当前位置: 仪器信息网 > 行业主题 > >

激光划片机

仪器信息网激光划片机专题为您提供2024年最新激光划片机价格报价、厂家品牌的相关信息, 包括激光划片机参数、型号等,不管是国产,还是进口品牌的激光划片机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光划片机相关的耗材配件、试剂标物,还有激光划片机相关的最新资讯、资料,以及激光划片机相关的解决方案。

激光划片机相关的资讯

  • 全球创新性飞秒激光蓝宝石切片机和蓝宝石划片机研发成功
    孚光精仪公司联合德国,俄罗斯和立陶宛合作伙伴历时2年研发的新一代飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机成功问世,将大幅度提高智能手机蓝宝石屏的加工效果和效率,据悉,这一新技术将在10月份向全球推广。这种飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机采用全球领先的工业级飞秒激光,突破飞秒激光成本高,效率低的缺点,革命性地提高蓝宝石划片和切割效果,没有毛刺,没有熔融问题产生。经过评估,这种飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机达到了预定研发目标,具有如下优势:不仅适合蓝宝石划片切割,还适合不同玻璃的加工满足不同形状切割需求高速划片切割,划片速度高达800mm/s光滑切片,粗糙度Ra1微米蓝宝石切片上无碎屑不需要化学蚀刻详情浏览: http://www.f-opt.cn/weinajiagong.htmlEmail: info@felles.cn 或 felleschina@outlook.com Web: www.felles.cn (激光光学精密仪器官网) www.f-opt.cn Tel: 021-51300728, 4006-118-227
  • 郑州先进微电子(新ADT)发布最新产品 8230系列12英寸全自动双轴划片机
    p style="text-align: center "img style="max-width:100% max-height:100% " src="http://106.54.196.49:8070/api/2020-10-30/1604027113969.jpg"//pp style="text-align: justify text-indent: 2em "10月29日,先进微电子装备(郑州)有限公司最新产品发布会在合肥举行,在本次发布会上先进微电子向业内各界展示了由ADT中国研发团队携手以色列ADT研发团队及英国LP研发团队精心打造的12英寸全自动双轴划片机。同时借此机会,先进微电子也亮相了一系列面向行业需求和应用场景的晶圆及封装模组的切割划片解决方案,以满足各家用户在半导体芯片生产过程中对于精度、效率和灵活性的更高需求。/pp style="text-align: justify text-indent: 2em "在本次发布会上,首先由ADT全球副总裁JESSE PARKER先生介绍了公司在国际、国内市场的拓展情况,对此次的新产品作了简要介绍。最后由先进微电子装备(郑州)有限公司董事长赵彤宇致辞,他提到,近两年整个国内半导体行业都面临着前所未有的压力,不管是从用户需求还是市场挑战,每一个业内人士都需要进行自我改变和产品升级,以达到突破性的成果。而这也正是先进微电子及其子公司一直以来的执着追求,不断为市场和客户提供高效、可靠、易于操控的高端切割划片机解决方案。/pp style="text-align: justify text-indent: 2em "作为一家中国企业,先进微电子装备(郑州)有限公司在成立初期,便由河南省政府、郑州市政府、上市公司光力科技、中科院微电子所下属基金等多家政府平台、企业平台和中国科学院平台共同出资构建,力在打造一个成熟的、能够在半导体芯片封测高端装备领域起到龙头作用的、专注于半导体设备研发、生产和销售的高科技企业。2019年10月,公司全资收购了全球第三大半导体切割设备生产商——以色列先进切割技术有限公司(ADT,Advanced Dicing Technologies)。收购完成后,在多方技术融合的同时公司大力投入创新研发,在结合国际与国内市场情况及客户需求的基础上,经过不到1年的时间就研发出12英寸全自动双轴划片机,实现了晶圆及封装模组切割划片的整机、技术方案、售后服务的全面国产化布局。/pp style="text-align: justify text-indent: 2em "ADT 8230是一款高效率、高精度、高性能、低使用成本的双轴(对向)全自动划片机。最大切割工件尺寸可达12英寸。8230系列使用最新开发的图形用户界面(GUI),17英寸触摸显示屏具有更好的灵活性和视觉效果。所配备的空气主轴转速可达60,000rpm/1.8KW,更换刀片时可锁定主轴,操作更快速、便捷,实现了晶圆等产品搬送、拉直、切割的全自动化。同时可基于自动刀痕检查功能进行自我调整,优化切割品质。在机器运转过程中具有切割过程信息记录功能、耗材(Blade)使用记录分析功能,设备生产数据记录分析功能和操作员生产数据记录分析功能,能够进行设备生产效率分析和人员绩效分析,大大提高了用户的生产管理效率和管理的精准度。/pp style="text-align: justify text-indent: 2em "ADT 8230采用17寸触摸屏,切割过程中可以同时监控机器运行状态;下拉式多信息显示界面,对机器状态可一目了然;追随式键盘设计,更高效的数据编辑;局部放大镜功能大幅提升对准精度;同时可根据用户的使用习惯对用户界面进行定制;在该设备的结构特点和优势方面,采用了软硬件均模块化的设计,更大功率的空气主轴,UV照射解胶,强制排风,去离子风扇,工作台无限制旋转等,还可快速增加联机联网功能。/pp style="text-align: justify text-indent: 2em "ADT作为世界三大切割划片系统供应商之一,所生产的设备在切割划片精度、效率、切割品质等方面处于世界领先水平,其设备被广泛应用于LED封装、LED砷化镓晶圆、分立器件晶圆、无源器件、微电子传感器、晶圆级相机模组、图像传感器、摄像机镜头、红外滤光片、光纤、射频通信、医疗传感器、组装与封装、磁头、硅片等领域。其客户涵盖华为、TE、Epson、Diodes、长电科技等60多家全球知名企业。/pp style="text-align: justify text-indent: 2em "收购之后,先进微电子主营ADT品牌的切割划片机、周边设备以及刀片等产品。销售总部(上海精切半导体设备有限公司)设立在上海浦东,在全球进行销售和售后服务的网点遍布于美国(亚利桑那州和宾夕法尼亚州)、中国台湾地区、菲律宾、欧洲(英国)和以色列等地;在苏州纳米城设有约500m2的千级洁净室及全套对晶圆和电子产品进行切割划片试验、设备DEMO的应用开发和客户培训的基地;在国内除上海的技术服务团队外,其服务网点和工程师遍布于苏州、天津、成都、深圳等地,可为大陆客户提供及时的技术服务。在未来,公司将整合国际化技术资源以及创新研发能力,努力实现中国半导体高端切割划片系统的国产化替代,积极迎接半导体行业即将带来的机遇与挑战。/pp style="text-align: justify text-indent: 2em "先进微电子表示,目前多台新设备ADT 8230已在多家国内知名半导体集成电路封测企业进行生产性试用与评测,已获得了这些用户的好评。/p
  • 中电鹏程已研发出第三代半导体晶圆划片机,预计年底量产
    据扬子晚报报道,中电鹏程已研发出第三代半导体晶圆划片机,晶圆吸真空后产品的平面度小于5微米,实现半导体“卡脖子”设备国产化替代,预计年底开始量产。图片来源:扬子晚报2020年9月,中电鹏程智能装备公司在南京江宁开发区揭牌运营,由中国电子信息产业集团有限公司下属“中电工业互联网有限公司”与“深圳长城开发科技股份有限公司”共同投资组建,是落实中国电子“两平台一工程”战略布局的标志性项目。据扬子晚报报道,中电鹏程相关负责人介绍,国内和国际巨头在第三代半导体以及装备研发方面正处于发展初期,基本处于同一起跑线,现在研发第三代半导体装备,就是想要实现弯道超车的目标。
  • 长光华芯即将登陆科创板 高功率半导体激光芯片前景可期
    3月15日,苏州长光华芯光电技术股份有限公司(以下简称“长光华芯”)刊登《发行安排及初步询价公告》《招股意向书》等公告文件,这意味着该公司已经启动发行,即将登陆科创板,将成为A股第一家半导体激光芯片上市公司。 长光华芯本次IPO发行募集资金重点投向科技创新领域的项目为“高功率激光芯片、器件、模块产能扩充项目”“垂直腔面发射半导体激光器(VCSEL)及光通讯激光芯片产业化项目”及“研发中心建设项目”。 其中,高功率激光芯片、器件、模块产能扩充项目总投资5.99亿元,包括购置厂房、MOCVD (外延生长)、流片、巴条上盘预排机、激光划片、自动粘片机等相关设备,整体扩大公司高功率半导体激光芯片、器件、模块产品的产能规模。VCSEL及光通讯激光芯片产业化项目投资3.05亿元,项目有利于实现VCSEL芯片和光通讯芯片产业化,拓展至消费电子、汽车雷达、光通讯等更多应用领域,该项目的实施能够丰富公司原有产品结构,为公司提供新的增长点。借助登陆资本市场的契机,长光华芯将进一步加大研发投入,对半导体激光芯片及高效泵浦技术、光纤耦合半导体激光器泵浦源模块技术和大功率高可靠性半导体激光器封装技术等激光领域前沿技术进行研究,打造可持续领先的研发能力和新方向拓展能力,助力高功率激光技术的创新发展。据悉,长光华芯聚焦半导体激光行业,始终专注于半导体激光芯片、器件及模块等激光行业核心元器件的研发、制造及销售,紧跟下游市场发展趋势,不断创新生产工艺,布局产品线,已形成由半导体激光芯片、器件、模块及直接半导体激光器构成的四大类、多系列产品矩阵,为半导体激光行业的垂直产业链公司。得益于前期大量的研发投入,2021年长光华芯实现营业收入4.29亿元、净利润1.15亿元,较2020年增长率分别达到73.59%和340.49%。
  • 2013年激光行业前景分析
    激光是20世纪60年代发展起来的一门新兴科学。它是一种具有亮度高、方向性好、单色性好等特点的相干光。  激光应用于材料加工,使制造业发生了根本性变化,解决了许多常规方法无法解决的难题。在航天工业中,铝合金用激光焊接的成功被认为是飞机制造业的一次技术大革命。激光加工技术在汽车工业中的使用,实现了汽车从设计到制造的大变化,优化汽车结构,减轻了汽车自重,最终使汽车性能提高,耗油量降低。激光精加工和激光微加工不仅促进了微电子工业的发展,而且为微型机械制造提供了条件。另外,传统加工方法大都为力的传递,因此加工速度受到限制,而激光加工更多地是光的传递,惯性小,柔性大,而且激光能量密度高,加工速度可以很快,激光加工被誉为“未来制造系统共同的加工手段”。总之激光加工技术在世界范围内的迅猛发展正在引起一场新的工业革命,最终使材料加工业从目前的电加工时代过渡到光加工时代。  2012年在全球经济低迷不振的大环境下,激光器制造商在“经济余震”中所经历的不确定性和担忧,在经济大衰退之后的几年内将依然存在。然而从长远销售预期来看,在很多几乎不受地域或者全球性经济衰退影响的领域,激光正在作为一种成熟的、对经济增长发挥重要作用的技术,呈现出上扬态势。尽管预计全球债务危机将会限制2013年的某些资本设备支出,但是激光器有望凭借“能实现制造自动化、提高效率、降低能耗,进而使企业在经济风暴中更具竞争力”的优势脱颖而出。  半导体制造业发展迅速,“绿色”技术无疑具有光明的未来,这就要求有新的激光加工工艺与技术来获得更高的生产品质、成品率和产量。除了激光系统的不断发展,新的加工技术和应用、光束传输与光学系统的改进、激光光束与材料之间相互作用的新研究,都是保持绿色技术革新继续前进所必须的。2013年激光技术在半导体行业将会取得怎样的成绩呢?  半导体市场:黯然神伤  虽然智能电子设备组件的微加工将继续为光纤激光器制造商带来利好势头,但是主要依赖于半导体资本设备采购的激光器制造商,将在2013年遭遇坎坷。  “随着半导体行业从45nm转向20nm甚至更高的节点,需要更多的制造步骤处理更多的层和新材料,这导致资本强度增加。”半导体设备暨材料协会(SEMI)行业研究与统计高级总监DanTracy表示,“2010年和2011年,半导体行业在产能扩充方面实现了坚挺恢复,同时也转向了更加先进的工艺技术。而2012年产能扩张的减少,为半导体行业带来了更多不确定性,一些分析师预计2013年半导体行业的资本支出将出现负增长。”Tracy还补充道,半导体资本设备市场存在着周期性,最近报道的设备数据反映了2012年下半年更加低迷的行业状况。2012年10月的订单出货比为0.75,订单量约比2011年10月下跌20%。  “对于微电子行业来讲,2012年将是一分为二的年头,”相干微电子部门营销总监DavidClark表示,“预计2013年传统消费电子产品,如笔记本电脑、PC、数码相机、硬盘驱动器和电视机将非常不景气,但是平板电脑和智能手机以及相关组件将会以惊人的速度增长。这无疑是个好消息,因为这些移动设备组件很多都是使用相干的激光器制造的,相干的这部分业务将会继续强劲增长。”Clark补充说,“如果基于Windows8的超级本和平板电脑在企业市场获得真正成功,相信这必将刺激2013年IC销售额的限制增长。”  ICInsihts公司也看到了类似趋势,其预计2013年电子设备的销售额将增长5%,2012年的增长率为3%。Clark对更长远的趋势也持乐观态度,他表示,“4G-LTE无线网络建设、互联网流量的持续增长、云计算的采用一级即将向450nm晶圆的迁移,所有这些都将促使未来几年内半导体资本支出方面出现重大投资。”  相干2012年第四财季(截至2012年9月29日)的销售额,从上年同期的2.08亿美元下降到1.89亿美元 与上个季度相比,订单量下降近23%。相比之下,Newport则由于研发市场和工业市场的强劲表现而实现了创纪录的销售额 当然半导体资本支出的疲软也使其受到了一定影响,其第四财季(截至2012年9月29日)微电子业务销售额比上年同期下降了9.7%,降至1.1亿美元。  作为一家主要为半导体行业提供光刻光源的供应商,Cymer公司2012年第三季度(截至2012年9月30号)的总营收约为1.32亿美元,基本与上年同期持平,但低于2012年第二季度1.49亿美元的总营收。2012年10月,Cymer公司被荷兰ASML公司以大约26亿美元的价格收购 2012年第三季度,Cymer出货了27套紫外系统,并向ASML交付了其首款极紫外光源,曝光功率为30W。  Cymer公司和日本Gigaphoton公司是业界领先的极紫外光源制造商,依据摩尔定律,他们会继续享受业务增长。但是研究超短、超高功率激光脉冲(如用于光与物质相互作用研究的极强光设施)的激光器制造商,正在寻求超越摩尔定律。  “早在2007年,来自美国能源部基础能源科学顾问委员会的一份报告就显示,当集成电路制造达到分子级或纳米级的时候,其将远远超越摩尔定律的限制。一个基于纳米芯片的超级计算机,可以舒适地握在掌中,且耗电极低。”CalmarLaser公司营销总监TimEdwards说,“这使得激光产业令人兴奋不已——没有激光发挥举足轻重的作用,分子尺度的未来将无法实现。飞秒光纤激光器制造商始终致力于提升脉冲到脉冲之间的稳定性,以满足眼科、光谱、DNA分析、分子成像、薄膜太阳能电池加工以及计量等应用的苛刻要求,所有这些都提供了广阔的科研激光市场,但是不知为何激光市场并未快速增长。”  随着激光技术的发展,激光技术必将在未来的半导体行业发展中扮演越来越重要的角色。接下来为激光技术在半导体行业的一些应用:  1 激光技术在晶片/芯片加工领域的应用  1.1在划片方面的应用  划片工艺隶属于晶圆加工的封装部分,它不仅仅是芯片封装的关键工艺之一,而是从圆片级的加工(即加工工艺针对整片晶圆,晶圆整片被同时加工)过渡为芯片级加工(即加工工艺针对单个芯片)的地标性工序。从功能上来看,划片工艺通过切割圆片上预留的切割划道(street),将众多的芯片相互分离开,为后续正式的芯片封装做好最后一道准备。  