当前位置: 仪器信息网 > 行业主题 > >

高精度闭环旋转台

仪器信息网高精度闭环旋转台专题为您提供2024年最新高精度闭环旋转台价格报价、厂家品牌的相关信息, 包括高精度闭环旋转台参数、型号等,不管是国产,还是进口品牌的高精度闭环旋转台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高精度闭环旋转台相关的耗材配件、试剂标物,还有高精度闭环旋转台相关的最新资讯、资料,以及高精度闭环旋转台相关的解决方案。

高精度闭环旋转台相关的论坛

  • 高速电主轴冷却系统中的电控针阀流量闭环控制解决方案

    高速电主轴冷却系统中的电控针阀流量闭环控制解决方案

    [b][color=#990000][size=16px]摘要:为解决电主轴热误差影响大以及预热和冷却响应速度慢的问题,本文基于改变冷却介质热容可调节散热量的原理,提出了高速和高精度冷却液流量调节的闭环控制解决方案。解决方案中的反馈式闭环控制系统主要包括非接触式位移传感器、高速电控针阀和高精度[/size][size=16px]PID[/size][size=16px]控制器,通过高速和高精度电控针阀对冷却介质流量进行实施调节,可快速改变作用在主轴上的散热量,使主轴轴向热变形快速达到最小值并始终保持稳定状态。[/size][/color][/b][align=center][size=16px][img=高速电主轴冷却系统中的电控针阀流量闭环控制解决方案,600,392]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060506528065_863_3221506_3.jpg!w690x451.jpg[/img][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 对于高速数控机床而言,热误差是机床最主要误差,而电主轴则是热误差的主要误差源之一。为有效降低电主轴发热的影响,研究工作主要集中在电主轴冷却结构和冷却控制方面,但仍存在以下两方面的技术难点需要攻克:[/size][size=16px] (1)冷却效果差:还需根据电主轴内部温度场的分布进行冷却结构设计以及差异化冷却。[/size][size=16px] (2)响应速度慢:缺乏主动热误差控制技术手段,需实现电主轴温度的自动闭环控制。[/size][size=16px] 目前国际上电主轴热误差控制的最高水平是瑞士FISCHER公司的电主轴及其主动式冷却技术,其关键是将冷却回路集成在主轴中而大幅降低了热误差,使轴向膨胀减少了70%。特别是响应速度极快,预热和冷却时间大幅减少,等待时间缩短五倍。其热误差控制效果如图1所示。[/size][align=center][size=16px][color=#990000][b][img=01.瑞士FISCHER公司电主轴冷却效果示意图,650,288]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060509497004_7930_3221506_3.jpg!w690x306.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 瑞士FISCHER公司电主轴冷却效果示意图[/b][/color][/size][/align][size=16px] 为解决国内电主轴热误差影响大以及预热和冷却响应速度慢的问题,本文基于改变冷却介质热容以调节散热的原理,提出了高速和高精度冷却液流量调节的闭环控制解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 在电主轴冷却过程中,除了需要电主轴具有合理的冷却结构之外,还要求能将主轴所产生的热量及时带走,并使主轴受热引起的膨胀量快速达到最小值且保持恒定。[/size][size=16px] 针对国内电主轴冷却响应速度慢的问题,本文的解决方案是基于改变冷却介质热容的原理,即改变冷却介质流量来改变冷却介质热容,这意味着快速改变了作用在主轴上冷却量,由此来主动调节主轴温度并快速达到稳定。解决方案的实施采用闭环控制系统,闭环控制系统包括检测电主轴热膨胀位移量的非接触位移探测器、接收主轴热膨胀变形信号的高精度PID控制、受PID控制器驱动并对恒温冷却介质流量进行高速精密调节的电子针阀,此闭环控制系统结构如图2所示。[/size][align=center][size=16px][color=#990000][b][img=02.电主轴主动冷却闭环控制系统结构示意图,500,287]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060510119009_2558_3221506_3.jpg!w690x397.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 电主轴主动冷却闭环控制系统结构示意图[/b][/color][/size][/align][size=16px] 在此解决方案中,闭环控制系统中每一个部件的精度和响应速度等技术指标都会影响到电主轴最终热误差的控制精度。[/size][size=16px] 对于非接触位移探测器而言,需要具有几个微米的测量精度和一秒量级的响应速度,对于高速高精度机场的电主轴则可能需要更高位移测量精度和响应速度。位移探测器一般选择激光式或电容式位移传感器。[/size][size=16px] 对于冷却介质流量的调节,需根据电主轴规格、发热量和冷却介质最大输出流量选择相应流量调节范围的电控针阀,但无论流量调节是什么范围,都要求电控针阀具有小于一秒的响应速度,并具有很好的线性度,为此在本解决方案中选择采用了NCNV系列电动针阀,可直接采用模拟信号0~10V进行控制,响应速度800ms,线性度0.1~11%,孔径范围为0.95~6.7mm,液体水的最大流量范围是0.94~62.4L/min,流量调节分辨率为0.1~2L/min,完全可以满足各种规格电主轴的快速冷却调节。[/size][size=16px] 对于PID控制器,解决方案选择了VPC2021系列超高精度PID控制器,此PID控制器具有24位AD、16位DA和0.01%最小输出百分比,可充分发挥位移探测器和电控针阀的高精度优势。同时此系列PID控制器还具有独立双通道控制、PID自整定、RS485通讯接口、串行控制和计算机软件等高级功能,可对两个冷却回路进行同时控制,便于进行调试以及后续的上位机通讯。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案所使用的直接冷却流量调节的闭环控制系统,结合合理的冷却结构设计,可大幅度减少电主轴的轴向膨胀,使预热和冷却速度更快,可大幅缩短等待时间。更重要的是采用了闭环控制方式,使电主轴始终处于稳定的热条件下,保证了加工精度的重复性,使得废品率更低。另外这种主动式冷却方案可有效散发主轴中产生的热量,提高了电机过载能力。[/size][size=16px][/size][align=center][size=16px][b][color=#990000]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 金属硬度计的力传感器闭环系统是怎么回事?

    [font=arial, helvetica, sans-serif]在工业化初期,测量机械结构的试验力至关重要。大约在1940年,一种应变式称重传感器被发明出来。用于测量试验力并将该力值以电信号形式输出的力传感器,大部分使用应变片来将材料变形/力转换成电信号。[/font][back=transparent][font=arial, helvetica, sans-serif]19世纪50年代,力传感器应用于拉伸和压缩试验机。力传感器理想[/font][/back]的安装位置,是在与工件的连接处的前端或尽量靠近的区域。电子系统利用反馈信号来调节加载装置,进而得到设定的试验力。[font=arial, helvetica, sans-serif][back=transparent]基于闭环系统的优越性能,如今,所有电子拉伸压缩试验机都只采用闭环控制。闭环系统可以连续测量加载试验力,且闭环系统中使用的组件比砝码式要简单得多。正如上文提到的砝码式系统,为确保运行正常,砝码式系统要求杠杆、轴点和零部件间的摩擦(相互配合)。[/back][/font][back=transparent][font=arial, helvetica, sans-serif]对于一台硬度计,压头是测试系统与样品接触的一[/font][/back]部分,它是获得正确硬度值最重要的一个因素。为了消除结构缺陷的影响,机械方面的移动或其他干扰都会影响试验力,因此力传感器需与压头尽可能靠近。[back=transparent][font=arial, helvetica, sans-serif][back=transparent]只有这样,基于力传感器的优势,闭环系统才能获得[/back]较高的[/font][/back][font=arial, helvetica, sans-serif][back=transparent]试验力精度。如将力传感器安装在硬度计其他位置,它相对于传统砝码式系统的优势将不复存在。[/back][/font][img=闭环控制,544,622]https://ng1.17img.cn/bbsfiles/images/2022/02/202202280925498150_4925_3317_3.jpg!w544x622.jpg[/img][font=arial, helvetica, sans-serif][back=transparent][b]闭环系统的优势:[/b][/back]高精度试验力力反馈系统确保加载试验力的准确性宽泛的试验力且不受限于机械结构简便的测试流程对比砝码系统,简化机械结构简单的校正程序[/font][font=arial, helvetica, sans-serif][back=transparent][b]闭环系统的缺点:[/b][/back]对比砝码系统,价格更贵需要供电系统[/font]

  • 硬度计的力传感器闭环系统是怎么回事呢?

    硬度计的力传感器闭环系统是怎么回事呢?

    [font=arial, helvetica, sans-serif]在工业化初期,测量机械结构的试验力至关重要。大约在1940年,一种应变式称重传感器被发明出来。用于测量试验力并将该力值以电信号形式输出的力传感器,大部分使用应变片来将材料变形/力转换成电信号。[/font][size=14px][back=transparent][font=arial, helvetica, sans-serif]19世纪50年代,力传感器应用于拉伸和压缩试验机。力传感器理想[/font][/back]的安装位置,是在与工件的连接处的前端或尽量靠近的区域。电子系统利用反馈信号来调节加载装置,进而得到设定的试验力。[/size][font=arial, helvetica, sans-serif][size=14px][back=transparent]基于闭环系统的优越性能,如今,所有电子拉伸压缩试验机都只采用闭环控制。闭环系统可以连续测量加载试验力,且闭环系统中使用的组件比砝码式要简单得多。正如上文提到的砝码式系统,为确保运行正常,砝码式系统要求杠杆、轴点和零部件间的摩擦(相互配合)。[/back][/size][/font][size=14px][back=transparent][font=arial, helvetica, sans-serif]对于一台硬度计,压头是测试系统与样品接触的一[/font][/back]部分,它是获得正确硬度值最重要的一个因素。为了消除结构缺陷的影响,机械方面的移动或其他干扰都会影响试验力,因此力传感器需与压头尽可能靠近。[/size][back=transparent][font=arial, helvetica, sans-serif][back=transparent]只有这样,基于力传感器的优势,闭环系统才能获得[/back]较高的[/font][/back][font=arial, helvetica, sans-serif][back=transparent]试验力精度。如将力传感器安装在硬度计其他位置,它相对于传统砝码式系统的优势将不复存在。[/back][/font][img=闭环控制,544,622]https://ng1.17img.cn/bbsfiles/images/2022/02/202202280925498150_4925_3317_3.jpg!w544x622.jpg[/img][font=arial, helvetica, sans-serif][size=14px][back=transparent][b]闭环系统的优势:[/b][/back]高精度试验力力反馈系统确保加载试验力的准确性宽泛的试验力且不受限于机械结构简便的测试流程对比砝码系统,简化机械结构简单的校正程序[/size][/font][font=arial, helvetica, sans-serif][size=14px][back=transparent][b]闭环系统的缺点:[/b][/back]对比砝码系统,价格更贵需要供电系统[/size][/font]

  • 串级控制和超高精度PID调节器在微张力精密控制中的应用

    串级控制和超高精度PID调节器在微张力精密控制中的应用

    [size=16px][color=#339999][b]摘要:采用当前的各种涂布机很难适用气体扩散层这类脆性材料的涂布工艺,需要控制精度更高的微张力控制系统。为此本文基于串级控制原理,提出了采用双闭环PID控制模式和超高精度PID张力控制器的解决方案,一方面形成浮动摆棍闭环和主动辊闭环构成的串级控制回路,另一方面是采用目前测控精度最高的工业用PID控制器,结合相应配套的高精度传感器和执行器,可真正实现微张力的精密控制。[/b][/color][/size][align=center] [img=微张力精密控制,690,225]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628010805_2785_3221506_3.jpg!w690x225.jpg[/img][/align][size=16px] [/size][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 气体扩散层(GDL)在燃料电池中起到支撑催化层、收集电流、传导气体和排出反应产物水的重要作用,常用于质子交换膜燃料电池,在具体生产工艺中需要在GDL材料表面定量涂布一层特定功能涂料。由于GDL基体层材料较脆,涂布工艺过程中易造成基体层材料断裂或撕裂,转弯处易折断,在高温状态下材料比常温下更脆弱,一般要求涂布过程中控制张力设定在5~10N很窄的一个范围内,且还需要在此微张力范围内具有较高的控制精度。[/size][size=16px] 传统涂布设备,浮动摆辊均为气缸驱动,直线电位器反馈摆辊位置。存在以下问题:[/size][size=16px] (1)无法精确控制摆辊位置。[/size][size=16px] (2)气缸行程只有一个方向,需要料膜的张力平衡气缸推力,易造成GDL脆性材料拉伸。[/size][size=16px] (3)摆辊瞬间偏移至一端时,料膜张力瞬间增大或减小,极易造成GDL脆性材料的撕裂甚至断裂。[/size][size=16px] (4)张力控制器中的模数转换AD精度和数模转换DA精度较低,最小输出百分比也只能达到0.1%,无法提供更高精度的测量和控制。[/size][size=16px] 由此可见,为实现GDL脆性材料的微张力控制,实现具有精度高、张力小、控制稳的伺服电机驱动的浮动摆辊微张力控制是氢能材料制备的关键技术,为此本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为实现涂布工艺中的微张力高精度控制,本文提出的解决方案包含以下两方面的内容:[/size][size=16px] (1)采用双闭环PID控制形式调节料膜张力,即对浮动摆棍和主动辊进行独立的PID控制。[/size][size=16px] (2)采用超高精度的双通道PID控制器,每个通道都具有24位AD、16位DA和0.01%最小输出百分比。[/size][size=16px] 解决方案所涉及的微张力控制系统结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=双闭环微张力控制系统结构示意图,500,200]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628351448_1980_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 双闭环微张力控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图1所示的双闭环控制系统中,浮动摆辊PID闭环控制的具体过程是根据工艺要求,给控制器输入张力值,控制器根据张力传感器信号与设定张力值之差进行快速PID计算后输出控制信号,此控制信号控制浮动摆辊伺服驱动器和伺服电机动作,从而使浮动摆棍产生偏移使得料膜张力快速达到设定值。[/size][size=16px] 浮动摆辊的PID闭环控制过程主要是通过浮动摆辊偏移来调节料膜张力,主动辊速度仍为主机速度,并未参与调节。当浮动摆辊伺服电机持续动作调节料膜张力时,浮动摆辊偏差会导致累积,最终达到浮动摆辊位置报警值。因此仅由浮动摆辊伺服电机调节料膜张力不能完全解决张力不稳、精度不高的问题,为此增加主动辊PID闭环控制实现张力的精准控制。[/size][size=16px] 第二路主动辊PID闭环控制的具体过程是在浮动摆辊PID闭环控制实现调节后,由于浮动摆辊偏离中位,位移传感器跟随浮动摆辊偏移产生对应的偏移电压信号并输入给控制器,控制器根据此偏移电压信号与0V值的正负偏差进行快速PID计算后输出控制信号,此信号控制主动辊伺服驱动和主动辊伺服电机来改变主动辊速度,使得浮动摆棍回到中位,最终实现GDL脆性材料的微张力精准控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决微张力的精密控制问题,具体优点如下:[/size][size=16px] (1)解决方案所采用的双闭环控制结构,实际上是一个非常典型的串级控制结构,因此充分利用了串级控制结构的优势,更利于实现高精度张力的控制。[/size][size=16px] (2)制约微张力精密控制的另一个主要因素是控制器的精度普遍不高,采用PLC很难达到超高的采集和控制精度。因此,本解决方案中采用了超高精度的双通道PID控制,既使用了串级控制功能,又实现了超高精度的PID控制。[/size][size=16px] 当然,传感器和执行器精度也是制约微张力精密控制的因素,为了真正实现微张力的精密控制,还需在使用串级控制和超高精度PID控制器的基础上,配备相应高精度的传感器和执行器。[/size][size=16px][/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align]

  • 【讨论】闭环扫描的概念

    在很多AFM介绍中看到闭环扫描的概念,感觉非常奇怪,闭环在这里是指得什么意思呢?难道还有开环的AFM不成?

