当前位置: 仪器信息网 > 行业主题 > >

封闭顶丝式二维镜

仪器信息网封闭顶丝式二维镜专题为您提供2024年最新封闭顶丝式二维镜价格报价、厂家品牌的相关信息, 包括封闭顶丝式二维镜参数、型号等,不管是国产,还是进口品牌的封闭顶丝式二维镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合封闭顶丝式二维镜相关的耗材配件、试剂标物,还有封闭顶丝式二维镜相关的最新资讯、资料,以及封闭顶丝式二维镜相关的解决方案。

封闭顶丝式二维镜相关的资讯

  • ACS Nano I 用扫描探针显微镜表征二维过渡金属硫族化合物的本征电学特性
    *以下应用说明基于 ACS Nano publication, 2021 15, 6, 9482–9494. 出版日期: May 27, 2021. 介绍 在传统的平面硅场效应晶体管(FET)中,当其横向尺寸小于晶体管厚度时,栅极可控性变弱,从而导致不利的短沟道效应,包括漏电流、沟道中载流子迁移率饱和、 沟道热载流子退化和 介质层时变击穿。因此,需要减小晶体管主体厚度以确保有效的栅极静电控制。理论研究表明,由于二维 (2D) 材料的原子厚度和表面懸鍵,特别是二维过渡金属二硫属化物 (TMD) 作为沟道材料的性能优于硅,能够实现原子级尺度,优异的静电门控,降低断电功耗,进一步扩展摩尔定律。[1-6] 表征沉积态二维材料的内在物理和电学特性的适当技术是沉积态二维材料的质量与基于二维材料的电子设备性能之间的关键联系。此联系可以帮助我们更好地了解、控制和改进基于二维材料的设备的性能。然而,在没有任何转移和图案化过程的情况下,在纳米尺度上分析沉积态二维材料的固有电学特性的技术是有限的。 在本应用说明中,扫描探针显微镜 (SPM) 用于研究沉积态二维TMD 的固有电学特性。 导电原子力显微镜 (C-AFM) 无需任何图案化,直接在生长态二维材料表面进行扫描。 C-AFM 能够将生长态二维材料的电导率与其形貌相关联,从而将二维材料的电特性与其物理特性(如层厚度等)联系起来。所有这些,C-AFM为我们提供了沉积态2D材料的全面信息,并帮助我们评估这些固有特性对基于二维材料的纳电子学的影响。实验细节 Park NX-Hivac 在高真空(~10-5Torr)下,用 C-AFM 在 Park NX-Hivac AFM 上使用 Pt/Ir 涂层的硅探针(弹簧常数 k~3N/m,共振频率 f0~75kHz,PPP-EFM)评估蓝宝石上生长态 MoS2和WS2层的固有电学特性。高真空环境有助于减少样品上始终存在的水层。[4,6] 将C-AFM测量的偏压施加到样品卡盘上,并通过线性电流放大器测量产生的电流。收集所有 C-AFM 电流图所施加的偏压均为1 V。在样品的顶部和侧面涂上银漆,以确保电接触。结果与讨论 在 C-AFM 电流图(图 1b)中,同轴切割蓝宝石上沉积的 MoS2 层在整个表面上显示出非均匀导电性,尽管图 1a 中的形貌显示了完全聚结的单层 MoS2 ,其顶部约有~37%的表面晶体(命名为1.3 ML)。通过引入离轴 1º 切割蓝宝石作为衬底,MoS2 层的电导率变得更加均匀, 与它们更均匀的表面结构一致(图 1c 和 d)。 总体而言,离轴 1º 切割蓝宝石上约~83% 的单层 MoS2 具有更高的电导率,而使用同轴上切割蓝宝石仅占 51%。 [7] 电导率较低的区域在图 1b、d 中用粉红色标记,阈值电流约为 ~0.3 μA。 因此,通过引入离轴 1º 切割蓝宝石(图 1b、d 中的 49% 到 17%) 可降低较弱导电区域的密度。图1.(a,c)分别在同轴和离轴1º切割蓝宝石上生长的1.3 ML MoS2的C-AFM形貌图(b、 d)同时与(a,c)一起获得的 C-AFM 电流图。通过电流阈值(~0.3μA),第一单层MoS2中的非均匀和导电性较弱区域以粉红色突出显示。经许可复制图像。[7] Copyright 2021, American Chemical Society.通过跳过蓝宝石晶片的预外延处理过程,该密度可以进一步降低到约~6.5%(图 2a-b)。具有较低电导率的 MoS2 区域的形状不是随机的,而是对应于特定的下层蓝宝石阶地。离轴 1º 切割蓝宝石上具有较低 MoS2 电导率的区域对应于聚集在一起的阶地。在预外延处理和 MOCVD 过程中,台阶会分解和凝聚。台阶(变形)成型主要由预外延处理和 MOCVD 工艺中使用的高温驱动。正如对离轴 1º 切割蓝宝石所预期的那样,随着 Wterrace 变窄,阶梯聚束变得更可能发生。当单层 MoS2 沉积在离轴 1º 切割蓝宝石上而不进行任何预外延处理时,高导电区域的密度从 83%(图 1d)进一步增加到 93.5%(图 2b)。可以观察到成束台阶(具有更高的 Hterrace,图 2a 中的 5.8%)和导电性较弱的区域(图 2b 中的暗区为 6.5%)之间存在明显的相关性。从图 2c 中的地形和电流图提取的横截面轮廓进一步支持了这一观察结果。然而,在图 2b 中没有完全去除导电性较弱的区域。这应该与生长温度(在我们的工作中为 1000 °C)有关,该温度足以在沉积过程中在蓝宝石表面引入阶梯聚束。[8-10]图2. 蓝宝石上生长的MoS2的不均匀导电性. (a-b)C-AFM 形貌图,同时获得离轴1º切割蓝宝石上1.3 ML MoS2 的电流图. (c)(a-b)位置处的相应横截面高度(红色)和电流(蓝色)剖面. (d- e)形貌图,同时获得同轴切割蓝宝石上3.5 ML MoS2的电流图。经参考文献[7]许可,对图像进行了改编。 Copyright 2021, American Chemical Society.关于观察到的 MoS2 电导率分布的不均匀性,我们发现非封闭顶层中 MoS2 晶体的存在不会影响电导率。 事实上,具有较低电导率的 MoS2 区域与 MoS2 层厚度几乎保持不变,因为它们也存在于 3.5 ML MoS2 中(图 2d-e):形貌和当前图像中黄色虚线区域的比较表明,MoS2 晶体具有非封闭顶层中方向错误的基面不会影响该区域的导电性。 此外,值得注意的是,不同电导区域的存在不仅出现在 MoS2 外延层中,也出现在蓝宝石上生长的 MOCVD WS2 层中,如图 3 所示。图3.(a-b)同轴切割蓝宝石的形貌图和同时获得的1.7 ML WS2电流图。经参考文献[7]许可,对图像进行了改编。 Copyright 2021, American Chemical Society.因此,较低的导电性主要与完全闭合的第一MoS2单层有关,而不是与非闭合的顶层有关。图4a-b显示了两个第二层MoS2晶体,其中一些区域具有较高的导电性,而另一些区域具有较低的导电性,从而进一步支持了这一点。图4.(a-b)在同轴切割蓝宝石上生长的1.3 ML MoS2上第2-3层MoS2岛的导电性。(a)在同轴切割蓝宝石上生长的MoS2的形貌及其相应的(b)电流图。白色的晶体轮廓显示部分区域具有较高的导电性,部分区域具有较低的导电性,表明表面晶体对蓝宝石上MoS2的不均匀导电性贡献不大。(c-f)轴切割蓝宝石上生长的1.3 ML MoS2的降解。(c-d)MOCVD生长后立即收集的1.3 ML MoS2的1 V下的形貌图及其相应的电流图。(e-f)在氮气柜中储存6个月后,同一样品在1 V下的形貌图和电流图。在(c)中没有氧化区,但在(e)中MoS2被部分氧化,这总是与(f)中的较弱导电区相关。经参考文献[7]许可,对图像进行了改编。 Copyright 2021, American Chemical Society.结果表明,蓝宝石起始表面的状态是决定第一层MoS2单层物理和电学性能的关键参数之一。结论通过 C-AFM 评估二维 TMD的固有电学特性,并将其与样品形貌联系起来。我们在沉积的二维 TMD 单层中发现了非均匀导电性,这可能源于:(i)TMD 层厚度变化导致的TMD 表面粗糙度; (ii)蓝宝石表面形貌引起的 TMD 应变;(iii)由于每个蓝宝石阶地的 TMD 形核率的依赖性,TMD 晶粒内缺陷率;(iv)蓝宝石表面结构和终端引起的 TMD 界面缺陷,可能导致不同的局部掺杂效应。进一步的研究正在进行中,将 C-AFM 与先进的光谱技术(如拉曼、PL和TOFSIM)相结合,以进一步探索外延二维材料的固有特性。参考文献 (1) Liu, Y. Duan, X. Shin H.-J. Park, S. Huang, Y. Duan, X. Promises and Prospects of Two-Dimensional Transistors. Nature 2021, 591, 43–53.(2) Su, S.-K. Chuu, C.-P. Li, M.-Y. Cheng, C.-C. Wong, H.-S. P. Li, L.-J. Layered Semiconducting 2D Materials for Future Transistor Applications. Small Struct. 2021, 2, 2000103.(3) Akinwande, D. Huyghebaert, C. Wang, C.-H. Serna, M. I. Goossens, S. Li, L.-J. Wong, H.-S. P. Koppens, F. H. L. Graphene and Two-Dimensional Materials for Silicon Technology. Nature 2019, 573, 507–518.(4) Agarwal, T. Szabo, A. Bardon, M. G. Soree, B. Radu, I. Raghavan, P. Luisier, M. Dehaene, W. Heyns, M. Benchmarking of Monolithic 3D Integrated MX2 FETs with Si FinFETs. In 2017IEEE International Electron Devices Meeting (IEDM) 2017 p 5.7.1–5.7.4.(5) Smets, Q. Arutchelvan, G. Jussot, J. Verreck, D. Asselberghs, I. Nalin Mehta, A. Gaur, A. Lin, D. Kazzi, S. E. Groven, B. Caymax, M. Radu, I. Ultra-Scaled MOCVD MoS2 MOSFETs with42nm Contact Pitch and 250μA/Mm Drain Current. In 2019 IEEE International Electron Devices Meeting (IEDM) 2019 p 23.2.1–23.2.4.(6) Smets, Q. Verreck, D. Shi, Y. Arutchelvan, G. Groven, B. Wu, X. Sutar, S. Banerjee, S. Nalin Mehta, A. Lin, D. Asselberghs, I. Radu, I. Sources of variability in scaled MoS2 FETs. In 2020 IEEE International Electron Devices Meeting (IEDM) 2020 p 3.1.1–3.1.4.(7) Shi, Y. Groven, B. Serron, J. Wu, X. Nalin Mehta, A. Minj, A. Sergeant, S. Han, H. Asselberghs, I. Lin, D. Brems, S. Huyghebaert, C. Morin, P. Radu, I. Caymax, M. Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High- Performance Nanoelectronics. ACS Nano 2020, DOI: 10.1021/ acsnano.0c07761.(8) Cuccureddu, F. Murphy, S. Shvets, I. V. Porcu, M. Zandbergen, H. W. Sidorov, N. S. Bozhko, S. I. Surface Morphology of C-Plane Sapphire (α-Alumina) Produced by High Temperature Anneal. Surf. Sci. 2010, 604, 12941299.(9) Curiotto, S. Chatain, D. Surface Morphology and Composition of C-, a- and m-Sapphire Surfaces in O2 and H2 Environments. Surf. Sci. 2009, 603, 2688–2697.(10) Ribič, P. R. Bratina, G. Behavior of the (0001) Surface of Sapphire upon High-Temperature Annealing. Surf. Sci. 2007, 601, 44–49.想要了解更多内容,请关注微信公众号:Park原子力显微镜,或拨打400-878-6829联系我们Park北京分公司 北京市海淀区彩和坊路8号天创科技大厦518室 Park上海实验室 上海市申长路518号虹桥绿谷C座305号 Park广州实验室 广州市天河区五山路200号天河北文创苑B座211
  • 昊诺斯新品推荐:徕卡Histocore Pearl全封闭组织脱水机
    昊诺斯新品推荐:徕卡Histocore Pearl全封闭组织脱水机昊诺斯代理的徕卡品牌仪器有新产品推出了,它就是——徕卡Histocore Pearl全封闭组织脱水机。它具有:用户安全全方位保护、设计紧凑、操作简单、石蜡清洁和试剂更换设计简易等特点。接下来,让昊诺斯带领大家对这款徕卡Histocore Pearl全封闭组织脱水机一探究竟吧!昊诺斯徕卡Histocore Pearl全封闭组织脱水机,小身材 高品质 一、全方位保护用户安全新昊诺斯徕卡Histocore Pearl全封闭组织脱水机 ?全封闭系统:避免气体泄漏同时,确保脱水质量;?三重废气处理:试剂缸抽排、气体液化排入废液瓶以及活性炭过滤保护操作者安全;?环保程序:使用环保型二甲苯替代物避免试剂污染; 二、紧凑型设计序号昊诺斯徕卡Histocore Pearl全封闭组织脱水机 ?200个包埋盒通量:满足中小型客户需求;?小体积:最大化节约空间;?3.5 L试剂瓶以及3个蜡缸:最大化提升运行效率; 三、操作简单推昊诺斯徕卡Histocore Pearl全封闭组织脱水机 四、简易的石蜡清洁和试剂更换设计序号昊诺斯徕卡Histocore Pearl全封闭组织脱水机 ?抽屉式蜡缸设计易于填充和排蜡;?石蜡缸和试剂瓶下的收集槽有效收集废蜡和废液; 访问http://www.herosbio.com/pro.asp?thebigclassid=25查看更多徕卡产品信息扫码关注昊诺斯微信公众号
  • 科哲发布正-反二维液相色谱系统新品
