当前位置: 仪器信息网 > 行业主题 > >

高精度鱼卵自动计

仪器信息网高精度鱼卵自动计专题为您提供2024年最新高精度鱼卵自动计价格报价、厂家品牌的相关信息, 包括高精度鱼卵自动计参数、型号等,不管是国产,还是进口品牌的高精度鱼卵自动计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高精度鱼卵自动计相关的耗材配件、试剂标物,还有高精度鱼卵自动计相关的最新资讯、资料,以及高精度鱼卵自动计相关的解决方案。

高精度鱼卵自动计相关的论坛

  • 在昆虫学实验用自动气压室中如何实现正压和负压的高精度程序控制

    在昆虫学实验用自动气压室中如何实现正压和负压的高精度程序控制

    [align=center][img=在昆虫学实验用自动气压室中如何实现正压和负压的高精度程序控制,500,387]https://ng1.17img.cn/bbsfiles/images/2022/11/202211090604445428_4508_3221506_3.jpg!w690x535.jpg[/img][/align][color=#990000]摘要:昆虫的行为模式会受气压变化的明显影响,为在可控气压条件下的气压室内模拟自然气压变化对昆虫行为进行准确和可重复的研究,需要气压室的气压变化可精确程序控制。本文针对客户提出的气压室压力精密程序控制要求,介绍了高精度真空压力控制仪解决方案。真空压力控制仪采用密闭容器进出气体动态平衡法工作原理,以高压气瓶作为高压气源,真空泵进行抽气,通过双通道真空压力程序控制器采集压力传感器并同时自动调节进气针阀和出气针阀的开度,实现任意设定压力变化程序的精密控制和长时间稳定运行。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000][size=18px][b]一、问题的提出[/b][/size][/color]各种生物体所处的环境会影响和改变其生活方式,这些环境条件主要包括风、雨、土壤成分、辐射、温度和大气压力等因素。大量研究表明,不利的天气条件(通常与气压变化有关)会影响繁殖、摄食和栖息。昆虫行为,如飞行、产卵、寄生、交配和鸣叫等,会受到气压的影响。对于昆虫行为模式与气压之间的相关性研究,目前普遍采用的方式是在自然条件下进行观察和记录,存在效率低、周期长和不准确等问题。个别实验室使用了手动控制气压的气压室,但存在气压控制不准确、无法长时间的精密模仿自然压力的缓慢变化过程以及可控的气压变化范围很窄等问题。最近有客户希望能对昆虫研究用的气压室进行正负压自动控制,具体要求如下:(1)气压控制范围:以一个标准大气压为基准,能实现气压室的气压在内正负压力范围内的精密控制,即气压室内的绝对压力在90kPa~110kPa范围内精密可控。(2)气压控制形式:可自动模拟自然界大气压的缓慢变化过程,即气压变化可按照任意设定的变化方向和速度进行控制,气压可准确恒定在任意设定点处。总之,整个气压变化过程可按照任意设定的折线形式进行精密控制。(3)气压控制精度:在90kPa~110kPa范围内,任意压力下的控制精度小于±0.1%。为了满足客户提出的上述要求,本文将提出相应的高精度气压程序控制解决方案。解决方案将采用密闭容器进出气体动态平衡法,采用高压气瓶作为高压气源,真空泵进行抽气,通过双通道真空压力程序控制器采集压力传感器并同时控制进气针阀和出气针阀的开度,实现任意设定压力变化程序的精密控制和长时间稳定运行。[b][size=18px][color=#990000]二、解决方案[/color][/size][/b]从客户提出的上述要求可以看出,用于昆虫行为研究的气压室压力控制是个典型的正负压力自动控制问题。此正负压力自动控制需要解决以下几方面的问题:(1)正压(压力)和负压(真空)如何形成。(2)正负压自动控制方法和控制仪器。(3)压力传感器的选择。(4)控制阀门的选择。为解决上述几方面的问题,本文提出的具体解决方案如图1所示。[align=center][color=#990000][img=气压室压力控制方案结构示意图,550,227]https://ng1.17img.cn/bbsfiles/images/2022/11/202211090607045916_3943_3221506_3.jpg!w690x285.jpg[/img][/color][/align][align=center][color=#990000]图1 昆虫研究用气压室正负压力程序控制方案示意图[/color][/align]首先,为在气压室内形成正压和负压,解决方案采用了动态平衡法。如图1所示,在气压室的左边进气端布置高压气源,在气压室的右边出气端布置真空泵,如果进气流量大于排气流量则形成正压,若排气流量大于进气流量则形成负压。进气和出气流量通过进气阀和排气阀调节。对气压室正压和负压的调节和控制,是一个典型的分程控制案例,即采用一个调节器的输出同时驱动几个工作范围不同的执行器。这里的调节器就是图1所示的压力控制器,工作范围不同的执行器是进气阀和排气阀。由此可见,压力控制器要求具有分程控制功能,即要求压力控制器针对不同工作范围(正压或负压区间)具备同时调节进气阀和排气阀开度大小的功能。另外,为了保证控制精度,所选择的压力控制器为超高精度PID调节器,具有24位AD和16位DA转换器,并具有双精度浮点运算功能,最小输出百分比可以达到0.01%。为了保证气压室内压力变化达到客户提出的控制精度,还需要选择高精度压力传感器。如果要达到±0.1%的控制精度,压力传感器的测量精度需要达到±0.05%。同样,压力控制精度还取决于进气阀和排气阀的调节精度和响应速度。对于体积较小的昆虫学实验用气压室,则要求阀门具有超高的响应速度。我们选择用步进电机驱动的快速电动针阀,电动针阀的全程开启速度为0.8秒,具有超低的真空漏率和7bar的耐正压能力。一系列不同通孔孔径的电动针阀可供选择以满足不同规格尺寸的自动气压室。最关键的是可以使用0~10V(或4~20mA)的模拟信号直接驱动电动针阀,且具有非常好的线性度和重复性。经过上述选择和配置,按照图1所示的解决方案,所配置的真空压力控制仪如图2所示。[align=center][color=#990000][img=用于气压室的真空压力控制仪结构示意图,550,447]https://ng1.17img.cn/bbsfiles/images/2022/11/202211090607364958_9108_3221506_3.jpg!w690x561.jpg[/img][/color][/align][align=center][color=#990000]图2 昆虫研究用气压室真空压力控制仪结构示意图[/color][/align]图2所示的真空压力控制仪是一个集成式仪器,将包括数控针阀、控制器、电源等所有部件都集成安装在控制仪内。控制仪两侧留有连接充气/抽气泵的快插接头。控制仪背面留有连接气压室进气/出气的快插接头,同时还留有连接压力传感器、计算机通讯和工作电源的专用接口。压力传感器以外置形式直接安装在气压室侧壁上,可更准确的检测气压室内的真空压力变化。压力传感器的信号和电源引线连接到真空压力控制仪背面相应的连接器上。这种外置式压力传感器形式更具有扩展性,可根据不同气压室或密闭容器的真空压力控制范围选择不同压力传感器,并便于更换和安装。计算机通讯采用了具有标准MODBUS协议的RS 485接口,由此可连接计算机。通过PID控制器随机所带的控制软件,计算机可直接遥控PID调节器,并采用软件界面操作进行控制程序设置和运行,对控制过程进行数据采集、存储和全过程结果曲线显示。[b][size=18px][color=#990000]三、总结[/color][/size][/b]上述的正负压精密控制解决方案作为一种标准的真空压力控制仪器,除了可以满足昆虫学实验用自动气压室的各项要求外,还具有很强的适用性和可扩展性,主要体现在以下几个方面:(1)可进行更大区间的真空压力控制,绝对压力控制范围可覆盖0.1Pa~0.5MPa,具有非常宽泛的正压和负压控制范围。(2)在正压和负压区间可实现各种形式的控制,如单独控制正压、单独控制负压(真空度),也可正负压连续控制,所有控制可进行定点控制,也可进行折线编程程序的自动控制。(3)可进行更多功能的扩展,如实现不同气体或不同气体含量混合气体下的气压控制,也可用来同时控制其他环境变量,如温度、湿度和光照等。总之,标准化的真空压力控制仪可满足各种实验室气压室的压强程序控制,并具有±0.1%以上的控制精度。同时,控制仪也适用于各种真空压力容器(如气候室、气候环境试验箱、真空气氛炉、真空干燥箱、旋转蒸发仪、精密低温容器、冷冻干燥箱和各种光谱仪等)的气压精密控制,大大提高了自动化程度和控制精度。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~[/align]

