当前位置: 仪器信息网 > 行业主题 > >

多孔流阻测试系统

仪器信息网多孔流阻测试系统专题为您提供2024年最新多孔流阻测试系统价格报价、厂家品牌的相关信息, 包括多孔流阻测试系统参数、型号等,不管是国产,还是进口品牌的多孔流阻测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多孔流阻测试系统相关的耗材配件、试剂标物,还有多孔流阻测试系统相关的最新资讯、资料,以及多孔流阻测试系统相关的解决方案。

多孔流阻测试系统相关的耗材

  • 高分子多孔小球、气相色谱仪性能专用测试填充柱 分析用填充柱
    高分子多孔小球填充柱气相色谱仪性能专用测试填充柱
  • 英斯特朗新一代触控测试系统
    更便捷 更智能 英斯特朗全新一代触控测试系统Bluehill Universal 基优化触控操作而开发。全新的纵向布局,专业的视觉设计,直观的工作区视图,配以色彩鲜明的大尺寸触控面板呈现。Bluehill Universal 的大尺寸触控点和连贯的操作步骤让用户获得更便捷,更智能的操作体验。易于理解的图标和工作步骤,简单的专业培训,即可让您快速开始试验。快速测试模式如果需要快速{t.38.1}得到测试结果,可以使用快速测试功能,只需输入几个关键参数,即可在几秒钟内完成测试。预设测试模板Bluehill Universal{t.40.1} 庞大的预设试验方法库满足常用的 ASTM,ISO和EN标准。这些方法根据特定的应用归类在不同的试验模块中。带提示测试指引用户依步骤{t.43.1}按步骤按步骤按步骤完成整个试验过程,以确保测试的可复验性和便捷性,并防止发生操作失误。提示内容可使用自定义的文本和图像。批量化试样测量可直接{t.46.1}将千分尺和游标卡尺连入系统,轻松导入试样尺寸以便进行应力测量。TestProfiler建立简单的{t.55.1}循环试验,包括斜坡型、保持型和三角波形。利用条件逻辑创建循环测试模式,从而模拟材料实际的受力状态。表达式生成器可利用{t.60.1}方法中的一组变量构建用户自定义函数。用户可以自定义编写函数,用于检测试验事件,定义新计算、测量,或者设置计算的域。导出工具无论是需要{t.65.1}生成专业的 PDF 报告,还是需要将自定义文件与实验室信息管理系统相集成,Bluehill Universal 的导出工具都能以各种格式灵活地输出:测试结果、操作员数据、原始数据和曲线图等。INSTRON{t.69.0}® {t.69.1} CONNECTInstron Connect 提供了一个强大的通信平台,让我们的支持工程师能够更好地为客户服务。加快远程技术响应安全的屏幕共享和内置{t.73.1}消息传送功能使试验结果的传输更加方便快捷。轻松发送试验方法和数据文件进行分析。定期提醒,降低风险定期标定{t.76.1}{t.76.2}提醒,便于确保实验室认{t.76.3}证有效性;预防性维护通知可避免停机风险。保持软件持续更新软件和固件的自动{t.78.1}更新通知,确保 Instron 试验系统以最佳状态运行。工业级触控操作面板Bluehill Universal 最具突破性的特性是采用触控架构,为用户操作提供一个高效、便捷的环境。测试系统现可通过操作员控制面板操作,并可非常便捷地安装在测试机架的一侧,采用全面人机工程学设计,操作便利,大幅提升测试效率。操作员控制面板包括一个触摸显示器和控制器,以及一个可调的安装支架,以便提高不同操作员的操作舒适性。无需再手忙脚乱地找键盘或鼠标!触控操作面板不仅能减少实验室中重复性动作造成的损伤,而且还能省去操作员往返于计算机与测试系统之间的时间。操作员控制面板侧装还可以节省实验室空间,不必使用台式PC。
  • 多孔不锈钢细管
    金属膜材料于多孔不锈钢材料中,其不锈钢滤膜由粉末冶金法生产,具有过滤、除尘、曝气、消声等功能,广泛用于化工、医药、航天、核能、环保等。它机械强度高、可焊接、易安装、无毒、耐腐蚀,使用后可进行各种反洗、再生处理,使用寿命长。除标准型316L之外,不锈钢材质种类繁多,适应各种苛刻工况。多孔不锈钢细管,多孔不锈钢主要应用于石油化工、冶金、航空航天、生物制药、气流分布、能源、食品、环保、稳流等行业,如催化剂过滤、药液提纯、气体除尘、牛奶果汁净化浓缩等。此外,多孔不锈钢还常被用作陶瓷、分子筛、高分子等功能材料的载体。我公司可按客户要求定制、研发各种多孔金属材料、器件与设备。特点:1、机械强度高、韧性好;2、耐压性高,易于连接和密封;3、稳定性好,抗热震性强;4、孔径可控;5、使用寿命长,经济效益高。特点:多孔不锈钢细管壁薄、渗透阻力小,组件体积小,可焊接制成集束式组件,具有更高的装填面积。外径:5~8mm壁厚:0.5~2mm长度:10~120cm
