当前位置: 仪器信息网 > 行业主题 > >

动物手术用放大镜

仪器信息网动物手术用放大镜专题为您提供2024年最新动物手术用放大镜价格报价、厂家品牌的相关信息, 包括动物手术用放大镜参数、型号等,不管是国产,还是进口品牌的动物手术用放大镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动物手术用放大镜相关的耗材配件、试剂标物,还有动物手术用放大镜相关的最新资讯、资料,以及动物手术用放大镜相关的解决方案。

动物手术用放大镜相关的论坛

  • 宏观断口分析用放大镜有么?

    各位行家,不知有没有宏观断口分析用的放大镜系列呢?或者大家在观察宏观断口时都用什么设备呢?呵呵,扫描电镜是买不起滴!大家给点建议吧!

  • 【原创大赛】排查细管路神器-放大镜篇

    【原创大赛】排查细管路神器-放大镜篇

    相信很多同志们跟我一样,因为仪器一些微小的地方很难自己排查故障原因,今天我给大家带来福音了,放大镜真是好用,尤其是对于我们操作管路较多而且又细的仪器,我们实验室那台skalar连续流动仪管子实在是太多了,而且又很细,一旦出了什么问题,要自己去看看哪里出问题那叫一个难啊,借用步步高的一句广告词“自从有了放大镜,领导再也不用担心我的skalar了,首先来看看我们的skalar,管子多吧。http://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518015_2913831_3.jpg放大镜也有好多种,放大倍数不一样,价格也不一,我们实验室用的是40倍的,不过也足够了。 http://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518014_2913831_3.jpg前段时间仪器老是出问题,感觉管子不干净,但是光凭自己肉眼看又看不见,下面我们来对比一下放大前后的效果图,有了放大镜后明显能看到我们的管路有蓝色的脏东西,然后我们用乙醇给它洗了个澡,最后还真解决了我们的问题。http://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518011_2913831_3.jpg有时候管路有效破裂也能明显看得到的,下面也是明显的证据。http://ng1.17img.cn/bbsfiles/images/2014/10/201410131014_518022_2913831_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518012_2913831_3.jpg小结这里只是给大家介绍一点经验,我们实验室用的放大器是40倍的,也足够了,如果管路更小可以用100倍的,这东西倒是也不贵,但是真的很好用,很推荐大家使用,而且除了可以用来排查管路,还可以用来排查仪器一些细微的地方,比如ICP-MS的取样锥锥孔是否变形等等。

  • ICP-OES放大镜的作用!

    各位前辈/同行,请问ICP的放大镜是如何使用的,而且用它判断谱线的元素可信吗,有时测PB,它显示都不是该元素,而是FE.不知各位同行是否有同样疑问?

  • 【讨论】ICP-MS耗材之截取锥、采样锥,没有放大镜的情况下,如何判断该换了?

    [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]7500CS购买已有两年,使用频次基本是每天都用5小时算起,这样的使用频次,还有清洗频次:一周一次。这样算来清洗很多次了,锥孔大了小了也不清楚,因为没放大镜,那除了用放大镜观察外有没其他的监测手段?目前仪器还正常,担心的是怕锥孔问题,导致连带其他部件调整过度,以致影响其他部件功能。

  • 【推荐讲座】:9月26日 小动物手术解决方案新进展

    【网络讲座】:小动物手术解决方案新进展【讲座时间】:2016年09月26日 14:00【主讲人】:殷亮,2009年毕业于华东师范大学,生理学专业硕士研究生。研究方向为学习与记忆。有多年动物手术实验,电生理与行为学实验经验,现任哈佛仪器动物研究仪器-亚洲渠道经理。【会议简介】小动物手术过程中,研究人员会遇到小动物死亡或手术失败的困境。经过我们大量实验研究,发现完整的术前准备工作、流畅的术中操作步骤、以及精确的手术器械和监测仪器,是小动物手术成败与否的至关重要的因素。特别是完整而齐全的实验设备是保证实验顺利进行,实验数据准确可靠的基础。随着技术的发展,小动物手术实验设备向着高效,简易,集成度高的方向在发展。借此机会,我们特地开设一堂小动物手术解决方案新进展的讲课!希望能够帮助广大研究人员,顺利完成手术过程、得到理想的监测指标。希望对此有兴趣的广大研究人员,踊跃报名!-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年09月26日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/21275、报名及参会咨询:QQ群—290101720,扫码入群“大课堂”http://ng1.17img.cn/bbsfiles/images/2017/01/201701191702_673961_2507958_3.gif

  • 放大倍数是扫描电子显微镜分析样品的关键吗?

    放大倍数是一个非常简单的概念,但是由于其自身的定义有时会产生混乱。这个博客的目的是澄清这个话题,并探讨其他可以更好地描述一个对象有多大的参数。第一个放大镜可以追溯到希腊时期,阿里斯托芬首先使用其描述了孩子们试图看到小细节的休闲活动。这是第一次“放大”这个词语出现在我们的语言中。随着时代的发展进步,人们在科学探索中对微观和纳米世界的兴趣呈指数级增长,从而需要量化放大倍数。  现代科学对于放大倍率的定义是两次测量之间的比率,这意味着需要两个对象来正确评估该值。第一个对象显然是样品,第二个是它的图片。事实上,虽然样品尺寸不变,但图片可以以任意大小打印。所以请允许我做一些计算:  这意味着如果我打印苹果照片时第一次打印时选择标准打印机的纸张,再次打印时选择用于覆盖建筑物的海报,则两次放大倍数值将发生显着变化。显微镜观察具有更科学严谨的例子:当存储样品的数字图像时,调整图像大小会导致放大倍数不再准确。因此,放大倍率是相对数量,在科学领域并没有实际用途。  科学家使用的是以下几个参数,描述实际成像区域的大小(视野 - 显微镜成像的区域)以及该图像的清晰度(分辨率)。放大公式也相应地改变:放大倍数=图像尺寸/实际样品尺寸。[align=center][img]http://www.gdkjfw.com/images/image/57181528960215.png[/img][/align]  如上,公式仍然是一个模糊的描述,并且没有考虑分辨率。这意味着将相同的图像缩放到较大的屏幕将导致放大倍数也会改变。视野定义为成像区域的大小,该值通常在几毫米(小飞虫)到几微米(小飞虫的的毛发)和几个纳米(外骨骼的分子宏观结构)之间。使用现代仪器,可以对几百皮米范围内的物体进行成像 - 这是原子的平均尺寸。  但是,我如何知道对样品进行成像需要的视野大小?这又是一个棘手的问题,但可以用一个例子很容易地回答。在与你最好的朋友的照片中,通常一个脸孔占据空间的5-10%。这已经足够让您识别图像中的人物。但是,如果你拍照的脸占据整个照片,你可以观察到脸上细小的细节,如头发,皮肤上的斑点和眼睛的颜色。  这意味着,例如,如果您有平均大小为1微米的颗粒,并且您想要对它们进行计数,则每个图像可以有20个颗粒,而不是一次成像一个颗粒来浪费时间。还考虑到颗粒之间的空白,25-30微米的视野对于这样的样品是足够的。另一方面,如果您的兴趣在于颗粒的结构,则需要特写,观察区域必须更接近2-3微米。  台式扫描电子显微镜正变得越来越受欢迎,因为它具有与高端光学显微镜相当的价格同时提供更多的选择,它的分辨率更高,并且可以与其他分析工具的集成来测量诸如表面粗糙度和元素组成等,这使得其成为最通用的[url=www.gdkjfw.com]成像仪器[/url]。