  • 体外循环术中灌注流量的高精度自动控制解决方案

    体外循环术中灌注流量的高精度自动控制解决方案

    [align=center][size=16px][img=体外循环术中灌注流量的高精度自动控制,600,415]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271116037597_5912_3221506_3.jpg!w690x478.jpg[/img][/size][/align][size=16px][color=#990000][b]摘要:在目前的体外循环手术过程中,需要灌注师快速而精确地操作使得血液流速调节到期望的目标值。基于国外文献报道的血流量自动控制方法和装置,本文提出了技术改进且国产化解决方案。通过本解决方案中增加的国产系列电控夹管阀、电控针阀和具有远程设定值功能的超高精度PID控制器,可以使得体外循环过程中的静脉和动脉血流量控制真正实现高精度的自动化控制,在满足临床应用和研究需求的同时,可降低灌注师的操作难度和医疗事故。[/b][/color][/size][align=center][size=16px][color=#990000][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 体外循环(CPB)设备在心脏手术期间临时替代心肺功能,以维持体循环。心脏体外循环手术时,需要将手术病人静脉血从体内引出,通过体外循环机氧合后回输至体内动脉管道、静脉回流管、左心房引流管、心内吸引管、普通吸引管等管道,并维持血流量、静脉储库水平、氧气浓度、氧气血流量和血液温度,其中对血液流速的控制要求非常高,稍有错误就会导致循环障碍和大量空气栓塞,从而导致严重的医疗事故。[/size][size=16px] 在CPB具体操作过程中,需要灌注师快速而精确地操作三个装置(静脉侧阻隔器、动脉侧阻隔器和离心泵)来将血液流速调节到期望的目标值,不正确的操作会导致气栓并改变静脉储血水平而导致意外的血压波动,从而将患者置于危险之中。因此,需要开发一种有助于自动调节血液流速的装置以提高自动化控制水平和降低灌注师工作强度,为此文献[1]提出了一种体外循环过程中动脉侧血流量的自动控制方法和控制装置,其结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=体外循环血流量自动控制结构示意图,650,351]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271117325921_65_3221506_3.jpg!w584x316.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 体外循环血流量自动控制装置结构示意图[/b][/color][/size][/align][size=16px] 尽管文献[1]提出了一种体外循环过程中动脉侧血流量的自动控制方法和相应装置,但距离真正的临床应用还有一定差距,这些差距主要体现在以下几个方面:[/size][size=16px] (1)尽管文献[1]给出了静脉侧和动脉侧血流量调节用的手动和自动阻隔器的具体型号,但我们并未在阻隔器厂家官网上查到相应型号阻隔器的具体产品和相应技术参数。因此,为了真正实现临床应用还需进一步明确阻隔器产品,甚至是国产化替代。[/size][size=16px] (2)动脉侧血流量自动控制的目的是要自动调节动脉侧血流量的变化始终要与静脉侧血流量的变化保持快速同步和相同,但文献[1]给出的控制模型和控制策略过于复杂,较难真正的工程化实现。[/size][size=16px] 针对文献[1]技术方案存在的上述缺陷,本文提出了可真正实现临床应用的解决方案,能很好的解决上述问题,并可完全采用国产化相关产品予以实现。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 基于文献[1]所述的动脉侧血流量自动控制技术方案,我们进行了改进,并进一步明确和细化了相关所用部件,改进后的自动控制装置结构如图2所示。[/size][align=center][size=16px][color=#990000][b][img=改进后的体外循环血流量自动控制结构示意图,650,311]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271118025749_1493_3221506_3.jpg!w690x331.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 改进后的体外循环血流量自动控制结构示意图[/b][/color][/size][/align][size=16px] 解决方案的改进内容之一是采用国产的电控夹管阀来代替文献[1]中所用的阻隔器,这种电控夹管阀可以通过0~10V的直流电压信号来改变加持力以调节管路导通口径的大小,从而实现对管路中的流体流量进行调节。由此可见,这种电控夹管阀可以很方便的被用来进行静脉侧和动脉侧血流量的手动或自动调节。[/size][size=16px] 尽管电控夹管阀和自动阻隔器可以用来对体外循环系统中的血流量进行调节,但存在的问题是会带来的非线性,这种非线性会对自动控制精度带来严重影响,这也是文献[1]控制模型非常复杂的主要原因。文献[2]对这种非线性进行了研究和描述,发现操作值与开度之间呈指数关系。[/size][size=16px] 为了解决管夹形式所带来的非线性问题,解决方案提出的改进内容之二是采用NCNV系列的电控针阀。NCNV系列电控针阀具有非常高的线性度,且具有快速的响应速度以及不同的孔径尺寸,常用于气体和液体介质的真空、压力和流量的精密调节。尽管采用电控针阀可以很好的解决夹管阀非线性所带来的控制精度问题,但电控针阀存在的重要问题是针阀需要接触所调节的流体介质,不能像夹管阀那样与流体介质不发生接触。[/size][size=16px] 为真正使动脉侧血流量能快速与静脉侧血流量保持同步和相同,本解决方案提出的重大改进是采用具有远程设定点功能的VPC2021系列高精度PID控制器,控制器的具体特性和功能如下:[/size][size=16px] (1)具有两个输入信号接收通道,其中主输入通道接收动脉侧流量计信号,并由主控输出通道输出控制信号对动脉侧电控夹管阀/针阀进行调节;而辅助输入通道接收静脉侧流量计信号,此接收到的静脉侧流量信号则作为动脉侧流量控制的设定值。通过这种辅助输入通道的这种远程设定值功能,可使得动脉侧的流量控制始终以静脉侧的流量为跟踪控制目标。[/size][size=16px] (2)控制器具有超高的测量精度和控制精度,其中24位AD、16位DA和0.01%最小输出百分比,并采用了无超调的PID控制模式,这非常适用于体外循环装置中的高精度血液流量控制。[/size][size=16px] (3)控制器具有RS485通讯接口,并执行标准的MODBUS协议。控制器自带测控软件,在计算机上运行软件可实现控制器参数设置、驱动运行、过程参数的采集、曲线显示和存储,无需再进行程序编写就可组成软硬件控制系统用于临床应用和研究。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 通过本解决方案中增加的国产系列电控夹管阀、电控针阀和具有远程设定值功能超高精度PID控制器,可以使得体外循环过程中的静脉和动脉血流量控制真正实现高精度的自动化控制,在满足临床应用和研究需求的同时,降低医疗事故和灌注师的操作难度。[/size][size=18px][color=#990000][b]4. 参考文献[/b][/color][/size][size=16px][1] Takahashi H, Kinoshita T, Soh Z, et al. Automatic control of blood flow rate on the arterial-line side during cardiopulmonary bypass[C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021: 5011-5014.[/size][size=16px][2] Takahashi H, Soh Z, Tsuji T. Steady-state model of pressure-flow characteristics modulated by occluders in cardiopulmonary bypass systems[J]. IEEE Access, 2020, 8: 220962-220972.[/size][align=center][size=16px][color=#990000][b][/b][/color][/size][/align][align=center][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 高精度计重秤ACS-ZC71计重桌称6kg/0.1g6万分之一精度包邮