  • 超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    [align=center][img=饱和蒸汽温度精密控制,690,315]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160915568591_8820_3221506_3.jpg!w690x315.jpg[/img][/align][size=14px][color=#000099]摘要:在目前的饱和蒸汽轮胎硫化工艺中,普遍还在采用电动定位器和电动执行器形式的减压阀进行温度控制。这种控温方式存在响应时间长、控温波动大和磨损引起寿命短等问题。本文介绍了采用电气比例阀和气动减压阀组合的替代方案,其中还采用了超高精度的串级PID控制器,此串级控制法替代方案可大幅提高蒸汽温度的控制精度和速度,并延长阀门的使用寿命和可在线维护。作为一种新技术,此解决方案还可推广应用到其它蒸汽加热领域。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#000099]一、问题的提出[/color][/size][/b][size=14px][/size][size=14px] 硫化是目前轮胎生产过程中的最后一道工序,一般通过热硫化将成型的胎胚变成了轮胎成品。目前的硫化方式基本都是根据硫化内温的介质不同来区分,而外温实现方式(或称热板温度、模温)一般都是注入一定压力的蒸汽进行温度控制。[/size][size=14px][/size][size=14px] 本文将主要讨论轮胎硫化过程中的外温变温控制技术,有关内温调控技术则将在后续报告中再进行详细阐述。[/size][size=14px][/size][size=14px] 外温和外压是轮胎硫化的主要工艺参数,其控制的好坏直接影响硫化轮胎的质量。外温的实现通常使用蒸汽作为加热介质,而蒸汽一般都是饱和蒸汽。饱和蒸汽的一个重要特性是其温度与压力之间一一对应,即饱和蒸汽的温度始终由其压力决定,而轮胎硫化外温蒸汽加热工艺就是利用此特征来调整蒸汽压力以实现对蒸汽温度的精密控制。[/size][size=14px][/size][size=14px] 在目前的大多数蒸汽温度控制过程中,如图1所示,基本都采用的是典型的单闭环PID控制方法,使用了复杂笨重的电动减压阀来控制饱和蒸汽温度,即采用一个温度传感器将信号发送给PID控制器,控制器向电动阀门定位器发送命令信号,阀门定位器控制阀门所需开度以使得温度接近设定温度。这种控制的结果是阀门必须一直工作以保持温度,循环打开和关闭等同于磨损阀门部件,最大的问题是这种带有阀门定位器形式的电动减压阀的运行速度很慢,对PID控制器的控制信号有很大的响应滞后,如果观察热电偶的信号输出,则会在目标温度周围出现正弦波形,而不会出现平滑、平坦的温度信号,因此这种控制方式往往呈现出蒸汽温度波动较大的现场。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=传统单回路蒸汽温度控制结构示意图,690,170]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160917432405_1591_3221506_3.jpg!w690x170.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图1 采用阀门定位器形式的电动减压阀蒸汽温度控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 针对上述目前电动定位器和电动执行器结构形式的减压阀在轮胎硫化蒸汽温度控制中存在响应时间长、控温波动大和磨损引起寿命短等问题,本文将介绍采用电气比例阀和气动减压阀组合的替代方案,通过超高精度的串级控制PID控制器,此替代方案可大幅度提高蒸汽温度的控制速度和精度,并延长减压阀的使用寿命。此解决方案还可以推广应用到其它蒸汽加热设备。[/size][size=14px][/size][b][size=18px][color=#000099]二、解决方案[/color][/size][/b][size=14px][/size][size=14px] 在上述传统的饱和蒸汽温度控制过程中,采用的是一个典型的闭环控制回路,即作为执行机构的带阀门定位器的电动减压阀与PID控制器和温度传感器构成一个闭环控制。[/size][size=14px][/size][size=14px] 新的解决方案则是采用了双闭环PID控制回路组成的串级控制法,其结构如图2所示。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=新型双回路串行控制法蒸汽温度控制结构示意图,690,223]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160918269307_9385_3221506_3.jpg!w690x223.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图2 采用超高精度PID控制器、电气比例阀和气动减压阀的串行控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 在图2所示解决方案中,采用了经典的串级控制结构,即温度传感器、气动减压阀、电气比例阀和串级PID调节器组成一个双回路闭环控制系统。其中自带压力传感器和PID控制板的电气比例阀与气动减压阀构成次回路,用于调节气动减压阀的开度;温度传感器、串级PID控制器和次级回路再构成主回路,主回路采集硫化箱温度,经PID计算后输出控制信号给次回路中的电气比例阀,这里的次回路此时相当于主回路的执行器。[/size][size=14px][/size][size=14px] 与传统单回路控制相比,这种结合了电气比例阀和高精度PID调节器,并采用了串级控制法的蒸汽温度控制系统,充分发挥了串级控制的特点,有以下几方面的优势:[/size][size=14px][/size][size=14px] (1)可明显改善蒸汽温度控制精度和速度,控制温度的变化曲线平摊且与设定曲线非常接近,蒸汽温度达到稳定可节省几十分钟。[/size][size=14px][/size][size=14px] (2)对于高压饱和蒸汽的压力扰动具有较迅速和较强的克服能力。[/size][size=14px][/size][size=14px] (3)可消除次回路(气动减压阀和电气比例阀)的非线性特性的影响。[/size][size=14px][/size][size=14px] (4)气动减压阀可采用不同规格的气动圆顶加载压力调节器,可与各种精度和流量的电气比例阀组合实现不同规格轮胎硫化中任意设定温度的自动控制。[/size][size=14px][/size][size=14px] (5)先进的电气比例阀替代了传统的电气转换器(I/P和E/P),不再需要定期重新校准的繁复操作,不再需要仪表空气而只需加装气体过滤器即可,也不会不断排放空气减少压缩控制的浪费,重要的是控制精度可以达到任何设定点的±0.1%。[/size][size=14px][/size][size=14px] 总之,上述解决方案是目前大多数蒸汽温度控制技术的升级换代,可大幅提高轮胎硫化过程中蒸汽温度的控制精度和速度,此解决方案完全可以推广应用到其它蒸汽加热领域。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=14px][/size]

  • 软管夹管阀在流体介质高精度压力和流量控制中的应用

    软管夹管阀在流体介质高精度压力和流量控制中的应用

    [align=center][b][img=采用夹管阀实现无菌流体系统中的高精度压力和流量控制解决方案,690,450]https://ng1.17img.cn/bbsfiles/images/2023/10/202310181658154269_9598_3221506_3.jpg!w690x450.jpg[/img][/b][/align][size=16px][b][color=#000066][/color][color=#339999]摘要:针对卫生和无菌流体系统中柔性管路内的压力和流量控制,本文介绍了采用电控夹管阀的高精度控制解决方案。解决方案基于反馈控制原理,采用压力传感器或流量传感器进行测量并反馈给程序控制器,控制器驱动夹管阀来改变柔性管路的内径从而实现高精度控制。尽管解决方案只介绍了最基本的夹管阀闭环控制回路,但这种简单控制可以进行多种组合以适用于多种流体介质的压力流量控制。本文同时也介绍了夹管阀应用的局限性和改进方法。[/color][/b][/size][align=center][size=16px][color=#339999][b]=======================[/b][/color][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 夹管阀是一种打开或关闭流体路径,而阀体不会与流动介质接触的阀门,也就是流体管路内径的控制依赖于弹性管路外部的挤压压力。夹管阀主体内部不会接触到流体,仅有管路内部会接触流经的液体或气体,可确保流体不会受到污染,且能保持夹管阀的清洁,因此适合做为生物加工、食品工业、饮料工业、剂量系统、自动贩卖机、血液处理/分析、实验室分析、冲洗程序需无菌的生物制药等设备的阀门。与其他闸阀或活塞阀相比,使用夹管阀的主要优点是让阀体不会与腐蚀性流动介质接触,因此无论在使用寿命或卫生方面都更持久、干净。[/size][size=16px] 在夹管阀的实际应用中,往往是通过改变夹管阀挤压压力来调节软管的开度,以控制管路内[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]介质的输送流量与流速,同时也相应的改变了软管内部的背压压力。夹管阀只是作为一个调节流量和压力的执行器件,还无法进行管路内部压力和流量的闭环自动控制。[/size][size=16px] 为了采用夹管阀实现无菌流体系统中的压力和流量控制,特别是实现高精度的自动控制,本文将介绍一种闭环控制解决方案及其一些具体应用案例。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了高精度的控制流体介质管路中的压力和流量,本解决方案提出的控制系统如图1所示。解决方案设计的控制系统是一种最基本的控制结构,可以根据实际应用情况进行各种组合。[/size][size=16px] 图1所示的控制系统主要由泵、压力传感器、流量传感器、夹管阀、程序控制器和柔性管材组成,其各组件的功能如下:[/size][size=16px] (1)泵:主要用来驱动流体在柔性管路内流动,相当于一个进液源。[/size][size=16px] (2)压力传感器:测量柔性管路内流动液体的压力,并输出相应的压力测量信号。[/size][size=16px] (3)流量传感器:测量柔性管路内流动液体的流量,并输出相应的流量测量信号。[/size][size=16px] (4)夹管阀:夹管阀采用的是电控式夹管阀,可灵活调节挤压压力,对应最大可夹软管外径7mm,软管壁厚范围0.5~2mm,夹紧留隙调节为0.5~2mm。夹管阀可方便地调节运动滑块的初始位置,灵活适用不同壁厚尺寸的软管。24V直流供电,控制信号为0~5V或0-20mA。[/size][size=16px] (5)程序控制器:程序控制器采用的是VPC2021系列多功能超高精度PID真空压力程序调节器,可接入真空、压力、流量、温度和张力等47种传感器信号,具有串级控制、分程控制、比值控制等高级控制功能,具有控制程序功能和外部设定点功能,具有24位AD、16位DA和0.01%最小输出百分比。控制器自动计算机软件,可由计算机进行远程参数设置和运行操作。[/size][align=center][size=16px][color=#339999][b][img=夹管阀流体压力和流量闭环控制系统结构示意图,600,296]https://ng1.17img.cn/bbsfiles/images/2023/10/202310181700229428_1520_3221506_3.jpg!w690x341.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 夹管阀流体压力和流量精密控制系统结构示意图[/b][/color][/size][/align][size=16px] 解决方案中的压力和流量控制系统的工作过程是进液通过泵的驱动使流体介质在柔性管道内流动,压力或流量传感器采集相应的压力或流量信号并传输给程序控制器,控制器根据设定值进行比较后输出控制信号驱动夹管阀动作,使管路内的压力或流量准确达到设定值。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 尽管上述夹管阀具有高精度的压力和流量的控制能力和响应速度快的特点,但由于夹管阀会改变柔性管路的内径大小,使得管路内部的背压增大,而这种压力的增大必须要在软管的可承受范围之内,否则很容易造成软管的爆裂或接口爆开。因此,更安全可靠的压力和流量控制方式是不使用夹管阀,而是直接控制进液压力,通过改变进液压力来调节管路内的介质压力和流量。这种进液压力调节有以下三种控制方式:[/size][size=16px] (1)采用转速可调节式泵来改变进液压压力。[/size][size=16px] (2)采用注射泵来改变进液压力和流速。[/size][size=16px] (3)采用进液容器顶部气压控制方式的压力控制器,同时连接外部压力或流量传感器形成闭环控制回路,以改变液池顶部加载压力实现压力和流量的自动控制。[/size][size=16px] 上述的三种控制方式中,顶部气压控制方式的技术优势最为明显,同样可以实现高精度的压力和流量控制,特别是可以应用到微小流量的快速和超高精度控制。[/size][size=16px] 另外,对于微流控芯片技术中所用的微小流量控制,往往会使用到小于1mm的很细软管,这些微细软管内的压力和流量控制则可能不太适合采用夹管阀,这时更适合采用注射泵或压力控制器形式。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 高精度级联控制器在印刷和喷绘设备油墨流量和压力控制中的应用