    上海科哲生化科技有限公司作为中国薄层色谱仪器研发的中心,专业服务于中药行业,为中药行业提供从扫描仪、成像系统、点样仪、展开仪、铺板机等全套薄层色谱仪器。现如今大众对液相的接受度普遍较高,但液相亦有它的局限性,将薄层色谱和液相色谱相结合势在必行。为了解决这一问题,上海科哲生化科技有限公司推出了薄层-液相二维色谱。利用薄层的快速分离优势,将目标物提取传输至液相系统,是药物分析行业、有机合成实验室的理想选择。2DMax1100A3正-反二维液相色谱系统仪器组成:1、高压四元梯度泵系统;2、四波长UV-VIS检测器;3、全自动进样器; 4、色谱柱;5、模块化液相工作站;6、二维色谱切换阀系统主要特点:1、 两支色谱柱有效提高峰容量,用于分离复杂样品;2、 可用于正相&反相二维,解决溶剂兼容问题;3、 简单易用且功能强大的操作软件;4、 灵活的一维、二维切换系统;5、 自动进样器采用全封闭样品瓶,具有洗针功能,可避免样品污染;技术指标:1、流量范围:0-200mL/min(更大流量可定制);2、压力范围:0-4000Psi,过压保护;3、波长范围:190nm-850nm(四波长同时检测),准确度:0.2nm;4、光 源:氘灯-钨灯组合光源;5、自动进样器:144位;6、软件环境:Win7 / 10 (64位);7、通讯方式:网口通讯;2DMax1100P3正-反二维液相色谱系统仪器组成:1、高压四元梯度泵系统;2、四波长UV-VIS检测器;3、全自动进样器; 4、智能馏分收集器;5、收集试管架;6、制备柱;7、模块化液相工作站;8、二维色谱切换阀系统主要特点:1、 两支色谱柱有效提高峰容量,用于分离复杂样品;2、 简单易用且功能强大的操作软件;3、 灵活的一维、二维切换系统;4、 自动进样器采用全封闭样品瓶,具有洗针功能,可避免样品污染;技术指标:1、流量范围:0-200mL/min(更大流量可定制);2、压力范围:0-4000Psi,过压保护;3、波长范围:190nm-850nm(四波长同时检测),准确度:0.2nm;4、光 源:氘灯-钨灯组合光源;5、自动进样器:144位;6、馏分收集容器:试管孔径15mm,试管位数1607、软件环境:Win7 / 10 (64位);8、通讯方式:网口通讯;创新点:1、 两支色谱柱有效提高峰容量,用于分离复杂样品;2、 可用于正相&反相二维,解决溶剂兼容问题;3、 简单易用且功能强大的操作软件;4、 灵活的一维、二维切换系统;5、 自动进样器采用全封闭样品瓶,具有洗针功能,可避免样品污染;正-反二维液相色谱系统
  • N端封闭蛋白序列分析进行时——台式MALDI-8020
    胰蛋白酶消化,质谱法轻松鉴定蛋白质,已经是非常成熟的工作流程。即使是刚接触MS的使用者也可以很快掌握。在质谱法鉴定蛋白的工作流程中,蛋白质鉴定是通过使用搜索引擎,例如 Mascot或Matrix Science进行简单的数据库搜索来实现的。然而,对于数据库中未列出的蛋白质鉴定需求,或需要进行蛋白质末端序列分析的这两种情况,通常采用更昂贵的高端仪器和更复杂的工作流程,需要熟练的操作员。此外,蛋白质测序仪也通常用作蛋白质末端序列分析的方法,但遇到 N 端封闭的蛋白质,去封闭是必要的。作为样品序列分析前的预处理,预处理效果取决于蛋白质类型,可能效果不佳,对操作人员有一定要求,需要一定程度的技能和经验,这些可能会限制其使用。 近年来,利用MALDI-TOF离子源(ISD:In-Source Decay)中发生的蛋白质碎裂离子,可以分析N末端被封闭或未在数据库中登记的蛋白质序列MS图谱。此外,ISD理论上不受每个样品质量的限制,因此无需胰蛋白酶消化即可直接对高质量蛋白质进行测序。结合电泳胶提取蛋白和岛津台式机MALDI-8020,通过N端封闭蛋白的分子量测定和序列分析的例子,让我们来了解下大蛋白分子直接测序技术MALDI-ISD。 将模型样品N 端被乙酰化的牛碳酸酐酶 (Sigma-Aldrich)溶解在缓冲溶液中进行电泳, 95 °C 下加热 5 分钟,然后在聚丙烯酰胺凝胶(ATTO 12.5 %,预制 e-PAGEL)上进行电泳。所得聚丙烯酰胺凝胶用考马斯亮蓝染色以检测蛋白质斑点。使用含有表面活性剂的提取缓冲溶液,我们从凝胶分离的碳酸酐酶的条带中提取蛋白质。使用氯仿/甲醇在提取缓冲溶液中沉淀蛋白质以去除表面活性剂和盐,并使用 MALDI-TOF 质谱仪进行测量。芥子酸用作 MALDI 基质用于蛋白质分子量测量,1,5-二氨基萘 (DAN) 用于 ISD 的序列分析。 图1、碳酸酐酶电泳图图2、从凝胶中提取的碳酸酐酶MS图(基质芥子酸) 接下来,从25 pmol凝胶蛋白条带中提取碳酸酐酶,与基质DAN混合,MALDI-8020线性模式进一步分析。结果如图3所示,主要检测到c离子(从蛋白质N段产生的片段)质量一致的峰。通过使用免费软件Mass++ TM和蛋白质氨基酸序列比对工具Basic Local Alignment Search Tool (BLAST),我们对从检测到的峰中获得的氨基酸序列进行了同源性搜索。 图3、MALDI-ISD鉴定结果 鉴定结果显示匹配结果最高的是碳酸酐酶。通过检测到的c离子片段质量和数据库中已有的碳酸酐酶氨基酸序列,我们可以推断出N段序列是SHHWGYGKH...,并且是N-乙酰化的。 MALDI-8020线性模式MALDI-ISD技术,无需复杂的工作流程,无需胰蛋白酶消化即可直接对高质量蛋白质(如本文所述m/z 29030示例)进行N端测序。 该方法在岛津应用专家与美国佛罗里达州立大学、日本爱媛大学高级研究支持中心生物医学分析部、利物浦大学生化与系统生物学系等共同发表的一篇文献中也有应用到。PEPPI-MS基于聚丙烯酰胺凝胶的预分馏,实现质谱法鉴定完整蛋白或蛋白复合物。凝胶分离回收14种人血清蛋白,提取后,用MALDI-8020的MALDI-ISD产生的产物离子鉴定人血清白蛋白N端氨基酸序列。 MALDI-8020是岛津MALDI家族一款体积小巧,性能卓越的特色产品。荣获2018 IBO工业设计大奖银奖。 主要特点:● 线性台式MALDI-TOF● 200Hz固态激光器,355nm波长● 进样速度快● TrueClean™ 自动源清洁功能。配备大口径离子光学系统,使仪器长期使用中源的污染风险降到最低。配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。● 静音(55dB)● 可视化工作状态 参考文献:岛津应用新闻 No.B83J. Proteome Res. 2020, 19, 3779−3791
  • 科技冬奥:“全自动封闭式核酸扩增分析仪”为口岸快速通关提供新思路
    编者按:近日,北京新闻中心召开科技冬奥专场新闻发布会,重点介绍“科技冬奥”有关情况。本届冬奥会共有200余项技术,500多家单位,超过万名科研人员参与研发,为办好一届“简约、安全、精彩”的冬奥会提供有力保障。而其中也包含了海关科技人员的积极参与和贡献,由中国海关科学技术研究中心会同北京海关、石家庄海关、广州海关、宁波海关、青岛海关所属技术机构等10余家单位联合承担科技部国家重点研发计划“科技冬奥”重点专项项目“冬奥会口岸快速通关智能监管技术及装备”开发60余种传染病快速检测方法、17台套口岸监管装备,部分装备在冬奥会期间在10余个冬奥场馆和海关监管场所测试应用,有效助力了冬奥会口岸快速通关、智慧监管和疫情防控等工作。“全自动封闭式核酸扩增分析仪” “科技冬奥”是2022年北京冬奥会赛场外最亮眼的主题,世界盛会不仅为大家呈现了精彩纷呈的体育赛事,也让全世界领略了科技带给北京冬奥会的独特魅力。在当今新冠疫情全球大流行的形势下,为确保北京冬奥会和冬残奥会的安全顺利举办,众多炫酷科技在本届冬奥会赛场内外大显身手,展现了我国科技创新的硕果。针对预防冬奥会期间输入性传染病口岸快速筛查的需求,国家重点研发计划 “科技冬奥”重点专项“冬奥会口岸快速通关智能监管技术及装备”项目,基于微流控芯片核酸检测技术,建立可快速检测25种传染病病原体的现场快速检测装备——由中国海关科学技术研究中心联合海关总署(北京)国际旅行卫生保健中心、北京中科生仪科技有限公司共同研发承担。该装备可在1小时内完成病原微生物样品的检测,对出入境人员、交通工具、运输设备、以及可能传播传染病的行李、邮包、货物等物品进行现场快速检测,迅速识别传染源,防止检疫传染病的传入或者传出。“全自动封闭式核酸扩增分析仪”及其配套检测卡目前,虽然有多种全自动核酸检测系统能够实现“样品进-结果出”概念,但具备全自动化核酸提取和实时荧光PCR精准检测能力的大多数仍是“实验室内”“桌面型”设备,无法适应现场化的检测要求。CarryOn P1000Q采用高度集成化的设计理念 针对以上短板,项目团队通过大量的研发和测试,将复杂的功能结构高度集成于比手掌略大的仪器上,采用快速升降温、超声控制、纯化温控、微型化多通道荧光检测、微流控液路驱动、锂离子蓄电池等模块,实现完善的使用功能和手持式的小型化设计。并采用了微流控技术的一体化芯片设计,将进行样本处理、核酸提取和纯化、荧光PCR反应的体系集成在8cm×6cm的芯片上,替代了传统意义上的实验室功能,使传统的核酸检测时间从3~4小时缩至1小时以内,突破了制约分子检测快速化的关键技术瓶颈,而且全封闭自动化检测过程解决了传统分子检测技术易发生环境交叉污染而难以在口岸现场应用的技术难题。现场检测替代传统意义的实验室检测 本系统凭借简单、便捷、快速的性能特点,全封闭无污染的反应过程以及精准、可靠、直观的实验结果,非常适合应用在冬奥会和冬残奥会等重大国际活动中。如得以最终应用,将大幅度简化通关流程,减少通关人员的等待时间,满足快速通关需求,解决大型国际活动现场快速筛查和确诊技术缺乏的问题。同时,有利于提高我国口岸传染病筛查的效率,更早、更准确地发现传染病携带者,识别传染病跨境传播风险,尽早进行传染病预警,以防止传染病发生扩散,维护国家公共卫生安全和人民健康。这将为疫情常态化下我国举办大型国际活动口岸疫情防控提供新的解决方案,在服务口岸现实需求的同时,也可充分展现口岸公共卫生检疫体系的高效性、准确性和人性化。
  • 康宁推出新型封闭系统实验室系列产品
    年初,康宁公司在纽约州推出了一条覆盖面较广,且面向细胞培养研究与生产的封闭系统实验室系列产品。最新发布的一次性产品和封闭系统能够用于无菌取样、液体处理或细胞培养过程中容器间的转移。并且能够与康宁细胞培养和液体处理容器配套,使得研究人员和生产团队能够降低污染风险,并且无需清洁和消毒,从而大幅减少操作步骤,节约时间和成本。  康宁生命科学渠道总监Robb D"Amore表示:“现在我们感受到,康宁的封闭系统解决方案已经从可有可无的产品转变为研究人员的必需品。”  据悉,康宁所扩展的封闭式系统产品线的管组能够与康宁的一系列产品配套使用,客户还可以请康宁的设计专家为他们提供有关系统所需部件的设计意见和建议,并提供图纸和样本供客户批准。
  • 世界首台封闭可调气氛电喷雾离子源问世
    浙江好创“封闭可调气氛电喷雾离子化源”通过鉴定  仪器信息网讯 2012年1月9日,受浙江好创生物技术有限公司(以下简称“浙江好创”)的委托,中国分析测试协会组织业内权威专家对该公司最新研发成功的“封闭可调气氛电喷雾离子化源”进行了技术成果鉴定。  此次技术成果鉴定会由中国分析测试协会汪正范研究员主持,大连化物所张玉奎院士担任此次鉴定委员会主任;担任此次鉴定会的专家还有:复旦大学杨芃原教授,国家标准委员会方向研究员,中国分析测试协会张渝英秘书长,浙江大学金钦汉教授、郑树教授、潘远江教授、张铭教授、李志能教授,大连依利特李彤总经理等业内资深专家。大连化物所张玉奎院士担任此次鉴定委员会主任  “封闭可调气氛电喷雾离子化源”技术成果的研发者、浙江好创生物技术有限公司董事长朱一心先生介绍了技术成果研发过程、机理的解释、数学模拟以及整个离子源的设计思路。最后朱一心先生讲到,“封闭气氛可调电喷雾离子源”的研制成功将提升国内蛋白质组学的分析水平,让生命科学家们不用在分析实验中浪费时间和精力,有更多的时间去研究科学问题,在生命科学的研究领域取得更多更好的科研成果,提升我国在生命科学研究领域的研究水平。  浙江好创董事长朱一心先生作“研制报告”  之后,来自大连化物所、复旦大学、浙江大学肿瘤研究所的用户分别对“封闭可调气氛电喷雾离子化源”的使用情况作了报告,各位用户对于该离子化源给出了中肯的评价,尤其是其稳定性、离子化效率以及信噪比都有优异的表现。  鉴定委员会认证听取了“封闭可调气氛电喷雾离子源研制报告”、“用户使用报告”、“国内外查新报告”以及专利申请情况等汇报,经过现场质疑和讨论后,专家组最后达成了如下鉴定意见:  1、在理论研究的基础上,研制出“封闭可调气氛电喷雾离子化源”, 经科技查新,该装置中首次采用“封闭可调气氛”、“康达效应离子传输管”和“康达效应离子发射针”三项技术,属原始创新;  2、与商品离子化源比较,“封闭可调气氛电喷雾离子化源”具有以下优势:  1)信噪比有明显提高,使检测限下降了2-6倍;  2)该离子化源使用方便,可即插即用;  3)该离子化源的离子化环境可调,可以添加辅助气体或辅助液体来提高灵敏度和信噪比,并消除大气环境对离子化源离子信号的干扰。  3、项目组提供的鉴定资料齐全,符合鉴定要求。  综上所述,“封闭可调气氛电喷雾离子化源”所具有的关键技术拥有自主知识产权,该离子化源的主要指标达到国际领先水平,建议注意加强知识产权保护并尽快实现产业化。“封闭可调气氛电喷雾离子化源”技术成果鉴定会专家组合影   附:朱一心先生“封闭可调气氛电喷雾离子源研制报告”部分内容摘录  朱一心先生在报告中提到,蛋白质组学研究中最大的技术瓶颈之一就是现有的离子源对离子的利用效率极低。  自从80年代中期John B. Fenn 将电喷雾离子源应用于大分子质谱分析以来,科学家对于电喷雾离子源机理的解释还是停留在两个模式:离子蒸发(Ion Evaporation Model,IEM)与电荷残留(Charged Residue Model,CRM),但是对于“为什么电喷雾离子源中存在多电荷离子”和“为什么电喷雾离子源存在离子抑制现象”至今没有合理解释。  朱一心先生通过对电喷雾离子源电离气氛进行控制,发现电喷雾离子源其实是一个“场致发射氢离子、极性分子在高电场中的极化和静电吸附”的组合现象。由此得出获得高性能电喷雾离子源的必要条件:稳定的泰勒锥和产生尽量多的氢离子。不同的入口边界条件,离子源气流分布的流体力学理论模拟计算图之一  朱一心先生还对离子源气流分布的流体力学进行理论模拟计算,对不同的入口边界条件对流场、速度驻点的位置以及涡流的位置和形状影响进行了详细分析。模拟结果显示“控制入口流速是离子源设计的关键之一”。  浙江好创新型“封闭可调气氛电喷雾离子源”具有即插即用的特点,与传统离子源相比,无需进行喷针空间位置的调节即可获得稳定的电喷雾。  图为使用浙江好创生物的新型“封闭可调气氛ESI离子源”,以空气为背景时,100fmol BSA酶解肽段的基峰色谱图。样品信号强度在1x10E6到9x10E6间。在较低的喷雾电压如1.0kV下即可形成稳定的纳升级喷雾,质谱采集信号非常稳定。
  • VSFG光谱可在分子水平测量石墨烯等二维材料的“润湿性”