    高精度计重秤型号最大称量分度值最大可读精度ACS-3-ZC713kg0.05g1/60000ACS-6-ZC716kg0.1g1/60000秤盘尺寸:275mm*220mm接口:DC接口,RS232接口(选配),RJ45以太网接口(选配)电源:4V/4A电子秤专用蓄电池http://www.xiangshanscale.com/uploads/chanpinsucai/chanpinmiaoshu.png使用中航电测高精度130mm传感器,品质符合世界标准新款高精度计重秤ACS-ZC71称重可读性高达1/60000精度;内部解析精度高达1/600000具有简易计数功能,可当计数秤使用具有大尺寸LCD白色背光液晶显示,字高25.4mm,字幕清晰易读取ACS-ZC71具有运送保护,过载保护设计高精度计重秤采用触摸式薄膜按键,容易操作,防水性能佳超低功耗,一次充电可使用180小时具有电池低电压报警功能,可降低电池过量放电损坏几率高精度计重秤ACS-ZC71外壳采用ABS耐冲击塑料;秤盘采用ABS塑料载物盘和不锈钢材料托盘双盘结构,应对各种使用场合,经久耐用,使用寿命长 微电脑处理功能具有四段数位滤波设定,可在恶劣的称重环境使用自动归零功能扣重、预扣、自动扣重功能智慧ACAI可自行判断单重大小,执行自动平均,求得更精确的单重数值最大累计到999,999,999,999具有省电模式(BACKLIGHT AUTO ON)具有开机电压侦测,可显示当前电池电压,预知电池可使用时间应 用高精度计重秤ACS-ZC71广泛适用于工矿企业、科研机构、大专院校、黄金珠宝、建筑、地质勘探、道路建设、农牧业、商业流通领域的精密称量,尤其适应大中型企业的物料管理。

  • 高精度一乎面加工与检浏

    高精度平面主要包括平晶、平行平晶、标准平面和分划板等。高精度平面的平面度一般γ/20,平行度<2′′。 1高箱度平面的加工方法 a古典抛光法 在一般抛光机上采用柏油模、分离器抛光.这种方法与操作者的技能有较大关系, b.蟹钳式分离器加工法 它在很人程度上减小了倒翻力矩的挤压作用,同时也采用新型抛光模(如混合模、聚四氟乙烯抛光模等),明显提高了加效率利和精度。 c.环形抛光模加工法 它用校正板和夹持器代替分离器.不仅能保持分离器的功能,又使抛光速度趋于均匀。采用了膨胀系教很小的玻璃作为基底,其上涂以聚四氟乙烯塑料为抛光膜层,加上校正板的连续自动修正作用,所以可在连续加工中保持抛光模的面形稳定.能获得γ/10~γ/200的面形精度和平行度为1"~0.1"的平行平晶.也可加工棱镜、多面体等。 d.离子抛光法 一般是将氢等惰性气体原子在真空中用高频放电方法使之离子化,由高压场使离子加速,轰击光学玻璃表面。通常能以原子为单位去除表面材料,形成所需要的抛光面。这种方法可获得高精度的光学表面,井能通过控制程序进行自动加工。 e.电子计算机控制撇光法 用计算机控制光学磨具在零件表面上的运动轨迹、进给速度和压力等工艺因素达到修磨零件表面的目的。这种方法的优点是工具位置、停留时间、运动轨迹及操作参数等均可实现最优化、加工精度可达γ/80,适合于高精度大型光学零件的最后修磨加工。2.高精度平面的检测 测试方法有液面法、等倾干涉法、多光束干涉法、阴影法和三面法等。