目前业界讨论最多的激光划片技术主要有几种,其主要特征都是由激光直接作用于晶圆切割道的表面,以激光的能量使被作用表面的物质脱离,达到去除和切割的目的。但是这种工艺在工作过程中会产生巨大的能量,并导致对器件本身的热损伤,甚至会产生热崩边(Chipping),被剥离物的沉积(Deposition)等至今难以有效解决的问题。 与很多先行技术不同,传统旋转砂轮式划片机的全球领导厂商东京精密公司和日本著名的激光器生产商滨松光学联合推出了突破传统理念的全新概念的激光划片机MAHOH。其工作原理摒弃了传统的表面直接作用、直接去除的做法 而采取作用于硅基底内的硅晶体,破坏其单晶结构的技术,在硅基底内产生易分离的变形层,然后通过后续的崩片工艺使芯片间相互分离。从而达到了无应力、无崩边、无热损伤、无污染、无水化的切割效果。  1.2在晶片割圆方面的应用  割圆工艺是晶体加工过程中的一个重要组成部分。早期,该技术主要用于水平砷化镓晶片的整形,将水平砷化镓单晶片称为圆片。随着晶体加工各个工序的逐步加工,在各工序将会出现各种类型的废片,将这些废片加工成小直径的晶片,然后再经过一些晶片加工工序的加工,使其变成抛光片。  传统的割圆加工方法有立刀割圆法、掏圆法、喷砂法等。这些方法在加工过程中对晶片造成的损伤较大,出片量相对较少。随着激光加工技术的发展,一些厂家对激光加工技术引入到割圆工序,再加上较为成熟的软件控制,可以在一个晶片上加工出更多的小直径晶片。  2 激光打标技术  激光打标是一种非接触、无污染、无磨损的新标记工艺。近年来,随着激光器的可靠性和实用性的提高,加上计算机技术的迅速发展和光学器件的改进,促进了激光打标技术的发展。  激光打标是利用高能量密度的激光束对目标作用,使目标表面发生物理或化学的变化,从而获得可见图案的标记方式。高能量的激光束聚焦在材料表面上,使材料迅速汽化,形成凹坑。随着激光束在材料表面有规律地移动同时控制激光的开断,激光束也就在材料表面加工成了一个指定的图案。激光打标与传统的标记工艺相比有明显的优点:  (a)标记速度快,字迹清晰、永久   (b)非接触式加工,污染小,无磨损   (c)操作方便,防伪功能强   (d)可以做到高速自动化运行,生产成本低。  在晶片加工过程中,在晶片的特定位置制作激光标识码,可有效增强晶片的可追溯性,同时也为生产管理提供了一定的方便。目前,在晶片上制作激光标识码是成为一种潜在的行业标准,广泛地应用于硅材料、锗材料。  3 激光测试技术  3.1激光三角测量术  微凸点晶圆的出现使测量和检测技术面临着巨大的挑战,对该技术的最基本要求是任一可行的检测技术必须能达到测量微凸点特征尺寸所需的分辨率和灵敏度。在50μm节距上制作25μm凸点的芯片技术,目前正在开发中,更小凸点直径和更节距的技术也在发展中。另外,当单个芯片上凸点数量超过10000个时,晶圆检测系统必须有能力来处理凸点数迅速增加的芯片和晶圆。分析软件和计算机硬件必须拥有足够高的性能来存储和处理每个晶圆上所存在的数百万个凸点的位置和形貌数据。  在激光三角检测术中,用一精细聚焦的激光束来扫描圆片表面,光学系统将反射的激光聚焦到探测器。采用3D激光三角检测术来检测微凸点的形貌时,在精度、速度和可检测性等方面,它具有明显的优势。  3.2颗粒测试  颗料控制是晶片加工过程、器件制造过程中重要的一个环节,而颗粒的监测也就显得至关重要。颗粒测试设备的工作原理有两种,一种为光散射法 另一种为消光法。  对于悬浮于气体中的颗粒,通常采用光散射法进行测试,同时某些厂家利用这种工作原理生产了测试晶片表面颗粒的设备 而对于液体中的颗粒,这两种方法均适用。  4 激光脉冲退火(LSA)技术  该技术通过一长波激光器产生的微细激光束扫描硅片表面,在一微秒甚至更短的作用时问内产生~个小尺寸的局域热点。由于只有上表面的薄层被加热,硅片的整体依然保持低温,使得此表面层的降温速率几乎和它的升温速率一样快。从固体可溶性的角度考虑,高峰值温度能够激活更多的掺杂原子,此外正如65nm及以下工艺所求的那样,较短的作用时间可以使掺杂原子的扩散降到最低。退火处理的作用范围可以限制在硅片上的特定区域而不会影响到周围部位。  该技术已经应用于多晶硅栅极的退火,在减少多晶硅的耗尽效应方面取得了显著的效果。K.Adachi等将闪光灯退火和激光脉冲退火处理的MOS管的Ion/Ioff进行了比较,在pMOS-FET和nMOSFET中,采用激光脉冲退火处理的器件的漏极电流要大10%,器件性能的增强可以直接归因于栅电极耗尽效应的改善和寄生电阻的减小。
  • 大族激光显视与半导体相城产业化项目签约落地
    1月22日,今日相城政务发布消息显示,中国激光装备行业领军企业大族激光科技产业集团股份有限公司“牵手”苏州相城!大族激光显视与半导体相城产业化项目签约落地。据了解,相城区是江苏省苏州市下辖区,位于苏州市中心。2017年12月14日,获评中国工业百强区。2018年10月,入选2018年度全国投资潜力百强区、全国科技创新百强区、全国绿色发展百强区。 2018年10月22日,入选2018年全国农村一二三产业融合发展先导区创建名单。2018年11月,入选2018年工业百强区。2019年10月,成为全国综合实力百强区排行榜(全国百强区)第30名。2019年10月,被评为2019年度全国投资潜力百强区第56名。2019年度全国新型城镇化质量百强区、2019年度全国科技创新百强区。而大族激光科技产业集团股份有限公司,1996年创立于中国深圳,是亚洲最大、世界排名前三的工业激光加工设备生产厂商。目前全球员工超过1万人,总资产逾70亿元。大族激光显视与半导体装备事业部成立于2010年,聚焦于LED、面板、半导体、光伏、消费类电子等行业的精细微加工和相关联行业的测量、检测和自动化解决方案,是国内首家半导体激光开槽设备、激光解键合设备研发生产制造商。据悉,该项目计划总投资6000万美元,其显视与半导体装备事业部将在相城经开区投资半导体封测前段晶圆研磨、划片工艺的激光切割项目。此次项目签约,可谓是强强联合。
  • 计划总投资4.3亿元!圣昊光电芯片检测及关键设备研发生产基地项目开工
    4月23日,河北圣昊光电科技有限公司投资建设的芯片检测及关键设备研发生产基地项目开工。该项目位于石家庄市高新区,为战略性新兴产业项目,已列入河北省2022年省重点建设项目,计划总投资4.3亿元,建设规模约4.4万平方米。芯片检测及关键设备研发生产基地项目主要用于光通信芯片检测及关键设备研发生产。项目建成后,在优化办公环境、扩大生产规模的同时,将有助于吸引全球优秀科技人才,使科技成果快速转化为生产力,为企业和社会创造良好的经济和社会效益。据了解,河北圣昊光电科技有限公司成立于2017年,注册资金3600万元,位于石家庄鹿泉经济开发区,现有职工50人,其中研发人员20名,公司是省高新技术企业、国家科技型中小企业,主要从事光通信芯片测试设备、划片裂片设备、排Bar设备制造和激光器、探测器、双抛片的分割、外观检测、电性能测试等代工服务,通过质量管理体系认证、武器装备质量管理体系认证,欧盟CE产品认证,建有4条芯片产品代工生产线,具备年加工激光器收光(PD)芯片12亿颗、激光器发光(LD)芯片1.2亿颗能力;建有芯片测试和划片裂片设备试验组装车间,具备年生产测试机150台、划片机裂片机100套能力。2020年4月以来先后有SY-0110A化合物半导体芯片划片机、芯片测试机、PD接收器等9款产品实现产业化。主要客户为中国电科13所、44所、华为海思光电子、仕佳光电、厦门三安集成电路等企业。2018年,公司实现营业收入91.5万元,2019年实现营业收入134.6万元,2020年1-10月实现营业收入2000万元,利润400万元,全年预计达到6000万元,利润1200万元,明年预计营收可达到3亿元,利润6000万元。圣昊广电首席技术官曾在国外工作23年,是业内著名芯片评测专家,公司与清华大学、北京理工大学、西安电子科技大学、石家庄铁道大学开展紧密合作,并与西安电子科技大学郝跃院士团队签署合作协议。圣昊光电的低温LD芯片测试机、双温LD芯片测试机产品已进入华为公司设备供应链,成为华为光通信芯片检测设备国内唯一合格供应商。
  • 华丽回归,助力智能制造,探索激光新应用,2022华南激光展盛大开幕
    11月15日华南先进激光及加工应用技术展览会终于,终于,终于不负众望如约而至了!!!这一天,虽然等了两年,但是,今年展会以新身份、新面貌再次回归业内视野第二十四届中国国际高新技术成果交易会成员展——2022华南国际智能制造、先进电子及激光技术博览会(简称:LEAP Expo)于11月15日,在深圳国际会展中心(宝安新馆)盛大开幕。而作为LEAP Expo成员展之一,华南先进激光及加工应用技术展览会(简称:华南激光展)与LEAP Expo旗下成员展慕尼黑华南电子展及慕尼黑华南电子生产设备展,并与同期举办的华南电路板国际贸易采购博览会、中国(深圳)机器视觉展暨机器视觉技术及工业应用研讨会(VisionChina深圳)共同亮相高交会。LEAP Expo为制造业不同细分领域的专业观众集中呈现了表面贴装、点胶注胶及材料、线束加工、电子组装自动化、机器人及智能仓储、质量控制、元器件制造、半导体、传感器、电源、无源元件、连接器、测试测量、PCB、汽车电子、激光智造技术及装备、光源和先进激光器件、激光加工控制及配套系统、工业智能检测与质量控制技术、激光加工服务、3D打印/增材制造技术,机器视觉核心部件和辅件等多个板块的新品及技术研发成果,联合产业优质企业,助力高交会在智能制造领域主题的呈现与技术展示。联动大湾区,响应“20+8”产业集群目标聚焦消费电子、半导体、锂电、医疗、智能检测等应用领域当前,粤港澳大湾区是目前中国最具活力和最国际化的地区之一,有着完整的机器人及智能制造产业链,产业集群协同效应日益凸显。在以“内循环”为主体,“双循环”相互促进的发展格局推动下,深圳处于内外循环交汇的重要位置,是大湾区建设的重要引擎。今年,深圳提出“20+8”产业集群发展目标:着力推动网络与通信、软件与信息服务、智能终端、超高清视频显示、新能源、海洋产业等增加值千亿级产业集群发展优势更加凸显,半导体与集成电路、智能传感器、工业母机等产业短板加快补齐,智能网联汽车、新材料、高端医疗器械、生物医药、数字创意、现代时尚等产业发展水平显著提升,同时也是为粤港澳大湾区先进制造业核心竞争力的提升注入强劲动力。华南激光展立足大湾区,背靠华南雄厚的产业基础与市场资源,深度剖析先进激光器,诠释未来激光新应用。展会汇聚了多家知名企业,为大家呈现智能检测、激光材料与配件、激光器、激光设备与控制系统等激光智能制造上下游产业链一站式采购平台,携手大族、华工、二十三所、通快、MKS、隐冠半导体、韵腾、热刺、创鑫、普雷茨特、光惠、锐科、步波、泰德、华日、飞博、汉立、汇乐、圣德科、中图仪器、滨松、佳能、永新、凌云光、凯普林、 镭宝、Ekspla、长飞光坊、炬光、奥创、晨锐腾晶、灏克、大科激光、卓镭、嘉强、东露阳、Light Conversion、仪景通、盛镭、德擎、诺派、贝尔金、星汉、铟尼镭斯、鼎鑫盛、易安锐、视百科、睿达、日月新、斯派特等激光产业链内知名企业,联袂演绎激光技术在消费电子、半导体、锂电、医疗、智能检测等重点终端应用场景的加工展示与创新发展。激光+智能制造,跨界融合看激光创新技术及智能检测展示区智能制造是“中国制造2025”主攻方向,是未来制造业发展的重大趋势和核心内容。通过跨界融合打开了智能制造升级的新出口,加速中国制造2025的进一步落地。深圳是国内激光和增材制造产业的重要集聚区,已初步形成覆盖材料、器件、软件、设备和应用服务全链条的产业生态体系。今年深圳出台的行动计划中指出“行业应用深度融合”,到2025年,围绕3C电子、新能源、新型显示等优势领域,将打造一批“激光+”和“3D打印+”智能制造应用示范项目。建成若干检验检测、试验验证、应用研发等产业基础设施和公共服务平台,形成覆盖源头创新、智能制造、创新应用的产业发展生态。华南激光展顺势而为,为强化创新驱动,推动技术跨越发展,提升“基础与专用材料-关键零部件-高端装备与系统-应用于服务”的激光产业链整体创新效能,精心打造“激光创新技术及智能检测展示区”,携手通快、MKS、普雷茨特、TOPTICA、滨松光子、奥创、光惠、蓝菲、德擎集中展示激光创新技术、工业智能检测技术及核心部件,内容包括光源和先进激光器件、激光加工控制及配套系统、检测仪器和设备等,应用于激光加工制造的AOI缺陷检测、产品表面及外观检测、零件的几何尺寸和误差测量等。现场通过各类演示模式及配合专人讲解,为消费电子、微电子/半导体、集成电路、新能源、汽车工程、医疗等下游用户带来激光深度应用和智能检测技术方案。Start-ups初创专区氛围热烈,企业前景看好作为创业浓度强、创业氛围好的城市-深圳,指引着科技的创新和发展。深圳人社部门为了中小企业的创业之路更加顺利,出台了一系列政策。为了更好地赋能初创企业,匹配专业领域买家或企业技术人才。本届华南激光展携手慕尼黑上海光博会,推出“初创企业助力计划”,发挥平台优势,帮助初创企业扩大品牌影响力,提供宣传渠道,寻找合适人才。麓邦、久渡科技、康克科技、法拉第、佛山帕科斯、蓝溪华兴光电、中辉激光、光缘实业、杰昇精密五金、长春飞鹰、广东艾莫讯等11家初创规模的企业齐聚“Start-ups初创专区”,纷纷拿出了各自专注领域的引以为豪的展品向专业观众解说,应用领域广泛,产品种类繁多,甚至已经远销海外,涵盖光学元件、光学模组、光学系统及仪器、激光腔体、特种光纤处理设备及高功率光纤器件、保偏光纤产品、高端激光器、超短脉冲光纤激光器、固体激光器、半导体激光器老化系统、半导体激光器测试系统、半导体激光器、高功率皮秒激光器、激光打标,激光焊接、激光清洗控制、精密机械零部件、激光切割机、激光清洗机等。可以说这些初创企业都是“未来之星”,期待他们在激光市场中能继续发光发热,为行业发展贡献更多力量,创造更多技术可能,甚至引起行业变革。头脑风暴,探索激光工艺赋能消费电子创新升级随着全球消费电子产业迅速发展,消费电子产品朝着集成化、精密化、智能化的方向升级,电子产品的内部构建也愈发精巧,对制造过程中的高效率、高精度、热影响区小、无污染等要求越来越高,激光工艺的发展正为消费行业的精密加工带来了更优的解决方案。消费电子产品制造对激光工艺的需求既是生产制造升级的需求,也为华南地区的消费电子创新智造提供持续动力。华南激光展开幕当日,《激光工艺赋能消费电子创新制造研讨会》同期举办。针对激光技术在消费电子产品制造行业的创新应用和解决方案展开话题讨论,深度探索消费电子智能制造中对激光工艺需求和难点,促进激光技术的技术革新和设备升级。大会为消费电子领域用户寻找新技术、了解行业先机、与业内专家近距离交流提供了一个绝佳平台。浩浩荡荡买家团,商贸配对不可少为进一步帮助展商拓展商机、获取意向订单、提高参展效率,华南激光展主办方联合行业协会、媒体及相关业界机构共同邀请了由消费电子、微电子、工业电子等应用领域人士组成的专业买家团,莅临参观展会,更在展会现场专设商贸配对区,基于展前供需双方线上填写的采购及配对需求,特邀有采购意向的决策层与展商一对一线下开展贸易洽谈。2022华南激光展,作为第二十四届高交会智能制造系列展之一,依托于高交会的平台优势,以推动“激光+智能制造”深度融合为目标,深挖激光产业链先进技术产品,配套同期论坛、商贸配对等丰富同期活动,以期汇聚更多行业优质资源、精准对接垂直领域核心业务,为上下游企业提供综合性服务商贸平台。明日会议预告目前,5G、智能汽车、智能制造、人工智能、物联网等技术的快速发展,对各类芯片的旺盛需求,正成为驱动半导体制造业进一步增长的重要力量。另一方面,由于缺乏核“芯”技术而带来的产业发展卡脖子问题,以及当前因为芯片短缺问题而导致的生产停滞问题,都在促使国内芯片制造业奋力图强!而在半导体芯片的制造及封装测试过程中,激光技术正在越来越多地参与其中,从晶圆的光刻到切割划片,从清洗到钻孔,激光已经成为半导体制造中不可或缺的关键工具。本次研讨会雅时国际商讯、《激光世界》杂志将联合华南先进激光及加工应用技术展览会,围绕“激光技术在半导体芯片制造中的应用”这一话题展开讨论。逛展那么累怎能不奖励自己?别忘了明天前往6H44展位参与幸运大抽奖活动精美礼品等你来拿走!速速来试试好运吧!此外,观看展会云直播且转发朋友圈也有好礼相送啦!