  • 【这个有趣】智能手机变身350x放大倍率显微镜的方法 只需10美元

    美国科学家找到一种方式,能够将智能手机变成可观察红细胞的高性能显微镜,这种“变身”的费用只有区区10美元。此外,他们还使用日常家庭用品制造分光镜,用于测量光线的不同频率。美国科学家找到一种方式,能够将智能手机变成高性能显微镜,“变身”费用只有区区10美元。按照他们提供的做法,我们只需要一些胶带、一条橡胶带以及一个小玻璃球便能让智能手机变成具有350x放大倍率的显微镜,可以用来观察红细胞。此外,科学家还使用日常家庭用品制造分光镜,用于测量光线的不同频率。研究人员表示,让智能手机变身显微镜不只有趣那么简单,世界上一些偏远地区的患者将极大地受益于这一创造。从理论上说,这种简单的显微镜能够用于拍摄皮肤感染区域的照片,照片可通过邮件方式发送给远在千里之外的医生,帮助他们做出诊断。实验室使用的显微镜通常造价数千美元并且很难带出实验室。从智能手机变身而来的显微镜是迄今为止最为紧凑并且最为低廉的显微镜。这种显微镜由美国加利福尼亚州大学物理学家塞巴斯蒂安·沃什曼-霍格在此前设计的基础上研发。此前的设计更为脆弱并且需要更多零部件。沃什曼-霍格对其进行了简化,他使用橡胶带将一个直径1毫米的玻璃球固定在iPhone摄像头上方。iPhone版放大镜的放大倍率达到350x,由于无法聚焦,所拍摄的照片需要借助电脑软件进行处理。

  • 你需要了解的放大电路知识

    放大电路又被称为放大器,是构成其它电子电路的基础电路,是为了能够把微弱的信号放大所形成电路。放大电路按频率可分为低频、中频和调频 按输出信号强弱也可为分电压放大、功率放大等。它是电路中最为复杂多变的电路,因此初学者应该了解和掌握以下知识。  (1)放大电路是一种能量转换器,它不可能创造能量。晶体三极管是用基极电流的微小变化控制集电极电流发生较大的变化,电子管与场效应管是用栅极电压的微小变化控制屏极电流发生较大的变化,因此,场效应管与电子管是电压控制器件,而晶体管是电流控制器件。放大电路不像放大镜一样,直接放大被观看的文字或物体。放大电路将交流信号叠加在直流信号之上,由交流信号的变化,引起直流信号的变化,再通过负载电阻,将直流信号的变化转化为交流信号的变化。放大电路中的晶体三极管就是起这种转换作用,由基极电流微小的变化控制集电极电流较大的变化,相当于放大了基极电流。  元坤智造工场是一家专注于印制线路板/PCB快速打样、双面、多层板大中小批量生产,同时提供BOM报价、SMT焊接和元器件一站式服务的综合性高新技术企业。  (2)在放大器中既有直流成分,又有交流成分,为了分析电路方便,常将直流成分所通过的路径称为直流通路,而将交流信号所通过的路径称为交流通路。因电容具有隔直流通交流的作用,在画直流等效电路时,应将电容器视为开路,其他不变。在分析直流通路时,一定要从电源的正极回到电源的负极,形成一个闭合通路 在画交流等效电路时,电容器应视为短路,直流电源因其两端电压不会变化,无交流压降产生,也视为短路,其他不变。在分析交流通路时,不必每一级重复分析,而是要掌握整个信号从何外来,经过哪些元器件,发生了哪些变化,最终到达何处。  (3)放大电路通常具有静态和动态两种工作状态。静态是指输入信号为零时,直流电源给三极管的各个电极提供一个合适的直流工作电压,使三极管工作在放大区,也就是说三极管放大的外部条件是发射结正偏,集电结反偏。动态是指在放大电路的输入端加上输入信号后,主要分析放大电路对信号的放大能力。  因此在分析放大电路时,先静态后动态,即先分析静态直流通路,看晶体管、电子管、场效应管的工作电压是否正常,在静态工作点正常后,再分析动态交流通路。而交流通路与直流通路是共存于同一电路之中,它们既互相联系,又互相区别。交流信号电压是叠加在直流工作电压之上,而且电路的交流性能又受到 直流工作点的影响和制约。如果直流偏置电压不稳定,或有故障,则交流通路会受到影响而出现故障。  (4)在负反馈电路中出现输出信号幅度增大,失真故障现象的主要原因是,放大电路中负反馈元件损坏,负反馈作用消失,使放大器的增益变大,导致输出信号幅度增大。此时应重点检查电路中的负反馈元件是否出现开路、虚焊、电阻变值等现象。如果输出信号出现失真,说明放大器已工作在非线性区(饱和或截 止状态),应重点测量放大器的工作点电压,査找电路中的电阻是否正常、放大管的参数是否发生变化。