  • 气象专用高精度数字压力计

    高精度压力数字压力计以其量程的灵活匹配,最大限度满足客户需求。此设备标配为单通道单模块,还可以选装大气压参考模块以模拟表压和绝压。可根据用户具体需求定制。这个特点使LPG2500特别适合用于需要对不同量程的压力装置进行数据比对的场合。应用领域:实验室,工业现场等LPG2500高精度数字压力计可测量当前压力。精确定度可达到:0.01%,解决现场测量标准,比如:实验室测量当前大气压力,达到高精度要求。解决风洞微压测量和高压风洞测量。产品特点. 精确度最高达到:0.01%FS. 支持多通道. 人性化智能设计. 支持外部通讯. 可用于差压表测试等. 多精度可选择:0.01%、0.02%、0.05%. 工作最大压力范围可订制应用客户:理化研究所、中国物理所等。服务理念:系统软件终身免费服务;定期进行用户回访;免费系统使用培训提供7X24小时服务,服务热线:13520277456选购配件l 工业级仪表箱:工业级仪表箱用于 LPG2500的运输,也可作为LPG2500空运容器。箱子由高强度抗冲击材料做成,外观为黑色,包含一个把手和一个伸缩拉杆;箱体内部专门根据LPG2500定制的高密度EVC泡沫,并且箱体内具有设备备件的储存空间。仪表箱体结实的特性和在恶劣环境的对设备的保护,非常适合成为LPG2500运输的保护箱体。l 校准证书每台LPG2500出厂时可溯源至计量院,可代送国家计量单位出具证书。

  • 【求助】求高精度温度计的采购信息

    实验室想买一高精度电子温度计大致要求是精度为正负0.1摄氏度,量程为-20到200摄氏度,分辨率为0.1摄氏度,主要用来测量普通气体和液体。其他要求就是功能尽可能简单(尽量便宜),只需要温度测量显示,不需要打印等等。如有大虾知道相关信息的,烦请告知,不胜感激!

  • 【云唐】高精度综合农药残留检测仪优势

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404120914418944_2982_5604214_3.jpg!w690x690.jpg[/img]  随着农业生产的快速发展,农药的使用越来越广泛,农药残留问题也日益引起人们的关注。为了保障食品安全和人民健康,高精度综合农药残留检测仪应运而生,其独特的优势在农药残留检测领域发挥着重要作用。  高精度综合农药残留检测仪拥有卓越的检测精度。通过采用先进的光学、电化学等技术手段,该仪器能够准确、快速地检测出农产品中的农药残留量,有效避免了传统检测方法中可能出现的误差和干扰。这种高精度检测不仅提高了检测效率,还为食品安全监管提供了更加可靠的数据支持。  高精度综合农药残留检测仪具有广泛的适用范围。它可以检测多种农药残留,包括有机磷、氨基甲酸酯、拟除虫菊酯等不同类型的农药。这种广泛的适用范围使得该仪器能够满足不同农作物和食品的农药残留检测需求,为农业生产提供了全面的技术保障。  高精度综合农药残留检测仪还具备自动化、智能化的特点。通过内置的软件系统和自动化控制装置,该仪器能够自动完成样品处理、数据分析等步骤,大大降低了检测人员的操作难度和劳动强度。同时,该仪器还能够实时记录检测数据,方便用户进行数据管理和追溯。  高精度综合农药残留检测仪在农药残留检测领域具有显著的优势。其高精度、广适用范围和智能化特点使得该仪器成为保障食品安全和人民健康的重要工具。随着科技的进步和应用的推广,相信高精度综合农药残留检测仪将在未来发挥更加重要的作用。