  • 首块激光器和光栅集成的硅芯片问世
    据美国物理学家组织网8月10日(北京时间)报道,新加坡数据存储研究所的魏永强(音译)和同事首次构建出一种由一个激光器和一个光栅集成的新型硅芯片,其中的光栅能让光变得更强并确保激光器输出1500纳米左右波长的光,而通讯设备标准的操作波长正是1500纳米。  光纤在传输数据时需要让不同波长的激光束同时通过,但这些不同波长的光波容易相互串扰,因此需要对激光器进行精确谐调,让其发出特定波长的光以避免这种串扰。使用光栅可以解决这个问题。  科学家们之前使用传统方法试图将一个激光器和一个光栅集成于一块硅芯片中,但都没有获得成功。激光器一般由几层半导体薄层构成,而光栅则由硅蚀刻而成,所有的材料都必须精确地对齐。传统的方法是,将激光器和光栅种植于一块独立的半导体芯片上,整个过程大约需要50多步,而且要求硅晶表面的粗糙度非常低,小于0.3纳米。  在新硅芯片中,激光器置于一面镜子和一个弯曲的光栅之间。光栅就像一块具有选择能力的镜子,仅仅将某一特定波长的光反射回激光器中,这样就制造出了一个光共振腔,使激光活动只针对特定波长,因此提供了通讯领域要求的精确性。  魏永强对这款新芯片进行测试后发现,其性能优异,发出光的功率为2.3毫瓦,而且只发出特定波长的光。  魏永强表示:“从实际应用角度来考虑,我们需要将多光源激光器集成在一块芯片上,因此将多个激光器和光栅整合在一块硅芯片上将是我们下一步面临的挑战。我们计划通过利用能处理更广谱波长的同样的光栅结构来按比例扩展最新的单波长激光器。新设备标志着我们很快就能对集成在单硅芯片上的通讯设备进行商业化生产。”
  • 手持测温应用激光篇|热成像在激光器制造、激光切割、焊接时如何应用?
    据激光加工专委会统计,2023年中国激光产业产值约980亿元,直逼千亿元大关。 据MRFR数据显示,预计2026年全球激光加工市场规模将达到61.1亿美元。 中国激光产业正处于成长期,预计2024-2029年,我国激光产业市场规模将以20%左右的增速增长,到2029年产业规模或超7500亿元。可见,激光产业有着巨大的市场潜力。激光技术市场需求已成为国内外企业重点关注的话题之一。我国激光技术的市场需求主要在哪里?中国激光技术目前已应用于光纤通信、激光切割、激光焊接、激光雷达、激光美容等行业,涉及多个领域,形成了完整的产业链。激光切割激光焊接激光美容比如在工业制造领域,激光已成为需求极大的一种工具。用户可利用激光束对材料进行切割、焊接、打标、钻孔等,这类激光加工技术已在汽车、电子、航空、冶金、机械制造等行业得到广泛应用。新能源汽车制造激光打标激光钻孔激光这个“潜力股”跟热成像有关系吗?在激光这个庞大的产业链中,激光器和激光设备两个环节的竞争尤为激烈。激光器是产生、输出激光的器件,是激光设备的核心器件。从激光器来看,光纤激光器由于具备电光转换效率高、光束质量好、批量使用成本低等优势,可胜任各种多维任意空间加工应用,成为目前激光器的主流技术路线,在工业激光器中占比过半。对此值得关注的是,在光纤激光器的生产质检过程中,热成像仪可以发挥极大的应用价值。比如在大功率光纤激光器的制造过程中,严重的缺陷会导致光纤熔接处异常发热,从而对激光器造成损坏或烧掉热点。因此,光纤熔接接头的温度监测是光纤激光器制造过程中的一个重要环节。使用红外热像仪可以实现对光纤熔接点的温度监测,从而判断产品质量是否合格。在光纤激光器生产质检中,热成像还可以如何发力?先简单了解下,光纤激光器的组成和工作流程:注解:单条激光的功率有限。在泵浦和合束器的双重加成下,激光的输出功率会变得更大。在上述流程中,热成像可以有如下应用:① 光纤熔接点质量监测光纤之间会有很多焊接点,光纤熔接处可能存在一定尺寸的光学不连续性和缺陷,借助热成像仪可以监测光纤熔接点的温度有无异常,判断熔接点是否存在缺陷,提高产品质量。② 泵浦检测泵浦在工作时会产生大量热量,其温度会直接影响芯片输出的激光波长,使用热成像仪可以对每台泵的来料进行质量检测,保证激光器质量。③ 合束器检测通过热成像仪,既可以判断合束器温度是否异常,也可以检测合束聚合后,输入和输出光纤受热是否均匀。
  • 生物医学玻璃的激光微加工—芯片实验室
    相信大家在部分科幻电影或动漫中,常常能看到可以植入人体的芯片,用来监控身体各个参数、增强人体机能和神经反应。芯片一旦植入,普通人就变身成为神秘特工或战士。而现实中随着马斯克的脑机接口正在一步步迈向临床,AlphGo把人类棋手完虐等以前只能在科幻电影中见到的“未来科技”,逐步在现实生活中出现的时候,拥有“小身材有大智慧”的AI芯片似乎也能够梦想照进现实了。事实上,如今已有一些“芯片实验室(Lab-on-a-chip)”出现了,并且其发展速度是非常快的!芯片实验室什么是“芯片实验室(Lab-on-a-chip)”?简单地说,能够将整个在实验室中进行的基本操作单位集成到简单微系统上的技术就叫“芯片实验室”。“芯片实验室”中的芯片是作为流体在其中流动的微通道图案,可被模塑或刻蚀。微通道和外部宏观环境之间的连接需要通过若干孔,这些孔穿透芯片,具有不同的尺寸,用于将流体注入芯片或从芯片中移除。在微流控芯片中,根据实验需要,流体被混合、分离或引导。终结果可形成自动复合系统,从而实现高通量检测。在生物医学应用领域,芯片实验室可以实现快速诊断。芯片实验室技术有望成为一种重要的诊断工具。这些微型化的设备使医疗保健服务提供方可以使用非常少量的试剂和测试样本执行一系列诊断测试。此外得益于它们的便携性,还可以在远离实验室环境的现场进行测试。制作芯片实验室(Lab- on-a-chip)或微流控芯片(Microfluidic chip)的材料主要是玻璃,受限于芯片的微尺度特性,在制备过程中,对玻璃进行激光微加工有着很高的要求。制作芯片实验室的大挑战之一是在玻璃芯片内部加工高精度管道、容器和阀门。挑战:玻璃微加工由于其脆性和透明性,玻璃中进行微小的特征加工进行是相当困难的。如果使用常规工具手段,实际上是不可能的。但是快激光器可以胜任这种加工。当脉冲持续时间低于几十皮秒时,激光与材料的相互作用进入冷烧蚀状态,加工质量和精度会变得很高。常规的微制造方法,例如光刻,压印和软蚀刻,已经用于制备微流体芯片。然而,当要实现具有多功能集成的复杂微流控芯片时,这些方法将面临巨大挑战,因为它们需要太多工艺步骤,并且成本很高。刻蚀来啦▲由NKT Photonics的ORIGAMI XP飞秒激光制备的芯片实验室样品大功率快激光脉冲穿透玻璃。紧聚焦的飞秒激光脉冲可以经济地生产具有多功能的通用微流控芯片。短脉冲宽度提供了令人难以置信的峰值功率,即使在透明材料中,也可以进行表面和块状材料内部的改性以进行划线。▲飞秒激光加工的芯片沟道特写快激光确保加工的高精度和高质量。通过利用激光的高度空间选择性,可以将相互作用区域地设置在材料的特定局部区域。这使得飞秒加工技术可以在透明材料中以微尺度对复杂的三维形状进行非常高分辨率的图案化和雕刻。▲深度小于10 μm的沟道特写NKT快激光器可以实现非常精细的深度和通道宽度控制飞秒级短脉冲宽度比材料中的电子-声子耦合过程都短,因此短的飞秒脉冲宽度,意味着在飞秒时间尺度传递能量,这能很好的抑制热影响区的形成和热损害。这种“冷烧蚀”方式实现了高精度和高分辨率的微加工处理,并具有的处理可靠性。紧密聚焦的光束可以在微尺度上非常高分辨率地对复杂形状进行微加工。▲用ORIGAMI XP飞秒激光处理过的芯片实验室样品的特写图片展示为芯片中直径约0.6 mm的圆形储集层NKT Photonics:我们来提供NKT Photonics的快激光提供的短脉冲非常适合用于制备芯片实验室器件。我们强烈建议将ORIGAMI XP用于玻璃和其他透明材料的激光加工。ORIGAMI XP是一款集成、单箱、微焦级飞秒激光器。激光头、控制器和空气冷却系统都集成在一个小巧而坚固的包装中,体积小,甚至可以放在手提行李中! ORIGAMI XP系统基于紧凑的啁啾脉冲放大技术平台,能够在1030 nm处提供高达75μJ的脉冲能量,5 W的平均功率以及小于400 fs的脉冲持续时间。 特点:• 风冷,单箱体,易于集成• 400 fs标准脉冲宽度• 5 W / 75 μJ @ 1030nm• 2.5 W / 40 μJ @ 515 nm• 1 W / 20 μJ @ 343nm• 单发(Single-shot)和按需脉冲(Pulse-on-Demand)• 双输出波长模块• 的脉冲能量和指向稳定性• 工业,坚固的设计• 可以任意方向安装• 实时脉冲能量测量和控制?• 高可靠性• 亦可用水冷 北京凌云光技术集团作为NKT Photonics公司在中国的战略合作伙伴,多年的合作中NKT Photonics公司与凌云始终如一,为客户不断提供更稳定、更先进、更前沿的技术,如果您对以上产品感兴趣,请拨打400 898 0800 电话问询!
