当前位置: 仪器信息网 > 行业主题 > >

定制显微成像系统

仪器信息网定制显微成像系统专题为您提供2024年最新定制显微成像系统价格报价、厂家品牌的相关信息, 包括定制显微成像系统参数、型号等,不管是国产,还是进口品牌的定制显微成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合定制显微成像系统相关的耗材配件、试剂标物,还有定制显微成像系统相关的最新资讯、资料,以及定制显微成像系统相关的解决方案。

定制显微成像系统相关的仪器

  • 定制化原位显微光学/光谱学测试系统Customized In-situ Optical / Spectroscopic MicroscopeSystem我公司集成了自主研发的激光自动聚焦等自动化功能的核心光学/光谱学模组均采用模块化设计,物镜下方没有任何零部件占用空间,并且具备完整的软硬件接口,可以方便地集成到客户的工况环境或者研究机台上,为客户提供定制化的测试系统。技术特色:激光自动聚焦:&bull 显微光学和光谱学模组都可配备激光自动聚焦模块。
    留言咨询
  • 定制FISH显微成像系统 400-860-5168转3825
    KOSTER FISH UMC-900TFL 定制荧光原位杂交显微镜荧光原位杂交(fluorescent in situ hybridization,FISH) 是一种细胞遗传学技术,可以用来对核酸进行检测和定位。荧光标记的核酸探针只和具有高度相似性的核酸杂交,可用于染色体上基因的定位,或在分子生态学中用来标记不同分类细菌或古菌中的核糖体RNA。在医院的妇产科或相关检验所中,会利用荧光原位杂交技术来判别胎儿的染色体是否正常。对于利用rRNA的荧光原位杂交来说,如下原因可导致较低的荧光信号强度:较低的细胞核糖体含量较低的细胞周边的通透性较低的目标序列可接触性(由于rRNA的折叠产生的构象,有些位置与rRNA分子内其他链或其他rRNA或蛋白紧密接触,从而使探针无法和目标序列杂交)为检验细胞中的目标序列是否容易被探针杂交,及测试最佳杂交温度,可利用“克隆荧光原位杂交”(clone-FISH)进行试验:将rRNA基因结合入质粒,转化至大肠杆菌中表达,构成核糖体,再用荧光标记的探针杂交。此定制荧光显微镜是专门针对各种常用mFISH探针试剂盒设计的荧光成像系统,专用的进口滤片组可以完全匹配各种试剂盒的探针,获得高特异性和高灵敏度的荧光成像效果。可以提供的方案包括:Vysis mFISH探针试剂盒(FITC,CY5,TxR, DEAC,SP-Gold), Abbott-FISH探针试剂盒(Spectrum Blue,Spectrum Aqua,Spectrum Green,Spectrum Gold,Spectrum Orange),Zytovision FISH (ZyBlue,DAPI,ZyGreen), Cytocell FISH探针试剂盒等,可定制,价格优惠。采用进口显微镜主机架,研究级别荧光光路设计,保证良好的荧光效果。采用8孔位荧光照明器以其可方便更换的激发镜组为使用多种荧光标本提供了更大的灵活性。更换多彩mFISH或FISH用激发镜组的需求,进一步加速了观察操作。采用直接连接的长寿命金属氯化物高效荧光光源,保证良好的FISH成像效果,无需校准,荧光灯泡寿命1500小时以上,使用寿命是传统高压汞灯荧光光源的7倍以上,使用更方便;宽光谱输出范围达到300nm-800nm,更加适合各种FISH染料激发。标配高性能荧光物镜保证良好的荧光效果10X/0.3, 40X/0.75,100X/1.3,可以选配高分辨率物镜10X/0.42, 40X/0.95, 100X/1.45 针对不同FISH探针试剂盒的进口荧光滤片组保证良好的荧光特异性和成像质量。KOSTER品牌高灵敏度摄像头及专业的图像处理软件KOSTER MAS图像软件。KOSTER MAS显微图像处理软件介绍 KOSTER相机专业配置软件MAS(Microscopy Application Software)简介 MAS支持所有KOSTER品牌的相机 5个独创的侧边栏,界面友好,上手快 支持多层式测量,确保测量与图像独立性 超精细颜色引擎 语言支持不受限 多种实用处理功能 兼容Windows XP, Vista, 2008, 7/8/10(32/64位)/Mac OSX/Linux,免驱安装KOSTER MAS软件主要包含了什么?KOSTER MAS系广州科适特科学仪器有限公司的相机控制软件. 主要提供全面控制相机功能并通过Ultra FineTM 颜色引擎泵出高速视频流给计算机的USB接口,Ultra FineTM颜色引擎包含精致的处理RAW数据的流水线以实现传感器探测数据到景色的转换. 更进一步的, MAS还提供图像灰度校正,图像2D测量,图像拚接,景深延拓,视频水印、颜色合成,图像分割与计数以及图像处理等众多高级视频或图像处理功能. MAS的多语言机制可以支持任意语言,目前包含但不限于英文,简体中文,繁体中文, 德语, 日语, 俄语, 法语, 意大利语, 波兰语, 土尔其语等. MAS完全兼容KOSTER全系列相机,所有的相机仅需一个驱动. 更进一步, 可以使用第三方支持有Twain或DirectShow接口的任何第三方相机.强大的 多合一版本Windows/Linux/Mac OS SDKs供用户进一步开发. MAS广泛应用于医学显微成像,工业探测,机器视觉,天文观测等领域并且已经成为相机工业,最佳软件,并且受到美国教育部 强力推荐软件.UI界面精致直观菜单与工具条设置合理确保快速操作 专业集成了5个侧边栏 -- 相机, 文件夹, 撤消/重做, 层, 测量; 舒适的操作方法(双击或右键上下文菜单) 详尽的帮助手册 专业的相机控制面板曝光与增益自动曝光(预设曝光目标值),手动曝光(曝光时间可以手动输入与滑动条设置) 增益高达5倍 白平衡高级单击智能白平衡设置、更可通过手动设置色温与色彩调整白平衡 颜色调整色彩,饱和度,亮度,对比度, 伽马值初始高速调整功能 帧速率控制针对不同的电脑与USB性能,可通过调整帧速率实现相机超强的兼容 光源频率控制(防闪烁)自然光/DC, AC 50 HZ, AC60 HZ选择按钮彻底消除视频闪烁 镜像选择“水平l”或“垂直选择”可调节样品方向确保同目视系统方向一致 抽样提取与邻域平均以及其他功能邻域平均可以提高视频流的信噪比 而抽样提取模式可以保证视频流的锐度. 支持视频流的直方图扩展, 图像负片与正片切换, 灰度校准, 清晰度因子计算以方便视频对焦.参数保存装载, 保存, 覆盖,载入,导出自定义相机面板控制(包括校准信息,曝光参数与颜色设置信息等) 处理功能专业、处理结果实用视频功能各种视频专业处理功能: 视频广播 定时捕获 视频录像 视频水印 水印移动对准 水印旋转对准 视频网格叠加 视频测量 视频定标, 灰度定标校准 视频高动态(HDR) 视频景深扩展 视频图像拚接 视频比例尺、日期等叠加 图像处理与增强图像对比度控制与调整、图像去噪, 各种图像滤波算法,图像数学形态学算法,图像旋转,图像缩放以及图像打印等 2D测量方便实用的视频与图像尺寸校准,各种视频与图像二维几何量测量如长度、面积、周长以及角度等等.测量结果可以根据图像特性或首选项进行控制 图像拚接图像拚接可以自动将序列图像拚接成大幅面图像. 拚接过程对图像排列次序任何要求;支持视频窗口, 图像窗口,浏览窗口拚接操作.EDF(景深延拓)景深扩展可以通过聚焦不同层的图像,得到超越常规景深的超清晰图像。MAS支持在三种窗口的EDF景深扩展:即视频窗口、图像窗口以及浏览窗口.针对不同的图像,MAS还提供了最大对比度、加权平均以及FFDSSD等三种不同的景深扩展算法. 另外不考虑了不同聚焦图像之间存在的平移、旋转以及比例变化图像之间的自动景深扩展以确保EDF的精度与快速性;专业分割与计数MAS的分割与计数提供了6种图像分割方法供用户根据不同的图像特性调用,这6种分割方法是:分水岭,暗OTSU,亮OTSU,RGB直方图,HSV直方图,颜色分块等。用户可以选择这6种分割方法中的任意一种方法进行分割,但是在选择任意一种分割方法以后,其他分割方法会被禁用. 在分割完成以后,可能存在计数对象的粘连情况,可通过手动分割对粘连对象进行人工分割; 在确认达到预期的结果以后,可通过选择计数结果菜单,实现对分割对象进行计数结果统计与分析.图像叠加去噪MAS图像叠加去噪功能引入先进的图像匹配技术,用户只需录制自己待叠加图像的一小段视频,就能够在视频多帧图像之间存在位移、旋转及放大率改变的情况下叠加输出高保真的图像,简单易用.颜色合成彩色合成可使用黑色和白色荧光源图像来创建和配置彩色合成图像。荧光探针与颜色可以直接从预定义的数据中选取。特殊探针的染料数据库也可以由用户自己建库.图像拼接图像分割与计数,图像叠加去噪荧光彩色合成,显微景深层次融合超强的兼容性 相机视频接口提供Twain, DirectShow, Labview, SDK安装包(原生C++、C#)支持操作系统兼容Microsoft Windows XP / Vista / 7 / 8 (32 & 64位), Mac OSX, Linux语言支持语言支持可手动添加,目前支持英文,简体中文,繁体中文, 德语, 日语, 俄语, 法语, 意大利语, 波兰语, 土尔其语硬件需求基本PC基本配置要求CPU: Intel Core 2 2.8GHz 或更高内存:2GB or moreUSB 接口:USB2.0或USB3.0接口显 示 器:17”或更高CD-ROM
    留言咨询
  • Siskiyou 可定制显微镜调节系统使用 Siskiyou MRK 模块为几乎任何应用构建完整的成像系统。IPS200 电动 XY 平台支架和 MRK100 成像塔是定制显微镜系统的支柱。IPS200 是一款全电动 XY 载物台,行程为 50 毫米,分辨率为 0.2 微米,带有手持式控制器。中心室平台可轻松设置为不同的高度,适用于不同的样品厚度。中心室的直径为 10.8 厘米,符合行业标准,可容纳各种组件。模块化 MRK200 系统使用我们的 200cr 系列平台实现 50mm 的 X 和 Y 行程。大行程范围最大限度地接近腔室和操纵器,同时有助于安装用于体内实验的立体定向支架。MRK100 是一款带 IS-GCI 聚光镜、LED 光源(红外或暖白光 - 其他可根据要求提供)和上光学管的相机塔。上部光学镜筒安装在 Z 轴聚焦驱动器上,电动行程为 50mm。这个阶段可以连接到我们的 DR1000 数字读出器,以方便返回焦平面。物镜座是一个用于高倍率和低倍率物镜的双位“翻转器”。物镜鳍板上方是一个 CBH-1 分束器模块,其中包含一个二向色分束器管组件。组件内部是一个单位置二向色镜/发射滤光片安装座。该支架可以滑入荧光实验的位置,也可以滑出梯度对比成像实验的光路。CBH-1 组件的另一侧(右侧)是一个用于引入几乎任何光源的端口——来自荧光源、LED、光纤耦合或自由空间激光器的液晶光导。它有一个用于激励滤波器的端口。CBH-1 模块可以堆叠以容纳一个以上的光源或检测器。CBH-1 模块上方是一个套筒镜头和 C 接口,用于安装您的相机。产品特点符合 RoHS 指令→性能规格zui大负载 100 磅,居中行程 XY 轴 2.0 英寸(50 毫米)ZUI小可控运动MC2010: 1 微米MC1000e-J:5 微米MC1000e:1 微米MRK100 摄像机塔行程手动 XY 1.0 英寸(25 毫米)移动电动对焦 2.0 英寸(50 毫米)Siskiyou 可定制显微镜调节系统