  • 混合法比热容测试中绝热量热计的高精度等温绝热技术介绍

    混合法比热容测试中绝热量热计的高精度等温绝热技术介绍

    [b][color=#339999][size=16px]摘要:在下落法比热容测试中绝热量热计的漏热是最主要误差源,为实现绝热量热计的低漏热要求,本文介绍了主动护热式等温绝热技术以及相应的解决方案。方案的核心一是采用循环水冷却金属圆筒给量热计和护热装置提供低温环境或恒定冷源,二是采用三通道分布式温差传感器和[/size][size=16px]PID[/size][size=16px]控制器使绝热屏对量热计进行动态温度跟踪。此单层绝热屏技术可以达到小于[/size][size=16px]0.02K[/size][size=16px]的温差控制精度,对于更低漏率量热计和更高温度均匀性的要求可采用多层屏技术。[/size][/color][/b][align=center][size=16px][color=#339999][b]------------------------------------[/b][/color][/size][/align][size=18px][color=#339999][b]1. 背景介绍[/b][/color][/size][size=16px] 下落法,也称之为铜卡计混合法,是一种测量固态材料比热容的绝热量热计标准测试方法,常用于测量100℃至超高温温度范围固态材料的比热容,特别适用于要求更具代表性的较大试样尺寸复合材料和各种低密度材料。[/size][size=16px] 下落法比热容测试的基本原理如图1所示,将已知质量的试样悬挂于加热炉中进行加热,当试样的温度达到设定温度且稳定后使其落入置于自动绝热环境且初始温度为20℃的铜块量热计中。试样放热使量热计温度升高到末温,通过测量量热计的温升,可求出试样的平均比热容。[/size][align=center][size=16px][color=#339999][b][img=下落法原理及其量热计温升变化,650,260]https://ng1.17img.cn/bbsfiles/images/2023/08/202308181720089359_1047_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 下落法原理及其量热计温升变化[/b][/color][/size][/align][size=16px] 从上述下落法原理可以看出原理十分简单,但要实现比热容的准确测量,最关键的技术是要使量热计始终处于绝热环境,且量热计的起始温度要准确恒定,具体要求如下:[/size][size=16px] (1)下落法测试过程要求量热计始终处于绝热状态,避免量热计热量向四周散失而降低量热计的温升。为此需要采用高精度的主动绝热技术,使位于量热计周围的主动护热装置的温度动态跟踪量热计的温度变化并保持一致,从而形成动态等温绝热效果。[/size][size=16px] (2)为了保证测试的连贯性和准确性,样品下落前量热计的初始温度始终要保持一个恒定值,如20℃,由此要求量热计在处于绝热环境的同时,还需准确控制量热计温度恒定在20℃。[/size][size=16px] 上述两点几乎是所有绝热量热计准确测量最重要的边界条件,也是绝热量热计的关键技术,需要采用精密的温控技术才能实现。为此,本文介绍了实现此关键技术的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的整体思路是样品通过顶部入口落入量热计,对圆柱形量热计按照上中下三个方向进行全方位的主动式护热,量热计及其护热装置全部放置在比20℃起始温度略低的温度环境内,此温度环境由19℃循环水冷却的金属圆筒提供。依此设计的量热计整体结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=下落法比热仪绝热量热计结构示意图,550,451]https://ng1.17img.cn/bbsfiles/images/2023/08/202308181721406706_1103_3221506_3.jpg!w690x567.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 下落法比热仪绝热量热计结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,量热计内镶嵌了一个圆柱形落样井,落样井外侧镶嵌有金属细丝以提供量热计标定加热功能,测温热电阻则由量热计底部插入固定。[/size][size=16px] 在量热计的侧向四周安装有一个侧向护热圆桶以提供量热计径向绝热所需的径向温度跟踪控制。同样,在量热计的上下两端分别安装有底部护热板和顶部护热板,以提供量热计轴向绝热所需的温度跟踪控制。由此通过径向和轴向的温度动态跟踪控制,使护热装置的温度始终与量热计相同,从而使量热计总是处于等温绝热状态。[/size][size=16px] 由于量热计和护热装置都处于一个温度19℃左右的低温环境,此低温环境就相当于一个恒定冷源,那么护热装置仅采取加热方式就可以对高于此低温环境的量热计温度进行快速跟踪控制,同时也这样可以很精确的控制量热计的20℃起始温度。[/size][size=16px] 为了实现高精度的起始温度控制和跟踪温度控制,除了需要采用高精度铂电阻温度计之外,关键是还需在上中下护热装置与量热计之间分别配置高分辨率的分布式温差传感器,以及三通道的超高精度PID温度控制器,温差传感器的分辨率以及PID温控器的AD和DA精度决定了温度跟踪精度和量热计绝热效果,最终决定了比热容的测量精度。本解决方案所采用的温差传感器以及超高精度PID控制器,可使温度跟踪精度达到0.02K以下,优于标准方法中规定的0.05K精度要求。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 等温绝热是各种高精度绝热量热计普遍使用的技术手段,也是各种高精度温度环境控制首选的技术途径之一。针对下落法比热容测试中的绝热量热计,本解决方案采用的是单层绝热屏结构,而对于绝热或环境温度恒定有更高要求的仪器设备和试验环境,在单层结构基础上可以采用多层绝热屏结构,特别是在恒定的真空压力环境下,单层或多层绝热屏结构更是首选技术方案。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    [size=16px][color=#ff0000]摘要:针对目前张力控制器中普遍存在测量控制精度较差和无法实现串级控制这类高级复杂控制的问题,本文介绍了具有超高精度和多功能的新一代张力控制器。这种新一代张力控制器具有24位AD模数转换、16位DA数模转换、双精度浮点运算和0.01%的最小输出百分比,同时还就有远程设定点和变送输出功能,可方便的实现两个参量的串级控制,并可进行手动和自动控制的开关切换,极大提高了张力控制的精密度,更是适合一些特殊应用中的微张力控制,甚至可以进行张力设定程序曲线的精确控制。[/color][/size][align=center][size=16px][img=微张力控制,650,272]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110946105710_7747_3221506_3.jpg!w690x289.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 问题的提出[/b][/color][/size][size=16px] 张力控制是一种对在两个加工设备之间作连续运动或静止的被加工材料所受的张力进行自动控制的技术。在各种连续生产线上,各种带材、线材、型材及其再制品,在轧制、拉拔、压花、涂层、印染、清洗以及卷绕等工序中常需要进行张力控制。[/size][size=16px] 张力控制中所用到的张力控制器是一种由单片机或者一些嵌入式器件及外围电路开发而成的系统,主要由A/D和D/A转换器以及高性能单片机等组成。在张力控制过程中,首先直接设定要求控制的张力值,让张力传感器采集的信号(一般为毫伏级别)作为张力反馈值,比较两者的偏差后,经内部智能PID运算处理后,调节执行机构,自动控制材料的放卷、中间引导及收卷的张力,达到系统响应最快的目的。目前的张力控制器普遍还存在以下几方面的问题:[/size][size=16px] (1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。[/size][size=16px] (2)控制输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制无能为力。[/size][size=16px] (3)浮点运算精度较低:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较低,输出百分比的最小调节量只有0.1%,无法进行超高精度的张力控制。[/size][size=16px] (4)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限,且不能方便的进行测量范围调整。[/size][size=16px] (5)功能简单:绝大多数张力控制器只能进行单变量的控制,如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制参数,缺乏两个参数同时控制的功能,无法采用更高级的控制形式——串级控制来更好实现准确的张力调节。[/size][size=16px] (6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适的PID参数则显着尤为重要,而目前大多张力控制器缺乏这种PID参数自整定功能。[/size][size=16px] 针对目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制,本文将详细介绍超高精度工业用PID调节器及其在超高精度张力控制过程中的应用,特别还介绍了串级控制功能的具体应用。[/size][size=18px][color=#ff0000][b]2. 超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列PID调节器是一种标准形式的工业用控制器,有单通道和双通道两个系列,具有96×96mm、96×48mm 和48×96mm三种尺寸规格,如图1所示。[/size][align=center][size=16px][color=#ff0000][b][img=01.超高精度PID控制器系列,650,223]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110948313448_487_3221506_3.jpg!w690x237.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图1 VPC2021系列超高精度PID控制器[/b][/color][/size][/align][size=16px] VPC2021系列PID控制器的最大优点是具有超高精度检测和控制能力,具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。主要技术指标如下:[/size][size=16px] (1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。[/size][size=16px] (2)独立的单回路和双回路控制,每个通道控制输出刷新率50ms,独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。[/size][size=16px] (3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置即可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。[/size][size=16px] (4)单、双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。[/size][size=16px] (5)具有远程设定点、变送和正反向控制功能,使得串级控制和分程控制成为可能。[/size][size=16px] (6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能 。每个通道采用独立的PID参数 , 且可独立的进行PID参数自整定。[/size][size=16px] (7)支持数字和模拟远程 操 作 功 能,支持标准MODBUS RTU通讯协议。[/size][size=16px] (8)带传感器馈电供电功能(24V,50mA)。[/size][size=16px] (9)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。[/size][size=16px] (10)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。[/size][size=16px] (11)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[/size][size=18px][color=#ff0000][b]3. 串级控制在张力控制中的应用[/b][/color][/size][size=16px] 在典型的张力控制中多采用PID控制方式,由人工设定所需运行张力。设定值与张力传感器测量值进行比较计算后,PID控制器调节执行机构实现张力的稳定输出。典型张力控制器结构如图2所示。[/size][align=center][size=16px][color=#ff0000][b][img=02.典型单参数张力PID控制结构示意图,450,119]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110949423425_329_3221506_3.jpg!w690x183.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图2 典型单参数张力控制结构示意图[/b][/color][/size][/align][size=16px] 图2所示的采用单参数进行张力控制的方法在很多实际应用中并不能满足需要,往往需要引入第二个参数进行控制,由此需要PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#ff0000][b][img=03.双参数串级控制PID张力控制结构示意图,600,165]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950250802_7112_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图3 双参数串级控制PID张力控制结构示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括传感器1、执行机构和次PID控制器,其中将进入外围执行机构膜的参量作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了传感器2、次控制回路、外围执行机构和主PID控制器,其中将外围执行机构的产出参数作为主回路的控制参数。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#ff0000][b][img=04.串级控制系统PID调节器接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950400632_8989_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收传感器2测量信号,然后根据所设置的固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的传感器信号,进行PID自动控制,控制信号经主输出端口连接执行机构,对外部执行机构进行自动调节。[/size][size=16px] 需要注意的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=16px] 另外,从图4可以看出,由于VPC2021-1单通道PID控制器具有远程设定点功能,由此就可以很容易实现外部手动张力调节,而只需增加一个旋转电位器即可。手动调节接线如图5所示。[/size][align=center][size=16px][color=#ff0000][b][img=05.串级控制系统PID调节器手动和自动切换接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950566532_2083_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图5 串级控制系统PID调节器手动和自动切换接线示意图[/b][/color][/size][/align][size=16px] 如图5所示,通过主PID控制器上连接的纽子开关,可以实现手动和自动功能切换。当切换到手动控制时,则可以通过接在主PID控制器次输入端子上的电压信号发生器,就可以实现手动调节控制。[/size][size=18px][color=#ff0000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过采用新一代的超高精度多功能PID控制器,可以实现各种应用场景下的张力控制。与传统的张力控制器相比,新一代的张力控制器主要具有以下优势:[/size][size=16px] (1)超高精度:24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。[/size][size=16px] (2)多功能:最多2通道的张力控制,可实现串级控制,可进行手动和自动功能切换。[/size][size=16px][/size][size=16px][/size][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~[/color][/align]

