仍能够起到良好的润滑作用[/color][color=#333333],[/color][color=#333333]而抗水性差的润滑脂则不宜用于与水接触的部位。例如轧钢工业的连续铸钢操作过程其特点是有大量冷却水直接喷淋于赤热的钢坯,其时不但有大量的水进入轴承,同时还有大量的水蒸气产生并存在于轴承表面,润滑脂则一直处于高温高湿状态,如果脂的抗水性欠佳则易被冲淋流失掉,失却润滑性。[/color][color=#333333]对于绝大多数的使用部位来说,都会要求润滑脂具有良好的抗水性。但有一些使用部位的要求则相反,如针织机、缝纫机上使用的润滑脂则常希望其具有水溶性[/color][color=#333333] [/color][color=#333333]当油脂溅到织物上时,可以经过漂洗工序使油污痕迹容易洗除掉,而抗水性好的润滑脂,反而不容易洗除油污。因此,在具体选用润滑脂时一定要灵活对待。[/color][color=#333333]2[/color][color=#333333]、润滑脂的水分和抗水性[/color][color=#333333] [/color][color=#333333]润滑脂本身就含有水分,分为两种,一种是结构含水,此时水是润滑脂中的稳定剂[/color][color=#333333],[/color][color=#333333]对润滑脂结构的形成和性质都有重要的影响。另一种是游离的水份,是润滑脂中不希望有的,必须加以限制。但润滑脂抗水性所指对象,水则来自外界。抗水性是指润滑脂在外界导入的水中不溶解、不乳化、并不易从周围介质中吸取水分、不被水洗掉和在与水接触时不会明显地改变它的自身性能的能力。[/color][color=#333333]润滑脂的抗水性主要取决于稠化剂,其次是基础油。一般来说,以硅油为基础油的润滑脂的抗水性较好,其次是矿物油、酯类油。聚醚类油的抗水性较差。对稠剂化来说,脲基脂、烃基脂的抗水性,铝基脂、钡基脂、钙基脂以及复合铝、复合钡、复合钙基脂次之,再次是锂基脂,抗水性最差的是钠基脂和复合钠基脂。目前市场上既要保持润滑性又要有较好的抗水性和密封性的是虎头的[/color][color=#333333]HOTOLUBE[/color][color=#333333]全合成润滑硅脂[/color][color=#333333]3[/color][color=#333333]、润滑脂抗水性的评定方法概要[/color][color=#333333]润滑脂抗水淋性能测定法:[/color][color=#333333]SH/T0109[/color][color=#333333]。本标准参照采用[/color][color=#333333]ASTM D1264[/color][color=#333333]润滑脂抗水淋性能测定法,水淋试验机平面图见图[/color][color=#333333]1[/color][color=#333333]。[/color][color=#333333]试验时,将[/color][color=#333333]4g ± 0.5g[/color][color=#333333]试样装入[/color][color=#333333]204[/color][color=#333333]型球轴承中[/color][color=#333333],[/color][color=#333333]以[/color][color=#333333]600r/min±30r/min[/color][color=#333333]的速度转动,控制水温为[/color][color=#333333]38[/color][color=#333333]℃[/color][color=#333333] ±2[/color][color=#333333]℃[/color][color=#333333],并以[/color][color=#333333]5ml/s±0.5ml[/color][color=#333333]的流速喷淋在轴承套的防护板上,以[/color][color=#333333]1h[/color][color=#333333]内被水淋洗掉的润滑脂量来衡量润滑脂的抗水淋能力。[/color][color=#333333]4[/color][color=#333333]、润滑脂抗水性的其他评定法[/color][color=#333333]简易判断法。方法规定:把润滑脂薄薄地涂在[/color][color=#333333]1mm[/color][color=#333333]厚的玻璃片上,然后分别浸在[/color][color=#333333]25[/color][color=#333333]℃[/color][color=#333333]、[/color][color=#333333]50[/color][color=#333333]℃[/color][color=#333333]、和[/color][color=#333333]90[/color][color=#333333]℃[/color][color=#333333]的蒸馏水中[/color][color=#333333]5h[/color][color=#333333],观察润滑脂涂膜的变化及蒸馏水的变化,进行判断。[/color][color=#333333]加水剪切试验法。在试样中加入[/color][color=#333333]10%[/color][color=#333333]的蒸馏水进行[/color][color=#333333]1[/color][color=#333333]万次或[/color][color=#333333]10[/color][color=#333333]万次剪切,最后测定剪切后润滑脂的锥入度,试验结果以剪切后锥入度值表示。例如汽车通用锂基脂的抗水性就规定,其加水剪切后的锥入度值不大于[/color][color=#333333]375[/color][color=#333333]。[/color][color=#333333]润滑脂在热水中的安定性[/color][color=#333333]FS791B3463.1[/color][color=#333333]。在烧杯中放约[/color][color=#333333]500ml[/color][color=#333333]蒸馏水,加热到轻微沸腾,用搅拌棒的一端蘸取一小块样品约[/color][color=#333333]5g[/color][color=#333333]放在沸水中浸泡[/color][color=#333333]10min[/color][color=#333333],然后检查水,并记录水是否混浊或样品乳化的其他迹象。[/color][color=#333333]润滑脂抗水和抗水[/color][color=#333333]-[/color][color=#333333]乙醇溶液性能测定法[/color][color=#333333]FS791B5415[/color][color=#333333]。一容器中盛[/color][color=#333333]200ml[/color][color=#333333]蒸馏水,另一容器中盛[/color][color=#333333]200ml[/color][color=#333333]乙醇蒸馏水,将两个小脂团分别放入到两个容器中,用塞子塞牢容器,静置一周,每个容器摇动一、二次,然后目测容器中脂团的解体现象。[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制