  • 【已应助】颈椎病后路手术的几篇论文

    【序号】: 1【作者】: 吴战勇 孙先泽 孔建军【题名】: 影响颈椎病后路手术疗效因素分析【期刊】: 《中国骨伤》【年、卷、期、起止页码】:2002年01期 【全文链接】:cnki:ISSN:1003-0034.0.2002-01-004【序号】: 2【作者】: 吴华荣 魏运栋 吴占勇 申勇 彭祥平 【题名】: 重症脊髓型颈椎病前、后路联合手术治疗次序的选择 【期刊】: 中国脊柱脊髓杂志 【年、卷、期、起止页码】:2006年 02期 【全文链接】:CNKI:SUN:ZJZS.0.2006-02-007【序号】: 3【作者】: 占蓓蕾 叶舟 【题名】: 多节段脊髓型颈椎病后路手术方式的选择与预后关系 【期刊】: 《浙江临床医学》 【年、卷、期、起止页码】:2008年第10卷第3期 【全文链接】:【序号】: 4【作者】: 孙杰 【题名】:颈椎后路减压手术的疗效及相关影响因素分析【期刊】: 中南大学硕士论文 【年、卷、期、起止页码】:2007年【全文链接】:CNKI:CDMD:2.2007.170242

  • 生物显微镜的成像原理分析

    显微镜(microscope)简称光镜,是一种将肉眼无法看清楚的微生物体进行光学放大成像的常用仪器。在生命科学、材料科学、基础科学及众多的微观领域中都离不开显微镜。1590年.荷兰的Han,父子始创放大10倍显微镜。175.8年,Dollond制成消色差透镜,提高了显微镜放大倍数。1873年,德国科学家Abbe设计成近代显微镜。1953年.上海江南光学仪器厂国产显微镜诞生,并陆续生产了荧光、相衬、偏光等专用显微镜。生物及医用显微镜可分为光学放大及电子放大两大类。前者按用途可分为普通型、特种型、高级型显微镜和手术显微镜。普通型生物显微镜仅供一般用途使用,通常的农用与医用显微镜、倒税显微镜均属这一类。特种型生物显微镜可作某些专用的观察和研究。暗场生物显微镜、荧光显微镜、偏光显微镜、相衬和干涉相衬显微镜等均属于这一类。高级型生物显微镜系指大型多用途的生物显微镜.研究用生物显微镜和万能研究用生物显微镜等属于这一类。一、显微镜放大成像系统显微镜光学系统由物镜和目镜两部分组成。因为被观测的物体本身不发光,而要借助于外界照明,故显微镜需要有一个照明系统,这些部分都是由较复杂的透镜组成,尤其物镜更为复杂。下图是显微镜成像的光路原理图,图中的物镜和目镜均用薄透镜表示。http://www.yi7.com/file/upload/201201/07/14-00-33-93-1.jpg显微镜成像原理显微镜的物体AB处于物镜的2倍焦距之内一倍焦距之外,它首先通过物镜成一放大的倒立实像A'B',且使之位于目镜的物方焦平面上或焦平面以内很靠近的地方,然后目镜将这一实像再次成一个正立虚像A"B"于无限远或人眼明视距离之外,以供眼睛观察。显微镜对物体进行2次放大,因此与放大镜相比,具有更高的放大倍率,能观察到肉眼所不能直接观察的微小物体,分辨更细小的细节。在这里目镜相当于放大镜,只不过这时放大镜的物是物镜所成的像而已。由于物镜所成的像是实像.因而可在实像处(即目镜的物方焦平面处)安放各种用途分划板.供对准或测量用。二、显徽镜的放大率与分辨本领1.显微镜的分辨本领 分辨本领主要指接物镜分辨被检查物体细微结构的能力,也就是说在显微镜下判别的最小微粒的大小或两点之间最短距离及某物点最小直径的限度,便叫做显微镜的分辨本领.或称为鉴别率。通常用d表示:http://www.yi7.com/file/upload/201201/07/14-00-33-14-1.jpg式中.A表示波长;n sins (NA)表示数值孔径。 从式中可知,显微镜的分辨率主要取决于光的波长和数值孔径这两个因素。d值越小,分辨本领也就越强,越能看清物体的细微结构。鉴别率计算单位是Um. 显微镜的鉴别率的提高只有两个办法: (1)增大物镜的数值孔径(镜口率)。从图可以看出,影响数值孔径(n sina)的因素有两个:其一为物体上某点射人物镜光锥角(镜口角)的一半(sina);其二为检品与物镜间媒质的折射率n。即数值孔径为NA = n sine镜口角半数最大能到900,故si na的最大值为1.00,这时物镜的焦距最短而曲度也很大,制造上是极为困难的。即使能办到,在干燥系中的镜口率只有1 x sin90“(控气n二1)。若再增大镜口率便只有从媒质着手,所以便有水、甘油,石蜡油和香柏油等浸润均匀媒质的应用,确实改进了镜口率不少.它最高可到1.40。如果用澳萘液可达1.67左右,更接近盖片和透镜的折射率。http://www.yi7.com/file/upload/201201/07/14-00-33-51-1.jpghttp://www.yi7.com/file/upload/201201/07/14-00-33-44-1.jpg (2)缩短光源的波长:采用紫外线作光源,波长可到0.1Um,这样放大倍数比自然光放大的倍数大3-4倍,普通紫外线光波在0.2 Um左右,即使能产生出0.1 Um波长的紫外线.一般透镜也将把它吸收干净.无法利用。显微镜的最大数位孔径可达1.5 Um左右,在这种情形下: http://www.yi7.com/file/upload/201201/07/14-00-33-33-1.jpg即在这种显微镜里,仍可分辨的两点间最短距离差不多等于所用光波波长的1/30假定绿光的光波的波长http://www.yi7.com/file/upload/201201/07/14-00-33-23-1.jpg那么显微镜能分辨的最短距离为:http://www.yi7.com/file/upload/201201/07/14-00-33-89-1.jpg 则这台显微镜的最高分辨距离也超不过。.182 Um。肉眼在明视距离(250 mm)能分辨的两点之间最短距离为0.1 mm,约为上述d值的560倍.因此I台光学显徽镜的放大率有100()倍也就足够了。这是因为光的本性及光的绕射现象就限制了显徽镜的放大极限。凡是光波超过微粒直径的2倍时,光线就很方便地绕过微粒而继续前进,所以普通干燥系显微镜的最大鉴别率只能达到光源波长的1/2,直径小到0.2 5m的微粒就无法被光学显微镜发觉。虽然后来应用浸润系方法,如油镜,提高了折射率,其鉴别率也只不过能提高到光源波长的1/3而已。而且还要用最好的透镜才能达到。