    留言咨询
  • 植物显微成像系统, 数位式显微镜,植物组织观察仪主要用途:植物显微成像系统主要用来放大观察和分析病、虫害对植物叶片,茎等的伤害,将放大的图片显示在连接的计算机屏幕上。放大倍数40-140倍。用户可以捕捉图像,病虫害扩展的视频等。主要用于植物生理学,植物病理学,植物保护,园艺储存等领域。尤其适合改领域的多媒体教学。植物显微成像系统, 数位式显微镜,植物组织观察仪基本配置:手持式数码显微镜(数码相机、高精度光学部件、LED光源),软件技术指标:植物显微成像系统 型号:X55-IPM Scope图像探头:1/3” CMOS像素:640×480 植物显微成像系统 型号:X55-IPM Scope放大倍数:40-140电源:USB接口 植物显微成像系统 型号:X55-IPM Scope视野: 40×时 7.5×10mm140×时 1.8×2.5mm分辨率:4微米
    留言咨询
  • 双折射显微成像系统 400-860-5168转2831
    双折射显微成像系统所属类别: ? 光学检测设备 ? Hinds偏振成像设备所属品牌:美国Hinds Instruments公司 产品简介双折射显微成像系统 生物组织/材料 双折射分布显微成像系统 Hinds Instruments 公司的偏振显微/双折射显微成像系统 可以精确测量多个波长下生物样本/材料双折射分布,并配合CCD多个像素元形成详细细致分布。结合不同组织的双折射偏振特性,可以用来分析检测生物样品/材料特定。 偏振显微成像系统、显微偏振成像系统、偏振显微镜、偏振成像、双折射显微成像 Hinds Instruments 公司的偏振显微/双折射显微成像系统,Hinds Instruments 公司的偏振显微/双折射显微成像系统可以精确测量多个波长下生物样本/材料双折射分布,Hinds Instruments 公司的偏振显微/双折射显微成像系统也可以并配合CCD多个像素元,从而Hinds Instruments 公司的偏振显微/双折射显微成像系统可以详细细致的显示这个分布。结合不同组织的双折射偏振特性,Hinds Instruments 公司的偏振显微/双折射显微成像系统可以用来分析检测生物样品/材料特定。 Hinds Instruments 公司的偏振显微/双折射显微成像系统可以配合多个波长实现多波长扫描的实现和应用(三波长或者四波长)。Hinds Instruments 公司的偏振显微/双折射显微成像系统在配合高速偏振调制成像和CCD多像素计算方案有着独到的解决技术。 产品特点? 不需要荧光/染料标记? 支持客户需求定制光谱扫描? 支持客户需范围求点/面/线成像? 同一幅面内双折射分布/强度分布/偏振角分布成像可选? 三色(可到2400nm谱段)四色(可到3500nm谱段成像)可选 相关产品 磁光克尔效应测量系统 成像型穆勒矩阵测量系统
    留言咨询
  • 显微拉曼荧光寿命成像系统 德国S&I GmbH成立于1995年,是一家专门从事科研级拉曼光谱分析设备的制造公司,也是美国普林斯顿仪器(Princeton Instruments)在欧洲的OEM客户,其设备以优异的灵活性,高灵敏及易操作性著称。 显微拉曼荧光寿命成像系统,型号:MonoVista CRS+系列产品定位:服务于科学研究的强大“光谱成像综合分析平台”。lS&I公司擅长于提供各种科研级定制化的解决方案;l根据用户的应用需求,适用并可拓展不同的配置;l在保证系统自动控制与高可靠性情况下,适合各种光学测试;l显微拉曼光谱 /显微荧光 / 荧光寿命TCSPC成像/l变温红外光谱 / 时间分辨光谱 / 暗场光谱/l适用高压科学研究要求的开放式测试环境,如大样品系统,低温,强磁,高温等。 lMonovista CRS+系统是基于共聚焦显微镜设计的多功能光谱成像分析系统;应用领域:高压科学材料,半导体材料特性,碳纳米材料,钙钛矿材料,生物细胞研究等。 低波数性能: Stokes/Anti-Stokes spectrum from L-Cystine显微拉曼荧光寿命成像系统特点:l深紫外到近红外波长范围l多达 4 个集成多线激光器,可选配外接大型激光器端口l紫外和可见光/近红外双光束路径l自动控制激光选择l自动对准,聚焦和校准功能l超高拉曼光谱分辨率,例如 FWHM<25px -1 @ 633 nml利用低波数拉曼附件,低波数可测试到 +/- 10 cm-1 l高波数范围可达 225000px-1(@ 532nm),适用于光致发光l热电制冷和液氮制冷探测器l正置/倒置/双显微镜l步进电机和压电驱动 XYZ 位移台l快速拉曼 mappingl集成控制加热/冷却台,液氦温度低温恒温器l可结合拉曼成像和原子力显微镜成像l自动控制的偏振光谱功能 硬件与激光选择软件自动切换 荧光扣减与背景抑制功能 同一样品不同成分的拉曼成像图显微拉曼荧光寿命成像系统定制应用案例 Monovista显微光路+宏光路拉曼+AFM Monovista与低温,强磁测试条件(HPSTAR)
    留言咨询
  • 显微拉曼荧光寿命成像系统 德国S&I GmbH成立于1995年,是一家专门从事科研级拉曼光谱分析设备的制造公司,也是美国普林斯顿仪器(Princeton Instruments)在欧洲的OEM客户,其设备以优异的灵活性,高灵敏及易操作性著称。MonoVista CRS+系列产品定位:服务于科学研究的强大“光谱成像综合分析平台”。l S&I公司擅长于提供各种科研级定制化的解决方案;l 根据用户的应用需求,适用并可拓展不同的配置;l 在保证系统自动控制与高可靠性情况下,适合各种光学测试;l 显微拉曼光谱 /显微荧光 / 荧光寿命TCSPC成像/ l 变温红外光谱 / 时间分辨光谱 / 暗场光谱/ l 适用高压科学研究要求的开放式测试环境,如大样品系统,低温,强磁,高温等。l Monovista CRS+系统是基于共聚焦显微镜设计的多功能光谱成像分析系统;l 应用领域:高压科学材料,半导体材料特性,碳纳米材料,钙钛矿材料,生物细胞研究等MonoVista CRS+ 特点:激光器深紫外到近红外波长范围多达内置4个波长激光器,外置外接大型激光器紫外和可见光/近红外双光束路径自动控制激光选择自动对准,聚焦和校准功能超高拉曼光谱分辨率 <0.9cm-1 @ 633 nm低波数拉曼,可测试到 +/- 10 cm-1高波数范围: 9000cm-1(@ 532nm)热电制冷和液氮制冷探测器正置/倒置/双显微镜空间分辨率:XY 1um Z 2um步进电机和压电驱动XYZ位移台快速3D拉曼Mapping荧光寿命成像Mapping功能集成控制液氮温度冷热台集成液氦温度低温恒温器可结合拉曼成像和原子力显微镜成像自动控制的偏振光谱功能L-Crystine的超低波数拉曼(正反斯托克斯)CCL4的超高拉曼分辨率TCSPC荧光寿命测试功能2 激光波长从375纳米到810纳米2 时间通道数:65536 ,分辨精度:4ps 2 各通道采集延时调节范围 :± 100 ns,2 寿命时间抖动误差:12ps2 最大计数率:10MHz 最大同步率:84 MHz2 多种探测器选项,探测器通道:2个2 二维寿命成像,XY扫描压电位移台2 扫描台,范围可达几厘米,XY扫描精度优于500nm 2 固有响应时间:95ns2 仪器响应函数(IRF)200ps荧光寿命测试曲线荧光寿命MappingVistaControl硬件控制界面拉曼Mapping与显微图像对比MonoVista CRS+ 定制系统应用案例Monovista显微光路+宏光路拉曼+AFM Monovista与低温,强磁测试条件(HPSTAR)
    留言咨询
  • 红外辐射显微成像系统(微观温度分布成像)IRLabs的IREM-IV红外显微镜系统使您能够更快、更准确、更可靠地进行半导体故障分析和调试。IREM-IV相机提供超低噪声扩展波长PEM成像,在工作电压为400 mV的10 nm设备上具有经验证的发射成像灵敏度。自行设计和制造的相机,用于低维护操作,具有卓越的功能,包括6位透镜转盘和超过20小时的LN2持续制冷时间。光学扩展端口为外部激光扫描OBIRCH、LADA、TIVA和其他成像模式提供了升级路径。3.3NA SIL物镜是定制设计的透镜家族中的新产品,经过优化,可在整个视场上提供卓越的衍射限制成像。自对准SIL尖端可自动调平,以符合被测设备的局部轮廓。独特的尖端弯曲设计提供了低的接触力,因此适用于成像安装器件或裸晶圆。集成轮廓传感器,测量器件表面轮廓,高度分辨率优于10 um。使用与精密x-y-z平台集成的尖端倾斜台,可以直接测量和补偿从翻转边缘或器件弯曲产生的局部表面倾斜。跟自对准SIL尖端相结合,以实现安全可靠的SIL成像。扩展波长PEM成像通常是热背景噪声受限的。IREM-IV提供两个内部冷却的滤光轮,因此光谱滤光器或背景限制孔径适用于任何测量场景。红外辐射显微成像系统(微观温度分布成像)指标参数:相机 运动系统● 1016×1016 液氮制冷MCT阵列 ● 25nm分辨率● 像元尺寸 18um ● 100mm运动范围 (X-Y-Z)● 400-2500nm 光谱响应范围 ● 阻尼振动隔离● 6个位置自动物镜转盘 ● 电动样品尖端倾斜选项● 6个位置制冷滤光片/孔径转轮● 大于20小时液氮维持时间系统尺寸● 显微镜 810mm x 876mm x 813mm, 160kg● 控制系统 610mm x 1283mm x 762mm,90kg物镜选项:参考图例**详细技术参数可参考Datasheet或咨询上海昊量光电设备有限公司。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询
