分离分散性测试仪

仪器信息网分离分散性测试仪专题为您提供2024年最新分离分散性测试仪价格报价、厂家品牌的相关信息, 包括分离分散性测试仪参数、型号等,不管是国产,还是进口品牌的分离分散性测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分离分散性测试仪相关的耗材配件、试剂标物,还有分离分散性测试仪相关的最新资讯、资料,以及分离分散性测试仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

分离分散性测试仪相关的厂商

  • HT ITALIA来自于美丽的欧洲小镇——意大利法恩莎,公司自1983年成立以来,产品年销售额超过4000万欧元。并在2009年在中国广州建立办事处,负责中国地区的产品销售和售后服务。 HT ITALIA公司设立专业的研发团队,在1992年研制生产出HT2038,1999年研制生产了世界上第一台带电能质量分析仪功能的便携式多功能电气安全测试仪——GENUIS 5080,在2001推出具有三相电能质量分析仪功能的多功能电气安全测试——GSC系列,刷新了便携式仪器的多功能之最。2007年HT公司开始涉及太阳能光伏系统测试,以提供太阳能光伏电站的现场测试仪表,HT可提供全面的太阳能光伏电站测试仪表:并网太阳能光伏电站性能验证测试SOLAR300N,太阳能电池I-V特性曲线分析测试仪I-V400,离网太阳能光伏电站性能验证测试SOLAR I-V等。近年来,HT公司又基于自身的设计现场测试理念,推出自主品牌的全新系列红外热像仪产品,以充分满足客户的个性化需求,HT品牌的红外热像仪家族包括:THT41/42/44的经济型系列,THT49的专业级红外热像仪和THT50专家型红外热像仪。现在HT公司拥有:红外热成像仪,电气安全测试仪(含:绝缘电阻测试仪,接地电阻测试仪,漏电保护开关-RCD测试仪,耐压测试仪和多功能电气安全测试仪)、电能质量分析仪、通用测试仪表(含:数字万用表,数字电流钳表,红外测温仪,数字测温仪,数字噪声计,激光测距仪等)、GEF专业绝缘工具(含:绝缘镙丝批,各种绝缘剪钳,各种型号的工具套包,工具箱等)等系列产品。
    留言咨询
  • 上海启绽实验设备有限公司是专业的仪器设备制造商,销售商,主营:染料分散性测定仪、生化培养箱类、冷光源低温人工气候箱( QLRX-450D-30000 )真空干燥箱、真空冷冻干燥机、石墨电热板、索氏提取器、组织研磨仪、凝胶染色仪、染料分散测试仪、无菌均质器,制冰机、氮吹仪.固相萃取、超声波细胞破碎仪、光催化系统、光化学反应仪、低温恒温槽、低温冷却液循环泵、超声波清洗机、磁力搅拌器、水浴锅、离心机、真空泵、原子吸收分光光度计、纯水机、超低温冰箱、旋转蒸发器、玻璃反应釜、实验粉碎机等实验仪器设备(可根据用户要求定制)。另外,我公司还代理有:回弹仪、钢筋测定仪、非金属超声检测分析仪、徕卡测距仪等工程仪器;进口Labplas TWIRL’EM无菌采样袋,进口以及国产PCR仪,凝胶成像系统等实验检测设备。联系电话:18621320371
    留言咨询
  • FISCHER — 让测量变得简便! 现今,FISCHER 的测量和分析仪器广泛应用于世界各个领域,可满足客户对高精度、高可靠性测量和操作简便的需求。我们通过专业的咨询服务为客户提供最佳的解决方案,即从第一次接触开始,不断沟通,直至达到定制化服务的理念。这些紧密合作与我们的创新驱动力不断结合,为形成新的测量解决方案奠定了坚实的基础。 HELMUT FISCHER集团是一家受德国基金会控股、专业生产和销售涂镀层测厚仪、材料分析仪、微纳米压痕仪(微纳米硬度仪)和材料测试仪的全球性集团公司。集团总部位于德国和瑞士,在德国、美国和英国各建有一个工厂、并设立了一个研究院和多个全球用户应用实验室,在全世界设有近50个分公司。??位于德国总部的基地,用于生产、物流、研发及客户应用??南通菲希尔测试仪器有限公司是HELMUT FISCHER集团在中国大陆地区设立的唯一子公司,全权负责FISCHER产品在中国地区的销售、安装、维修、备品备件及技术咨询等业务。FISCHER生产的涂镀层测厚仪主要分为:X射线涂镀层测厚及材料分析仪、β射线测厚仪、电涡流法测厚仪、电磁感应测厚仪、库仑法(多层镍电位差)测厚仪,除此之外还有包括 微纳米压痕仪(微纳米硬度仪)、电导率测试仪、铁素体含量测试仪、孔隙率测试仪 和 针孔测试仪 等在内的多种测试仪器。 FISCHER 公司生产的各类仪器,广泛应用于航天工业、航空工业、造船工业、港口机械、电镀工业、显像管流水线、电子工业(包括印制电路行业、半导体工业)、汽车工业、石油化工、黄金珠宝、手表、大专院校、科研单位、第三方测试机构等众多行业。 南通菲希尔测试仪器有限公司成立于1997年,位于中国上海,至今已在东莞建立了分公司;在北京、西安、青岛、厦门设立了办事处;并在成都、昆山、苏州、南京、宁波等地建立了售后服务点。FISCHER中国的应用实验室更是在2011年获得了ISO/IEC17025:2005认证。 “让用户满意”是公司的一贯宗旨,FISCHER将以一流的服务来赢得用户的信赖。选择FISCHER仪器,为您产品的超高品质提供保障。 认证在 FISCHER,产品和服务的认证和持续改进至关重要。这也是Helmut Fischer GmbH,Institut für Elektronik und Messtechnik 能够通过 ISO 9001 认证的原因。自 1997 年起,我们的质量管理体系已符合 DIN EN ISO 9001:2008 标准。 获得认证的校准实验室 获得认证的校准实验室2003 年,Helmut Fischer 成为了第一个根据 DIN EN ISO/IEC 17025 标准而获得的“表面尺寸”量值认证的德国公司。因此,公司有资格代表德国认证机构 DAkkS 来检验校准标准片,并为其出具证书供用户使用。校准标准片如可用于:例如,对 X 射线荧光仪器进行校准;从而极大地提高了测量的可靠性。 Germany: DIN EN ISO/IEC 17025 USA: ISO/IEC 17025:2005 & ANSI/NCSL Z540-1-1994 Switzerland: ISO 17025 SCS & STS DIN 成员(德国标准化学会) 自 2016 年 3 月 1 日起 FISCHER 成为 DIN 成员。公司自愿遵守标准化自律守则,提升总体经济竞争力。 应用实验室凭借我们在业内多年的经验优势,助力您解决复杂的测量难题。在遍及欧洲、亚洲和美国的七个应用实验室中,我们的技术专家会为客户在正确选择仪器、开发测量方法及确定合适的测量程序方面提供支持。 凭借我们在业内多年的经验优势,助力您解决复杂的测量难题。 所有 Fischer 集团内部的应用实验室之间都已建立联系,同时也与各高校、机构及企业建立了合作关系。这样稳定的知识交流体系能够确保获取到全球最前沿的专业知识,同时也能够应对特殊咨询。除提供客户定制培训(可以在我们的实验室进行也可以在您的公司进行)外,我们的技术专家也非常愿意协助您对测量结果进行分析。 Helmut Fischer 博物馆企业家 Helmut Fischer博士的专业知识、工作热情、发明家精神以及卓越的执行力是公司成功发展的源动力。他的成功故事从 1953 年在斯图加特创建的技术车间开始。现今,Fischer 作为业务遍及全球的大公司,已成为工业测量技术领域的领导者之一。持续改革与永无止境的创新是其从始至终一直坚守的明确目标。Helmut Fischer 研发的首款测量仪器 位于总部的博物馆展示了公司创始人,同时也是公司长期所有人 Helmut Fischer博士的成功人生。参观者们受邀来感受公司从小工厂成长为国际性解决方案提供商的发展历程,以及了解 Fischer产品从最初创意到最终投入市场的整个过程。Helmut Fischer 博物馆的常客:当地的在校学生 ????????更多详情请访问公司官网:http://www.helmutfischer.com.cn
    留言咨询