  • 扫描电镜的显示器

    扫描电镜的显示器

    一般的显示器由于需要显示彩色图像,他的屏幕结构是由三色组成的。用放大镜就可以看到,如图。http://ng1.17img.cn/bbsfiles/images/2012/01/201201151913_345839_1609375_3.jpg扫描电镜所显示的图像是黑白图像,他的屏幕结构是怎样的呢?是三色的还是别的什么结构?请大家用放大镜看一看。书上介绍扫描电镜屏幕分辨率就是荧光粉的颗粒度0.1mm,那应该不是三色的。请大家证实一下。

  • 显微镜的保养

    保持光学元件的清洁对于保证好的光学性能来说非常重要,当显微镜不用时,显微镜应当用仪器提供的防尘罩盖住。若光学表面及仪器有灰尘和污物,在擦清表面前应当先用吹气球吹去灰尘或用柔软毛刷去污物。光学表面应当用无绒棉布,镜头纸或用专用的镜头清洁液沾湿的棉花签来清洁。请避免使用过多的溶剂,擦镜纸或棉花签应恰当沾湿溶剂但不要因为使用太多溶剂而渗透到物镜内,造成物镜清晰度下降及物镜损坏。显微镜中目镜物镜的表面镜头最容易受到灰尘和污物及油的粘污,当发现衬度,清晰度降低,雾状发生时,则需要用放大镜仔细检查目镜,物镜前面镜头的状况。低倍物镜有相当大的前组镜片,能用缠在手指上的棉布或棉签及擦镜纸上用乙醇沾湿来擦拭。40X、100X需多加小心地用放大镜仔细检查。高倍镜中为了达到高的平坦度,应用了一个有小曲率半径凹面的前组镜头,在擦拭这组镜头时用带有棉球的牙签或棉花签清洁。擦拭镜头表面要轻。不要过度用力和有刮擦动作,并确信棉签触到镜头的凹面。在清理后用放大镜检查物镜是否损伤,如果必须要去开观察镜筒,小心不要接触到镜筒下面的外露镜头,镜头表面如有手指印会降低成像的清晰度,用清洁物目镜的方法进行擦拭。当显微镜使用100X油镜使用完时,请及时将油镜表面擦拭清楚并检查40X物镜是否沾上油,如有请及时擦清。使显微镜始终保持成像清晰。

  • 用什么切割毛细柱?

    求助:要换色谱柱了,毛细柱是安捷伦的,因为GC是国产的,没有配毛细柱切割工具。我这只有碗、坩埚、玻璃,裁纸刀。请懂的大侠指点一下,用什么切割合适啊?没有放大镜,如何判断是否割平了?

  • 【转帖】光学显微镜原理应用及维修

    一、 光学显微镜的发展历史  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展做出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。  目前全世界最主要的显微镜厂家主要有:蔡司、徕卡、奥林巴斯、尼康。国内厂家主要有:麦克奥迪、江南、重庆光电、奥特光电等。二、 显微镜的基本光学原理(一) 折射和折射率  光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现像,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。(二) 透镜的性能  透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。  当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称”焦点”,通过交点并垂直光轴的平面,称”焦平面”。焦点有两个,在物方空间的焦点,称”物方焦点”,该处的焦平面,称”物方焦平面”;反之,在像方空间的焦点,称”像方焦点”,该处的焦平面,称”像方焦平面”。  光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。(三) 凸透镜的五种成像规律1. 当物体位于透镜物方二倍焦距以外时,则在像方二倍焦距以内、焦点以外形成缩小的倒立实像;2. 当物体位于透镜物方二倍焦距上时,则在像方二倍焦距上形成同样大小的倒立实像;3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在像方二倍焦距以外形成放大的倒立实像;4. 当物体位于透镜物方焦点上时,则像方不能成像;5. 当物体位于透镜物方焦点以内时,则像方也无像的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚像。三、 光学显微镜的成像(几何成像)原理  只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1’。为易于观测,一般将该量加大到2’,并取此为平均目镜分辨率。  物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。有公式y=Lε距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。这意味着,在没有仪器的条件下,目视分辨率 ε=2’的眼睛,能清楚地区分大小为0.15mm的物体细节。  在观测视角小于1’的物体时,必须使用放大仪器。放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。(一)放大镜的成像原理  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y’的虚像A’B’。放大镜的放大率Γ=250/f’式中250--明视距离,单位为mmf’—放大镜焦距,单位为mm该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。 。。。。。。。。。。。。。。 [URL=http://www.microscopeline.com/art.asp?id=252&did=56]...........[/URL]资料来源[URL=http://www.microscopeline.com]显微在线[/URL]

  • 福州80后爸爸“割肝救女”手术成功

    8个月前,他给了她生命;8个月后的昨天,他用自己的肝脏再次延续了女儿的生命。他是福州80后爸爸黄川,她是他8个月大的女儿小淑群。  昨日,在上海交通大学医学院附属仁济医院,近11个小时的手术后,爸爸1/5的肝“接”到女儿体内,完全代替女儿的病肝“工作”,“重组”小淑群的生命。近11个小时的手术,海都特派记者进入手术室记录下父爱中重生的温情。  “对健康人动刀 更不允许失败”  昨早8:20,黄川取肝手术开始。剖腹,露出肝脏,高频电刀划开,空气中散发着微焦的味道。  8:50,手术中的“关键先生”夏强登场。夏强是上海仁济医院肝脏外科的主任,2006年完成了仁济医院第一例儿童活体肝移植手术。昨天,小淑群的肝移植是仁济肝移植团队第378例儿童肝移植。护士长说:“他的到来,意味着供体手术进入关键阶段。”  消毒间隙,夏强和记者简单交流了几句,“很多人认为,肝移植最重要是要救活另外一条命,但我们认为最重要的是保护供体的安全,因为他是健康人。换句话说,对健康人动刀,更不允许失败!”说罢,他登台开始手术。  4名医生低头忙碌。切除肝脏时,医生必须把每一根主要血管都标记一下,动脉用红色的悬吊带环绕,静脉用蓝色的,“出口”的肝静脉则用黄色的,这样才能确保植肝时对接无误。