  • 高精度计数秤的参数有哪些?

    高精度计数秤的参数高精度计数秤型号最大称量分度值最大可读精度ACS-3-SC713kg0.05g1/60000ACS-6-SC716kg0.1g1/60000秤盘尺寸:275mm*220mm接口:DC接口,RS232接口(选配),RJ45以太网接口(选配)电源:4V/4A电子秤专用蓄电池http://www.xiangshanscale.com/uploads/sc71/sc71canshu.pnghttp://www.xiangshanscale.com/uploads/chanpinsucai/chanpinmiaoshu.png使用中航电测高精度130mm传感器,品质符合世界标准新款高精度计数秤ACS-SC71称重可读性高达1/60000精度;内部解析精度高达1/600000具有抗静电,高频干扰,读数稳定具有LCD三窗白色背光液晶显示,字幕清晰易读取计数秤ACS-SC71具有运送保护,过载保护设计高精度计数秤采用触摸式薄膜按键,容易操作,防水性能佳超低功耗,一次充电可使用180小时具有电池低电压报警功能,可降低电池过量放电损坏几率高精度计数秤ACS-SC71外壳采用ABS耐冲击塑料;秤盘采用ABS塑料载物盘和不锈钢材料托盘双盘结构,应对各种使用场合,经久耐用,使用寿命长

  • 地面高精度气压传感器让气象预报更精准

    导读:我国突发性灾害发生的频率在逐年增加,由于气候极端异常,给人民生命财产安全带来了极大的危害。物联网技术的成功应用可以为气象预测安装上一双“智慧电子眼”,通过地面高精度气压传感器可收集到当地雨量和次声波等信息,通过互联网传输到地面自动气象站进行实时的气象数据监控和分析,根据分析结果,实施预警报告的分级警告。    近些年来,我国气候异常事件频发,如南方冰冻雨雪极端低温,南方持续干旱后的集中降雨引起的洪水,还有部分地区的高温天气。2008年奥运会开幕前每隔1小时的天气预报,让人们对天气的精准预报有了更高的期待。    我国突发性灾害发生的频率在逐年增加,由于气候极端异常,给人民生命财产安全带来了极大的危害。目前我国应对突发性自然灾害侧重在事后应急机制,对事前防范、强化气象预测和预警的力度不够。尽管,我们现在具备很多现代化的技术手段进行气象预报,如卫星、雷达等监控措施,但是由于在极端天气下设备的稳定性能差,边远地区通讯障碍等局限因素,直接导致我国的气象预报精度不够。    地质灾害催熟气象智能化    目前我国气象监控预测技术还比较落后,集中暴露出预警不精确、人为干扰大、自动化水平低下等问题。在这种情况下,就对气象智能化的发展提出了更高要求。    在信息化社会,任何气象智能化技术的发展和应用都离不开传感器和信号探测技术的支持。物联网技术的成功应用可以为气象预测安装上一双“智慧电子眼”,通过地面高精度气压传感器可收集到当地雨量和次声波等信息,通过互联网传输到地面自动气象站进行实时的气象数据监控和分析,根据分析结果,实施预警报告的分级警告。    将物联网技术应用到自然灾害的监控领域是必然之举,与传统气象预测相比,无线化、智能化的气象预测监控系统之所以倍受青睐,就在于其畅通、快速、精确稳定的通信信道。    地面高精度气压传感器让气象预报不再“爽约”    频频发生的自然灾害并不是不可控的,更重要的是要提高气象预测的精准度,真正实现灾害提前预警,从而将灾害损失减到最低。    传统的气象预测精度差有多方面的因素,我国地形复杂、技术设备在极端天气下的稳定性能差、边远地区通讯信号差等。这些都制约着气象预测数据的精准度和及时性。地面高精度气压传感器是以无线遥感网络来测量边远和恶劣地区的环境情况,将监测数据借助通讯产品进行传输,反馈到地面自动气象站,利用监控软件对数据进行分析处理,实施气象预警的分级告警。这一监控预警系统为自然灾害的及时检测和预警预报提供了畅通、快速、精准可靠的信号通道,让气象预报不再“爽约”,全面提升气象预测的信息化和智能化水平。    责任重于泰山,技术造福人类    面对国内日益频发的自然灾害,北京市科学技术委员会推出“地面高精度气压传感器产业化关键技术攻关”科技计划项目,进行利用物联网传感技术预测自然灾害的研究。昆仑海岸作为物联网技术应用领域内的骨干企业,承接了本次研究项目的关键技术攻关和传感器芯片的批量化生产关键技术的研发。    作为中国物联网行业传感器领域快速前进的参与者、见证者和领跑者,北京昆仑海岸一直紧贴物联网行业应用的脉搏,深入研究物联网技术在各行各业的应用。凭着对物联网行业的专注和默默耕耘,公司始终以技术创新为发展动力,重视研发新产品和新技术,同时积极开展与相关机构的科研合作和技术交流。北京昆仑海岸在压力、湿度、流量、风向等传感器(变送器)以及相应的仪器仪表研发方面具备很好的研究经验和研发能力。凭着丰富的行业经验、领先的技术优势,北京昆仑海岸一定会成为气象智能监测预警的先导。