  • 紧凑制冷型双光子显微成像系统2PM-Cryo功能介绍提供激光器系统,激光器件,光学精密仪器设备,流动可视化测量和分析设备的最新进展和前沿应用信息 紧凑制冷型双光子显微成像系统2PM-Cryo基于近红外飞秒激光技术,高于亚微米分辨率,在冻结和加热条件下的成像测量-196°C - +600°C (77K – 873K)制冷速率: 0.01K/分钟-150K/分钟? 冻结样本的无标记自发荧光测量? 荧光寿命成像显微镜(FLIM)? 倍频(SHG)成像? 显微光谱学应用:超低温保存,热应力,气候变化,低温实验方法优化, 生物冷冻库的高技术工具,人类,动物,植物组织/细胞/矿物植物(阿拉伯芥)叶片的双光子制冷荧光寿命成像显微(FLIM)测量结果。内生的叶绿体中叶绿素荧光。高空间分辨率和时间分辨率(300 nm / 200 PS)。重要技术参数? 紧凑型即开即用的掺钛蓝宝石飞秒激光器激光输出脉冲宽度: 100 fs - 200 fs重复频率: 80 MHz激光输出功率: 1.3 W激光输出波长范围: 710-920 nm?全幅扫描,局部自定义(ROI)区域扫描,线扫描,单点照明(单点波长扫描)?典型测量视场(FOV): 250 μm x 250 μm (水平) 深度: 2 mm?典型空间分辨率: 0.5 μm (水平) 2 μm (垂直)?典型时间分辨率: 200 ps (时间相关单光子计数(TCSPC)方式, 最大可达256个时间通道)?聚焦光学元件: 40x NA 1.3 (标准配置), 可选其它参数物镜?控制和图像处理软件(JenLab Control, JenLab Image)?温度范围 -196°C (液氮) - +600°C (77K - 873K)?制冷速率: 0.01K/分钟 - 150K/分钟?电源需求: 230 VAC (50 Hz) 或 115 VAC (60 Hz)?符合CE认证标准?体积尺寸: 700x520x800mm3(不含激光器)备注说明:这些参数指标可能会有变化,恕不事先通知.参考文献:Breunig, Tümer, K?nig. Multiphoton imaging of freezing and heating effects in plant leaves.J Biophotonics (2012), 发行中
    留言咨询
  • ●检测模式: 微区反射/适射模式、激光扫描成像模式、CMOS成像模式●光谱探测器: 高速线阵CMOS相机、PMT+锁相放大器、高速面阵CMOS相机●激光扫描成像:最高4096x4096像素点,最大成像范围约2mm(取决于物镜放大倍数)●CMOS成像:最高480x360像素点,最大成像范围约2mm(取决于物境放大倍数)●最高空间分辨率: ≤1um●零点前TA信号抖动: ≤0.2 mOD●成像波长范围: 400-800nm●高速光学延迟线:光学延迟线最快速度 400mm/s,精度 0.1 微米●检测时间窗口: 8 ns●显微镜:标配奥林巴斯IX73倒置显微镜,兼容多种品牌、型号显微镜,可根据用户需求定制●数据采集/分析软件系统1)2D/3D数据分析模式,数据点平均、多曲线动力学比较2)Chirp-oorrection,零点时间矫正3)单指数、多指数、幂指数等多种模式数据拟合程序4)连续预览模式,预览所有延迟时间下的成像图谱5)Average Mapping 成像图谱查看6)定点动力学曲线查看7)单一延迟时间的成像图谱查看8)成像图谱扣除背景 TA成像系统原理图 TA成像系统应用实例 单层二硫化钼测试条件:采集频率1KHz;探测尺寸:30X45um采集时间:1s/p 激发波长:515nm;探测波长:660nm成像数据:任意一点动力学可提取整体系统展示图超快瞬态吸收显微成像系统以及其他模块应用实例:微区检测单层WSe2-MoS2二维材料异质结检测实例单层WSe2-MoS2二维材料异质结
    留言咨询
  • Exciscope系统是专门用于高分辨率的相衬CT。X射线相衬显微断层成像系统的主要组成部分是x射线源、控制样品位置和旋转的运动系统以及x射线探测器。Exciscope X射线相衬显微断层成像系统提供了一种独特的对比度、分辨率和速度的结合。得益于高性能组件、精确的扫描算法和精心定制的图像重建,现在可以在紧凑的设计中对低对比度样本进行快速高分辨率扫描.该图像处理软件是基于云计算的,它允许通过登录到一个web界面来访问数据和重建工具。这也允许使用大量计算的算法。X射线相位对比成像利用了X射线光子穿过物体时轻微折射的原理。这使得低原子数的材料,如:生物组织、食品和塑料具有更好的图像对比度。吸收对比度 相位对比度为了实现的相衬层析成像更高质量,相位恢复和专门的伪影处理是必要的。如果处理不当,将会出现多种类型的瑕疵。 应用方向 ①生物医学②复合材料③考古学④食品科学⑤经典艺术 先进配置①高亮度液态靶X射线源: MetalJet (可选) 使用了高亮度液态靶x射线源,可以在短扫描时间内运行,尽管基于传播的成像所需的距离增加。光源可以在20到160kV的电压下工作,高达250或1000W,这取决于x射线源模型。液体合金在10keV和24keV处具有特征线发射,但发射光谱的平均能量可以通过不同的过滤器进行调整; ②探测器:量身定做的系统该系统实现了不同的探测器,可以在采集软件中直接选择分辨率和视野。对于高分辨率成像,使用透镜耦合探测器,在3D中分辨率低于1μm。采用7轴运动系统来控制样品的位置和旋转,以及在不同的探测器之间的切换。整个组件放置在辐射屏蔽柜内的减振平台上。 ③先进的软件为了利用好相衬成像的优势,必须正确处理所有的细节。为了让科研人员有更多时间专注于特定的应用方向,我们可以提供自动化的定制解决方案:• 易于调整的样品特异性相位检索• 多种工件减少技术• 探测器特异性和光源特异性校准• GPU上的快速锥束层析重建• 即将推出:迭代重建技术
    留言咨询
  • 主要用途宽场荧光显微镜是进行神经元活动光学成像的重要手段。配合相应荧光探针,宽场荧光显微镜可以进行单色、多色(例如双层、三色)神经元活动荧光成像。自动对焦超微型显微成像系统为包含了微型光学器件、微型成像元件和微型镜体结构的微型化宽场荧光显微镜,可精确定位目标区域,极大的提高成像质量,是自由活动动物进行在体神经活动光学成像的理想方案。目前已经开始应用于国内外的神经科学研究中。工作流程及原理◆前期通过注射病毒表达GCaMP6或其它钙离子荧光指示剂,植入GRIN透镜并等待病毒表达。◆神经细胞的活动导致胞内钙离子浓度的升高,从而提高GCMP6等荧光探针的荧光强度,荧光通过埋植的透镜收集后,被CMOS转换为图像信号,并被高速图像采集卡采集。◆图像处理软件进一步分析神经细胞活动和行为的相关性。系统功能特点及优势◆系统组件包括显微镜镜体、固定板、GRN透镜、CMOS、图像采集卡及采集软件等。◆在单细胞分辨水平,记录一群神经元的钙信号;◆适用于自由活动动物的在体实验;◆通过植入GRIN透镜,可以实现深脑成像;◆系统体积小,重量轻,不影响小鼠自由运动和行为实验。 超微型显微成像系统&光遗传系统联用◆采集软件更新升级,体验感更佳;◆采用外置光源减轻了镜体重量,对实验动物的活动影响较小;◆基于全新的光学系统设计,进一步减轻镜体重量,减小了镜体体积,提高了照明光的质量;全新的照明光路设计,可实现更好的荧光激发光和光遗传刺激光的光斑质量,从而取得更好的成像效果;◆外置的光源端可以自由组合,根据不同的情况分别耦合不同的光源,可分别实现多色荧光成像、原位光遗传成像;◆可配视频同步行为学软件。
    留言咨询
  • IMA™ 高光谱显微成像系统 IMA™ 是一种超高速且一体化的可定制高光谱显微镜平台,具有高空间和光谱分辨率。完全集成的系统可快速绘制VIS-NIR-SWIR光谱范围内的漫反射,透射率,光致发光,电致发光和荧光。基于高通量全局成像滤波器,IMA™ 比基于扫描光谱仪的高光谱系统更快,更高效。 IMA™ 可实现复杂的材料分析,如太阳能电池和钙钛矿的表征,成分,应力,材料缺陷等的映射,光谱信息的监测,单个发射器强度的变化,波长漂移或光谱带宽变化。 Photon Etc.的IMA™ 可在400至1700 nm范围内成像,带宽为3 nm,能够测量光电特性,如电压开路和外部量子效率,并可对材料中的缺陷进行精确检测和表征,这对于半导体器件(GaAs,SiC,CdTe,CIS,CIGS等)的质量控制。 IMA™ 覆盖的光谱范围非常适用于在第二个生物窗口中发射的荧光团的空间和光谱识别和测量。通过可能集成暗视野照明模块,它成为检测嵌入细胞中的纳米材料的成分和位置或活体,体外和未染色生物样品的复杂分析的特殊工具 有机和无机物质的特性。例如,单壁纳米管(SWNT)发射带窄(~20nm),每个带对应于独特的物种(手性)。使用IMA™ ,可以在表面或活细胞中以单一SWNT空间分辨率分离这些物种。生物学家将喜欢它的减弱组织吸收,更高的穿透深度和有限的自发荧光,用于非破坏性分析。IMA超光谱显微镜平台提供了同样高的光谱和空间分辨率。该模块化系统被配置成快速扫描可见光、近红外和/或SWIR光谱,同时映射光致发光、电致发光、荧光、反射率和/或透射率的组合。每个IMA都配备有高通量的全球成像滤波器,这使得它能够比依赖于扫描光谱仪的高光谱系统更快地测量一个百万像素超立方体。IMA™ 打开门 进行复杂的材料分析,如太阳能电池表征和半导体质量控制(例如:钙钛矿,GaAs,SiC,CIS,CIGS等)。研究复杂环境中的IR标记,包括活细胞和组织。例如,在第二生物窗口中发射的IR荧光团的光谱异质性。检索暗场图像并获得透明和未染色样品(如聚合物,晶体或活细胞)的对比度。 特性:快速全局映射(非扫描);高空间和光谱分辨率;完整的系统(光源,显微镜,相机,过滤器,软件);无损分析;可定制;在SWIR范围内,可见光范围为400至1200 nm,900 nm至1700 nm范围内敏感;应用领域 光伏 IMA 提供光谱和空间分辨的光致发光和电致发光图像。它已成功地用于研究CIS,CIGS,GaAs和钙钛矿型太阳能电池的光电特性的空间分布。SWCNT的多重 IMA™ 可以识别和绘制17种不同种类(手性)的碳纳米管的分布图。 用IR光谱显微镜,它是 可以分离这些物种的,带有单个SWNT的空间分辨率,在表面上,在活细胞(在体内) 和 在VITR ò。SiC的缺陷 IMA ™ 可以快速准确地识别导致4H-SiC绿色发射的缺陷类别。光学化学传感器 IMA™ 提供了来自DNA多荧光团的快速定量荧光成像。这些多荧光团被用作光学化学传感器,用于检测污染土壤中碳氢化合物的复杂混合物。神经影像 细胞和组织成像受标记或污渍数量的限制,这些标记或污渍可用于同时成像和研究许多组织类型或分子种类。Photon等人的技术可以通过使用新颖的窄带标签及其高光谱成像仪来消除这些限制。癌细胞中的纳米颗粒当Photon等的高光谱成像仪与高效的暗场聚光镜结合使用时,可以生成生物样品(例如癌细胞)的高对比度图像。如需索取更多资料请联系佰泰科技有限公司电子邮件联系电话:或直接联系 常经理
    留言咨询
  • 显微成像系统 400-860-5168转2042