  • 显微镜放大倍数如何计算

    显微镜放大倍数如何计算

    蔡司NEOPHOT30,哪位老师告知一下放大倍数计算方法,目镜10X,常用物镜12.5,25,关键是显微镜右侧有旋钮链接金相分析软件的部分也有放大的倍数,分别为8,10,12.5,16,20.如果不用目镜用电脑看的话,可以算出放大倍数。可是用目镜看的该怎样计算?比如要500Xhttp://ng1.17img.cn/bbsfiles/images/2016/06/201606301700_598695_3121259_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606301700_598696_3121259_3.jpg

  • 【讨论】医院推出网络团购手术 院方称手术越多成本越低

    你个人认为团购的利与弊?相关链接:假如仪器也加入团购,你会选择团购仪器么?http://bbs.instrument.com.cn/shtml/20110412/3243631/ 现如今,网络团购可谓五花八门,在山东济南,团购又出现新的类型——医院手术。不少医院推出各种“手术团购”来吸引患者。这种团购的手术能否保证医疗质量,又是否会成为新的团购“热点”。 近日,一种新的团购方式——“手术团购”在济南出现,也吸引了不少公众的关注。以山东省眼科医院推出的“准分子激光手术团购活动”中的“标准化手术”为例,如果是两人团购,每人收费3800元,而如果是十人或者更多的人一起团购,这个价格则降到了3000元。据该院副院长高华介绍,推出这个活动主要是为了吸引更多的患者前来就医,但也确实减少了患者的诊疗费用: 高华:是让接受手术的人来减轻经济负担,它能减少不少,组织(团购)的话能减少20%左右吧。 在此之前,济南已有不少医疗机构开始将开眼角、双眼皮、隆鼻等整容手术,甚至分娩手术“试水”团购。“团购”打出后,已有不少市民参加了团购,而且反响普遍不错。但还是有一些市民对“手术团购”表达了担忧。 市民:团购手术价钱肯定是便宜,但是便宜了以后质量有没有保证?假如团购的人多了以后,医院方面是不是会偷工减料或者是服务质量方面打折扣之类的呢? 对此,医院方面表示,手术质量完全可以确保,因为其中的部分差价由医院自行承担,压缩了自身的部分利润。另外,这种手术本身还存在做的人越多成本越低的情况。 山东省眼科医院副院长高华:手术质量是可以得到保证的,和普通是一样的。你比如说机器折旧,你开一次机,它有固定的折旧成本,(团购费用),你一个人做,他的成本都不够开一次机的。但是如果你很多人一起做,他的成本增加的就没有这么大。 高华表示,虽然价格降低了,但手术中服务质量和手术流程一环也不会少。市民团购到的只是一个代码,凭借代码到医院进行术前检查确定是否适合手术,是否具备手术的条件还是要由医院来决定。 高华:他适不适合做手术,并不是因为他是否参加了团购,他所有的人来了以后,都是按正常的检查程序,他并不是参加团购一定能做,也可能不能做,也需要参加正常的检查。 不过,虽然“手术团购”之后的社会反响和就诊人数都出乎意料的好,但专家们对于这种新的医疗方式却普遍持谨慎态度。山东大学教授徐凌忠表示,“手术团购”实际是激烈竞争下的一种市场营销模式。 徐凌忠:是个无奈之举,团购纯属无奈之举,团购了就可以形成规模,可以在那里做。严格来说一个“议价”。就是我给你组织十个人来做,每个人不管多少钱,不管中间的过程了,什么都不管了,全包了。 徐凌忠认为,虽然价格便宜了,但是这不具备推广前景,以眼科手术为例,近视激光手术可以团购,但是像白内障手术这种存在很多不可预测因素,会引发多种并发症的手术就不适合团购。 徐凌忠:因为医疗服务本身就是个很复杂的事,谁也没法说这些药品该不该用,这个输液该不该输,这个东西都很难说。 对此,济南某公立医院的负责人表示,医疗团购在国外也属于新生事物,可能在未来会产生一些意想不到的问题,他个人并不不提倡手术团购,但是也不能一棒子打死,还不断的探索与完善:觉得手术不是像一个普通的商品一样,因为同样一个病,他的病情也会不一样,手术过程中出现的情况也会不一样,是一个个性化、个体化比较强的事情,所以用团购的方式,还值得在研究,所以我觉得还需要一个探索的过程,一个探索完善的过程。

  • 层流手术室净化空调系统高效过滤器特性

    层流手术室净化空调专用高效过滤器和一般普通的过滤器是不一样的,它本身有自己的优点和特性,那么具体是什么呢?下面我们为您解答:1、净化空调机组内表面应采用优质不锈钢板,内置零部件应选用耐消毒药品腐蚀的材质或面层,材料表面应光洁。2、内部结构应便于清洗,并能顺利排放清洗废水,不易积尘、滋生细菌。表冷器的冷凝水排出口应具备自动防倒吸,并在负压时能顺利排出冷凝水的装置,凝结水管不能直接与下水管道相接。3、机组内各级空气过滤器前后应设置压差计,测量接管应通畅,安装严密。消声器或消声部件的用材应能耐腐蚀、不吸潮、不积尘、不产尘,其填充料不允许使用玻璃纤维及其制品。4、净化空调中的各级过滤器应采用一次性抛弃型,末级高效空气过滤器应采用不吸潮、不长菌的材料制作,不允许用木框制品,成品不应有刺激性气味5、保证机组内静压1000Pa时漏风率少于1%。6、加湿器必须采用进口品牌,加湿方式为电极式加湿。 通过上面的学习,相信大家已经了解了层流手术室净化空调专用高效过滤器的特性了吧,大家如果还有不清楚或者不明白的地方可与我们技术人员联系,相信他们将认真为您解答。