  • 梯度型多孔不锈钢
    产品描述:  特点:与传统多孔不锈钢滤材相比,梯度孔径(非对称)型多孔不锈钢过滤通量大,压降小,反冲洗周期长,且反冲洗效果更好多孔不锈钢主要应用于石油化工、冶金、航空航天、生物制药、气流分布、能源、食品、环保、稳流等行业,如催化剂过梯度型滤、药液提纯、气体除尘、牛奶果汁净化浓缩等。此外,多孔不锈钢还常被用作陶瓷、分子筛、高分子等功能材料的载体。梯度型多孔不锈钢主要应用于石油化工、冶金、航空航天、生物制药、气流分布、能源、食品、环保、稳流等行业,如催化剂过滤、药液提纯、气体除尘、牛奶果汁净化浓缩等。此外,多孔不锈钢还常被用作陶瓷、分子筛、高分子等功能材料的载体。梯度多孔不锈钢主要应用于石油化工、冶金、航空航天、生物制药、气流分布、能源、食品、环保、稳流等行业,如催化剂过滤、药液提纯、气体除尘、牛奶果汁净化浓缩等。此外,多孔不锈钢还常被用作陶瓷、分子筛、高分子等功能材料的载体。我公司可按客户要求定制、研发各种多孔金属材料、器件与设备。特点:1、机械强度高、韧性好2、耐压性高,易于连接和密封3、稳定性好,抗热震性强4、孔径可控5、使用寿命长,经济效益高梯度型多孔不锈钢 由大孔支撑体和微孔膜层(厚50-500μm、孔径0.1-5μm)构成,解决了过滤精度和过滤阻力的矛盾多孔不锈钢主要应用于石油化工、冶金、航空航天、生物制药、气流分布、能源、食品、环保、稳流等行业,如催化剂过梯度型滤、药液提纯、气体除尘、牛奶果汁净化浓缩等。此外,多孔不锈钢还常被用作陶瓷、分子筛、高分子等功能材料的载体。 产品优势1、膜面光洁2、抗污染3、错流效果好4、易反洗5、还可用作载体材料多孔不锈钢主要应用于石油化工、冶金、航空航天、生物制药、气流分布、能源、食品、环保、稳流等行业,如催化剂过梯度型滤、药液提纯、气体除尘、牛奶果汁净化浓缩等。此外,多孔不锈钢还常被用作陶瓷、分子筛、高分子等功能材料的载体。
  • 多孔板样品盘
    流分收集器备件安捷伦流分收集器能在进行精确流分收集的同时处理数据,提高了纯化系统的通量。因此您可以确信,即使在低流速下,都将获得最高纯度和最高回收率的流分。流分收集器维护时间表步骤何时维护分析型和制备型流分收集器的维护更换入口/废液管线每年一次——或者当您注意到损坏或磨损时更换阀到针头的管线每年一次——或者当您注意到损坏或磨损时更换制备针头组件当针头出现损坏或堵塞时更换分析针头组件当针头出现损坏或堵塞时,或短针头组件用于长试管时( 45 mm)更换分流阀当阀漏液或不能正常切换时更换内托盘当流量延迟传感器不能正常工作时修理或更换带内托盘或漏斗盘的漏斗当出现损坏、渗漏、堵塞或污染时微量流分收集器/点样器的维护更换流分收集器毛细管至少每 6 个月,或出现磨损、堵塞或损坏时更换毛细管引导组件弯曲或损坏时更换内托盘流量延迟传感器不能正常工作时更换摆动垫和废液管线至少每 6 个月,或损坏或污染时更换订货信息:多孔板样品盘样品盘部件号说明多孔板部件号说明单位G1364-845214个多孔板的样品盘,可冷却5042-138596 孔板,0.5 mL,聚丙烯120/包5042-138696 孔板,0.5 mL,聚丙烯10/包G1364-84531可放置4个多孔板的样品盘,可调节,可冷却5042-645496 深孔板,1 mL,聚丙烯50/包5042-138996 孔板密封垫,硅橡胶,预切口,仅适用于部件号为 5042-1385 和 5042-1386 的多孔板50/包G1364-845222个多孔板的样品盘,10个漏斗,可冷却5042-1388384 孔板,90 μL,聚丙烯30/包5065-440296 孔深孔板收集盘,带有玻璃插件、盖子和隔垫,预装配,0.35 mLG1367-60001可放2个多孔板的样品盘,10个样品瓶,2mL5188-5321玻璃内插管,350 μL1000/包5188-5322适用于玻璃内插管的盖/隔垫1000/包5042-850296 孔板,150 μL,圆锥形,聚丙烯25/包G2255-68700用于 54x2mL样品瓶的样品瓶盘6/包5022-6538样品盘,可放置 27 个 Eppendorf 安全锁定管,0.5/1.5/2 mL5022-6539适用于 15 x 6 mL 样品瓶的样品瓶盘