  • 高精度半导体恒温箱保养说明

    高精度半导体恒温箱是半导体行业常用的设备之一,作为比较常用的设备,其保养也是相当重要,那么无锡冠亚高精度半导体恒温箱的保养有哪些要点呢?怎么进行保养比较好呢?  高精度半导体恒温箱由蒸发器出来的状态为气体的冷媒;经收缩机绝热收缩后期,变成高温高压状态,被收缩后的气体冷媒,在冷凝器中,等压冷却冷凝,经冷凝后转变成液态冷媒,再经节流阀膨胀到低压,变成气液混合物。此中低温低压下的液态冷媒,在蒸发器中摄取被冷物资的热量,从头变成气态冷媒,气态冷媒经管道从头进来收缩机,开头新的轮回,这便是高精度半导体恒温箱轮回的四个过程。  高精度半导体恒温箱密封部位调养,鉴于装配式高精度半导体恒温箱是由若干块保温板拼而成,因而板之间存在必需的间隙,施工中这类间隙会用密封胶密封,为了避免空气和水份进来,因而在利用中对一些密封无效的部位实时修理.  高精度半导体恒温箱地面调养,通常小型装配式高精度半导体恒温箱的地面利用保温板,利用高精度半导体恒温箱时应为了避免地面存有大量的冰和水,假如有冰,处理时切不可利用硬物敲打,损害地面。  高精度半导体恒温箱装配完结或长久停用后再次利用,降温的速率要适宜:每日操纵在8-10℃为宜,在0℃时应保留一段时间。  高精度半导体恒温箱库板调养,留意利用中应留意硬物对库体的碰撞和刮划,鉴于不妨变成库板的凹下和锈蚀,严重的会使库体片面保温功能下降。  高精度半导体恒温箱的保养是离不开我们操作人员的细心操作,所以,我们在日常操作中也要善待我们的设备,不要太过粗暴。

  • 气象专用高精度数字压力计

    气象专用高精度数字压力计

    [font=&][color=#333333]高精度压力数字压力计以其量程的灵活匹配,最大限度满足客户需求。此设备标配为单通道单模块,还可以选装大气压参考模块以模拟表压和绝压。可根据用户具体需求定制。这个特点使LPG2500特别适合用于需要对不同量程的压力装置进行数据比对的场合。[/color][/font][font=&][color=#333333]应用领域:实验室,工业现场等[/color][/font][font=&][color=#333333]LPG2500高精度数字压力计可测量当前压力。精确定度可达到:0.01%,解决现场测量标准,比如:实验室测量当前大气压力,达到高精度要求。解决风洞微压测量和高压风洞测量。[/color][/font][font=&][color=#333333]产品特点[/color][/font][font=&][color=#333333]. 精确度最高达到:0.01%FS[/color][/font][font=&][color=#333333]. 支持多通道[/color][/font][font=&][color=#333333]. 人性化智能设计[/color][/font][font=&][color=#333333]. 支持外部通讯[/color][/font][font=&][color=#333333]. 可用于差压表测试等[/color][/font][font=&][color=#333333]. 多精度可选择:0.01%、0.02%、0.05%[/color][/font][font=&][color=#333333]. 工作最大压力范围可订制[/color][/font][font=&][color=#333333]应用客户:理化研究所、中国物理所等。[/color][/font][font=&][color=#333333]服务理念:系统软件终身免费服务;[/color][/font][font=&][color=#333333]定期进行用户回访;[/color][/font][font=&][color=#333333]免费系统使用培训[/color][/font][font=&][color=#333333]提供7X24小时服务,服务热线:13520277456[/color][/font][font=&][color=#333333]选购配件[/color][/font][font=&][color=#333333]l 工业级仪表箱:[/color][/font][font=&][color=#333333]工业级仪表箱用于 LPG2500的运输,也可作为LPG2500空运容器。箱子由高强度抗冲击材料做成,外观为黑色,包含一个把手和一个伸缩拉杆;箱体内部专门根据LPG2500定制的高密度EVC泡沫,并且箱体内具有设备备件的储存空间。仪表箱体结实的特性和在恶劣环境的对设备的保护,非常适合成为LPG2500运输的保护箱体。[img=,520,520]https://ng1.17img.cn/bbsfiles/images/2022/05/202205261433047774_606_5627570_3.jpg!w520x520.jpg[/img][img=,520,520]https://ng1.17img.cn/bbsfiles/images/2022/05/202205261433047676_8628_5627570_3.jpg!w520x520.jpg[/img][img=,520,520]https://ng1.17img.cn/bbsfiles/images/2022/05/202205261433046017_1593_5627570_3.jpg!w520x520.jpg[/img][/color][/font][font=&][color=#333333]l 校准证书[/color][/font][font=&][color=#333333]每台LPG2500出厂时可溯源至计量院,可代送国家计量单位出具证书。[/color][/font]

