当前位置: 仪器信息网 > 行业主题 > >

短波近红外微型仪

仪器信息网短波近红外微型仪专题为您提供2024年最新短波近红外微型仪价格报价、厂家品牌的相关信息, 包括短波近红外微型仪参数、型号等,不管是国产,还是进口品牌的短波近红外微型仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合短波近红外微型仪相关的耗材配件、试剂标物,还有短波近红外微型仪相关的最新资讯、资料,以及短波近红外微型仪相关的解决方案。

短波近红外微型仪相关的论坛

  • 短波和长波近红外各有什么特点?

    [font=宋体][font=宋体]短波近红外波长范围为[/font][font=Times New Roman]780~1100nm[/font][font=宋体],具有穿透能力强、吸收相对弱的特点,一般用于固体如水果的透射和半透射检测;而长波近红外波长范围为[/font][font=Times New Roman]1100 ~2526nm[/font][font=宋体],具有穿透能力弱、吸收相对强的特点,一般用于液体的透射或固体的漫反射检测。[/font][/font]

  • 微型近红外光谱仪关键技术研究进展

    [color=#555555]微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](Near Infrared Microspectrometer, NIM)是一种运用光学原理对物质的组分和含量进行定性、定量分析的微型无损检测仪器,具有小体积、低功耗、低成本、可现场在线分析、便于二次开发等优点,在农业生产、食品安全、生物医药、石油化工、航空航天以及国防安全等众多领域获得了广泛的应用。例如,Zeltex公司的手持式近红外粮食分析仪可直接显示出蛋白质等成分的含量。[/color][color=#555555]传统的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]体积大、功耗高、价格昂贵、难以二次开发,这极大地限制了其应用范围。直到上世纪90年代,随着微光机电系统(MOEMS)技术的兴起,微型化的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器逐渐出现并不断发展,开启了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的微型化进程。[/color][color=#555555]不论哪种类型的光谱仪,都需要将复色光色散为单色光,所以分光是光谱仪最基本的功能。文章根据不同的分光技术,主要介绍了光栅扫描型、傅里叶变换型和阿达玛变换型三种类型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],并进行了分析及总结。[/color][align=center][color=#333333] [img=,650,234]http://www.gdkjfw.com/images/image/95851544146319.jpg[/img][/color][/align][align=center][color=#888888]图1 典型的微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][/color][/align][color=#ffffff]光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][/color][color=#555555]为了降低微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的成本,德国夫朗禾费光学微系统研究所(IPMS)率先提出了以MOEMS扫描光栅为核心元器件的光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],以集分光与扫描于一体,可以用价格低廉的单管探测器取代昂贵的阵列探测器,仪器的性能不再取决于阵列探测器而主要取决于扫描光栅(如图2所示)。[/color][align=center][color=#333333][img=,650,207]http://www.gdkjfw.com/images/image/9751544146319.jpg[/img] [/color][/align][align=center][color=#888888]图2 MOEMS扫描光栅型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]工作原理[/color][/align][color=#555555]随着MEMS技术的发展,微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]向超小型、宽光谱发展的趋势越来越大。[/color][color=#555555]2016年IPMS报道了一种体积只有方糖大小,可集成于手机的光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],如下图所示,光谱范围950~1900 nm,分辨率10 nm,其核心元器件为集成了入射狭缝和出射狭缝的MOEMS扫描光栅芯片。扫描光栅面大小为3 mm×3 mm,采用静电梳齿驱动,并集成了压电式角传感器进行闭环控制,以实现高精度扫描。但由于镜面厚度只有数十微米,在扫描过程中,镜面容易出现动态变形的问题,影响光谱仪的信噪比。基于IPMS的核心技术,德国HiperScan公司在市场上推出了相应商品化的光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]。[/color][align=center][color=#333333] [img=,650,226]http://www.gdkjfw.com/images/image/45711544146319.jpg[/img][/color][/align][align=center][color=#888888]图3 德国IPMS研究所研制的超小型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][/color][/align][color=#555555]国内相关科研团队也进行了光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的研究。[/color][color=#555555]西北工业大学乔大勇团队研制的MOEMS扫描光栅,采用SOI制作,静电梳齿方式驱动,但同样存在镜面动态变形的问题,且静电驱动方式所需驱动电压较高。[/color][color=#555555]重庆大学温志渝团队提出的MOEMS扫描光栅,利用偏晶向硅片制作大面积闪耀光栅,具有较高的衍射效率和分辨率,采用较厚的光栅面能够有效地解决动态变形的问题,但同时带来了稳健性较弱的问题。扫描光栅采用电磁式驱动和传感,便于一体化集成,且所需驱动电压较低,但存在电磁干扰的问题。[/color][color=#555555]由于光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]有MOEMS扫描光栅这一可动部件,抗震性较差,因此开发出高性能的MOEMS扫描光栅是光栅扫描型仪器发展所需突破的关键技术问题,而且在拓宽光谱范围的同时需考虑解决二级光谱重叠的问题。[/color][color=#ffffff]傅里叶变换型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][/color][color=#555555]傅里叶变换型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]是基于光干涉和傅里叶变换原理设计的,一般采用迈克尔逊干涉仪为核心部件。迈克尔逊干涉仪主要由定镜、分束器和动镜组成,而其中的动镜尤为关键。动镜主要做活塞式运动,其可动行程(即扫描位移)的大小直接决定了仪器性能。[/color][align=center][color=#333333] [img=,650,286]http://www.gdkjfw.com/images/image/80411544146319.jpg[/img][/color][/align][align=center][color=#888888]图4 迈克尔逊干涉仪工作原理及MOEMS工艺制成的干涉仪[/color][/align][color=#555555]2[/color][color=#555555]015年,德国夫朗禾费ISIT研究所提出了基于PZT薄膜的压电驱动MOEMS活塞镜,在163Hz谐振频率下扫描位移最大可达±800 μm ,但在扫描位移较大时存在镜面倾斜的问题。镜面倾斜限制了可用的扫描范围,而且会影响干涉信号,因此降低了分辨率。[/color][color=#555555]美国佛罗里达大学谢会开团队对电热驱动MOEMS活塞镜进行了深入研究,其采用双闭环控制的方法不仅有效减小了大位移扫描过程中的镜面倾斜幅度,同时实现了恒定速度的线性扫描,降低了信号处理的难度,使得光谱分辨率和抗干扰能力等性能大为提升。[/color][color=#555555]另一种类型的微型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]则是以层状光栅干涉仪为核心元件,利用单管探测器对零级光谱进行探测。相较于迈克尔逊干涉仪,层状光栅干涉仪不需要分束器、定镜等光学元件,结构更加简单、紧凑。[/color][color=#555555]土耳其科克大学Urey团队提出了一种基于垂直梳齿驱动器的层状光栅干涉仪,同时梳齿电极作为驱动器和可动光栅,产生的位移达到106 μm。[/color][color=#555555]随后,该团队又提出了稳健性更好的基于FR4板材的电磁驱动层状光栅干涉仪,及基于MOEMS技术更大位移的静电驱动层状光栅干涉仪,后者可动光栅的最大位移可扩展至±356 μm,并引入机械闭锁装置以提高抗冲击能力。新加坡国立大学周光亚团队也做了相应的研究。[/color][color=#555555]微型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]具有结构紧凑、光通量大、波长精度高、高分辨率等优势,适用于对分辨率要求较高的场合,但仍存在抗震性差的固有缺陷以及仪器性能受限于动镜或可动光栅所能实现的活塞位移等问题。目前,瑞士Arcoptix公司、日本滨松、埃及的Si-Ware Systems和国内的无锡微奥公司均推出了商品化的微型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]。[/color][color=#ffffff]阿达玛变换型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][/color][color=#555555]阿达玛变换型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]是一种在色散光谱仪中引入阿达玛变换的数字变换型仪器,通过光的多路复用提高信噪比,而且一般采用单管探测器使成本较低,无移动部件使抗冲击能力也优于傅里叶变换型光谱仪。[/color][align=center][color=#333333] [img=,650,214]http://www.gdkjfw.com/images/image/76961544146320.jpg[/img][/color][/align][align=center][color=#888888]图5 微型阿达玛变换光谱仪工作原理及数字阵列微镜[/color][/align][color=#555555]基于数字微镜阵列的微型阿达玛变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]通过控制微镜单元的选通实现对光信号的开关调制,既减小了光谱能量损失,也抑制了杂散光的干扰,是近年来研究的热点。[/color][color=#555555]为了进一步减小光能量损失,重庆大学张智海等人结合H矩阵与S矩阵的优点,提出了一种互补S矩阵编码调制方案,在S矩阵的基础上将信噪比提升约1.4倍。[/color][color=#555555]2014年,长春光学精密机械与物理研究所刘华团队设计了一种光谱折叠式微型阿达玛变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],采用两个子光栅使光谱范围有效拓宽为800~2000 nm,光谱分辨率也得到了提升,但杂散光较大。为了避免这一缺陷并降低光谱仪的复杂度,该团队又提出了一种采用自由曲面透镜准直的光谱折叠式光谱仪来拓宽光谱,光谱范围达800~2400 nm,可覆盖几乎整个近红外波段,仿真结果显示分辨率优于10 nm,提升了光能利用率,降低了消除二次光谱的难度。[/color][color=#555555]微型阿达玛变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]具有光通量大、信噪比高、成本低、抗震性较好等优点,适用于微弱光谱信号的检测,编码技术和光谱拓宽仍是近年研究的热点。目前,Polychromix公司、Aspectrics公司和国内的北京华夏科创仪器公司均有相应的商品化仪器出现在市场上。[/color][color=#555555]由于近红外探测器在整台微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]成本中占的比重较大,所以采用单管探测器的微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]成本较低。在MOEMS技术的推动下,微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的体积也大为缩小。因此,微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]可以走出实验室,应用到越来越多的领域中。如近年来出现的SCIO、TellSpec等廉价小巧的专用型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]。[/color][color=#555555]微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]一直朝着宽光谱、高分辨率、高信噪比、高集成度、小体积、低成本、快速检测等方向发展,国内外的科研机构一直在新原理、新工艺、新材料等方面进行着不懈的探索和努力。今后,微纳技术的发展势必会给微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的发展提供有力的技术支撑,而且随着对微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的二次开发和应用领域的拓宽,光谱与人类生产生活的联系将会更加密切。[/color]