  • 实验室智能石墨消解仪 多孔批量处理加热均匀
    D4智能石墨消解仪采用高纯石墨材料作为加热体,包裹式加热,效率更高,温度均匀性更好。多孔设计,轻松实现样品的批量处理,是您样品消解的好伴侣。产品特点1、无线蓝牙技术,控制更智能使用mini平板(PAD)蓝牙控制技术,真彩触摸屏,仪器内部无需任何接插件和开关,便可轻松的实温度控制,让您的工作充满时尚、自由和畅快。2、均衡、包裹式加热,消解效率更高高纯石墨体具有良好的导热性,为所有样品提供均匀的热量,消除了加热盲点。立体包裹式加热,热量损失更少,效率更高,弥补了电热板加热的不足。3、多孔设计,处理量倍数于微波消解批量处理,整体时间大大缩短;标配39孔,一次可处理3900ml液体样品;可定制49孔、64孔或81孔,处理量倍数于微波消解仪;常压式消解仪更安全更快捷。4、高品质工艺,维护操作简单石墨体表面喷涂特氟龙涂层,易清洁、耐腐蚀;聚四氟乙烯台面,整机外围无金属部件,可在强酸强碱等恶劣环境中放心使用。5、安卓系统,时尚,功能强大采用先进的专家PID温控系统,独特的可视化监控,用户可通PDA界面清楚的看到整个消解过程中的各项参数:消解时间、保持时间、当前温度等,用户可以根据不同的样品自行编辑并保存消解方法。6、真实的样品温度可选配外置温度探针,保证了样品的真实温度,使样品消解更加到位。7、完善配件,更贴心可选配聚四氟乙烯消解管、回流盖、双层支架、单层支架、单层钢架、聚丙烯消解管、长短玻璃消解管等等,使用更贴心。
  • RT181905多孔钛棒滤芯
    多孔钛棒滤芯以高纯钛为原料,结合特殊工艺,经过高温烧结而成。其孔形结构均匀稳定,孔隙率高,具有截留效率高的性能。此滤芯还具有耐高低温,耐腐蚀,机械强度高,易再生,使用寿命长的特点,可适用于各种介质的气体、液体过滤。尤其在制药行业的脱炭过滤中得到广泛应用。主要特点◇ 抗化学腐蚀能力强,具有广泛的应用范围,耐高温、耐氧化,可反复清洗,使用寿命长。◇ 液体、蒸汽、气体均能应用,耐压能力强。典型应用◇制药行业大输液、小针刑、滴眼液、原料制约等浓配、稀配环节的脱炭过滤。◇高温蒸汽,超细晶体、催化剂、催化气L体等方面的过滤。◇水处理系统中臭氧灭菌后的精过滤和曝气过滤。◇啤酒、饮料、矿泉水、白酒、酱油、植物油、醋等的澄清过滤。主要性能参数◇过滤精度:0.45、1.0、3.0、5.0、10、20(μm)◇孔隙率:28-50%◇抗压强度:0 5--1.5 MPa◇耐温性能:≤300℃(湿态)◇最大工作压差:0.6 MPa◇滤芯接口:M20螺纹、226插口◇滤芯长度:10”,20”,30”备注:多孔钛棒滤芯因不同规格价格各异,具体价格以沟通为准
  • 1200 系列纳流液相色谱系统 G1379A
    产品特点: Agilent 1200 系列纳流液相色谱系统适用于高灵敏度纳流电喷雾质谱的纳流液相色谱Agilent 1200 系列纳流液相色谱将安捷伦独特的电子流量控制 (EFC) 与主动反馈和实时流量调节相结合,以输送与系统反压无关的恒定流速。具有电子流量控制的 EFC 是实现可靠稳定的纳流性能的黄金标准。Agilent 1200 系列纳流液相色谱容易使用,只需要用户简单地输入需要的纳流设置值,就可以得到精确的流量和梯度,从而保证了保留时间的重现性和高灵敏度纳流质谱性能所需要的稳定离子。无与伦比的纳流性能和稳定性* 与常规液相色谱相比,灵敏度提高了 3500 倍* 典型流速范围在 0.1-1 μL/min,可扩展到 2.5 mL/min * 与其他厂商的质谱仪兼容订购信息:Agilent 1200 系列纳流液相色谱系统说明部件号1200 系列微量真空脱气机G1379A1200 系列纳流泵G2225A1200 系列微量多孔板自动进样器G1377A1200 系列自动进样器温控装置G1330B
  • 微流控芯片光刻机系统配件