分离分散性测试仪相关的仪器

  • BT-1000型粉体综合特性测试仪是丹东百特仪器有限公司研制的一种多功能的粉体综合特性测试仪器。其测试项目包括休止角、崩溃角、平板角、差角、分散度、松装密度、振实密度、压缩度、空隙率、凝集度、均齐度、流动性指数、喷流性指数等参数。这些参数对粉体产品的粉碎、包装、输送等具有重要的实际意义。该仪器的特点是一机多用、操作简便、重复性好、测试条件容易改变、配套完整等。该仪器的研制成功,为在科研生产中粉体特性测试工作的普遍开展提供了新的手段。BT-1000所测的项目及其意义● 休止角:在静平衡状态下,粉体堆积斜面与底部水平面所夹锐角叫做休止角。它是通过特定方式使粉体自然下落到特定平台上形成的。休止角大小直接反映粉体的流动,休止角越小,粉体的流动性越好。休止角也称安息角或自然坡度角。● 崩溃角:测量休止角时,给堆积的粉体以一定的外力冲击,这时堆积粉体表面就可能产生崩塌现象,崩塌后粉体堆积斜面与底部水平面所夹锐角称为崩溃角。● 差角:休止角与崩溃角之差称为差角。差角越大,粉体的流动性越强。● 平板角:将埋在自然堆积粉体中的平板向上垂直提起,粉体在平板上的自由表面(斜面)和水平面之间的夹角与受到一定冲击后的夹角的平均值称为平板角。平板角越小,粉体的流动性越强。一般地,平板角大于休止角。平板角也称为抹刀角。● 振实密度:是指一定重量(或体积)的粉体装填在特定容器后,对容器进行一定强度的振动,从而破坏粉体颗粒间的空隙,使颗粒处于紧密状态,这时的粉体密度叫振实密度。● 松装密度:是指粉体在特定容器中处于自然充满状态后的密度。● 压缩度:是指粉体的振实密度与松装密度之差与振实密度之比。压缩度越小,粉体的流动性越好。压缩度也称压缩率。● 分散度:就是粉体在空气中的飘散程度。分散度与粉体的分散性、漂浮性和飞溅性有关。如果分散度超过50%,说明该样品具有很强的飞溅倾向。● 空隙率:是指粉体中的空隙占整个粉体体积的百分比。空隙率因粉体的粒子形状、排列结构、粒径等因素的不同而变化。颗粒为球形时,粉体空隙率为40%左右;不规则形状时,粉体空隙率为70-80%或更高。● 均齐度:是粒度分布的D60和D10的比值。● 凝集度:在一定时间内,使用标准筛给粉体特定的振动后,称取筛上残留团聚粉的质量。凝集度越大,粉体的流动性越差。凝集度适用于易团聚的细粉或微粉。● 流动性指数:是休止角、压缩度、平板角、均齐度、凝集度等项指数的加权和。流动性指数与压缩度有关。● 喷流性指数:是流动性指数、崩溃角、差角、分散度等项指数的加权和。基本性能指标测试项目15项。具体包括休止角、崩溃角、平板角、滑动角、分散度、振实密度、松装密度、差角、压缩度、空隙率、凝集度、均齐度、霍尔流速、流动性指数、喷流性指数角度范围0-90°角度测定方法图量角器法振实密度频率250次/分钟振实密度振幅3mm、14mm符合标准中国标准:GB/T 31057.2-2018GB/T 31057.3-2018GB/T 16913-2008 4.5GB/T 1479.1-2011GB/T 5162-2006美国标准:ASTM D6393-14美国药典:USP32-NF27616欧洲药典:EP7.0 07/2010:20934电源与功率~220V,50/60Hz、120W体积与重量580×350×650mm(主机),37kg应用领域● 包括制药、电池材料、粉末涂料、非金属矿、石墨、食品、有色金属、粉体工程设计、粉体物性研究以及教学等领域。测试过程示意图● 振实与松装密度测量方法● 休止角测量方法
    留言咨询
  • 卫生纸可分散性测试仪 卫生纸可分散性测试仪适用于卫生纸的可分散性影响到其可分解的快慢程度,也影响到城市污水系统的净化,在水中易分散的卫生纸产品更有利于城市污水的处理循环,所以检测卫生纸的可分散性,以提高其可分散性能,是有利于生态环境保护的重要检测项目,卫生纸、卫生原纸等柔软卫生产品可分散性能的检测。广泛应用于卫生纸生产厂家、质检系统、第三方检测机构、大中专院校、科研院所等单位卫生纸可分散性测试仪技术特点智能化专业检测系统,专业人性化界面设计,中英文界面,人机一体;自主研发的测试控制系统,可靠性高,适应性强;彩色液晶显示屏,高清显示效果;测试、停止配有高品质金属按键,使用上更加方便、快捷,外观美丽大气;高精度步进电机控制旋转运动,高精度导轨,无级调速,平稳传动;独立控制自动放水,方便快捷,只需一键即可完成放水操作;分散筒透明化设计,测试结果直观明了,清晰可见;高品质气体流量控制阀,可以控制进去流量大小,调节方便;标准配置嵌入式微型打印机,随时打印实验数据;标准USB数据通信接口,方便数据导出与外部连接;技术参数试样圆筒:可存水大约8L,出厂时标定5L转子:8片均布;试样尺寸:100mm*100mm调压阀范围:0-1.5MPA测试转速: 0~600r/min可任意在触摸屏设置;工作气源压力: 0.2~0.6MPa;流量计量程: 0.1~50L/min 可任意在触摸屏设置单次测试时间: ≦9999秒外形尺寸: 620mm(L)×310mm(D)×590mm(H)电源: 220VAC,50Hz净重: 26kg 参照标准可分散性测试仪是参照标准《GB\T 20810-2018 卫生纸(含卫生纸原纸)》开发的测试仪器,应用于检测卫生纸的可分散性。仪器配置主机、微型打印机、流量计、放水管,说明书,保修卡,合格证,电源线,铭牌,宣传册等
    留言咨询
  • DRK-10 卫生纸可分散性测试仪,是参照标准《GB\T 20810-2018卫生纸(含卫生纸原纸)》开发的测试仪器,应用于检测卫生纸的可分散性。产品应用:DRK-10 卫生纸可分散性测试仪,适用于卫生纸、卫生原纸等柔软卫生产品可分散性能的检测。广泛应用于卫生纸生产厂家、质检系统、第三方检测机构、大中专院校、科研院所等单位。技术标准:《GB\T20810-2018卫生纸(含卫生纸原纸)》主要特点:1、智能化嵌入式操作系统,专业人性化界面设计,所见即所得;2、自主研发的测试控制系统,可靠性高,适应性强;3、5英寸彩色液晶显示屏,高清显示效果;4、测试、停止配有高品质金属按键,使用上更加方便、快捷;5、高精度步进电机控制旋转运动,无级调速,平稳传动;6、独立控制放水,方便快捷,只需一键即可完成放水操作;7、分散筒透明化设计,测试结果直观明了,清晰可见;8、高品质气体流量控制阀,可以精确控制进去流量大小,调节方便;;9、标准配置微型打印机,随时打印实验数据;10、标准RS232数据通信接口,方便数据导出与外部连接。技术指标:项目参数测试转速0~600r/min工作气源压力0.2~0.6MPa流量计量程0.1~15L/min 可调试验速度1~500 r/min,可调单次测试时间≦9999 秒加液体积5L外形尺寸610mm(L)×300mm(D)×580mm(H)电源220VAC,50Hz净重26kg注:因技术进步更改资料,恕不另行通知,产品以后期实物为准。
    留言咨询