  • 关于显微镜的放大倍数及选择方法推荐

    显微镜包括两组透镜——物镜和目镜。显微镜的的放大倍数主要通过物镜来保证,物镜的最高放大倍数可达100倍,目镜的放大倍数可达25倍。物镜的放大倍数可由下式得出:M物=L/F1式中:L——显微镜的光学筒长度(即物镜后焦点与目镜前焦点的距离);F1——物镜焦距。而A′B′再经目镜放大后的放大倍数则可由以下公式计算:M目=D/F2式中:D——人眼明视距离(250mm); F2——目镜焦距。显微镜的总放大倍数应为物镜与目镜放大倍数的乘积,即:M总=M物×M目=250L/F1*F2在使用中如选用另一台显微镜的物镜时,其机械镜筒长度必须相同,这时倍数才有效。否则,显微镜的放大倍数应予以修正,应为:M=M物×M目×C式中:C——为修正系数。修正系数可用物镜测微尺和目镜测微尺度量出来。放大倍数用符号“×”表示,例如物镜的放大倍数为25×,目镜的放大倍数为10×,则显微镜的放大倍数为25×10=250×。放大倍数均分别标注在物镜与目镜的镜筒上。在使用显微镜观察物体时,应根据其组织的粗细情况,选择适当的放大倍数。以细节部分观察得清晰为准,盲目追求过高的放大倍数,会带来许多缺陷。因为放大倍数与透镜的焦距有关,放大倍数越大,焦距必须越小,同时所看到物体的区域也越小。

  • 显微镜放大倍数的计算方法

    对于我们这些刚刚入行的检测人员来说,操作水平提高得动手练,数据处理就得多动脑子总结,所以今天分享一个常常困扰我们的问题—显微镜的倍数,到底总放大倍数是怎么计算的,所得到的拍摄的照片又是放大了多少倍。===============================================================总放大倍数有两种概念,一种是光学放大倍数,一种是数码放大倍数(只有连接成像设备时才会涉及到数码放大倍数)。 1.光学放大倍数。是指我们从显微镜目镜中观测到物体被放大后的倍数。光学放大倍数的计算方式比较简单,即物镜倍数*目镜倍数。例如:体视显微镜的放大倍数计算,连续变倍体视显微镜的物镜通常是0.7-4.5倍,那在10倍目镜的情况下,这台显微镜的总放大倍数为7-45倍;生物显微镜、金相显微镜的计算则更为简单,一般的物镜配置是4倍、10倍、40倍、100倍,目镜常规配置是10倍,另外还有16倍、20倍等,只要将目镜和物镜的倍数分别相乘就可得到总放大倍数。 2.数码放大倍数。数码放大是指外接设备后,显示到图像上的放大倍数,目前市场上较多的是用三目显微镜,通过CCD设备连接至电脑、监视器或者电视机上进行成像观察,以减轻眼睛的疲劳,同时也便于与他人分享。但是显示到图像上的物体到底是放大了多少倍呢?现向大家推荐两种计算数码放大的方法。 (1)直接对图像进行测量。将测微尺放到显微镜下,然后拿直尺直接测量显示器上测微尺的长度,将显示器上一格的测量结果 /测微尺每格的实际长度(一般在测微尺上都会直接标有每格的长度)=物体被放大的倍数。物体被放大的倍数/当前物镜的倍数=数码放大倍数。通常情况下,会在图像中加比例尺来表示改物体被放大的倍数。 注:如果没有测微尺,可以用直尺代替,同时在计算时可以多测量几格,以减少误差。 (2)通过公式计算实际的放大倍数。 数码放大倍数=物镜倍数**适配器的放大倍数,如果系统放大倍数,还需要乘以系统放大倍数。 注: 1:物镜倍数指的是您现在使用的显微镜的物镜镜头的倍数,如20倍; 2:适配器的放大倍数:指的显微镜与成像设备连接部分的放大倍数,通常为1倍,也有0.35、0.5、0.63倍的; 3:25.4*屏幕尺寸(英寸):这里是把屏幕尺寸换算成毫米计算,1英寸=25.4mm; 4:CCD对角线的长度:指的是CCD的芯片尺寸,常有的是1/3英寸、1/2英寸、2/3英寸的,相对应的长度分别为6mm;8mm;11mm,这个是行业内统一规范的。

  • 关于扫描电子显微镜的放大倍数问题

    关于扫描电子显微镜的放大倍数问题

    在这个问题上,我觉得应该多说一点,因为好多人都没有仔细想过这个问题,尽管十分简单.对于显微镜的放大倍数来讲,最多的定义是:像的尺寸/物的尺寸在SEM中则同样可以这样定义:M=L/l(放大倍数=图片的显示宽度/电子束在样品上的扫描宽度)[img]http://ng1.17img.cn/bbsfiles/images/2006/02/200602051056_13530_1678923_3.jpg[/img]对于其检测方法比较麻烦,现节选一段JJG(教委)010-1996标准:分析型扫描电子显微镜放大倍数误差的测定1 在扫描电镜标称的放大倍数范围内选取常用的5档放大倍数.2 将测定放大倍数的标样安装在样品台上,使其表面垂直于电子光学系统的轴线,并调整到仪器说明书规定的工作距离位置上,将标样上标记线的像移至显像管的中心,聚焦后照相记录.3 用比长仪测量标记线像的间距L(微米),连续测量3次,取算术平均值(微米).4 按公式计算放大倍数M: M=L/l 式中l--标样上标记线的间距.5 按公式计算放大倍数的示值误差P: P=(N-M)/M 式中N--被检扫描电镜放大倍数的标称值其他检测项目还有放大倍数的重复性(在不同加速电压和束斑下) 图像中心与四角边缘处倍率误差测定等等.说明: 标准样品与校正:美国国家标准局(现称国家标准和技术研究院)提供的检定扫描电镜放大倍数的标准样品的最小刻度为一微米,由于视场有限,用这种标样检定5万倍以上的放大倍数有困难,所以,检定5万倍以上的放大倍数需要使用比对性标样.比对性标样可以从具有精细结构的样品中选取,例如:相邻的两条刻线间距小于一微米的物理光栅.将选定的比对性标样和测定扫描电镜放大倍数的标样一起固定在扫描电镜的样品台上.首先将比对性标样调整到标准工作距离的位置上,然后把比对性标样上选定的间距小于一微米的两条标记线平移到显像管荧光屏的中心位置上,将扫描电镜调整到最佳工作状态,细心聚焦后拍摄标记线的照片.用比长仪在照片上测量出比对性标样标记线的放大间距和检定扫描电镜放大倍数标样标记线的放大间距.计算出比对性标样标记线的标定间距,重复10次如果误差不大于百分之三,则表明该样品可以作为比对性标样检定扫描电镜放大倍数.对于现代的SEM来讲,正规的验收标准里面是有放大倍数这一项的,所使用的样品是不同间距的刻线,比如说1/19mm(校低倍用)或是1/2160mm(校高倍用)的标准样品,说一台SEM的放大倍数是不是准确只有通过这些标准样品的校验才能下结论,现代的SEM本身也有利用标样进行自我校准的功能,应该使用标准样品定期校准才能保证其放大倍数是准的,并不是口头说几句就可以弄清的.校验过程本身也是通过标尺量才行,从没有看放大倍数数字的经历.现代的SEM如果软件编得合理的话应该是改变工作距离和图像显示区域大小会引起放大倍数的数字发生变化的(当然有的设备可以做到这点,有的设备目前还无法做到这点),但是图像存好以后则只能是数字的大小发生变化而已,就好象你的照片上显示50000倍,但是你把照片扫描后用更大的纸打印出来以后会发现你得到了一个更大的数字"50000X",正因为如此,电镜行业普遍有一个解决办法,那就是标尺(scale bar),因为尽管数字的数值不会改变而造成原始的图片在离开原来的显示环境以后就没有意义,但是标尺会随着该图片的变大和变小而改变,所以真正需要注意的应该是标尺而不应该是那个放大倍数的数字,不管数字是多少,放大倍数都应该是M=L/l(放大倍数=图片的显示宽度/电子束在样品上的扫描宽度)才对,只有在特定的图片大小(即特定的显示环境)下,放大倍数才能和数字是一致的.离开原始的图片显示环境以后,那个数值应该说是毫无意义的了.