    总览:. 1000万像素显微成像系统,支持苹果MAC OS系统. 科学级无损格式图像输出和存储. 自然色彩矩阵技术高保真色彩还原. 全局白平衡和区域白平衡功能. 专利的抗电磁干扰结构设计. 方便快捷的一键式设备软件安装,一键式图像获取和储存功能. 丰富的摄影接口配件可选,适用于绝大多数显微镜 1000万像素显微镜相机的应用:ISH1000数字相机可直接与带有标准C接口的三目显微镜、体视显微镜、金相显微镜搭配,成为能够拍摄数字图像的显微摄影系统。 由于普通显微物镜的理论分辨率极限接近1000万像素,因此在1000万像素分辨率下,图像细节能够得到最大的呈现。 IS1000能够为您带来照片级的图像效果。1000万像素CMOS科学级相机技术参数: 传感器厂商镁光(美国)传感器类型MT9J001传感器尺寸1/2.3英寸像素点1.67微米 X 1.67微米分辨率3856H x 2764V滤光片RGB Bayer镜头接口C/CS接口最大帧率3帧每秒(3856*2764) 25帧每秒(1280*1024)RGB位数8 位曝光控制自动/手动曝光时间1毫秒-0.3秒白平衡自动/手动扫描模式逐行快门电子滚动快门灵敏度0.44V/Lux秒(550nm)信噪比40.5dB动态范围63dB控制图像尺寸,亮度,增益,曝光时间,色彩数据接口USB2.0/480Mb/sUSB线缆1.8米供电USB2.0尺寸65毫米*86毫米*37毫米(HXBXT)重量220克操作温度0-60℃操作湿度45%-85%储存温度-20-70℃  1000万像素CMOS科学级相机包含: IS1000数字相机1(标准C接口、1.8米USB线缆) TCN-0.5 摄影接筒,23,30,30.5毫米直插接口10.01毫米测微尺1驱动、软件光盘1合格证 1纸盒包装1广泛应用与细胞学,病理学,组织学,血液学,荧光成像以及明、暗场显微成像等等更多关公司的产品,请点击: 公 司:福州鑫图光电有限公司地址:福州市仓山区盖山镇齐安路756号财茂城主楼6F邮编:350008电话: 传真: 邮箱: 中文网站:国际网站:
    留言咨询
  • 面向实验室常规显微观察的终极解决方案,智能与通用化显微镜显微镜是探索与研究必不可少的重要工具。然而,当今市场上的大多数系统都过于复杂,且具有高度的应用特异性。Revolution正倒置一体电动化智能显微成像系统可以适应各种观察需求。它独特的,智能化的正倒置一体的设计,为您提供了比任何其他宽场显微镜更好的能力。拥有自动化明场,相衬,荧光,偏光等观察方式,可兼容活细胞观察,病理切片,免疫组化,免疫荧光,荧光原位杂交等。功能强大而界面简洁,操作简单,让使用者可以轻松上手。从观察到记录,一切可以在几秒内完成,触屏式操作,所见即所得,让您使用显微镜比以往更容易。集成化一体系统,外部无控制器、数据线和电源。内置数据线、控制器和电源,连接紧固而稳定,有效消除杂波。显微镜X,Y,Z-轴调节方式可自由选择触屏、鼠标与操纵杆。卓越的光学性能Revolution使用世界级的光学元件,结合超高分辨率显示器,获得无与伦比的清晰度。为高端科学探索而设计自动化实现明场、荧光、相衬观察活细胞成像通过自动延时摄影,观察和追踪活样品。活细胞培养装置确保保持标本活性的最佳条件。多通道在荧光中捕获和叠加多波长光谱。多点可设置多个采集点进行观察和重访。高速扫描高速图像整合。图片整合通过捕捉和拼接,得到大视场,高分辨率的图像。Z轴获取和叠加多个焦平面图像。自动对焦自动采集获得最佳的z平面聚焦。
    留言咨询
  • 失效分析检测公司推荐的设备,功能多多,科研利器!显微红外热分布测试系统金鉴显微红外热分布测试系统(GMATG-G5)由金鉴实验室和英国GMATG公司联合推出,采用法国的非晶硅红外ULIS探测器,通过算法、芯片和图像传感技术的改进,打造出一套高精智能化的显微红外热分布测试体系。这套测试体系专为微观热成像设计,价格远低于国外同类产品,除传统红外热成像的优势外,还具有更高精度的成像系统、更高的温度灵敏度,更便捷的操作体系,并为微观热成像研究添加诸多实用和创新的功能,是关注微观热分布的科研和生产必不可少工具。金鉴显微红外热分布测试系统已演化到第五代:配备20um的微距镜,可用于观察微米级别芯片的红外热分布;通过软件算法处理,图像的分辨率高达5μm,能看清芯片金道;高低温数显精密控温体系,可以模拟芯片工作温度;区域发射率校准软件设置,根据被测物上的不同材质,设置不同发射率,才能得到最真实的温度值;具备人工智能触发记录和大数据存储功能,适合电子行业相关的来料检验、研发检测和客诉处理,以达到企业节省研发和品质支出的目的。金鉴实验室联合英国GMATG公司设立仪器研发中心,自主研发的主要设备有显微红外热分布测试系统、显微红外定位系统和激光开封系统。产品获得中科院、暨南大学、南昌大学、华南理工大学、华中科技大学、士兰明芯、清华同方、华灿光电、三安光电、三安集成、天电光电、瑞丰光电等高校科研院所和上市公司的广泛使用,广受老师和科研人员普遍赞誉,性能卓著,值得信赖。与传统红外热像仪相比,金鉴显微红外热分布测试系统优点显著:应用领域:适用于LED、半导体器件、电子器件、激光器件、功率器件、MEMS、传感器等样品的研发设计、来料检验、失效分析、热分布测量、升温热分布动态采集。金鉴显微热分布与传统设备大PK:金鉴显微热分布测试系统特点:1. 20μm微距镜,通过软件强化像素功能将画质清晰度提高4倍,图像分辨率提高至5μm,可用于观察芯片微米级别的红外热分布。 LED芯片热分布图 2. 模拟器件实际工作温度进行测试,测试数据更真实有效。电子元器件性能受温度的影响较大,金鉴显微热分布测试系统配备高低温数显精密控温平台,控温范围:室温~200℃,能有效稳定环境温度,模拟器件实际工作温度进行测试,提供更为真实有效的数据。配备的水冷降温系统,在100s内可将平台温度由100℃降到室温,有效解决了样品台降温困难的问题 3. 1TB超大视频录制支持老化测试等长期实时在线监测。金鉴显微热分布测试系统的全辐射视频录像可保存每一帧画面所有像素的温度数据,支持逐帧分析热过程和变化,可全面的观测分析温度与时间的关系、温度与空间的关系,更容易发现和确认真实的温度值,以及需要进一步检查的位置。灯具温升变化图 灯珠芯片温升变化图4. 热灵敏度和分辨率高,便于分辨更小温差和更小目标,提供更清晰的热像。 专业测温,-20℃~650℃宽温度量程,测温误差±2℃或±2%。热灵敏度0.03℃,便于分辨更小的温差和更小目标,提供更清晰的热像。红外分辨率640x480,若使用算法改进的像素增强功能,可有4倍图像清晰度,画质提升为1280x960。5. 定制化的热像分析软件,为科研和分析提供专业化的数据支持。金鉴定制PC端、APP分析软件: IR pro、JinJian IR,针对不同测试样品开发的特殊应用功能,人性化的操作界面,纠正多种错误测温方式,具备强大的热像图片分析和报告功能,方便做各个维度的温度数据分析和图像效果处理。(1) PC和手机触屏操作界面,简单易学,即开即用。 手机软件主界面 PC软件主界面(2)支持高低温自动捕捉,多个点、线、面的实时温度显示、分析功能,可导出时间温度曲线、三维温度图等测试数据。 (3)多达15种调色板,适用于不用的测试样品和场景需求,显示颜色的变化不影响温度的测试。(4) 微小器件由不同材质组成,不同材质、不同粗糙度等都影响发射率,图像上大部分对比度通常是由于发射率变化而不是温度变化引起的,因此发射率校正显得尤为重要。金鉴显微热分布测试系统可灵活设置不同区域的发射率,实现不同材质单独测量,温度测试更加准确。 (5)视频录制触发与自由定义帧频,最快25帧/秒,可精准捕捉有效的温度数据和视频图像。 (6)切换图像模式,可实现热像图和可见光图融合,可查看画面中高温区域或温度变化较大区域。 图像模式热成像-可见光融合图(7)导出热像图全部像素点温度数据值,为专业仿真软件建立温度云图等分析提供原始建模数据。 (8)温差模式,可直观获取任意两张热像图的温度差异,分析更快速精准。测试案例:案例一:不同环境温度下热分布测试金鉴显微热分布测试系统配备高精度控温体系,可实现器件在不同温度下的热分布测试。本案例模拟灯具芯片在不同环境温度下的结温及热分布状态,测试结果表明,控制环境温度达到80℃时,芯片结温122℃,继续升高环境温度可能导致芯片发光效率低下甚至芯片受损。案例二:不同厂家芯片光热分布差异以下案例中A款芯片发光最强,发热量最小,光热分布最均匀,量子效率最高。强烈建议LED芯片规格书里添加不同使用温度下的光热分布数据!做好光热分布来料检验,可以使LED最亮,温度最低,而成本最低,质量更可靠。 案例三:多芯片封装,电流密度均匀性需把控某款灯珠采用两颗芯片并联的方式封装,金鉴显微光分布测试系统测得B芯片发光强度较A芯片的大,显微热分布测试系统测得B芯片表面温度高于A芯片。分析其原因,LED芯片较小的电压波动都会产生较大的电流变化,该灯珠两颗芯片采用并联方式工作,两颗芯片两端的电压一样,芯片电阻之间的差异会造成流过两颗芯片的电流存在较大差异,从而出现一个灯珠内两颗芯片亮度不一的现象,影响灯珠性能。 案例四:倒装芯片光热分布分析 失效分析案例中,CSP灯珠出现胶裂异常,金鉴显微热分布测试分析显示,芯片负极焊盘区域温度比正极焊盘区域温度高约15℃。因此,推断该芯片电流密度均匀性较差,导致正负极焊盘位置光热分布差异较大,局部热膨胀差异过大从而引起芯片上方封装胶开裂异常。 案例五:显示屏模组热分布监测PCB板大屏显示模组存在过热区,过热区亮度会偏低,高温还会加速LED光源的老化,热分布不均势必会造成发光不均,影响显示模组清晰度。在显示屏分辨率快速提升的当下,光热分布不均已成为制约LED显示屏清晰度的最大因素。因此,提升LED显示屏光热分布均匀性对提高当下LED显示屏清晰度,意义重大! 案例六:IC器件热分布测试未开封的IC器件也可观察到表面热分布图。无需化学或激光开封,金鉴的红外热分布测试系统使用更高灵敏度的探头以及更先进的图像优化技术,即可了解器件内部热分布高点和低点的区域,真正实现无损检测。案例七:LED灯具热分布测试日常使用的灯具过热容易引起电子器件故障,缩短产品使用寿命,严重甚至造成安全隐患,检测LED灯具发热均匀情况能帮助设计产品,合理布置发热部件,有效防止过热。LED灯具热分布 案例八:定位电源失效区域电源失效案例中,金鉴使用红外热分布测试系统对电源进行测试,发现电源结构中的R5电阻在使用时发热严重,温度高达90℃。厂家建议碳膜电阻在满载功率时最佳工作温度在70℃以下,而该电源中R5碳膜电阻在90℃温度下满载工作,长期使用过程中导致R5电阻失效。 电源热分布图及热点定位 案例九:OLED热分布测试OLED发光材料像素在不同温度下表现出不同的发光特性,温度的分布不均会使得OLED显示面板中各处的薄膜晶体管的阈值电压和迁移率的变化也分布不均,进而导致整个显示面板出现发光亮度不均。 