    微流控芯片光刻机系统配件专业为微流控芯片制作而设计,用于刻画制作微结构表面。微流控芯片光刻机采用多功能一体化设计理念,一台光刻机具有六个传统单一的表面刻划机器的功能,而且不需要无尘环境,用户安装使用不再需要单独建设超净间,从而大大提高用户的使用经济性和方便性。 微流控芯片光刻机全自动化和可编程操作,适合几乎所有常用材料,可以根据用户的芯片衬底基片尺寸,形状和厚度进行调节。微流控芯片光刻机是一种无掩模光刻系统,具有两个易操作的软件,用户可以创建个人微结构图案,从单个微通道到复杂的微观结构都可以创建。微流控芯片光刻机具有技术突破性设计和灵活性优势,非常适合加工微纳结构用于MEMS,BioMEMS,微流控系统,传感器,光学元件,MicroPatterning微图案化,实验室单芯片,CMOS传感器和所有其他需要微结构的应用。这款无掩模光刻系统可以快速而轻松地做出许多种微图案结构,从最简单到非常复杂的都可以。它的写入磁头装备有一个激光二极管(波长405纳米- 50毫瓦),光学扫描器和F-θ透镜(405纳米)。激光束根据设定微结构图案而运动。为了方便使用,较好的再现性和较高的质量,焦距是可以根据基片厚度进行调节的。图像采集期间可以使用控制面板调节焦距。几个基片厚度都可以使用。编程参数被保存以供以后使用,修改或其他用户使用。 编号 名称 MSUP 基于无掩模光刻系统和湿法刻蚀技术的微结构化表面的单位生产。
  • 多孔不锈钢片
    多孔不锈钢主要应用于石油化工、冶金、航空航天、生物制药、气流分布、能源、食品、环保、稳流等行业,如催化剂过滤、药液提纯、气体除尘、牛奶果汁净化浓缩等。此外,多孔不锈钢还常被用作陶瓷、分子筛、高分子等功能材料的载体。金属膜材料于多孔不锈钢材料中。我公司可按客户要求定制、研发各种多孔金属材料、器件与设备。金属膜材料于多孔不锈钢材料中,其不锈钢滤膜由粉末冶金法生产,具有过滤、除尘、曝气、消声等功能,广泛用于化工、医药、航天、核能、环保等。它机械强度高、可焊接、易安装、无毒、耐腐蚀,使用后可进行各种反洗、再生处理,使用寿命长。除标准型316L之外,不锈钢材质种类繁多,适应各种苛刻况。多孔不锈钢片特点:1、机械强度高、韧性好;2、耐压性高,易于连接和密封;3、稳定性好,抗热震性强;4、孔径可控;5、使用寿命长,经济效益高。金属膜材料于多孔不锈钢材料中,其不锈钢滤膜由粉末冶金法生产,具有过滤、除尘、曝气、消声等功能,广泛用于化工、医药、航天、核能、环保等。多孔不锈钢片它机械强度高、可焊接、易安装、无毒、耐腐蚀,使用后可进行各种反洗、再生处理,使用寿命长。除标准型316L之外,不锈钢材质种类繁多,适应各种苛刻工况。
  • 长春玻璃制品有棕多孔玻板吸收管棕U形吸收 yzuxxsg1137 10ML
    POROUS ABSORBING U shape 别名:滤板吸收管、u形多孔滤板、吸收管、U形吸收管一、用途: 它适用于环境保护、劳动卫生和工矿企业单位对气体或蒸气状态存在于空气中的毒害物质(如盐酸气溶液、硫酸雾、磷酸酊及汞雾等)作采样吸收用。二、造型: 它是由粗管与细管焊接而成的U型管,在粗管下部焊有一号滤孔的玻璃滤片,它可以使气体分散为极小的气泡以扩大被测气体与吸收液的接触面积,从而得到更高的吸收效果。在粗管上部有一个扩大球,使气泡喷出液面时能有一定的缓冲余地和迅速破灭散开,使液体不致冲出管口。三、使用方法: 吸收液的注入量其液面高度以粗管的1 / 2为宜,以免泡沫过多地溅到球壁上影响吸收效果。
  • 微流控芯片lab-on-chip
    微纳立方为您提供了各种应用场合的微流控芯片,及相关附件,如下:微流控 PDMS芯片微流控 玻璃芯片塑料芯片细胞培养芯片微纳立方为客户提供用途各异的细胞培养芯片,示例如下:MicronitCellixVena8 Fluoro+TM Biochips 微流体芯片; Vena8 Endothelial+TM Biochips 微流体芯片 ;VenaT4TM Biochips 微流体芯片 ; Vena8 Glass Coverslip Biochips 微流体芯片; VenaDeltaY1TM Biochips 微流体芯片 ; VenaDeltaY2TM Biochips 微流体芯片 ;电阻抗测试芯片 Electrical Impedance Spectroscopy 微流控芯片夹具类微流控芯片及附件毛细管,接头,插头等配件————————————————微流控产品:MFCS-EZ 微流体进样系统FRP流速监测系统恒流控制功能M-Swich通道切换解决方案微流控系统专用显微镜微流控分析系统… … 如上为微纳立方为微流控芯片系统提供的各种用途应用产品及附件,如有相关问题,欢迎关注微纳立方
  • 恒谱生氢气/氮气/氦气/氩气/空气气体流路气阻