    材料的润湿性是液体跟固体表面保持接触的能力,它跟亲水性成正比,跟疏水性成反比。它是固体最重要的特性之一,了解不同基材的润湿性对各种工业应用至关重要,如海水淡化、涂层剂和水电解质。到目前为止,大多数关于基质润湿性的研究都是在宏观层面进行的。润湿性的宏观测量通常是通过测量水接触角(WCA)来确定的,水接触角是水滴相对于基材表面的角度。然而在分子水平上准确测量基材和水之间的界面所发生的事情目前是非常困难的。目前使用的微观测量技术如基于反射的红外光谱或拉曼光谱则都无法有选择地观察界面水分子。因为在整个液体中,水分子的数量远远大于与表面接触的分子,界面水分子的信号则会被液体中的水分子的信号所掩盖。为了克服这一限制,韩国首尔基础科学研究所(IBS)内的分子光谱学和动力学中心(CMSD)和韩国大学联合展开的一个研究小组发现,振动和频率生成光谱(VSFG)可用于测量二维材料的润湿性。该小组利用VSFG光谱成功地测量了石墨烯和水之间的界面中水分子的振动模式。VSFG是一种有用的技术,它可以将宏观测量结果跟分子水平的特性联系起来。它是一种表面选择工具,利用其自身的表面选择规则来研究界面分子,并且它具有非常好的表面分辨率--只有几个分子层。据了解,研究小组确定了石墨烯将基材的润湿性投射到其表面的独特能力,这被称为“润湿透明度”。他们观察到,石墨烯的润湿透明度随着石墨烯层数的增加而减少,当石墨烯的厚度超过4层时就消失了。这是第一个描述石墨烯表面在分子水平上超过一定层数后变得疏水的观察。此外,研究人员还定义了VSFG润湿性的新概念,即形成强氢键的水分子跟形成弱氢键或无氢键的水分子的比率。VSFG的润湿性跟粘附能密切相关,粘附能是由观察到的宏观WCA测量值计算出来的。这证明VSFG是定义材料表面润湿性的一个有效工具。通过利用VSFG的润湿性,研究人员实时测量了石墨烯的润湿性。而使用传统的WCA实验不可能实时观察润湿性。因此这表明VSFG可以成为一种决定性的技术,用于测量任何不能应用水接触角测量的空间封闭界面上的水粘附能量。除了石墨烯之外,VSFG光谱学有望阐明其他低维材料的润湿性。这项研究的论文第一作者Eunchan Kim指出:“这项研究证实了VSFG光谱可以作为测量润湿性的通用工具。我们证明了通过VSFG光谱测量以前无法观察到的复杂系统的润湿性的潜力。”CMSD主任CHO Minhaeng教授指出:“通过VSFG光谱,我们正在研究石墨烯及其他二维功能材料如氧化石墨烯和六方氮化硼的微观特性。通过这些,将有可能解决阻碍二维功能材料商业化的各种问题。”
  • 465万!华东师范大学全二维气相色谱高分辨飞行时间质谱联用仪采购项目
    项目编号:0705-224204049042项目名称:华东师范大学全二维气相色谱高分辨飞行时间质谱联用仪预算金额:465.0000000 万元(人民币)最高限价(如有):465.0000000 万元(人民币)采购需求:序号货物名称单位数量简要技术要求交货期1全二维气相色谱高分辨飞行时间质谱联用仪项1*3.1.1全二维气相色谱:原厂成套整机产品,不接收组装机。气相色谱构架,基于Windows10的全二维专业分析软件。两级四喷口全二维调制器模块,独立二级柱温箱,2L液氮冷却罐。分流/不分流进样电子压力及流量控制。提供实时压力及温度补偿。GC应在温度5℃到40℃/湿度10到90%范围内正常运行。*3.1.2热调制器和二级柱温箱:两级四喷口全二维热调制器模块,二级柱温箱独立程序升温控制,独立供电,封闭设计。最低控制温度:主柱箱温+3℃;最高控制温度400℃;最高升温速率40℃/min;最高升温速率40℃/min;调制周期1到65秒。调制挥发物范围:液氮型C4-C40正构烷烃,等于或小于柱样品容量。峰宽0.1秒,第二维柱无残留物;调制范围C4-C40不需要更换调制柱,不受不同性质调制柱限制。色谱柱不必弯曲防止热胀冷缩断柱。*3.2.3在确保离子保留率同时,能实现5万的超高分辨率。能够实现高质量的200张全谱/秒的高采集速度,并确保准确的同位素丰度比;质量范围为10amu到1500amu。*3.3.1 GCxGC全二维数据采集、控制、数据处理、报告与飞行时间质谱系统全部集成在一个软件中,无需多开软件分模块处理数据。具有自动峰识别功能,实时监测所有离子通道,全光谱标记所有条件波峰图,标点峰顶点。具有高分辨解卷积功能。定量线性范围大于5个数量级。*3.3.3高级质谱分析工具,包括扩展的质量亏损图、范式图、不饱和度对应碳数图、质量数分类汇总表。合同签订后 240天合同履行期限:交货期合同签订后240天本项目( 不接受 )联合体投标。
  • 快速通关有妙招!全自动封闭式核酸扩增分析仪提供海关检测新思路
    近日,北京新闻中心召开科技冬奥专场新闻发布会,重点介绍“科技冬奥”有关情况。本届冬奥会共有200余项技术,500多家单位,超过万名科研人员参与研发,为办好一届“简约、安全、精彩”的冬奥会提供有力保障。而其中也包含了海关科技人员的积极参与和贡献,由中国海关科学技术研究中心会同北京海关、石家庄海关、广州海关、宁波海关、青岛海关所属技术机构等10余家单位联合承担科技部国家重点研发计划“科技冬奥”重点专项项目“冬奥会口岸快速通关智能监管技术及装备”开发60余种传染病快速检测方法、17台套口岸监管装备,部分装备在冬奥会期间在10余个冬奥场馆和海关监管场所测试应用,有效助力了冬奥会口岸快速通关、智慧监管和疫情防控等工作。为进一步推动相关成果应用落地,《中国口岸科学技术》公众号将推出系列报道,对相关成果进行介绍,以供各界参考。全自动封闭式核酸扩增分析仪“科技冬奥”是2022年北京冬奥会赛场外最亮眼的主题,世界盛会不仅为大家呈现了精彩纷呈的体育赛事,也让全世界领略了科技带给北京冬奥会的独特魅力。在当今新冠疫情全球大流行的形势下,为确保北京冬奥会和冬残奥会的安全顺利举办,众多炫酷科技在本届冬奥会赛场内外大显身手,展现了我国科技创新的硕果。针对预防冬奥会期间输入性传染病口岸快速筛查的需求,国家重点研发计划 “科技冬奥”重点专项“冬奥会口岸快速通关智能监管技术及装备”项目,基于微流控芯片核酸检测技术,建立可快速检测25种传染病病原体的现场快速检测装备——全自动封闭式核酸扩增分析仪,由中国海关科学技术研究中心联合海关总署(北京)国际旅行卫生保健中心、北京中科生仪科技有限公司共同研发承担。该装备可在1小时内完成病原微生物样品的检测,对出入境人员、交通工具、运输设备、以及可能传播传染病的行李、邮包、货物等物品进行现场快速检测,迅速识别传染源,防止检疫传染病的传入或者传出。全自动封闭式核酸扩增分析仪及其配套检测卡目前,虽然有多种全自动核酸检测系统能够实现“样品进-结果出”,但具备全自动化核酸提取和实时荧光PCR精准检测能力的大多数仍是“实验室内”桌面型”设备,无法适应现场化的检测要求。CarryOn P1000Q采用高度集成化的设计理念针对以上短板,项目团队通过大量的研发和测试,将复杂的功能结构高度集成于比手掌略大的仪器上,采用快速升降温、超声控制、纯化温控、微型化多通道荧光检测、微流控液路驱动、锂离子蓄电池等模块,实现完善的使用功能和手持式的小型化设计。并采用了微流控技术的一体化芯片设计,将进行样本处理、核酸提取和纯化、荧光PCR反应的体系集成在8cm×6cm的芯片上,替代了传统意义上的实验室功能,使传统的核酸检测时间从3~4小时缩至1小时以内,突破了制约分子检测快速化的关键技术瓶颈,而且全封闭自动化检测过程解决了传统分子检测技术易发生环境交叉污染而难以在口岸现场应用的技术难题。简单的操作流程现场检测替代传统意义的实验室检测本系统凭借简单、便捷、快速的性能特点,全封闭无污染的反应过程以及精准、可靠、直观的实验结果,非常适合应用在冬奥会和冬残奥会等重大国际活动中。如得以最终应用,将大幅度简化通关流程,减少通关人员的等待时间,满足快速通关需求,解决大型国际活动现场快速筛查和确诊技术缺乏的问题。同时,有利于提高我国口岸传染病筛查的效率,更早、更准确地发现传染病携带者,识别传染病跨境传播风险,尽早进行传染病预警,以防止传染病发生扩散,维护国家公共卫生安全和人民健康。这将为疫情常态化下我国举办大型国际活动口岸疫情防控提供新的解决方案,在服务口岸现实需求的同时,也可充分展现口岸公共卫生检疫体系的高效性、准确性和人性化。
  • 1小时内出核酸检测报告 华大智造研制“全封闭台式新型冠状病毒快检仪”
    p style="margin: 0px 0px 14px padding: 0px font-weight: 400 font-size: 22px line-height: 1.4 color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " Helvetica Neue" , " PingFang SC" , " Hiragino Sans GB" , " Microsoft YaHei UI" , " Microsoft YaHei" , Arial, sans-serif letter-spacing: 0.544px white-space: normal background-color: rgb(255, 255, 255) text-indent: 2em "span style="text-indent: 2em font-family: sans-serif font-size: 16px "新型冠状病毒肺炎疫情发生以来,核酸检测是临床诊断、解除隔离、康复出院的重要诊断依据。/spanbr//pp style="text-indent: 2em "伴随疫情进一步发展,抗疫“战场”需要面对更为复杂的区域和使用场景,对检测设备和技术也有了进一步的要求。为满足“移动即时检测”需求,华大智造研制全封闭新型冠状病毒快检自动仪,并联合上海吐露港科技有限公司研发配套试剂。该产品可支持1小时内完成病毒样本核酸提取、检测和结果判定,全程自动化操作,直接提升新型冠状病毒的即时诊断效率。/pp style="text-indent: 2em "2019年10月,华大智造在ICG-14(第十四届国际基因组大会)上发布DNBelab D系列仪器,这是一款基于数字微流控技术样本制备仪,可通过控制一组表面疏水的电极,让实验人员可以像写程序一样自由操作液滴,在芯片上实现复杂步骤分子生物学实验。strong本次基于DNBelab D系列仪器为基础开发的全封闭台式新型冠状病毒快检仪,小巧可靠,操作便捷快速,封闭安全。/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 338px " src="https://img1.17img.cn/17img/images/202002/uepic/dfff5aa1-9e60-40c9-bcb9-b58d9afb0bf5.jpg" title="001华大智造.jpg" alt="001华大智造.jpg" width="600" height="338" border="0" vspace="0"//pp style="text-indent: 2em "该设备集成了磁珠提取,微量液体操控,温度循环,荧光定量等功能,可配套qPCR, CRISPR等试剂盒使用,有效降低试剂用量,提高反应效率,缩短反应时间。strong这款仪器可作为适用于基层医疗机构现场即时检测新型冠状病毒的POCT产品,有效减轻医护和一线工作人员的负担。/strong/pp style="text-indent: 2em "其中新型冠状病毒CRISPR快检试剂盒由华大与上海吐露港生物科技有限公司联合研发。吐露港公司的HOLMES专利技术是利用strongCRISPR蛋白的反式切割活性实现病毒核酸序列的高效识别、信号的快速转换和高保真放大,可在几分钟内将扩增信号放大数万倍,从而实现快速速、高效、灵敏地检测病毒的目的。/strong将此CRISPR分子诊断专利技术结合在DNBelab D平台,可实现1小时高效完成样本到报告全流程。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 338px " src="https://img1.17img.cn/17img/images/202002/uepic/0eb60ac4-a750-4a31-80fd-19f57e2d3082.jpg" title="002华大智造.jpg" alt="002华大智造.jpg" width="600" height="338" border="0" vspace="0"//pp style="text-indent: 2em "在检测过程中,实验人员只需添加样本和相应试剂盒,strong手工时间仅为2分钟,全流程在封闭环境中自动操作,完全避免了外部环境和操作过程带来的污染/strong。一体机实现从样本处理到结果的自动检测和输出,对实验及人工环境要求极低,可以满足快速移动检测需求,避免不必要的物理隔离和长时间等待,帮助医护人员提高确诊效率,及时监测病情并进行干预治疗。/pp style="text-indent: 2em "在当前抗击新冠疫情的战场上,作为国产生命科学仪器设备研发生产制造的新生力量,华大智造基因测序仪DNBSEQ-T7、MGISEQ-2000和MGISEQ-200,自动化样本制备系统MGISP-100和MGISP-960在多地被用于分析新型冠状病毒序列,提升检测中心样本处理能力,在武汉及湖北疫情一线发挥了重要作用。/pp style="text-indent: 2em "同时,华大智造也在根据疫情发展情况对科研和临床检测所需仪器持续进行技术攻关,提升新冠病毒检测效率,解析研究病毒疫情发生机理,与社会各界同战疫情,共克时艰。/p
  • 稳定高效的纳升二维分离技术-在线双反相色谱
    贾伟沃特世科技(上海)有限公司实验中心对于微量而且复杂的样品,如蛋白质组学样品、蛋白药物中的残留宿主细胞蛋白(HCP)等,不但需要高灵敏的纳升级液相,而且需要更为充分的分离。在线二维纳升分离技术(on-line 2D NanoLC)应运而生,并已成为微量复杂样品液质分析所必不可少的分离手段。 传统的纳升在线二维技术,一般采用强阳离子交换(SCX)作为第一维,反相色谱(RP)作为第二维的分离手段。这种方法是根据样品在盐溶液中的离子特性与疏水性,这两种属性间的正交关系实现的。但是SCX-RP技术在纳升级分离中却困难重重。困难主要来自SCX分离维度。在SCX分离中需要使用浓度较高的盐溶液作为流动相,但含盐流动相易发生盐析或导致样品在管路内沉淀,而纳升液相的管路内径又非常小(25-100微米)。因此,在实际运用SCX-RP分离时,经常出现管路阻塞而导致实验失败。 为此,除提供传统的SCX-RP分离技术外,沃特世创造性地开发了双反相二维分离方法。(RP-RP)。这种RP-RP技术不必使用高浓度盐溶液作为流动相,避免了离子交换分离易造成的管路阻塞问题,从而大大提高了纳升二维液相的系统稳定性和实用性。更令人兴奋的是,经过哈佛医学院的Jarrod A. Marto全面的实验对比发现,较SCX-RP方法, 运用RP-RP分离技术得到的液质分析结果更好(图1)[1] RP-RP双反相二维方法可以帮助科学家得到更多的蛋白质分析结果.这是因为:1、SCX方法使用的盐缓冲液易产生离子噪音背景,从而影响质谱数据质量;2、SCX分离效果取决于多肽所携带的电荷数,而多肽携带电荷数量类别有限,因此第一维SCX分离度较差,造成液质数据信息质量不高。图一R P-R P双反相分离技术在第一、第二维都使用了反相色谱,那么它是如何实现二维分离所必须的分离性质的正交呢?原来,经过研究发现,在不同pH值环境下,多肽的反相保留行为是不一样的(图2)[2]。根据这个性质,沃特世的科学家开发出了独有的RP-RP纳升在线二维系统——nanoACQUITY UPLC System with 2D-LC。这个系统的分离柱,使用了UPLC一贯的亚二微米颗粒填料,因此具有了UPLC的超高分离度等优点。此外,它还不需要分流就可以实现精准的纳升流速,可为实验室节省巨大的高纯度流动相购买费用及废液处理费用,而且更加环保。nanoACQUITY UPLC System with 2D-LC双反相二维系统优点总结如下:■ 较SCX-RP技术,使用RP-RP系统可得到更多的蛋白鉴定结果。