  • 近红外光谱仪的微型化

    [font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器在小型化和微型化的道路上从未止步,从实验室台式[/font][font=宋体]([/font][font='Times New Roman']Benchtop[/font][font=宋体])[/font][font=宋体]、车载便携式[/font][font=宋体]([/font][font='Times New Roman']Portable[/font][font=宋体])[/font][font=宋体]、手持式[/font][font=宋体]([/font][font='Times New Roman']Hand-held[/font][font=宋体])[/font][font=宋体],发展到袖珍式[/font][font=宋体]([/font][font='Times New Roman']Pocket-sized[/font][font=宋体])[/font][font=宋体]和微型[/font][font=宋体]([/font][font='Times New Roman']Miniature[/font][font=宋体])[/font][font=宋体],用了不到[/font][font='Times New Roman'][font=宋体]十[/font][/font][font=宋体]年的时间。尤其是[/font][font='Times New Roman'][font=宋体]集成了机、电、光、磁、化学[/font][/font][font=宋体]和[/font][font='Times New Roman'][font=宋体]传感等多种机械、微电子与信息技术的微光学电子机械系[/font][/font][font=宋体]统,促进了近红外[/font][font='Times New Roman'][font=宋体]光谱分析仪的微型化。微型[/font][/font][font=宋体]近红外[/font][font='Times New Roman'][font=宋体]光谱仪具有重量轻、体积小、检测速度快、使用方便、可集成化[/font][/font][font=宋体]、[/font][font='Times New Roman'][font=宋体]可批量制造以及成本低廉等优点,可以应用在实验室化学分析、工业监测、航空航天遥感[/font][/font][font=宋体]和[/font][font='Times New Roman'][font=宋体]临床医学检验等领域。[/font][/font][font='Times New Roman'][font=宋体]美国[/font][/font][font=宋体][font=Times New Roman]B[/font][/font][font='Times New Roman']RIMROSE[font=宋体]公司与[/font][font=Times New Roman]JETPROPULSION[/font][font=宋体]实验室联合设计和制造的一种新型[/font][/font][font=宋体]声光可调滤光器[/font][font='Times New Roman'][font=宋体]近红外[/font][/font][font=宋体]([/font][font='Times New Roman']AOTF-[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url][/font][font=宋体])[/font][font='Times New Roman'][font=宋体]光谱仪,就是采用微型窄带滤光片技术,通过改善施加在特殊晶体上的波长覆盖范围来调节波长分辨率和通光波长的[/font][/font][font=宋体]反射型近红外微型光谱仪,其[/font][font=宋体]制造[/font][font=宋体]结构简单、性能良好、成本低廉。该[/font][font='Times New Roman'][font=宋体]微型光谱仪使用发光二极管阵列作为光源,光纤作为光波传输介质,重量小[/font][/font][font=宋体]([/font][font='Times New Roman']250[font=宋体]克[/font][/font][font=宋体])[/font][font='Times New Roman'][font=宋体],外观尺寸小[/font][/font][font=宋体]([/font][font='Times New Roman'][font=宋体]约为[/font]9.2cm×5.4cm×3.2[/font][font=宋体][font=Times New Roman]cm[/font][/font][font=宋体])[/font][font='Times New Roman'][font=宋体],扫描速度快[/font][/font][font=宋体]([/font][font='Times New Roman'][font=宋体]可达[/font]4000[font=宋体]波长每秒[/font][/font][font=宋体])[/font][font='Times New Roman'][font=宋体]。它的分辨率高[/font][/font][font=宋体]([/font][font='Times New Roman'][font=宋体]达到[/font]0.0125[/font][font=宋体][font=Times New Roman]nm[/font][/font][font=宋体])[/font][font='Times New Roman'][font=宋体],波长调节速度快,灵活性高,可靠性好,将光谱分析从实验室搬入日常生[/font][/font][font=宋体]活[/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体]我国是农业大国,具有悠久的农业生产历史,而且传统的农业领域一向是劳动密集型行业。生产技术的不断进步与农具的革新推动了农业领域的发展,如粮食种植产业呈现出规模化、集约化、专业化、机械化的趋势,并从中解放出大量的农业劳动力。但是,像在云南、贵州、四川等西南山区的柑橘、刺梨、[/font][font=宋体]枇杷等果品种植行业,仍然依赖人工作业,效率低,成本高。传统的植保作业方式消耗高水量、高肥量和高剂量[/font][font=宋体]([/font][font=宋体]施用农药及各种生长剂等[/font][font=宋体])[/font][font=宋体],同时造成高污染,这也成为行业的痛点。精细农业、数字农业、智慧农业的迅猛发展,使得集约化、精准化、数据化和智能化的农业新模式渐行渐近、触手可及,为植保行业的绿色发展带来了前所未有的机遇。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术与无人机、机器人的[/font][font=宋体]结合将扮演越来越重要的角色。传统果园为防治果树的病虫害,几乎每个月都需要施撒农药[/font][font='Times New Roman'][font=宋体]两次[/font][/font][font=宋体]以上。若以人工作业为主,弥漫的药雾对人体伤害较大。而且由于人工喷药的雾化程度不高,会造成大量的农药浪费,[/font][font='Times New Roman'][font=宋体]甚至[/font][/font][font=宋体]土壤污染。无人机携带光谱仪,可先对果树的病虫害进行评估,然后根据虫病的危害程度,通过无人机或地面机器人实施特定条件下的药剂与药量喷洒。植保无人机进行覆盖树冠部分的精准农药喷洒,精度可以达到厘米级,极大地节省用药量以及人力。此外,植保机器人还可帮助完成果树的修剪和授粉等任务;在果实管理方面,果实采摘机器人上的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪可实时判断果实的成熟度,适时采摘,有效提高水果质量。采摘后的水果通过智能分拣系统,实现果品的大小和品质自动分选,整个分拣过程包括上料、卸料、分选、装箱、包装、码垛等。施肥机器人上的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]对果园土壤的水分和肥力进行实时测定,根据其水分及各种元素组成等结果适量、变量施肥施水。通过分析土壤水分、果树的长势以及近期的气象预报等大数据,制订出短期的灌溉计划,并利用现代化的装置便能实现精准灌溉和科学施肥,从而节省大量的水资源,有效地减少了施肥量,降低农业成本的同时保护环境。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]能与无人机、机器人、自动驾驶、人工智能、物联网、区块链、大数据等技术融合,形成感知、互联、分析、自学习、预测、决策、控制的全生态链智慧农业。果农无论在何方,都可以用智能端,多角度调转,对每块田甚至每棵树的长势进行云端管理,争取让每颗果树达到理想生长曲线,真正实现智慧果园的[/font][font='Times New Roman']“[/font][font=宋体]标准化种植[/font][font='Times New Roman']”[/font][font=宋体]和[/font][font='Times New Roman']“[/font][font=宋体]无人值守[/font][font='Times New Roman']”[/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]采用复合光纤传感阵列设计的微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],可以通过波长、相位、衰减分布、偏振和强度调制、时间分辨、收集瞬时信息等真正实现多通道光谱分析,同时检测、鉴定和量化复杂待测物成分。[/font][/font][font=宋体]目前市场上[/font][font='Times New Roman']SI-WARE[font=宋体]公司的[/font][/font][font=宋体][font=Times New Roman]NeoSpectra[/font][font=宋体]系列光谱仪,外观精巧、成本低、光谱覆盖范围广、能耗低,能够提供透反射、吸光度、颜色、激光多种[/font][/font][font='Times New Roman'][font=宋体]连续[/font][/font][font=宋体]测量。[/font][font=宋体]食品是人们最基本的生活需求,其营养与安全不仅直接关系人类的健康生存,还关系到国计民生、建设和谐社会的大事,甚至还严重影响着经济与社会的发展。随着生活水平的不断提高,人们愈发注重身体健康,对食物的追求已经不只局限于简单的吃饱、吃好,对食品的营养安全提出了更高的要求。如果要真正做到精准营养、健康饮食,那么搞清楚食物中的营养成分是必不可少的环节。掌控食品营养成分的质和量,不但可以指导人们合理控制营养膳食,也可对食品的生产、加工、运输、贮藏等过程进行合理控制,为及时了解食品品质的变化、保障个人饮食健康,提供了可靠、科学的依据。[/font][font=宋体]传统食物分析仪器往往是放置在实验室里的昂贵设备,例如凯氏定氮仪、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]等。而市场上的食物种类繁多,质量检测人员以及消费者往往需要耗费大量的时间和精力才能搞清楚每样食物中的成分和营养。那么能否发展和应用[/font][font=宋体]移动式、便携式、嵌入式和可穿戴式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][/font][font=宋体]来解决这一常规分析问题呢?日本科学家发明了世界首台卡路里测量仪[/font][font='Times New Roman']Calory Answer[/font][font=宋体],采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]原理,可以在不接触、不破坏食物的条件下,全自动直接测量单一食品材料和混合类食物的指标,分析时间为[/font][font='Times New Roman']6[/font][font=宋体][font=Times New Roman]min[/font][font=宋体]。测量指标包括热量、蛋白质、脂肪、碳水化合物、水分、酒精等。其简单快捷的特性可充分体现在餐饮服务业的日常检测中,诸如菜肴、盒饭等复杂混合食物是无法用传统方法快速准确得到其卡路里值的。该仪器被普遍应用在日本各大超市、食品加工厂和营养机构等场所,国内很多健身机构、营养配餐机构也配备了这样的设备。[/font][/font][font=宋体]加拿大科学家发明的一款只有钥匙链大小的[/font][font='Times New Roman']“Tellspec”[/font][font=宋体]手持式食物热量扫描仪,需与智能手机应用程序配合使用。这个扫描仪装有一个分光计,用户只需扫一扫便可获知食物的热量,可以帮助用户了解食物内的过敏源、化学物质、营养物质、热量和配料,甚至能够穿透塑料扫描食物,让购物者在超市选购食品时先扫描,再决定是否购买。扫描食物后,扫描仪将获取的数据上传到网络服务器。随后,经过特定的算法创建一份报告,并传输给智能手机应用程序,显示食物的成分,从而帮助消费者选择食物。以色列科学家发明的一种拇指大小的近红外线光谱扫描仪[/font][font='Times New Roman']SCiO[/font][font=宋体],可用于探测食物、药品和其他物品中的化学成分。只要拿着扫描仪对准目标物品按下按键,使用者就可以获取其内部成分含量。比如查看一块奶酪含有多少卡路里,或确定一只挂在枝头的西红柿何时能熟透。未来,该产品将具备识别食物生熟、变质的功能,通过建立强大的后台数据库,甚至可以识别出含不良添加剂的牛奶。[/font][font=宋体]随着越来越强大的电子消费产品及相关技术的迅速发展和[/font][font=宋体]移动营养与健康技术的突破[/font][font=宋体],可将光谱设备嵌入到智能手表、洗衣机、烤箱和真空吸尘器中。可以假设此类嵌入式设备的制造商对产品的稳定性、特定温度和湿度范围内的适用性,以及校准承担全部责任,能为整个产品提供自动决策。最新一代的光谱仪,包括基于光子或等离子体设备的光谱仪,有望实现极端小型化和极低的成本,可以集成到普通大众的智能手机中,供消费者[/font][font=宋体]在线[/font][font=宋体]识别和检测[/font][font=宋体]生鲜新鲜度、食物营养价值、环境过敏原、皮肤状态等,实现长期的跟踪指导、营养自助评价、饮食结构调整,实施精准营养、健康服务[/font][font=宋体]。[/font][font=宋体]未来可能会出现[/font][font='Times New Roman']“[/font][font=宋体]胶囊化[/font][font='Times New Roman']”[/font][font=宋体]甚至[/font][font='Times New Roman']“[/font][font=宋体]微尘化[/font][font='Times New Roman'][font=Times New Roman]”[/font][font=宋体]的[/font][/font][font=宋体]微型光谱仪,只有一粒种子大小,可以感知、储存和传输数据,进入人体的消化系统,甚至血液系统中,实时监测人体的健康状况。在临床医学上,与智能手术机器人结合,可高精度判别和切除病灶组织,实现真正意义上的精准医疗。[/font]

  • 【分享】近红外微型光纤光谱仪

    当前,微型光纤光谱仪非常流行,受到了众多应用领域的青睐。与大型光谱仪相比较,微型光纤光谱仪价格便宜(仅是大型光谱仪的零头);携带方便(只有手掌大小);测量速度快(毫秒级的数据采集,实现在线实时分析);操作方便,性能稳定可靠(无需专人维护)等长处。因此,在满足使用要求的前提下,微型光纤光谱仪是一种最佳的选择。微型光纤光谱仪的主要功能有:吸光度测量;反射率测量;透射率测量;颜色测量;相对辐射和绝对辐射测量。具体应用包括吸光度测量系统(包括气体、液体、固体的吸光度测量);颜色测量系统(纸张、油漆、颜料、布料、动物皮肤、植物、光源等等);膜厚测量系统(感光保护膜、半导体薄膜、金属膜、等离子体镀膜、光学镀膜等);SLM系列光源测量系统(白炽灯、荧光灯、ARC、HRC、以及发光二级管等光源的各种参数测量);SMS光照度/辐照度测量系统(光通量、光强、光照度或光亮度测量);LCS系列LED测量系统(测量LED光源、大型光源的光学、光谱、颜色、纯度等特征信息);氧含量测量系统(连续测量氧饱和度、总含量、含氧和去氧血色素的浓度);荧光测量系统(测量皮克级的含有荧光团的物质);近红外测量系统(糖、酒精、湿度、脂肪等成分的分析);拉曼测量系统(药物、爆炸物、水质、现场材料的分析,制药监控,石化工业过程控制等);LIBS2500光纤光谱仪系统(无损地对气体、液体、固体进行定性和半定量的实时元素分析);PlasCalc等离子监控器系统(监测等离子蚀刻,检查表面清洁处理,分析等离子反应腔控制情况,检测异常污染和排放现象,等离子开发过程的检测和控制,等等);防晒指数测量系统(化妆品、防晒用品、防紫外服、感光乳剂等的SPF值测量);量子效应测量系统(量子效率的测量等)。楼主可以介绍使用的领域么,广告的不要做。

  • 哪段近红外光的穿透性较强?如何利用?