    高精度级联控制器在印刷和喷绘设备油墨流量和压力控制中的应用

    [size=16px][color=#339999][b]摘要:针对现有技术在印刷或喷绘设备中油墨流量控制不准确,使得油墨粘稠度产生异常造成批量性质量方面的问题,本文提出了相应的串级控制解决方案,即通过双回路形式同时控制油墨的流量和压力。本解决方案不仅可以保证油墨最终流量的控制精度和避免出现质量问题,同时还采用了专门的PID串级控制器,代替传统的PLC控制器且无需再进行编程工作。[/b][/color][/size][align=center][size=16px] [img=高精度级联控制器在印刷和喷绘设备油墨流量控制中的应用,550,300]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161500376435_5330_3221506_3.jpg!w690x377.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 油墨是用于印刷的重要材料,它通过印刷或喷绘将图案、文字呈现在承印物上。油墨中的主要成分和辅助成分主要由连结料(树脂)、颜料、填料、助剂和溶剂等组成,它们均匀地混合并经反复轧制而成一种黏性胶状流体。油墨具有一定的粘稠度,当油墨在管道内输送时,如果流量发生改变或发生其他意外情况,就会导致油墨的粘稠度发生改变,很容易造成批量性的不良品发生。由此可见,油墨流量的精密和稳定控制是印刷和喷绘设备中的核心技术之一。[/size][size=16px] 针对油墨流量精密控制需求,特别是根据客户的要求以及现有技术的不足,希望可以进行技术升级以预防因油路,气路,或者油墨粘度异常造成批量性的问题。为此,为了具体解决油墨流量控制不准确使得油墨粘稠度产生异常造成批量性质量问题,本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案基于流量和压力串级控制原理,即对油墨流量和油墨压力同时进行调整,由此实现高精度的油墨流量控制。解决方案的结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.油墨流量和压力精密控制系统结构示意图,690,312]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161502292249_6607_3221506_3.jpg!w690x312.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 油墨流量串级控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,解决方案的油墨流量控制系统由压力控制和流量控制两个闭环控制回路构成,这两个控制回路详述如下:[/size][size=16px] (1)压力控制回路:压力控制回路由电气比例阀独立构成,其内部包括压力传感器、调节阀和控制器。压力控制回路的作用是对高压气源压力进行自动减压,并快速恒定控制在压力设定值上。压力控制回路作为串级控制(或双闭环控制)的辅助控制回路(内部闭环回路),主要用来控制加载在油墨桶上的压力,以便快速调节和控制油墨桶的油墨输出流量。[/size][size=16px] (2)流量控制回路:流量控制回路由流量计、串级控制器和压力控制回路构成。在控制过程中,串级控制器检测流量计输出信号并与设定值比较,然后驱动压力控制回路使油墨输出流量稳定在设定流量值上。流量控制回路作为串级控制(或双闭环控制)的主控制回路(外部闭环回路),主要用来检测油墨桶的输出流量并给压力控制回路输出控制设定值。[/size][size=16px] 通过上述两个控制回路的串联最终构成串级控制(级联控制或双闭环)回路,即流量控制回路的输出作为压力控制回路的输入,压力控制回路作为最终流量控制回路的执行机构。[/size][size=16px] 另外需要说明的是,图1只是给出了双闭环控制回路的结构示意图,在具体实施过程中还需根据流量控制精度、耐压范围和油墨喷嘴孔径等工艺参数进行相应的配套器件选择,在此方案中使用了超高精度的PID串级控制器,具有24位AD、16位DA和0.01%最小输出百分比,这样基本就可以满足绝大多数油墨流量控制精度的要求。[/size][size=16px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 本文所述的串级控制系统,通过PID串级控制器、电气比例阀、压力传感器和高精密流量计等元件,通过流量控制和压力控制的双闭环控制形式,实现了设定流量和实际流量自动精密控制。由此可预防因油路、气路或者油墨粘度异常造成批量性的不良发生。[/size][size=16px] 本解决方案的特色之一是采用专门的PID串级控制器来代替一般控制中所用的PLC控制装置,通过串级控制器的配套软件可方便进行流量控制,无需再对PLC控制装置进行编程的繁复操作。[/size][align=center][b][color=#339999][/color][/b][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 超高精度低温程序控制中的电增压液氮泵稳压恒流解决方案

    超高精度低温程序控制中的电增压液氮泵稳压恒流解决方案

    [size=16px][color=#339999][b]摘要:当前各种测试仪器中的低温温度控制过程中,普遍采用电增压液氮泵进行制冷和辅助电加热形式的控温方式。由于液氮温度和传输压力的不稳定,这种方式的控温精度仅能达到0.5K,很难实现小于0.1K的高精度控温。为此本文基于饱和蒸气压原理提出了液氮温区高精度温度控制解决方案,通过对液氮罐内的正压压力进行恒定控制,使液氮温度处于准确稳定状态并提供恒定的液氮输送流量,为后续试验台的电加热控温提供了稳定的制冷量。[/b][/color][/size][align=center][size=16px][color=#339999][b]---------------------------[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 液氮作为一种廉价且易于获得的低温介质,在科学仪器领域的低温环境实现中应用十分广泛,如各种各种探测器、热分析仪(TGA,STA,TMA,DMA,DMTA)、激光器、电子显微镜和各种低温试验平台等,都在采用液氮进行低温控制。在这些液氮温度范围内的低温控制系统中,普遍采用加压泵送方式将液氮传输到指定容器或试验平台中,如果进行低温宽温区的温度控制则还需在低温管路和试验平台上增加辅助加热器进行温度调节和控制。[/size][size=16px] 现有的加压输送液氮的手段主要是基于增大液氮罐内压力,从而将液氮压出,具体增加罐内压力的方式是通气法和电加热法。这两种方式利用了液氮自身物理变化而获得液氮蒸汽压力,没有借助其他介质的加压,不会影响液氮的纯度,关键是可以采用不同压力输送出低温氮气和气液混合液氮,以满足不同低温温度的需要。[/size][size=16px] 由于电加热方式结构简单,加热功率大且易于控制,液氮输送速度速度快,目前绝大多数低温温度控制多采用这种电加热方式的液氮泵,结合试验台上配备辅助电加热器,可对试验台或样品温度进行一定精度的低温温度控制。这种液氮试验平台的温度控制系统典型结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=常用液氮冷却低温温度控制系统结构示意图,500,444]https://ng1.17img.cn/bbsfiles/images/2023/07/202307271408453472_5868_3221506_3.jpg!w690x614.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 常用液氮冷却低温温度控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示的常用低温控制系统,通过液氮冷却并配合加电热器的正反向PID调控可实现低温温度控制,但这种方式只适用于远离液氮沸点区域(≥110K)的低温控制,不能在接近液氮沸点附近(77~110K)达到优于±0.1K以内的高精度控温,因为在接近液氮沸点附近存在气液两相共存状态,这两种状态在接近液氮沸点的温度区域非常不稳定,特别是在杜瓦瓶内压力波动较大时极易出现两相互转现象,从而导致冷却温度出现比较大的无规律波动。[/size][size=16px] 另一个影响低温温度产生无法控制波动的因素是室温环境对输送管路和阀门内液氮的加热作用,这对高精度的低温控制影响十分明显且不稳定。[/size][size=16px] 由于冷却温度波动较大,尽管在试验台上采用了高导热材料进行快速均温,以及辅助电加热器进行补偿调节,但这种常用的流动液氮形式低温控制方法也只能勉强达到±0.5K的控温精度,基本无法提高低温温度的高精度控制。由此可见,在必须采用流动液氮进行低温冷却的情况下,实现高精度的低温控制是个需要解决的技术问题,为此本文提出如下解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 根据影响高精度低温控制的压力因素和室温环境加热因素,基于饱和蒸汽压时气液处于两相平衡的物理现象,本文提出的解决方案所设计的流动液氮高精度低温温度控制系统如图2所示,实现高精度低温控制的具体方法主要包括以下两方面的内容:[/size][align=center][size=16px][color=#339999][b][img=高精度液氮冷却低温温度控制系统结构示意图,500,468]https://ng1.17img.cn/bbsfiles/images/2023/07/202307271409104704_2148_3221506_3.jpg!w690x647.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 高精度液氮冷却低温控制系统结构示意图[/b][/color][/size][/align][size=16px] (1)对液氮罐内气体压力进行高精度恒定控制,使杜瓦瓶中的液氮始终处于已知可控的温度下,由此获得温度和流量稳定的液氮输出源。[/size][size=16px] (2)液氮输出管路中,避免使用很难进行绝热处理的各种阀门,而是采用了真空输送管,最大限度减小室温环境对管路内液氮的影响。[/size][size=16px] 此解决方案的核心是将液氮温度控制和试验台温度控制分开构成两个独立控制回路,通过双通道PID控制器同时进行控制,具体如下:[/size][size=16px] (1)压力控制通道是由压力传感器、电加热器和PID控制器第一通道构成的闭环回路,通过调节电加热器功率使杜瓦瓶内气体的正压压力保持恒定,使得整个杜瓦瓶内的气液两相液氮温度相同,此压力同时将液氮压出进行输送。[/size][size=16px] (2)加热控制通道是由温度传感器、电加热器和PID控制器第二通道构成的闭环回路,在加载到均热试验台上的制冷量恒定的条件下,通过调节电加热器功率使样品控制在不同的设定温度上,由此最终实现样品不同低温温度的精密控制。[/size][size=16px] 对于液氮输送管的热防护,尽管采用了液氮真空输送管,但要做好输送管两端的隔热防护,尽可能减少室温环境的加热影响。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决液氮温度精密控制问题,关键是采用控压方式可使得杜瓦瓶内的液氮温度保持恒定,压力稳定的同时也使得所液氮介质的压出流量也同样稳定,这使得液氮介质的整个输送过程处于可控稳定状态,为高精度低温控制提供了最为重要的温度稳定的冷媒。[/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 多功能PID控制器和耐腐蚀高速数控针阀在化学药品注入双闭环比值控制中的应用

    多功能PID控制器和耐腐蚀高速数控针阀在化学药品注入双闭环比值控制中的应用

    [size=16px][color=#339999][b]摘要:在目前的流体比值混合控制系统中,普遍采用的是多通道闭环PID控制系统对各路流量进行准确控制后再进行混合,这种控制方式普遍存在的问题是对流量调节阀的响应速度、耐腐蚀性和线性度有很高要求。为此本文提出的第一个解决方案是采用NCNV系列强耐腐蚀的高速和高线性度电控针阀,第二个解决方案则是不再使用流量调节阀,改用压力控制器通过调节流体进口压力来实现流量的精密控制,而第二种方案更适用于微流量的精密控制。[/b][/color][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在医药实验室、燃烧系统和化工领域的生产过程中,常需要将两种或两种以上的流体物料保持一定的比例进行混合,如比例一旦失调,将影响质量甚至造成事故,因此这种多种流体精密混合的控制需要采用精密的PID比值控制系统。一个比较典型的两种流体混合的双闭环PID比值控制系统如图1所示,但这种比值控制系统存在以下几方面的问题和注意事项:[/size][align=center][size=18px][color=#339999][b][img=常用双回路比值控制系统示意图,600,354]https://ng1.17img.cn/bbsfiles/images/2023/08/202308231002390515_7752_3221506_3.jpg!w690x408.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 常用化学药品注入双回路比值控制系统示意图[/b][/color][/size][/align][size=16px] (1)图1所示结构是一种典型的流量调节方式的控制系统,即通过两个控制阀同时调节两路流体流量,并使两路流量达到设定比值,以实现混合后的准确比率。但这种流量调节方式的前提是其中的两路液体必须有相应的压力进行驱动,且要求相应的驱动压力尽可能稳定。[/size][size=16px] (2)流量调节方式要求控制阀具有较快的调节速度,如果流量调节速度慢于驱动压力的波动速度,则很难实现准确控制。[/size][size=16px] (3)在很多流体比值混合中,流体介质往往都带有腐蚀性,这就要求液体流动管路中的所有装置都需要具有耐腐蚀性,特别是对内部带有运动机构的控制阀,其耐腐蚀性尤为关键。[/size][size=16px] (4)PID控制是一种典型的线性控制技术,为了保证比值控制的准确性,除了要求流量计和PID控制器具有相应的测量控制精度之外,更要求控制阀开度与控制信号之间具有很好的线性关系,否则很难实现较高精度的流量控制,从而也无法实现高精度的比值控制。[/size][size=16px] 上述的快速调节能力、耐腐性以及线性度往往是对流量控制阀的严峻挑战,很少有控制阀能同时满足这些要求,而且口径越大的控制阀越难实现。[/size][size=16px] 为了解决比值控制中控制阀中存在的响应速度、耐腐蚀性和线性度问题,本文提出了两种解决方案。第一种方案是在流量调节的基础上,采用耐腐蚀的线性度好的高速数控针阀;第二种方案是采用压力控制方式来实现流量调节,省略掉流量控制阀,同样可以实现高精度比值控制。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 本文在这里设计了两套解决方案,第一套方案还是采用流量调节技术,只是对控制阀和比值控制器进行了明确,关键是将流量控制阀采用了NCNV系列步进电机驱动的高速高线性度的数控针阀来代替,整个控制系统结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=采用高速数控针阀的比值控制系统,600,341]https://ng1.17img.cn/bbsfiles/images/2023/08/202308231003088266_938_3221506_3.jpg!w690x393.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 采用高速数控针阀的比值控制系统[/b][/color][/size][/align][size=16px] 所用的NCNV数控针阀的通经范围为0.9~4.1mm(甚至更大),全量程响应时间小于1秒,可实现高速流量调节。由于采用了步进电机驱动,从而具有很小的磁滞和优于±2%的线性度,全量程的重复精度可以达到±0.1%。另外此系列数控针阀还具有极低的漏率,可用于对真空密封要求苛刻的使用场合。数控针阀的控制除了可以直接采用0~10V模拟电压控制之外,也可采用RS485信号进行通讯控制。[/size][size=16px] 图2所示的流量调节比值控制系统中,比值控制器采用了VPC2021系列多功能PID控制器。此控制器具有两路独立通道进行比值控制。重要的是这两路PID控制通道都具有24位AD采集精度和16位DA控制精度,由此可进行高精度的比值控制,还可以满足微小流量变化的控制要求。[/size][size=16px] 在第二套解决方案中,采用了压力控制器、流量计和比值控制器构成的双闭环控制回路来进行每个独立管路中的流量控制,由此最终实现比值控制。由于每个管路中的管径保持不变,那么通过改变进液压力就可以调节流量。这种采用压力控制方式的比值控制系统如图3所示。进液压力控制可以采用对进液容器内部的气压控制方式将流体压出,这时的气压控制就相当于一个气压泵,此流量控制方式可以实现很高的控制精度。[/size][align=center][size=16px][color=#339999][b][img=采用压力控制器的比值控制系统,600,338]https://ng1.17img.cn/bbsfiles/images/2023/08/202308231003293037_3318_3221506_3.jpg!w690x389.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 采用压力控制器的比值控制系统[/b][/color][/size][/align][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述的两套解决方案,可以很好的解决目前流体混合中比值控制在响应速度、耐腐蚀性和线性度等方面存在的问题,可以实现流体比值混合的高精度控制。特别在第二套解决方案中所采用的压力控制技术,去掉了流量控制阀,但增加了压力控制来调节流量,由此可以实现超高精度的流量控制,特别适用于微流量的快速控制,可推广应用于微流控领域。[/size][align=center][size=16px][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 【劳动最光荣】记我的一次近红外转台维修