分离分散性测试仪相关的资讯

  • UCLA卢云峰课题组AFM:催化剥离制备高导电性、高分散性石墨烯及其在锂离子电池中的应用
    p style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em font-size: 16px "近日,/spana href="http://www.seas.ucla.edu/~lu/#home" target="_blank"span style="color: rgb(0, 112, 192) "strongspan style="text-indent: 2em font-size: 16px text-decoration: underline "美国加州大学洛杉矶分校(UCLA)卢云峰教授课题组/span/strong/span/aspan style="text-indent: 2em font-size: 16px "利用石墨插层原理,将具有催化活性的FeCl3插入边缘氧化石墨层间,再利用层间FeCl3催化循环分解H2O2鼓泡剥离得到大尺寸(~10 μm)、高导电性(926 S cm-1)及高分散性(~10 mg mL-1 水体系)石墨烯。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em font-size: 16px "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/6a2c0a11-e50f-4bb5-819a-22c5e955b506.jpg" title="4a21eeb8-c37c-43aa-b45a-b90a114537e4.jpg" alt="4a21eeb8-c37c-43aa-b45a-b90a114537e4.jpg"//pp style="text-align: center "strongUCLA卢云峰教授团队/strong/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "ispan style="font-size: 14px "石墨烯因其超高导电性、高比表面积及优良的机械性能而在能源存储领域有着广泛应用。液相剥离是实现石墨烯商业化最重要的制备方法之一。通过氧化剥离制得的石墨烯(或氧化石墨烯)虽然具有较好的水系分散性,但含氧官能团也大大降低了石墨烯的导电率。近年来尽管一直有文献报道采用液相剥离制备高品质石墨烯,但制备同时具有高导电性与高分散性的石墨烯仍然具有挑战性。这也部分限制了石墨烯应用于能源材料领域,尤其是需要同时满足高导电性及水系分散性的锂离子电池、超级电容器及太阳能电池等应用。/span/i/span/pp style="text-align: justify line-height: 1.5em text-indent: 0em "span style="text-indent: 2em font-size: 16px "作为应用实例,这种高导电性、高分散性石墨烯(HCDG)随后通过喷雾干燥与商业LiFePO4复合制备LiFePO4-HCDG正极。石墨烯导电网络被证明大幅度提高了该复合电极的循环稳定性、倍率性能及体积能量密度。这为液相剥离制备高导电性、高分散性石墨烯及开发高功率型锂离子电池提供了新思路。该文章发表在国际知名期刊 /spana href="https://nyxr-home.com/tag/advanced-functional-materials" target="_blank"span style="color: rgb(0, 112, 192) text-indent: 2em font-size: 16px text-decoration: underline "strongAdvanced Functional Materials(影响因子:16.836)/strong/span/aspan style="text-indent: 2em font-size: 16px "上。论文题目为“High-Conductivity–Dispersibility Graphene Made by Catalytic Exfoliation of Graphite for Lithium-Ion Battery”。莫润伟研究员为本文共同通讯作者;UCLA博士生陶然和博士生李凡为共同第一作者。/spanspan style="font-size: 14px text-indent: 2em "br//span/pp style="text-align: center line-height: 1.5em text-indent: 0em "span style="font-size: 16px background-color: rgb(0, 112, 192) color: rgb(255, 255, 255) "strong【研究及表征】/strong/spanspan style="font-size: 14px background-color: rgb(255, 192, 0) "br//span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px "1 催化剥离制备高导电性、高分散性石墨烯的原理介绍/span/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px "/span/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/cc055388-4c77-46a2-b034-1721782b99b3.jpg" title="image001.png" alt="image001.png"//pp style="text-align: center line-height: 1.5em text-indent: 0em "span style="font-size: 14px "strong图1. 采用催化剥离制备高导电性、高分散性石墨烯过程示意图/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px "为了制备高导电性、高分散性石墨烯,我们需要在石墨烯边缘引入含氧官能团提高其亲水性,同时还需保证中心区域的结构完整性。这里我们基于石墨插层原理,将具有催化活性的FeCl3插入边缘氧化石墨层间,再利用FeCl3催化分解H2O2鼓泡剥离制备得到石墨烯。与传统液相剥离法不同,这种方法先从边缘由Mn3+率先与H2O2反应打开层间入口,暴露出插入层间的FeCl3催化剂,再经过H2O2扩散至层间后与FeCl3反应,由外至内逐步剥离石墨烯片层。值得注意的是,无氧化剥离过程有效保证了片层中心的结构完整性,这使得石墨烯具有高导电性;而位于石墨烯边缘的含氧官能团提高了石墨烯水系分散性。此外,FeCl3的有效插层以及从外到内的逐步剥离使得石墨烯还具有少层及大尺寸的特性。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/07b405f0-a3a7-4fde-ace2-07553ef66241.jpg" title="image002.png" alt="image002.png"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "strong图2. HCDG的物象表征。/strong(a)HCDG,FeCl3-边缘氧化石墨嵌层物,边缘氧化石墨以及石墨的XRD谱图。(b)HCDG及石墨的拉曼谱图。(c)HCDG的XPS能谱。(d-f)HCDG的TEM图像 (g)SEM图像及(h)AFM图像。(i)HCDG的尺寸分布。(j)HCDG的尺寸、导电性及水系分散性与已报道的其他石墨烯材料性能对比/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px "2 利用喷雾干燥制备LiFePO4-高导电性、高分散性石墨烯 (LFP-HCDG) 正极及其电化学表征/span/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px "这种高导电性、高分散性石墨烯在能源材料领域尤其是同时需要上述两种特性的应用中具有巨大的利用前景。为了论证这一观点,作者采用喷雾干燥法,将HCDG与纳米尺寸(~30nm)的商业LiFePO4复合,得到LFP-HCDG正极。