    在载气入口流路中:稳压阀保证进入到进样口的压力稳定,稳流阀确保输入到进样口的载气总流量保持恒定,以保证稳定的柱流量,分流出口流量等。隔垫吹扫出口流路中:通过—个稳压阀和—个固定气阻得到一个恒定的流量。而这个流路的作用是:避免进样扎针产生的隔垫碎屑杂质掉入进样器里面去。在气相色谱分析中,气阻指的是使气体流通截面突然变小的器件。当气体流过时候,气体分析和管壁、分子之间相互碰撞,摩擦增大,耗损很大的能量(包括气压-势能损耗、流速-动能损耗)而表现出阻力作用。为克服基线波动的影响,在检测器前端增加气阻,在进样口出口端增加气容。气容和气阻的组合有效改善了阀切换操作引起的基线波动及流量归零引起的基线波动。常见的空气气阻类型有多种,常见的为毛细管气阻和金属粉末烧结气阻。恒谱生气相色谱仪红宝石精密气阻结构简单、占用空间小、重现性好、操作方便、可靠性好,因此,极为实用,用于阻流、限流、恒流,检测时使气体匀速稳定通过气路系统,让气相色谱仪能正常工作,更精准的测量气体。还能够有效地减少来自样品对气相色谱仪的磨损,保护色谱仪配件,减少项目延误或紊乱的风险,确保更稳定更客观的分析纯化结果。并能延长仪器的寿命。订货号规格流速压力(psi)AR-31-58-6500-005Φ3.17*H3.17650058AR-49-60-0220-100Φ4.9*H5.85 M5*0.8 螺牙22060AR-08-60-4500-005Φ8*H22.5450060AR-63-60-1100-600Φ6.34*H6.35110060AR-41-58-5500-005Φ3.17*H4.17550058AR-08-60-1000-800Φ8*H27100060AR-08-60-0400-300Φ8*H2740060AR-09-60-6700-005Φ9.9*H6.05 M10*1 螺纹670060AR-15-60-6700-174Φ15*H30 内孔Φ6670060
  • 新型多孔不锈钢材料
    多孔不锈钢主要应用于石油化工、冶金、航空航天、生物制药、气流分布、能源、食品、环保、稳流等行业,如催化剂过滤、药液提纯、气体除尘、牛奶果汁净化浓缩等。此外,多孔不锈钢还常被用作陶瓷、分子筛、高分子等功能材料的载体。产品描述:  我公司使用了多种生产技术,开发生产出了新型多孔不锈钢材料。  外径:5mm—100mm  长度:10mm—1500mm  孔径:0.2um—50um  形状:管式、片式  可根据用户要求定制各种规格的多孔不锈钢滤芯。我公司可按客户要求定制、研发各种多孔金属材料、器件与设备。新型多孔不锈钢材料特点:1、机械强度高、韧性好2、耐压性高,易于连接和密封3、稳定性好,抗热震性强4、孔径可控5、使用寿命长,经济效益高
  • 阴离子交换树脂多孔型─DIAION PA308
    北京绿百草科技提供三菱化学阴离子交换树脂多孔型─DIAION PA系列。PA系列包括PA308、PA312、PA316、PA408、PA412、PA418是多孔性苯乙烯/二乙烯苯聚合体结构,多孔型树脂的耐膨胀收缩力强,与有相同交联的凝胶树脂比较,PA系列因含水量较高,交换容量低。PA系列的离子交换容量等同于标准的凝胶阴离子交换树脂,尤其对有特殊要求的矽酸低浓度的处理效果较好,另外处理有机物含量较高的原水,其对抗有机物的阻塞与除去有机物的性能都很好。PA树脂还可用在许多特殊制作如糖液的脱色、脱离子、或当作碱性催化剂回收。PA316和PA418一般用在普通水处理,PA408和PA308用在含有机阻塞物的特殊水的处理。
  • 恒谱生有机气体voc气相色谱稳流空气气阻
    气相色谱仪是以气体作为流动相(载气)。当样品由微量注射器“注射”进入进样器后,被载气携带进入填充柱或毛细管色谱柱。由于样品中各组分在色谱柱中的流动相(气相)和固定相(液相或固相)间分配或吸附系数的差异,在载气的冲洗下,各组分在两相间作反复多次分配使各组分在柱中得到分离,然后用接在柱后的检测器根据组分的物理化学特性将各组分按顺序检测出来 其中气路系统是一个载气连续运行的密闭管路系统,通过该系统可以获得纯净的、流速稳定的载气。它的气密性、流量测量的准确性及载气流速的稳定性,都是影响气相色谱仪性能的重要因素。恒谱生空气气阻透气性好、耐腐蚀、耐高温、坚固耐用、性能稳定、占用空间小、重现性好、寿命长,用于阻流、限流、恒流,检测时使气体匀速稳定通过气路系统,让气相色谱仪能正常工作,更精准的测量气体。还能够有效地减少来自样品对气相色谱仪的磨损,保护色谱仪配件,减少项目延误或紊乱的风险,确保更稳定更客观的分析纯化结果。订货号规格流速压力(psi)AR-31-58-6500-005Φ3.17*H3.17650058AR-49-60-0220-100Φ4.9*H5.85 M5*0.8 螺牙22060AR-08-60-4500-005Φ8*H22.5 450060AR-63-60-1100-600Φ6.34*H6.35110060AR-41-58-5500-005Φ3.17*H4.17550058AR-08-60-1000-800Φ8*H27100060AR-08-60-0400-300Φ8*H2740060AR-09-60-6700-005Φ9.9*H6.05 M10*1 螺纹670060AR-15-60-6700-174 Φ15*H30 内孔Φ6670060