■ RP-RP系统较SCX-RP系统更稳定、耐用。■ 与nano HPLC相比,nanoACQUITY UPLC具有UPLC超群的分离效果。■ 不分流实现精准的纳图二nanoACQUITY UPLC System with 2D-LC双反相在线二维系统结构及分析流程如图3,其中包括三根色谱柱:高pH反相柱、捕获柱、低pH反相柱。在此系统中,第一维色谱柱为高pH色谱柱。样品进入第一维色谱柱后,第一维梯度泵可按使用者要求,自动地阶梯式提高有机相比例,以将样品中不同疏水性肽段分批洗脱下来。从高pH反相柱上洗脱下的多肽会被富集柱捕获。每批次被富集的多肽,将在第二维泵的线性梯度模式下进入低pH反相分析柱,在这里经过充分分离后,样品将到达离子源,进入质谱分析器。 其中左下图为结构示意图。步骤①:样品被自动进样器采集后,在第一维梯度泵的推动下进入高pH色谱柱。步骤②:样品在第一维泵阶梯式梯度作用下,将一部分多肽冲出,后被捕获柱富集。其中第二维梯度泵通过施加9倍于第一维泵的水相流动相,将溶剂稀释为适合捕获柱富集的体系。步骤③:在六通阀切换后,第二维泵通过线性梯度,将多肽样品进行充分分离并送至质谱分析。在执行完步骤①后,步骤②与步骤③交替进行直到完成所需分析。双反相在线二维系统nanoACQUIT Y UP LC System with2D-LC已经在多肽的液质分析方面被广泛应用,帮助研究人员取得了众多极具价值的研究成果。图3. nanoACQUITY UPLC System with 2D-LC系统结构及分析流程图。参考文献(1) Zhou F, Cardoza JD, Ficarro SB, Adelmant GO, Lazaro JB, Marto JA. Online Nanoflow RP-RP-MS Reveals Dynamics of Multicomponent Ku Complex in Response to DNA Damage. J Proteome Res. 2010, 9, 6242-6255.(2) Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensionalseparation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 2005, 28, 1694–1703. 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 3i流式观察|Sony CGX10全封闭流式细胞分选系统荣获2023年iF产品设计大奖
    创新的Sony CGX10全封闭流式细胞分选系统荣获著名的2023年iF产品设计奖!这已是索尼连续获得iF产品设计奖的第396项产品!自1954年以来,iF 设计奖一直被公认为卓越设计质量的仲裁者,也是最享有盛誉的、国际公认的设计竞赛,以表彰各行各业的杰出创新。Sony CGX10全封闭流式细胞分选系统以多参数、高速度和高纯度的细胞分选能力给评委留下了深刻的印象,进一步巩固了索尼以先进技术为客户提供前沿解决方案的开拓者地位。索尼很荣幸获得这一认可,并将继续保持梦想和好奇心,推出前沿技术方案帮助研究者探索知识边界,用创意和科技的力量感动世界。作为全球自动化流式分选仪器的领导者,索尼生命科学持续使用前沿技术设计可以解决客户实际需求的优秀产品。Sony CGX10全封闭流式分选系统,是Sony在自动化流式领域深耕十多年的先进技术代表之作,以微流控芯片为载体,结合GMP-ready配套耗材,为细胞和基因治疗领域提供了下一代GMP级别的多参数分选系统。Sony CGX10系统具有极致的简单操作,和稳定优异的高速、高纯度、高活力分选性能,配合审计追踪功能,助力新型疗法的开发,为生命健康贡献力量。Reference:1. iF Design - CGX102. Sony Group Portal - iF Design Award 2023 | Awards | Sony Design
  • 国务院:科技计划专项基金存封闭低效等现象
    北京1月12日 近日,国务院印发《关于深化中央财政科技计划(专项、基金等)管理改革的方案》(以下简称《方案》),对中央财政科技计划(专项、基金等)管理改革做出全面部署。  《方案》指出,科技计划(专项、基金等)是政府支持科技创新活动的重要方式。改革开放以来,我国先后设立了一批科技计划(专项、基金等),为增强国家科技实力、提高综合竞争力、支撑引领经济社会发展发挥了重要作用。但是,由于顶层设计、统筹协调、分类资助方式不够完善,现有科技计划(专项、基金等)存在着重复、分散、封闭、低效等现象,多头申报项目、资源配置&ldquo 碎片化&rdquo 等问题突出。  《方案》强调,改革要遵循转变政府科技管理职能、聚焦国家重大战略任务、促进科技与经济深度融合、明晰政府与市场的关系、坚持公开透明和社会监督五条基本原则,要强化顶层设计、打破条块分割、改革管理体制、统筹科技资源,加强部门功能性分工。  《方案》提出,建立公开统一的国家科技管理平台,构建科技计划(专项、基金等)管理新机制。建立联席会议制度,加强部门间的统筹和协同 依托专业机构管理项目,把政府部门从项目的日常管理和资金的具体分配中解放出来,提高管理的科学化、专业化水平 建立战略咨询和综合评审委员会,切实发挥专家对政府决策的咨询作用 建立统一的评估和监管机制,提高科技投入的绩效 完善国家科技管理信息系统,加强信息公开和社会监督。  《方案》要求,遵循科技创新规律和经济社会发展需求,优化形成新的五大类科技计划(专项、基金等)布局体系。面向基础研究和科学前沿探索部署国家自然科学基金 聚焦国家重大战略产品和产业化目标,部署国家科技重大专项 针对事关国计民生的重大社会公益性研究,以及事关产业核心竞争力、整体自主创新能力和国家安全的重大科学技术问题,部署国家重点研发计划 发挥财政资金引导作用,安排技术创新引导专项(基金),促进科技成果转移转化和资本化、产业化 安排基地和人才专项,提升我国科技创新的基础能力。  《方案》明确了改革的实施进度,提出按照整体设计、试点先行、逐步推进的原则,经过三年的改革过渡期,到2017年,全面完成改革,按照优化整合后的五类科技计划(专项、基金等)运行,并建成公开统一的国家科技管理平台。  《方案》强调,科技计划(专项、基金等)管理改革工作是实施创新驱动发展战略、深化科技体制改革的突破口,任务重、难度大,要统一思想、狠抓落实、协同推进相关工作,确保改革取得实效。
  • Advanced Materials | 新型二维原子晶体材料Si9C15的构筑
    碳元素与硅元素同属第四主族,其原子最外层有四个未配对电子,可形成四根共价键。例如金刚石与单晶硅分别是碳原子和硅原子以sp3杂化方式与临近的四个原子成键形成的稳定结构。原则上,碳原子和硅原子可以以任意的比例互换,组成SixCy的一大类具有闪锌矿结构的晶体材料。理论预言表明,二维的SixCy晶体可以以蜂窝状结构稳定存在,随着碳硅比例的不同具有大范围可调节的带隙,从而产生丰富的物理化学性质,引起了研究人员广泛的关注。然而,自然界中的硅原子并不喜欢sp2杂化方式的平面二维结构,碳硅化合物晶体多数不存在像石墨一样的层状体材料。因此,常规的机械剥离方法并不适用于制备二维碳化硅材料。已有的实验报道包括利用液相剥离和扫描透射电子显微镜电子束诱导等手段获取准二维SiC和SiC2材料,然而这些材料存在着厚度不均一、尺寸太小以及无法集成等问题。因此,发展一种新的实验手段获取高质量、大尺寸的单晶二维碳化硅材料具有重要意义。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室高鸿钧研究团队利用组内自主设计研发的分子束外延-低温扫描隧道显微镜联合系统,对石墨烯硅插层技术进行了优化,并将其应用于二维碳化硅材料的构筑,成功在钌和铑两种单晶表面生长出大面积、高质量、单晶的单层Si9C15材料。他们首先在金属钌(铑)单晶表面生长获得高质量单层石墨烯,然后在石墨烯上沉积过量的硅,在1400 K高温下退火得到了厘米量级的单层碳化硅材料(图一)。他们进一步结合扫描隧道显微镜、扫描透射电子显微镜、X射线光电子能谱等表征手段和第一性原理计算,确定该二维材料是组分为Si9C15的翘曲蜂窝状结构(图二,图三)。蜂窝状结构由碳-碳六元环和碳-硅六元环组成,每个碳-碳六元环被十二个碳-硅六元环所包围。扫描隧道谱显示该二维材料表现出半导体特征,能隙为1.9eV(图四)。值得一提的是,单层Si9C15晶体具有较好的空气稳定性。制备的二维单晶样品在直接暴露空气72小时后重新传入超高真空腔体,在870 K退火1小时之后可以看到晶体结构几乎没有受到破坏(图五)。该项研究首次获得了大面积、高质量的单晶二维碳化硅材料。计算结果还显示在不同晶格常数的金属单晶衬底上有可能生长出不同碳硅比的二维材料,揭开了利用外延生长获取二维碳化硅材料的序幕。相关成果以“Experimental realization of atomic monolayer Si9C15”为题发表于Advanced Materials上。该工作与中国科学院大学的周武教授和国家纳米中心的张礼智研究员进行了合作。博士高兆艳、博士生徐文鹏、博士后高艺璇和博士后Roger Guzman为论文共同第一作者,李更、张礼智、周武和高鸿钧为共同通讯作者。该工作得到科技部(2019YFA0308500, 2018YFA0305700, 2018YFA0305800)、国家自然科学基金(61888102,51991340,52072401)、中国科学院(YSBR-003)和北京杰出青年科学家计划(BJJWZYJH01201914430039)等的支持。文章链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202204779 图一:单层Si9C15材料的获取。图二:二维Si9C15材料的原子构型图三:STEM图像证实二维Si9C15材料的存在。图四:二维Si9C15材料的电子结构。图五:二维Si9C15材料具有较好的空气稳定性。【近期会议推荐】仪器信息网将于2022年8月30-31日举办第五届纳米材料表征与检测技术网络会议,开设“能源与环境纳米材料”、“生物医用纳米材料”“纳米材料表征技术与设备研发(上)”、“纳米材料表征技术与设备研发(下)”4个专场,邀请20余位领域内专家,围绕纳米材料热点研究方向,从成分分析、形貌分析、粒度分析、结构分析以及表界面分析等主流分析和表征技术带来精彩报告。会议涉及热点研究方向:电极材料、医药材料、多铁/铁电材料、电子敏感材料、超宽禁带半导体材料......会议包含表征与检测技术:冷冻电镜、透射电镜、扫描电镜、扫描隧道能谱、X射线光电子能谱、纳米粒度及Zeta电位仪、超分辨荧光成像、表面等离子体耦合发射、荧光单分子单粒子光谱、磁纳米粒子成像、拉曼光谱、X射线三维成像......为纳米材料工作者及相关专业技术人员提供线上学术与技术交流的平台,帮助大家迅速掌握纳米材料主流分析和表征技术,共同提高纳米材料研究及应用水平。(点击此处进入会议官网,免费报名参会)
  • 赛默飞推出用于细胞疗法生产的模块化封闭细胞处理系统
    p style="text-indent: 2em "近日,赛默飞宣布推出其Gibco CTS Rotea逆流离心系统,这是一种模块化、封闭式细胞治疗处理系统,可实现可扩展、经济高效的细胞治疗开发和制造。CTS Rotea系统是第一个用于细胞治疗处理应用的Gibco仪器,它促进了从研究到GMP临床开发和商业制造的工作流程。/pp style="text-indent: 2em "据悉,截至2020年年中,全球共有675项针对细胞治疗和细胞免疫肿瘤学的临床试验正在进行中。然而,由于安全性和有效性要求较高,将研究方案向生产转化存在诸多困难,例如研发疗法缺乏可扩展性、设施、劳动力和设备高成本以及所涉及的过程的复杂性等等,因此,很少有正在开发中的细胞疗法商业化。/pp style="text-indent: 2em "使用模块化、封闭的单元处理系统,可以使耗时的过程与快速过程分离,提高设施和设备的利用率,并减少所需的资本投资。从研究到工艺开发和商业生产,使用相同的系统可以降低与改变系统相关的过程延迟风险。无菌、封闭、一次性使用的试剂盒能够在C级洁净室中进行细胞处理,从而实现成本效益高的转移和过程扩展。/pp style="text-indent: 2em "“众所周知,细胞疗法要从研究阶段进入商业生产是出了名的困难,”赛默飞世尔科学公司生物科学业务总裁艾米· 巴特勒说。“我们的目标是帮助推进细胞疗法的发展,包括激动人心的新型Car-T细胞疗法,甚至是修复由COVID-19引起的肺损伤的潜在细胞疗法。CTS Rotea系统将帮助研究人员克服制造障碍,为更多患者带来细胞治疗的巨大潜力。”/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 338px height: 180px " src="https://img1.17img.cn/17img/images/202010/uepic/e93d919f-f845-4436-a1b5-266f3ed30fe3.jpg" title="摄图网_400096057_医疗细胞分子(企业商用).jpg" alt="摄图网_400096057_医疗细胞分子(企业商用).jpg" width="338" height="180" border="0" vspace="0"//pp style="text-indent: 2em "多功能和高度灵活的CTS Rotea系统可以很容易地集成到现有的工作流程中,处理中低端输入量,并提供低输出量。CTS Rotea系统由仪器、封闭式无菌一次性使用套件和用户可编程软件组成,提供了处理灵活性,支持多种细胞分离、洗涤和浓缩协议,细胞回收率大于95%,同时保持细胞活力。/p
  • 科研人员给出由磁层X射线二维图像反演三维磁层顶的“工具箱”