大尺寸石墨烯相比与小尺寸石墨烯,能够构建更有效的电子传导网络。HCDG的高导电性提高了复合正极的电子传导速率,高分散性实现了水体系下与活性材料的有效复合。此外,喷雾干燥还有效增大了正极材料的振实密度,配合LFP-HCDG在高倍率下展现出的高容量,提高了电极的体积能量密度。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/66d7f5a1-8d15-4730-a49e-81c02e10c809.jpg" title="image003.png" alt="image003.png"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "strong图3. LFP-HCDG的物象表征。/strong(a)LFP-HCDG正极复合材料中的电子传导分析及其与小尺寸石墨烯复合正极对比。(b-c)LFP-HCDG的SEM图像,(d-e)SEM-EDS图像,(f-h)TEM图像。(i)LFP-HCDG在空气气氛下的TGA曲线。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px "大尺寸、高导电性及高分散性石墨烯大大提高了LFP-HCDG复合正极的长程导电性及锂离子迁移速率。为了论证这一观点,对LFP-HCDG,LiFePO4-氧化石墨烯(LFP-GO)及商业LiFePO4进行了CV, EIS,循环性能,倍率性能及动力学特性等多项表征与测试。对比LFP-GO与商业LFP,LFP-HCDG展现了高可逆容量 (0.5 C 下159.9 mA h g-1)、高倍率性能(20 C下76.6 mAh g-1)及优良的循环稳定性 (1000循环容量保持率 89%)。同时,利用喷雾干燥的复合方法在商业LiFePO4中加入HCDG提高了电极体积能量密度 (0.5C下658.7以及20C下287.6 Wh L-1)。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/e6112f58-688d-4d90-aaa5-8a4dae008060.jpg" title="image004.png" alt="image004.png"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "strong图4. LFP-HCDG,LFP-GO及商业LFP的电化学性能及动力学分析/strong:(a)充放电曲线(b)循环伏安曲线(c)倍率性能(d)活性材料利用率(e)2C下的循环性能(f)EIS曲线(g)中位放电电压(h)在不同倍率下的体积能量密度。/span/pp style="text-align: center line-height: 1.5em text-indent: 0em "span style="color: rgb(255, 255, 255) background-color: rgb(0, 112, 192) "strongspan style="color: rgb(255, 255, 255) font-size: 16px "【结论】/span/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px "作者开发了一种液相催化剥离方法制备高导电性(926 S cm-1),高分散性(10 mg mL-1 水体系)及大尺寸(10 μm)石墨烯。/span/strongspan style="font-size: 16px "这种方法解决了传统液相剥离方法中导电性与分散性难以兼得的问题,拓展了石墨烯在同时需要高导电性与高分散性的能源材料领域中的应用。作为应用实例,我们利用喷雾干燥法将高导电性、高分散性石墨烯与商业LiFePO4复合,并证明了石墨烯导电网络大幅度提高了该复合电极的循环稳定性(1000循环容量保持率 89%)、倍率性能 (20 C下76.6 mAh g-1) 及体积能量密度 (0.5C下658.7 Wh L-1以及20C下287.6 Wh L-1)。这为液相剥离制备高导电性、高分散性石墨烯及开发高功率型锂离子电池提供了新思路。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "iRan Tao, Fan Li, Xing Lu, Fang Liu, Jinhui Xu, Dejia Kong, Chen Zhang, Xinyi Tan, Shengxiang Ma, Wenyue Shi, Runwei Mo, Yunfeng Lu, High-Conductivity–Dispersibility Graphene Made by Catalytic Exfoliation of Graphite for Lithium-Ion Battery, strongAdv. Fucut. Mater/strong., 2020, DOI:10.1002/adfm.202007630/i/span/pp style="text-align: center line-height: 1.5em text-indent: 0em "span style="font-size: 16px font-family: arial, helvetica, sans-serif color: rgb(255, 255, 255) background-color: rgb(0, 112, 192) "strong【作者介绍】/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 14px "/span/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/6d415b73-1d31-4b66-8ba9-c4bd658be1af.jpg" title="cbf11921-e8dd-4743-b80d-14448d8bfee6.jpg" alt="cbf11921-e8dd-4743-b80d-14448d8bfee6.jpg"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "卢云峰 (Yunfeng Lu)/span/strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai ",加州大学洛杉矶分校化学与生物分子工程系教授。博士就读于新墨西哥大学化学工程专业,师从C. Jeffrey Brinker。在2005 年同时获得总统科学家和工程师早期职业奖(Presidential Early Career Awards for Scientists and Engineers );美国能源部早期职业科学家和工程师奖 (Early Career Scientist and Engineer Awards, Department of Energy);美国化学会联合利华奖 (Unilever Award, American Chemical Society, Division of Colloid and Surface Chemistry)。研究方向:能源存储及转化 药物递送及纳米医学。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "https://samueli.ucla.edu/people/yunfeng-lu//span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "莫润伟(Runwei Mo)/span/strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai ",美国加州大学洛杉矶分校化学与生物分子工程系博士后。博士就读于哈尔滨工业大学。瞄准电荷高效储存与输运的结构调控科学问题,在电化学储能新材料设计以及制造新技术方面取得了系列创新性成果:第一作者/通讯作者身份发表 Nature Communications (3 篇), Advanced Materials, ACS Nano (2 篇), Advanced Functional Materials, Energy Storage Materials (3 篇) 等多篇国际知名期刊论文。研究方向:先进能源存储材料;厚电极关键制造技术。