    [font=宋体]近红外短波区域([/font][font='Times New Roman']780 ~1100nm[/font][font=宋体])的光具有较强的穿透性,但其光谱吸收强度相对较弱。通常情况下,对于难以穿透、成分内外分布不均的固体样品,或是需要获取内部成分的固体样品,采用漫反射方式仅能获取样品近表面成分信息,而无法获取样品内部成分信息。在这种情况下就需要采用近红外短波以全透射或半透射方式检测固体样品,获取样品的内外部成分信息。如某水果近表面和内部糖度存在较大差异,采用漫反射方式检测水果糖度,则检测得到的糖度值与水果实际糖度不相符;又如某水果表皮很厚,采用漫反射方式进行水果糖度检测,漫反射光谱基本为果皮的光谱信息,难以获取内部果肉的光谱信息,检测结果会存在较大误差。利用近红外短波以透射方式进行水果糖度检测,则可以较好解决上述问题。[/font]

  • 【求助】短波红外除以80,然后转成了BIL格式准备进行大气校正

    FLAASH 大气校正文件准备具体怎么做我拿到的是L1T数据,在进行大气校正之前进行了未定标及以及一些质量不好的波段去除,保留了影像默认的158个波段,然后进行的绝对辐射值的转换,即可见光、近红外除以40,短波红外除以80,然后转成了BIL格式准备进行大气校正,可是我不知道“输入文件准备”,“是高光谱数据要求带有FWHW值,这些值可以在有文件里或者单独的ASCII文件里编写好”。这一步具体该怎么做?

  • 微型近红外光谱技术在茶叶检测中的应用有哪些?

    [font='Times New Roman'][font=宋体]有文献表明[/font][/font][font=宋体],微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术已被用于[/font][font='Times New Roman'][font=宋体]茶叶中掺假物质的[/font][/font][font=宋体]检测、[/font][font='Times New Roman'][font=宋体]不同品种茶叶的鉴别以及茶口味属性的评价[/font][/font][font=宋体][font=宋体]。[/font][font=Times New Roman]L[/font][/font][font='Times New Roman']i[font=宋体]等[/font][/font][sup][font='Times New Roman'][[/font][/sup][sup][font=宋体][font=Times New Roman]71[/font][/font][/sup][sup][font='Times New Roman']][/font][/sup][font='Times New Roman'][font=宋体]利用基于智能手机的微[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术对绿茶中掺假物质(糖与糯米淀粉)进行了定性和定量分析。[/font]Wang[font=宋体]等[/font][/font][sup][font='Times New Roman'][[/font][/sup][sup][font=宋体][font=Times New Roman]72[/font][/font][/sup][sup][font='Times New Roman']][/font][/sup][font='Times New Roman'][font=宋体]利用微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]结合化学计量学[/font][/font][font=宋体]实现[/font][font='Times New Roman'][font=宋体]了红茶、绿茶、黄茶和乌龙茶的准确鉴别[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]并且实现了四种茶叶中儿茶素、咖啡因和茶氨酸的[/font][/font][font=宋体]定量[/font][font='Times New Roman'][font=宋体]分析。[/font]Wang[font=宋体]等[/font][/font][sup][font='Times New Roman'][[/font][/sup][sup][font=宋体][font=Times New Roman]73[/font][/font][/sup][sup][font='Times New Roman']][/font][/sup][font='Times New Roman'][font=宋体]对来自五个国家的[/font]56[font=宋体]个红茶样品进行研究,[/font][/font][font=宋体]并[/font][font='Times New Roman'][font=宋体]利用微型光谱仪实现了红茶口味属性(苦味、涩味)的评价。[/font][/font]

  • 军用光学与短波通滤光片的秘密

    军用光学与短波通滤光片的秘密

    短波通滤光片:削去高频就是短波通滤光片。通常呢它有两种含义,一种是指滤掉光频率高的或者说是波长短的光,一种是只滤掉图像空间频率高的光而让空间频率光低的光通过。[img=,690,690]http://ng1.17img.cn/bbsfiles/images/2017/10/201710311601_01_3313006_3.jpg!w690x690.jpg[/img]军用光学:军用光学是从望远镜发明开始的,望远光祖是军用光仪的骨干,包括双眼望远镜、指挥镜、潜望镜、各种枪炮瞄准镜等。望远光组的反转是发送光到远方的探照灯、信号灯、红外光电话、红外光电报等。也可能使用光电变换器件,如夜视仪。光电跟踪仪、空间遥感CCD相机、热像仪。军用测绘仪器有激光自准直经纬仪、水平仪、方向盘、地面照相、航空照相、红外照相、照片判读等。另外,发(荧)光仪表盘、荧光分划板也在使用。还采用正在研究中已初见端倪的“死光“武器,军用侦查卫星上的多光谱扫描相机、干涉成像光谱仪,高速跟踪摄影及、激光信号模拟器等。减蓝:即黄。红与绿的混合色,在减色 混合中常作为一种减原色而称作减蓝。减绿:即品红。红与蓝的混合色,在减色混合中长作为一种减原色,称作减绿。减红:又称作青。用于减色混合中,只从白光中减去红色。

  • 【讨论】长波近红外的检测限

    长波近红外的检测限是不是要好点?能到多少呢?现在做短波的比较多,作长波的的进来多谈谈看法,比如短长波近红外的区别,长波近红外的进展和前景。

  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路

    [color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]

  • 近红外光的分类

    近红外光根据波长的长短分为长波近红外(1100-2600nm),和短波近红外(700-1100nm)。长波近红外的信息源是分子内部原子间振动的合频(Combinatin Tones)和一.二级倍频(Over Tones)(又称二倍频.三倍频),样品在此谱区较短波近红外摩尔吸光系数大,吸收较强,穿透力较弱;短波近红外的信息源是分子内部原子间振动的三级.四级倍频(又称四倍频.五倍频),摩尔吸光系数较小,吸收弱,短波近红外光在有些样品内可穿透几厘米。长.短波近红外的信息特点决定了应用时应采用不同的工作方式。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的常规分析技术有反射光谱法和透射光谱法两大类。一般情况下,比较均匀透明的液体选用透射光谱法。固体样品(粉末或颗粒)在长波近红外区一般选用漫反射工作方式,在短波近红外区也可以选用透射工作方式。

  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路

    [color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]

  • 【求助】关于近红外光谱数据的测取

    现在的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]在测量数据时,是不是长波和短波分开测量?有没有用一台近红外仪同时测出短波和长波的?比如700-1500nm的数据可以用一台仪器一次测量出来吗?还会必须分成长波和短波分开测量?

  • 光谱仪知识-近红外光谱分析技术注意事项

    仪器的波长范围  对任何一台牛津近红外光谱仪器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。近红外光谱仪器的波长范围通常分两段,700~1100nm的短波近红外光谱区域和1100~2500nm的长波近红外光谱区域 。近红外分析技术的一个重要特点就是技术本身的成套性,即必须同时具备三个条件: (1)各项性能长期稳定的近红外光谱仪,是保证数据良好再现性的基本要求; (2)功能齐全的化学计量学软件,是建立模型和分析的必要工具; (3)准确并适用范围足够宽的模型。 这三个条件的有机结合起来,才能为用户真正发挥作用。因此,在购买仪器时必须对仪器提供的模型使用性有足够的认识,特别避免个别商家为推销仪器所做的过度宣传的不良诱导,避免为此付出代价。因此,一定要对厂家提供模型与技术支持情况有详细了解。   近红外分析技术分析速度快,是因为光谱测量速度很快,计算机计算结果速度也很快的原因。但近红外分析的效率是取决于仪器所配备的模型的数目,比如测量一张光谱图,如果仅有一个模型,只能得到一个数据,如果建立了10种数据模型,那么,仅凭测量的一张光谱,可以同时得到10种分析数据。   在定标过程中,标准样本数量的多少,直接影响分析结果的准确性,数量太少不足以反映被测样本群体常态分布规律,数据太多,工作量太大。另外在选择化学分析的样本时,不仅要考虑样品成分含量和梯度,同时要考虑样本的物理、化学、生长地域、品种、生长条件及植物学特性,以提高定标效果,使定标曲线具有广泛的应用范围,对变异范围比较大的样本可以根据特定的筛选原则,进行多个定标,以提高定标效果及检验的准确性。一般来讲,单类纯样本由于样本性质稳定,含化学信息量相对少,因此定标相对容易。光谱的分辨率  光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。波长准确性  光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证近红外光谱仪器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。波长重现性  波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的近红外光谱仪器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。吸光度准确性  吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。吸光度重现性  吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。吸光度噪音  吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。吸光度范围  吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低能检测到的吸光度之比。吸光度范围越大,可用于检测样品的线性范围也越大。基线稳定性  基线稳定性是指仪器相对于参比扫描所得基线的平整性,平整性可用基线漂移的大小来衡量。基线的稳定性对我们获得稳定的光谱有直接的影响。杂散光  杂散光定义为除要求的分析光外其它到达样品和检测器的光量总和,是导致仪器测量出现非线性的主要原因,特别对光栅型仪器的设计,杂散光的控制非常重要。杂散光对仪器的噪音、基线及光谱的稳定性均有影响。一般要求杂散光小于透过率的0.1%。扫描速度  扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道近红外光谱仪器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2次/s左右。数据采样间隔  采样间隔是指连续记录的两个光谱信号间的波长差。很显然,间隔越小,样品信息越丰富,但光谱存储空间也越大;间隔过大则可能丢失样品信息,比较合适的数据采样间隔设计应当小于仪器的分辨率。测样方式  测样方式在此指仪器可提供的样品光谱采集形式。有些仪器能提供透射、漫反射、光纤测量等多种光谱采集形式。软件功能  软件是现代近红外光谱仪器的重要组成部分。软件一般由光谱采集软件和光谱化学计量学处理软件两部分构成。前者不同厂家的仪器没有很大的区别,而后者在软件功能设计和内容上则差别很大。光谱化学计量学处理软件一般由谱图的预处理、定性或定量校正模型的建立和未知样品的预测三大部分组成,软件功能的评价要看软件的内容能否满足实际工作的需要。