    人类赖以生存的空间被地球内禀磁场形成的磁层保护着,磁层的外边界称为磁层顶。近些年,研究人员发现磁层顶附近区域在软X射线波段是明亮的。软X射线的辐射机制是太阳风电荷交换(Solar Wind Charge Exchange,简称SWCX)过程,即太阳风中高价重离子和地球大气逃逸的中性成分发生碰撞,由激发态向基态跃迁的过程中发出光子。因此,太阳风能到达的区域就会辐射X射线,而X射线波段明亮和黑暗的交界线就是太阳风发生绕流的边界,即磁层顶。基于此,中国科学院和欧空局联合提出了太阳风-磁层相互作用全景成像卫星项目(Solar wind Magnetosphere Ionosphere Link Explorer,简称SMILE),对日下点附近的磁层顶、部分极尖区和地球极光进行成像探测,同时对磁场和等离子体进行原位测量,旨在揭示太阳风-磁层相互作用的基本模式,从系统尺度上深入认知太阳风-磁层-电离层耦合的基本物理过程。SMILE卫星计划于2024~2025年发射。在X射线二维图像数据和磁层物理规律的认知之间起到桥梁作用的是如何由图像数据分析出三维磁层顶位形。这是SMILE项目预先研究的核心内容。近日,中国科学院国家空间科学中心太阳活动与空间天气重点实验室王赤院士与孙天然研究员总结了由磁层X射线二维图像反演三维磁层顶的四种方法,给出了磁层成像数据分析的“工具箱”。该综述文章总结了切向拟合法(Tangent fitting approach, TFA,图1)[Sun et al., 2020]、边界拟合法(Boundary Fitting approach, BFA)[Jorgensen et al., 2019a, 2019b]、切线方向法(Tangent direction approach, TFA)[Collier and Connor, 2018]、和计算机断层分析法(Computerized tomography approach, CTA)[Jorgensen et al., 2022, Wang et al., 2022]这四种方法的优点和局限,指明了各自的适用范围,如表1所示。天气室徐荣栏研究员、孙天然研究员与美国新墨西哥理工大学的Anders Jorgensen等人合作,给出了磁层顶反演的CT方法。针对CT方法,天气室孙天然与系统室李大林副研究员、博士生王荣聪等人开展合作,采用人工智能技术对轨道未能覆盖的观测角度进行图像补全,反演得到三维磁层顶位形,如图2。孙天然及合作者对磁层X射线研究进展进行了综述。表1 磁层成像数据分析的“工具箱”[摘自Wang and Sun, 2022]图1 采用切向拟合法TFA,由磁层X射线图像(左)反演三维磁层顶(右)[摘自Sun et al., 2020]图2 人工智能应用于CT反演方法。左、中图为X射线辐射率在子午面和赤道面的等值线,右图为三维磁层X辐射率反演结果 [摘自Wang et al., 2022]该系列成果发表在空间物理权威期刊Geoscience Letters、Journal of Geophysical Research等杂志上。研究得到了基金委重点项目、中国科学院前沿科学重点研究计划、空间科学战略先导计划、中国科学院研究基金和国家重点实验室专项研究基金、青促会优秀会员资助计划等的支持。References:1.Wang, Chi*, and Sun, Tianran* Methods to derive the magnetopause from soft X?ray images by the SMILE mission, Geoscience Letters, 9:30, 2022, https://doi.org/10.1186/s40562-022-00240-z 2.孙天然*,张颖洁,韦 飞,彭松武,尧中华,王赤*,地球磁层软X射线信号的辐射特性研究,地球与行星物理论评,2022,accepted3.Wang, Rongcong, Li Dalin*, Sun Tianran*, Peng Xiaodong, Yang Zhen, Wang J.Q., A 3D Magnetospheric CT Reconstruction Method Based On 3D GAN and Supplementary Limited-Angle 2D Soft X-ray Images. Journal of Geophysical Research: Space Physics, 2022, accepted4.Jorgensen, A. M.*, Xu, R., Sun, T., Huang, Y., Li, L., Dai, L., & Wang, C. A theoretical study of the tomographic reconstruction of magnetosheath X-ray emissions. Journal of Geophysical Research: Space Physics, 2022, 127, e2021JA029948. https://doi.org/10.1029/2021JA0299485.Sun T.*, Wang C.*, Connor H. K., Jorgensen A. M., Sembay S Deriving the magnetopause position from the soft X-ray image by using the tangent fitting approach Journal of Geophysical Research: Space Physics 2020, 125, e2020JA028169. https://doi.org/10.1029/2020JA0281696.Sun T. R.*, Wang C.*, Sembay S. F., Lopez R. E., Escoubet C. P., Branduardi-Raymont G., et al. Soft X-ray imaging of the magnetosheath and cusps under different solar wind conditions: MHD simulations Journal of Geophysical Research: Space Physics 2019, 124. https://doi.org/10.1029/2018JA026093 7.Jorgensen A. M., Sun T.*, Wang C., Dai L., Sembay S., Wei F., et al. Boundary detection in three dimensions with application to the smile mission: The effect of photon noise Journal of Geophysical Research: Space Physics 2019a, 124. https://doi.org/10.1029/2018JA0259198.Jorgensen A. M.*, Sun T.*, Wang C., Dai L., Sembay S., Zheng J. H., Yu X. Z. Boundary Detection in Three Dimensions With Application to the SMILE Mission: The Effect of Model-Fitting Noise Journal of Geophysical Research: Space Physics 2019b, 124. https://doi.org/10.1029/2018JA026124
  • 扫描隧道显微镜助力揭示二维材料边界态物理本质
    p style="text-indent: 2em text-align: justify "传统的三维半导体材料表面存在大量的悬挂键,可通过捕获和散射等方式影响和限制自由载流子的运动,因此表面态的设计、制造和优化是提高三维半导体器件性能的关键因素。类似于三维半导体材料的表面态,单层二维材料(如二硫化钼和石墨烯)在边界原子的终止和重建可以产生边界态,这使二维材料产生了许多独特的现象,使其得到广泛的应用。 /pp style="text-indent: 2em text-align: justify "针对此现象,微电子所微电子器件与集成技术重点实验室刘明院士和李泠研究员的科研团队与中科院物理所、北京理工大学、美国加州大学洛杉矶分校合作,对单层MoS2/WSe2晶体管进行了器件测试、扫描隧道显微镜实验观测和第一性原理计算,发现二维材料的边界态是控制器件亚阈值特性及影响器件迁移率的关键因素,并在国际上首次提出这种边界态是拉廷格液体的物理本质。该科学发现对于研究器件性能优化和低功耗应用具有一定的意义。 /pp style="text-align: justify text-indent: 2em "该工作以《Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals》为题发表在 Nature Communications期刊上(DOI: 10.1038/s41467-020-14383-0)。微电子所博士后杨冠华和物理所邵岩博士为该文章第一作者,微电子所刘明院士、李泠研究员、北京理工大学王业亮教授和美国加州大学洛杉矶分校段镶锋教授为共同通讯作者。 /pp style="text-align: justify text-indent: 2em "上述工作得到了国家自然科学基金委、科技部、中科院等相关项目的资助。 /pp style="text-indent: 2em text-align: justify "全文链接:https://www.nature.com/articles/s41467-020-14383-0#citeas /pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="http://www.ime.ac.cn/zhxx/ttxw/202009/W020200925583655261172.png"//pp style="text-align: center "strong图a./strong二维材料边界电导比例与温度、栅压关系。strong图b./strong I/T1+α与qV/kBT关系。strong图c. /strongSTS能谱。 /pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/iCSMD2020/" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/287a2421-2521-43a6-aa4c-219af657b8e0.jpg" title="半导体材料与器件.jpg" alt="半导体材料与器件.jpg"//a/p
  • 二维半金属—二维超导体之间超流拖拽效应揭示
    15日,记者从中国科学技术大学获悉,该校曾长淦教授、李林副研究员研究团队与北京量子信息科学研究院解宏毅副研究员等合作,通过构筑石墨烯与氧化物界面超导体系的复合结构,揭示了二维半金属和二维超导体之间由于量子涨落诱导的巨幅超流拖拽效应。相关成果日前在线发表于《自然物理》。对于两个空间相近但彼此绝缘的导电层构成的电双层结构,在其中一层(主动层)施加驱动电流,层间载流子之间的耦合会在另一层(被动层)中诱导产生一个开路电压或闭路电流,即产生层间拖拽效应。基于二维电子气之间的拖拽效应,可以探索准粒子的层间长程相互作用,发现如激子超流体等新颖层间关联量子态。由于较强的介电屏蔽效应,拖拽电流耦合比远远小于1。而将其中一层或两层替换成超导材料,将有望产生耦合比显著增强的超流拖拽效应。研究团队构筑了石墨烯与氧化物异质界面组成的二维半金属—超导体电双层结构,并对其层间拖拽行为进行了系统研究。他们发现,在氧化物界面超导转变区间,石墨烯层中施加驱动电流可以在氧化物界面诱导出巨幅拖拽电流,且强度可以通过栅压/外磁场等进行有效调控。特别是在界面超导最优掺杂附近,拖拽电流耦合比达到0.3,即所产生的拖拽电流大小与驱动电流相当。与此前传统普通金属/超导金属体系相比,耦合比提高了两个量级以上。这一结果揭示了宏观量子涨落对于层间准粒子相互作用的显著调制。在应用层面,基于该复合结构将有望制备新型电流或电压高效转换器件,包括超导二极管等量子器件,将推动具有丰富量子物相的更广泛二维电子体系的拖拽效应研究,并发现更多基于层间长程耦合的新颖量子多体效应。
  • 仪器新应用!Kerr显微镜揭示二维铁磁体FGT中的CIDWM现象
    【科学背景】随着自旋电子学的发展,将电流转化为自旋电流的能力成为自旋电子学中至关重要的一环。自旋电流能够携带自旋和可能的轨道角动量,从而产生扭矩,用于操控局部磁化。这些扭矩的来源包括自旋转移和自旋轨道相互作用,它们构成了实现新型自旋电子学器件的基本构建模块。其中,基于磁性纳米线的竞赛轨道存储器设备,利用自旋转移扭矩和/或自旋轨道扭矩驱动的电流诱导的畴壁运动,被认为是下一代高速、高密度、低能耗的非易失性记忆器件的主要候选者。特别地,Fe3GeTe2(FGT)因其金属性质、可调谐的居里温度和强的垂直磁各向异性而备受关注。最近,FGT中观察到了各种手性磁性纳米结构,这些纳米结构需要DMI的来源。虽然曾有界面DMI的假设,但考虑到FGT薄片的相当厚度,这种假设似乎不太合理。相反,研究者认为这些手性自旋纹理的起源可能是体积型的。最近的研究表明,FGT晶体具有破缺反演对称性的晶体结构,这为体积型DMI提供了有力证据。然而,对于FGT的电流诱导磁化操控的研究还处于初步阶段,现有的研究主要采用了间接探测方法。直接成像受限于厚度较大的FGT样品,并且观察到的高速电控畴壁运动速度较慢。因此,研究人员需要一种更具挑战性的方法来解决这一问题。有鉴于此,马丁路德大学物理学研究所Stuart S. P. Parkin教授、安徽大学材料科学与工程学院Tianping Ma等人在“Nature Communications”期刊上发表了题为“Cur3t-induced domain wall motion in a van der Waals ferromagnet Fe3GeTe2”的研究论文,引起了不小的关注!本研究旨在利用磁光克尔显微镜(MOKE)技术探索FGT异质结中的高速电控畴壁运动CIDWM,并观察其在不同条件下的行为。通过将FGT与重金属铂(Pt)或钨(W)层结合,作者研究了畴壁运动的机制,并发现畴壁驱动的竞争行为。此外,作者还发现,作者的方法可以获得比以前报告的速度更高一个数量级的畴壁速度。【科学亮点】(1)实验首次探究了Fe3GeTe2(FGT)中的高速电控畴壁运动(CIDWM),并取得了重要发现。&bull 通过使用Kerr显微镜,作者观察到了在FGT薄片中实现的CIDWM现象,这是首次在该材料中进行的。&bull 在Pt或W层覆盖的FGT异质结中,作者证明了畴壁可以通过自旋转移和自旋轨道扭矩的组合进行移动。(2)实验结果表明CIDWM的速度比以前的研究中报告的速度高一个数量级,并揭示了畴壁运动的新机制。&bull 作者发现在异质结中,畴壁的驱动方式既可以是由STT单独引起,也可以是由STT和SOT的竞争机制共同作用引起。&bull STT和SOT之间的竞争导致畴壁运动方向的变化,随着注入电流密度的增加而发生改变。【科学图文】 图1:由自旋转移力驱动的FGT中的CIDWM。图2. FGT/Pt和FGT/W异质结中的电流诱导磁化翻转。图3:在T = 70K下,FGT(8.1 nm)/Pt(3 nm)异质结中的电流诱导DW运动。图4:FGT/W异质结和原始FGT中DW速度随纵向磁场的变化。【科学结论】作者通过磁光学克尔显微镜成像研究了二维铁磁体FGT中的CIDWM现象。基于STT的CIDWM得到了清晰展示。作者观察到了在20K时畴壁的最高速度为5.68 m/s。畴壁运动的纵向磁场依赖性揭示了原始FGT中由DMI诱导的尼尔型畴壁。在FGT表面沉积了Pt和W薄膜,形成了重金属/铁磁体异质结。Pt和W中的自旋霍尔角的相反符号导致了SOT诱导的磁化翻转方向相反,以及CIDWM的不同行为。 在FGT/Pt中,STT和SOT之间的竞争导致了较低的畴壁速度和随着电流密度增加而畴壁运动方向的改变,而在FGT/W中,STT和SOT互相促进,并导致与原始情况一样有效的畴壁运动。这样的DMI源于FGT薄片中铁原子空位的无序和铁原子的插层。作者的工作为基于二维磁体的功能自旋电子学器件的发展提供了启示。原文详情:Zhang, W., Ma, T., Hazra, B.K. et al. Cur3t-induced domain wall motion in a van der Waals ferromagnet Fe3GeTe2. Nat Commun 15, 4851 (2024). https://doi.org/10.1038/s41467-024-48893-y
  • 半导体情报,科学家揭示二维材料外延生长的挑战与前景!