    【劳动最光荣】记我的一次近红外转台维修

    [b][size=4]做实习版主很久了,之所以久久不能转正当然要找自己的主观原因的,在近红外版面的发帖确实不尽如人意,titi这次征文活动正是机会。[color=#0021b0]2008年10月我到实验室工作,接手布鲁克品牌MPA型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪的应用、建模、管理、维护等其他相关工作,到现在将近两年。对近红外我是从陌生到熟悉,积累下很深的感情和一定的工作经验。[/color][/size][/b][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005091130_217246_1604315_3.jpg[/img][color=#0021b0][size=4][b]这就是我的设备。近红外的特点我想大家都知道,优势是漫反射光谱适合做定量分析,劣势是背景信息复杂样品信噪比不高。我的实验绝大多数都是针对颗粒样品进行的,如玉米、小麦等。样品颗粒大了之后会影响样品受光面积的代表性,所以大多数厂家的近红外设备在积分球之上是配有旋转载物台的。当然布鲁克也不例外。[/b][/size][/color][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005091136_217249_1604315_3.jpg[/img][b][color=#0021b0][size=4]这就是布鲁克MPA的旋转载物台。由于我们的近红外使用频率高,所以用过一段时间之后,载物台的旋转系统就会出现“卡死”或者“转速不匀速”的情况,这样就影响了样品受光面积的代表性,从而使模型分析误差增大。甚至已有的模型不能正确的分析这类故障下所产生的光谱图。为解决这一问题,去年(照片是后来拍的,现在依然出现这类问题,但首次发生是09年)在没有工程师指导的情况下我们自行维修解决了这一问题。[/size][/color][/b][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005091143_217252_1604315_3.jpg[/img][b][color=#0021b0][size=4]德国人的钣金活儿做的“天下第一”整个转台的外部设计非常简单,只有上下两个正片的壳体,但是直观感觉相当结实耐用。准备好工具就可以轻松拆下。当然第一次做的时候特别细心,因为并不了解其内部构造。[/size][/color][/b][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005091146_217254_1604315_3.jpg[/img][b][color=#0021b0][size=4]拆开之后我不禁哑然失笑,怎么我都不会想到,作风严谨刻板的德国人居然在如此关键的外部构建上用了“巧劲”。构造极为简单的旋转台只有一个功率为5瓦的电机和几个平方厘米大小的电路板。让人郁闷。[/size][/color][/b][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005091150_217259_1604315_3.jpg[/img][color=#0021b0][size=4][b]为检查故障原因需将载物台放回仪器开机测试。发现转,但是不匀速,有明显的“卡死”现象。经过仔细的观察,发现是结构设计不合理造成的。旋转台的电机下方是一个具有一定弹性的橡胶托垫,然后配合弹簧和金属固定片决定电机相对转轮的位置。在多层转轮中间一层的上表面有粘合的非常精巧的环状橡胶垫圈,电机上有带齿的转轮与其相摩擦,这样电机的转动就可以传到转轮上了。非常“取巧”的办法,相信成本够低的。[/b][/size][/color][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005091156_217262_1604315_3.jpg[/img][b][color=#0021b0][size=4]由于使用频率高和载物台承重的问题,时间一长弹簧和金属固定片下角的螺丝就会出现松动,这样电机的相对位置就会升高,有齿转轮和橡胶垫圈之间的阻尼加大,又因为电机的功率比较小不能输出足够的能量,所以就会产生“卡死”、“停转”以及“旋转不匀速”的问题。处理办法比较简单,首先清洗转台的轴承部分,酒精冲净后点一点“泵油”[color=#f10b00]注意一定不能点机油!![/color]因为粉尘会沉积在轴承的缝隙里,虽然不太可能会阻塞转台但是无形中加大了电机转动时的负载,一个5瓦的电机,能做的事情太有限了。点过“泵油”之后,在转动的情况下调解马达两边的螺丝,松一松或者紧一紧,看到转台转匀速了就可以了[/size][/color][/b]。[img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005091204_217264_1604315_3.jpg[/img][b][color=#0021b0][size=4]都调整好之后就算修理完毕了。这种故障是旋转载物台设计的不合理造成的,所以会反复出现,之后的一年中数不胜数,根本不可能一次解决,并且使用时间长了之后转台的橡胶垫圈就会出现磨损,谁也无法保证这种磨损是均匀的,所以,终将会造成旋转不匀速的情况。唯一的解决办法就是买布鲁克的新产品,新的转台是带阻尼皮条带动的,就避免了以上的问题。但是新的转台受粉尘影响大所以会出现别的问题,人无完人何况机器。[/size][/color][/b][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005091210_217265_1604315_3.jpg[/img][color=#0021b0][size=4][b]这个就是转台电路板的近景,它和主机的相连全靠下面的这三个铜质触点,由于一年中拆卸的次数太多了,所以这三个触点中的第一个曾经掉过,让工程师又点焊上去了。没办法。[/b][/size][/color]

  • 微流控芯片进样装置高精度压力和流量控制器的国产化替代

    微流控芯片进样装置高精度压力和流量控制器的国产化替代

    [size=16px][color=#339999][b]摘要:针对微流控芯片压力驱动进样系统中压力和流量的高精度控制,本文提出了国产化替代解决方案。解决方案采用了积木式结构,便于快速搭建起气压驱动进样系统。解决方案的核心是采用了串级控制模式,结合高精度的传感器、电气比例阀和PID控制器,通过压力和流量的双闭环PID控制回路可实现微流控芯片内液体流量的高精度控制。另外,解决方案具有强大的拓展功能,可进行手动、自动、程序和周期控制,同时也具备芯片的温度控制功能。[/b][/color][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][color=#339999][b][/b][/color][/size][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 微流控芯片是将成百上千的微流道集成于以平方厘米为单位的芯片上,以实现样本的制备、分离、筛选、检测等功能,其特点在于可以用极少量的检测样本有效地完成各类检测,可取代常规的生化实验平台。微流控芯片中的微流道内径非常细小,可以实现低至1微米的空间细胞操作精度,因此在向微流道中进样时,对于流量的控制要求非常高。[/size][size=16px] 目前的微流控进样系统,主要是一些国外进口产品,如法国FLUENT公司基于传统的压力控制元件生产的MFCS-EZ流体驱动-精密压力控制器性能比较优良,达到稳定的时间可低至100ms,压力稳定误差小于0.1%,但价格昂贵;美国ELVEFLOW公司基于压电效应设计的OB1 MK3压力控制器性能更加优异,达到稳定的时间可低至35ms,压力稳定误差小于0.01%,但其功耗较高,售价更为昂贵。[/size][size=16px] 为了实现对微流控芯片内微流体压力和流量的高精度自动控制,特别是为了实现国产化替代,本文提出了一种压力和流量的串级控制解决方案。[/size][size=18px][color=#339999][b]2. 压力驱动的微流量精密控制工作原理[/b][/color][/size][size=16px] 微流控芯片中气压驱动进样系统的工作原理非常简单,如图1所示,即采用可调气压作为驱动力,控制一个装有液体的封闭容器中的气体压力实现液体驱动,控制液体向微流控芯片进行充注。[/size][align=center][size=16px][color=#339999][b][img=01.微流控芯片压力驱动进样系统工作原理图,500,267]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271542286750_971_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 压力驱动进样系统工作原理图[/b][/color][/size][/align][size=16px] 充液过程中随着流阻的变化,负载也在不断改变,为保证流经微流控芯片液体流量的恒定在设定值,对应的驱动压力也应随时进行调节。[/size][size=16px] 在微流控芯片气压驱动进样系统中,针对不同的应用场景和要求,目前国外产品普遍采用了两种控制技术,一种是对驱动压力进行控制的开环控制技术,另一种是同时对压力和流量进行控制的闭环控制技术。[/size][size=16px] 如图2所示,在仅对驱动气压进行控制的进样系统中,是在进气端口增加了一个压力调节器。此压力调节器中集成了压力传感器、阀门和PID控制器,通过对高压气源的减压控制,由此用来精密调节和控制密闭容器上部的气体压力。[/size][align=center][size=16px][color=#339999][b][img=02.微流控芯片进样系统纯压力控制工作原理图,600,248]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271541131358_1798_3221506_3.jpg!w690x286.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 微流控芯片进样系统纯压力控制工作原理图[/b][/color][/size][/align][size=16px] 从图2可以看出,这种纯压力控制方式尽管可以调节微流控芯片内液体的流量,但无法获知具体流量是多少,这样一种开环控制形式更无法对液体流量进行高精度控制。[/size][size=16px] 为实现对微流控芯片内液体流量的精密控制,在上述开环控制形式的基础上,通过增加液体流量计和PID控制器,与压力调节器组成一个闭环控制回路,如图3所示。在此闭环控制回路中,PID控制器检测流量传感器信号并与设定值进行比较,通过PID控制算法计算后向压力调节器输出控制信号,压力调节器对进气气压进行调节,最终使微流控芯片内的液体流量在设定值处恒定。[/size][align=center][size=16px][color=#339999][b][img=03.微流控芯片进样系统压力和流量串级控制工作原理图,600,289]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271541419942_6786_3221506_3.jpg!w690x333.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 微流控芯片进样系统压力和流量同时控制工作原理图[/b][/color][/size][/align][size=16px] 从图3可以看出,这种压力和流量同时控制的工作原理采用了一个非常典型的PID串级控制(级联控制)结构,即压力调节器作为压力控制的PID辅助控制回路,同时压力调节器作为执行器与流量传感器和PID控制器构成PID主控制回路。这种PID串级控制结构常用于高精度控制领域中,所以采用这种串级控制方法可以实现微流体压力驱动进样系统流量的高精度调节和控制。需要说明的是流量传感器可以布置在微流控芯片的进口端或出口端,具体可以根据微流控芯片的具体结构来进行选择。[/size][size=18px][color=#339999][b]3. 解决方案[/b][/color][/size][size=16px] 从上述微流控芯片压力驱动进样系统的串级控制工作原理可知,采用串级控制方式在理论上可实现流量的高精度控制,而要实现这种高精度控制,还需要相应的硬件配置提供保证。为此,本解决方案提出的硬件系统结构如图4所示。[/size][align=center][size=16px][color=#339999][b][img=04.微流控芯片进样系统压力和流量串级控制系统结构示意图,650,366]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271542005587_5164_3221506_3.jpg!w690x389.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 微流控芯片进样系统压力和流量串级控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图4所示的系统中,为实现高精度的压力和流量控制,解决方案中的关键部件配置如下:[/size][size=16px] (1)流量传感器:需根据流量的范围和控制精度需要选择合适的流量传感器,目前市场上有多种国内外的液体流量传感器可供选择。同时要求传感器具有相应的模拟量信号输出。[/size][size=16px] (2)压力调节器:压力调节器可选择电气比例阀,同样需要根据压力调节范围选择相应的型号。另外尽可能采用高精度和高速电气比例阀,特别是更快速度的压电式电气比例阀。[/size][size=16px] (3)超高精度PID控制器:在测量精度和控制精度都满足要求的前提下,主回路PID控制器精度将最终决定流量控制精度,如果PID控制器精度不够,则无法发挥传感器和压力调节器的精度优势。为了,本解决方案选择了超高精度的PID控制器,其具有24位AD、16位DA和采用双精度浮点运行的0.01%最小输出百分比。另外,此控制器具有PID参数自整定功能,并带有标准MODBUS通讯协议的RS485接口,可方便与上位计算机连接。[/size][size=16px] 通过上述高精度器件的配置,可很方便的搭建起微流控气压驱动进样系统并实现高精度的压力和流量控制。另外,采用超高精度PID控制器的高级功能,还可实现以下拓展功能:[/size][size=16px] (1)采用自带的计算机软件,可通过上位计算机直接进行界面操作,无需再进行编程。[/size][size=16px] (2)采用远程设定点功能,可实现手动旋钮调节方式的压力和流量控制。[/size][size=16px] (3)同样采用远程设定点功能以及外置一个周期信号发生器,可对压力和流量按照设定周期和幅度进行周期性变化。[/size][size=16px] (4)采用正反向控制功能以及外置一个TEC半导体制冷模组,可实现对微流控芯片的加热和制冷控制。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案模块式结构以及高精度器件的配置,可灵活和快速搭建起微流控芯片进样系统,并可在很高的精度上实现微流控芯片压力驱动进样系统中的压力和流量控制。[/size][size=16px] 另外,依此解决方案所搭建的压力和流量控制系统还具有强大的拓展功能,可满足各种微流控芯片气压驱动进样系统的使用,完全可以替代进口产品,同时也为后续多通道微流控压力驱动进样系统的国产化替代奠定的技术基础。[/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align]