  • 最新近红外光谱技术--微光机电系统MEMS 近红外分析仪

    AXSUN的IntegraSpec?系列多功能近红外分析仪是目前美国[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]领域领袖群仑的尖端产品. IntegraSpec? 系列的核心技术之一微光机电系统MEMS是近几年在美国发展成熟的先进技术,MEMS芯片的生产工艺同半导体集成电路的生产工艺一样,都是在超净环境全自动化车间里用机械手装配而成.MEMS芯片的生产工艺决定了它同集成电路有很多共同点,它们都是对传统产品的一次革命,都具有高可靠性,高稳定性,高一致性等等特点. IntegraSpec?系列的另一项核心技术是近红外波段独特的波长可调激光器,其亮度比传统仪器用的灯泡亮度要高好几个数量级,并且激光的波长和强度的短期和长期稳定性非常高. 目前市场上传统的傅立叶[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]体积庞大,价格昂贵,对环境温度震动等非常敏感,只能是放在实验室的娇贵仪器,不能适应生产线上的各种复杂环境 另一类[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]结实并且体积小,但分辨率灵敏度等各项性能又很难满足用户要求.Axsun公司在背景强大的投资支持下经过几年反复研究开发,最终使得 IntegraSpec?系列微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]性能超群,适应各种复杂环境而迅速占领美国制药,石化,农业等市场.大规模的生产使得MEMS芯片的成本会变得越来越便宜,其应用前景也将越来越广阔. 建立在先进的微光机电系统(MEMS)技术之上的IntegraSpec?系列[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]性能极其优越,稳定可靠,系统集成容易,价格便宜,仪器设计寿命为25年,不需维修,无消耗品,是理想的在线过程控制和便携式近红外分析仪.其主要性能特点如下: 1. 坚固结实,分光系统为全密封芯片,电子制冷,恒温工作.因而仪器对使用环境非常不敏感,抗震动,耐冲击,不怕温度湿度变化,特别适用于在线监测和便携式使用. 2. 光源为波长可调激光器模块,波长和强度稳定性最佳,信号强度高. 3. 性能优越,各项指标不低于大型而昂贵的实验室用傅立叶[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],而且仪器的一致性好,使用灵活,可以用于气体,液体和固体的透射/反射测量,广泛应用于制药,石化,农业等各行业的过程控制和质量监测. 4. 采用成熟可靠的半导体集成芯片技术,仪器的设计寿命为25年,无须维修. 5. 功耗低,只有11到20瓦,电池供电时间长 6. 独特的专利技术,内置式校正系统(WARM? 波长/信号强度校正模块),使这种仪器可以非常方便地同其它仪器进行模型转换. 7. 数据采集速度快,一条谱线的采集时间为毫秒级,适用于实时在线测量. 8. 操作使用简单,仪器的长期稳定性优异,使用成本低.详情请参考: http://www.sepvest.com/Products/axsun.htmwww.axsun.com

  • 有看头了!褚小立领衔近红外光谱分会17位专家编著《近红外光谱分析技术实战宝典》!

    好消息!褚小立领衔近红外光谱分会19位专家编著《近红外光谱分析技术实战宝典》!仪器信息网自2020年起组织业内知名专家、资深版主及专业编辑,以解决用户实际问题为初衷,以平台海量精华内容为基础,经过专家的梳理、加工,将最常见的仪器问题、解决方法和资深用户的经验整理成册,特命名为《实战宝典》,旨在提升行业用户的仪器应用能力、加快个人职业成长,缓解行业实操型人才匮乏的现状,助力用户实现“宝典在手、仪器无忧”!2020年,已发布《水质分析实战宝典》、《气相色谱实战宝典》、《农残分析实战宝典》、《液相色谱实战宝典》、《乳品检测实战宝典》、《药物分析实战宝典》6册宝典,收录仪器类别包括了常用的气相、液相,应用领域涵盖了水质、农残、药物、乳品,深受4.4万用户喜爱。2021年,仪器信息网将陆续发布《原子吸收光谱实战宝典》、《液质联用实战宝典》、《气质联用实战宝典》、《实验室安全实战宝典》、《近红外光谱分析技术实战宝典》、《样品前处理实战宝典》、《土壤分析实战宝典》、《离子色谱实战宝典》、《PCR实战宝典》、《ICP-MS实战宝典》等分册,目前已有3.4万用户预订。未来,我们欢迎广大专家、用户积极报名加入《实战宝典》 “编委组”,发挥自己专业技能特长,与行业专家一起创作更多优质内容,帮助更多用户。《近红外光谱分析技术实战宝典》编委专家阵容如下:特邀顾问:袁洪福,北京化工大学,教授主 编:褚小立,中石化石油化工科学研究院,教授级高工副 主 编:李文龙,天津中医药大学副研究员,博士生导师副 主 编:王家俊,云南中烟技术中心,高级工程师编 委:卞希慧,天津工业大学,副教授编 委:何鸿举,河南科技学院,院长助理编 委:黄越,中国农业大学,副教授编 委:韩娅红,华中农业大学,博士后编 委:李跑,湖南农业大学,副教授编 委:缪同群,上海新产业光电技术有限公司,总计总经理编 委:孙通,浙江农林大学,副教授编 委:王艳斌,石油化工研究院,高级工程师编 委:邢振,北京农业智能装备技术研究中心,高级工程师 编 委:闫晓剑,四川长虹公司,资深专家编 委:杨越,温州大学,讲师编 委:张进,贵州医科大学,副教授编 委:周新奇,谱育科技,经理编 委:邹振民,山东金璋隆祥智能科技有限责任公司,董事长《近红外光谱分析技术实战宝典》大纲目录如下:第一章概述第一节 近红外光谱发展简史第二节 近红外光谱产生机理(概述)第三节 近红外光谱分析与化学计量学方法第四节 近红外光谱及其分析技术的特点(优缺点)第五节 现代过程分析技术与近红外光谱技术问题与回答:1、为什么近红外光谱主要包含的是含氢基团的信息?2、为什么说吸收强度弱反倒是近红外光谱的一种技术优势?3、近红外漫反射光谱与物质的浓度是线性关系吗?4、哪段近红外光的穿透性较强?如何利用这段光?6、近红外光谱区域中哪段谱图包含的化学信息更丰富?7、为什么氢键在近红外光谱中很重要?8、为什么近红外光谱的转移吸收谱带较宽?5、为什么近红外光谱定量或定性分析大多需要化学计量学方法?9、为什么说近红外光谱是现代过程分析技术的主要手段之一?10、哪些场合不太适合采用近红外光谱分析技术?11、在哪些应用场景近红外光谱最擅长?12、采用近红外光谱技术前应有哪些心理上的准备?13、用好近红外光谱需要使用者具备哪些条件?14、近红外光谱与中红外光谱相比,各有哪些技术优势?15、近红外光谱与拉曼光谱相比,各有哪些技术优势?16、近红外光谱与太赫兹光谱相比,各有哪些技术优势?17、近红外光谱与低场核磁相比,各有哪些技术优势?18、近红外光谱与Libs相比,各有哪些技术优势?19、一般情况下,近红外光谱分析技术的检测限能达到多少?…20、短波和长波近红外各有什么特点?…第二章近红外光谱仪器第一节 近红外光谱仪器的构成第二节近红外光谱仪器的分光类型第三节实验室型仪器第四节便携式和微型仪器第五节制造仪器的材料应用与仪器的性能指标第六节近红外光谱仪器的测量软件第七节仪器的维护及校准AQ、PQ与OQ的应用问题与回答:1、近红外光谱仪器的分别辨率重要吗?2、影响近红外光谱仪器噪音的主要因素有哪些?3、基于理论和实验依据,如何选择近红外光谱仪器?4、影响近红外光谱仪器之间一致性的主要因素有哪些?5、近红外光谱文件常见的格式有哪些?6、为什么有的仪器用纳米表示波长,有些用波数表示?7、为什么近红外光谱仪器的长期稳定性很重要?8、药典对近红外光谱仪器的性能指标有何要求?9、光源需要定时更换吗?10、实验室型近红外光谱仪器日常维护有哪些?11、需要间隔多长时间进行一次近红外光谱仪器的校准?12、氟化钙分束器与石英分束器的性能有何差异?13、氦氖激光激光器与半导体激光器的性能有何差异?14、近红外光谱分析技术常用的光源有哪些?15、微型CCD近红外光谱仪的狭缝如何选择?与分辨率的关系如何?…第三章 测量附件与实验方法第一节 近红外光谱的测量方式第二节 常见的测量附件第三节 多种类型样品的制备第四节 光谱采集参数及其优化问题与回答:1、液体样本的近红外光谱通常采用哪些测量方式?2、固体样本的近红外光谱通常采用哪些测量方式?3、水果测量时应注意哪些问题?4、漫反射测量时应注意哪些问题?5、样品温度对近红外光谱测量有影响吗?6、近红外光谱能测量气体吗?7、使用光纤测量附件应注意哪些问题?8、透射测量时应注意哪些问题?9、对于固体有哪些常见的样品制备方式?10、光谱采集参数如何优化?11、水分对近红外光谱测量有影响吗?12、采样杯、比色池光学材料对光谱重现性的影响?13、固体粉末粒径对光谱重现性有何影响?如何提高光谱的重现性?14、如何权衡近红外分析检测的效率与检测数据的“性价比”?15、漫反射和透射测量时,参比光谱如何选取?16、近红外光谱测量时,吸光度为什么会出现负数?…第四章在线近红外光谱分析技术第一节 在线近红外光谱分析系统的构成第二节 取样与样品预处理系统第三节 在线测量方式第四节 在线工程项目的实施(包含过程化学计量学方法与过程建模)第五节 在线分析系统的管理与维护问题与回答:1、在线分析必须使用样品预处理吗?2、选择光纤探头或流通池应注意哪些问题?3、采用液体插入式漫反射探头应注意哪些问题?4、探头的安装位置应如何选取?5、固体在线取样时应注意哪些问题?可以采取哪些手段获取有代表性的在线光谱?6、如何取到与光谱测量对应的在线样品?7、如何实现一台在线仪器测量多个检测点?8、在线分析校正模型是如何建立的?9、光纤的有效传输距离有多长?10、在线仪器的光谱背景是如何获取的?11、选择在线近红外光谱仪应考虑哪些问题?12、医药企业对在线分析仪器有哪些特殊要求?13、传递带的漫反射测量应注意哪些问题?14、国内外涉及在线近红外光谱分析技术的标准有哪些?15、…第五章化学计量学方法与建模第一节 常用的化学计量学方法第二节 定量分析建模的主要步骤第三节 定性分析建模的主要步骤第四节 化学计量学软件的主要功能第五节 商品化的化学计量学软件第六节 建模传递及其方法第七节 模型的评价第八节 模型的管理与维护第九节 近红外定量模型的转移与模型适应性拓展问题与回答:1、近红外光谱预测结果的准确性能够超过参考方法吗?2、建模过程中光谱波段(波长)变量如何选择?3、PLS的最佳(适宜)主因子数如何选择?4、影响近红外光谱分析模型的主要因素有哪些?5、何时选用非线性定量校正方法?6、建模过程中光谱预处理方法如选择?什么是异常样本?7、如何识别建模过程中的异常样本?8、如何识别预测过程中的异常样本?怎样判断近红外的预测结果是内插分析得到的?9、建立实用的模型需要多少个样本?10、模型如何维护?11、提高模型预测稳健性的方法有哪些?12、提高模型预测准确性的方法有哪些?13、何为有代表性的样本?如何选取?14、建模的样本越多越好吗?15、建模时先进行光谱预处理还是先选择(波段)波长选择?16、为什么要进行模型传递?17、进行模型传递需要哪些条件?在不同分光原理的近红外仪器上建立的模型可以相互传递吗?18、模型传递后还需要做那些工作?19、近红外光谱定量和定性分析可以不建模型吗?20、从PLS校正过程,如何解释校正模型的适应性?21、同一方法进行(波段)波长选择,每次(波段)波长选择结果不一致,如何处理?22、一般情况下,建模所用的波长变量数与样本数之间需要满足什么条件?23、近红外光谱的分析流程?24、定量模型的评价指标?25、定性模型的评价指标?…第六章近红外光谱技术的应用第一节 农业领域第二节 食品领域第三节 制药领域第四节 石油和化工领域第五节 纺织领域第六节 饲料领域第七节 烟草领域第八节 其他领域问题与回答:1、作为一名企业采购人员,如何选择合适的近红外光谱仪?2、采用近红外光谱仪分析啤酒时一般采用哪种测量附件?3、目前关于近红外光谱的国家标准有哪些?4、在实际应用中,采用近红外光谱仪分析饲料中的水分、蛋白、脂肪、灰分和实验室分析有多大误差?5、在饲料企业,近红外光谱在哪些环节可以被使用?6、在白酒企业,近红外光谱在哪些环节可以被