  • 首个集成在铌酸锂芯片上的激光器面世
    美国哈佛大学科学家在最新一期《光学》杂志上撰文称,他们研制出了首个集成在铌酸锂芯片上的激光器,为高功率通信系统、全集成光谱仪、光学遥感,以及量子网络的高效变频等应用铺平了道路。研究人员解释称,长距离通信网络、数据中心光互连和微波光子系统都依赖激光来产生光载波以用于数据传输。但大多数情况下,激光器是独立设备,位于调制器外部,这会使整个系统更昂贵,且稳定性和可扩展性也较差。在最新研究中,哈佛大学工程与应用科学学院(SEAS)的研究人员与行业合作伙伴携手,在铌酸锂芯片上开发了第一台全集成高功率激光器。他们将小型但功能强大的分布式反馈激光器集成在芯片上。这些激光器位于蚀刻在铌酸锂芯片内的小井或沟槽中,且与铌酸锂内的50千兆赫兹电光调制器相结合,构建了一个高功率发射器。最新研究资深作者马科隆卡尔说:“集成铌酸锂是开发高性能芯片级光学系统的重要平台,但将激光器安装到铌酸锂芯片上已被证明是一个极大的挑战。在这项研究中,我们借助纳米制造技巧和技术,克服了这些挑战,实现了在薄膜铌酸锂平台上集成高功率激光器的目标。”最新研究第一作者、SEAS研究生阿米拉桑沙姆斯安萨里说:“集成高性能即插即用激光器将显著降低未来通信系统的成本、复杂性和功耗。我们最新研制出来的这款集成激光器可以集成到更大的光学系统中,用于传感、激光雷达和数据通信等一系列应用。”研究团队强调说,将薄膜铌酸锂器件与高功率激光器相结合,是朝着大规模、低成本、高性能发射阵列和光网络方向迈出的关键一步。他们计划继续提高激光器的功率和可扩展性,以使其能应用于更多领域。
  • 高效链接供需两端,开启智能制造新篇章,2022华南激光展圆满闭幕
    11月17日,第二十四届中国国际高新技术成果交易会成员展——2022华南国际智能制造、先进电子及激光技术博览会(简称:LEAP Expo)终于在深圳国际会展中心(宝安新馆)圆满闭幕啦!LEAP Expo下辖慕尼黑华南电子展、慕尼黑华南电子生产设备展、华南先进激光及加工应用技术展览会及同期举办的中国(深圳)机器视觉展暨机器视觉技术及工业应用研讨会(VisionChina深圳),华南电路板国际贸易采购博览会共同亮相第二十四届高交会。五展联动,且依托高交会平台,为智能制造相关业界同仁们奉献了一场能够饱览技术、了解趋势、沟通商贸、促进合作的秋季盛宴。2022 LEAP Expo大数据80000平米展示面积1100家参展商及品牌LEAP Expo通过十多个特色展区,联合产业优质企业,集中呈现了表面贴装、点胶注胶及材料、线束加工、电子组装自动化、机器人及智能仓储、质量控制、元器件制造、半导体、传感器、电源、无源元件、连接器、测试测量、PCB、汽车电子、激光智造技术及装备、光源和先进激光器件、激光加工控制及配套系统、工业智能检测与质量控制技术、激光加工服务、3D打印/增材制造技术,机器视觉核心部件和辅件等多个板块的新品及技术研发成果,同时配套智慧汽车、ADAS与自动驾驶、电动车驱动与充电技术、5G+工业互联网、第三代功率半导体、嵌入式系统、物联网、医疗电子、碳中和碳达峰、点胶与胶粘剂技术、电子制造技术、半导体领域扇出型封装、3C柔性制造、数字化工厂、汽车线束加工、激光技术聚焦行业应用、机器视觉与5G、人工智能、边缘计算、PCB企业供应链管理、安全生产等热门话题举办不同主题的行业论坛与活动,为专业观众带来丰富参展体验。慕尼黑展览(上海)有限公司首席运营官路王斌先生表示:“华南地区是备受关注的制造业核心地。激光技术相比许多传统制造技术更具成本效益。华南制造业转型升级对激光技术的市场需求量猛增,其中3C和电子行业就是一个非常大的应用场景。华南激光展不仅是展示激光技术、设备和器件,更是联动激光产业链的供应端和应用终端,提供更多创新前沿的激光解决方案,希望能促进垂直市场的合作、产生实际效能。”整合行业资源,推动智能制造开启新篇章激光技术以其优异性、高效率等特性正不断帮助汽车、电子、医疗、新能源、PCB、通信、家电、照明等行业实现制造工艺升级。经过多年的迅猛发展,我国已经成为激光产业的大国,激光产品国产化实现了大跃进,为国内智能制造发展提供了强大武器。高交会作为中国高新技术领域对外开放的重要窗口,集中展示新一代信息技术、生物技术、新能源、新材料、高端装备、绿色环保、航空航天等战略性新兴产业科研成果及先进技术。今年高交会携手华南先进激光及加工应用技术展览会,链接多方行业资源,为满足激光产业链企业的成果展示、产品发布、接洽贸易等需求提供了更高端的商贸平台,也为广大华南地区的激光技术潜在用户寻找个性化的产品及行业解决方案拓宽了通道。展会现场各知名品牌展商大放异彩,充分呈现激光技术在消费电子、半导体、锂电、医疗、智能检测等重点终端应用场景的创新发展。大族激光每年都有参与华南激光展,而今年,大族激光带来的是国内领先完全拥有自主知识产权一款半导体封测领域明星产品——“悍狮”系列高速高精度全自动半导体焊线机。现场引来一片驻足咨询。集团品牌推广运营部部门负责人叶创波说到,“这款产品适合于目前主流封装形式,包括分立器件和集成电路封装,填补了国内空白,其技术与工艺水平接近或达到目前国际先进水平。”此外,他还表示:“大族激光在去年做了一次大的组织调整,分拆出100+个产品中心,相当于服务于100+个行业客户。公司加大了推广力度,期望着能在行业重点展会亮相,华南激光展也是我们期待的一大盛会。从现场的情况来看,无论是人流和展商质量都超预期。”可应用于微电子/半导体、集成电路及医疗/生物技术的复合式二维平台是隐冠半导体推出的二维机械导轨+空气轴承复合式运动平台。公司总经理吴立伟向前来咨询的买家介绍道:“该平台其采用模块化、正交性等设计理念,包含YG的MZT模块和复合式XY台模块。MZT模块集成在复合式XY台模块之上,能实现X、Y、Z和T轴4自由度的高精度、高刚度直线和旋转运动。MZT模块的垂向采用了独特的大行程磁浮重力补偿技术,降低了垂向电机的载荷,很大程度地提高了垂向运动性能和寿命。同时,复合式XY台模块采用驱动质心匹配、柔性龙门以及轻量化设计技术,具有降低对对高精度机械导轨的偏质心冲击,提高运动系统的可靠性和寿命的能力,并具有对Y1及Y2电机轻微平移不同步的修正功能。”上海隐冠半导体技术有限公司总经理吴立伟:“我们很感谢主办方周密的组织。隐冠半导体这次带来了很多先进技术产品,希望通过华南激光展这个平台服务于华南地区的客户,对展会的期望很大,收获也颇丰。”提到3D打印,不得不推出创鑫激光的MFSC 300W 3D 打印单模连续光纤激光器,产品基于模块化设计,拥有极佳的光束质量和极高的稳定性。创鑫激光技术主管钟相进表示,“这款激光器激光功率连续可调,采用光纤配 QBH/QCS头输出,可配合激光加工头与机器人、机床等进行系统集成,已经在3D 打印、精细切割、薄板焊接、3C 焊接等有广泛应用。”深圳市创鑫激光股份有限公司技术主管钟相进:“参加本次展会,不仅和同行、老客户进行了交流,也结实了很多新客户。华南激光展在这个行业以及整个华南地区还是有比较大的影响力的,对创鑫激光的宣传以及未来的发展都有积极的正向引导作用。”武汉锐科光纤激光技术股份有限公司副部长夏早兵介绍到:“我们的新一代光束可调激光器RFL-ABP可应用于新能源汽车等领域,填补了国产光纤激光器光束模式可调技术的空白。运用锐科研发的定制化光纤合束器,可以实现高斯光斑、环形光斑、混合光斑等不同模式输出,根据加工要求,任意切换。同时,纤芯、环芯功率可独立调节,实现纤芯/环芯任意功率比。”武汉锐科光纤激光技术股份有限公司副部长夏早兵:“因为近一两年的疫情影响,展会还是受到比较大的阻碍,今年也是经过了千辛万苦参加了华南激光展。我们希望借这个平台,整合上下游,了解更多的客户需求,让行业内的人能把激光应用得更好;同时参展也可以让我们了解到应用在新能源焊接切割方面的一些新产品。“飞博激光销售总监冷学鹏向观众热情地推荐了手持焊专用光纤激光器,“这款激光器是针对焊接市场研发设计的激光器。电光转换效率大于40%,节能稳定。可搭配10米输出光缆,操作更加灵活。配备的输出头轻而短,且小巧,节省更多集成空间。速度快效率高,焊接能力强。无耗材,焊缝光滑细腻,不易变形。操作灵活、简便,可满足多角度、多位置焊接。”上海飞博激光科技有限公司销售总监冷学鹏:“这次飞博激光带了很多款新产品包括升级迭代的产品,在和客户朋友们沟通交流的时候大家都非常感兴趣。我们觉得这次参展机会非常好,华南激光展为我们逐渐打开更大的市场领域,比如精密加工、精密焊接,甚至是医疗、科研等新兴领域。”顺应制造升级需求,打造激光特色展区近年来,激光核心零件、激光器、激光设备等都国产化方面频频传来傲人进展,国内制造业已进入高质量发展阶段。为强化创新驱动,推动技术跨越发展,提升“基础与专用材料-关键零部件-高端装备与系统-应用于服务”的激光产业链整体创新效能,华南激光展精心打造“激光创新技术及智能检测展示区”,涵盖激光创新技术、工业智能检测技术及核心部件,现场为来自消费电子、半导体、新能源、智能检测等终端应用买家讲解或演示光源和先进激光器件、激光加工控制及配套系统、检测仪器和设备等、应用于激光加工制造的AOI缺陷检测、产品表面及外观检测、零件的几何尺寸和误差测量等技术方案。光惠激光此次特地带来新一代智能风冷激光手持焊搭YLPS- Weld- 1500- A。公司市场专员赵振程自豪地表示:“这款产品配光惠自主研发的“ 不怕热”的焊接头,独特的非球面光学技术,重量比其他同类型焊接头减轻35% ,一体化的设计可以有更好的送丝效果, 焊缝完美无变形,机器可以在-10-50 ℃正常运行,操作简单内置55组应用工艺数据包,可以根据应用场景智能化选用,彻底解决工艺摸索问题,而且是全铝机身,重量仅有45kg,较第一代重量减轻30%,提升了征集移动的可靠性。另外还配备了多重安全保障,除急停按钮以外,单独安全的电路设计彻底解决了漏电的可能性。”他还表示:“本次参展总体体验感觉比较良好,对展位人流量比较满意,有很多客户也了解过我们的产品。同时主办方在我们参展期间,对我们也给予了较多的支持和帮助。”助力初创企业,技术人才两不误疫情常态化给不少初创企业造成了冲击,面临着运营及人才缺乏的困境,而激光初创企业往往缺少的不是技术,而是发现他们的“伯乐”。今年,11家初创企业看准了华南激光展的资源整合优势,齐聚展会“Start-ups初创专区”,通过华南激光展不仅借机展示了与汽车、微电子、医疗等终端应用领域适配的涵盖光学元件、光学模组、光学系统及仪器、激光腔体、激光器、激光打标机、激光切割机、激光焊接机、激光打标机、激光清洗机等种类丰富的产品,更是推出了人才招募计划,吸纳了不少目光。秉持着光学科技创造美好生活的使命,成立于2018年的麓邦,在液晶微纳技术的研发与应用领域已走在全球前列,且成为国内唯一实现量产的企业。这次展会现场,也不时有观众前来咨询他们的液晶维纳技术。据麓邦透露,该技术在航空航天、激光雷达、激光加工、VR/AR、医美医疗等领域都有着广阔的应用前景。谈到这次参展,麓邦销售经理周芬京表示:“此次展会,不乏有各地过来的光学专业观众过来指导交流,对我们麓邦的产品非常赞赏。希望下一届展会能办得更好,引导更多行业相关的专业观众,帮助麓邦把产品和服务推向更广的领域。”浙江法拉第激光科技有限公司是依托北大-温州激光与光电子联合研发中心产-学-研模式孵化的国家高新技术企业。法拉第总工程师刘珍峰称:“我们的窄线宽法拉第激光器产业化后,铯钟的频率稳定性指标有了量级的提高,为铯钟的国产化奠定了重要基础。”供需配对,一键触达核心资源同时,除了展台交流外,华南激光展现场专设商贸配对区,联合行业协会、媒体及相关业界机构共同邀请了由消费电子、微电子、工业电子等应用领域专业人士组成的近百个买家团莅临参观,基于展前供需双方线上填写的采购及配对需求,特邀有采购意向的决策层与展商一对一线下开展贸易洽谈,旨在促进产业上下游的无缝对接、满足终端应用需求、帮助展商拓展商机、获取意向订单、提高参展效率。电子终端应用代表华为:“我是来自3C行业的,主要是来看一下3C的检测技术,包括激光类、射线类。看到有中图仪器的检测类的产品,以及大恒激光,锐科等。总体来说比较满意,展会内容也很广,收获很大。”智睿国际:“慕尼黑主办的展会一直都有参加,人气很旺。我们是做智能家居的,类似于通过语音控制小米家电。参加展会主要是想观摩学习一下,同时我们公司也会使用大族激光的激光打标。疫情下能举办展会实属不易,希望华南激光展能越办越好。”深挖激光技术热点,同期论坛输送工艺养分展会同期举办华南国际光子智能制造及应用技术大会,分设《激光工艺赋能消费电子创新制造研讨会》和《激光技术助力半导体制造,合力打造中国芯》两个主题,邀请激光、光电、高端装备制造领域的企业核心代表、技术学者、院校专家等汇聚一堂,与观众分享不同应用场景下的技术难点等,探讨话题涉及激光技术在3C产品制造中的应用、激光加工设备用于手机盖板精细化切割的工艺难点、超快激光加工OLED柔性材料、柔性显示面板生产中的激光切割解决方案、激光微纳制造技术在消费电子领域的创新应用、紫外激光在晶圆划片中的应用、超快激光用于晶圆的精密切割、准分子激光在半导体光刻及退火中的应用、激光精密打标用于半导体芯片及器件的标识、激光技术在钻通孔中的应用、激光技术用于半导体晶圆清洗、不同激光器在半导体芯片及材料方面的加工工艺革新等。在此,我们要感谢所有支持华南激光展的展商、观众以及各合作方,你们的真诚付出与奉献成就华南激光展的收获满满,更是成就了展会新老朋友的相识与相聚。华南激光展始终致力于促进激光产业链上下游积极合作,为华南地区制造业升级献力、为国内智能制造发展添砖加瓦。希望展会的举办能为激光人增添信心,在外部客观因素冲击行业的影响下,积极应对挑战,坚定不移努力提升技术及核心竞争力,不断推陈出新,探索未来发展新格局。结束意味着新的开始相信四个月后,我们又能在上海相聚咯~~2023年3月22-24日上海新国际博览中心慕尼黑上海光博会等你来逛!
  • 存储器和高能激光芯片设备有新突破!