  • 低温超导测试系统中实现高精度液氦压力控制的解决方案

    低温超导测试系统中实现高精度液氦压力控制的解决方案

    [color=#ff0000]摘要:针对目前两种典型低温超导测试系统中存在的液氦压力控制精度较差的问题,本文提出了相应的解决方案。解决方案分别采用了直接压力控制和流量控制两种技术手段和配套数控阀门,结合24位AD和16位DA的超高精度的PID真空压力控制器和压力传感器,大幅提高了液氦压力控制精度,最终实现低温超导性能的高精度测试。[/color][color=#ff0000][/color][color=#ff0000][/color][align=center][img=低温超导测试系统中实现高精度液氦温度控制的解决方案,690,411]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031120120633_4214_3221506_3.jpg!w690x411.jpg[/img][/align][align=center]~~~~~~~~~~~~~[/align][size=14px][/size][size=18px][color=#ff0000][b]1. 项目概述[/b][/color][/size] 各种超导部件如超导磁铁和超导腔体在装机前都需要在低温超导测试系统中对其性能进行测试,为了使超导部件达到低温环境则需要将被测部件浸泡在液氦介质内,并采用低温杜瓦盛装液氦介质。在整个测试过程中,对低温测试系统内的液氦压力要求极高,即要求杜瓦顶部氦气压强(绝对压力)有极好的稳定性,否则会导致测试不稳定,给测试结果带来严重误差。 目前国内现有的很多低温超导测试系统都存在液氦压力控制不稳定的严重问题,有些客户提出了相应的技术升级改造要求。 如图1所示的低温超导测试系统中,采用了两个不同口径的第一和第二泄压阀来粗调和细调液氦压力,但这种调节方法的液氦压力只能控制在1.2~1.6Bar范围内,对应4.39~4.74℃范围的液氦温度变化,造成0.35℃的温度波动。目前客户提出要设法将温度波动控制在0.1℃以内或更高的稳定性上,以提高超导部件性能测试精度。[align=center][color=#ff0000][b][img=超导试件测试时氦压控制系统,500,356]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123466941_8802_3221506_3.jpg!w690x492.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图1 低温超导测试系统液氦压力控制装置[/b][/color][/align] 如图2所示的高场超导磁体低温垂直测试系统,其压力控制范围1~1.3Bar,尽管在图2所示系统中采用了液氦加热器来改变液氦压力,但由于压力控制阀的调节精密度不够,最终造成压力控制精度远达不到测试要求,客户也提出了技术改造要求。[align=center][b][color=#ff0000][img=高场超导磁体低温垂直测试系统,400,557]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123146762_3661_3221506_3.jpg!w522x728.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 高场超导磁体低温垂直测试系统[/color][/b][/align] 针对上述两种典型低温超导测试系统中存在的液氦压力控制精度不足的问题,本文将提出相应的解决方案。解决方案将分别采用直接压力控制和流量控制两种技术手段和配套数控阀门,结合超高精度的PID真空压力控制器和压力传感器,可大幅度提高液氦压力控制精度,最终减小低温超导性能测试误差。[b][size=18px][color=#ff0000]2. 解决方案[/color][/size][/b] 在图1和图2所示的两种典型低温超导测试系统中,它们各自的液氦压力变化起因不同,因此要实现液氦压力准确控制的技术手段也不同。以下是解决方案中对应的两种不同技术途径。[b][color=#ff0000](1)直接压力调节法[/color][/b] 在图1所示的低温超导测试系统中,造成液氦蒸发的因素并不可控,只能通过调节液氦上方的氦气压力来使得测试系统保持稳定。因此,为了实现液氦上方的压强控制,解决方案采用了直接压力调节法,如图3所示,即采用数控压力控制阀代替图1中的第一和第二泄压阀。此压力控制阀与高精度PID控制器和压力传感器构成闭环控制回路,实现自动泄压和高精度压力控制。[align=center][color=#ff0000][b][img=纯压力控制结构,500,350]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031124390427_8017_3221506_3.jpg!w690x483.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图3 直接压力调节法控制装置结构[/b][/color][/align] 数控压力控制阀是一种数控正压减压控制阀,正好可以满足低温超导测试系统的微正压控制需求。通过氦气源和减压阀提供的驱动压力,可在控制阀出口处实现高精度的压力控制,同时还保持很小的漏气以节省氦气。 另外,此数控压力控制阀具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,可将液氦压力控制在0.1%的高精度水平。[b][color=#ff0000](2)流量调节法[/color][/b] 在图2所示的低温超低测试系统中,其不同之处之一是具有液氦加热器,即通过液氦加热器和压力控制阀构成的控制回路可进行不同液氦压力的控制,由此实现不同液氦温度的控制。 为实现不同液氦压力的精密控制,解决方案在此采用了流量调节法。如图4所示,解决方案采用了电动针阀作为图2中的压力控制阀,电动针阀与双通道高精度PID控制器、压力传感器和液氦加热器构成闭环控制回路,可以按照任意设定值进行高精度的压力控制。[align=center][color=#ff0000][b][img=流量控制结构,500,290]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031125069440_4211_3221506_3.jpg!w690x401.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图4 流量调节法控制装置结构[/b][/color][/align] 电动针阀是一种数控的微小流量调节阀,可通过PID压力控制器自动调节针阀开度,流出的氦气可通向氦气回收气囊。电动针阀同样具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,同样可将液氦压力控制在0.1%的高精度水平。[b][size=18px][color=#ff0000]3. 总结[/color][/size][/b] 通过上述解决方案的技术手段,可实现低温超低测试系统中液氦压力的准确控制,控制精度最高可达±0.1%。 按照绝对压力进行计算,饱和蒸气压为1.2Bar时,液氦温度为4.4K。由此,如果压力控制精度为±0.1%,液氦压力的波动范围为±1.2mBar(相当于绝对压力±120Pa),对应的液氦温度波动范围为4.4mK,即所控的液氦温度为4.4±0.0044K。 由此可见,通过本文所述的解决方案,仅通过采用工业级别较低造价的PID真空压力控制器和压力传感器,结合数控压力控制阀和电动针阀,就可实现很高精度的液氦压力控制,温度控制精度可达到mK量级,完全能满足绝大多数低温超导测试系统的需要。[align=center]~~~~~~~~~~~~~~~~~[/align]

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【资料】六自由度-单自由度/振动台闭环数控程序(以下简称:VibControl控制系统)

    【资料】六自由度-单自由度/振动台闭环数控程序(以下简称:VibControl控制系统)

    振动台闭环数控程序(以下简称:VibControl控制系统)是基于系统非线性迭代补偿理论来对控制信号和响应信号进行修正的。1.1 单自由度系统构成[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911230112_185926_1634361_3.jpg[/img]1.2 六自由度系统构成[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911230113_185927_1634361_3.jpg[/img]液压振动台其实就是电液伺服技术的进一步扩展,不过在高性能和大吨位的技术上远远高于电磁台的水平,如大型地震模拟系统和整个装甲车的振动模拟系统都是液压振动台.

  • 高精度半导体恒温箱保养说明

    高精度半导体恒温箱是半导体行业常用的设备之一,作为比较常用的设备,其保养也是相当重要,那么无锡冠亚高精度半导体恒温箱的保养有哪些要点呢?怎么进行保养比较好呢?  高精度半导体恒温箱由蒸发器出来的状态为气体的冷媒;经收缩机绝热收缩后期,变成高温高压状态,被收缩后的气体冷媒,在冷凝器中,等压冷却冷凝,经冷凝后转变成液态冷媒,再经节流阀膨胀到低压,变成气液混合物。此中低温低压下的液态冷媒,在蒸发器中摄取被冷物资的热量,从头变成气态冷媒,气态冷媒经管道从头进来收缩机,开头新的轮回,这便是高精度半导体恒温箱轮回的四个过程。  高精度半导体恒温箱密封部位调养,鉴于装配式高精度半导体恒温箱是由若干块保温板拼而成,因而板之间存在必需的间隙,施工中这类间隙会用密封胶密封,为了避免空气和水份进来,因而在利用中对一些密封无效的部位实时修理.  高精度半导体恒温箱地面调养,通常小型装配式高精度半导体恒温箱的地面利用保温板,利用高精度半导体恒温箱时应为了避免地面存有大量的冰和水,假如有冰,处理时切不可利用硬物敲打,损害地面。  高精度半导体恒温箱装配完结或长久停用后再次利用,降温的速率要适宜:每日操纵在8-10℃为宜,在0℃时应保留一段时间。  高精度半导体恒温箱库板调养,留意利用中应留意硬物对库体的碰撞和刮划,鉴于不妨变成库板的凹下和锈蚀,严重的会使库体片面保温功能下降。  高精度半导体恒温箱的保养是离不开我们操作人员的细心操作,所以,我们在日常操作中也要善待我们的设备,不要太过粗暴。

  • 【分享】三闭环电子万能材料试验机介绍

    三闭环电子万能材料试验机具有常规电子万能类试验机的速度范围宽,试验行程大,配置灵活的特点,又具有电液伺服类试验机力、位移、变形控制的优点。因而是性能较好的一种试验机,但由于做力控制与变形控制时机器稳定性与主机的刚性、试样的刚性有密切的关系。一般塑料用试验机吨位较小,因此主机刚性较低,且试样本身的刚性也不会太大,所以该类试验机很少有10KN以下的机型,而10KN以下机型却是塑料类最常用的。三闭环电子万能材料试验机的稳定性与试样有关,若试样单一,试验方法也较为单一,还可选用,否则就需要随时调整试验机的控制参数(亦即常规的P、I、D参数),这对非自动控制专业的试验员来说,几乎是很难想象的事。因此从整体看,除对控制方式有特定的要求,还不易选择做塑料材料的试验。

  • 短程分子蒸馏器的升级改造以实现高精度的真空控制

    短程分子蒸馏器的升级改造以实现高精度的真空控制

    [align=center][img=通过超高精度真空控制提高分子蒸馏分离纯度的方法,550,392]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040202188410_3231_3221506_3.jpg!w690x492.jpg[/img][/align][color=#990000]摘要:为了提升蒸馏纯度,针对现有分子蒸馏中气体流量计式真空度控制系统存在精度较差和响应速度慢的问题,本文提出了更高精度的真空度控制解决方案。解决方案采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,可实现任意设定真空度下±0.5%的控制精度,同时对温度等因素所带来的真空度变化有极快的响应,可保证分子蒸馏过程中真空控制的高精度和稳定性。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000][size=18px]一、问题的提出[/size][/color]分子蒸馏是一种特殊的液-液分离技术,它不同于传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运动平均自由程的差别实现分离。当液体混合物沿加热板流动并被加热,轻、重分子会逸出液面而进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],由于轻、重分子的自由程不同,因此,不同物质的分子从液面逸出后移动距离不同,若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷凝排出,而重分子达不到冷凝板沿混合液排出,由此达到物质分离的目的。短程蒸馏器是一个工作在0.001~1mbar(0.1~100Pa)绝对压力下热分离技术过程,它较低的沸腾温度,非常适合热敏性和高沸点物。在分子蒸馏工艺中,真空度的控制精度决定了分离物质的纯度,目前绝大多数分子蒸馏设备中真空度控制系统普遍还都采用液环真空泵与旋片式真空泵结合气体流量计的技术,这种通过气体流量计调节进气流量的方法无法实现高精度的真空度稳定控制,具体是以下几方面原因:(1)分子蒸馏过程的真空度变化范围一般为0.1~100Pa,这种高真空范围对气体流量计的真空漏率有较高要求,一般气体流量计很难满足要求,必须使用专门用于高真空的气体流量计。(2)气体流量计的调节精细度普遍较粗,如果要实现高精密的气体流量调节,同样要使用高档更精密的气体流量计。(3)通常气体流量计的响应速度比较慢,很难实现在1秒之内完成全闭到全关的动作时间。(4)多数分子蒸馏中的真空传感器普遍采用精度较差的数字皮拉尼电阻规和电热偶规等。(5)绝大多数调节气体流量计的PID控制器精度较差,多为12位AD和DA转换器,极少用到16位的AD和DA转换器,PID控制器的精度是决定分子蒸馏真空度控制精度的关键。为了提升蒸馏纯度,针对上述现有分子蒸馏中气体流量计式真空度控制系统存在的问题,本文提出了更高精度真空度控制的解决方案。解决方案将采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,由此可实现分子蒸馏工艺中任意设定真空度下±0.5%的控制精度,并对温度等因素所带来的真空度变化有极快的响应,有效保证分子蒸馏过程中真空度的高精度和高稳定性。[size=18px][color=#990000]二、解决方案[/color][/size]通过上述分析可以看出,限制现有短程分子蒸馏工艺真空度控制精度的主要因素分别是:(1)气体质量流量计调节精度和响应速度。(2)真空度传感器的测量精度。(3)PID控制器的测量和控制精度。为解决上述问题,本文提出的具体解决方案是采用相应的三个替换装置,如图1所示。[align=center][color=#990000][img=短程分子蒸馏高精度真空度控制装置,690,282]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040201378335_1412_3221506_3.jpg!w690x282.jpg[/img][/color][/align][align=center][color=#990000]图1 短程分子蒸馏高精度真空度控制装置[/color][/align]如图1所示,为提高蒸馏纯度,实现高精度真空度控制,解决方案采用了以下三个装置:[color=#990000](1)采用高速电动针阀代替气体质量流量计[/color]分子蒸馏高真空度控制的基本原理是调节蒸馏器的进气流量和出气流量并达到一个动态平衡,所以这里的技术关键是如何实现进气流量的精密调节。尽管气体质量流量计可以进行进气流量调节,但采用的是电磁阀技术,有着较大的迟滞现象和较慢的响应速度,这些都会影响真空度的控制精度。解决方案中所采用的高速电动针阀是一种高速步进电机驱动的纯机械式针型阀,在大幅度减少迟滞误差的同时,还将整体响应时间缩短到了800微秒,同时精细步长可实现阀门的快速精密调节。驱动控制只需采用0-10V的模拟电压,整体结构简单且可靠性强。多个规格的电动针阀具有不同的气体流量调节能力,可满足不同容积的蒸馏器的真空度控制,同时还可以采用FFKM全氟醚橡胶密封提高耐腐蚀性。[color=#990000](2)采用薄膜电容规代替皮拉尼电阻规和电热偶规[/color]薄膜电容规的测量精度要远高于皮拉尼电阻规和热偶规,在任意真空度下其精度都可以达到±0.25%。那么对于短程蒸馏器0.001~1mbar(0.1~100Pa)的真空度量程内,可直接选择一只1Torr的薄膜电容规即可满足全量程的真空度测量,如果为了保证0.1~1Pa范围内的测量精度,还可以再补充一只0.1Torr的薄膜电容规。这样,通过两只不同量程的薄膜电容规可覆盖全真空度范围内的准确测量。[color=#990000](3)采用超过精度真空控制器代替普通精度PID控制器[/color]在任何PID反馈式闭环控制系统中,无论传感器和执行器精度多高,最终的控制精度都需要控制器的精度予以保证,为此,在解决方案中采用了超高精度的PID真空控制器。此超高精度PID真空度控制器具有24位AD和16位DA,采用了双精度浮点运算可实现0.01%的最小输出百分比,这是目前国内外最高技术指标的工业用PID控制器。采用此真空控制器可充分发挥电动针阀执行器和薄膜电容规真空传感器的精度优势,而且此系列控制器具有单通道和双通道不同型号。单通道控制器是可编程PID控制器,突出特点是可以进行不同量程双真空计的自动切换来实现全量程自动控制。双通道控制器是一种定点控制器,两个通道可以分别独立控制真空度和温度。[size=18px][color=#990000]三、结论[/color][/size]新型的真空控制系统对短程分子蒸馏工艺的真空度控制过程进行了优化,对其中的真空度控制系统做出了以下三方面的改进:(1)采用电动针阀代替气体质量流量计,提高了进气流量调节执行器的精度。(2)采用薄膜电容规代替拉尼电阻规和电热偶规,提高了真空度测量的精度。(3)采用真空控制器代替传统的PID控制器,提高了PID控制精度,并扩展了控制功能,可实现双传感器自动切换和两个工艺参数同时控制。总之,通过以上改进可大幅提高短程分子蒸馏工艺的真空度控制水平,通过大量考核试验和实际应用已经证明,此解决方案成熟度很高,在全真空度范围内可轻松实现±0.5%的控制精度,如果采用更高精度的真空计,此解决方案可进一步达到±0.1%的控制精度。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 锁相红外热成像无损检测中的正弦波温度闭环控制解决方案