    【科学背景】二维(2D)材料家族在过去二十年显著扩展,包括近2000种理论预测和数百种实验室可接近的物种。这一演变与材料制备技术的进步密切相关。传统的机械剥离从体块晶体中开创性地发现和分离了石墨烯,提供了高质量材料,但在大规模生产中面临挑战。溶液基剥离等替代方法虽然提供了2D材料的可伸缩性,但可能引入缺陷、杂质和化学修饰。与此相比,外延生长技术通过在各种基底上组装原子或分子成为2D材料,无需晶格匹配要求,并能精确控制成分和晶质,展示了制造大面积高质量单晶薄膜的潜力。二维材料外延的概念可以追溯到20世纪60年代,当时John May在高温金属基底上的烃类中发现了未指定的低能电子衍射图案,并将其归因为‘单层石墨’的生长。1984年,Koma等人提出了“范德瓦尔斯(vdW)外延”这一术语,用于在剥离的MoS2表面上制造亚纳米NbSe2薄膜。然而,这些初探一直局限于表面物理学领域,未能引起广泛关注。随着2004年石墨烯的发现和分离,这一领域经历了转变,激发了一系列探索和特征性2D vdW材料及其同质结构外延生长的突破性‘浪潮’。第一波浪由2009年在铜箔上合成单层石墨烯开启,随后十年揭示了外延机制,推动了单晶薄膜的工业化生产。接连而来的浪潮归因于二维六角硼氮化物(hBN)和过渡金属二硫化物(TMDCs)的外延,最近实现了英寸大小的单晶。此外,人工多层系统中的扭转电子学和moire光子学推动了另一波,用于直接生长具有控制堆叠和扭转角度的垂直同质结构。北京大学刘开辉团队最新论文表示,新兴二维材料外延的前景广阔,可能涵盖单元素物种(如黑磷、硼烯和碲烯)以及各种化合物如硫化物、硼化物、碳化物等。每一波浪都带来独特的挑战,但普遍的外延原则在这些进展中是潜在且必要的。随着科学家们不断提出新的技术和策略,如何有效应对这些挑战并推动新材料的应用和工业化成为了当前研究的关键焦点。 【科学亮点】(1)在二维材料研究领域,实验揭示了机械剥离技术从体块晶体中分离出石墨烯,并且成功实现了高质量材料的获得。(2)替代的溶液基剥离方法被引入以扩展2D材料的可伸缩性,但引入了潜在的缺陷和杂质,同时也进行了化学修饰。然而,外延生长技术通过在各种基底上组装原子或分子成2D材料,无需晶格匹配要求,为制造大面积、高质量的单晶薄膜提供了精确的成分和晶质控制。(3)二维材料外延的历史可以追溯到1960年代,当时John May首次在高温金属基底上观察到未指定的低能电子衍射图案,推动了“单层石墨”生长的初步探索。(4)1984年,Koma等人提出了“范德瓦尔斯(vdW)外延”概念,用于在MoS2表面上制造亚纳米NbSe2薄膜。这些探索初期局限于表面物理学界,未引起广泛关注。(5)随着2004年石墨烯的发现和分离,二维材料外延领域经历了转变,激发了一系列在探索和外延生长典型2D vdW材料及其同质结构方面的突破性‘浪潮’。(6)外延技术的进步推动了二维六角硼氮化物(hBN)和过渡金属二硫化物(TMDCs)的生长,最近实现了英寸大小的单晶,展示了制造大面积、高质量单晶薄膜的潜力。 【科学图文】图1:二维2D 范德华 van der Waals,vDW材料及其同质结构外延生长的代表性进展。图2:单畴的成核控制。图3:多域定向控制。图4:均匀多层膜的制备。 图5: 转角同质结构的制造。【科学结论】在过去的十年中,二维范德瓦尔斯(vdW)材料外延生长取得了显著进展,从平面单晶单层发展到垂直多层结构。一些典型材料的制备已经达到了先进阶段,例如工业规模生产石墨烯单晶薄膜,英寸尺寸的hBN单晶单层合成,以及TMDC半导体达到标准300毫米晶片大小,与主流硅技术对接134。此外,具有平行堆叠或精确扭转角度控制的同质结构多层外延也有了一定的阶段性进展。我们在本综述中总结了这些案例背后的策略,并相信它们可以进一步扩展到其他外延技术或二维系统中。复杂vdW化合物如金属氧化物或氢氧化物的单晶外延生长,目前正处于探索阶段,遵循这些已建立的策略。在器件应用场景中,二维结构理想情况下应在材料制备过程中启动和形成。对绝缘晶片上的二维薄膜进行直接生长或晶片规模的转移技术是将二维场效应晶体管纳入未来大规模集成器件至关重要的。需要制定经济实惠的热预算解决方案,以适应材料生长和随后器件制造与后端线路工艺的兼容性。下一步是建立从材料设计到封装和器件集成的工业链桥梁。最终,一旦二维材料的生长准备水平和生产复制性达到硅晶片的水平,它们从研究(实验室)到设计和制造(工厂)的转变将指日可待。原文详情:Liu, C., Liu, T., Zhang, Z. et al. Understanding epitaxial growth of two-dimensional materials and their homostructures. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01704-3
  • 北京航空航天大学实现二维材料合成方法新突破
    近日,北京航空航天大学宫勇吉教授团队与北京大学吴凯教授团队合作在Nature Synthesis期刊上发表了一篇题为“Flux-assisted growth of atomically thin materials”的研究成果。课题组突破传统方法合成二维材料的限制,采用熔体辅助析出的方法,高效可控地实现了近100种超薄纳米片材料的合成,包括传统方法无法合成的复杂多元层状或者非层状超薄二维单晶材料。论文通讯作者是宫勇吉、吴凯;第一作者是张鹏、王兴国、江华宁。二维材料由于特殊的物理和化学特性,近年来引起了大量关注。尤其是这些原子薄材料为在二维极限层面探索催化、磁性、超导和拓扑性质提供了理想的平台。因此,高质量二维材料的可控制备已经成为其在电子和信息产业应用的先决条件。化学气相沉积(CVD)和机械剥离(ME)已被广泛应用于各种超薄材料的制备,但是这些方法目前面临越来越多的挑战。CVD气相反应的特性,决定了其在制备多元素材料时,气相分布不均匀往往会导致相分离,因此很难可控合成复杂多元二维材料。另外,对于具有一些特殊性质的非层状材料,由于其材料高表面能或者晶面之间较强的键合能,既不能被CVD合成,也不能被ME机械剥离。有鉴于此,为突破传统方法合成二维材料的限制,北京航空航天大学宫勇吉教授团队联合北京大学吴凯教授团队,提出一种全新、简单、强大且高效的熔体辅助生长二维材料的普适性策略。该方法利用经典生长单晶的熔体析出过程辅以空间限域,成功制备出一系列超薄二维单晶,包括层状或者非层状,少元或者多元二维单晶。另外,该方法也展现出制备二维单晶薄膜的潜力。不同于气相沉积方法,熔体析出法具有高效稳定、组分可控、重复性高等优点。特别的,该方法对外在生长条件,如温度、气流大小、前驱体数量等具有极高容忍度。图1:a-d. 熔体辅助析出过程及生长机制。e-h. Fe5GeTe2、AgCrS2重复率及厚度分布统计和条件容忍度。熔体辅助生长方法具有高重复率及对生长条件高容忍度。以Fe5GeTe2及AgCrS2为代表性的二维材料,生长重复率均接近100%,约为98%。另外,其生长气流大小可在50-500 sccm变化,生长温度区间可达接近200 °C,显示出熔体辅助法的优越性。图2:合成的80种超薄二维单晶及代表性的大尺寸单晶及厘米级薄膜。熔体辅助生长方法具有普适性。利用熔体辅助析出方法,成功制备出80种具有代表性的超薄二维单晶。其中包括层状和非层状,少元和多元和大尺寸单晶及薄膜二维材料。特别的,其中以CuCrTe2、FeGe、BiFeO3等为代表的非层状材料,既难以被CVD合成,也不能被机械剥离。充分证明了熔体辅助生长方法的独特性和优越性。图3:代表性材料Fe3GeTe2、Fe5GeTe2、MnPS3、CuInP2S6结构及比例分析。熔体析出二维单晶比例控制准确,性能优异。球差电镜测试结果表明材料结晶性能良好,元素比例准确。PFM测试结果证明了生长的超薄In2Se3具有明显铁电性能,可以和机械剥离In2Se3纳米片相媲美。NbSe2超导测试结果与CVD及机械剥离NbSe2二维片相当,表明熔体析出样品出色的结晶性。图4:In2Se3铁电性能及NbSe2超导性能表征。该研究提出一种不同于传统合成二维材料的普适性新方法,为合成更多复杂多元二维材料,非层状二维材料及大尺寸薄膜铺平了道路。相关论文信息:https://doi.org/10.1038/s44160-022-00165-7为促进二维材料的研究与应用,仪器信息网将于2022年11月15日组织召开 “二维材料的表征与评价”主题网络研讨会。邀请业内专家以及厂商技术人员就二维材料最新应用研究进展、检测技术及标准化等分享精彩报告,为广大用户搭建一个即时、高效的交流平台。点击图片直达会议页面
  • Bi2Se3/MoTe2异质结构中大自旋分裂的宽幅理想二维Rashba电子气
    能实际应用的理想二维Rashba电子气(几乎所有的传导电子占据Rashba带)是应用半导体自旋电子的关键。研究证实,这样带有大Rashba劈裂的理想二维Rashba电子气可以在拓扑绝缘体Bi2Se3薄膜上实现,该薄膜可在过渡金属硫化物MoTe2基板上按第一性原理计算结果指导生长得到。研究结果显示,Rashba带专处于MoTe2半导体带隙中一个较大的、约0.6? eV费米能级间隔中。如此宽幅的理想二维Rashba电子气具有大的自旋分裂,为实际利用Rashba效应提供了可能,之前从未做到。由于强自旋-轨道耦合,其Rashba分裂强度与重金属(如Au和Bi)表面的差不多,所引起的自旋进动距离小到10 nm左右。近Γ点的内(外)Rashba带平面内自旋极化最大约为70%(60%)。室温下相干距离至少数倍于自旋进动长度,为采用自旋加工设备提供了良好的一致性。这种二维拓扑绝缘体/过渡金属硫化物异质结构中的理想Rashba带,具有能量范围宽、自旋进动长度短、相干距离长的特点,为室温下制造超薄纳米自旋电子器件(如Datta–Das自旋晶体管)铺平了道路。该研究通过计算揭示了纳米自旋电子晶体管在室温下工作的可能性。来自中国台湾清华大学的T. H. Wang和H. T. Jeng通过第一性原理计算,证实了一种理想的二维电子气(半导体自旋电子实现应用的关键)可在硒化铋超薄膜绝缘体中实现,该超薄膜用半导体MoTe2作衬底、在室温下生长即可制备。超薄器件中形成的二维电子气表现出大的“自旋分裂”(两种状态的电子自旋间的分离),这正是晶体管之类的设备所需要的特性。采用电子自旋的电子器件来处理信息,用的是电子固有的自旋特性,而不象目前常规电子器件那样用的是电子的电荷特性。这会使设备在更小的空间内存储更多的数据,消耗更少的电能,使用更便宜的材料。据巨纳集团低维材料在线91cailiao.cn的技术工程师Ronnie介绍,异质结构是现在的研究热点,Bi2Se3/MoTe2异质结构,使得一种理想的二维电子气(半导体自旋电子实现应用的关键)可在硒化铋超薄膜绝缘体中实现,该超薄膜用半导体MoTe2作衬底,在室温下生长即可制备。
  • 台式ALD,Nat. Mater.!二维晶体管介电层集成研究取得重要进展
    台式三维原子层沉积系统-ALD体积小巧,可放在实验桌上多片4,6,8 英寸样品同时沉积厚度均匀性高于99%适合复杂/ 掺杂薄膜沉积二维半导体表面沉积利器...... 随着现代半导体行业的发展,基于硅半导体的场效应晶体管(FET)的尺寸不断缩小,目前已经接近其物理极限。在新兴材料中,二维半导体可达到原子级厚度且保持高载流子迁移率,理论上可实现优异的栅极控制,因而被认为是用于下一代场效应晶体管的理想沟道材料。然而,由于二维半导体表面无悬挂键,很难在其表面集成高质量的介电层,这是目前该领域的重大难题。 为解决上述问题,华中科技大学翟天佑团队以无机分子晶体Sb2O3作为缓冲层,发明了一种在二维材料表面集成超薄高k介电层的普适性方法。利用该缓冲层法制备的HfO2/Sb2O3复合介电层可实现0.67 nm的等效氧化层厚度(EOT),是目前报道的二维晶体管介电层中zui低的。高质量的界面降低了界面态密度,由单层MoS2沟道和HfO2/Sb2O3复合介电层构成的FET在0.4 V的超低工作电压下即可获得超过106的开关比,其栅极控制效率优于目前报道的其他所有FET。该项成果以“Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors”为题发表于国际高水平期刊Nature Materials。 Sb2O3缓冲层的作用机理如下:一方面,Sb2O3可与二维半导体间形成高质量的范德华界面;另一方面,Sb2O3覆盖了二维材料原有的疏水表面,提供了高度亲水的表面,提升了与传统原子层沉积(ALD)工艺的相容性,便于集成超薄高k介电层。图1a展示了在MoS2二维半导体表面集成HfO2/Sb2O3复合介电层的过程。作者利用热蒸镀法制备了Sb2O3缓冲层,随后使用美国Arradiance公司的GEMStar系列台式原子层沉积(ALD)系统制备了致密均匀的HfO2层(图1b)。此外,作者还利用该台式ALD设备在MoS2/Sb2O3上生长了常见介电层Al2O3和ZrO2(图1c, 1d),证明了该方法的普适性。图1. (a)在MoS2二维半导体表面集成HfO2/Sb2O3复合介电层的过程,(b)-(c)样品的AFM图像。 随后,作者用第一性原理计算研究了Sb2O3缓冲层对ALD过程的促进原理。如图2a-2b所示,H2O分子在MoS2表面的吸附距离为约3&angst ,在Sb2O3表面的吸附距离减小至约2&angst ,接近于水中氢键的长度。同时,H2O分子在Sb2O3表面的吸附能大幅高于在MoS2表面的吸附能(图2c)。上述结果表明Sb2O3缓冲层可促进ALD过程中的前驱体吸附,有助于介电层的生长。图2. H2O分子在(a)MoS2和(b)Sb2O3表面的吸附构型,(c)H2O分子在MoS2和Sb2O3表面的吸附能。 本文所使用的美国Arradiance公司的GEMStar系列台式原子层沉积系统如图3所示,在小巧的机身(78 * 56 * 28 cm)中集成了原子层沉积所需的所有功能,可容纳9片8英寸基片同时沉积。全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计,使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅可在8英寸基体上实现厚度均匀的膜沉积(其厚度均匀性高于99%),而且适合对具有超高长径比孔径的3D结构进行均匀薄膜覆盖,在高达1500:1长径比微纳深孔内部也可均匀沉积。此外,该设备还具有节约前驱体原料,制备效率高,性价比高等优点。该设备已帮助国内外用户取得大量Nature、Science级别的研究成果。图3. 美国Arradiance公司生产的GEMStar系列台式三维原子层沉积系统参考文献:[1]. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater., 2023, DOI:10.1038/s41563-023-01626-w
  • 行业应用 | 国仪量子钻石原子力显微镜:打开二维磁性材料新天地