    近日,《nature》杂志更新了两则最新研究,明尼苏达大学团队研究出计算随机存取存储器CRAM,可以极大地减少人工智能(AI)处理所需的能量消耗;斯坦福大学的研究人员则在芯片上设计开发出一台微型的钛蓝宝石 (Ti:Sa) 激光器,可用于未来的量子计算机、神经科学等领域。明尼苏达大学研究出计算随机存取存储器CRAM近期,《nature》杂志的同行评议科学期刊《npj Unconventional Computing》发布了一项名为计算随机存取存储器(Computational Random-Access Memory, CRAM)的最新研究,该新技术能够极大地减少人工智能(AI)处理所需的能量消耗。图片来源:《nature》截图据悉,这项技术由明尼苏达大学双城分校的一组工程研究人员开发,该校电气与计算机工程系博士后研究员、论文第一作者杨吕表示,这项工作是 CRAM 的首次实验演示,其中数据可以完全在存储器阵列内处理,而无需离开计算机存储信息的网格。国际能源署(IEA)于2024年3月发布了全球能源使用预测,预测人工智能的能源消耗可能会从2022年的460太瓦时(TWh)增加一倍至2026年的1,000 TWh。这大致相当于日本整个国家的电力消耗。目前,随着人工智能应用需求的不断增长,许多研究人员一直在寻找方法来创建更节能的流程,同时保持高性能和低成本。通常机器或人工智能流程在逻辑和内存之间传输数据会消耗大量的电力和能源。据悉,这项研究已经进行了二十多年,其最早可以追溯到电气与计算机工程系教授王建平在使用MTJ(磁隧道结)纳米设备进行计算方面的开创性工作。“我们20年前直接使用存储单元进行计算的最初想法被认为是疯狂的”,该论文的资深作者、明尼苏达大学电气与计算机工程系杰出 McKnight 教授兼 Robert F. Hartmann主席王建平 (Jian-Ping Wang) 表示。2022年1月3日,明尼苏达大学理工学院宣布,明大“Distinguished McKnight University Professor”王建平博士当选美国国家发明家科学院(National Academy of Inventors - NAI)院士。MTJ器件是一种纳米结构器件,这是一种利用磁性材料实现存储的新兴技术。在王建平的专利 MTJ研究的基础上,这个团队开发出了磁性RAM (MRAM),目前这种技术已用于智能手表和其他嵌入式系统。在CRAM中,MTJ不仅仅用于存储数据,还被用来执行计算任务。通过精确控制MTJ的状态,可以实现诸如AND、OR、NAND、NOR和多数逻辑运算等基本逻辑操作。CRAM技术采用了高密度、可重构的自旋电子(spintronic)计算基底,直接嵌入到内存单元中。与三星的PIM技术相比,CRAM技术使数据无需离开内存即可进行处理,消除了数据在内存单元与处理单元之间的长距离传输。CRAM通过消除数据在内存和处理单元之间的移动,显著降低了能耗。此外,由于CRAM的计算直接发生在内存中,它还提供了更好的随机访问能力、可重构性以及大规模并行处理能力。CRAM 架构实现了真正的在内存中进行计算,打破了传统冯诺依曼架构中计算与内存之间的瓶颈——冯诺依曼架构是一种存储程序计算机的理论设计,是几乎所有现代计算机的基础。CRAM技术展现了巨大的潜力,尤其是在机器学习、生物信息学、图像处理、信号处理、神经网络和边缘计算等领域。例如,一项基于CRAM的机器学习推理加速器的研究表明,它在能量延迟乘积方面的性能比现有技术提高了大约1000倍。此外,CRAM在执行MNIST手写数字分类任务时,能耗和时间分别降低了2500倍和1700倍。当下CRAM技术展现出巨大的潜力,但其真实计算能力的局限在于连续CRAM数组内部。任何需要跨越不同CRAM数组的数据访问和计算都会增加额外的数据移动开销。未来,研究人员仍需应对可扩展性、制造和与现有硅片集成方面的挑战。他们已计划与半导体行业领导者进行演示合作,以帮助将CRAM变成商业现实。高能激光芯片设备研究有新突破!近日,斯坦福大学的研究人员在芯片上设计开发出一台微型的钛蓝宝石 (Ti:Sa) 激光器,相关研究已于6月26日更新在《nature》杂志上。原型机的体积仅为传统传统钛宝石激光器的万分之一,而生产成本也仅有原来的千分之一。总体而言,新设备同时解决了体积大、价格高等挑战,而且在规模效率方面也具有优势。目前传统激光器成本高达10万美元。但科学家认为,采用杂志上提及的最新方法,每台激光器的成本可能会降至100美元。他们还声称,未来可以在一块四英寸晶圆上安装数千台激光器,而每台激光器的成本将降至最低。这些小型激光器可用于未来的量子计算机、神经科学,甚至微观手术。图片来源:《nature》截图实验性激光依赖于两个关键过程。首先,他们将蓝宝石晶体研磨成厚度仅为几百纳米的一层。然后,他们制作出一个由微小脊线组成的旋涡,并用绿色激光笔照射其中。随着旋涡的每次旋转,激光的强度都会增加。“最棘手的部分之一是平台的生产,”这项研究的共同第一作者、斯坦福大学博士生Joshua Yang告诉《生活科学》。“蓝宝石是一种非常坚硬的材料。当你研磨它时,它常常不喜欢它,它会破裂,或者损坏你用来研磨的东西。”激光的强度通过晶体表面的一系列涡流增加(图源:Joshua Lang 等人,《自然》杂志)该学术团队对这项技术十分看好,主要原因在于这台最新激光器可以调节到不同的波长;具体来说,从 700 到 1,000 纳米,或从红光到红外光。杨教授以固态量子比特为例,指出这对于原子研究人员来说至关重要。“这些原子系统需要不同的能量(才能从一种状态过渡到另一种状态),”他说。“如果你购买的激光器增益带宽较小,而另一种过渡超出了该带宽,那么你就必须购买另一种激光器来解决该问题。”目前, Joshua Yang和他的同事已创建了一家名为Brightlight Photonics 的公司,以实现这项技术商业化。
  • 太赫兹光子马约拉纳零模量子级联激光芯片
    近日,新加坡南洋理工大学电气与电子工程学院的Qi Jie Wang教授团队及其合作者们通过构建光子类马约拉纳零模(Majorana-like zero mode),在量子级联激光芯片中实现单模、柱状矢量光场输出的太赫兹量子级联激光器。相关成果以“Photonic Majorana quantum cascade laser with polarization-winding emission”为题发表于期刊《Nature Communications》上。新加坡南洋理工大学电气与电子工程学院博士后韩松(现为浙江大学杭州国际科创中心和浙江大学信电学院研究员)为论文第一作者,博士研究生Yunda Chua为共同第一作者;南洋理工大学电气与电子工程学院Qi Jie Wang教授为论文第一通讯作者,武汉大学信息电子学院曾永全教授为共同通讯作者。拓扑学研究的是几何物体或空间在连续形变下保持的全局性质,它只关注物体之间的空间关系而不考虑其大小和形状。对具有特殊拓扑性质的光子结构而言,空间上的缺陷和无序只会引起局部参数变化,不影响该空间的全局性质。拓扑光子结构的典型特征在于结构内部是绝缘体,而表面则能支持无带隙的界面(表面)态。受结构全局性质的规范,界面态可沿着有限光子绝缘系统的边缘或畴壁单向传输,并且能够有效地绕过结构拐角及制备误差引起的缺陷和无序而无后向散射(即拓扑保护)。因此,拓扑光子结构可用于实现高鲁棒性半导体激光器,即“拓扑激光器”。然而,拓扑激光器研究面临两大共性难题:1)需要光泵;2)需要外加磁场或者构建等效磁场来产生受拓扑保护的界面态激光模式。二者均显著增加了激光器系统的复杂程度、成本和功耗,降低了激光器的可靠性,阻碍了其实用化进程。针对上述难题,课题组前期利用量子能谷霍尔效应的原理,以太赫兹有源超晶格材料为增益介质,集成能谷光子晶体,通过简单的设计打破结构反对称性来产生“能谷-动量锁定”的边界传输模式,实现了拓扑界面态的片上单向传输和放大,从而首次研发出电泵浦拓扑激光器。然而该工作是多模激光器且其信噪比低,难以实现激光器出射光的光束控制。随后,来自南加州大学的科学家利用量子自旋霍尔效应,在室温条件下,实现近红外电泵浦单模激光。然而,该工作设计复杂的超大尺寸耦合环形谐振腔阵列实现拓扑边界态,其样品整体尺寸在200个波长以上,且需要耦合光栅增强激光输出和信噪比,难以实现光束调控、赋形、极化控制等高性能激光器。此外,两个工作均需要选择性地泵浦边界态,牺牲光子晶体体态增益材料,难以实现大面积集成的高功率激光器。因此,对电泵浦拓扑激光器性能的提升,如光束调控、赋形、极化控制、高功率输出等,亟待新的物理机制。团队创造性地将凝聚态中p波超导的马约拉纳零能模式引入到光子晶体体系,并利用光子类马约拉纳零能模式的辐射特性,实现了全动态范围单模输出(边模抑制比大于15dB,输出光率约1毫瓦)、柱状矢量光场调控、固态电泵浦、单片集成的太赫兹拓扑激光器。该成果的独特优势还有:(1)在不需要选择性泵浦的情况下,其发光腔体整体直径可以低至大约4个波长,是目前报道能保证毫瓦量级功率条件下最紧凑的太赫兹拓扑激光器(相对激光波长),这极大提升了该类半导体激光器在实际应用中的集成度。(2)光子马约拉纳微腔的自由光谱程(free spectral range)与腔体尺寸呈现二次方反比律[3],这一特性使得光子马约拉纳微腔更容易在大面积条件下保持单模激光输出。团队也在电泵浦拓扑激光器体系中证实了该二次方反比律,并实现了大面积泵浦下高功率(大于9毫瓦)和单模激光输出,其功率是同等尺寸下脊形激光器的5.4倍。图1.光子马约拉纳激光器的示意图a和加工样品图b。图2.a.超胞(supercell)能带随Kekule调制相位的变化。b.类马约拉纳光子腔的相位分布及六方晶格位置与相位之间的关系。中心虚线圆包围的部分为非Kekule调制区域(non-Kekule modulated region),其半径标记为ζ,这里ζ=2a。图中显示马约拉纳光子腔的相位绕数为+1。c.相位绕数为+1的类马约拉纳光子腔的空气孔的大小分布。d,e.三维模拟的类马约拉纳光子腔的近场(Ez)与远场(Intensity)分布。图3. a,b实验测到的激光模式随泵浦电流密度变化,a.相位绕数+1,b.相位绕数-1。c.理论计算的净增益。d.实验测得的L-I-V曲线和在对应位置激光光谱。图4.远场测试。a.测试装置示意图。b,c.数值仿真和实验测试的远场光斑。d,e.加偏振片后的激光光谱和光斑。图5.大面积激光的L-I-V曲线,激光光谱,和单模性分析。
  • 首台芯片级掺钛蓝宝石激光器研制成功
    激光线宽测量。图片来源:《自然光子学》美国耶鲁大学一组研究人员开发出首台芯片级掺钛蓝宝石激光器,这项突破的应用范围涵盖从原子钟到量子计算和光谱传感器。研究结果近日发表在《自然光子学》杂志上。掺钛蓝宝石激光器在20世纪80年代问世,可谓激光领域的一大进步。它成功的关键是用作放大激光能量的材料。掺钛蓝宝石被证明十分强大,因为它提供了比传统半导体激光器更宽的激光发射带宽。这一创新引领了物理学、生物学和化学领域的基础性发现和无数应用。台式掺钛蓝宝石激光器是许多学术和工业实验室的必备设备。然而,这种激光器的大带宽是以相对较高的阈值为代价的,也就是它所需的功率较高。因此,这些激光器价格昂贵,占用大量空间,在很大程度上限制了它们在实验室研究中的使用。研究人员表示,如果不克服这一限制,掺钛蓝宝石激光器仍将仅限于小众客户。将掺钛蓝宝石激光器的性能与芯片的小尺寸相结合,可驱动受功耗或空间大小限制的应用,如原子钟、便携式传感器、可见光通信设备,甚至量子计算芯片。耶鲁大学展示了世界上第一台集成了芯片级光子电路的掺钛蓝宝石激光器,它提供了芯片上迄今看到的最宽增益谱,为许多新的应用铺平了道路。新研究的关键在于激光器的低阈值。传统掺钛蓝宝石激光器的阈值超过100毫瓦,而新系统的阈值约为6.5毫瓦,通过进一步调整,研究人员相信可将阈值降低到1毫瓦。此外,新系统还与广泛用于蓝色LED和激光的氮化镓光电子器件兼容。
  • 激光偏振检测新技术可分析太空垃圾成分
    p  据物理学家组织网20日报道,美国麻省理工学院(MIT)的工程师最近开发出一种激光偏振检测新技术,不仅能确定太空垃圾位置,还能分析其成分。/pp  在地球空间轨道上,数以亿计的太空垃圾高速旋转着,给航天器和卫星带来巨大威胁。目前,美国国家航空航天局(NASA)和国防部在用陆基望远镜和激光雷达(Ladars)跟踪17000块碎片,但这一系统只能确定目标的位置。研究人员指出,新技术能分析出一块残骸由什么组成,有助于确定其质量、动量及可能造成的破坏力。/pp  该技术利用激光来检测材料对光的偏振效应。MIT航空航天系的迈克尔· 帕斯科尔说,涂料的反射光偏振模式和金属铝有明显区别,所以识别偏振特征是鉴定太空残骸的一种可靠方法。/pp  为检验这一理论,研究人员设计了一台偏光仪来检测反射光的角度,所用激光波长为1064纳米,与Ladars激光类似,并选择了6种卫星中常用的材料:白色、黑色涂料、铝和钛,还有保护卫星的两种膜材料聚酰亚胺和特氟龙(聚四氟乙烯),用偏振滤镜和硅探测器检测它们反射光的偏振状态。他们识别出16种主要的偏振态,并将这些状态特征与不同材料对应起来。每种材料的偏振特征都非常独特,足以和其他5种区别开来。/pp  帕斯科尔认为,其他航天材料如防护膜、复合天线、太阳能电池、电路板等,其偏振效应可能也各有特色。他希望用激光偏振仪建一个包含各种材料偏振特征的数据库,给现有陆基Ladars装上滤波器,就能直接检测太空残骸的偏振态,与特征库数据对比,就能确定残骸构成。/p
  • 一体化芯片同时集成激光器和光子波导,有望催生更精确原子钟实验,用于量子领域
    美国加州大学圣巴巴拉分校与加州理工学院的科学家携手,开发出了首款同时集成激光器和光子波导的芯片,向在硅上实现复杂系统和网络迈出了关键一步。此类光子芯片有助科学家开展更精确的原子钟实验,减少对巨型光学工作台的需求,也可用于量子领域。相关论文已发表于近日出版的《自然》杂志。实验概念图图片来源:《自然》网站集成电路出现后,科学家们开始将晶体管、二极管和其他组件集成在一个芯片上,这大大提高了芯片等的潜力。在过去几年里,光子学领域的科学家一直希望能实现同时集成激光器和光子波导。为研制出此类芯片,工程师们开发了插入式隔离器,以防止可能会出现的导致芯片不稳定的反射。但这种方法需要使用磁性材料,而这也会引发新的问题。在最新研究中,科学家找到了解决这些问题的方法,创造出了第一个真正可用的集成芯片。研究人员首先在硅衬底上放置一个超低损耗氮化硅波导,随后在波导管上覆盖多种硅,并在其上安装了低噪声磷酸铟激光器。通过将两个组件隔离开,防止了蚀刻过程中对波导的损坏。研究团队通过测量芯片的噪声水平来测试其性能,结果令人满意,随后他们用其制造出一个可调谐的微波频率发生器。
  • 【超全解析】用于智能制造的滨松激光解决方案
    讲到滨松的激光技术,最早要从参与激光核聚变研究开始讲起。为实现激光核聚变的能源开发,滨松与大阪大学的激光工程学院合作,共同推进用于固态激光激发的高功率输出LD的研发以及相关技术的研究。滨松四大事业部之一的激光事业部 在不断成熟的过程中,滨松也希望将自身的激光技术带入产业应用中。以此为原点,积极推进了各类激光技术的研发。逐渐拥有了包括了半导体激光器、固体激光器、激光器配套附件、以及有着全球专利的隐形切割等产品。正在工作的滨松隐形切割引擎(SDE)世界首创也是唯一可进行晶圆内部切割的技术,与多个知名厂商有着紧密合作关系 随着中国制造2025的不断深入推进,激光技术已成为一种不可或缺的支撑技术,在晶圆切割、手机屏幕粘贴、玻璃切割、塑料焊接以及表面处理等众多应用中都不可替代。而针对这些应用,滨松可提供从元器件一直到整套系统的全产线产品。并以各自的独特性能,为目前的技术应用带来更好的可能。 元器件产品半导体激光器泵浦源作为光纤激光器的重要组成部分,主要由半导体激光器芯片(CWLD)和快轴准直镜(FAC)封装而成。滨松拥有两款输出功率分别为12 W和22 W的 CWLD芯片,对应的条宽分别为100 μm和190 μm。由于CWLD发射的激光在快轴方向的发散角较大,大约达到25°,非常不利于之后的光纤耦合,因此需要在芯片发射前加上FAC,进行快轴方向光束准直。为此,滨松可提供在800 nm~1050 nm波长范围为内透过率达到99%以上的FAC来解决上述问题。同时,对于FAC的尺寸规格(长度、高度、宽度)以及有效焦距,可根据需求进行定制。模块化产品为了解决大功率半导体激光器封装的问题,滨松可为客户提供巴条模块和叠阵模块供选择。巴条模块主要有以下两款产品:L8413-50-808(808 nm)及L8413-50-940(940 nm),输出功率分别为50 W和60 W。巴条模块除了可以单个使用外也可以组合使用。多个巴条模块呈线阵排列,在与冷却装置配合使用时可达到高输出功率以及高可靠性。此外,滨松还可将多个巴条一起封装成940 nm的叠阵模块。该叠阵模块内含15个巴条,输出功率高达1200 W(80 W/Bar)。当然,我们可以在叠阵前面加上FAC,对快轴方向的激光进行准直,耦合效率高达95%。 叠阵模块可用于高功率固体激光器泵浦源或是材料的表面处理。巴条模块叠阵模块半导体激光器随着传统工业制造朝着更加精密的方向发展,激光焊接俨然成为激光加工领域的市场风口。激光加热光源(LD-Heater & SPOLD)作为滨松在激光焊接领域的主要产品,其重要程度自然不言而喻。激光加热光源适用于新型的塑料焊接和OLED屏幕焊接。这些产品主要有能量分布均匀的平顶光束、改变镜头实现可变光斑面积、可实时监测表面温度,加工效果“可视化”等优势。针对不同的客户需求,滨松可提供波长为808nm、915nm以及940nm,输出功率从10W至200W的产品。目前在OLED屏焊接和无损拆解、智能腕表的防水焊接等中都发挥着重要作用。LD-Heater & SPOLD 除了激光加热光源之外,滨松也提供基于叠阵模块集成开发的直接输出半导体激光器(DDL)。该产品的中心波长为940nm,输出功率为4000 W、6000 W(可选)。主要应用为表面处理包括熔覆和淬火。为了获得更好的处理效果,DDL输出的光斑为矩形平顶光束,即照射到材料表面光斑形状为矩形,并且能量分布均匀。此外,为了满足各种不同材料的处理需求,输出的矩形光斑的长宽比例可以通过附加镜头实现1:1~1:5改变。直接输出半导体激光器(DDL)光斑长度比 超快激光加工解决方案皮秒固体激光器(Moil-ps)与Wavefront Shaper空间光调制器模块的结合,是滨松可为超快激光加工提供的,包括激光器和整形系统的全套解决方案。