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "陶然(Ran Tao)/span/strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai ",2015年本科毕业于北京航空航天大学化学学院应用化学专业,2020年博士毕业于加州大学洛杉矶分校化学与生物分子工程系化学工程专业,博士期间获得奖学金(Graduate Division Fellowship)。目前在劳伦斯伯克利国家实验室从事博士后研究。研究方向:锂电池,纳米材料。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "李凡(Fan Li)/span/strongspan style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px "span style="font-family: 楷体, 楷体_GB2312, SimKai ", 2015,2020年在加州大学洛杉矶分校化学与生物分子工程系分别获得化学工程学士,化学工程博士学位。博士期间获得奖学金(Graduate Division Fellowship)。研究方向:能源存储,纳米材料。/spanspan style="font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em "(文源:能源学人)/span/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px background-color: rgb(0, 112, 192) color: rgb(255, 255, 255) "【相关阅读】/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px color: rgb(255, 255, 255) "/span/pp style="text-align: center "span style="text-decoration: underline "stronga href="https://www.instrument.com.cn/news/20190329/482648.shtml" target="_blank"穿越血脑屏障!UCLA卢云峰团队研发新型纳米胶囊(点击查看)/a/strong/span/pp style="text-align: center "span style="text-decoration: underline "更多相关资讯 扫码关注【3i生仪社】/span/pp style="text-align: center "span style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 172px height: 172px " src="https://img1.17img.cn/17img/images/202012/uepic/488c5bea-e206-4467-9664-3a23ecde71d4.jpg" title="3i生仪社 二维码.jpg" alt="3i生仪社 二维码.jpg" width="172" height="172"//pp style="text-align: center "br//p
  • 2022年分散体分析和物料测试国际会议
    2022分散体分析和物料测试国际会议International Conference for Dispersion Analysis & Materials Testing 2022举办者: LUM GmbH地址:Park Inn by Radisson Berlin Alexanderplatz Hotel, Alexanderplatz 7, Berlin, DE时间:2022年1月24-26日报名链接:请扫描下面的二维码注册相关信息2022年1月24日至26日,LUM GmbH将在德国柏林主办下一届分散体分析和物料测试国际会议。会议主办方将邀请全球LUM仪器用户向科学领域以及工业领域的专家分享LUMiReader PSA、LUMiReader X-Ray、LUMiFuge、LUMiSizer、LUMiSpoc、LUMiFrac(用于复合材料)和LumiFlector的使用经验和成果。 首批演讲嘉宾:HP Indigo Ltd., IsraelKIT (Institut für Mechanische Verfahrenstechnik und Mechanik), GermanyUniversity of Leeds, UKFriedrich-Alexander-Universität Erlangen-Nürnberg, Germany会议主题包括: 1.颗粒与表面表征 纳米和微米颗粒的粒度分布/汉森分散性参数/汉森溶解度参数/颗粒密度分布/颗粒表面表征 2.实时加速稳定性 分散体的直接加速稳定性试验/乳液和悬浮液中的实时分离/分散体的比较和预测货架期(ISO/TR 13097)/化妆品的稳定性测试(ISO/TR 18811) 3.物料测试 拉伸试验/剪切试验/涂层表征/复合材料表征/机械强度 4.工业处理过程 工业过程中颗粒的分离/分散性和可过滤性的表征/剪切和压缩屈服应力/上下游加工 科学委员会主席:LUM GmbH D.Lerche博士教授 会议主办方邀请全球LUM仪器用户介绍在LUMiSizer、LUMiFuge、LUMiReader、LUMiReader X-Ray和LUMiFrac的科学研究和工业应用方面的经验和成果。请将您的英文摘要以MS word文件的形式通过电子邮件发送至event@lum-gmbh.de 请扫描下面的二维码下载摘要格式:提交摘要的截止日期将很快公布。欢迎大家踊跃报名参加。 所有摘要将发表在www.dispersion-letters.com 报告作者可免费参加此次会议。
  • 2022年分散体分析和物料测试国际会议
    2022分散体分析和物料测试国际会议International Conference for Dispersion Analysis & Materials Testing 2022举办者: LUM GmbH地址:Park Inn by Radisson Berlin Alexanderplatz Hotel, Alexanderplatz 7, Berlin, DE时间:2022年1月24-26日报名链接:请扫描下面的二维码注册相关信息2022年1月24日至26日,LUM GmbH将在德国柏林主办下一届分散体分析和物料测试国际会议。会议主办方将邀请全球LUM仪器用户向科学领域以及工业领域的专家分享LUMiReader PSA、LUMiReader X-Ray、LUMiFuge、LUMiSizer、LUMiSpoc、LUMiFrac(用于复合材料)和LumiFlector的使用经验和成果。 首批演讲嘉宾:HP Indigo Ltd., IsraelKIT (Institut für Mechanische Verfahrenstechnik und Mechanik), GermanyUniversity of Leeds, UKFriedrich-Alexander-Universität Erlangen-Nürnberg, Germany会议主题包括: 1.颗粒与表面表征 纳米和微米颗粒的粒度分布/汉森分散性参数/汉森溶解度参数/颗粒密度分布/颗粒表面表征 2.实时加速稳定性 分散体的直接加速稳定性试验/乳液和悬浮液中的实时分离/分散体的比较和预测货架期(ISO/TR 13097)/化妆品的稳定性测试(ISO/TR 18811) 3.物料测试 拉伸试验/剪切试验/涂层表征/复合材料表征/机械强度 4.工业处理过程 工业过程中颗粒的分离/分散性和可过滤性的表征/剪切和压缩屈服应力/上下游加工 科学委员会主席:LUM GmbH D.Lerche博士教授 会议主办方邀请全球LUM仪器用户介绍在LUMiSizer、LUMiFuge、LUMiReader、LUMiReader X-Ray和LUMiFrac的科学研究和工业应用方面的经验和成果。请将您的英文摘要以MS word文件的形式通过电子邮件发送至event@lum-gmbh.de 请扫描下面的二维码下载摘要格式:提交摘要的截止日期将很快公布。欢迎大家踊跃报名参加。 所有摘要将发表在www.dispersion-letters.com 报告作者可免费参加此次会议。