    几个世纪以来,人类探索磁性及其相关现象的脚步从未停歇。在电磁学和量子力学发展的早期,人类很难想象磁石对铁的吸引力,鸟、鱼或昆虫在相隔数千英里的目的地之间的导航能力,这些神奇又有趣的现象具有相同的磁性起源。这些磁性来源于基本粒子的运动电荷与自旋,它和电子一样普遍存在。近年来,二维磁性材料在国际上成为备受关注的研究热点,它们为自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面都有着重要的应用价值。近日,《物理学报》2021年第12期也推出了二维磁性材料专题,从不同的角度描述了二维磁性材料在理论与实验方面的进展。《物理学报》2021年第12期你能想象得到吗?只有几个原子厚度的二维磁性材料就可以为极小的硅电子器件提供基板。这种神奇的材料由成对的超薄层制成,超薄层通过范德瓦耳斯力,即分子间作用力堆叠在一起,同时层内原子以化学键进行连接。虽然只有原子级的厚度,但依然保持着磁学、电学、力学、光学等方面的物理和化学特性。二维磁性材料 图片引用自https://phys.org/news/2018-10-flexy-flat-functional-magnets.html打个有趣的比方,二维磁性材料中的每个电子都像一个微小的罗盘,拥有北极和南极,这些“罗盘针”的方向决定了磁化强度。当这些无穷小的“罗盘针”自发对齐时,磁序就构成物质的基本相位,因此可制备出很多功能性装置,例如发电机和电动机、磁阻存储器和光学阻隔器等。这种神奇的特性也让二维磁性材料变得炙手可热起来,虽然现在集成电路制造工艺在不断提高,但由于器件在不断缩小,已经受到量子效应的限制,微电子行业已经遇到了可靠性低、功耗大等瓶颈,延续了近50年的摩尔定律也不再“吃香”(摩尔定律:集成电路上可以容纳的晶体管数目在大约每经过18个月便会增加一倍)。如果未来二维磁性材料能够在磁传感器、随机存储器等新型自旋电子学器件领域得到应用,说不定有望突破集成电路性能瓶颈。我们已经知道,具有磁性的范德瓦耳斯晶体带有特殊的磁电效应,因此在二维磁性材料的研究过程中,定量的磁性研究是必不可少的步骤。然而,对此类磁体在纳米尺度上磁性响应的定量实验研究依然非常缺乏。现有的一些研究报道了在微米尺度上实现了对晶体磁性的检测,但这些技术不仅还无法提供关于磁化的定量信息,还极容易干扰阻碍超薄样品的磁信号。因此,检测技术的更新对于探测材料纳米尺度上的磁性质是非常紧迫的挑战。国仪量子QDAFM为了解决这一难题,国仪量子提供了一种新的测量途径——量子钻石原子力显微镜(QDAFM)。QDAFM是基于NV色心和AFM扫描成像技术的量子精密测量仪器。通过对钻石中氮—空位(NV)色心发光缺陷的自旋进行量子操控与读出,可实现磁学性质的定量无损成像,具有纳米级的高空间分辨率以及单个自旋的超高探测灵敏度,可用于定量检测范德瓦耳斯磁体的关键磁学性质,并对其磁化、局部缺陷和磁畴进行高空间分辨率的磁成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势,在量子科学,化学与材料科学,以及生物和医疗等研究领域有着广泛的应用前景。二维碘化铬的磁化图引用自Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)下面,为大家介绍QDAFM在微纳磁成像、超导磁成像、细胞原位成像、拓扑磁结构表征等方面的具体应用。01微纳磁成像对于磁性材料,确定其静态自旋分布是凝聚态物理中的重要问题,也是研究新型磁性器件的关键。QDAFM提供了一种新的测量途径,能够实现高空间分辨率的磁性成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势。布洛赫型磁畴壁成像引用自Tetienne, J. P.et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry.Nature Communications6, 6733(2015)02超导磁成像对超导体及其涡旋的微观尺度研究,能够为理解超导机理提供重要信息。利用工作在低温下的QDAFM,可以对超导体的磁涡旋进行定量的成像研究,并扩展到众多低温凝聚态体系的磁性测量。单个磁性涡旋的杂散场定量成像引用自Thiel, L.et al.Quantitativenanoscale vortex imaging using a cryogenic quantum magnetometer. Nature Nanotechnology 11,677- 681 (2016).03细胞原位成像在细胞原位实现纳米级分子成像是生物学研究的重要手段。在众多成像技术中,磁共振成像技术能够快速、无破坏地获取样品体内的自旋分布图像,已经广泛应用在多个科学领域中。特别是在临床医学中,因其对生物体几乎无损伤,对疾病的机理研究、诊断和治疗起着重要的作用。然而,传统的磁共振成像技术使用磁感应线圈作为传感器,空间分辨率极限在微米以上,无法进行细胞内分子尺度的成像。利用QDAFM的高空间分辨率特性,研究人员观测到了细胞内部存在于细胞器中的铁蛋白,分辨率达到了10纳米。细胞原位铁蛋白分子的纳米磁成像引用自Wang, P. et al. Nanoscale magnetic imaging of ferritins in a single cell. Science advances 5, 8038 (2019).04拓扑磁结构表征磁性斯格明子是具有拓扑保护性质的纳米尺度涡旋磁结构。磁性斯格明子展现出丰富新奇的物理学特性,为研究拓扑自旋电子学提供了新的平台,在未来高密度、低能耗、非易失性计算和存储器件中也具有潜在应用。但是室温下单个斯格明子的探测在实验上仍具有挑战性。QDAFM的高灵敏度和高分辨率特点,是解决这一难题的有力工具,通过杂散场测量可重构出斯格明子的磁结构。斯格明子磁场成像引用自Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nature Communications 9, 2712 (2018).参考文献:1.《物理学报》2021年第12期,二维磁性材料专题2.Two-dimensional magnetic crystals and emergent heterostructure devices(Science, 2019, DOI: 10.1126/science.aav4450)3.https://phys.org/news/2018-10-flexy-flat-functional-magnets.html4.Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)
  • 扫描微信二维码,订阅康宁反应器技术
    我们在微信平台开通公众订阅号了,赶快拿出手机,扫描以下微信二维码关注我们吧。我们将不定期发布以下咨询:最新的技术应用介绍最新的培训及展会信息新品发布咨询您也可以在线留言,把您感兴趣的话题告诉我们。
  • Science: 扫描探针显微镜控制器在二维磁性材料研究中的突破性应用进展
    导读:自2017年来,二维磁性在单层材料中的实现使得二维磁性材料受到了大的关注。范德瓦尔斯磁体让我们对二维限下的磁性有了更进一步的了解,不同磁结构的范德瓦尔斯磁体使得实验上探究二维下的磁学模型成为可能。例如,在单层CrI3中发现Ising铁磁,而XY模型的NiPS3在单层限下的磁性会被抑制。除了这些,有着变磁行为的范德瓦尔斯磁体更为有趣,比如在少层CrCl3中由于奇数层存在着未补偿磁矩,使得奇数层存在着spin-flop转变,而偶数层则没有。目前,现存的二维磁性材料非常稀少,这意味着新范德瓦尔斯磁体的发现,不仅仅有助于二维磁性的研究,更是为二维自旋电子学器件的应用提供了材料基础[1]。相比于传统的三维空间结构,二维层状磁性材料因其原子层间较弱的范德华尔斯作用力,能够人为操控其层间堆叠方式,进而有可能影响其磁耦合特性,为新型二维自旋器件的研制提供新思路。然而,堆叠方式与磁耦合间的关联机制仍不甚明晰,需要借助先进的扫描探针技术才能实现在原子层面的直接实验观测。美国RHK公司所提供的先进R9plus扫描探针显微镜控制器可以有效结合课题组自主研发的扫描探针设备,同时给予高效率的扫描控制,从而可以针对二维磁性材料应用领域展开更为深入的研究。本文重点介绍国内课题组灵活运用RHK公司扫描探针控制器,配合自主研发设计的扫描探针设备所开展的一系列国际前沿性二维材料领域的研究工作,其中各研究工作当前已在国际SCI核心学术期刊发表。科学成果的突破,离不开实验技术的不断攻坚克难。复旦大学物理学系教授高春雷、吴施伟团队通过团队自主研发搭建的扫描探针设备创造性地将原位化合物分子束外延生长技术和自旋化扫描隧道显微镜相结合,在原子层面彻底厘清了双层二维磁性半导体溴化铬(CrBr3)的层间堆叠和磁耦合间的关联,为二维磁性的调控指出了新的维度。相关研究成果以 《范德华尔斯堆叠依赖的层间磁耦合的直接观测》(“Direct observation of van der Waals stacking dependent interlayer magnetism”)为题发表于《科学》(Science)主刊,其中复旦大学物理学系博士后陈维炯为作者[2]。图中所示为陈博士与RHK技术总监进行深入的技术探讨,现场摸索优化测试信号,并详细沟通具体的测量细节,为后续高效率提取高质量大数据做准备。 课题组运用自主研制的自旋化扫描隧道显微镜测量技术,结合RHK公司先进的扫描探针显微镜控制器对自主研发实验设备实现测量调控,团队进一步在原子分辨下获取了样品磁化方向的相对变化,从而实现了实验突破,揭秘材料堆叠方式与磁耦合之间的直接关联性。团队以CrBr3双层膜作为主要研究对象和潜在突破口。双层CrBr3间较弱的范德瓦尔斯力赋予层间发生相对转动和平移的“自由”,从而使堆叠方式多样化成为可能。确实,在实验中获得的CrBr3双层膜具有两种不同的转动堆叠结构(H型和R型),分别对应迥异的结构对称性。其中,R型堆叠结构中,双层膜上下两层间同向平行排列,且沿晶体镜面方向作一定平移;H型堆叠结构中,双层膜上下两层之间旋转了180度,反向平行交错排列。这两种结构均是在相应的体材料中从未发现过的全新堆叠结构。至此,团队率先在原子尺度阐明了CrBr3堆叠结构与层间铁磁、反铁磁耦合的直接关联,为理解三卤化铬家族CrX3中不同成员的迥异磁耦合提供了指导。H型和R型堆叠的CrBr3双层膜自旋化扫描隧道显微镜测量 更多精彩案例: 《Nature》子刊:中国科大扭转双层石墨烯重要进展! 范德瓦尔斯堆叠的双层石墨烯具有一系列新奇的电学性质(例如,电场可调控的能隙、随扭转转角变化的范霍夫奇点以及一维拓扑边界态等)。当双层石墨烯的扭转转角减小到一系列特定的值(魔角)时,体系的费米面附近出现平带,电子在能量空间高度局域,电子-电子相互作用显著增强,出现莫特缘体和反常超导量子物态。另一方面,这些新奇的性质与双层石墨烯体系的扭转角度有着严格的依赖关系,体系层间相互作用随着转角减小会逐渐增强,因此探寻和研究这种层间耦合对理解扭转双层石墨烯的电子结构和物理性质至关重要。中国科学技术大学合肥微尺度物质科学研究中心国际功能材料量子设计中心(ICQD)物理系秦胜勇教授与武汉大学袁声军教授及其他国内外同行合作,利用扫描隧道显微镜和扫描隧道谱,次在双层转角石墨烯体系中发现了本征赝磁场存在的重要证据,结合大尺度理论计算指出该赝磁场来源于层间相互作用导致的非均匀晶格重构。相关研究成果以“Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene”为题,于2020年发表于《自然通讯》(Nature Communications 2020,11,371)上[3]。图:小角度双层石墨烯中本征赝磁场的发现。对于转角为0.48度的双层石墨烯,在不加外磁场情况下,实验发现了贋朗道能(图b),理论计算进一步验证了这种贋磁场行为(图c),并估算出贋磁场值大约为6特斯拉(图e)。 该团队系统研究了小角度下(1°)双层石墨烯的电学性质,次证实了由晶格重构导致的本征赝磁场。先,研究人员发现体系中赝磁场导致了低能载流子的能量量子化,并计算出这种本征赝磁场在实空间的分布。研究发现赝磁场的分布并不是均匀的,而是以AA堆叠为中心呈涡旋状,且在AA堆叠边界区域达到大值;另外,该赝磁场的大小随着转角的减小而增大,其分布和大小受到外加应力的调控。该项研究证实,在小角度扭转双层石墨烯中晶格重构导致的赝磁场和强关联电子态存在着内在的关联,层间相互作用对体系的结构重构和性质变化有着非常重要的影响。这一现象可以推广到其他范德瓦尔斯堆叠的二维材料体系中。这项工作同时表明,具有本征赝磁场的小角度扭转双层石墨烯是实现量子反常霍尔效应的一个可能平台,为研究二维材料的性质和应用提供了新的思路。RHK公司提供的R9plus扫描探针显微镜强有力的为国内自主研发技术提供有力保障,除了在科研领域内重点关注的二维材料发挥重要作用以外,也对国内其它相关扫描探针设备研发领域课题组提供技术支持。中国科学技术大学陆轻铀教授团队与中国科学院强磁场科学中心、新加坡国立大学等单位合作,利用扫描探针控制器实现了高精度的磁力显微镜观察表征,报告了在超薄BaTiO3/SrRuO3 (BTO/SRO)双层异质结构中发现铁电体(FE)驱动的、高度可调谐的磁性斯格明子。在BTO中,FE驱动的离子位移可以穿过异质界面,并继续为多个单元进入SRO。这种所谓的FE邻近效应已经在不同的FE/金属氧化物异质界面中得到了预测和证实。在BTO/SRO异质结构中,这种效应可以诱导相当大的DMI,从而稳定强大的磁性物质。此外,通过利用BTO覆盖层的FE化,可以实现对斯格明子性质的局部、可逆和非易失性控制。这种铁电可调的斯格明子系统为设计具有高集成性和可寻址性的基于斯格明子的功能设备提供了一个潜在的方向。相关成果以题为“Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures”发表在了Nat. Mater.上[4]。B20S5样品中磁性斯格明子的磁力显微镜表征 除此之外该课题组也对二维过渡金属硫化物材料MoTe2温度依赖的表面STM图像、电子结构、晶格动力学和拓扑性质进行了研究。研究结果以Uniaxial negative thermal expansion and band renormalization in monolayer Td-MoTe2 at low temperature为题,发表在美国物理学会杂志《物理评论B》上。该工作为二维过渡金属硫化物材料MX2的低温研究、实验制备和器件开发提供了直接的理论支持,其揭示的MoTe2低温下反常物性的内在物理机制对其它具有内在MX2八面体结构畸变的二维材料同样具有参考价值[5]。学术工作之外,该课题组在仪器设备研发方面也取得了优异的成果,课题组在国际上次研制成功混合磁体端条件下原子分辨扫描隧道显微镜(STM),相关研究成果发表在显微镜领域著名期刊Ultramicroscopy和著名仪器刊物Review of Scientific Instruments上。此工作利用混合磁体搭配RHK公司扫描探针设备开展原子分辨成像研究,对于突破当前超强磁场下只能开展输运等宏观平均效果测量的瓶颈,进入到广阔的物性微观起源探索领域,具有标志性意义。同时,课题组又针对超强磁场下的生物分子高分辨成像,搭建了一套室温大气环境下的分体式STM。该系统将一段螺纹密封式胶囊腔体通过一根长弹簧悬吊于混合磁体中心,并将STM核心镜体悬吊于胶囊腔体内用以减弱声音振动干扰。经测试,该STM在27.5特斯拉超强磁场下依然保持原子分辨。由于没有真空、低温环境的保护,搭建混合磁体超强磁场、超强振动和声音环境下的室温大气STM难度更大。此前,国际上还未曾报道过水冷磁体或混合磁体中的室温大气STM[6]。混合磁体STM系统:(a)混合磁体照片;(b)混合磁体STM系统简图;(c)STM镜体;(i-iv)分别为0T、21.3T、28.3T、30.1T磁场强度下石墨的原子分辨STM图像。 参考文献:1. Peng, Y., et al., A Quaternary van der Waals Ferromagnetic Semiconductor AgVP2Se6. Advanced Functional Materials, 2020. 30(34): p. 1910036.2. Chen, W., et al., Direct observation of van der Waals stacking-dependent interlayer magnetism. Science, 2019. 366(6468): p. 983-987.3. Shi, H., et al., Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat Commun, 2020. 11(1): p. 371.4. Wang, L., et al., Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat Mater, 2018. 17(12): p. 1087-1094.5. Ge, Y., et al., Uniaxial negative thermal expansion and band renormalization in monolayer Td?MoTe2 at low temperature. Physical Review B, 2020. 101(10).6. Meng, W., et al., 30 T scanning tunnelling microscope in a hybrid magnet with essentially non-metallic design. Ultramicroscopy, 2020. 212: p. 112975.