滨松超快加工解决方案 此套方案可实现在ITO薄膜上同时钻孔1000个(单孔直径为1.5 μm),也可实现在电子元件上微型二维码的一次成型,大大提升加工效率。ITO薄膜同时钻孔1000个,单孔直径1.5μm电子元件微型二维码一次成型Wavefront Shaper空间光调制器模块是滨松在光束整形领域的新品。同时采用了均匀激光强度分布的匀化器、非球面透镜成像的光学系统等高性能光学器件并配合核心器件——滨松空间光调制器(LCOS-SLM),实现了高强度的激光加工。(滨松LCOS-SLM可以承受200W以上的平均功率)相对于元件级别的LCOS-SLM,Wavefront Shaper更容易连接到系统,可实现简单的计算机控制系统(各种DLL适配),并具备温度控制功能(提高激光毁伤阈值)。在光束整形、像差校正、三维加工、并行加工等中有着广泛的应用。滨松Wavefront Shaper空间光调制器模块 2019年,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”。目前主要进行的,就是基于滨松空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。依托联合实验室,滨松也可以更快的为国内客户提供产品应用验证、打样等服务。激光隐形切割引擎&下一代激光加工引擎隐形切割可以说颠覆了现有的切割概念。该方法将激光聚焦至晶圆内部进行预切割,再通过扩张膜的张力实现晶圆的划片。相比传统的砂轮切割,可以实现完全干式工艺,切割后晶圆无崩片、高强度,并且可缩小切割道的宽度。滨松隐形切割是世界首创,也是唯一可进行晶圆内部切割的技术,目前在全球拥有600多项专利。为了提高使用的便捷性,滨松可为客户提供系统化产品——隐形切割引擎(SDE)。目前,已有4000台以上的隐形切割设备,在世界各大半导体工厂中稳定运行着。以深厚的隐形切割工艺积累,和卓越的SLM控制技术为基础,滨松最新开发出了下一代激光加工引擎JIZAI。其灵活性极强,客户可以自由选配SLM、扫描镜、自动对焦镜、物镜等内部器件,来获得不同成本和性能要求的JIZAI模块。JIZAI概念图这个小模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。内部打标玻璃打孔微通道成型滨松成立于1953年,已有66年的历史,其与中国结缘于1988年合资工厂的建立。为顺应中国市场发展,2011年全资子公司——滨松光子学商贸(中国)有限公司于北京成立,负责集团在中国的产品技术、服务、市场以及销售,随后在上海和深圳设立了分公司,以更好地服务于各地区的客户。针对激光加工的市场需求,滨松中国于本土配备了专门的产品技术、市场及销售人员。在提供更快速、优质、本土化的服务外,还会基于滨松集团的广阔视野,为客户带去具有价值的前沿产品技术、应用、市场信息。同时我们也不断推进着与国内高校的合作,如通过成立联合实验室(湖北工业大学-滨松激光加工联合实验室)这种方式,进一步优化产品的使用,加强与市场联系。以期为客户提供可更好满足应用需求的优质产品解决方案。
  • 国内首个用于量子芯片生产的激光退火仪研制成功
    据合肥日报报道,国内首个专用于量子芯片生产的MLLAS-100激光退火仪(以下简称“激光退火仪”)已研制成功,可解决量子芯片位数增加时的工艺不稳定因素,像“手术刀”一样精准剔除量子芯片中的“瑕疵”,增强量子芯片在向多比特扩展时的性能,从而进一步提升量子芯片的良品率。报道显示,该激光退火仪由合肥本源量子计算科技有限责任公司完全自主研发,可达到百纳米级超高定位精度,对量子芯片中单个量子比特进行局域激光退火,从而定向控制修饰量子比特的频率参数,解决多比特扩展中比特频率拥挤的问题,助力量子芯片向多位数扩展。安徽省量子计算工程研究中心副主任贾志龙表示,这台激光退火仪拥有正向和负向两种激光退火方式,可以在生产过程中灵活调节多比特超导量子芯片中量子比特的关键参数。同时,该设备还可用于半导体集成电路芯片、材料表面局域改性处理等领域,目前已在国内第一条量子芯片生产线上投入使用。
  • 张福根专栏|激光粒度仪应用导论之结构篇
    p style="text-indent: 2em "span style="font-family:宋体"经典的激光粒度仪的光学结构如下图所示。它由激光器、空间滤波器、准直镜、测量池、傅里叶透镜和环形光电探测器这列组成。此外还有数据采集板和计算机。从激光器发出的激光束经过空间滤波器后,变成一束发散但波前纯净的光束,经准直透镜后,变成一束平行光,照射到测量池中的待测颗粒上,被颗粒散射。散射光透过测量池的玻璃,被傅里叶透镜收集起来。在傅里叶透镜的后焦面上,放置了一个环形探测器阵列。探测器阵列由数十个独立的探测单元组成,每个单元都是一个环带,所有环带对应于相同的圆心。环带的平均半径从圆心往外数呈指数式增长,理想情况下环带的有效探测面积与环带的平均半径成正比。环带的共同圆心上开了一个直径约/span100span style="font-family:宋体"微米的通孔(也有做成实心反射面的)。通孔的中心(也是环带的圆心)位于光学系统的光轴上。通孔的后方斜置了一个独立的探测器,通常被称为“零环探测器”或“中心探测器”,而中心外的其他单元从里往外数分别称为/span1span style="font-family:宋体"环、/span2span style="font-family:宋体"环、/span3span style="font-family:宋体"环,/span??span style="font-family:宋体"。未经散射的光被聚焦到中心孔内,穿过探测器阵列平面,照射到零环探测器上。/span/pp style="text-align: center text-indent: 2em "img src="http://img1.17img.cn/17img/images/201808/insimg/60fa3bb2-9d98-450f-b12b-5e01a5441cfe.jpg" title="图2.jpg"//pp style="text-align: center text-indent: 2em "span style="font-family:宋体"激光粒度仪工作原理示意图/span/pp style="text-indent: 2em "span style="font-family:宋体"傅里叶透镜把相同散射角的光线聚焦到探测平面相同的半径位置上,因此每个探测单元接收到的散射光代表一个确定的散射角范围内散射光能的总和。未被颗粒散射的光被聚焦到中心探测器上。该探测器根据测量池中放入被测颗粒前后接收到的光信号的相对变化(称为“遮光比或遮光度”),可以判断待测颗粒在测量池中的浓度。颗粒浓度应该控制在适合的范围内,以保证散射信号既有足够高的信噪比,又不会发生复散射(即入射光只被颗粒散射一次)。其他探测单元用来接收散射。散射光被探测器转换成电信号,再经数据采集板放大和/spanA/Dspan style="font-family:宋体"转换,变成数字信号,然后传输给计算机。计算机软件根据散射光能分布计算散射颗粒的粒度分布。这个计算过程是一个求解高阶、病态的线性方程组的过程,行业中通常称为“反演过程”,具体的算法称为“反演算法”。计算机同时还担负整个仪器系统的协调控制任务。/span/pp style="text-align: center text-indent: 0em "span style="font-family:宋体"img src="http://img1.17img.cn/17img/images/201808/insimg/a2d22faa-0b31-42c2-bba4-f49b51e620e4.jpg" title="微信图片_20180803162750.png"//span/ppbr//pp style="text-indent: 2em "strongspan style="font-size:15px line-height:107% font-family:宋体"编者按:/span/strongspan style="font-size:15px line-height:107% font-family:宋体"本文带我们了解了激光粒度仪的基本结构,与“激光粒度仪应用导论之原理篇”一起,为读者构建了激光粒度仪的理论基础,然而掌握理论不等于善于应用,编者通过走访和论坛冲浪发现,不少激光粒度仪初级用户在解读粒度分析报告时都犯了难。别着急,张福根博士系列专栏——激光粒度仪应用导论之报告解读篇,就将照方抓药,为你答疑解惑。/span/pp style="text-indent: 2em text-align: right "span style="font-size:15px line-height:107% font-family:宋体"(作者:张福根)/span/ppbr//p
  • 济宁市2023年上半年招商引资重点项目——嘉祥县瑞芯IC半导体芯片研发生产基地项目
    7月31日至8月2日,济宁市举行上半年绿色低碳高质量发展暨招商引资重点项目现场观摩会。31日下午,观摩会来到济宁市嘉祥县,对瑞芯IC半导体芯片研发生产基地项目进行现场观摩。该项目由济宁瑞芯半导体与扬州扬杰电子共同投资建设,投资4.8亿元,总建筑面积9360平方米,主要购置安装划片机、激光切割机、分选机、芯片性能测试仪等设备120余台,新上高压硅堆生产线10条。项目依托上海交大、东南大学和扬州扬杰电子科技股份有限公司,拥有国内一流大功率半导体功率器件芯片生产及研发技术,产品线涵盖分立器件芯片、整流器件、保护器件等,广泛应用于消费类电子、安防、工控、汽车电子、新能源等领域,远销美国、德国、俄罗斯、意大利等多个国家和地区,其生产的旁路二极管、光伏二极管等系列产品取代了德国进口。项目全面投产后,可年产芯片1000万件,产能跻身国内前三强,新增销售收入8亿元、利税2.3亿元,带动上下游就业人员300余人。
  • 量拓科技激光椭偏仪在西安交通大学顺利交货验收
    热烈庆祝量拓科技激光椭偏仪在西安交通大学顺利交货验收。 量拓科技是中国唯一的专业椭偏仪器企业,专业致力于椭偏测量的方法研究、技术开发、产品制造和仪器销售,并提供纳米薄膜层构和物性参数的椭偏测试服务和椭偏测量整体解决方案的专业咨询服务。经过持续的创新发展,目前已成为国际高端激光椭偏仪和光谱椭偏仪的主要厂商。 量拓科技以发展国际领先的椭偏测量技术,提供纳米薄膜检测整体解决方案为企业使命,将通过持之以恒的不懈努力,在国际椭偏测量领域树立源自中国的高端专业椭偏品牌ELLiTOP形象,藉此提升中国在国际椭偏测量领域的实力和地位,实现中国高科技企业贡献世界的梦想。
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style="text-indent: 2em "strong编者按:/strong如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。/pp style="text-indent: 2em text-align: center "strong激光粒度仪应用导论之原理篇/strong/pp style="text-indent: 2em "当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。/pp style="text-indent: 2em "首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。/pp style="text-indent: 2em "span style="color: rgb(0, 176, 240) "【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。/span/pp style="text-indent: 2em "麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。/pp style="text-indent: 2em "现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。/pp style="text-indent: 2em "世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。/pp style="text-indent: 0em text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title="图1:颗粒光散射示意图.jpg"//ppbr//pp style="text-indent: 0em text-align: center "颗粒光散射示意图/pp style="text-indent: 2em "激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。/pp style="text-indent: 2em "strong 编者结:/strong明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。/pp style="text-indent: 0em text-align: right "(作者:张福根)/p
  • 528万!ZEISS中标上海交通大学激光片层扫描显微镜国际招标采购项目
    一、项目编号:0705-2340JDBXTXDK/02/学校编号:招设2023A00017(招标文件编号:0705-2340JDBXTXDK/02)二、项目名称:上海交通大学激光片层扫描显微镜国际招标三、中标(成交)信息供应商名称:Hezhibio Trading Limited供应商地址:香港湾仔轩尼诗道253-261号依时商业大厦1902室中标(成交)金额:528.9000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 Hezhibio Trading Limited 激光片层扫描显微镜 ZEISS Lightsheet 7 1 CNY 5289000
  • 张福根专栏|激光粒度仪应用导论之报告解读篇
    粒度分析报告是激光粒度仪测量颗粒样品后输出的测量结果。本文对报告的内容进行解释,以便读者能够更好地理解和运用仪器的输出结果。粒度分布的物理意义粒度分布是指被测的颗粒样品中各种尺寸颗粒占总颗粒的百分比。它是颗粒测量结果的详尽描述。在表达粒度分布时,涉及两个带有主观性的处置:一是粒径的分段,二是计算相对含量时所用的计量单位。从理论上说,一个颗粒样品在一定的粒径范围内存在各种大小的颗粒,即粒径的分布应该是连续的。但在实际的处理中,我们只能把粒径表示为若干个分立的粒径段,然后计算各个粒径段上的颗粒含量。最简单的分档方法是均匀分档,即各个粒径段的长度是相等的,例如1-2,2-3,3-4(单位µ m)。在激光粒度仪中,通常用等比原则对粒径分段。这是因为激光粒度仪测量的动态范围大,例如0.1-1000µ m。如果按等长原则分段,则难以同时照顾小颗粒端和大颗粒端。比如,为了照顾小颗粒端,最小间隔最多只能取0.1µ m(从0.1µ m到0.2µ m,跨度已经很大),这时对最后一个粒径段来说,就是999.9µ m-1000µ m,这样处理粒径段的数量就会非常多,数据处理变得非常麻烦,也没有必要分这么细。表1是一个粒度分布表的示例,其分段就是按照等比原则,比例是1.128。表中第1个粒径点是0.109µ m(即x0,其余类推),第2个粒径点就是0.109× 1.128?0.123µ m,第3个粒径点是0.123× 1.128?0.139µ m??另一个主观性的处理是百分含量的计量单位。激光粒度仪中常用体积含量,即用每个粒径段内颗粒的体积占所有颗粒的总体积的百分比来表征粒度分布。有时会用颗粒数或颗粒表面积含量来表达粒度分布。计量的单位不同,会造成粒度分布结果形式上的巨大变化(详见进阶知识4)。【进阶知识3】设激光粒度仪设定的粒径分档如“进阶知识2”所示。第i档的平均粒径为:设第i档范围内,即粒径处在x(i-1)至xi的颗粒个数为Ni,则所有颗粒的总体积为(此处省略了常数π?6。以体积计算的第i档的颗粒相对含量为式中i=1,2,?,n.如此,数列(v1,v2,?vn)就组成了以体积计量的粒度分布。同理,按数量计的粒度分布为按表面积计的粒度分布为粒度分布表在激光粒度仪输出的测量报告中,粒度分布通常以粒度分布表或/及粒度分布曲线的形式给出。表1是粒度分布表的示例。表1粒度分布表示例粒径(µ m)微分(V%)累积(V%)粒径(µ m)微分(V%)累积(V%)粒径(µ m)微分(V%)累积(V%)0.10902.530.632.1658.8201000.123002.8560.812.9766.3801000.139003.2231.033.9974.9201000.157003.6371.35.2984.5501000.177004.1051.646.9495.4301000.199004.6332.069107.701000.225005.2292.5611.56121.501000.254005.9023.1514.71137.201000.287006.6613.8118.51154.801000.324007.5184.5323.04174.701000.365008.4855.2728.31197.201000.412009.5775.9934.3222.601000.4650010.816.6340.93251.201000.5250012.27.1448.07283.501000.5920013.777.4655.53319.901000.6690015.547.5563.08361.101000.7550017.547.3670.44407.501000.8520019.796.9177.35459.901000.9610022.346.283.55519.101001.0850.020.0225.215.388.86585.801001.2240.070.0928.464.2993.15661.201001.3820.130.2232.123.2596.4746.201001.5590.190.4136.252.2498.64842.201001.760.270.6840.911.1499.78950.501001.9860.371.0546.180.221001072.701002.2420.491.5352.1101001210.60100表中,黄色栏为粒径,紫色栏为微分分布数值,灰色栏为累积分布数值。