分离分散性测试仪相关的方案

分离分散性测试仪相关的资料

分离分散性测试仪相关的试剂

分离分散性测试仪相关的论坛

  • 多分散性系数偏小

    和其他实验室仪器比对发现重均分子量14w高4000左右,数均分子量6w高了2w左右,多分散性系数Mw/Mn就小很多,多分散性在4-6之间样品,测试结果之外1.7-3左右,重均分子量没问题情况下,怎么解决数均分子量偏大的问题呢?

分离分散性测试仪相关的耗材

  • 有孔/无孔单分散聚合物色谱填料
    详细介绍sin单分散聚合物色谱填料不但有高度的粒径均一性、精确的粒径大小、优化的孔径结构和比表面积,而且具有低反压、高选择性、高分辨率、高回收率、洗脱集中、重现性好等特点。我们可以提供涵盖了正相、反相、离子交换、疏水、亲和、体积排阻等色谱介质,可满足从实验室分析,到大工业规模分离的各种需求,如有机化合物、天然产物、抗生素、多肽、蛋白质、多糖和寡核苷酸等物质的高效分析和分离。可提供从2μm到50μm任意尺寸的无孔和有孔单分散高效色谱填料,常规孔径有100A,300A,500A,800A和1000A。也可根据客户的要求定制特殊的色谱填料。sin聚合物色谱介质的特点和优势特点优势球形,粒径高度均一易装柱、高分辨率优化的孔径结构高载量、高选择性卓越的化学和pH稳定性便于在线清洗、使用寿命长无泄漏、无碎片和小颗粒洁净的产品高机械强度低反压、柱床稳定提供多个基质品种以及广泛的粒径和孔径选择多样的选择和最优化的填料大规模生产能力以及批与批的稳定性稳定的产品质量和产量供应聚合物和硅胶色谱填料的互补性能硅胶和聚合物为基质的填料是在色谱分离和分析领域必不可少的两种性能互为补充的色谱介质。硅胶基质机械强度大、柱效高、分辨率好,已广泛应用于有机化合物及中性分子的分析和大规模制备生产中;而聚合物基质填料则具有良好的化学稳定性及无与比拟的耐酸碱性,因此寿命长,可在线清洗适合于生物分子的大规模纯化分离。研究证明,由于硅胶和聚合物色谱填料内在材料性能的差别,它们在对目标分子分离选择性方面具有极强的互补性,如一些用聚合物填料很难分离的物质,在硅胶填料上却能得到良好分离;相反地,一些在硅胶填料上很难分离的物质,而用聚合物填料能得到有效的分离。我们可同时提供硅胶、聚甲基丙烯酸酯或聚苯乙烯/二乙烯基苯为基质的三种性能互补的高质量的均粒色谱填料以满足不同客户的需求。高度的粒径均一性从图1扫描电镜图及图3粒径分布图中可以看出sin聚合物色谱介质具有完美的球形,高度的粒径均一性和精确的粒径大小.均一的粒径和完整的球形使得sin聚合物色谱填料与大多数市场的色谱填料相比(图2)具有装柱容易,柱床稳定,反压低等特点。图1.不同尺寸的PS/DVB色谱填料(5,10,30,40mm)扫描电镜图图2.Sin(红)与知名品牌(绿)色谱填料粒径分布图对比图3.各种尺寸色谱填料的粒径分布图色谱填料的孔径大小及比表面积对填料的分离性能有很大的影响,因此对于目标分离物质,选择优化的孔径结构的色谱填料可以增加上样量,提高分离效率和纯度。我们不仅可以提供从2μm到50μm任意尺寸的单分散聚合物色谱填料,而且可以提供从50?到4000?不同孔径大小的色谱填料。常规色谱填料的孔径有100A,300A,500A,800A和1000?。特殊孔径的色谱填料也可根据客户的需求定制。图4是四种不同孔径的单分散色谱填料扫描电镜图。低反压,高柱效由于sin单分散聚合物介质粒径均一、球体、刚性强、耐压性好,在各种流速下都能装出较好的柱效,且柱床稳定,反压低。相对其他粒径分布广的色谱填料来说,该色谱介质装柱后渗透性好,柱床稳定,因此柱效和分辨率更好。粒径均一,无碎片和小颗粒的色谱介质也可避免筛板堵塞。图5表明了理论塔板数和线性流速的关系。PD10-300的塔板数可以达到50000N/m,填料装柱后在各种溶剂条件下压力和流速的线性关系表明sin单分散聚合物填料较好的刚性结构。化学和pH稳定性sin系列反相色谱填料基质是高交联度的聚苯乙烯和二乙烯基苯,其化学键在全pH范围(pH1-14)具有很好的稳定性,在极端的酸碱溶液(如1NNaOH/HCl)和有机溶液(包括甲醇、乙醇、丙酮、异丙醇、二甲基亚砜、n-丙醇、四氢呋喃、乙腈、6M盐酸胍等)中都可保持球体结构和稳定的性能。让客户拥有更宽的应用条件的选择,有利于开发工艺和优化分离条件,从而达到高分辨率和高产品回收率。同时sin聚合物色谱填料由于其化学稳定性,非常适用于FDA规定下CIP/SIP要求的清洗方案。例如PD10-300在1MNaOH中浸泡40天后,胰岛素载量仍然保持稳定(图6)。不同极性的单分散聚合物填料单分散的聚合物色谱填料主要组成是PS/DVB.我们提供了不同极性的聚合物基质的色谱填料。完整的产品线单分散聚合物色谱填料,采用世界最先进的生产技术,基质可为丙烯酸酯,苯乙烯/二乙烯基苯和二氧化硅,涵盖正向、反相、离子交换、亲和、体积排阻等色谱领域,可用于实验室分离、分析和工业化大生产。高真圆度,单分散性以及优化的孔径结构,使得单分散聚合物色谱填料具有更多的选择性。