案例十:集成电路芯片温度测试通过金鉴显微红外热分布测试系统可测试封装后集成电路芯片工作时的温度及温度场分布,也可以直接测试芯片微米大小区域的温度数据,观察芯片的温度场分布,轻松发现温度聚集点,并且能够测试芯片开启后的温升曲线,判断芯片达到热稳定的时间。 集成电路芯片工作时的热分布及局部放大热分布图 集成电路芯片通电开启后的温升曲线 集成电路芯片通电开启热分布瞬态图案例十一:热分布测试应用于PCB领域红外热分布测试用于PCB板的检测,可直观显示电路板各区域和元件的温度分布,设计阶段可用于分析电路板布局设计是否合理,最大限度地减少故障排查和维修带来的高成本。生产阶段也可及时发现可靠性隐患,因为异常组件的升温速度通常比正常的要快,通过热分布测试,许多缺陷在出厂前就能被发现。案例十二:热分布系统全辐射视频录像功能应用于GaN器件领域 电子元器件器件实际应用过程中,进行单一热像图的分析往往是不够的,例如某GaN器件,其工作时的各项性能参数受温度影响较大,因此需要监控器件开始工作瞬间直至稳定的整个温度变化过程,这就涉及到金鉴显微热分布测试系统的全辐射视频录像功能。金鉴显微红外热分布测试系统全辐射视频录像功能采样速率可达到25帧/秒,可实现1TB单个视频录制,轻松捕捉器件通电瞬间温升变化。通过逐帧分析器件的升温过程全辐射视频录像可以看出,器件通电瞬间开始升温,这个瞬间时长仅有几十个毫秒左右,并在开始通电后2分钟左右达到温度稳定,同时各项电性参数也达到稳定。GaN器件工作过程温升变化曲线 GaN器件工作过程电流变化曲线案例十三:电器开关柜红外热分布测试电气设备在生产中已广泛采用,而电气故障是不可避免的,如何排查电气故障是面临的一大问题。电气设备的初期异常通常伴随温度的变化迹象,采用红外热分布测试可在不断电状态下进行检测工作,及时发现和诊断问题。
    留言咨询
  • FKM(Fluorescence Kinetic Microscope)多光谱荧光动态显微成像系统是目前功能最为强大全面的植物显微荧光研究仪器,是基于FluorCam叶绿素荧光成像技术的显微成像定制系统。它由包含可扩展部件的增强显微镜、高分辨率CCD相机、激发光源组、光谱仪、控温模块以及相应的控制单元和专用的工作站与分析软件组成。它不仅可以进行微藻、单个细胞、单个叶绿体乃至基粒-基质类囊体片段进行Fv/Fm、Kautsky诱导效应、荧光淬灭、OJIP快速荧光响应曲线、QA再氧化等各种叶绿素荧光及MCF多光谱荧光(multicolor fluorescence)成像分析;还能通过激发光源组进行进行任意荧光激发和荧光释放波段的测量,从而进行GFP、DAPI、DiBAC4、SYTOX、CTC等荧光蛋白、荧光染料以及藻青蛋白、藻红蛋白、藻胆素等藻类特有荧光色素的成像分析;更可以利用光谱仪对各种荧光进行光谱分析,区分各发色团(例如PSI和PSII及各种捕光色素复合体等)并进行深入分析。 FKM多光谱荧光动态显微成像系统使荧光成像技术真正成为光合作用机理研究的探针,使科研工作者在藻类和高等植物细胞与亚细胞层次深入理解光合作用过程及该过程中发生的各种变化,为直接研究叶绿体中光合系统的工作机理提供了最为有力的工具。FKM作为藻类/植物表型和基因型显微研究的双重利器,得到了学界的广泛认可并取得了大量的科研成果。功能特点• 内置现今叶绿素荧光研究的全部程序,如Fv/Fm、Kautsky诱导效应、荧光淬灭、OJIP快速荧光响应曲线、QA再氧化等,可获得70余项参数。• 配备10倍、20倍、40倍、63倍和100倍专用生物荧光物镜,可以清晰观测到叶绿体及其发出的荧光。• 激发光源组中包括红外光、红光、蓝光、绿光、白光、紫外光和远红光等,通过红蓝绿三色光还可以调出可见光谱中的任何一种色光,能够研究植物/藻类中任何一种色素分子或发色团。• 可进行GFP、DAPI、DiBAC4、SYTOX、CTC等荧光蛋白、荧光染料的成像分析• 高分辨率光谱仪能够深入解析各种荧光的光谱图。• 控温系统可以保证实验样品在同等温度条件下进行测量,提高实验精度,也可以进行高温/低温胁迫研究。 应用领域• 微藻、大型藻类/高等植物的单个细胞、单个叶绿体、基粒-基质类囊体片段等的显微结构植物光合生理研究• 藻类/植物逆境研究• 生物和非生物胁迫的研究• 藻类/植物抗胁迫能力及易感性研究• 突变体筛选及光合机理研究• 藻类长势与产量评估• 藻类特有色素与光合作用关系• 藻类/植物——微生物交互作用研究• 藻类/植物——原生动物交互作用研究• 基因工程与分子生物学研究测量样品• 植物活体切片• 植物表皮• 植物细胞• 绿藻、蓝藻等各种单细胞和多细胞微藻• 叶绿体提取液• 类囊体提取液• 含有叶绿体的原生动物工作原理 FKM分析过程中,通过连接在显微镜上的激发光源组和内置在6位滤波轮中的一系列滤波器、分光镜激发植物样品中各种发色团的动态荧光。样品激发出的荧光经显微镜放大后进行荧光光谱分析和荧光动力学成像分析。SM 9000光谱仪通过光纤与显微镜连接,以进行激发荧光光谱分析。安装在显微镜顶部的高分辨率CCD相机则用于荧光动力学成像分析。全部工作过程通过工作站和控制单元按照预先设定好的程序自动进行。测量过程中,可通过温控模块调控藻类、植物细胞等实验样品的温度。蠕动泵可以实现培养藻类的连续测量。仪器组成1. 增强显微镜 2. 高分辨率CCD相机 3. 激发光源组 4. SM 9000光谱仪 5. 主控制单元 6. 工作站及软件 7. 控温模块的控制单元8. 6位滤波轮技术参数• 测量参数?Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv' / Fm' , Fv/ Fm ,Fv' ,Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qP,QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数,每个参数均可显示2维荧光彩色图像?OJIP快速荧光曲线:测定分析OJIP曲线与二十几项相关参数包括:Fo、Fj、Fi、P或Fm、Vj、Vi、Mo、Area 、Fix Area、Sm 、Ss 、N(QA还原周转数量)、Phi???_Po 、Psi_o 、Phi_Eo、Phi_Do、Phi_pav、ABS/RC(单位反应中心的吸收光量子通量)、TRo/RC(单位反应中心初始捕获光量子通量)、ETo/RC(单位反应中心初始电子传递光量子通量)、DIo/RC(单位反应中心能量散失)、ABS/CS(单位样品截面的吸收光量子通量)、TRo/CSo、RC/CSx(反应中心密度)、PIABS(基于吸收光量子通量的“性能”指数或称生存指数)、PIcs(基于截面的“性能”指数或称生存指数)等(选配)?GFP、DAPI、DiBAC4、SYTOX、CTC等荧光蛋白和荧光染料的成像分析(选配)?QA再氧化动力学曲线(选配)?Spectrum荧光光谱图(选配)• 具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑?Fv/Fm:测量参数包括Fo,Fm,Fv,QY等?Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd等荧光参数?荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,ΦII,NPQ,Qp,Rfd,qL等50多个参数,2套制式程序?光响应曲线LC:Fo,Fm,QY,QY_Ln,ETR等荧光参数?Dyes & FPs稳态荧光成像测量?OJIP快速荧光动力学分析:Mo(OJIP曲线初始斜率)、OJIP固定面积、Sm(对关闭所有光反应中心所需能量的量度)、QY、PI等26个参数(选配)?QA再氧化动力学(选配)?Spectrum荧光光谱分析(选配)• 荧光激发光源:红外光、红光、橙光、蓝光、绿光、白光、紫外光等可选,根据客户要求定制光源组• 透射光源(选配):白光、远红光?高分辨率TOMI-2 CCD传感器:?逐行扫描CCD?最高图像分辨率:1360×1024像素?时间分辨率:在最高图像分辨率下可达每秒20帧?A/D 转换分辨率:16位(65536灰度色阶)?像元尺寸:6.45μm×6.45μm?运行模式:1)动态视频模式,用于叶绿素荧光参数测量;2)快照模式,用于GFP等荧光蛋白和荧光染料测量?通讯模式:千兆以太网• 显微镜:Axio Imager M2,可选配Axio Scope A1简洁版或Axio Imager Z2高级版?物镜转盘:研究级7孔自动物镜转盘?透射光快门?聚光器 Achr Apl 0.9 H?6位反光镜转盘?双目镜筒(100:0/30:70/0:100)?机械载物台:75×50mm,硬膜阳极氧化表面?样品架:76×26mm• 物镜:10倍、20倍、40倍、63倍和100倍专用生物荧光物镜(可选)• 6位滤波轮:叶绿素荧光、GFP/SYTOX、DAPI/CTC等• SM9000光谱仪?入射狭缝:70μm×1400μm ?光栅:平场型校正?光谱范围:200-980nm?波长绝对精确度:0.5nm?再现性:0.1nm?温度漂移:0.01nm/K• 温度调控模块:温度调节范围 5℃-70℃,精确度0.1℃• 蠕动泵(选配):流速10-5600μl/min,用于藻类连续培养测量• FluorCam叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单 • 客户定制实验程序协议(protocols):可设定时间(如测量光持续时间、光化学光持续时间、测量时间等)、光强(如不同光质光化学光强度、饱和光闪强度、调制测量光等),具备专用实验程序语言和脚本,用户也可利用Protocol菜单中的向导程序模版自由创建新的实验程序• 自动测量分析功能:可设置一个实验程序(Protocol)自动无人值守循环成像测量,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机(带时间戳)• 快照(snapshot)模式:通过快照成像模式,可以自由调节光强、快门时间及灵敏度得到清晰突出的植物样本稳态荧光和瞬时荧光图片• 成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(1000)• 数据分析模式:具备“信号计算再平均”模式(算数平均值)和“信号平均再计算”模式,在高信噪比的情况下选用“信号计算再平均”模式,在低信噪比的情况下选择“信号平均再计算”模式以过滤掉噪音带来的误差• 输出结果:高时间解析度荧光动态图、荧光动态变化视频、荧光参数Excel文件、直方图、不同参数成像图、不同ROI的荧光参数列表等叶绿素荧光与光谱分析结果典型应用:产地:捷克参考文献:1.Küpper H, et al. 2019. Analysis of OJIP Chlorophyll Fluorescence Kinetics and QA Reoxidation Kinetics by Direct Fast Imaging. Plant Physiology 179: 369-3812.Konert G, et al. 2019. Protein arrangement factor: a new photosynthetic parameter characterizing the organization of thylakoid membrane proteins. Physiologia Plantarum 166: 264-277.3.Exposito-Rodriguez M, et al. 2017. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nature Communications, 8: 494.Higo S, et al. 2017. Application of a pulse-amplitude-modulation (PAM) fluorometer reveals its usefulness and robustness in the prediction of Karenia mikimotoi blooms: A case study in Sasebo Bay, Nagasaki, Japan. Harmful Algae, 61:63-705.Jacobs M, et al. 2016. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency. Nature Plants, doi:10.1038/nplants.2016.1626.Andresen E, et al. 2016. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum. New Phytol., 210(4):1244-12587.Thomas G, et al. 2016. Deficiency and toxicity of nanomolar copper in low irradiance—A physiological and metalloproteomic study in the aquatic plant Ceratophyllum demersum. Aquatic Toxicology, 177:226-2368.Fujise L, et al. 2014. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals. PLOS ONE, DOI:10.1371/journal.pone.01143219.Gorecka M, et al. 2014. Abscisic acid signalling determines susceptibility of bundle sheath cells to photoinhibition in high light-exposed Arabidopsis leaves. Philosophical Transactions of the Royal Society B, 369(1640), DOI: 10.1098/rstb.2013.023410.Mishra S, et al. 2014. A different sequence of events than previously reported leads to arsenic-induced damage in Ceratophyllum demersum L. Metallomics, 6: 444-45411.Ferimazova N, et al. 2013. Regulation of photosynthesis during heterocyst differentiation in Anabaena sp. strain PCC 7120 investigated in vivo at single-cell level by chlorophyll fluorescence kinetic microscopy. Photosynthesis Research, 116(1): 79-9112.Andresen E, et al. 2013. Effects of Cd & Ni toxicity to Ceratophyllum demersum under environmentally relevant conditions in soft & hard water including a German lake. Aquatic Toxicology. 142–143, 15: 387–402
    留言咨询
  • IMA-IR™ 近红外高光谱显微成像系统 IMA-IR™ 近红外高光谱显微成像系统快速多合一高光谱显微镜IMA IR 提供了无与伦比的图像和数据质量。该高光谱平台针对红外 光谱范围进行了优化 。特点快速全局映射(非扫描)高空间和光谱分辨率完整的系统(源,显微镜,相机,滤镜,软件)无损分析可定制从900 nm到1700 nm的灵敏度应用领域 NIR高光谱显微镜覆盖900-1700 nm的检测范围,是 空间和光谱识别以及二区窗口中发射的荧光团测量的理想选择 。例如,单壁纳米管 (SWNT)的发射带很窄(?20 nm),每个带对应于唯一(n,m)种(手性)。借助红外高光谱显微镜, 可以在活细胞(体内)和体外以单一的SWNT空间分辨率分离这些物种 。PUBLICATIONSCarbon Nanotubes as Optical Sensors in BiomedicineA Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid FluxA Carbon Nanotube Optical Sensor Reports Nuclear Entry via a Noncanonical PathwayA carbon nanotube reporter of microRNA hybridization events in vivoHyperspectral Microscopy of Near-Infrared Fluorescence Enables 17-Chirality Carbon Nanotube Imaging 如需索取更多资料请联系:佰泰科技有限公司电子邮件联系电话:或直接联系 常经理
    留言咨询
  • 1. 用于各种倒置显微镜60孔板专门定制样品框。2. 适合共聚焦/TIRF/超分辨,支持油镜成像。3. 适合83.3mmX58mm的60孔板 4. 完美匹配 蔡司Axio Observer/LSM 880/LSM 900/徕卡DMi8/SP8/Thunder/NIKON Ti2/OLYMPUS IX73, IX83等各种品牌K框底座,支持显微镜型号定制。 5. 显微镜观察时完美聚焦,进口产品无此样品框,KOSTER专门为60孔板定制。 6. 价格实惠,现货供应。参考用户:清华大学分子影像中心 暨南大学脑研究中心中国农业科学院兰州畜牧与兽药研究所 广东省华南新药创制中心 中国水产科学院珠江水产研究所 中山大学附属眼科中心 中山大学医学院复旦大学医学院
    留言咨询
  • 一种超高速且一体化的可定制高光谱显微镜平台,具有高空间分辨率和光谱分辨率。完全集成的系统可快速映射VIS-NIR-SWIR光谱范围内的漫反射,透射率,光致发光,电致发光和荧光。基于高通量全局成像滤波器,IMA™ 比基于扫描类型光谱仪的高光谱系统更快,更高效。
    留言咨询
  • 定制化原位显微光学/光谱学测试系统Customized In-situ Optical / Spectroscopic MicroscopeSystem我公司集成了自主研发的激光自动聚焦等自动化功能的核心光学/光谱学模组均采用模块化设计,物镜下方没有任何零部件占用空间,并且具备完整的软硬件接口,可以方便地集成到客户的工况环境或者研究机台上,为客户提供定制化的测试系统。技术特色:激光自动聚焦:&bull 显微光学和光谱学模组都可配备激光自动聚焦模块。
    留言咨询
  • 仪器简介:植物叶绿素荧光成像一般用于检测植物发出荧光的动态变化和空间分布。Kautsky过程、萃灭分析及其它瞬时的过程都可被摄取,提供2维图像,计算常规的荧光参数。F0, FM, FV, F0&rsquo , FM&rsquo , FV&rsquo , NPQ, &Phi PSII, FV/FM, FV&rsquo /FM&rsquo , RFd, qN, qP,及其它荧光参数图像可用于研究因病变、衰老、环境胁迫或突变造成的荧光变化。测量样品范围广,既可是单个叶绿体或单个细胞(用显微植物荧光成像系统),也可是小的冠层(用拱形植物荧光成像系统和区域植物荧光成像系统)。此外,除了可成像常规的叶绿素荧光发射过程外,该系列植物荧光成像系统还提供一款成像各种荧光蛋白发射荧光过程的系统(植物荧光蛋白成像系统)。还有一种多功能荧光动态显微检测系统,它除具备显微叶绿素荧光成像系统的功能外,还集成了分光光度计SM-9000、PAM荧光测量技术及FL3500双调制荧光测量仪,用于高分辨率快速荧光动态测量和成像。多种激发光源可以激发不同的天线色素,从而分析出那些色素蛋白复合体对光化学荧光淬灭或非光化学荧光淬灭贡献更大。同时还可以对非叶绿素荧光(自发荧光及荧光染料等)动态进行测量分析,超高灵敏度镜头可以在很低的光线下(从而不干扰正常细胞代谢)成像,并且还可以对目前市场上其它镜头捕捉不到的快速过程如QA再氧化、天线联通性及天线大小等进行测量分析。技术参数:1)图象分辨率:12bit, 512x512像素 2)图象抓取速度:每秒50幅 3)数据传输:USB2.0 口 4)该系统的软件功能: 设置和修改实验要求,如控制时间,实验周期,光强和摄象机操作 智能分割图像,显示所选图像的荧光曲线 将计算参数与不同阶段摄取的图像联系起来,如FV, FV/FM, qP, qN, NPQ, Rfd等,作进一步分析。 软件包中设置了常规实验模块,熟练的专业人员可使用提供的编程语言设计各种测量时间和测量序列的程序。 5)分辨率: mm主要特点:植物叶绿素荧光成像采用用户自行设置的光照和测量时间测量、记录叶绿素荧光成像。两个或多个装有超强发光二极管板提供测量用的光源。带有快门或额外液晶显示屏的卤素灯提供连续光照或饱和脉冲光驱动光化学反应。荧光成像由CCD摄像机抓取。显微植物荧光成像系统可成像单个细胞和亚细胞的荧光。所有的常规荧光参数都可成像,分辨率达mm,可用于研究单个的叶绿体或是类囊体。该系统和配置多种显微镜。