    锁相红外热成像无损检测中的正弦波温度闭环控制解决方案

    [size=16px][color=#339999][b]摘要:针对目前锁相红外热成像无损检测中存在被检物温度偏离标准正弦波形式的检测模型,以及被检物温度无法准确控制和快速达到稳定的问题,本文提出了改进解决方案。解决方案的核心是将现有的激励光源开环控制模式改进为闭环控制,具体采用了具有远程设定点功能的PID温度控制器,将现有光源的正弦波功率调制改进为直接的被检物表面温度正弦波调制,由此更符合理论模型,且可使被检物平均温度快速达到稳定而大幅缩短检测时间。[/b][/color][/size][align=center][size=18px][color=#339999][b]~~~~~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 如图1所示,锁相红外热成像无损检测技术使用周期性调制热源,对待测物体进行周期加热。若待测物体内部有缺陷,该缺陷对其上方表面温度分布会产生周期性的影响,因此有缺陷和无缺陷地方会产生幅值差和相位差的热特征,这些特征通过红外热像仪成像捕获。采集到的热图序列中存在着各种干扰信号,通过锁相技术可以将微弱的有用信号从众多干扰信号中分离出来,可大幅提高检测的灵敏度。但这种红外锁相或其他光激励热成像法存在以下严重问题:[/size] [align=center][size=18px][color=#339999][b] [img=红外锁相热成像检测原理及其系统,500,611]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031442140543_4031_3221506_3.jpg!w622x761.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 红外锁相热成像检测原理及其系统[/b][/color][/size][/align][size=16px] (1)因为现有技术只能对激励热源的加载功率进行正弦波调制,但并不能真正保证被测物体内部的温度变化也是真正的正弦波形式,这使得热像仪获得的热波波形与检测理论模型存在较大偏差,这是目前造成此方法误差的最大原因。[/size][size=16px] (2)目前锁相法调制光源加热被测物体时的温度时间变化曲线如图2所示,要经过较长时间温度才能达到稳定状态,对于较大或较厚物体用时将会更长,其中最大的问题是温度升高多少无法准确控制,只能靠经验或多次试验来确定调制光源的加热功率以实现所希望的温度变化。[/size][align=center][size=18px][color=#339999][b][img=红外锁相法加热过程中的时间-温度变化曲线图,500,379]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031442434774_7846_3221506_3.jpg!w472x358.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 红外锁相法加热过程中的时间-温度变化曲线图[/b][/color][/size][/align][size=16px] 由此可见,目前的红外锁相法还较粗狂,整个控制还是一个开环控制过程,这使得在实际无损检测中边界条件无法准确匹配测试模型,温度变化波形和大小也无法做到准确控制。为了解决这些问题,本文提出了如下一种闭环控制解决方案。[/size][b][size=18px][color=#339999]2. 解决方案[/color][/size][/b][size=16px] 为使被检物体内部的温度变化符合测试模型中正弦波形式的要求,本文提出的解决方案是采用闭环控制加热模式,即在被检物体的表面或内部安装温度传感器,与PID控制器和激励光源组成闭环控制回路,通过正弦波形式的设定点输入,最终将被检物体表面或内部温度准确控制并与正弦波温度设定曲线吻合。整个闭环控制系统结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=正弦波温度加热光源控制系统结构示意图,650,387]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031443195882_6318_3221506_3.jpg!w690x411.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 正弦波温度加热光源控制系统结构示意图[/b][/color][/size][/align][size=16px] 从图3可以看出,由增加的温度传感器、卤素灯加热光源和控制器组成的闭环控制回路,可以对被检物表面温度进行任意设定点下的精确控制。但为了使表面温度能够严格按照所希望幅值和周期的正弦波形式进行变化,解决方案中采用一种多功能的高级PID控制器VPC2021。此控制器具有外部设定点功能,即通过外接周期信号发生器,可以使VPC2021控制器的温控设定值严格按照信号发生器的输出进行改变,即温控设定值可以设计为一个随时间变化的周期性正弦波。由此可以实现以下两个功能:[/size][size=16px] (1)可任意设定加热正弦波的频率和幅值,以满足不同无损检测对象的需要。[/size][size=16px] (2)可任意设定加热正弦波的平均值大小,由此可实现任意温度下的正弦波热波控制,并能很快达到稳定状态而开始进行无损检测,有效缩短检测时间。[/size][size=16px] VPC2021系列超高精度PID调节器是具有远程设定点功能的控制器,具有两个输入通道,第一主输入通道作为过程传感器输入,第二辅助输入通道用来作为远程设定点输入。与主输入信号一样,辅助输入的远程设定点也能接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何探测信号只要能转换为上述47种类型型号,都可以直接接入第二辅助输入通道作为远程设定点源。在红外锁相法无损检测中使用远程设定值功能时的具体接线如图4所示。[/size][align=center][size=16px][color=#339999][b][img=远程设定点功能使用接线图,690,247]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031443467549_5148_3221506_3.jpg!w690x247.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 远程设定点功能使用接线图[/b][/color][/size][/align][size=16px] 在使用远程设定值功能前,需要对控制器辅助输入通道参数进行设置,以满足以下要求:[/size][size=16px] (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2)辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3)显示辅助通道接入的远程设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成辅助输入通道参数的设置后,开始使用远程设定点功能时,还需要激活远程设定值功能。远程设定值功能的激活有以下两种方式:[/size][size=16px] (1)仅使用远程设定点,不使用本地设定点:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)可进行远程和本地设定点之间切换:在PID控制器中,设置辅助输入通道2的功能为“禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图4中所示的纽子开关实现远程设定点和本地设定点之间的切换,开关闭合是为远程设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种远程设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案所使用的具有远程设定点功能的PID控制器,结合外置周期信号发生器,可很好实现锁相红外热成像无损检测中的正弦波温度闭环控制,使得被检物体内部的稳态正弦温度波更符合无损检测模型,并使得被检物温度快速达到所希望的测试温度而缩小检测时间,最终可使得锁相红外成为更精密化的无损检测技术。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][b][color=#339999]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align][size=16px][/size]

  • 高精度压强(真空度)和温度同时控制技术在光谱测量及光谱仪中应用的实施方案

    高精度压强(真空度)和温度同时控制技术在光谱测量及光谱仪中应用的实施方案

    [align=center][color=#990000][img=光谱仪压强控制,690,398]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808077473_8105_3384_3.png!w690x398.jpg[/img][/color][/align][color=#990000]摘要:光谱测量和光谱仪是检测监测中的重要技术手段,为了得到满意的测量精度,光谱仪要求配套高精度的压强和温度传感器、执行机构和PID控制器,并需具有适用范围广、精度高、易集成和成本低的特点。本文将针对光谱仪压强和温度控制的特点,结合上海依阳公司的创新性产品,给出高精度和高性价比的光谱测量和光谱仪温压测控方案。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]1. 问题的提出[/color][/size] 光谱测量作为定性、定量的科学分析方法,以其测量精度高、响应速度快的优势成为各种检测监测研究中的重要技术手段,但在实际应用中样品气体的压强和温度变化会对测量结果产生严重的影响,以下是光谱测量中的温压控制方面国内外所做的一些研究工作以及所表现出来的影响特征:[color=#990000](1)压强控制范围[/color] 不同的光谱测量和光谱仪对压强控制范围有着各自不同的要求,如使用气体吸收池的红外光谱仪,吸收峰的强度可以通过调整试样气体的压强(或压力)来达到,一般压强范围为0.5~60kPa。在采用可调谐二极管激光吸收光谱(TDLAS)技术测量大气中二氧化碳浓度时,就需要6~101kPa范围内的稳定压强。在X射线光谱分析仪检测器内压强的精确控制中,要使得工作气体的密度稳定来保证检测器的测量精度,一般压强控制在一个大气压附近或者更高,而激光诱导击穿光谱仪的工作压强最大可达275kPa。由此可见,光谱仪内工作气体的压强控制范围比较宽泛,一般在0.1~300kPa范围内,这基本覆盖了从真空负压到3倍大气压的4个数量级的压强范围。[color=#990000](2)压强控制精度[/color] 在光谱测试中,观察到的谱线强度与真实气体浓度之间的关系取决于气体样品的压强,所以压强控制精度直接决定了光谱测量精度。如美国Picarro公司的光谱分析仪中的压强控制精度±0.0005大气压(波动率±0.05%@1大气压)。文献[1]报道了设定压强为6.67kPa时对吸收池进行控制,经过连续四小时控制,压强波动为±3.2Pa,波动率为±0.047%。文献[2]报道了样品池内气体压强同样被控制在6.67kPa时压强长期波动幅度为7Pa,波动率为±0.047%。文献[3]报道了激光红外多通池压强控制系统的稳定性测量,目标压强设定为60Torr,在150~200s时间内最大波动为±0.04Torr,波动率为±0.067%。文献[4]专门报道了光谱测量仪器的高精度温压控制系统的设计研究,目标压强值为18.665kPa,42小时的恒压控制,最大偏差为5.33Pa,波动率为±0.014%。文献[5]介绍了X射线光谱仪中探测器的恒压控制结果,在工作气体恒压在940hPa过程中,波动小于±2hPa,波动率为±2%。文献[6]介绍了X射线光电光谱仪在0.05~30mbar压强范围内的恒压控制技术,在设定值为0.1mbar时,恒定精度可达±0.001mbar,波动率为±1%。[color=#990000](3)温度控制精度[/color] 在光谱测试中,谱线强度与真实气体浓度之间的关系还取决于气体样品的温度稳定性,而且温度的稳定性同时也会影响压强的稳定性。文献[2]报道了样品池内气体温度控制在室温(24℃)时,温度短期波动为±0.01℃,长期温漂为±0.025℃,波动率为±0.1%。文献[4]报道的光谱测量仪器的高精度温度控制系统中,温度控制在45℃,42小时内的温度波动为±0.0015℃,波动率小于±0.004%。 综上所述,由于样品气体的压强和温度变化是影响测量结果的主要因素,所以在光谱测量以及各种光谱仪中,对样品气体的压强和温度调节及控制有以下几方面的要求: (1)压强控制范围非常宽泛(0.1~300kPa),但相应的测量和控制精度则要求很高,这就对压强测量传感器、控制阀、真空泵和相应的控制器提出了很高的要求,并且这闭环控制系统中的四个组件必须相互匹配,否则很难得到满意的结果。 (2)同样,在温度的高精度控制过程中,也应选择合适的温度传感器、加热装置、电源和控制器,并在温度闭环控制系统中四者也必须相互匹配。 (3)在压强和温度这两个闭环控制系统中,都会用到高精度控制器,为了降低实验成本和光谱仪造价,希望能用一个具有2路同时PID自动控制功能的高精度控制器。 (4)针对不同的光谱测量和光谱仪,其测试结构并不相同,这就要求温压控制系统中的各个部件具有独立性,由此有利于测试装置和光谱仪结构和合理布局和集成。 总之,为了得到光谱测量的满意精度,要求配套高精度的压强和温度传感器、执行机构和PID控制器,并具有适用范围广、精度高、易集成和成本低的特点。本文将针对这些特点,结合上海依阳公司的创新性产品,给出高精度和高性价比的光谱测量和光谱仪温压测控方案。[color=#990000][size=18px]2. 光谱仪压强和温度一体化测控方案[/size]2.1. 控制模式设计(1)压强控制模式[/color] 针对光谱仪上述的压强测控范围(0.1~300kPa),最佳方案是针对具体使用的压强范围选择相应的测控模式,如图2-1所示,针对低压范围建议采用上游控制模式,针对高压范围建议采用下游测控模式,也可以采用上下游同时控制的双向控制模式。[align=center][color=#990000][img=光谱仪压强控制,690,217]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808325845_3021_3384_3.png!w690x217.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-1 压强控制的三种模式[/align] 针对低压采用上游控制模式,可以重复发挥真空泵的抽速,使得真空腔体内的压强可以快速准确的实现恒定控制。针对高压(如1个大气压左右)采用下游控制模式,可以有效控制真空泵的抽速,使得真空腔体内的压强可以快速准确的实现恒定控制,同时还避免了进气口处的样品气体和其他工作气体的流量太大。 如果对进气流量和腔体压强有严格规定并都需要准确控制,则需要采用双向控制模式,双向控制模式可以在某一恒定压强下控制不同的进气流量,但双向控制模式需要控制器具有双向控制功能,这对控制器提出了更高的能力要求。以上三种控制模式的特点更详细介绍,请参考文献[7]。[color=#990000](2)温度控制模式[/color] 同样,温度测控模式也要根据不同的温度范围和控温精度要求进行选择,如在室温附近且控温精度较高的情况下,则需要具有加热和制冷功能的双向控制模式,只有这种模式才能保证足够高的控温精度。如果在高温范围内,也建议采用双向控制方式,即以加热为主同时辅助一定的冷却补偿,以提高控温精度和快速的温度稳定。[color=#990000]2.2. 传感器的选配[/color] 传感器的精度是保证压强和温度测控准确的关键,因此传感器的选择尤为重要。 对于上述范围的压强控制,强烈建议采用目前精度最高的薄膜电容真空计[8],这种真空计的测量精度可以达到其读数的0.2%,全量程内具有很好的线性度,非常便于连接控制器进行线性控制,并具有很高的分辨率和很小的温漂。在实际选型中,需要根据不同的压强范围选择合适量程的真空计,如对于上述0.1~300kPa的压强范围,可以选择2Torr和1000Torr两种规格的真空计,由此对相应压强量程实现准确的覆盖。 对于温度控制而言,当温度不高的范围内,强烈建议测量精度最高的热敏电阻温度传感器,较高温度时也建议采用高温型的热敏电阻或铂电阻温度传感器。如果加热温度超过了热敏电阻和铂电阻传感器的使用范围,则建议采用热电偶型温度传感器。这些温度传感器在使用前都需要进行计量校准。[color=#990000]2.3. 执行机构的选配[/color] 压强控制执行机构是决定能否实现高稳定性恒定控制的关键。如图2-2所示,强烈建议采用线性度和磁滞小的步进电机驱动的电动针阀,不建议采用磁滞和控制误差都较大的比例电磁阀。电动针阀可以布置在进气口和出气口处,也可以根据上游或下游控制模式的选择布置一个电动针阀。如果光谱仪的真空腔体庞大,电动针阀就需要更换为口径和流速更大的电控阀门,以便更快的实现压强恒定控制。详细指标可参见文献[8,9]。[align=center][color=#990000][img=电动针阀和电动调节阀,690,369]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808519287_4900_3384_3.png!w690x369.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-2 小流量电动针阀和大流量电动阀门[/align] 温度控制的执行机构建议采用具有帕尔贴效应的半导体热电片,这种热电片具有加热制冷双向工作模式,配合高精度的热敏电阻和控制器可以实现超高精度的温度控制,非常适合光谱仪小工作腔室的控温。 如果光谱仪工作腔室较大且温度在300℃以下,建议采用具有加热制冷功能的外排式循环浴进行加热,这种循环浴同样具有加热制冷功能,可达到较高的控温精度。 如果光谱仪工作在更高温度,则建议采用电阻丝或光加热方式,同时配备一定的通风冷却装置以提高加热的热响应速度,从而保证温控的稳定性和速度。[color=#990000]2.4. 控制器的选配[/color] 控制器是实现高精度和高稳定性压强和温度测控的最终保障。在压强控制设计中,控制器需要根据所选真空计和执行机构进行选配,选配的详细介绍可参见文献[10]。根据文献的计算可得认为,如果要保证压强测控的精度,必须采用至少16位以上的A/D模数采集器。同样,温度测控的精度保证也是由模数采集器的位数决定。因此,对于光谱仪中压强和温度的控制,建议采用了目前上海依阳实业有限公司开发的精度和性价比最高,并结合了PID参数控制功能的24位A/D采集的控制器,详细内容可参见文献[11]。 按照上述的选型,最终压强和温度的测控方案如图2-3所示。[align=center][color=#990000][img=光谱仪压强和温度控制框图,690,291]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030809355503_6326_3384_3.png!w690x291.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-3 光谱仪压强和温度测控方案示意图[/align] 特别需要指出的是,上述的压强和温度控制,基本都采用了双向控制模式,而我们所开发的这款高精度控制器恰恰具有这个功能。另外,在光谱仪实际应用中,压强和温度需要同时进行控制,可以采用两台控制器分别进行控制,但相应的光谱仪整体体积增大、操作变得繁复并增加成本。而目前所建议使用的高精度控制器则是一台双通道的PID控制器,两个通道可以独立同时进行不同PID参数的控制和PID参数自整定,并且每个通道都具有双向控制功能,这有效简化了控制器并降低了仪器尺寸和成本。[size=18px][color=#990000]3. 总结[/color][/size] 综上所述,通过对光谱测量和光谱仪的压强和温度测控要求的分析,确定了详细的温压测控技术方案,并详细介绍了方案确定的依据以及相应所选部件的技术参数指标。 整个技术方案完全能满足光谱测量和光谱仪对压强和温度测控的要求,并具有测控精度高、功能强大、适用范围广、易集成和成本低的特点。除了薄膜电容真空计为进口产品之外(也可选国产真空计),方案中的所有选择部件和仪表都为国产制造。[color=#990000]4. 参考文献[/color](1)牛明生, 王贵师. 基于可调谐二极管激光技术利用小波去噪在2.008μm波段对δ13CO2的研究[J]. 物理学报, 2017(02):136-144.(2)孙明国, 马宏亮, 刘强,等. 参数主动控制的痕量气体实时在线测量系统[J]. 光学学报, 2018, v.38;No.434(05):344-350.(3)许绘香, 孔国利. 采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统研制[J]. 红外与激光工程, 2020(9).(4)周心禺, 董洋, 王坤阳,等. 用于光谱测量仪器的高精度温压控制系统设计[J]. 量子电子学报, 2020, v.37 No.194(03):14-20.(5)Elvira V H , Roteta M , A Fernández-Sotillo, et al. Design and optimization of a proportional counter for the absolute determination of low-energy x-ray emission rates[J]. Review of Scientific Instruments, 2020, 91(10):103304.(6)Kerherve G , Regoutz A , D Bentley, et al. Laboratory-based high pressure X-ray photoelectron spectroscopy: A novel and flexible reaction cell approach[J]. Review of Scientific Instruments, 2017, 88(3):033102.(7)上海依阳实业有限公司,“真空度(气压)控制:上游模式和下游模式的特点以及新技术“,知乎:https://zhuanlan.zhihu.com/p/341861844.(8)上海依阳实业有限公司,“真空压力控制装置:电动针阀(电控针型阀)”:http://www.eyoungindustry.com/2021/621/29.html.(9)上海依阳实业有限公司,“微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中真空压力控制装置的国产化替代”,知乎:https://zhuanlan.zhihu.com/p/377943078.(10)上海依阳实业有限公司,“彻底讲清如何在真空系统中实现压力和真空度的准确测量和控制”,知乎:https://zhuanlan.zhihu.com/p/343942420.(11)上海依阳实业有限公司,“高精度可编程真空压力控制器(压强控制器和温度控制器)”:http://www.eyoungindustry.com/2021/618/28.html.[align=center]=======================================================================[/align][align=center] [img=,690,345]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030804374064_8626_3384_3.jpg!w690x345.jpg[/img][/align]