常规粒径大小有1.7μm、3μm、5μm、10μm、15μm、20μm、30μm、40μm、50μm、60μm、100μm;孔径可选择100?、300?、500?、800?、1000?。可满足从实验室分析测试到中试及工业化规模生产的各种分离纯化要求。有孔单分散聚合物色谱填料货号粒径(um)孔径(?)组成PD-33100,300PS/DVBPD-55100,300,500,800PS/DVBPD-1010100,300,500,800,1000PS/DVBPD-1515100,300,500,800,1000PS/DVBPD-2020100,300,500,800,1000PS/DVBPD-3030100,300,500,800,1000PS/DVBPD-4040100,300,500,800,1000PS/DVBPD-5050100,300,500,800,1000PS/DVBPDB-3030300,500,1000PS/DVBPDB-4040300,500,1000PS/DVBPDB-5050300,500,1000PS/DVBPDB-6060300,500,1000PS/DVBPDA-1010300,500PolyDVB/acrylicPDA-2020300,500PolyDVB/acrylicPDA-3030300,500PolyDVB/acrylicPDA-4040300,500PolyDVB/acrylicPDA-6060300,500PolyDVB/acrylicPAL-2020300,500PolyacrylicPAL-4040300,500PolyacrylicPAL-6060300,500PolyacrylicSD10050-150300PS/DVBSD30050-150500PS/DVB表2.无孔单分散聚合物反相色谱填料产品名称粒径(μm)孔径(?)组成NP-1.71.7NP(Non-porous)PS/DVBNP-22.0NP(Non-porous)PS/DVBNP-33NP(Non-porous)PS/DVBNP-55NP(Non-porous)PS/DVBNP-1010NP(Non-porous)PS/DVB
  • 灰熔融性测试仪配件
    灰熔融性测试仪配件测量煤炭或焦炭专业的特征熔融温度、变形(DT)、软化(ST)、半球温度(HT)、流动温度(FT)。 灰熔融性测试仪配件特点 高度自动化:环境温度下自动加载,再度判别4个特征温度 一次性可加载9个样品 实时监测:装备有CCD相机,实时监测监测过程,计算机显示和存储图像 精确测试结果:高清彩色相机确保图像清晰,更容易判断特征温度 二次核查测试结果:测试完成后测试图片存储下来,可二次核查图片和温度 精密控制炉温,超低气体消耗 方便使用:基于Windows系统软件,一台计算机可控制多台煤炭灰熔融性测试仪 灰熔融性测试仪配件符合标准ISO540固体矿产燃料硬煤和焦炭可熔性分析ASTM D1857-04-09 煤炭和焦炭可熔性测量GB/T219-2008煤炭可熔性分析灰熔融性测试仪配件参数测量能力:5个/批 最高温度: 1600℃ 温度分辨率:1℃ 炉材料:莫来石 加热器件:酸化镍,钼棒 加热速率:20+/-5℃/分钟 (900℃) 测试气体:氧化气体,气体流量法 电源: 220V,50Hz, 2400W 尺寸:550x850x854mm 重量:100kg
  • Sunny单分散聚合物色谱填料
    Sunny单分散聚合物色谱填料不但有高度的粒径均一性、精确的粒径大小、优化的孔径结构和比表面积,而且具有低反压、高选择性、高分辨率、高回收率、洗脱集中、重现性好等特点。我们可以提供涵盖了正相、反相、离子交换、疏水、亲和、体积排阻等色谱介质,可满足从实验室分析,到大工业规模分离的各种需求,如有机化合物、天然产物、抗生素、多肽、蛋白质、多糖和寡核苷酸等物质的高效分析和分离。可提供从2μm到50μm任意尺寸的无孔和有孔单分散高效色谱填料,常规孔径有100?,300?,500?,800?和1000?。也可根据客户的要求定制特殊的色谱填料。Sunny聚合物色谱介质的特点和优势特点优势球形,粒径高度均一易装柱、高分辨率优化的孔径结构高载量、高选择性卓越的化学和pH稳定性便于在线清洗、使用寿命长无泄漏、无碎片和小颗粒洁净的产品高机械强度低反压、柱床稳定提供多个基质品种以及广泛的粒径和孔径选择多样的选择和最优化的填料大规模生产能力以及批与批的稳定性稳定的产品质量和产量供应聚合物和硅胶色谱填料的互补性能 硅胶和聚合物为基质的填料是在色谱分离和分析领域必不可少的两种性能互为补充的色谱介质。硅胶基质机械强度大、柱效高、分辨率好,已广泛应用于有机化合物及中性分子的分析和大规模制备生产中;而聚合物基质填料则具有良好的化学稳定性及无与比拟的耐酸碱性,因此寿命长,可在线清洗适合于生物分子的大规模纯化分离。研究证明,由于硅胶和聚合物色谱填料内在材料性能的差别,它们在对目标分子分离选择性方面具有极强的互补性,如一些用聚合物填料很难分离的物质,在硅胶填料上却能得到良好分离;相反地,一些在硅胶填料上很难分离的物质,而用聚合物填料能得到有效的分离。