    留言咨询
  • 微米级芯片瞬态热特性测试系统用于测量芯片瞬态结温、热阻组成、热容组成等热特性参数。系统主要构成包括:红外热像仪、热阻测试台、电源、数据采集及分析系统(工作站电脑)、恒温台等。ImageIR 9500 制冷式高清中波红外热像主机 微米级芯片瞬态热特性测试系统的主要优势:1. 主要部件在德国设计和制造,品质优良、稳定可靠。2. 采用640 x 512红外像素探测器,为测试微小结构提供更宽的视场和更高的分辨力。3. 可选多种规格特写和显微镜头,解析度可达1.9 微米。4. 可对极短的峰值信号进行分析,测量数据直接传输到计算机。5. 最短的抖动时间和各种输入和输出选项赋予本系统在使用和测量程序设置方面更高的灵活性。 6. 即便是20mK甚或是更小的温差也可以被轻松地探测到。7. 电子元件的脉冲激励式测量 通过设置电子元件的功率脉冲增强测量最小温度偏查的能力。InfraTec提供硬件和软件来实现这种更精确的测量。8. 从定性到精确的定量分析,这将帮助您以专业的方式进行测量。9.本系统 附带了一个全面的软件包 IRBIS 3。此模块化的软件将适合您的特定需求,并使热像仪的控制、 数据采集和数据分析方便易行。各式各样的执行功能将为数据分析变得简便高效。 性能参数表热成像主机ImageIR 9500典型应用:□航空航天□医学□激光加工□微细结构红外成像□电子、微电子领域测温□半导体材料、器件测温□金属和非金属材料制备□非破坏性材料测试□Lock-in热点成像□PPT脉冲热成像□材料应力测试分析□太阳能电池质量检测探测器类型碲镉汞(MCT) 光谱范围3.7~4.8(μm)探测器规格(1280 x 720)像素, 12μmMicroScanning精密光机微扫组件,实时生成(2560x1440)像素超高清红外热图(可选)热灵敏度(NETD)≤ 20mK@30º C 冷却方式长寿命低功耗分置式线性化制冷器标准测温量程(-10~+200)º C可选量程扩展低温至-40º C;高温至3000º C测量精度±1º C或±1%动态范围14bit,16bit (可选)满帧帧频120Hz @ (1280 x 720)像素子窗口模式自定义成像窗口大小和位置非均质化校正外部手动校正;可选内置实时电动快门积分时间(μs)1~20,000电动光谱滤镜转轮可内置1 组4孔或5孔位转轮,适用于精确测温和对特定光谱成像,孔位 选择可手动和自动转换对焦方式手动或软件操控电动对焦,具全区域自动、多区域自动、指定距离等方式I/O接口集成化4通道,包括 2路数字输入,2路数字 / 模拟输出操控和传输接口10GigE 万兆以太网IRIG-B时间戳集成到红外数据中,20ns精度电源/功耗(110-230)VAC / 50Hz输入 / 24VDC输出,稳态条件下约30W外壳材质坚固、耐用轻质合金防护等级IP54 IEC529 , IP 67 可选存储/操作温湿度-40~+70º C / -20~+50º C, 10-95% 无冷凝尺寸 / 重量约241 x 123 x 160mm (LxWxH) / 约4.7 kg,不包括镜头固定安装UNC 1/4″和 3/8″标准相机螺纹,2xM5 常规可选镜头包括: 25mm 广角 、50mm 标准、1.0X 显微、8.0X 显微等。
    留言咨询
  • 3D超分辨成像系统-单分子荧光成像,-单分子定位荧光显微镜是一种功能强大的技术,它可以对细胞内的特定生物分子进行定位和可视化。然而,传统的光学显微镜在横向尺寸(x-y)和横向尺寸(x-y)上受到光的衍射约为200纳米的限制最近超分辨率成像技术的出现使研究人员能够“打破”衍射屏障,将远低于200纳米极限的亚细胞结构可视化。高分辨率的方法是一系列被称为单分子定位显微镜(SMLM)1的技术。虽然SMLM能够在横向尺寸上精确成像10- 20nm,但它通常缺乏轴向分辨率,尤其是近焦分辨率。双螺旋主轴结合我们的3DTRAXTM软件,使成像超越衍射极限与扩展的3D detail3。它是基于专利双螺旋光工程™ method4,5设计的模块化附加工具。该方法的工作原理是在SPINDLETM模块中插入一个双螺旋相位掩模,该掩模从掩模库中选择,并根据不同的轴向范围、发射光谱和信噪比进行优化。主轴™ 为精密光学从头开始设计,与大多数商业上可用的科学显微镜、EMCCD和sCMOS相机一起工作,并提供了前所未有的横向(x-y)和轴向(z)精密成像的组合。双螺旋光工程™ 将单个分子发出的光分裂成两个叶瓣。两个叶瓣的中心对应发射体的横向位置,它们之间的角度编码发射体的z位置。这些额外的信息有助于在非常高的精度( 30nm)下进行横向和轴向尺寸的超分辨率重建。此外,重要的是,双螺旋结构还扩展了分子可以定位的场的深度。这种亚衍射光学成像与先进的三维信息的结合为生命和材料科学的研究人员带来了大量的可能性无与伦比的精度和深度三维成像和跟踪 双螺旋光学主轴使研究人员能够很容易地捕捉和分析细胞结构的三维图像到单个分子水平。 Current Light EngineeringTM Applications超分辨率:重建三维超分辨率图像的zui佳精度-深度组合和无轴向拼接。用于轴向和横向定位的纳米级精度.三维单粒子跟踪:延长的深度使捕获更长的粒子轨迹和更快的捕获兼容荧光珠,染料和光激活蛋白。主轴采用双螺旋光学专利光学工程技术为基础,可方便地安装在现有显微镜上,实现先进的三维成像和跟踪,具有超高分辨率的能力。内置旁路模式允许轻松返回到非3d实验。? 设计克服了传统的限制,使三维成像具有无与伦比的深度和轴向精度? 优化为您的三维实验所需的发射波长。? 与各种显微镜、物镜和照相机兼容即使在空间有限的环境中,占用空间小也可以方便地安装 输入和输出C-mount适配器为商用和定制的显微镜和相机提供了方便的支持。 高度可靠的系统,没有移动部件。可切换相位掩模墨盒,和辅助发射滤波器支架,以zui大限度地提高实验灵活性。模块化设计将您现有的系统发展成具有超分辨率功能的先进3D成像和跟踪系统。自定义设计的光学精密成像和跟踪? 转化率 95%? 内置校正光学,确保瞳孔平面对准您的显微镜和物镜? 易于安装,相位掩模在中继光瞳平面上的x、y和z位置保持稳定对齐 ? 3DTRAX™ Software, a FIJI plugin provides3d超分辨成像系统,3D单分子荧光成像系统,单分子定位- 3D 定位分子- 3D 渲染- 偏移- 追踪- 具象化
    留言咨询
  • IX73倒置显微镜系统配备有一个紧凑型镜架,它以其卓越的光学性能和非凡的灵活性为高端的活细胞成像设定了新标准。手动编码型或半电动选件可以灵活组合配置。IX73可以两种形式提供:配备有人机工程学设计的低位载物台的单层系统和具有额外扩展能力的双层系统。两种系统均可运行多种成像应用,既可以用于快速荧光成像和其他条件严格的应用技术,又可以应用于常规的实验和记录。产品特点:具备满足可延伸性研究需求的扩展空间半电动IX73专为满足各种研究需求而设计。双层光路设计以及与其他可选配模块满足显微镜功能性扩展,IX73非常适合不断变化的研究环境。IX73:两层光路系统将IX73双层系统与编码或电动装置配套使用,以实现最大扩展性。IX73:单层光路系统专为提高工作效率而设计的显微镜。是常规实验、记录以及其它任务的理想选择。可信赖的、清晰明亮的、高分辨率的图像Olympus UIS2无限远校正光学系统配备有多种物镜,保证了高光学透过率。UIS2光学系统具备宽光谱范围的色差校正能力,不管在何种观察条件下,均可采集具有高信噪比、高分辨率图像。此外,宽视场和复眼透镜系统更确保了采集的荧光图像照明均匀,而且能够使用搭载有大型传感器的SCMOS相机。直观的人体工程学显微镜控制智能控制通过单点触摸切换观察方法IX73配备了一个手动控制面板,只需触摸面板的按键,即可对观察操作和一些其它功能编程使用。已存储的显微镜配置 (Olympus cellSens)该系统集成一个电动部件和编码型部件位置的读出器,因此可以将显微镜配置连同图像数据一起保存。使用这种先进的系统可以再调用各种设置来重新创建所需的成像条件,从而实现成像系统高重复性和易用性可更替的模块提供了灵活的成像方式Olympus IX3显微镜系统可以与多种模块配套使用,实用性更强,既可以进行随意的观察,也可以完成高端的成像操作。采用简易盒式设计的光路系统可以轻松地插入式安装荧光激发块转盘、右光口、mag 转换器、epi照明器和其它装置等。 大型开放式镜架使得可以将电动发射滤色片转轮安装在显微镜的扩展空间内。这避免了图像在通道之间发生偏移,并能够通过目镜查看相机采集到的图像。自动或手动右光口模块提供了另一个灵活的相机安装方案技术规格:观察方法荧光(蓝/绿激发) ? 荧光(紫外激发) ? 微分干涉 ? IR-微分干涉 ? 相衬 ? 浮雕相衬 ? 简易偏光 ? 明场 ? 暗场 ?变焦电动 No照明器透射柯勒照明器LED灯? 卤素灯100 W 荧光照明器汞灯100 W 氙灯75 W 光导照明?中间变倍体手动转盘 ?物镜转换器电动 6孔位 手动编码型6孔位载物台机械的平板载物台? IX3-SVR带右手柄机械载物台X: 114 mm, Y: 75 mm GX用GX-SVR机械载物台X: 50 mm, Y: 50 mm IX2-GS 滑动载物台? GX-SFR 灵活右手柄载物台?聚光镜电动万能聚光镜NA 0.55/ W.D. 26.2mm 手动万能聚光镜干式: NA 0.9/ W.D. 1.5 mm, 浸油式: NA 1.4/ W.D. 0.63 mm (1.25 X - 100 X) 长工作距离万能聚光镜NA 0.55/ W.D. 27 mm 中长工作距离聚光镜NA 0.5/ W.D. 45 mm 超长工作距离聚光镜NA 0.3/ W.D. 73.3 mm镜筒宽视场(FN22)双目镜筒? 倾斜式双目镜筒? 三目镜筒? 红外三目镜筒?外形尺寸 323 (W) x 475 (D) x 656 (H) mm (单层标准配置)重量 35 kg (单层标准配置)操作环境室内使用环境温度5 - 40 oC (41 - 104 oF) 最大相对湿度80% 温度达31℃ (88℉)时, 70% 温度达34℃(93℉)时 , 60% 温度达37℃(99℉)时, 50% 温度达40℃(104℉)时 电源电压波动±10 %
    留言咨询
  • 3D数字显微成像系统 400-860-5168转5930