  • CCD近红外光谱快速测定柴油中的芳烃含量

    CCD[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快速测定柴油中的芳烃含量徐广通 袁洪福 陆婉珍 石油化工科学研究院 北京 100083 摘要:本文研究采用电感耦合器件(CCD)[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]在短波近红外区域(700-1100nm)、利用偏最小二乘回归(PLS)测定柴油中芳烃含量的方法。考虑样品颜色对短波[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的影响,对波长范围的选择和基线处理方式进行了研究。考察了样品进入光路的时间对测定结果的影响。将CCDNIR对未知样品的预测结果与傅立叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](FT-NIR)在长波近红外范围(1000-2000 nm)的预测结果及液相色谱的测定结果进行了比较。对测量的重现性进行了考察,相对标准偏差为0.17%。关键词:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url], 电感耦合器件, 偏最小二乘, 柴油, 芳烃 1 前言 柴油是目前使用最多的燃料之一,柴油中芳烃含量的高低直接影响燃料的燃烧性能,并对大气污染产生不同程度的影响。一些国家和地区组织最近已出台了一些对柴油中芳烃含量进行严格限制的新规定[1]。使用洁净燃料,已成为石油燃料发展的必然趋势。这也就迫切需要建立一套快速、准确地分析柴油中芳烃的方法。柴油烃族组成的分析,一直是油品分析的难点问题之一,为此已做过大量的研究工作[2-5],尽管荧光指示剂法[6]和超临界流体色谱法[7]已作为标准方法使用,但在应用时仍存在一定的问题[8]。近来我们采用双柱切换液相色谱分离、移动丝氢火焰检测器检测(HPLC-MWFID),较好地解决了柴油族组成的分析问题[8],为了使分析工作向更便利、更快速、更洁净以至于在线分析的方向发展,我们在HPLC-MWFID分析柴油中芳烃的基础上,采用傅立叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]在1000-2000nm光谱范围内对成品柴油中的芳烃含量进行了分析,取得了较好的结果[9]。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]作为近年来迅速崛起的分析测试技术已越来越多地用于石油产品的性质及组成分析[10-14],并取得了客观的经济效益。为推广[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在我国石化领域中的应用,我们研制了CCD[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器及相应的化学计量学软件,在对汽油和煤油的性质测定中取得了较好的结果[15-16],CCD[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的一个显著优点就是仪器内无可移动部件,特别适合用于在线分析。但由于CCD的响应是在短波近红外区域(700-1100nm),主要测定的是碳氢化合物3级和4级倍频的光谱特征,灵敏度较低,所需要的样品池较长,样品的颜色容易对测定过程产生影响,而柴油正是这类有色样品。 本文采用CCD[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]对测定柴油组成的可行性进行了研究,发现尽管柴油的颜色对其吸收光谱有明显的影响,但通过光谱区域的选择和基线的合理处理,仍然可以得到满意的分析结果。 2 实验部分 2.1 仪器:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](石油化工科学研究院研制),10cm 玻璃样品池;Pentium 586/200 MHz PC计算机;HP1050高效液相色谱仪;TFJ-Y100烃族分析仪(移动丝氢火焰检测器,中科院科仪中心制造)。2.2 样品来源及基础数据的测定 2.4 校正方法 采用石化院研制的化学计量学软件,将30个柴油中的芳烃含量与光谱间进行PLS回归,光谱经零点扣除、均值中心化处理,采用交互校验法预测残差平方和(PRESS)确定最佳主因子,并建立校正模型。 3 结果与讨论 3.1 光谱范围的选择 柴油中含有少量带杂原子的物质,特别是含氮化合物,由于含量不同,放置时间不同,样品的颜色深浅不一。CCD[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]采集的是样品在短波近红外区域的吸收光谱(700-1100nm),与可见光区域相邻,样品的颜色容易对吸收光谱产生影响。由图1可以看出,在短波近红外范围内明显出现漂移。为了最大限度地减少样品颜色的影响,对建立校正模型时所用的波长范围进行了选择,结果见表1。由表列结果可以看出,在不同的范围内,校正结果有较大的差别,当进行全谱校正时结果最差,这主要是样品颜色的影响。当波长范围较高时(1027-1070nm)区域,则由于CCD响应较弱,噪音增加,也影响校正结果,故选择校正的波长范围为854-1027nm。 4 结论 通过以上研究表明,通过优化光谱范围和合理的基线处理,结合PLS方法,用CCDNIR在短波近红外区域测定柴油的组成是可行的。CCDNIR预测结果与FT-NIR预测结果及HPLC测定结果基本一致,CCDNIR 测定的重现性与FT-NIR测定的重现性相当。样品在光路中照射时间的长短对测定结果无明显影响。说明我们研制的CCD[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器及相应的化学计量学软件是可靠的。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测定柴油的组成与其它方法相比具有简便、快速、无污染,样品不需处理等特点。CCD[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器与光栅型仪器及傅立叶变换光谱仪器相比,无移动性部件,更适合用于在线分析。 from:http://www.sinonir.com.cn/jishulwen/chaift.html

  • 近红外光谱技术分析烟草的化学成分

    近红外光谱技术分析烟草的化学成分

    近红外光谱技术分析烟草的化学成分 摘 要 应用近红外光谱仪对制丝线烟丝的定量的快速分析,能够快速评价烟草等质量状况,该方法不需要对烟丝进行处理,实现对的烟丝快速的检测,提供大量的数据,免去实验室人员复杂操作,可对烟草企业的效益具有非常重要的意义。主题词 近红外光谱;烟草化学成分;偏最小二乘法(PLS)引言 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团C一H!O一H!_N一H!S一H!P一H等振动的倍频和合频吸收。不同基团(如甲基,亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别。所以近红外光谱具有丰富的结构和组成信息,非常适合用于碳氢有机物质的组成性质测量。习惯上将近红外区划分为近红外短波(780一1100nm)和近红外长波(1100一2526nm)两个区域。 物质的红外光谱包含了组成与结构的信息,而性质参数(如油品的相对密度,馏程和闪点等)也与其组成、结构相关,因此在样品的近红外光谱和其性质参数间也必然存在着内在的联系。使用化学计量学这种数学方对其两者进行关联,可确立这两者间的定量或定性关系,即校正模型。建立模型后,只要测量未知样品的近红外光谱,再通过软件自动对模型库进行检索,[font='宋体

  • 近红外光谱仪的选购

    初从事近红外光谱分析的人员常常会提出这样的问题:什么样的近红外光谱仪器最好?如何选择一台合适的近红外光谱仪器?实际上,“最好”仪器的定义是很难确定的,“最好”的仪器也是不存在的。因为对某一特定的仪器所提出的各项要求是随着所需要解决的具体问题的不同而有所差异的。为了帮助使用者根据特定的需要选择合适的仪器,本文将根据不同类型、不同设计方式近红外光谱仪器的特点向选用者作简要介绍,以供参考。   为了使近红外光谱获得可靠的分析结果,近红外光谱必须按照详细的技术规格设计生产。下面反应的就是现近红外光谱仪器的规范。当然也是使用者选择仪器时的主要依据。  对现代近红外光谱仪器的要求性能要求: 系统特点及对仪器的要求可靠性: 波长准确,光谱稳定性好多样性: 提供多种测样方式,波长范围宽快速性: 快速扫描系统,多功能计量学软件灵敏性: 信噪比高可分辨性: 分辨率高在线持久性: 可靠性样品导入系统,仪器无运动部件模型可转换性: 波长准确,光谱稳定  近红外光谱仪器不管按何种方式设计,一般由光源、分光系统、测样器件、检测器、数据处理系统和记录仪(或打印机)等六部分构成。  近红外光谱仪的分类比较多,但市场上分类主要还是按照仪器的分光器件不同来分,一般可分为四种主要类型:滤光片型、光栅色散型、博立叶变换型和声光调制滤光器型。其中光栅色散型又有光栅扫描单通道和非扫描固定光路多通道检测之分了。  滤光片型近红外光谱仪可分为固定滤光片和可调滤光片两种形式。固定滤光片型光谱仪是近红外光谱仪器的最早设计形式,这种仪器首先要根据测定样品的光谱特征选择适当波长的滤光片。该类型仪器的特点是设计简单、成本低、光通量大、信号记录快、坚固耐用。但这类仪器只能在单一波长下测定,灵活性较差,如样品的基体发生变化,往往会引起较大的测量误差。可调滤光片型光谱仪采用滤光轮,可以根据需要比较方便地在一个或几个波长下进行测定。这种仪器一般作专用分析,如粮食水分测定仪。由于滤光片数量有限,很难分析复杂体系的样品。  扫描型仪器通过光栅的转动,使单色光按波长高低依次通过测样器件,与样品作用后,进入检测器检测。与滤光片型的近红外光谱仪器相比,色散型近红外光谱仪器具有可实现全谱扫描、分辨率较高、仪器价位适中和便以维护等优点,其最大的弱点是光栅或反光镜的机械轴承长时间连续使用容易磨损,影响波长的精度和重现性,抗震性较差,一般不适合作为过程分析仪器使用。  博立叶变换光谱技术是利用干涩图和光谱图之间的对应关系,通过测量干涩图和对干涩图进行博立叶积分变换的方法来测定和研究光谱的技术。与传统的色散型光谱仪相比,博立叶变换光谱仪能同时测量、记录所有波长的信号,并以更高的效率采集来自光源的辐射能量,具有更高的波长精度、分辨率和信噪比。但由于干涉仪中动镜的存在,仪器的在线长久可靠性受到一定的限制,另外对仪器的使用和放置环境也有较高的要求。  声光可调滤光器(缩写AOTF)是利用超声波与特定的晶体作用而产生分光的光电器件。用AOTF作为分光系统,被认为是90年代近红外光谱仪器最突出的进展。与传统的单色器相比,采用声光调制产生单色光,即通过超声射频的变化实现光谱扫描。光学系统无移动部件,波长切换快、重现性好,程序化的波长控制使这类仪器的应用具有更大的灵活性。声光可调滤光器近红外光谱仪器的这些优点使今年来在工业在线中得到越来越多的应用。但目前这类仪器的分辨率相对较低,价格也较贵。  非扫描固定光路多通道近红外光谱仪器是因为仪器的检测器采用多通道光敏器件而得名。这类仪器的色散系统一般采用平面光栅或全息光栅,与光栅扫描型相比,光栅不需要转动即可实现确定波长范围的扫描。多通道检测器的类型主要有两种:二极管阵列(缩写PDA)和电荷耦合器件(缩写CCD)。该类型仪器测量的波长范围取决于检测器光敏元件的材料(波长范围受到一定限制),如硅基光敏元件的影响范围在短波近红外区域,由于该波i段检测到的主要是样品三级和四级倍频,样品的摩尔吸收系数较低,因而需要的光程往往教长。这类仪器的最大特点是仪器内部无可移动部件,仪器的稳定性和抗干扰性能好;另一个特点是扫描速度快,一般单张光谱的扫描速度只有几十毫秒。这两特点的结合,使该类仪器特别适合作为现场或在线分析仪器使用。多通道型仪器的分辨率取决于光栅性能、检测器的像素以及狭缝的尺寸。在确定波长的范围内,检测器的像素越高,所检测道的样品信息越丰富,但一般像素越高的检测器价格也越高。(选自网络,侵删)