  • 【原创】YD200A通用圆度仪波纹度仪

    YD200型圆度波纹度测量仪是采用计算机测量系统的转台式通用型圆度及波纹度测量仪,工作台旋转采用高精度滑动轴承,传感器采用高精度电感式位移传感器,主要用于测量圆环、圆柱等回转体工件的内外圆的圆度和波纹度,广泛应用于汽车零件、轴承、纺机、油泵油嘴等精密机械制造企业及大专院校、科研院所、计量机构等。仪器特点操作简便,经济适用结构紧凑,易于维护计算机数字化测量处理采用新的圆度波纹度评定标准多种圆度评定方法多波段数字滤波频谱分析、谐波分析通用打印机图形输出测量结果数据库归档存储技术参数型号项目YD200/AYD200/B测量项目圆度、波纹度。主轴精度±0.045μm±0.035μm系统精度≤0.10μm≤0.08μm主轴转速5r/min转台最大载荷10 kg转台有效直径200 mm工件最小内径3mm测量高度300mm旋转工作台调平调心传感器移动手动调节量程范围±25μm, ±50μm,±100μm测量分辨率0.01μm最大采样分辨率1024点/周数字滤波档2-15、2-50、2-150、2-500、15-150、15-250放大倍数400、1000、2000、4000、10000、20000、40000、80000、100000圆度评定方法最小二乘圆LSC、最小区域圆MZC、最大内切圆MIC、最小外接圆MCC其他功能谐波分析、斜率分析、数据库存档扩展功能部分圆弧圆度评定、电机换向器圆度、片间差测量选配件精密三爪卡盘、部分圆弧评定软件、电机换向器测量软件主机外形尺寸长×宽×高:600mm×300mm×500mm主机重量约100kg

  • 泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    [b][color=#3366ff]摘要:针对现有压力衰减法孔径测量中存在的基本概念不清和实施方法不明确等问题,本文详细介绍了压力衰减法的孔径测量基本原理,并重点介绍压差法测量中的高精度压力控制方法,为各种微小孔径和等效孔径的准确测量提供切实可行的解决方案。[/color][/b][align=center][img=压力衰减法孔径测量,550,294]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230914562217_9430_3221506_3.jpg!w690x370.jpg[/img][/align][b][size=18px][color=#3366ff]1. 问题的提出[/color][/size][/b] 在工业生产和实验室研究中存在着大量管件内部孔径的测量需求,而且还要求具有较高的测量精度,常见的需要精密测量的几类孔径有: (1)毛细管内径。 (2)鲁尔接头或其他连接器母接头孔径。 (3)各种喷灯气孔孔径。 (4)栓环缝通道等效孔径。 (5)药用玻璃瓶或药品包装系统漏孔孔径。 通道孔径主要分为直接测量方法和间接测量方法。直接测量主要是通过精密的尺规等工具进行测量,如游标卡尺、圆锥尺、针规和塞规等,但直接测量方法并不适应于细长管和针栓环缝通道等的孔径或等效通径的测量。 间接测量法主要有光学法和流体标定法。光学法一般是利用像素为基本单位对各种形状的孔进行测量,适用于元件表面孔和裂纹的测量。但对于细长或者弯曲多变的孔径,光学法不适用。流体标定方法是一种基于压力衰减法的有效的等效通径标定方法,流体介质多以气体和液体为主,通过流量计和压力传感器分别测量流体流量和压力差。但在目前的压力衰减法中普遍存在以下几方面的问题: (1)在低于和高于一个标准大气压的负压和正压条件下,都可以采用压力衰减法进行孔径测量,但绝大多数文献和专利报道对此并没有明确的规定,正负压测试条件的使用显着非常随意和混乱。 (2)压力衰减法的核心是在被测孔径管道的两侧形成恒定压力差,并同时测量由此压差引起的流量变化,其中的恒定压力控制是建立试验条件和影响测量精度的最重要因素。对于精确的压力控制在各种文献和专利报道中很少看到,大多报道只是给出一个不完整的压力衰减法测试框图,对精确的压力控制以生成高精度的恒定压差还未见报道。 针对上述现有压力衰减法孔径测量中存在的问题,本文将详细介绍压力衰减法孔径测量的基本原理,重点介绍压差法测量中的高精度压力控制方法,为微小孔径和等效孔径的准确测量提供切实可行的解决方案。[b][size=18px][color=#3366ff]2. 压力衰减法基本原理——泊肃叶定律[/color][/size][/b] 在恒定压差条件下,在粗细均匀的水平刚性圆管中作层流流动的黏性流体,其体积流量满足如图1所示的泊肃叶(Poiseuille)公式。[align=center][img=泊肃叶定律,600,311]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230917419388_2550_3221506_3.jpg!w690x358.jpg[/img][/align][align=center][color=#3366ff][b]图1 流体介质的泊肃叶定律[/b][/color][/align] 从泊肃叶公式中可以看出,体积流量与管孔半径的四次方成正比,孔径微小的变化都会对流量产生明显的影响。这就是压力衰减法孔径测量的依据,孔径的微小改变都会引起流量的显著变化,因此压力衰减法在孔径测量中具有很高的灵敏度,但前提是一要准确控制管道两端的压力,二是要准确测量体积流量。[b][size=18px][color=#3366ff]3. 孔径测量解决方案[/color][/size][/b] 依据泊肃叶定律,孔径测量的关键是实现准确的压力控制和流量测量。为此,本文针对高精度孔径测量提出的解决方案如图2所示。[align=center][b][color=#3366ff][img=压力衰减法孔径测量装置结构示意图,600,572]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230918265466_3029_3221506_3.jpg!w690x658.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图2 压力衰减法孔径测量装置结构示意图[/color][/b][/align] 如图2所示,被测孔径管件安装在两个压力腔室之间,整个装置的目的是精确控制这两个腔室的压力以形成稳定的压力差,在压力差稳定的装置下测量流进和留出两个腔室的气体流量,从而可计算得到被测孔径大小。 此孔径测量装置涉及以下几方面的主要内容: (1)此孔径测量装置采用了正压压力控制方案,这主要是因为正压控制同样可以达到很高的精度,而且,相对于负压真空环境下的测量和控制造价较低。正压控制过程中,采用纯净的高压气瓶和减压阀提供稳定的高压气源,高压气源同时供给两个压力控制阀以实现不同的正压压力控制。 (2)由于要测量进出两个腔室的气体流量,需要在两个腔室的进气口和出气口处分别安装气体质量流量计进行流量测量,因此压力控制阀无法直接对两个腔室的压力直接控制。为此,解决方案采用了串级控制方式,即在两个腔室上分别增加压力传感器,通过双通道PID压力控制器采集压力传感器信号,并两个通道分别设定不同的压力值,由此来驱动压力控制阀进行双回路的压力控制,由此实现两个腔室内的压力准确稳定在设定值上。 (3)压力控制阀是一个自带PID控制板和压力传感器的闭环压力控制装置,通过接收双通道PID压力控制器的控制信号,可以使压力控制阀出口处的压力准确恒定。压力控制阀自带泄压放气孔,由此两个压力控制阀组成的压差控制回路可使气体单向流过被测孔径管件。 (4)此解决方案中的孔径测量装置是一个对称装置,这种对称结构设计的目的是可以对被测孔径管件进行双向测试,这也是一种提高孔径测量精度的途径之一。 (5)压力控制器采用的是双通道高精度PID控制器,AD精度为24位,DA精度为16位,两个通道独立运行,可满足各种孔径精度测量中的压力控制需要。 (6)整个孔径测量装置的测量精度,除了受压力控制器精度影响之外,还会受到压力控制阀、压力传感器和气体质量流量计精度的影响,因此要针对不同的孔径测量精度要求选择合适精度的部件。 (7)由于此孔径测量装置是直接控制两个腔室的压力,所以在室温下运行时腔室温度的波动对压力变化没有影响,腔室压力控制自动会消除掉温度影响而保持腔室气压恒定。 (8)为了实现数据的自动采集和计算孔径测量结果,双通道压力控制器和两个气体质量流量计需要与计算机通讯连接(图2中并未绘出)。由此,通过计算机可设定控制压力,采集压力和流量变化曲线以监控压力和流量是否稳定,当达到稳态状态后可通过压力和流量采集数据并依据泊肃叶公式计算得到孔径测量值。[b][size=18px][color=#3366ff]4. 总结[/color][/size][/b] 综上所述,本文所提出的基于压力衰减法的孔径测量解决方案,具有很高的测量精度和广泛的适用性,整个测量过程自动运行,关键是可以满足多种形式的微小孔径测量,在替代传统塞规的前提下,是一种高精度的无损测量解决方案。特别是采用气体作为流体介质,非常适合微小尺寸(如毛细管等)和漏孔的等效口径测量。[align=center]~~~~~~~~~~~~~~~~~~~~~[/align]