  • LC/MS 过滤系统 | N9301208
    产品特点:LC/MS 过滤系统高载量烃捕集阱● 包含750 cc 预先经过老化的活性炭● 不锈钢体;带套圈的1/4”黄铜压缩接头便于安装● 最大压力为200 psi● 建议流速高达每分钟2 L● 可在室温下将惰性气体、氮气和氢气中的烃类杂质( 不超过50ppm) 减少至较低的ppb 范围内● 对C5 及以上重链烃的载量可达67 g● 10 μ 不锈钢多孔釉料可阻止颗粒物进入气流● 专门经过氦渗漏测试;运输时已充满氦气订货信息:LC/MS 过滤系统产品描述部件编号LC/MS 过滤系统N9301208
  • 南京高谦-可弯曲式多孔不锈钢滤材
    南京高谦-可弯曲式多孔不锈钢滤材于多孔不锈钢材料中,其不锈钢滤膜由粉末冶金法生产,具有过滤、除尘、曝气、消声等功能,广泛用于化工、医药、航天、核能、环保等。它机械强度高、可焊接、易安装、无毒、耐腐蚀,使用后可进行各种反洗、再生处理,使用寿命长。南京高谦-可弯曲式多孔不锈钢滤材除标准型316L之外,不锈钢材质种类繁多,适应各种苛刻工况。直径3-15mm,装填面积大、尤其适用于各种微系统;采用集束式过滤器可实现更高效率。在错流过滤时效果好且节能。具有不锈钢金属韧性,可弯曲成所需形状公司简介:主营特种金属过滤器、科学仪器、金属钯膜、氢气纯化器、高纯氢发生器等,并提供过滤、除尘、净化、检测等工程技术服务。依托南京工业大学材料化工国家重点实验室、国家特种膜工程中心,拥有以教授和博士为骨干的国际化研发团队,授权中、美、德发明50余件,技术成果源自欧盟、德国、比利时、西班牙科研项目,以及国家863计划、国家重点研发计划、国家自然科学基金等。
  • 多孔螺旋盖(德国SCHOTT肖特)
    多孔螺旋盖-德国SCHOTT肖特 GL45多孔螺旋盖及SCHOTT DURAN高效液相色谱瓶,新型连接系统确保了化学、生物实验室工作时液体在密封、无菌环境中安全地输送,该系统是以GL标准为基础,因此具有兼容性,可广泛使用,瓶盖可高温消毒、反复使用。 货号 描述 数量 1129750 Screw Cap GL45 PP 2 Port GL14 2 1129751 Screw Cap GL45 PP 3 Port GL14 2 1129812 Screw Cap HPLC GL45 PP 4 Port Assembled 2 1129813 Spare Part Set For HPLC Screw Cap GL45 1 1129814 Screw Cap GL14 For Hose Connection 2 1129815 Insert For Screw GL14 1.6mm 1 1129816 Insert For Screw GL14 3.0mm 1 1129817 Insert For Screw GL14 3.2mm 1 1129818 Insert For Screw GL14 6.0mm 1 1137799 Set for Pressure Compensation 2 and 3 Port Screw Cap 1 1137801 Set for Pressure Compensation 4 Port Screw Cap 1 1129819 Membrane PTFE GL14 for Sterile Pressure Compensation 1 1129820 Laboratory Bottle 1000ml,HPLC GL45 PP with 4 Port Assembled 2 1129821 Laboratory Bottle HPLC,500ml GL45 PP with 4 Port Assembled 2 本系统还有哪些应用范围? 高效液相色谱仪器中溶液的自动输送及废液的处理 用于滴定设备 用于生物技术处理中的抽吸,如从存储器抽吸添加剂(营养物质等)至反应器自动输送纯净、消毒物质及密封处理