  • 微小型近红外仪器展望

    [font=宋体]国际上近红外分析仪的微小型化是一个潮流,市场上已经出现了多种微小型的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]。[/font][font=宋体]除此之外[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体][font=宋体]国内已有多家单位研制出了多种分光类型的小型或微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器。在专用仪器方面更是日新月异,例如杭州聚光科技、谱育科技、无锡迅杰光远等公司研制了专用于大豆分析[/font][font=宋体]“大豆蛋白分析仪”;安徽农业大学等研制出俗称“生茶报价仪”的茶叶品质分析仪等。[/font][/font][font=宋体]近红外分析仪器经过近半个世纪的发展,已走过了所谓的概念炒作期,进入了稳步发展的平台期。从近年来[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的发展状况可以看出,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪作为一种分析仪器,在如下几个方面仍有发展空间:一是不断提高近红外仪器信噪比和稳定性,减小台间光学特性差异,同时降低仪器价格,便于网络化应用;二是针对各种物态的样品测量附件进行研发,研制专用的近红外仪器,保证测样过程更加便利,光谱更加稳定;三是持续扩大[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的应用范围,开发不同的行业数据库和应用软件;四是在已有基础上实现近红外分析仪器评价方法及其仪器应用方法的标准化,实现近红外仪器检测应用有法可依。[/font][font=宋体][font=宋体]当前新型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]大都是基于[/font][font=Times New Roman]MEMS[/font][font=宋体]技术设计和制造的。这些产品基本从光通讯产品转型而来,目前在一些技术指标[/font][font=Times New Roman]([/font][font=宋体]如波长准确性和信噪比等[/font][font=Times New Roman])[/font][font=宋体]尚不如主流产品,但却具有许多优点,如重量轻、体积小、探测速度快、寿命长、可集成化、可批量制造以及成本低廉等,因而有着巨大的市场前景。可以相信,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的研究工作在未来几年内必将取得更大的进展,其整体性能也会得到较大提升。[/font][/font][font=宋体][font=宋体]近红外的显微成像和大尺度的近红外高光谱成像技术,将提供微观和宏观的光谱图象信息,随着计算机运行速度和通讯速度的提升,当前的近红外检测成像技术将转变为视频技术,将能更直观[/font][font=宋体]“看到”样品内部的实时信息,为更好的观察和理解世界提供出更尖端的工具。[/font][/font][font='Times New Roman'][/font]

  • 基于近红外原理测定食味值,大米食味计不断更新迭代

    食味计是日文汉字,国人从最初开始一直沿用至今,也就成为了中文专用术语。基于近红外原理的大米食味计是一款测量对象单一(糙米,精米)、检测项目固定(蛋白质、直链淀粉、水分、脂肪)、显示食味数值的专用仪器,在短波近红外波段范围内采集光谱。大米食味计的诞生与日本大米混合之后再销售的习惯有关。每年10月左右收获的新米很好吃,一旦过了第二年春天味道就差了。但有一种从初春开始就觉得既便宜又好吃的大米,这就是混合米。混合米虽然容易被认为是劣质商品,但它也是消费者和生产者为了享受美味的智慧。混合大米是为了激发大米的美味,与碾米技术一起可以说是大米销售商的秘诀。一方面抓住当地消费者的喜好,另一方面抓住大米产地的特点进行混合。大米混合的目的是:(1)稳定和提高食味,消除全年食味波动。(2)确保数量。因为优质米数量有限,所以要通过混合功能来确保口感好的大米供应数量。(3)应对大米供求情况。为了避免歉收时陷入大米不足的困境,需要将陈米混合进行销售。(4)满足消费者希望的价格。大米的销售价格主要与原料大米的价格有关,但也要根据混合大米的价格和口味来决定。大米食味的数值化能为大米混合提供更为科学的依据,由此食味计应运而生。因此食味计是一种快速鉴定大米品质的无损检测仪器。大米食味计的发展共分为三个阶段:(1)利用市售滤光片型仪器,采集粉碎后大米的长波段近红外反射光谱;(2)利用滤光片型食味计,采集整粒大米的短波段近红外透射光谱;(3)利用食味计,采集整粒大米的短波段近红外连续透射光谱。1986年,日本佐竹公司研发出了世界第一台大米食味计TB1A型(图1),当时的食味计主要用于两种情况。一是只要指定食味值,就能得到价格最便宜的混合米组合;二是一旦设定价格,可以选出食味值最高的大米混合。可有效地进行粮库管理。[align=center][img=,500,340]https://img1.17img.cn/17img/images/202401/uepic/a3fbe4d0-018b-4de0-a86e-0f96d0014c84.jpg[/img][/align][align=center]图1 第一台食味计[/align]第一台食味计内置德国Bran+luebbe公司的近红外仪器,先将精白米粉碎后测量近红外反射光谱,利用多元线性回归建模,预测直链淀粉、蛋白质、水分等成分的含量。[i]C=F[sub]1[/sub]log1+F[sub]2[/sub]log2+……F[sub]n[/sub]logn+F[sub]0[/sub][/i]C是成分含量,log1 ~ logn是各波长下的吸光度,F[sub]0[/sub] ~ F[sub]n[/sub]是上述权重系数。其次,前记各成分的多项式的食味用判断式代入各成分的值,算出食味值。食味判定公式主要内容为:[i]K=(直链淀粉含量)1.0×(蛋白质含量)0.3×{15〔15-水分含量〕}0.75T=50000/K[sub]2[/sub][/i]K为食味关联值,T为食味值。T值越大越好[sup][1][/sup]。由此得到的食味值和感官测试相关如图2所示。相关系数足以满足实际使用要求[sup][2][/sup]。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/528fe338-0cdd-4897-b3c1-c6f55a27e74b.jpg[/img][/align][align=center]图2 感官评价与食味值的关系[/align]同期,还有另外两种原理推测食味值。一是依据大米的食味与镁、钾、氮的含量,二是依据蛋白质含量和碘呈色度程度[sup][3][/sup]。不过,现在都是依据蛋白质、直链淀粉、脂肪、水分进行预测了。20世纪90年中期开发出对糙米和精米进行全粒测定的近红外透过型分析仪。当时有7家公司在市面上进行销售。透射型分析仪与反射型分析仪相比,采用了1100nm以下的短波长范围和低价格的硅检测器,因此分析仪的价格较低。佐竹制作所的CTA10A和CTA10B两种分析仪光源都是采用卤素灯,波长为600 ~ 1100nm,10个固定波长透过型分析仪,二极管是硅光电二极管[sup][4][/sup]。20世纪90年代后期,估计有4000 ~ 5000台食味计应用到生产现场。后因食味值推测精度并不高,而且各制造商之间的食味计检测精度差异较大,逐渐被遗忘。还有,直链淀粉的检测精度低至0.8%[font=&]~[/font]1.2%,只能被视为参考值。另一方面,蛋白质全粒透过型检测精度为0.25%[font=&]~[/font]0.35 %,达到实用要求,作为筛选优质(低蛋白质)大米被广泛应用。水分的检测精度也在0.15%[font=&]~[/font]0.20%,与电阻式水分计毫不逊色,也被用在生产现场[sup][5][/sup]。2010年1月,日本佐竹公司开始销售测量精度更高、轻量紧凑化的新型米粒食味计RLTA10A(图3)。历经24年的发展,食味计机型升至第四代,至今仍是主流产品。RLTA10A是机型RCTA11A的后继机种,继承了简单、快速测量功能等特点。新机型不论是在检测技术还是检测精度方面都得到了大幅提升。采用近红外透射连续波长方式,在提高测量精度的同时,实现了重量比以往机型减少20%、容积减少37%的轻量紧凑化。因为是大型彩色液晶触摸面板方式,所以操作方便,打印机内置。可以用U盘直接保存数据,还可以和佐竹公司的谷粒辨别器连接。[align=center][img=,500,460]https://img1.17img.cn/17img/images/202401/uepic/a7d88100-73d1-47e4-9cf1-ad679810b33c.jpg[/img][/align][align=center]图3 佐竹公司第四代食味计RLTA10A[/align]随着市场需求和技术的发展,1996年,佐竹公司又开发了世界首创米饭食味计(图4、5)。[align=center][img=,500,321]https://img1.17img.cn/17img/images/202401/uepic/69ab3a48-29e6-472d-890b-69db63e26f60.jpg[/img][/align][align=center]图4 米饭食味计[/align][align=center][img=,500,283]https://img1.17img.cn/17img/images/202401/uepic/2eba84c9-80ea-437f-af18-50b24c5a4c8d.jpg[/img][/align][align=center]图5 米饭食味计原理图[/align]该米饭食味计测量[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法比较简单。利用两组滤光片3个波长采集反射光量(540nm,970nm)和透射光量(540nm,640nm)。好米和次米蒸出的米饭反射光有差异,用540nm的反射光观察米饭的外观。用540nm和970nm两种波长分析米饭水分差异。蒸好饭后1-2小时,540nm不论是在反射光模型还是在透射光模型中的相关系数均很高,但当蒸好饭后12[font=&][size=19px]~[/size][/font]24小时,透射光传感器的变化量往往是反射光变化量的几倍。选用640nm评价米饭变质程度,例如黄变或褐变[sup][6][/sup]。米饭食味计共测量五项指标,具体如下:①外观。米饭的α化(糊化)程度越高,外观越闪亮。共分为10个等级,等级越高越好。②硬度。光学方法测定米粒中蛋白质含量的变化。共分为10个等级,等级越高越硬。③黏性。光学测量由直链淀粉含量变化决定的黏性。共分为10个等级,越高越有黏性。④平衡度。用粘性/硬度计算,倍数化。共分为10个等级,越高越好。⑤食味值。米饭美味度的综合评价。有光泽,越透明糊化的越好,判定为好的食味。100级评价。虽然早期在日本有多家公司生产大米食味计,时至今日主要就是佐竹公司和静冈制机公司。静冈制机公司紧随佐竹公司其后,于1989年开始销售大米食味计RA-6101,如图6所示。2016年,静冈制机公司又推出了最新一代高精度近红外食味分析仪SRE(图7),将大米食味计检测精度提高到了一个新高度。[align=center][img=,500,262]https://img1.17img.cn/17img/images/202401/uepic/1dfc186f-30ff-4b1b-a274-9c5a3f9f1017.jpg[/img][/align][align=center]图6 静冈制机开发的第一台食味计 RA-6101[/align][align=center][img=,500,334]https://img1.17img.cn/17img/images/202401/uepic/7b3f538f-bb54-4a5a-b6a7-dc912f43f542.jpg[/img][/align][align=center]图7 静冈制机食味计 SRE[/align]静冈制机对用户反映的检测精度原因进行了详细梳理,得出波长漂移占45%,温度干扰占28%,其它化学值误差占10%,其它占17%。发现波长如果发生1nm漂移,将导致0.63%的蛋白质检测误差,要想满足检测精度要求,必须把波长漂移误差控制在0.3nm以下。另外,通过统计分析找到一个与蛋白质相关性极高的特征波长,并对仪器采取控温措施,建模后蛋白质的检测精度高达SEP=0.11%,逼近化学值的检测误差。由此获得日本农林水产省和北海道设施协会的资质认定,并作为国际米食味品鉴大会唯一指定的检测设备,享誉国内外。食味计预测大米直链淀粉的精度未达标问题一直困扰着食味计的普及应用,为此,北海道生物系特定产业技术研究支援中心尝试利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析制作直链含量预测模型及综合[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析和可见光分析信息的二次建模,开发出直链淀粉含量预测标准误差(SEP)不到1%的非破坏性测量技术。利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析(BR-5000、静冈制机)、可见光分析(ES-1000、静冈制机)、建模、评价按品种群制作。第一阶段,根据[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析和参考分析值,PLS回归分析建立模型。第二阶段,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的直链淀粉含量预测值([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url])及蛋白质含量预测值(PC)、可见光分析的PP值(整粒比例、未成熟粒比例、粒长、粒宽)共6个项目为自变量进行多元回归分析建立了两个阶段的模型。对各个模型,进行直链淀粉含量预测精度的评价。其结果如图8所示,糙米的直链淀粉SEP=0.43%,精米是0.42%。满足了实际生产要求[sup][7][/sup]。[align=center][img=,500,215]https://img1.17img.cn/17img/images/202401/uepic/5065f57d-1e40-4f80-ad06-2e02aa5bb1c5.jpg[/img][/align][align=center]图8 大米直链淀粉二次建模([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]+VIS)结果[/align]静冈制机即将在2024年1月中旬推出最新小型食味计TMX-1(图9),其技术特点是能计算出样本的最佳测量时间,能经常进行低噪声测量。因为得到了最佳光谱,所以信号噪声降低了,可以计算出更准确的测量值(图10)。从硬件和软件两方面好好地修正测量环境温度和样品温度引起的测量误差(图11)。测量值的校正可以通过基准样本自动进行。由于可以自动进行繁琐的偏差计算和调整,所以便于精度管理。也能降低多台导入时的机差[sup][8][/sup]。[align=center][img=,500,334]https://img1.17img.cn/17img/images/202401/uepic/e80a983b-05a9-4906-82d2-a3b4da44e1b5.jpg[/img][/align][align=center]图9 最新小型食味分析計[font=等线]「[/font]TMX-1[font=宋体]」[/font][/align][align=center][img=,500,201]https://img1.17img.cn/17img/images/202401/uepic/85d40893-725d-4c84-a0e2-85eaa87dc330.jpg[/img][/align][align=center]图10 新旧机型光谱示意图[/align][align=center][img=,500,186]https://img1.17img.cn/17img/images/202401/uepic/717b2c13-58e4-4778-8d52-8d4d7f7d7907.jpg[/img][/align][align=center]图11 新旧机型温度的影响示意图[/align]综观近红外仪器发展史,不论是通用仪器还是专用仪器,还没有一款仪器像食味计一样不断更新换代,足以证明食味计在大米加工应用的重要性和紧迫性。参考文献[1]佐竹专利:米の食味測定方法及び装置JPA 1987291546[2]保坂幸男:ポストハーべースト最新技術事情,農業機械学会誌第51巻 第2号[3]河野澄夫:近赤外分光分析法による非破壊品質評価,化学と生物 Vol.28, No.6,1990[4]川村周三,竹倉憲弘,伊藤和彦:近赤外透過型分析計による米の成分測定の精度とその改善,農業機械学会誌64(1): 120~126, 2002[5]夏賀元康[font=宋体]?[/font]渡部美里[font=宋体]?[/font]川端 匠[font=宋体]?[/font]片平光彦:携帯型分析計による米の品質測定のための基礎研究,農業機械学会誌 75(6):393[font=&]~[/font]402,2013[6]三上隆司,柏村崇,土屋義信,西尾尚道:可視光および近赤外光 による米飯の官能値評価,日本食品科学工学会誌 第47巻 第10号2000年10月[7]川村周三(2018),第 34 回近赤外フォーラム(札幌市),近赤外分光と可視光を利用した米の自動品質検査システムの開発[8]静冈制机公司网页,https://www.shizuoka-seiki.co.jp/[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【分享】------近红外光谱仪器的主要性能指标!!!!!