我们可同时提供硅胶、聚甲基丙烯酸酯或聚苯乙烯/二乙烯基苯为基质的三种性能互补的高质量的均粒色谱填料以满足不同客户的需求。高度的粒径均一性从图1扫描电镜图及图3粒径分布图中可以看出Sunny聚合物色谱介质具有完美的球形,高度的粒径均一性和精确的粒径大小.均一的粒径和完整的球形使得Sunny聚合物色谱填料与大多数市场的色谱填料相比(图2)具有装柱容易,柱床稳定,反压低等特点。色谱填料的孔径大小及比表面积对填料的分离性能有很大的影响,因此对于目标分离物质,选择优化的孔径结构的色谱填料可以增加上样量,提高分离效率和纯度。我们不仅可以提供从2μm到50μm任意尺寸的单分散聚合物色谱填料,而且可以提供从50?到4000?不同孔径大小的色谱填料。常规色谱填料的孔径有100?,300?,500?,800?和1000?。特殊孔径的色谱填料也可根据客户的需求定制。图4是四种不同孔径的单分散色谱填料扫描电镜图。低反压,高柱效由于Sunny单分散聚合物介质粒径均一、球体、刚性强、耐压性好,在各种流速下都能装出较好的柱效,且柱床稳定,反压低。相对其他粒径分布广的色谱填料来说,该色谱介质装柱后渗透性好,柱床稳定,因此柱效和分辨率更好。粒径均一,无碎片和小颗粒的色谱介质也可避免筛板堵塞。Sunny10-300的塔板数可以达到50000N/m,填料装柱后在各种溶剂条件下压力和流速的线性关系表明sin单分散聚合物填料较好的刚性结构。化学和pH稳定性Sunny系列反相色谱填料基质是高交联度的聚苯乙烯和二乙烯基苯,其化学键在全pH范围(pH1-14)具有很好的稳定性,在极端的酸碱溶液(如1NNaOH/HCl)和有机溶液(包括甲醇、乙醇、丙酮、异丙醇、二甲基亚砜、n-丙醇、四氢呋喃、乙腈、6M盐酸胍等)中都可保持球体结构和稳定的性能。让客户拥有更宽的应用条件的选择,有利于开发工艺和优化分离条件,从而达到高分辨率和高产品回收率。同时Sunny聚合物色谱填料由于其化学稳定性,非常适用于FDA规定下CIP/SIP要求的清洗方案。例如Sunny10-300在1MNaOH中浸泡40天后,胰岛素载量仍然保持稳定(图10)。不同极性的单分散聚合物填料单分散的聚合物色谱填料主要组成是PS/DVB.我们提供了不同极性的聚合物基质的色谱填料。完整的产品线单分散聚合物色谱填料,采用世界最先进的生产技术,基质可为丙烯酸酯,苯乙烯/二乙烯基苯和二氧化硅,涵盖正向、反相、离子交换、亲和、体积排阻等色谱领域,可用于实验室分离、分析和工业化大生产。高真圆度,单分散性以及优化的孔径结构,使得单分散聚合物色谱填料具有更多的选择性。常规粒径大小有1.7μm、3μm、5μm、10μm、15μm、20μm、30μm、40μm、50μm、60μm、100μm;孔径可选择100?、300?、500?、800?、1000?。可满足从实验室分析测试到中试及工业化规模生产的各种分离纯化要求。表1.有孔单分散聚合物色谱填料。货号粒径(um)孔径(?)组成PD-33100,300PS/DVBPD-55100,300,500,800PS/DVBPD-1010100,300,500,800,1000PS/DVBPD-1515100,300,500,800,1000PS/DVBPD-2020100,300,500,800,1000PS/DVBPD-3030100,300,500,800,1000PS/DVBPD-4040100,300,500,800,1000PS/DVBPD-5050100,300,500,800,1000PS/DVBPDB-3030300,500,1000PS/DVBPDB-4040300,500,1000PS/DVBPDB-5050300,500,1000PS/DVBPDB-6060300,500,1000PS/DVBPDA-1010300,500PolyDVB/acrylicPDA-2020300,500PolyDVB/acrylicPDA-3030300,500PolyDVB/acrylicPDA-4040300,500PolyDVB/acrylicPDA-6060300,500PolyDVB/acrylicPAL-2020300,500PolyacrylicPAL-4040300,500PolyacrylicPAL-6060300,500PolyacrylicSD10050-150300PS/DVBSD30050-150500PS/DVB表2.无孔单分散聚合物反相色谱填料。产品名称粒径(μm)孔径(?)组成NP-1.71.7NP(Non-porous)PS/DVBNP-22.0NP(Non-porous)PS/DVBNP-33NP(Non-porous)PS/DVBNP-55NP(Non-porous)PS/DVBNP-1010NP(Non-porous)PS/DVB
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制