微分分布表示一个粒径段上的颗粒占总颗粒的百分比,累积分布表示某一粒径以细颗粒占总颗粒的百分含量。微分分布和累积分布之间很容易转换:设微分分布为(v1,v2,?vn),累积分布为(c1,c2,?cn),则微分分布栏的每一格内的数值表示本格左边所示粒径(即xi)与上一行所示粒径(xi-1)之间的颗粒百分含量。例如表1第二栏(黄色)底部的数值为0.49,表示粒径为1.986到2.242µ m之间的颗粒含量为0.49%。黄色栏的顶部有“微分(V%)”字样,表示“微分分布,以颗粒体积计量,含量为百分含量”。灰色栏给出的累积分布数值,则表示从表中的最小粒径开始累积到该行左边隔一栏的位置所示的粒径的颗粒百分含量的总和。以表1第3栏底部的数值为例,1.53表示2.242µ m以细的颗粒总含量为1.53%。粒度分布曲线粒度分布曲线是粒度分布的图像法表达。相较于粒度分布表格,曲线具有形象、直观、一目了然的优点。粒度分布曲线也分为微分分布曲线与累积分布曲线两种,其物理意义与粒度分布表相同。下图是与表1对应的粒度分布曲线。粒度分布曲线示例【进阶知识4】以上给出的粒度分布是体积粒度分布(激光粒度仪最常用的表达形式),如果改为表面积分布或颗粒数分布,则同样的样品的测量结果,分布形式会有很大的不同(见下图)。同样的样品以不同计量单位显示的粒度分布平均粒径平均粒径的含义很容易理解,就是一个颗粒样品中所有颗粒直径的平均值。需要注意的是,平均值的计算是要经过加权的。同样的粒度分布,加权的方式不同,得出的结果也不同。最常用的是体积加权:式中,xi平均和vi的含义如“进阶知识3”所示。D[4,3]是体积加权平均(简称“体积平均”)的另一种说法,因为在体积加权的公式中,分子和分母分别有段平均粒径的4次方和3次方。在表1所示的粒度分布中,D[4,3]=14.17µ m类似地,对表面积加权的平均粒径和对颗粒个数加权的平均粒径分别为在表1所示的粒度分布中,D[3,2]=9.25µ m,D(1,0)=3.05µ m。可见D[4,3]>D[3,2]>D(1,0),这是普遍规律。对用户来说,究竟用哪一种平均粒径表征待测样品的平均粒径,要看用户的关注点。比如参与化学反应的颗粒,例如催化剂,就比较关注表面积平均径,即D[3,2]。激光粒度仪的输出报告中D[4,3]和D[3,2]一般都同时给出。D50又称“中位径”,也是平均粒径的一种表示。它的含义是粒度分布的累积百分比达到50%的点所对应的粒径(见下图)。换个通俗的话说,D50就是个头排在中间的那个颗粒的粒径,比它大和比它小的颗粒各占50%,所以可以代表平均粒径。当然,所谓各占50%也是跟计量的物理单位有关的,可以是体积各占50%,也可以是表面积各占50%,也可以是个数各占50%。计量单位不同,D50值也不同。如果粒度分布用的是体积分布,那么D50指的是体积各占50%。激光粒度仪一般默认体积分布。在表1所示的粒度分布中,D50=12.57µ m,这个数值与D[4,3](=14.17µ m)接近。当粒度分布曲线形状很对称时,D50与D[4,3]几乎相等。累积粒径的物理意义示意图粒度分布范围粒度分布范围是表征一个颗粒样品粒径均匀度的指标。在激光粒度仪中,一般默认用D10和D90分别表示粒度分布的下边界和上边界。D10的物理意义是:被测样品中小于D10的颗粒含量占10%。同理,D90表示小于D90的颗粒含量占90%,或者大于D90的颗粒含量占10%。D10偏离D50越多,表示小颗粒往细的方向延展越多;D90偏离D50越大,则表示大颗粒往粗的方向延展越多。在有些应用行业,也有用其他的累积粒径表示粒度分布的展宽情况的,比如在磨料行业,用D6(磨料行业习惯于从大往小累积,原始表述是D94,等于从小往大累积的D6,下同)表示下限,用D97表示上限。一般而言,累积粒径越靠近分布的边缘,其稳定性就越差。关于D100和D0的重要提醒:(1)激光粒度仪给出的D100(或称Dmax)并不代表被测的粉体产品中的最大颗粒的尺寸。这可以从两个层面去理解:从取样层面理解,测量所取样品量大约是毫克级的,而它所代表的产品量大约是千克至吨级的,取样比例低于百万分之一,因此一次取样要取到那个最大的颗粒的概率是百万分之一(理论上说最大的那个是唯一的,否则就不叫最大)量级,几乎不可能被取到。从测量的层面考虑,即使那个最大的颗粒被取到,以较典型的分布宽度(最大最小比)为10的样品为例,假设粒度分布在对数坐标(即粒径段等比划分)上是对称的,则最大粒与D50之比约为3.16,最大粒一个单位体积的消光面积是一个单位体积的平均大小颗粒的3.16分之一。设最大粒的体积含量是1000分之一(最大粒处在粒度分布右侧的末端,理论上含量占比比这个还要低得多),则最大粒产生的散射光大约是全部散射光的3000分之一。这么低的光能很容易被仪器的各种噪声(比如激光功率波动就大于千分之一,此外还有样品浓度的波动,电子噪声等)所淹没。(2)从激光粒度仪给出的粒度分布数据计算小颗粒的个数是不太靠谱的。这是因为激光粒度仪给出的原始粒度分布是体积分布。小颗粒端的体积的微小波动会引起颗粒数的巨大变化。设颗粒的平均粒径为5µ m,其粒度分布的尾端在0.5µ m,二者粒径比为10,体积比为1000。假设尾端的体积出现1000分之一的波动,则颗粒个数就会出现1倍的波动,1倍就是100%,是极大的波动,是难以接受的。在激光粒度仪给出的测试报告中,会给出两个参数表征颗粒的均匀性。最常用的参数有:宽度系数以及变异系数。它是用均方差形式表征的分布宽度,公式如下:编者按:本文无异于是激光粒度仪初阶使用者的必备宝典,然而激光粒度仪分析报告中提供的可不止是粒径和粒度分布的解析,你知道还有激光粒度仪还会提供哪些重要参数吗?对这些参数又该如何分析?请期待张福根博士系列专栏——激光粒度仪应用导论之参数拾遗篇。(作者:张福根)
  • 张福根专栏|激光粒度仪应用导论之参数拾遗篇
    p style="text-align: left text-indent: 2em "span style="font-family: 宋体 text-indent: 2em font-size: 16px "激光粒度仪测试报告显示的其他参考性数据大概有以下几类:/span/pp style="text-indent: 2em "span style="font-family:Symbol"· span style="font-size: 9px font-family: ' Times New Roman' " /span/spanstrongspan style="font-family:宋体"遮光比/span/strong/pp style="text-indent: 2em "span style="font-family:宋体"遮光比是表征颗粒在分散介质中的浓度的指标。浓度太高,会导致散射光被颗粒散射2次以上(称为“复散射”),从而使测量结果失真;浓度太低,则散射信号太弱,信噪比低,测量结果重复性差,有时还会降低粗颗粒的测量灵敏度。一般而言,10%的遮光比是一个有参考意义的数值。当颗粒较粗,比如大于50a name="_Hlk520921096"/aµ m,遮光比可以适当提高;颗粒较细,比如小于1µ m,遮光比应该适当降低/spanspan style="font-family:宋体"。/span/pp style="text-indent: 2em "span style="font-family:Symbol"· span style="font-size: 9px font-family: ' Times New Roman' " /span/spanstrongspan style="font-family:宋体"拟合残差/span/strong/pp style="text-indent: 2em "span style="font-family:宋体" /spanspan style="font-family:宋体"拟合残差用以表征反演获得的粒度分布所对应的光能分布与实测的光能分布之间的方均根误差。如果颗粒是圆球形、散射光能分布的测量误差为零、反演计算准确无误,那么拟合残差应该为零。但实际上由于测量误差的存在,颗粒形状大多偏离球形,以及反演算法的不完善,拟合残差为0是极少出现的。一个可以参考的数值是1%。大多数情况下拟合残差都小于1%。如果拟合残差显著大于1%,比如达到甚至大于2%,那么就要怀疑测量结果的可靠性了。导致拟合残差过大的原因有以下几种可能:(1)散射光能测量误差过大(一般出现在仪器测量范围的边缘,例如0.05µ m);(2)颗粒折射率的输入值与实际值严重偏离;(3)反演计算失败。/span/pp style="text-indent: 2em "span style="font-family:DengXian color:#0070C0"【进阶知识5】拟合残余过大时,为了查找原因,可以掉看 “光能拟合曲线”(如果仪器提供了这个功能)。结合激光粒度仪的原理,用户或者仪器供应商的技术支持人员可以分析造成拟合残差过大的原因。具体的分析涉及许多专业知识和经验,在此不展开讨论。/span/pp style="text-indent: 2em "span style="font-family:Symbol"· span style="font-size: 9px font-family: ' Times New Roman' " /span/spanspan style="font-family:DengXian"比表面积/span/pp style="text-indent: 2em "span style="font-family:宋体"比表面积用以表征颗粒样品的表面积大小,其定义是单位重量或单位体积颗粒样品的表面积之和,单位是msup2/sup/g或者msup2/sup/ml。如果颗粒是圆球形的,那么知道了样品的粒度分布,我们就可以计算出样品的比表面积。计算公式如下:/span/pp style="text-align: center text-indent: 0em "span style="font-size:14px font-family:' Calibri' ,' sans-serif' "img src="http://img1.17img.cn/17img/images/201808/insimg/e3d1f33b-c695-4d0f-b962-2695a2e9b4a9.jpg" title="12.png"//span/pp style="text-indent: 2em "span style="font-family:宋体"体积比表面积除以颗粒的密度,就得到重量比表面积。可以想象,如果颗粒是非球形的,那么激光粒度仪根据粒度分布给出的比表面积就小于实际的比表面积。所以这个比表面积只有参考意义。/span/pp style="text-indent: 2em " /pp style="text-indent: 2em "strongspan style="font-family:宋体"编者按:/span/strongspan style="font-family:宋体"本文承接激光粒度仪应用导论之报告解读篇,对激光粒度仪测试报告进行了条分缕析,再加上之前的原理篇和结构篇,相信即使是零基础的读者朋友都对激光粒度仪不再陌生。张福根博士系列专栏对激光粒度仪的基本科普也告一段落。在后续的系列文章中,张博士将就主流激光粒度仪的性能特点、前沿技术等内容进行梳理品评,并将给出激光粒度仪选型的建议,敬请期待。/span/pp style="text-align: right "(作者:张福根)/p
  • 清华大学张书练:让激光正交偏振走出深巷放光芒
    5月7日,&ldquo 激光正交偏振及激光精密测量新技术研讨会&rdquo 在清华大学主楼接待厅举行。此次研讨会由清华大学精密测试技术及仪器国家重点实验室组织举办,旨在系统介绍张书练课题组就正交偏振激光的产生、现象进行的科学研究及其在精密测量中的应用,以及相关仪器的产业化前景。清华大学精密测试技术及仪器国家重点实验室主任张书练介绍研究成果  研讨会上,清华大学精密测试技术及仪器国家重点实验室主任张书练做了题为&ldquo 让激光正交偏振走出深巷放光芒:激光正交偏振及激光精密测量新技术的发展历程&rdquo 的学术报告,回顾了相关研究的缘起。他说,课题组在研究中注意到,现有激光文献只讲激光束的三特性&ldquo 高亮度&rdquo &ldquo 相干性&rdquo &ldquo 方向性&rdquo ,对比爱因斯坦阐述的光的受激辐射特性少了&ldquo 偏振&rdquo 性,从而课题组埋头30年,通过观察物理效应、发明新仪器把第四性&ldquo 偏振&rdquo 补上。  课题组成员谈宜东副教授、张松博士、朱守深博士还做了&ldquo 固态激光回馈干涉仪原理和应用&rdquo 、&ldquo 激光原理的三个实验系统&rdquo 、&ldquo 双折射-塞曼双频激光干涉仪&rdquo 及&ldquo 课题组的未来&rdquo 的报告。介绍了相关科研成果及应用前景。现场展出的仪器  研讨会还展出了张书练课题组研制的包括气体激光干涉仪、固态激光回馈干涉仪、光学位相延迟(内应力)测量仪、纳米测尺、新激光原理实验系统等十几种仪器。其中&ldquo 双折射-塞曼双频激光干涉仪&rdquo 突破了国内外限制几十年的频差低的难题,实现了3-20MHz任选频差的双频激光干涉仪,批量满足国家重大专项和机床检定需求 &ldquo 固态激光回馈干涉仪&rdquo 跨越传统干涉仪原理,在国内外率先研究成功并批量使用,由于其超高的灵敏度和能够测量非配合目标,应用广泛,被誉为&ldquo 新一代的激光干涉仪&rdquo &ldquo 激光频率分裂光学位相测量仪&rdquo 已批准为国家标准 &ldquo 激光原理的三个实验系统&rdquo 已有百台在近20所大学应用,改变了激光原理课实验教学的模式。  与会者兴趣浓厚,讨论热烈,特别对常见激光器的偏振特性、频率之间的竞争等提了问题,并就现场展示仪器的性能、应用提出了建议和意见。研讨会现场  来自北京大学、南开大学、哈尔滨工业大学、中国计量科学研究院、清华大学紫荆创新研究院、德铭精密机械有限公司等三十多所高等院校、科研机构以及公司代表约100人参加了会议。
  • 张福根专栏|激光粒度仪应用导论之技术问题篇
    p style="text-indent: 2em "本文简述了作者团队近几年已经完成的部分研究成果或已经发现而正在解决的激光粒度仪的理论和技术问题。用户了解这些内容对正确认识和更好利用粒度仪器及其输出的测试结果会有所裨益。/pp style="text-indent: 2em "1 爱里斑的反常变化(Anomalous Change of Airy disk,简称ACAD )对及其对激光粒度测量的影响/pp style="text-indent: 2em "前文已经叙述过,激光粒度仪是建立在“颗粒越大,散射光斑(爱里斑)越小”这一物理现象之上的。这一现象使得爱里斑的尺寸与颗粒大小呈现一一对应关系。而作者团队的研究成果(参见论文:L. Pan, F. Zhang, et al. Anomalous change of Airy disk with changing size of spherical particles [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016,170: 83-89)表明,这种物理现象对吸收性颗粒来说,或者透明颗粒从粒径变化的大尺度上看是正确的。但如果颗粒是透明的,那么从某些较小的粒径区间看,有时会出现相反的情况,即:颗粒越大,爱里斑也越大。我们把这种现象称作爱里斑的反常变化(英文简称“ACAD”)。/pp style="text-indent: 2em "下图是基于Mie散射理论,用数值计算的方法绘制的散射光斑模拟图,形象地显示出光斑大小的变化。这里假定颗粒分散在折射率为1.33的水介质中,照明光波长0.633微米。先看第一行,颗粒折射率取1.59,故相对折射率为1.20。从(a1)到(a4),颗粒直径分别为2.88μm, 3.28μm, 5.30μm, 6.06μm,逐步增大;对应的散射光斑角半径(从亮斑中心到第一个暗环的角距离)分别为8.09° ,13.06° ,5.08° ,7.90° ,时大时小。粒径从2.88μm增大到3.28μm,时,爱里斑尺寸则从8.09° 增大到13.06° ,属于反常变化;粒径从5.30μm增大到, 6.06μm,爱里斑尺寸从5.08° 增大到7.90° ,也属于反常变化。图7中的(b1)到(b4)是m 为1.1,颗粒直径分别为5.91μm,6.82μm,10.90μm,11.81μm对应的散射光斑,角半径分别为4.24° ,7.02° ,2.61° ,4.35° ,也是振荡减小的。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/3ad14d66-db52-460b-b9e1-ba3ee2c52995.jpg" title="1.jpg"//ppbr//pp style="text-indent: 0em text-align: center "strong 爱里斑图像随着粒径增大而变化/strong/pp style="text-indent: 2em "img src="https://img1.17img.cn/17img/images/201808/insimg/4f396c68-da7c-44fd-8227-d1b3f65bcafc.jpg" title="2.png"//pp style="text-indent: 2em "图中红色曲线是根据Fraunhofer衍射理论得到的爱里斑尺寸随无因次参量的变化,它是一条单调下降的曲线。蓝色曲线是根据Mie理论计算的透明颗粒的爱里斑尺寸变化曲线,可以看出它是振荡的。我们把爱里斑尺寸随粒径的增大而增大的粒径区域,称为“反常区”。图中还表达出折射率实部仍然取1.2,但颗粒有吸收时爱里斑尺寸的变化。可以看出,随着吸收系数的增大,反常现象会逐步消失。