    [color=#DC143C]在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。对一台[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍1、仪器的波长范围 对任何一台特定的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的波长范围通常分两段,700~1100nm的短波[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区域和1100~2500nm的长波[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区域。2、光谱的分辨率 光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。3、波长准确性 光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。4、波长重现性 波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。5、吸光度准确性 吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。6、吸光度重现性 吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。7、吸光度噪音 吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。8、吸光度范围 吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低能检测到的吸光度之比。吸光度范围越大,可用于检测样品的线性范围也越大。9、基线稳定性 基线稳定性是指仪器相对于参比扫描所得基线的平整性,平整性可用基线漂移的大小来衡量。基线的稳定性对我们获得稳定的光谱有直接的影响。10、杂散光 杂散光定义为除要求的分析光外其它到达样品和检测器的光量总和,是导致仪器测量出现非线性的主要原因,特别对光栅型仪器的设计,杂散光的控制非常重要。杂散光对仪器的噪音、基线及光谱的稳定性均有影响。一般要求杂散光小于透过率的0.1%。11、扫描速度 扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2次/s左右。12、数据采样间隔 采样间隔是指连续记录的两个光谱信号间的波长差。很显然,间隔越小,样品信息越丰富,但光谱存储空间也越大;间隔过大则可能丢失样品信息,比较合适的数据采样间隔设计应当小于仪器的分辨率。13、测样方式 测样方式在此指仪器可提供的样品光谱采集形式。有些仪器能提供透射、漫反射、光纤测量等多种光谱采集形式。14、软件功能 软件是现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的重要组成部分。软件一般由光谱采集软件和光谱化学计量学处理软件两部分构成。前者不同厂家的仪器没有很大的区别,而后者在软件功能设计和内容上则差别很大。光谱化学计量学处理软件一般由谱图的预处理、定性或定量校正模型的建立和未知样品的预测三大部分组成,软件功能的评价要看软件的内容能否满足实际工作的需要.扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2[/color]次/s左右。

  • 海洋光学微型光纤光谱仪及其典型应用

    海洋光学微型光纤光谱仪及其典型应用

    光谱学是测量紫外、可见、近红外和红外波段光强度的技术。光谱测量被广泛应用于多种领域,如颜色测量、化学成份的浓度测量或辐射度学分析、膜厚测量、气体成分分析等领域。在上世纪九十年代以来,微电子领域中的多象元光学探测器(例如CCD,光电二极管阵列)制造技术迅猛发展,使生产低成本扫描仪和CCD相机成为可能。美国海洋光学公司的微型光纤光谱仪使用了同样的CCD(CCD光谱仪)和光电二极管阵列探测器,可以对整个光谱进行快速扫描,不需要转动光栅。   海洋光学的微型光纤光谱仪通常采用光纤作为信号耦合器件,将被测光耦合到光谱仪中进行光谱分析。由于光纤的方便性,用户可以非常灵活的搭建光谱采集系统。其优势在于测量系统的模块化和灵活性,且测量速度非常快,可以用于在线分析。而且由于采用了低成本的通用探测器,降低了光谱仪的成本,从而也降低了整个测量系统的造价。   微型光纤光谱仪基本配置包括包括一个光栅,一个狭缝和一个探测器。这些部件的参数在选购光谱仪时必须详细说明。光谱仪的性能取决于这些部件的精确组合与校准,校准后光纤光谱仪,原则上这些配件都不能有任何的变动。海洋光学拥有广泛的光谱仪配置选择,使其性能最大化以满足客户要求。如果这些配置不符合您的要求,我们可以根据您的要求为您量身定做。  海洋光学微型光纤光谱仪选型① 光学分辨率光学分辨率是配置微型光纤光谱仪时经常被考虑的主要因素之一。当用户为了追求微型光纤光谱仪的高分辨率时,在选型时会选择具有尽可能多像元数探测器的微型光谱仪。而实际上光学分辨率不仅仅由探测器的像元数决定,还与狭缝宽度和光栅的刻线密度有关。所以当讨论分辨率时,通常用色散或用波长范围除以像元数。半高全宽值(FWHM),即最大峰值光强一半处所对应的谱线宽度是一种表述分辨率更好的方法(见上图)。用FWHM可以对不同光谱仪的实际光学性能进行直接对比。用这种表示方法可以避免一些缺陷,例如:有的光栅并没有用到全部像元;采用交叉式Czerny-Turner光路设计的光谱仪中,光学系统不能把狭缝清晰地成像在探测器上,这是由于光路中过大的反射角和固有的系统放大倍率造成的。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122045_360970_1855403_3.jpg② 灵敏度灵敏度是配置光谱仪时所需要考虑的另一个因素。现在的主流微型光纤光谱仪都采用线阵探测器,所以灵敏度跟像素数没有任何关系。但面阵探测器例外,因为面阵探测器在垂直方向的每个像素都会被累积,在某种意义上垂直方向上的所有像素的累积可以被看成一个更大的像素。因此,在考虑某种应用对灵敏度的要求时,更重要的是看探测器的响应曲线。下图中给出了海洋光学微型光纤光谱仪采用的两种典型探测器的灵敏度响应曲线。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122046_360971_1855403_3.jpg③ 信噪比信噪比也是选配微型光纤光谱仪的一个因素。对于CCD光谱仪,较高的灵敏度导致了较低的信噪比。在一定范围内,可以通过对光谱进行多次平均来提高信噪比。平均次数的平方根恰好是信噪比提高的倍数。例如,光谱平均100次,信噪比能提高10倍。有些应用需要较高的信噪比,此时用户应当比较在光谱仪中的光学平台和探测器的综合信噪比。需要强调的是,用户一定要搞清楚厂家给出的信噪比是不是整个光谱仪系统的信噪比,因为只有整个光谱仪系统的信噪比才是最重要的。一个信噪比高的探测器配一个性能不高的光路,那么它的高信噪比就没有实际意义。比较不同探测器和微型光纤光谱仪间的信噪比的比较好的方法是:测量100次,然后对每个像元计算平均值和标准偏差,信噪比等于平均值除以标准偏差。测量信噪比时,信号强度应当接近饱和,并设置正确的平滑值(如果需要的话)。④ 光栅选择光栅选择是最比较复杂的。通常有两个因素决定了光栅的选择:波长范围和光学分辨率。波长范围受限于所选择的探测器或光栅,或二者都有。光学分辨率不仅受限于光栅,还受限于狭缝宽度和探测器的像元数和像元尺寸。还要考虑第三个因素,即光栅还会影响系统的灵敏度,这是因为不同的光栅的闪耀波长(即最高效率)位置各不相同。当对系统进行最优化配置时,最好查看一下光栅的效率曲线。下图中是海洋光学微型光纤光谱仪采用的几种典型的600线/mm光栅的效率曲线,效率最高点从紫外区到近红外区。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122047_360972_1855403_3.jpg⑤ 狭缝狭缝了也是选配微型光纤光谱仪的一个因素。微型光纤光谱仪有多种狭缝尺寸供您选择,狭缝安装在光纤接头处(见图),并且被永久的固定在光谱仪上。有两点需要记住,狭缝越小,光学分辨率越高;狭缝越大,进入光学平台的光通量越多,即灵敏度越高。从本质上说,需要折中兼顾光谱仪的分辨率和灵敏度。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122047_360973_1855403_3.jpg⑥ 其他 选择微型光纤光谱仪的其他选项会相对容易一些。例如可以选择升级UV4探测器后,探测器上的标准BK7窗片将会被石英窗片替代,用来增强海洋光学微型光纤光谱仪在波长340nm以下紫外区的响应能力。而其它探测器,比如薄型背照式CCD或CMOS则不需要这个选项。而为了避免二、三级衍射效应的影响,可以通过在位于狭缝与消包层模式孔之间的SMA905连接器中安装长通滤光片或在探测器的窗口处安装OFLV消除高阶衍射滤光片。正如上面介绍的几个因素所表明的,通过一些简单的步骤就就可以配置好满足您应用的微型光纤光谱仪。除了光谱仪,我们可能还需要考虑种类纷杂的光源和采样附件。所以不必犹豫尽管向我们咨询有关仪器的一切问题,我们将会给您一套最适合您应用的微型光纤光谱仪配置。

  • 近红外光谱分析及其应用简介(四)