  • 动物肉中瘦肉精用什么方法检测

    动物性食品中克伦特罗(瘦肉精)的测定 ,是用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url],液相色谱还是酶联免疫法比较好?

  • 【原创】显微镜下的微生物研究自然灾害的巨人

    显微镜下的微生物研究自然灾害的巨人 [size=3]在大自然中,生活着一大类人的肉眼看不见的微小生命。无论是繁华的现代城市,富饶的广大田野,还是人迹罕见的高山之巅,辽阔的海洋深处,到处都有它们的踪迹。这一大类微小的“居民”称为微生物,它们和动物、植物共同组成生物大军,使大自然显得生机勃勃。 [/size][font=宋体][img=340,340]http://www.zskp.org.cn/Article/UploadFiles/200803/2008030615471734.jpg[/img][/font][font=宋体][/font] [font=宋体][/font] [font=宋体]微生物王国是一个真正的“小人国”,这里的“臣民”分属于细菌、放线菌、真菌、病毒、类病毒、立克次氏体、衣原体、枝原体等几个代表性家族。这些家族的成员,一个“个小得惊人。就以细菌家族的”大个子“杆菌来说,让[/font]3000[font=宋体]个杆菌头尾相接”躺“成一列,也只有一粒米那么大;让[/font]70[font=宋体]个杆菌”肩并肩“排成一行,刚抵得上一根头发丝那么宽;相当于全地球总人口数([/font]50[font=宋体]多亿)那么多的细菌加在一起,才有一粒芝麻的重量。[/font][size=3][font=宋体]  微生物如此之小,人们只能用“微米”甚至更小的单位“埃”来衡量它。大家知道,[/font]1[font=宋体]微米等于千分之一毫米。细菌的大小,一般只有几个微米,有的只有[/font]0.1[font=宋体]微米,而人的眼睛大约只有分辨[/font]0.06[font=宋体]毫米的本领,难怪我们无法看见它们。[/font][/size][size=3][font=宋体]  显微镜下的生命微生物是怎样被人们发现的呢?说来有趣。三百多年前,荷兰有个名叫列文虎克的人,他读书虽然不多,但热爱科学,富有刻苦钻研的精神,还有一手高明的磨制放大镜技术。他用自己磨制的镜片,制作了一架能把原物放大百多倍的简单的显微镜。一天,列文虎克从一个老头的牙缝里取下一点残屑来观察,竟然发现那里面有无数各种形状的小家伙蹦来跳去,令人眼花缭乱。他惊奇得几乎不相信自已的眼睛。列文虎克精心地把这些小家伙的形状描绘下来,他说:“这个老头嘴里的[/font][font=宋体]小动物[/font][font=宋体],要比整个荷兰王国的居民多得多……”这以后,他继继观察了各种容器的积水,以及河水、井水、污水等,都发现有这样一个芸芸众生的“小动物”世界。列文虎克第一个通过显微镜看到了细菌,为人类敲开了认识微生物的大门。从此,人们借助显微镜 ——揭开了微生物的奥秘。[/font][/size][size=3][font=宋体]  当然,微生物也有看得见的。比如食用的蘑菇,药用的灵芝、马勃等都是微生物。生物学家曾在捷克发现一种巨蕈,属于真菌族微生物范畴,你猜它有多大?——直径[/font]4[font=宋体]米多,重达[/font]100[font=宋体]多公斤。它不仅是微生物大家族中的“巨人”,而且在整个生物世界里也不算“小个子”了[/font][/size]

  • 光镊技术成功捕获活体动物细胞

    为活体研究和临床诊断提供了一种全新的技术手段2013年05月09日 来源: 中国科技网 作者: 吴长锋 最新发现与创新 中国科技网讯 中国科学技术大学光学与光学工程系李银妹课题组,近日与上海交通大学魏勋斌教授合作,采用活体动物内的细胞,发展了动物体内细胞三维光学捕获技术。日前,国际著名学术期刊《自然·通讯》在线发表了这项研究成果,网站还以《医学研究:用光清除血管被堵塞的血管》为题对该研究工作进行报道。 在活的动物体内研究细胞生长、迁移、细胞及蛋白质间相互作用等生物学过程,对生命科学、医学研究及临床诊断具有重大意义,因此体内研究技术一直是活体研究热点之一。 李银妹课题组利用光镊技术,首次对活体动物内的细胞实现光学捕获。研究表明,光镊可以直接深入到活体内,对细胞进行有效操控。研究人员用光镊穿过小鼠耳朵真皮层,到达深度约50微米毛细血管中,捕获和操控血管中的红细胞。将光镊固定在血管中心,血管中快速流动的细胞经过光阱时被逐渐减速,直到一个细胞停留在光阱中,光镊将细胞捕获,并实现了三维操控。 课题组还利用光陷阱的作用聚集红细胞,人为制造出血管堵塞;针对血管中已聚集的细胞团簇,拖拽其中一个细胞引导疏通,使聚集的细胞逐渐疏散开,恢复正常血液流动,从而实施非接触手术式的血管疏通。 过去,光镊技术在生物医学领域的应用仅限于体外的单分子和细胞研究。李银妹课题组的这项研究技术能直接深入到动物活体内,对细胞进行实时观察、操控与测量,实施非接触式手术的实验取证,从而开拓了光镊技术研究活体动物新领域,为活体研究和临床诊断提供了一种全新的技术手段。(记者 吴长锋) 《科技日报》(2013-5-9 一版)