  • Hypercarb多孔石墨碳色谱柱35003-154630
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-153030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-152130
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-101030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-054630
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-052146
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-102130
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-031030
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-032146
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-032130
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
  • Hypercarb多孔石墨碳色谱柱35003-104630
    Thermo Scientific Hypercarb HPLC 色谱柱100% 多孔石墨碳用于扩展分离功能? 对高极性分析物具有出色的保留能力? 分离结构相近物质? 在 0 至 14 的 pH 下保持稳定? 适合高温应用多孔石墨碳 (PGC) 是由碳原子排列成片状六边形进而形成的独特固定相,这种碳原子的化合价已经饱和,与大多数多核芳香族分子相同。Hypercarb 的结构和保留性质与传统硅胶键合相不同,具有很宽的pH稳定性,可保留和分离高极性化合物。Hypercarb 色谱柱非常适合解决反相和正相 HPLC 及 LC/MS 应用中的“问题”分离。保留和分离度相互作用机制主要取决于溶质的极性和平面性(形状)。这些特定的相互作用机制使其能成功保留和分离无法通过一般反相 HPLC 分离的分析物。由于分析极性分析物时不需使用复杂的缓冲系统或离子对试剂,以及使用更高浓度的有机改性剂,与 MS 等检测技术的兼容性也更高。Hypercarb 色谱柱基本上以下面两种机制进行保留:1) 吸附:分析物与 Hypercarb 相互作用的强度在很大程度上取决于与石墨表面接触的分子面积,并与接触点的官能团类型和官能团相对石墨表面的位置有关。右图显示了平面和非平面分子向Hypercarb 表面接近的方式。相互作用的强度取决于能与平石墨表面接触的分子面积的大小和方向。平面性更高的分子比三维空间排列的刚性分子具有更高保留。2) 电荷诱导的极性分析物与可极化石墨表面之间的相互作用:第二个机制,即电荷诱导的偶极请见上图,这一机制与极性分析物表现出的强保留相关。带***偶极的极性基团接近表面时,将形成诱导偶极,从而增强分析物与石墨表面之间的相互吸引。这些电荷不应与分子的总离子电荷相混淆,如在酸性 pH 条件下电离的碱性化合物。电荷诱导的偶极机制完全是由于极性分子的静电荷与石墨表面之间的相互作用所引起的。与 Hypercarb 之间较强的相互作用机制使得在方法开发过程中使用较短的色谱柱成为可能。在大多数情况下,100mm 长的色谱柱甚至更短的色谱柱便足以进行分离。对极性分析物有更高保留在一般的反相色谱分析中,分析物的保留与其疏水性成正比,分析物的疏水性越高,其保留时间越长。相反地,随着分析物极性增大,分析物-溶剂之间的相互作用渐渐占据主导,保留随之降低。大多数反相分析系统都是如此。但Hypercarb 则打破了这一规律,在某些情况下其保留可随分析物极性增大而增加,如右图所示。这种现象称为“石墨的极性保留作用”(PREG)。这一特性使得 Hypercarb 色谱柱对分离高极性化合物(logP低至-4)非常有用,这类化合物在硅胶基质烷基链固定相中一般难以保留和解析。Hypercarb可在不使用离子对试剂或复杂的流动相条件的情况下保留高极性溶质。更广的 pH 范围Hypercarb 色谱柱的其他关键优势还包括固定相对化学或物理侵蚀极为稳定。