    5、近红外分析系统: [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析必须通过数学模型,因此近红外分析要求仪器的硬件、软件和资源三位一体,缺一不可,通常还需要构建近红外分析网络系统,他们共同组成近红外分析系统。优良的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器用于产生准确的光谱;近红外分析软件(包括模型)用于解析光谱提取待测量信息;近红外分析资源(已知待测量的代表性样品、数学模型等)用于建立数学模型;[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的网络系统用于为仪器厂家和用户之间的网络支持。5.1 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的仪器:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术主要分成两个谱区: 0.8~1.1μm称为短波近红外谱区,主要利用含氢基团高(4~5)倍频的信息,该谱区被物质吸收弱,透过能力强,适合于做透射分析,尤其适合于做整粒样品的透射分析,仪器的价格相对较低。1.1~2.5μm称为中长波近红外谱区,主要利用含氢基团的低(2~3)倍频区,该谱区透过能力比短波近红外弱,适合做粉末样品的反射光谱分析。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]按结构分,主要分为连续波长型和离散波长型。前者分析谱区的光谱具有波长连续的特征;又分为色散型(单检测器或阵列检测器)与傅立叶变换型等,分析的范围相对较宽;后者利用滤光片或LED等,选用几个特征(离散的)波长进行分析,价格相对较便宜。5.2 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的软件:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析软件用于包括对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的预处理(复原与压缩等功能算法),关联[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与待测量建立数学模型的算法,以及利用模型预测未知样品的光谱并对分析结果进行检验等功能。5.3 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的资源:为了建立优秀的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析模型,必须广泛收集样品并且用标准方法测定化学值,这些样品以及由此建立的数学模型需要耗费大量人力物力是近红外分析资源,这些资源的数据达到海量的规模,一般需要用数据库来管理。5.4 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的网络系统:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的模型需要经常维护修正,这些工作的难度较大,需要专业人员的帮助,因此,近红外专用分析仪器厂商需要通过网络为用户提供各种技术支持。

  • 【原创大赛】Micro NIR1700型近红外光谱仪用于蛋白含量测定的可行性研究

    【原创大赛】Micro NIR1700型近红外光谱仪用于蛋白含量测定的可行性研究

    Micro [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]1700型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]用于蛋白含量测定的可行性研究摘要:Micro [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]1700型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]与AntarisⅡ傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]相比具有体积小、质量轻、便携的特点,更适合用于生产现场检测。本文采用Micro [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] 1700型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]对蛋白含量进行检测,对其用于蛋白含量测定的可行性进行分析。通过相关系数法选出更合理的波段,提高模型的预测能力,从而建立了用于人血白蛋白原液蛋白含量快速检测的定量模型。关键词:微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url];蛋白含量测定;定量分析模型1材料1.1 试剂49个不同蛋白含量的样品:采用半微量凯氏定氮法进行蛋白含量的测定,测定得到17个样品的蛋白含量。用生理盐水稀释样品,共得到49个不同蛋白质含量的样品。1.2 仪器和软件Micro[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]1700型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](JDSU公司,美国); MATLAB 2015a处理软件(Mathworks,美国);PLS_Toolbox工具箱(Eigenvector Research,美国)。2方法2.1样品光谱的采集采用Micro [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]1700型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]进行蛋白光谱的采集,采样方式为透射采样,波长范围908.1-1676.0 nm,积分时间为28000 μs,扫描次数为50次。用1 mm光程比色皿进行采样,每个蛋白样品采集3次,求其平均光谱作为样品光谱。每张[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱由125个变量点组成。2.2校正集和验证集的划分样品集的划分采取SPXY分类算法,以1:1的比例进行校正集、验证集的划分,最终25个样品集被划分为校正集,24个样品被划分为验证集。分析样品的PCA得分图评价分类结果。2.3 预处理方法的选择采用标准化(Auto scale)、均值中心化(Mean Center)、一阶导数(First Derivative,FD)SG5点平滑、二阶导数(Second Derivative,SD)SG5点平滑等预处理方法进行了考察,以模型的RMSEP为指标,选择最佳的预处理方法。通过留一交互验证法,以RMSECV的值选择最佳主因子数。2.4光谱区间的选择采用Reverse iPLS方法、相关系数方法进行光谱区间的选择,优化光谱区间,以建立较优的模型。3 实验结果3.1近红外原始光谱图分析图1为Micro [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]1700型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]透射采样得到的原始[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱图。从原始光谱图中无法得知有关蛋白含量的信息,因此本研究中需用化学计量学知识对样品的原始光谱进行处理。[align=center] [img=,475,213]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151936_01_1626619_3.png[/img][/align][align=center]图1原始[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图[/align]3.2校正集和验证集的划分本研究选择SPXY算法,以1:1的比例进行校正集、验证集的划分,最终25个样品集被划分为校正集,24个样品被划分为验证集。图2为样品集的划分结果。图2为49个蛋白样品的前两个主成分的得分散点图,其中红色为验证集,灰色为校正集,从图中可知校正集样品和验证集的样品分散较好,这表明校正集、验证集划分较合理。[align=center] [img=,460,204]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151937_02_1626619_3.png[/img][/align][align=center]图2 样品主成分得分图[/align]3.3 光谱预处理结果本研究中,分别比较了Mean Center、Auto scale、平滑和导数以及不同处理方法组合的预处理方法对建模结果的影响,并以RMSEP作为模型的评价指标。表1为经不同预处理后的PLSR建模结果,由表中结果可知,经过二阶导数、SG5点平滑和Auto scale预处理后模型的Rp2提高, RMSEP明显下降,说明经过二阶导数、SG5点平滑和Auto scale预处理能够提高模型的有效性。图3为经预处理后较优模型的结果,模型结果为Rc2=0.993,Rp2=0.953,RMSEC=0.2143%,RMSEP=0.5354%,RMSECV=0.3382%。[align=center]表1不同预处理后各模型参数[/align][align=center][img=,638,223]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151938_01_1626619_3.png[/img][/align][align=center][img=,489,211]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151939_01_1626619_3.png[/img][/align] [align=center]图3二阶导数+SG平滑+Autoscale[/align]3.4 光谱区间选择结果分别采用Reverse iPLS方法、相关系数方法对模型的光谱区间进行优化,消除无关变量对模型的影响。以RMSEP值为指标来评价模型,其中RMSEP值越小模型结果越好。3.4.1Reverse iPLS选择波段本研究采用Reverse iPLS方法选择波段,考察50个变量间隔的选择结果。从图4可知,绿色部分为建模采用的波段,红色部分为舍弃波段范围。图5为采用Reverse iPLS方法选择的波段范围建立的模型的预测结果。其中RMSEP值有所降低,表明模型的预测误差降低。表明此区间包含的有效信息可提高模型的预测能力。[align=center][img=,532,234]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151940_01_1626619_3.png[/img][/align][align=center]图4 Reserve iPLS 选波段结果图[/align][align=center][img=,497,224]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151940_02_1626619_3.png[/img][/align][align=center]图5 Reserve iPLS法预测结果图[/align]3.4.2相关系数法选择光谱变量采用相关系数法求得光谱中各变量与蛋白浓度之间的相关系数图,相关系数越大,区间内包含的有效信息越多。图6为求得的相关系数图。[align=center][img=,483,211]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151942_01_1626619_3.png[/img][/align][align=center] 图6 相关系数图[/align]选择相关系数绝对值大于0.4的光谱区间建立近红外定量模型,选择建立模型的变量数为25个。图7为变量选择的结果图。[align=center][img=,520,229]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151943_01_1626619_3.png[/img][/align][align=center]图7 相关系数法变量选择图[/align]使用相关系数法选择的25个变量建立PLSR模型,建模结果见图8中所示。与全波段建模结果相比,模型的RMSEP值降低,表明模型的外部预测误差有所减小,从而提高了模型的准确性。[align=center][img=,474,209]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151945_01_1626619_3.png[/img][/align][align=center] 图8 建模结果图[/align]3.5 确定最佳定量分析模型采用二阶导数、SG5点平滑和Auto scale预处理后,使用Reverse iPLS方法和相关系数方法选择光谱的有效波段。两种变量选择方法建立的模型结果见表2所示。[align=center]表2不同变量建模结果比较[/align][align=center][img=,604,171]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151946_01_1626619_3.png[/img][/align]经过比较,其中相关系数法选择25个变量建立的PLSR定量模型的预测均方根误差结果最小,说明建立模型的预测能力更佳。所以本研究采用二阶导数、SG5点平滑和Auto scale预处理后选择相关系数法确定25个变量建立最佳定量分析模型。模型结果为Rc2=0.977,Rp2=0.958,RMSEC=0.3983%,RMSECV=0.5653%,RMSEP=0.5334%。4结论和讨论本研究用Micro [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]1700型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]对建立的人血白蛋白原液蛋白含量定量分析模型的可行性进行分析。采用Micro [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]1700型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]对49个样品进行光谱采集,然后选择不同的光谱预处理方法进行预处理,经过结果比较选择二阶导数、SG5点平滑和Auto scale进行光谱预处理;采用Reverse iPLS方法和相关系数方法,对光谱的有效区间进行选择,最终使用相关系数法选择25个变量建立蛋白含量的最佳定量分析模型。所建立的模型结果为Rc2 =0.977,Rp2=0.958,RMSEC=0.3983%,RMSECV=0.5653%,RMSEP=0.5334%。此研究结果表明,Micro [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]1700型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]所建立的模型用于人血白蛋白原液中蛋白含量的检测是可行的,同时Micro [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]1700型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]以其质量轻、体积小以及成本低的优势,在蛋白快速检测方面将有广阔的应用前景。参考文献吴清, 周法根. 脑梗死治疗中白蛋白应用价值的探讨 . 心脑血管病防治, 2005, 5(2): 49-50.王华平, 米宇俊. 人血白蛋白治疗肾综合征出血热低血压休克患者疗效观察 . 医师进修杂志, 2001, 24(8):20-21.郑红光, 杨志藩, 关欣. 静脉输注人血白蛋白对肾病综合征的正负临窗效应观察 . 中国实用内科杂志, 2003, 23(1):25-27.刘丽萍. 人血白蛋白在肝硬化资料中的应用 . 中国医院用药评价与分析, 2013, 13(5):388-390.常花蕾, 史涛. 人血白蛋白临床不合理应用及改进措施 . 中国药物应用与监测, 2014, 11(1): 52-54.孙世光, 余明莲, 王建民, 张国辉. 人血白蛋白的临床应用误区及其对策 .解放军药学学报, 2009, 25(4):366-368.

  • 【资料】-近红外光谱仪器的主要性能指标

    在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。对一台[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍。 1、仪器的波长范围对任何一台特定的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的波长范围通常分两段,700~1100nm的短波[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区域和1100~2500nm的长波[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区域。 2、光谱的分辨率光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。[1] 3、波长准确性光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。[1] 4、波长重现性波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。[1] 5、吸光度准确性吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。 6、吸光度重现性吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。 7、吸光度噪音吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。 8、吸光度范围吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低能检测到的吸光度之比。吸光度范围越大,可用于检测样品的线性范围也越大。 9、基线稳定性基线稳定性是指仪器相对于参比扫描所得基线的平整性,平整性可用基线漂移的大小来衡量。基线的稳定性对我们获得稳定的光谱有直接的影响。 10、杂散光杂散光定义为除要求的分析光外其它到达样品和检测器的光量总和,是导致仪器测量出现非线性的主要原因,特别对光栅型仪器的设计,杂散光的控制非常重要。杂散光对仪器的噪音、基线及光谱的稳定性均有影响。一般要求杂散光小于透过率的0.1%。[1] 11、扫描速度扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2次/s左右。[1] 12、数据采样间隔采样间隔是指连续记录的两个光谱信号间的波长差。很显然,间隔越小,样品信息越丰富,但光谱存储空间也越大;间隔过大则可能丢失样品信息,比较合适的数据采样间隔设计应当小于仪器的分辨率。 13、测样方式测样方式在此指仪器可提供的样品光谱采集形式。有些仪器能提供透射、漫反射、光纤测量等多种光谱采集形式。 14、软件功能软件是现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的重要组成部分。软件一般由光谱采集软件和光谱化学计量学处理软件两部分构成。前者不同厂家的仪器没有很大的区别,而后者在软件功能设计和内容上则差别很大。光谱化学计量学处理软件一般由谱图的预处理、定性或定量校正模型的建立和未知样品的预测三大部分组成,软件功能的评价要看软件的内容能否满足实际工作的需要。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制