  • 真空压力控制技术在低温恒温器高精度温度恒定中的应用

    真空压力控制技术在低温恒温器高精度温度恒定中的应用

    [color=#990000]摘要:针对低温恒温器中低温介质温度的高精度控制,本文主要介绍了低温介质减压控温方法以及气压控制精度对低温温度稳定性的影响,详细介绍了低温介质顶部气压高精度控制的电阻加热、流量控制和压力控制三种模式,以及相应的具体实施方案和细节。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=left][size=18px][color=#990000]1. 引言[/color][/size][/align] 在低温恒温器中,低温介质(液氦和液氮等)温度波动产生的主要原因是沸腾的低温介质顶部气压(真空度)的变化。因此,为了实现低温介质内部的温度稳定,就需要对低温介质顶部的气压进行准确控制。 国内外针对低温恒温器的温度控制大多采用以下三种技术途径: (1)主动控制方式:在浸没于低温介质的真空腔里直接引入加热电路,利用温度计对真空腔温度的实时监测数据,与目标温度值进行比较后来控制加入到加热电路中的电流。 (2)被动控制方式:对低温介质顶部气压进行控制,使低温介质温度稳定。 (3)复合控制方式:复合了上述两种控制方式,在浸没于低温介质的真空腔里直接引入加热控制电路之外,还同时对低温介质上部的气压进行控制。 电阻加热控温方式已经是一种非常成熟的技术,本文将主要针对低温介质顶部气压控制方式,介绍气压控制精度对低温温度稳定性的影响,以及高精度气压控制的实现途径和具体方案。[align=center][img=真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2021/12/202112080959307199_6660_3384_3.png!w690x396.jpg[/img][/align][align=center][color=#990000]图1 液氦饱和蒸气压与温度关系曲线[/color][/align][size=18px][color=#990000]2. 气压控制精度与温度稳定性关系[/color][/size] 以液氦为例,液氦的饱和蒸汽压与对应温度变化曲线如图1所示。 由图1可以看出,在很小的温度范围内,上述曲线可以用直线段来描述,所以可以得到4K左右的温度范围内,气压大约100Pa的波动可引起1mK左右的温度波动。由此可以认为,如果要实现1mK以下的波动,气压波动不能超过100Pa。[size=18px][color=#990000]3. 顶部气压控制的三种模式[/color][/size] 低温介质顶部气压控制一般采用三种模式:电阻加热、流量控制和压力控制。[size=16px][color=#990000]3.1 电阻加热模式[/color][/size] 在低温恒温器的恒温控制过程中,电阻加热模式是在低温介质中放置一电阻丝加热器,如图2所示,真空计检测顶部气压变化,通过PID控制器改变加热电流大小来调节和控制顶部气压,将顶部气压恒定在设定值上。从图2可以看出,电阻加热模式比较适合增加顶部气压的升温控温方式,但无法实现减压降温。[align=center][color=#990000][img=真空度控制,690,569]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000054776_8294_3384_3.png!w690x569.jpg[/img][/color][/align][align=center][color=#990000]图2 电阻加热模式示意图[/color][/align][size=16px][color=#990000]3.2 流量控制模式[/color][/size] 流量控制模式是一种典型的减压降温模式,如图3所示,真空泵按照一定抽速连续抽取低温恒温器来降低顶部气压,真空计、电动针阀和PID控制器构成闭环控制回路,通过电动针阀调节抽气流量使顶部气压准确恒定在设定真空度上。由此可见,流量控制模式比较适合降低顶部气压的降温控温方式,但无法实现增压升温。[align=center][color=#990000][img=真空度控制,690,504]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000399321_2525_3384_3.png!w690x504.jpg[/img][/color][/align][align=center][color=#990000]图3 流量控制模式示意图[/color][/align] 另外流量控制模式中,真空泵的连续抽气使得低温介质的无效耗散比较严重。[size=16px][color=#990000]3.3 压力控制模式[/color][/size] 压力控制模式是一种即可增压也可减压的控温模式,如图4所示,当采用真空泵抽气时为减压模式,当采用增压泵时为增压模式,由此可实现宽温区内温度的连续控制。所采用的调压器自带一路进气口(大气压),结合真空泵在对顶部气压进行恒压控制的同时,可有效避免低温介质的大量无效耗散。[align=center][color=#990000][img=真空度控制,690,518]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000533816_3012_3384_3.png!w690x518.jpg[/img][/color][/align][align=center][color=#990000]图4 压力控制模式示意图[/color][/align] 另外,这里的增压方式也可以采用低温介质中增加电加热器来实现。[size=18px][color=#990000]4. 其他实施细节[/color][/size] 在上述三种控制模式实施过程中,还需特别注意以下细节: (1)真空计的选择 真空计是测量顶部气压变化的传感器,是决定低温恒温器温度控制稳定性的关键,所以一定要选择高精度真空计。 目前高精度真空计一般为电容薄膜规,一般整体精度为0.2%。 如前所述,在液氦4K左右的恒温控制过程中,要求气压波动不超过100Pa,及±50Pa,如果对应于100kPa的气压控制,则真空计的精度要求需要高于±0.05%。由此可见,对于温度波动小于1mK的恒温控制,还需要更高精度的真空计。 (2)PID控制器的选择 在恒温控制过程中,PID控制器通过A/D转换器采集真空计的测量值,计算后再将控制信号通过D/A转换器发送给执行器(电动针阀、调压器和加热电源等)。为此,要保证能充分发挥真空计的高精度和控制的准确性,需要A/D和D/A转换器的精度越高越好,至少要16位,强烈建议选择24位高精度的PID控制器。 (3)调压器的配置 调压器是一种集成了真空压力传感器、控制器和阀门的压力控制装置,但真空压力传感器的精度远不如电容薄膜规,控制器精度也比较低。为此在使用调压器时,要选择外置控制模式,即采用电容薄膜规作为控制传感器。 另外,需要特别注意的是,调压器中控制器的A/D和D/A转换器精度较低,因此对于高精度和高稳定性的顶部气压控制而言,不建议采用控压模式,除非采用特殊订制的高精度调压器。[hr/]

  • 理学、帕纳科、布鲁克三家XRD的测角仪使用15年以上之后,精度差别大吗?

    理学、帕纳科、布鲁克三家XRD的测角仪经过15年的使用时间后,测量精度差别大吗?请各位用过15年以上的专家和前辈们,分享分享你们宝贵的经验。以下内容是从某家销售那里听说的,在原理上来讲基本是这样的:[font=微软雅黑]帕纳科Empyrean: [font=微软雅黑][font=微软雅黑]直接光学定位系统([/font]DOPS)编码器,固定于测角仪轴上,直接测量实际角度(绝对角度),闭环反馈系统;不随时间磨损。无级直流马达驱动 [/font][/font][font=微软雅黑]理学SmartLab:直接光学定位系统、[font=微软雅黑]高精度三重光学编码测角仪系统,无闭环反馈系统,步进马达驱动。[/font][/font][font=微软雅黑][font=微软雅黑]布鲁克D8 Advance DAVINCI:[font=微软雅黑]步进马达驱动辅助以光学编码校准,无闭环反馈系统,容易受振动的影响[/font][font=微软雅黑]。[/font][font=微软雅黑] [/font][/font][/font][font=微软雅黑][/font][font=微软雅黑]在经过十几年的使用之后,步进马达会有齿轮磨损,齿轮间隙变大,就会造成误差,这样就会造成测角仪精度变差。[/font][font=微软雅黑]请问各位专家和前辈有这方面的体会吗?[/font][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑][/font][/font][font=微软雅黑][font=微软雅黑][/font][/font]

  • 反重力调压铸造真空压力控制技术——高精度快速压力调节解决方案

    反重力调压铸造真空压力控制技术——高精度快速压力调节解决方案

    [color=#ff0000]摘要:针对客户调压铸造炉对真空压力控制系统的技术要求,本文介绍了相应的解决方案和验证试验。方案的技术核心是基于高速动态平衡法,采用大流量压力控制装置,与传感器和真空压力控制器组成PID闭环控制回路,其特点是可快速实现设定压力控制,且可节省工作气体。此解决方案可以推广应用在其他形式的反重力铸造设备的真空压力控制系统。[/color][align=center][img=反重力合金铸造工艺中的高精度快速压力调节解决方案,600,294]https://ng1.17img.cn/bbsfiles/images/2022/12/202212301609202703_8417_3221506_3.jpg!w690x339.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#ff0000]1. 项目概述和技术要求[/color][/size][/b] 反重力铸造是以外部作用力驱动金属液,使其沿反重力方向进入型腔并完成充型和补缩的铸造方法。反重力铸造根据原理可以分为真空吸铸、低压铸造、差压铸造和调压铸造。调压铸造作为反重力铸造方法之一,其设备最为复杂,但功能最强大。其充型稳定性、充型能力和顺序凝固条件均优于其他反重力铸造,可铸造壁厚更薄,棒径更小且力学性能更好的大型薄壁件和棒状铸件。造成该设备复杂的主要原因是其不仅能实现正压控制,还能够实现负压控制,要求具有准确的真空压力测量和控制装置。 目前有客户设计了一种用于铸造均匀无偏析棒材的调压铸造炉,如图1所示,要求我们配套相应的真空压力控制系统,真空压力控制系统的具体工作流程如下:[align=center][color=#ff0000][b][img=调压铸造炉,500,481]https://ng1.17img.cn/bbsfiles/images/2022/12/202212301613183177_4714_3221506_3.jpg!w690x664.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图1 用于铸造均匀无偏析棒材的调压铸造炉[/b][/color][/align] (1)物料甜装完毕合炉后,启动机械泵抽真空至0.1Pa量级时启动分子泵。 (2)真空度达到5×10-3Pa以上后开启加热工序。 (3)熔炼温度到达1450℃时,关闭抽真空系统,控制压力控制系统进行充氩气,使压力在4s内上升至0.25MPa。 由此确定的真空压力控制指标为: (1)真空压力范围: 5×10[sup]?-3[/sup][sup]?[/sup]Pa ~ 0.25MPa。 (2)压力控制:4s内达到0.25MPa。 (3)压力恒定精度:优于±2%。 针对上述调压铸造炉对真空压力控制系统的技术要求,本文将介绍相应的解决方案。解决方案的技术核心是采用大流量气体压力控制装置,与压力传感器和真空压力控制器组成PID闭环控制回路,其特点是所采用的高速动态平衡法不仅可以快速实现设定压力控制,而且还节省工作气体。此解决方案可以推广应用在其他形式的反重力铸造设备的真空压力控制系统。[b][size=18px][color=#ff0000]2. 解决方案[/color][/size][/b] 本文提出的解决方案如图2所示,其结构非常简单,但功能强大。[align=center][b][color=#ff0000][img=调压铸造炉压力控制系统示意图,690,367]https://ng1.17img.cn/bbsfiles/images/2022/12/202212301613496290_7813_3221506_3.jpg!w690x367.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 反重力调压铸造炉正压压力控制装置方案示意图[/color][/b][/align] 图2所示的解决方案具有以下几方面的功能和特点: (1)压力传感器尽可能被安装在靠近铸造炉,以更准确的测量铸造炉内的压力变化。 (2)解决方案采用了先导阀驱动结构,即采用同样的先导阀可以驱动不同流量的背压阀,这样可根据不同铸造炉腔体大小选择合适的背压阀,满足不同反重力铸造设备中高速和准确的压力控制要求。 (3)采用上述方案,可以满足所有反重力铸造设备中的压力控制要求,最关键的是可以在正压控制过程中达到很高的速度,可以在几秒内达到设定正压压力值并保持稳定。 (4)此解决方案的另外一个特点是节省工作气体,整个正压压力控制过程中除所需的充气量之外,只泄露很少气体就可以达到设定压力并保持恒定,非常适合高价值惰性气体工作环境。 (5)解决方案采用了功能强大的超高精度真空压力控制器,针对反重力铸造中的升液阶段、充型阶段、结壳增压阶段、结壳保压阶段、结晶增压阶段、结晶保压阶段等不同的压力变化过程,可进行复杂的设定程序控制,并可同时存储多条工艺压力控制程序曲线以供调用。真空压力控制器带标准的MODBUS通讯协议,可方便的与上位机连接和组网控制。 (6)此解决方案结构简单且压力控制精度高,非常适用于大工件的多位并联加压铸造中的多点压力同步控制,避免形成不合理的压差。 (7)此解决方案具有很强的扩展性,如可以通过连接液面位置传感器等来更精密的控制铸造工艺压力变化。[b][size=18px][color=#ff0000]3. 高速压力控制考核验证[/color][/size][/b] 在反重力铸造工艺中,压力的高速是一个技术难点。为此,我们对上述解决方案中的压力控制速度进行了考核试验,试验装置如图3所示。[align=center][color=#ff0000][b][img=03.考核试验装置,690,354]https://ng1.17img.cn/bbsfiles/images/2022/12/202212301614138907_9684_3221506_3.jpg!w690x354.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图3 正压压力响应速度考核试验装置[/b][/color][/align] 考核试验装置完全按照图2所示结构进行搭建,其中的铸造炉用一个三通管件进行模拟,整个考核装置的实验目的是验证解决方案能否在极快的速度内实现设定压力控制。 为了实时检测压力变化,在考试试验装置中的压力传感器上还连接了一个高精度的数据采集器,用了50ms的采样速率进行数据采集,数据采集器连接计算机,计算机通过采集软件获得压力随时间的变化曲线,由此来观察压力控制的快速响应细节。 在图3所示考核试验装置上,我们采用人工设定的方法对真空压力控制器输入设定值,由控制器完成压力调节和控制,由此来对一系列设定压力值进行了定点控制试验,并还分别进行了升压和降压过程的试验,结果如图4所示。[align=center][color=#ff0000][b][img=压力控制考核试验结果,550,282]https://ng1.17img.cn/bbsfiles/images/2022/12/202212301614415521_363_3221506_3.jpg!w690x354.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图4 正压压力响应速度考核试验结果[/b][/color][/align] 为了量化压力控制速度和控制精度,将试验结果中的任选一个压力点的控制结果进行单独显示,如图5所示。从图5所示的结果可以看出,压力从1.8Bar 升到2.6 Bar用时不到1秒,达到±1%以内的控制稳定性则用时不到1.5秒,而在2秒之后可以达到±0.5%的控制稳定性。其他压力设定点的控制结果基本都相差无几,证明了此方案完全可以达到快速准确的压力控制。[align=center][b][color=#ff0000][img=单点压力控制结果,550,283]https://ng1.17img.cn/bbsfiles/images/2022/12/202212301615304911_3569_3221506_3.jpg!w690x356.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图5 设定值0.26MPa时的压力控制结果[/color][/b][/align][b][size=18px][color=#ff0000]4. 结论[/color][/size][/b] 针对反重力铸造工艺中的压力控制,本文提出的压力控制解决方案可实现高速和高精度的压力控制,可在几秒的时间内实现±1%以内的控制精度,完全能够满足客户对压力高速控制的技术要求。同时,整个解决方案非常简单但功能强大和极易拓展应用,完全能满足目前各种精密反重力铸造工艺中对压力准确控制的要求,特别是适用于大尺寸工件反重力铸造中多个溶体保温炉的同步压力控制。[align=center]~~~~~~~~~~~~~~[/align]

  • 半导体系统专用高精度控制电源的水泵相关说明

    半导体系统专用高精度控制电源应用在国内半导体行业中,无锡冠亚的半导体系统专用高精度控制电源中每个配件都是很重要的,其中,关于水泵是比较重要,我们也需要对其有一定的认识。  半导体系统专用高精度控制电源是一类广泛应用于国内工业生产领域的专业制冷设备,在半导体系统专用高精度控制电源中,水泵的运行是否正常对于保证低温半导体系统专用高精度控制电源设备的正常运转是非常重要的,定期对低温半导体系统专用高精度控制电源的水泵进行检测是非常关键的,那么,怎样合理的评估和检测低温半导体系统专用高精度控制电源水泵的情况好呢?  半导体系统专用高精度控制电源水泵的情况在较大程度上影响着低温半导体系统专用高精度控制电源设备的整体运行。在半导体系统专用高精度控制电源工作的时候,水泵在运行中,应注意检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大,过小应立即停机检查。  另外,半导体系统专用高精度控制电源设备的水泵相关工作系统能够较好的反映半导体系统专用高精度控制电源设备的工作状态。比如,水泵流量是否正常,检查出水管水流情况,根据水池水位变化,估计水泵运行时间,及时与调度联系。同时,还要检查水泵填料压板是否发热,滴水是否正常,每班不得少于八次。  半导体系统专用高精度控制电源的水泵性能是很关键的,需要我们认真对待,认真保养,只有每个配件的性能都可以的话,半导体系统专用高精度控制电源才能更好的使用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制