由于这种介质的独特性质,它可在 0 到 14的整个 pH 范围内耐受化学侵蚀,因此可在一般硅胶基质色谱柱不兼容的pH水平应用中运行。Hypercarb 色谱柱还提供多种缓冲液选择,且耐高温高压。结构相近化合物的分离度由于分析物的表面性质以及分析物构型对保留会产生影响,Hypercarb 色谱柱可分离结构极为相近的分析物,如异构体和同系物。在本页中,使用传统 C18 色谱柱未观察到对亚甲基和甲基团的区分,而使用 Hypercarb 色谱柱则具有明显的分离能力。分析物与石墨表面的结合程度不同,因此能进行分离,这说明Hypercarb色谱柱可用于分离结构极为相近的化合物,如酯型抗生素非对映异构体的分离(上图所示)。Hypercarb 色谱柱与原来所使用的硅胶基质色谱柱相比,分离度得到显著的改善,洗脱顺序也有变化。非常适合极性化合物的反相 LC/MS高极性化合物的反相 LC/MS 分析挑战性很大,因为一般的疏水性固定相和常规流动相不能保留高极性分析物,而某些流动相又和 MS 检测器不相互兼容。Hypercarb 能克服这些困难,因为它:? 使用“MS 兼容”流动相(如 0.1% 的甲酸或乙酸以及醋酸铵或甲酸铵等低浓度挥发性缓冲液)来保留和分离高极性化合物? 可在流动相中使用高比例的有机相,这能改善大气压电离技术的雾化效率,从而提高分析灵敏度? 可使用长度更短、直径更小的色谱柱,不影响峰容量,通常可提高灵敏度。配合细径和毛细管色谱柱,使用低流速,与 MS 的兼容性更高。? 在任何流动相中保持稳定,无固定相流失,因为 Hypercarb 的多孔石墨表面不含键合相。Hypercarb 订货信息粒径 (μm) 规格柱长 (mm) ID (mm) 部件号3 保护柱(4/pk) 10 1.0 35003-0110012.1 35003-0121013.0 35003-0130014.6 35003-014001HPLC 色谱柱30 1.0 35003-0310302.1 35003-0321303.0 35003-03303050 1.0 35003-0510302.1 35003-0521303.0 35003-0530304.6 35003-054630100 1.0 35003-1010302.1 35003-1021303.0 35003-1030304.6 35003-104630150 2.1 35003-1521303.0 35003-1530304.6 35003-154630高温 HPLC 色谱柱30 2.1 35003-03214650 2.1 35003-0521464.6 35003-054646100 1.0 35003-1010462.1 35003-1021463.0 35003-1030464.6 35003-1046465 保护柱 (4/pk) 10 1.0 35005-0110012.1 35005-0121013.0 35005-0130014.6 35005-014001HPLC 色谱柱30 2.1 35005-0321303.0 35005-0330304.6 35005-03463050 1.0 35005-0510302.1 35005-0521303.0 35005-0530304.6 35005-054630100 1.0 35005-1010302.1 35005-1021303.0 35005-1030304.6 35005-104630150 1.0 35005-1510302.1 35005-1521303.0 35005-1530304.6 35005-154630高温 HPLC 色谱柱30 2.1 35005-0321464.6 35005-03464650 2.1 35005-0521464.6 35005-054646100 2.1 35005-1021464.6 35005-104646Javelin HTS 色谱柱20 2.1 35005-022135制备型 HPLC 色谱柱100 10 35005-10907021.2 35005-10927030 35005-109370150 10 35005-15907021.2 35005-159270规格柱长 (mm) ID (mm) 部件号UNIGUARD 保护柱套10 1.0 851-002.1 852-003.0 852-004.6 850-00
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制