    产品概述数码立体显微成像系统(SL-120A),是西安瑞丰仪器设备有限责任公司研发的一款立体显微成像设备。以全新的数码立体成像技术为理念,以传统的体视显微镜为依托,融合了数码与光镜两者的优点,开发出了先进的数码立体显微成像系统,搭载了全电动操作控制系统,极大的提高了用户的使用体验。SL-120A的放大倍数为7x-45x,变倍比1:6.4,工作距离为100mm,操作方式为全电动调节,立体图像的观察方式为数码立体眼镜。本产品改变了传统体视显微镜只能在固定位置进行三维立体图像的观察方式,使用者能够在任意位置实时观察三维立体图像;提供多人同时三维立体图像观看;对观察物进行全方位、多角度的观察;对大标本的局部进行显微观察;远程进行操作及立体图像的观察;对立体图像进行录制及存储,方便随时观看;通过鼠标控制设备的移动,操作更便捷。本品可选装瑞丰图像处理软件,能够对观察物进行标定,对其角度、长度、面积、周长等进行测量;可在图像中实时绘制圆、线、点、矩形、多边形等多种规格图形,也可绘制不规则图形;测量完成后可一键将信息生成表格进行导出;可在图像中进行注释及文字标注;能够对图像进行电子放大;可对亮度、曝光、增益、白平衡、色温、对比度、饱和度、锐度、降噪效果进行实时调整。本产品可应用于科学研究、动植物学、昆虫学、解剖学、医学、实验教学、考古、电子产品、海关、公安等领域。
    留言咨询
  • 美国 Navitar 是领先的优质光学系统制造商和供应商,为机器视觉和生物医学诊断行业提供全面的定制光学解决方案,已在全球销售了 300,000 套镜头系统。凌云光20多年来潜心于视觉图像的研究创新,联合全球优质器件伙伴Navitar ,推出了可根据需求定制组合的高动态范围大视野显微成像系统。系统主要由:成像相机组件、显微变倍镜系统、二向色镜组件、显微物镜组件、同轴光源组件构成,每一部分都可以根据客户需求,选择不同的参数配置,灵活多变的选择、卓越的性能,是组件级显微系统的优先选择。 系统特性:1, 灵活的设计,一流的模块化光学设计技术,几乎适用于所有应用场合2, 卓越的光学性能,几乎消除色像差和失真,并可在整个视野内得到对比度, 大限度地减少眩光3, 7:1变倍比,长工作距离(6 毫米至 359.5 毫米),大视野(0.07 毫米至100毫米)4, 自动化电动系统,提供多种电动镜头和控制设备以供选择5, 波长范围更宽,有可见光、近红外和短波红外镀膜可供选择 可选参数:
    留言咨询
  • 北京艾锐精仪科技有限公司(艾锐科技)成立于 2020 年,依托北京大学席鹏教 授课题组雄厚、前沿的科研力量,专注于先进显微成像技术的研发,致力成为生 命科学与医学领域具有国际影响力的科研级显微仪器和系统解决方案提供商。 公司拥有一支深耕显微成像领域的光学、算法、软件、机械、电子、生物等工程 师团队,将以快速、高效、灵活的贴身服务,为您的科研工作提供强有力的个性 化技术支持。
    留言咨询
  • TESCAN CoreTOM针对地球科学领域应用优化的多尺度X射线显微镜成像系统 TESCAN CoreTOM 可以在实验室中完美的兼具医学X射线成像 的大视野和X射线显微镜的高分辨成像,可以对长达 1米(约3 英尺)的完整岩芯进行成像,也能够对毫米级微型岩塞或岩屑进行优于3 μm 的高分辨成像。因此,TESCAN CoreTOM 是一款从岩心到孔隙的多尺度成像的理想系统。TESCAN CoreTOM 配置了高能量的 X 射线源,可实现高通量和快速动态成像,进行采集时间分辨率小于10秒的完整的3D成像。 主要优势 ※ 多尺度成像 TESCAN CoreTOM 专门为处理各种尺寸的地质样品而设计,样品尺寸范围大到长度为1米的整体岩心,小到毫米级微型岩塞或岩屑。TESCAN CoreTOM 可以快速获得完整岩心内部分层、异质性和其它尺度特征的3D全景扫描,也可以获得高分辨率扫描以展示岩塞或岩屑中的孔隙。 ※ 高通量设备配置了高功率 X 射线源、高效率的探测器和软件协议,三者的优化组合为客户提供一个最高效的系统,也进一步提高了样品的处理速度和图像衬度,时间分辨率也可以达到了10秒以内。 ※ 感兴趣区域的直观观测 可在概览图上选择感兴趣区域进行实时缩放,获得孔隙结构和矿物的细节信息。 ※ 快速扫描和超高分析效率 高能量 X 射线源和多种信噪比优化功能相结合,可以在保证图像质量的情况下缩短扫描时间。 ※ 动态原位成像 集成的原位样品台,优化了流体管路和传感器线路,以及专用的四维采集和重构流程,可实现快速动态成像。 获得高分辨率数据而不会损失大图像的完整性 CoreTOM 非常适用于较大体积样品(例如如地质样品)的多尺度和多分辨率成像。在石油和天然气研究等应用领域,矿石和采矿以及环境科学需要一种多分辨率观测方法,首先需要获取样品的完整及有代表性的信息,对 1.5 m 以下的整个岩心样品进行成像,以提供内部变化的整体参照。然后利用概览图像实时放大所选区域,获得孔隙结构或矿物的详细信息。 Acquila软件Acquila是一个用于断层图像采集和3维重构(GPU优化)的模块化软件,可以最大限度为集成设备后的复杂实验提供协助。Acquila软件能够运行在标准的、自动化的或定制的微型CT上,并实现图像采集、重建和外围实验设备(现场设备)之间的无缝集成。
    留言咨询
  • 产品简介: DW-3系列生物显微成像测量系统由DW-100型三目生物显微镜、DW-3型高清晰彩色数字摄像头和DW-3型显微成像分析软件组成。DW-100型三目生物显微镜采用了最先进的光学设计,DCIS无限远光学系统,超大而平坦的视场,从而得到卓越的光学成像质质量。 该系统广泛应用于医疗卫生机构实验室、研究所及高等院校等单位作细菌学观察、教学和研究、临床实验及常规医疗检验之用。 产品优势:1. 高清晰彩色数字成像。2. 轻松完成数字图像获取和存储。3. 提供了科学级的无损格式图像输出。4. 可帮助用户轻松完成生物显微图像的获取、图像存储、图像编辑、图像处理和各种图像测量应用。 DW-3-CMOS型 技术参数:1. 显微成像显 微 镜:三目生物显微镜数字成像:500万像素科学级CMOS数字摄像头,真彩分 辨 率:1.0微米2. 显微图像处理图像显示:实时动态观察,随时捕捉任意视野图像图像编辑:具有对图像任意区域裁切、翻转及标注文字输入等功能图像调整:图像亮度、对比度、饱和度、RGB通道任意调节,自动白平衡图像锐化:通过增强图像的高频分量,使图像边缘变得更清晰锐利图像平滑:通过图像平滑处理,使图像背景均匀平滑。3. 显微目标测量校正标定:具有对测量系统在线标定功能,实现精确测量测量标注:测量标注加入、测量参数移位及图像缩放等功能测量功能:对长度、角度、多边形、任意曲线圆弧、点数、面积等的精确测量方形测量:方形测量长、宽、周长、面积圆形测量:圆形测量周长、面积、直径圆弧测量:可测量任意曲线圆弧弧长、角度、半径数据输出:测量数据导出到EXCEL或者TXT 三目生物显微镜:1、光学系统:DCIS无限远色差独立校正光学系统(或相当于),超大而平坦的视场,从而得到卓越的光学成像质量。2、观察筒:铰链式双目,转轴倾斜30°,360°可旋转,瞳孔距调节范围:52-75mm3、目镜:高眼点大视野平场目镜,WF10X/18mm4、物镜:无限远消色差物镜4X、10X、40X(0.65、弹簧)、100X(1.25油镜,弹簧)5、转换器:内倾式4孔转换器6、载物台:142*135mm双层复合式机械移动平台,移动范围:76*52mm7、聚光镜:NA1.25阿贝聚光镜,手轮升降式,配相衬、暗场插槽,配中心调节装置8、调焦机构:低位粗动同轴调焦手轮;微动手轮0.1mm/转,格值0.001mm;微调格值越小,9、调焦越清晰;粗动松紧可调,14mm/转。10、安全设计:工作台上限位安全装置,最大行程20mm11、照明装置:100V-240V开关电源,6V20W卤素灯,亮度连续可调12、500万像素科学级CMOS数字摄像头12.1光学界面: 1/2.5英寸,C型成像接口12.2分辨率: 2560 * 1944,色深12bit,500万像素 12.3像素尺寸:3.4μm * 3.4μm 12.4光谱响应:400nm~1000nm12.5帧频率:5fps@2592x1944,16fps@1024x76813、仪器配置:13.1三目生物显微镜 1台 13.2三目成像接头 1个13.3 500万像素科学级CMOS数字摄像头 1台 13.4显微成像分析软件 1套 DW-3-CCD型 技术参数:1. 显微成像显 微 镜:三目生物显微镜数字成像:500万像素科学级CCD数字摄像头,真彩分 辨 率:1.0微米2. 显微图像处理图像显示:实时动态观察,随时捕捉任意视野图像图像编辑:具有对图像任意区域裁切、翻转及标注文字输入等功能图像调整:图像亮度、对比度、饱和度、RGB通道任意调节,自动白平衡图像锐化:通过增强图像的高频分量,使图像边缘变得更清晰锐利图像平滑:通过图像平滑处理,使图像背景均匀平滑。3. 显微目标测量校正标定:具有对测量系统在线标定功能,实现精确测量测量标注:测量标注加入、测量参数移位及图像缩放等功能测量功能:对长度、角度、多边形、任意曲线圆弧、点数、面积等的精确测量方形测量:方形测量长、宽、周长、面积圆形测量:圆形测量周长、面积、直径圆弧测量:可测量任意曲线圆弧弧长、角度、半径数据输出:测量数据导出到EXCEL或者TXT 三目生物显微镜:1、光学系统:DCIS无限远色差独立校正光学系统(或相当于),超大而平坦的视场,从而得到卓越的光学成像质量。2、观察筒:铰链式双目,转轴倾斜30°,360°可旋转,瞳孔距调节范围:52-75mm3、目镜:高眼点大视野平场目镜,WF10X/18mm4、物镜:无限远消色差物镜4X、10X、40X(0.65、弹簧)、100X(1.25油镜,弹簧)5、转换器:内倾式4孔转换器6、载物台:142*135mm双层复合式机械移动平台,移动范围:76*52mm7、聚光镜:NA1.25阿贝聚光镜,手轮升降式,配相衬、暗场插槽,配中心调节装置8、调焦机构:低位粗动同轴调焦手轮;微动手轮0.1mm/转,格值0.001mm;微调格值越小,9、调焦越清晰;粗动松紧可调,14mm/转。10、安全设计:工作台上限位安全装置,最大行程20mm11、照明装置:100V-240V开关电源,6V20W卤素灯,亮度连续可调12、500万像素科学级CCD数字摄像头12.1光学界面: 2/3英寸,C型成像接口 12.2传感器:Sony ICX282 CCD,彩色 12.3分辨率: 2560 * 1944,,500万像素 12.4像素尺寸:3.4μm * 3.4μm 12.5像素混合模式: 2*2,3*3或4*4 ,彩色 12.6曝光控制: 1.6毫秒到17.9分钟,1微秒递增 12.7制冷类型: 热电制冷(Peltier cooling)至环境温度以下10度 12.8实时预览: 全幅实时预览速度25幅/秒 12.9帧频率:10fps@1280X768;30fps@320X240 13、仪器配置三目生物显微镜 1台 三目成像接头 1个500万像素科学级CCD数字摄像头 1台 显微成像分析软件 1套
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制