  • 【求助】显微镜放大倍数与分辨率

    有两个问题不清楚:1。如果我用10倍目镜和10倍物镜,放大倍数应该是10*10=100倍。那么分辨率是多少呢?2。物镜仍是10倍,接数码相机拍照,那么放大倍数是多少?分辨率又是多少?这问题一直搞不清楚,希望大家能指点迷津,谢谢!

  • 单抗、多抗制备动物免疫

    关于动物免疫,在多抗制备一部分里有一些讲解(点击这里查看),这里只简要讲述一下单抗制备中需要注意的几个问题。在概述部份已经讨论过,用来制备单抗的动物主要有小鼠、大鼠和兔,由于小鼠易饲养、小鼠单抗技术成熟、路线简单,因此是制备单抗使用的主流动物,这里主要以小鼠单抗制备展开讲述。免疫途径和周期:单抗制备中,免疫动物的方式一般第一针采用皮下免疫,后面的加强免疫采用腹腔免疫、腘内免疫、皮下免疫或者脾内直接免疫。首次免疫和加强免疫结束后,在融合前三天一般还要进行一次冲击免疫,以增加脾脏内浆细胞的数量。下面这张表列出了常见的免疫途径和周期:http://img.dxycdn.com/trademd/upload/userfiles/image/2013/11/A1384840870png_small.jpg 说明:FCA,弗氏完全佐剂;FIA,弗氏不完全佐剂;Quickantibody,北京康碧泉公司研制的佐剂。上表中第四种免疫方法产生的抗体大部份都为IgM,存在亲和力弱等缺点,慎用。关于操作的问题,这里只作一下简单的介绍,具体如何进行,需要在有相关经验的实验员指导下进行,也可以在网上找到相关视频进行学习。(1)皮下注射。皮下注射的操作有点像给人接种疫苗,即挑取动物的皮肤,将混好佐剂的抗原直接注射。一般皮下注射每个注射点注射30-50ul左右混有佐剂的抗原,每只小鼠注射6-8个点为宜。(有的资料上称这种方法为皮内免疫,造成这种概念上的混淆可能是由于早期工作者们的翻译过程出了问题),皮下操作一般由两人进行,一个协助固定小鼠,另一个进行免疫操作。(2)腹腔注射。腹腔注射比较简单,只需要一人操作,操作者由左手抓住小鼠尾巴和颈部皮肤,将小鼠翻转过来,腹部向上,将抗原直接注射到腹腔。如果抗原混有弗氏佐剂,建议注射在左侧腹腔,如果采用右侧腹腔注射,则在免疫过程中,很容易导致小鼠脾脏与腹膜粘连的情况,造成后期取出脾脏麻烦。(3)尾静脉注射。个人觉得尾静脉注射是技术要求最高的一种注射方式,操作者需要固定小鼠,然后将抗原注射到小鼠尾部静脉(正中间那根血管)。小鼠尾静脉比较细小,一般新手很难操作成功,需要在其它小鼠身上多次尝试才可以进行免疫操作(站长自己尝试了十多次都未成功)。静脉注射抗原对抗原的要求更高,抗原必须不含去垢剂和其它有毒成份,否则极容易引起动物死亡,而且免疫剂量也不宜过大。(4)脾内注射。脾内注射是效果最好的免疫方式,因为这种方式使得脾细胞直接与抗原接触,所以很容易引起免疫应答反应。但是很多人都认为这种方式操作复杂,而且死亡率高,但是参考了一些文献,加上自已实践操作,站长自己总结出了一套比较好的办法,成功率基本上在百分之百。具体操作方法:先用乙醚或戊巴比妥钠进行麻醉,乙醚麻醉过程比较简单,技术含量低,对于初学者比较适用,推荐。事先准备一块棉花,将少量乙醚倒在棉花上,用一烧杯倒扣住,将小鼠也扣在烧杯下,一般在一分钟内小鼠就可以晕到,此时将小鼠取出,用胶带固定在木板或实验台上(腹部向下,背面向上。无需无菌),用手术剪刀剪开背部左侧皮肤(大至就是脾脏所在的位置,不要剪开内膜),剪开小口后,用手将剪口撕大看到腹膜内脾脏即可将用注射器刺穿腹膜,插入脾脏,直接注射抗原,抽出注射器。然后用胶水(推荐AB胶,五金店有卖的)将剪口周围的毛粘好,胶干后在伤口周围涂上抗生素即可,无需要无菌操作。由于需要用到胶水,所以手术前不要用酒精消毒。(5)小腿肌肉注射。这是康碧泉公司的Quickantibody佐剂独有的免疫方法,具体操作是:先抓紧小鼠,用无名指固定一只后腿,将小腿部分用酒精消毒,将混好佐剂的抗原(根据佐剂说明书抗原与佐剂等体积混合)直接注入到小腿肌肉,稍稍停顿后拔出注射器即可。完成首次免疫和加强免疫后,可以取出少量血清进行效价检测(参见多抗制备中的血清采集与检测),达到足够高的效价后即可进行冲击免疫,冲击免疫完成后,应在96小时内完成细胞融合,否则相应的B细胞数量会下降到未冲击前的水平。在单抗制备过程中,除了通过免疫动物得到可分泌抗体的B细胞外,还可以将未免疫的小鼠脾脏取出,在体外进行免疫,从而大大加快制备周期,其基本方法是:取出未免疫小鼠的脾脏,处理成为单个细胞,然后在完全培养基中培养,同时加入一定浓度的抗原刺激其产生抗体。需要注意的是,这种方法由于不存在完整的免疫应答路径,所以只能产生出亲和力不成熟的IgM型的抗体,大部分实验中基本不能使用这种抗体(除非是专门研究IgM抗体特性)。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制