  • 新型二维铁电材料铁电畴结构的调控研究获进展
    铁电材料因具有稳定的自发极化,且在外加电场下具有可切换的极化特性,在非易失性存储器、传感器、场效应晶体管以及光学器件等方面具有广阔的应用前景。与传统的三维铁电材料不同,二维范德华层状铁电材料表面没有悬空键,这可降低表面能,有助于实现更小的器件尺寸。此外,传统三维铁电薄膜的外延生长需要合适的具有小的晶格失配的基材,而在二维层状材料中,许多具有不同结构特性的层可以被堆叠并用于铁电异质结构器件,不受基底的限制,从而提供了广泛的铁电特性可调性。某些二维层状材料已在实验或理论上被报道为铁电材料,包括薄层SnTe、In2Se3、CuInP2S6、1T单层MoS2、双层或三层WTe2、铋氧氯化物和化学功能化的二维材料等。然而,目前对二维材料铁电畴结构的调控及铁电-反铁电相变等方面缺乏系统性研究,在范德华层状材料中实现连续的铁电域可调性和铁电-反铁电相转变仍是挑战。   近日,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星团队与中国人民大学教授季威团队、南方科技大学副教授林君浩团队、松山湖材料实验室副研究员韩梦娇合作,在新型二维铁电材料铁电畴结构的调控方面取得进展。该团队发现了一种具有室温本征面内铁电极化的新型二维材料Bi2TeO5,并观测到由插层铁电畴壁诱导的铁电畴大小、形状调控机制以及由此产生的铁电相到反铁电相的转变。科研人员采用CVD法合成新型的超薄室温二维铁电材料Bi2TeO5,通过压电力显微测(PFM)证实该材料存在面内的铁电畴结构,结合电子衍射及原子尺度的能谱分析和第一性原理计算结果对其结构进行解析,结合像差校正透射电镜对亚埃尺度的离子位移进行分析(图1)。对Bi2TeO5中畴结构的进一步研究发现,样品中存在大量的条状畴结构。原子尺度结构分析和计算结果表明,由于Bi/Te插层的存在,有效降低了畴壁的应变能,从而使得180°畴壁的条状畴能够稳定(图2)。研究表明,通过调控前驱体中Bi2O3和Te的比例可以有效实现180°铁电畴宽度的调控及实现铁电-反铁电相的反转(图3、图4)。此外,Bi/Te插层的引入除了能够改变铁电畴的大小,同时可以对畴壁的方向进行调控(图5)。   本研究对Bi2TeO5室温面内铁电性的报道丰富了本征二维铁电材料体系。原子插层作为新的调控单元对铁电畴大小及方向的调控,以及由此产生的铁电-反铁电相变,为二维铁电材料畴结构及相结构的调控提供了新思路,并为在未来纳米器件领域的应用奠定了新的材料基础。相关研究成果以Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite为题,发表在《自然-通讯》(Nature Communications)上。图1.二维层状铁电材料Bi2TeO5的CVD生长及结构表征。a、二维层状Bi2TeO5的光镜图;b-c、样品的表面形貌及对应的面内PFM图像;d-f、不同方向Bi2TeO5的结构模型以及铁电极化的产生;g-I、Bi2TeO5的原子尺度结构表征及对应的极化分布。图2.Bi/Te插层诱导的180°铁电畴的形成。a、Bi2TeO5中典型条状180°铁电畴的面内PFM;b、180°铁电畴壁的原子尺度HAADF-STEM图;c-e、180°铁电畴壁处铁电离子位移(DBi)及晶格畸变(晶格转角θ)的原子尺度分析;f、弛豫后180°铁电畴的结构模型。图3.插层对畴宽度的调控及铁电相到反铁电相的转变。a-d、具有不同周期的180°畴HAADF-STEM图像;e-h、分别为对应图a-d中的离子位移分布。图4.插层诱导的反铁电相。a、具有反铁电性样品的PFM;b-d、反铁电样品中的原子尺度极化分布及晶格畸变分析;e、弛豫后的反铁电相结构模型。图5.畴壁台阶的形成及插层对畴壁取向的影响。a-b、样品中扇形铁电畴的面内PFM图像;c、扇形铁电畴边缘处大量台阶形成的倾斜畴壁面;d-e、畴壁台阶的原子尺度HAADF-STEM图像及对应的离子位移分析;f、弛豫后的畴壁台阶结构模型;g、Te和O浓度对畴壁台阶形成焓的影响。
  • 仪器情报,科学家利用多种表征揭示新型二维有机-无机异质结构的创新应用!
    【科学背景】随着二维材料研究的不断深入,二维有机-无机异质结的发展引起了广泛关注。这些异质结结合了有机和无机材料的优势,旨在实现新型器件和应用。然而,传统构建这些异质结的方法,如湿化学处理或机械剥离转移,往往伴随着界面污染、晶体质量差和尺寸受限等问题。因此,迫切需要一种新的策略来实现大规模、高质量的二维有机-无机异质结构。为了填补这一知识空白,陕西师范大学物理学与信息技术学院高健智教授、 国科学院苏州纳米技术与纳米仿生研究所李坊森、华中科技大学物理学院潘明虎教授、美国犹他大学刘锋教授合作在“Nature Communications”期刊上发表了题为“Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands”的最新论文。他们开发了一种基于自下而上的制备方法。本研究以自组装的方式在高度定向热解石墨基底上形成了单层1,3,5-三(4-羟基苯基)苯(THPB)氢键有机框架(HOF),并通过强层间耦合实现了顶层石墨烯的自提升。这一过程在超高真空环境中进行,保证了界面的干净度和异质结构的高结晶性。通过原位高分辨率扫描隧道显微镜/光谱(STM/STS)和角分辨光电子能谱(ARPES),研究人员详细表征了THPB-HOF的晶格结构和电子能带结构。他们观察到了THPB-HOF具有缺陷和无缺陷半部分的蜂窝结构,以及石墨烯层上的Dirac能带和THPB-HOF内的窄带。这项研究的成果不仅展示了自提升效应在制备大规模二维有机-无机异质结构中的有效性,还揭示了这些异质结构在电子性质和结构特征上的独特之处。【科学亮点】(1)实验首次采用自下而上的方法,成功合成了大规模漂浮的二维有机-无机异质结构,具有干净的界面和高结晶性。这种异质结构由单层THPB氢键有机框架(HOF)和自提升的石墨烯层组成,展示了优越的结构特性。(2)通过在超高真空(UHV)环境中进行有机气相生长,获得了高质量的THPB-HOF晶格,其呈现出蜂窝状的特征,包含缺陷和无缺陷的半部分,类似于分子“石墨烯”。实验结果显示,石墨烯层的Dirac能带位于费米能级(EF)附近,表明其优良的电学性能。(3)采用原位高分辨率扫描隧道显微镜(STM)和角分辨光电子能谱(ARPES)技术,观察到THPB-HOF的窄带和Dirac能带的共存。这些窄带位于更深的能量层面,显示了THPB-HOF的独特电子结构,符合DFT计算的拓扑平带特征。(4)研究还发现,在隧道谱中出现的局部自旋态是由于π共轭THPB体系中pz轨道的去除,这为进一步探索材料的磁性特性提供了线索。(5)该研究表明,自提升效应可以有效地构建二维有机-无机异质结构,具有大规模均匀性和长程有序性。这种方法不仅适用于THPB-HOF,也可扩展到其他范德瓦尔斯材料,为新型电子器件的开发开辟了新的方向。【科学图文】 图1:大规模二维有机/石墨烯异质结构的自下而上制造。图2:THPB-HOF的STM表征和第一性原理DFT计算。图3:THPB-HOF/石墨烯能带的ARPES观测。图4:在THPB-HOF上测量的隧道谱。【科学结论】本文通过自下而上的方法在超高真空环境中实现了高质量的异质结构,展示了控制材料界面和晶体质量的重要性。这一策略有效避免了传统湿化学和剥离转移过程中常见的污染问题,提示我们在材料合成中关注环境的影响,特别是微观界面的清洁度。其次,实验结果表明,良序的氢键有机框架(HOF)与石墨烯的有效结合,不仅保持了各自的优异电子特性,还使得材料的性能得到了显著提升。这启示我们在设计新型复合材料时,应考虑不同材料间的相互作用,探索如何通过界面耦合增强整体性能。此外,研究中观察到的Dirac能带和窄带的共存,为我们理解二维材料的电子特性提供了新的视角。特别是局部自旋态的发现,提示我们可以通过调整材料的化学环境和结构,诱导出新的量子态,从而拓展材料的应用潜力。这为未来在量子计算、传感器等领域的研究提供了新的方向。原文详情:Zhang, X., Li, X., Cheng, Z. et al. Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands. Nat Commun 15, 5934 (2024). https://doi.org/10.1038/s41467-024-50211-5
  • 乌尔姆大学电镜组《自然通讯》:二维聚合物透射电镜高分辨成像分辨率突破2埃!
    1.透射电镜(TEM)成像挑战透射电镜高分辨成像是新材料结构研究不可或缺的技术之一,尤其是发展得欣欣向荣的二维材料界, 得益于它们易于剥离或者生长成薄膜的性质, TEM在二维材料成像上可谓所向披靡。近年来二位聚合物是潜力无限的新兴二维材料,我们可以用乐高来想象二维聚合物,不同的积木结构(单体monomers)通过在水和气体界面聚合搭出一个二维的网格,每层网格之间再通过范德华力结合。各式单体带来了材料结构和性能的无限可能[1],与此同时结构的解析是发展新二位聚合物过程中不可或缺的一环。在TEM的成像的过程中,高速电子如同密集的子弹穿透研究材料,和材料进行碰撞并传递能量,一方面电子携带了结构的信息,同时这种强力轰击又破坏了材料的结构,连锁反应导致大面积的积木的轰然倒塌。这意味着我们只能用非常少量的电子来获得结构信息,否则材料就会被打乱成无序状态。然而电子少信息也少,只能得到低清的图像,缺乏高清细节。因此TEM表征二维聚合物以及所有对电子轰击敏感的材料是电镜领域的一大挑战。图1,辐照损伤黑魔法(图1左作者 J. S. Pailly, 来源, 中右来源:depositphotos)2.优化电压,突破2 埃[2]!乌尔姆大学的Kaiser教授电镜组的研究人员梁宝坤和戚浩远博士接受了这个挑战。重要的第一步,就是研究如何降低电子对于材料的损伤。进而提高成像的分辨率,看到二维聚合物里前所未见的细节。在TEM中,电子发射的速度是影响着电子对材料杀伤力的重要条件之一。研究人员在高分辨成像使用的电压范围内 (80-300 kV), 通过电子衍射量化测量了二维聚亚胺能收受的总最大电子轰击量。然而这里我们需要注意的是,由于电子和材料结构相比如此微小,不少电子在分子积木搭建的二维结构间隙中穿过,因此使用的电子总量高并不代表能获得更多结构信息,我们还需要得到其中递信息的电子的比例。在图表中,可以看到这两个变量相对电压有着相反的变化趋势。结合两个变量,我们得到电子利用的最高效率在120 kV 达到顶峰。图2 二维聚亚胺结构图示。材料可承受电子量,结构信息比例和电子利用效率不同电压的量化分析。最优电压和相差矫正的强强联手,研究人员终于看到了高清版的二维聚亚胺结构,成像分辨率首次达到了2 埃以内,细节历历在目!图3 2D-PI-BPDA 和2D-PI-DhTPA的高分辨图像以及图像模拟。FFT显示出图像分辨率突破 2 埃。3.首次呈现间隙缺陷表活引导的界面二维聚合物合成方法,实现了晶圆尺寸级别的高结晶度的薄膜自下而上的生长[3][4]。样品晶区之间的晶界结构以及晶体缺陷材料非常重要的特征。通过优化TEM成像条件,清晰的视野使更多结构细节得以浮现,二维聚亚胺的单体卟啉中心4埃直径的孔道清晰可见。然而在某些区域,图像上的‘异象‘让研究者一时以为自己眼花了。2D-PI-BPDA 的孔洞的四个角出现神秘亮点,2D-PI-DhTPA里发现的则是半月形的弧线。通过文献分析和密度泛函(DFTB)的计算的帮助,终于解密了这些神奇的图案来自于卟啉分子在规整的二位聚合物网格中形成的间隙缺陷。研究人员解释这种缺陷产生的动力来自于被酸性环境质子化之后带正电荷的分子间产生的静电排斥作用。就如同乐高积木上突然长出了一些新的凸起点,导致它们无法完美堆叠在一起。然而当他们扭转或者平移之后,对抗解除,就可以继续堆叠,从而构成了类似统计模型中展示的结构。图4 2D-PI-BPDA 和2D-PI-DhTPA的间隙缺陷图,DFTB计算结构以及图像模拟。4.分辨单体侧边官能团得益于分辨的提高,单体侧边的官能团能够被直接分辨。单体DhTPA 的苯环上2,5对位各链接了一个氢氧根,研究人员通过对比图像上单体宽度的半峰宽惊喜地发现在目前in-focus成像条件下,官能团的氢氧根侧链能被轻松分辨。这对理解二维聚合物的通道环境对材料性质的影响有重要意义。图5 2D-PI-BPDA 和2D-PI-DhTPA 链接单体的结构,以及其高分辨图像宽度测量。5.应用展望研究人员继续对半无序状态下的亚胺进行了成像和分析, 从图可见,原本六边形的网格结构被许多五边和七边的结构取代。为了量化分析,研究人员利用了神经网络的方法来分析结构中多边形的配比,以及单体间距的长短角度。这个新工具可以帮助电镜研究人员进一步提高数据分析的效率,跨学科联合,事半功倍。图6 a-PI 高分辨成像以及神经网络图片分析结果。参考文献:[1] Feng X and Schlüter A D 2018 Towards Macroscopic Crystalline 2D Polymers Angew. Chemie - Int. Ed.5713748–63[2] Liang B, Zhang Y, Leist C, Ou Z, Položij M, Wang Z, Mücke D, Dong R, Zheng Z, Heine T, Feng X, Kaiser U and Qi H 2022 Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films Submitted[3] Ou Z, Liang B, Liang Z, Tan F, Dong X, Gong L, Zhao P, Wang H, Zou Y, Xia Y, Chen X, Liu W, Qi H, Kaiser U and Zheng Z 2022 Oriented growth of thin films of covalent organic frameworks with large single-crystalline domains on the water surfac J. Am. Chem. Soc.[4] Sahabudeen H, Qi H, Glatz B A, Tranca D, Dong R, Hou Y, Zhang T, Kuttner C, Lehnert T, Seifert G, Kaiser U and Fery A 2016 Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness Hafeesudeen Nat. Commun.71–8
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制