在该图所设定的情形中,吸收系数达到0.1时,反常现象即完全消失(绿色曲线)。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/9059b5e1-eadd-4451-b427-f6642c42419e.jpg" title="3.jpg"//ppbr//pp style="text-indent: 0em text-align: center "strong 爱里斑尺寸随粒径变化曲线/strong/pp style="text-indent: 2em "凭直觉我们就能想到,反常现象的存在可能导致爱里斑尺寸与颗粒大小不再一一对应,从而使得仪器根据光能分布反演粒度分布产生困难。作者团队进一步的研究表明,爱里斑的振荡随着粒径的增长会反复出现直至永远。其振荡周期会趋近于一个常数。而反常现象对粒度分布反演的困扰主要发生在第一个反常区(参考文献:L. Pan, B. Ge, and F. Zhang. Indetermination of particle sizing by laser diffraction in the anomalous size ranges[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 199:20-25)。/pp style="text-indent: 2em "作者团队已经推导出第一个反常区的中心粒径(反常区内Mie理论曲线与Fraunhofer曲线的交点)公式为:/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/be81374b-33fc-4075-a312-18647c7e952f.jpg" title="4.jpg"//ppbr//pp style="text-indent: 2em "从上式可以看出,反常现象对任意折射率的透明颗粒都存在。颗粒折射率越大,第一个反常中心的数值就越小。当被测颗粒的粒径分布落在反常区域,即上述公式给出的粒径位置周围时,将出现两个不同的粒度分布对应于相同的光能分布的情况,从而给粒度分布的反演带来不确定或者错误的结果。对此现象,各激光粒度仪厂商各有应对的方法,比如,真理光学的研发团队就在对ACAD现象深入研究的基础上,成功地解决了该现象对粒度测量的困扰,并已应用在真理光学的激光粒度仪产品中。/pp style="text-indent: 2em "2 平行平板测量池带来的全反射盲区/pp style="text-indent: 2em "所谓“全反射”就是当光线从折射率较大的空间(光密媒质)射向折射率较小的空间(光疏媒质)时,如果入射角较大,则光线将全部反射回光密媒质,不能传播到光疏媒质中。在激光粒度仪中,如果用液体分散待测颗粒(称为“湿法测量”),由于光电探测器总是安装在空气中,那么散射光就是从光密媒质向光疏媒质传播。目前市面上流行的激光粒度仪都是用平行平板玻璃作为测量池的窗口,这就会带来全反射的问题。如下图所示,当散射角比较小时,散射光能够穿过平行平板玻璃进入到空气,从而被光电探测器接收。假设分散介质是水(折射率1.33),那么根据折射定律可以算出全反射角为48.57° ,即在入射光垂直于玻璃表面的情况下,当散射角达到该角度时,光线进入空气的折射角等于90° (称为“全反射临界角”);当散射角继续增大,散射光将全部被玻璃-空气界面反射,回到测量池内,故称全反射。此时没有任何散射光出射到空气中。实际上置于空气中的探测器不可能摆在90° 的方向,常见的最大角为70° 左右,对应于水中的散射角为45° 。所以对前向散射来说,仪器只能接收散射角小于45° 的散射光。45° 到90° 的散射光不能被探测,这个角度范围即为测量盲区。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/62269a7f-254a-4c5d-8872-c0062969f795.jpg" title="5.jpg"//ppbr//pp style="text-indent: 0em text-align: center "strong散射光在平行平板玻璃测量池内的全反射现象示意图/strong/pp style="text-indent: 2em "对采用平行平板玻璃的测量池,即使设置了后向散射探测器,其后向能接收的最小散射角为135° (=180° -45° )。就是说45° 到135° 之间是测量盲区。该盲区对应于0.3到0.1微米的颗粒。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/51eeae4c-813c-4ec8-90a6-5f99ce16cd00.jpg" title="6.jpg"//ppbr//pp style="text-indent: 0em text-align: center " strong双光束照明的光学结构/strong/pp style="text-indent: 2em "引入另一束不同波长的照明光(以下称为“辅助照明光”或“辅助光束”),是加强激光粒度仪对亚微米颗粒测量能力的一种手段,如上图所示。一般来说辅助光束应该以较大的倾斜角入射到测量池中,从而使得测量池内大于45° 的散射光也能出射到空气中。例如,辅助光从空气入射到测量池的入射角为43° ,则对应于水中的倾斜角为31° 。该光束被颗粒散射后,逆时针方向最大76° (=31+45)的散射光,相对于水-玻璃界面,入射角也只有45° ,所以能够出射到空气中被探测器接收。另一方面,辅助光一般采用波长较短的蓝光,以扩展测量下限。/pp style="text-indent: 2em "真理光学则采用了梯形玻璃的测量窗口,能够较好地解决全反射对亚微米颗粒测量的影响。下图是真理光学LT3600plus激光粒度仪的结构示意图。该仪器包含了多项创新成果。就激光粒度仪的核心技术之一——光学结构来说,主要有两项:一是用一体化的偏振滤波取代了传统的针孔滤波,使仪器的抗震能力极大地提高,完全避免了针孔滤波所固有的易偏移,难调节的麻烦;二是用独创的改进型梯形窗口取代了传统的平板窗口。本文重点讨论第二点。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/fe3173a2-dec7-4250-bf55-92c9a964348d.jpg" title="7.jpg"//ppbr//pp style="text-indent: 0em text-align: center "strong真理光学LT3600plus的光学结构示意图/strong/pp style="text-indent: 2em "梯形玻璃测量池的工作原理见下图。在这种结构中,前向的平板玻璃被换成了梯形玻璃,同时在梯形玻璃的平行面与斜面相交的棱上加了一片防串条,并且给超大角探测器设置了遮光格栅。当光轴上方的超大角(大于全反射角)散射光传播到玻璃—空气界面时,正好落在玻璃的斜面上。此时散射光到达斜面的入射角总是小于玻璃-空气界面的全反射角,因此能够出射到空气中,从而解决了平板玻璃结构的全反射问题。必须说明的是,这种梯形结构20多年前就有人提出过。但是这种结构在应用中存在一个麻烦的问题,就是从平面出射的散射光和从斜面出射的散射光在空气中会相互串扰。真理光学通过前述的防串条和遮光格栅,巧妙地解决了串扰问题,故此能把梯形玻璃测量池应用在实际的粒度仪中。该方案用一束照明光解决了全反射盲区问题。下图(第二张)是LT3600Plus仪器对对0.1、0.2、0.4、0.5、1.0微米单分散标准颗粒的测量结果综合。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/24748398-5f6f-41b3-9d65-6a2a6dfd5d7b.jpg" title="8.jpg"//ppbr//pp style="text-indent: 0em text-align: center " strong改进的梯形玻璃测量池工作原理图(不包含后向接收)/strong/pp style="text-indent: 0em "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/0f4aa241-55ef-4927-b1b4-8ff2a4bb20e1.jpg" title="9.jpg"//strong/ppbr//pp style="text-align: center text-indent: 0em "strong LT3600Plus测量各种亚微米颗粒的结果综合/strong/pp style="text-indent: 2em "3 折射率数据获取的困难及解决之道/pp style="text-indent: 2em "用激光粒度仪测量样品时,需要预先输入样品的折射率。折射率数值如果不对,将导致错误的测量结果。目前一般是通过查找文献资料获得颗粒的折射率数值(粒度仪厂家虽然在仪器软件中也提供了部分物质的折射率数据,但也是从公开的文献中引用过来)。但是在实际操作中,折射率数据的问题,还是会困扰激光粒度仪的使用。主要原因是:/pp style="text-indent: 2em "(1)有些样品的折射率在公开文献中查不到;/pp style="text-indent: 2em "(2)有时查到的折射率数据与实际折射率不符。原因是:/pp style="text-indent: 2em " (2a)物质中的杂质含量会影响折射率的数值。如果待测物质的实际杂质含量与文献提供数据所对应的杂质含量不一致,那么待测物质的实际折射率与文献提供的折射率数值也不一致。/pp style="text-indent: 2em "(2b)物质的折射率随照明光的波长变化。激光粒度仪的主光束通常是红光,波长大约633纳米到655纳米。文献提供的折射率数据对应的光波长很少是这个范围的。最常见的折射率是用钠黄光(波长589纳米)测量得到的。因此实际折射率与文献提供的数值可能不一致。/pp style="text-indent: 2em "准确地获得被测颗粒的折射率,成为激光粒度仪应用的重要问题之一。/pp style="text-indent: 2em "在各种解决方法之中,真理光学的研发团队提出了一种利用激光粒度仪测量得到的散射光分布本身计算待测颗粒的折射率的方法(已申请发明专利)。可以自动测定颗粒尺寸远大于光波长情况下颗粒的折射率。/pp style="text-indent: 2em "本方法所依据的基本原理是:当颗粒的尺寸远大于光波长(典型值为10倍以上),且只考虑小角度(通常小于5º )范围内的光强分布时,散射光分布可以用Fraunhofer衍射理论比较精确地描述。而Fraunhofer衍射理论给出的光能分布与颗粒的折射率无关,只与颗粒尺寸有关;同时在小角范围内,Fraunhofer衍射理论与Mie理论的数值高度吻合,因此我们可以根据散射光在小角范围内的分布和衍射理论确定样品的粒度分布,再利用大角散射光及前面用衍射理论获得的粒度分布,通过简单的迭代算法,计算出颗粒的折射率实部和虚部。/pp style="text-indent: 2em "4 其他问题/pp style="text-indent: 2em "衍射法粒度测量还存在一些其他的值得进一步研究的问题。例如当颗粒浓度很高时,散射光被颗粒多次散射(称为“复散射”)对测量结果的影响,颗粒形状偏离球形是怎样影响测量结果的等等,这些问题都有待研究者们继续探索下去。/pp style="text-indent: 2em "本文中,张福根博士基于自己多年来的研发成果,深入探讨了激光粒度仪存在的几个前沿问题,激光粒度仪的复杂性由此可见一斑,其未来的发展仍然让人期待。不过作为粒度粒型检测分析的重要仪器,有关激光粒度仪的话题不仅是高山流水的学术研究,同时也是日常实验检测中的亲密伙伴,在实际应用中我们应该选择什么样的激光粒度仪呢?下一篇张福根专栏|激光粒度仪选型建议将为你提供参考。/pp style="text-indent: 0em text-align: right "(作者:张福根)/pp style="text-align: left text-indent: 2em "更多精彩内容尽在a href="http://www.instrument.com.cn/zt/YYMMG" target="_self" title="" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "激光粒度仪应用面面观/span/a。br//p
  • 863计划“先进激光材料及全固态激光技术”项目申请指南公布
    国家高技术研究发展计划(863计划)新材料技术领域“先进激光材料及全固态激光技术”主题项目申请指南  在阅读本申请指南之前,请先认真阅读《国家高技术研究发展计划(863计划)申请须知》(详见科学技术部网站国家科技计划项目申报中心的863计划栏目),了解申请程序、申请资格条件等共性要求。  一、指南说明  依据《国家中长期科学和技术发展规划纲要(2006-2020年)》,为满足先进制造、精密测量和国家重大科学工程等对全固态激光器的迫切需求,设立“先进激光材料及全固态激光技术”主题项目。  本项目通过突破人工晶体材料及全固态激光器研制和产业化关键技术,开发出具有自主知识产权的系列化高功率、皮秒和紫外全固态激光器产品,促进我国人工晶体材料和全固态激光器产业的发展。  本主题项目的任务落实只针对项目整体进行,项目申请者应针对指南内容,围绕项目总体目标和任务进行申请,而不要只针对项目部分目标和任务进行申请。  项目可以由一家申请,也可以由多家共同申请。对于多家共同申请的主题项目,由研究单位自行组合形成项目申请团队(一个单位只能参加一个申请团队),并提出项目牵头申请单位和申请负责人,由项目牵头申请单位具体负责项目申请。  项目申请要提出项目分解(包括任务分解及经费分解)方案,提出项目课题安排及承担单位建议,并填写课题申请书(项目拟分解的课题数最多不超过10个)。  二、指南内容  1、项目名称  先进激光材料及全固态激光技术  2、项目总体目标  突破人工晶体、全固态激光器及其核心器件的研发和产业化关键技术,开发出系列化高功率、皮秒和紫外全固态激光器产品并实现工业示范应用,促进我国人工晶体和全固态激光器产业的发展。  3、项目主要研究内容  (1)深紫外激光器及人工晶体关键技术  KBBF/RBBF晶体生长、KBBF-PCT器件制备、激光高次谐波和激光线宽控制等技术研究。  (2)新型晶体材料及器件技术  超晶格晶体制备、超晶格可调谐锁模、Nd:YAG激光陶瓷材料制备等技术研究。  (3)千瓦级光纤材料及全光纤激光器  低光子暗化光纤制备、全光纤种子源研制、全光纤激光器整机设计和装配等技术研究。  (4)单频激光器关键技术  纵模控制、增益光纤与标准光纤熔接、倍频晶体抗光损伤工艺等技术研究。  (5)紫外激光器产业化关键技术及应用  光学晶体长寿命使用、激光器单元模块化、系统集成等产业化关键技术开发 紫外激光微加工应用技术开发。  (6)高功率激光器产业化关键技术及应用示范  大批量Nd:YAG单晶高质量低成本生长及加工、激光振荡放大、系统集成等产业化关键技术研发 高功率激光在焊接、表面处理等方面的应用技术开发。  (7)皮秒激光器产业化关键技术及应用示范  皮秒激光振荡、再生与行波放大、系统集成等产业化关键技术研发 皮秒激光微加工应用技术开发。  4、项目主要考核指标  (1)深紫外人工晶体及激光器  KBBF晶体尺寸15×10×4mm3,RBBF晶体尺寸12×6×1.5mm3,KBBF-PCT器件透过率95%@193nm 177.3nm激光器功率100mW。  (2)光学超晶格锁模器件  线性损耗0.5%/cm、尺寸≥20×3×1mm3 锁模激光器:1.0μm/0.5μm双波长和1.3μm 激光陶瓷尺寸≥100×100×20mm3、透光率≥80%@1064nm。  (3)千瓦级光纤材料及激光器  双包层光纤材料光子暗化12dB/m@633nm 全光纤激光器功率1.5kW、光束质量M21.5。  (4)单频激光器  倍频晶体KTP抗光损伤阈值2GW/cm2@1064nm/10ns/10Hz 单频绿光激光器功率10W、线宽2MHz、噪声0.03%RMS 单频光纤激光器功率5W、线宽10kHz、边模抑制比60dB。  (5)紫外激光器  功率10W/20W/30W系列,重复频率50~150kHz,光束质量M2≤1.3,8小时内功率起伏3%,无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  (6)高功率激光器  Nd:YAG晶坯直径≥100mm、单程损耗≤2×10-3/cm@1064nm,键合晶体的键合面损耗≤0.1% 3kW和5kW激光器产品:光纤芯径为400μm,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产 激光器功率≥6kW,8小时内功率起伏±2%。  (7)皮秒激光器产品  千赫兹10~20mJ@1064nm、5~10mJ@532nm、1~2mJ@355nm,脉冲宽度≤20ps,光束质量M2≤2,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  5、项目支持年限为2年。  6、项目国拨经费控制额为9000万元,自筹经费不低于国拨经费控制额。  三、注意事项  1、鼓励“产学研用”联合申报,项目下设每个课题的协作单位原则上不超过5家。  2、受理时间:项目申请受理截止日期为2010年12月8日17时。  3、申报要求:项目申请采取网上申报方式,申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn。请按要求编写《国家高技术研究发展计划(863计划)主题项目申请书》,具体申请程序、要求及其他注意事项详见《国家高技术发展计划(863计划)申请须知》。  4、咨询联系人及联系电话、电子邮件  咨询联系人:史冬梅  联系电话:010-88372105/68338919  电子邮件:shidm@htrdc.com  863计划新材料技术领域办公室  2010年10月20日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制