  • 云唐高精度农药残留检测仪应用范围

    云唐高精度农药残留检测仪应用范围

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311220939078895_6993_5604214_3.png!w690x690.jpg[/img]  随着人们生活水平的提高,对食品安全和环境保护的关注度也不断提高。农药残留检测作为食品安全的重要环节之一,越来越受到各级政府和广大民众的关注。为了满足市场需求,高精度农药残留检测仪应运而生。本文将详细介绍高精度农药残留检测仪的应用范围。  一、高精度农药残留检测仪概述  高精度农药残留检测仪是一种基于色谱原理的仪器,可以快速、准确地检测食品中农药残留的含量。该仪器采用先进的检测技术,具有高灵敏度、高分辨率和高重复性的特点,能够检测出多种不同类型的农药残留,包括有机磷、有机氯、拟除虫菊酯类等。  二、高精度农药残留检测仪应用范围  1. 农产品质量安全监测  农产品质量安全事关人民群众的健康和生命安全。高精度农药残留检测仪可以广泛应用于农产品质量安全监测领域,如蔬菜、水果、粮食、茶叶等农产品的农药残留检测。通过该仪器检测,可以及时发现农产品中的农药残留超标问题,保障人民群众的饮食安全。  2. 生态环境监测  生态环境监测是保护生态环境的重要手段之一。高精度农药残留检测仪可以用于监测环境中的有害物质,如土壤、水体中的农药残留物等。通过该仪器检测,可以了解环境污染状况,为环境保护提供科学依据。  3. 进出口农产品检验检疫  随着国际贸易的不断扩大,各国对进出口农产品的质量要求也越来越严格。高精度农药残留检测仪可以用于进出口农产品的检验检疫,确保出口农产品的质量符合国际标准。通过该仪器检测,可以提高我国农产品的国际竞争力,促进我国农业的发展。  4. 科研机构应用  高精度农药残留检测仪还可以广泛应用于科研机构,如农业科学研究院、食品质量安全研究院等。通过该仪器检测,可以深入研究农产品中农药残留的分布、变化规律等,为农业生产提供科学指导。  三、高精度农药残留检测仪的优势  1. 高灵敏度:可以检测出低浓度的农药残留物,保证检测结果的准确性。  2. 高分辨率:可以分离多种不同类型的农药残留物,避免出现交叉干扰。  3. 高重复性:采用先进的色谱技术,保证了每次检测结果的重复性和稳定性。  4. 操作简便:仪器自动化程度高,操作简便,可以大大缩短检测时间。  5. 安全可靠:不使用有毒有害试剂,对环境和人体无害,安全可靠。  四、结语  随着人们对食品安全和环境保护的关注度不断提高,高精度农药残留检测仪将会发挥越来越重要的作用。通过该仪器检测,可以保障人民群众的饮食安全,保护生态环境,提高我国农产品的国际竞争力等。因此,我们应该积极推广高精度农药残留检测仪的应用范围,为推动我国农业和食品行业的健康发展做出贡献。  ?

  • 【求助】求高精度电子温度计的采购信息

    实验室想买一高精度电子温度计大致要求是精度为正负0.1摄氏度,量程为-20到200摄氏度,分辨率为0.1摄氏度,主要用来测量普通气体和液体。其他要求就是功能尽可能简单(尽量便宜),只需要温度测量显示,不需要打印等等。如有大虾知道相关信息的,烦请告知,不胜感激!

  • 半导体系统专用高精度控制电源的水泵相关说明

    半导体系统专用高精度控制电源应用在国内半导体行业中,无锡冠亚的半导体系统专用高精度控制电源中每个配件都是很重要的,其中,关于水泵是比较重要,我们也需要对其有一定的认识。  半导体系统专用高精度控制电源是一类广泛应用于国内工业生产领域的专业制冷设备,在半导体系统专用高精度控制电源中,水泵的运行是否正常对于保证低温半导体系统专用高精度控制电源设备的正常运转是非常重要的,定期对低温半导体系统专用高精度控制电源的水泵进行检测是非常关键的,那么,怎样合理的评估和检测低温半导体系统专用高精度控制电源水泵的情况好呢?  半导体系统专用高精度控制电源水泵的情况在较大程度上影响着低温半导体系统专用高精度控制电源设备的整体运行。在半导体系统专用高精度控制电源工作的时候,水泵在运行中,应注意检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大,过小应立即停机检查。  另外,半导体系统专用高精度控制电源设备的水泵相关工作系统能够较好的反映半导体系统专用高精度控制电源设备的工作状态。比如,水泵流量是否正常,检查出水管水流情况,根据水池水位变化,估计水泵运行时间,及时与调度联系。同时,还要检查水泵填料压板是否发热,滴水是否正常,每班不得少于八次。  半导体系统专用高精度控制电源的水泵性能是很关键的,需要我们认真对待,认真保养,只有每个配件的性能都可以的话,半导体系统专用高精度控制电源才能更好的使用。

  • 基于高精度外贴式超声液位计的油罐车防盗系统

    基于高精度外贴式超声液位计的油罐车防盗系统

    利用最新的超声技术开发的高精度外贴式超声液位计,测量精度可达0.1mm,可以用于储罐特别是油罐车的交接计量工作。本系统是以高精度的外贴式超声液位计为基础,重点监控罐体内油品的油层和水层的变化,能够实时监控罐车在运输过程中的内两种液体的体积变化情况,还辅以温度检测,根据油品在不同温度下的体积变化情况计算出装油时与到油时的体积变化。http://ng1.17img.cn/bbsfiles/images/2011/07/201107061017_303409_2333795_3.jpg http://ng1.17img.cn/bbsfiles/images/2011/07/201107061018_303411_2333795_3.jpg系统指标:l 液位分辨率:≤0.1mm;l 温度精度:≤0.2oCl 可测壁厚:≤10mm;l 可测液高:≤3m;l 可检测介质:不超过两种液体的可分层液体介质;系统优势及特点1、采用外贴式超声界面仪对罐体内的液位进行检测,避免与罐体内液体进行接触,可以适用于高腐蚀性液体的检测;2、可对具有双层液体层面的罐体进行检测,特别适用于罐内含有两种液体(如油和水)的罐车监控;3、测量精度高,测量精度达到0.1mm量级,对罐体内的液体进行精度计量,真正杜绝非自然损耗的产生,一旦发生液位剧烈变化,系统将自动输出报警提示;4、更加精确的温度测量,通过准确的油品膨胀系数计算,杜绝因温度变化而导致的罐内油品体积变化,进一步降低自然损耗比例。5、安装方式灵活,超声波界面仪直接吸附在罐底,其他部件固定在罐车上即可;6、监测无死角,系统直接对罐体内的液体进行体积测算,不会受到其他外界因素的干扰。

  • 短程分子蒸馏器的升级改造以实现高精度的真空控制

    短程分子蒸馏器的升级改造以实现高精度的真空控制

    [align=center][img=通过超高精度真空控制提高分子蒸馏分离纯度的方法,550,392]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040202188410_3231_3221506_3.jpg!w690x492.jpg[/img][/align][color=#990000]摘要:为了提升蒸馏纯度,针对现有分子蒸馏中气体流量计式真空度控制系统存在精度较差和响应速度慢的问题,本文提出了更高精度的真空度控制解决方案。解决方案采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,可实现任意设定真空度下±0.5%的控制精度,同时对温度等因素所带来的真空度变化有极快的响应,可保证分子蒸馏过程中真空控制的高精度和稳定性。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000][size=18px]一、问题的提出[/size][/color]分子蒸馏是一种特殊的液-液分离技术,它不同于传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运动平均自由程的差别实现分离。当液体混合物沿加热板流动并被加热,轻、重分子会逸出液面而进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],由于轻、重分子的自由程不同,因此,不同物质的分子从液面逸出后移动距离不同,若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷凝排出,而重分子达不到冷凝板沿混合液排出,由此达到物质分离的目的。短程蒸馏器是一个工作在0.001~1mbar(0.1~100Pa)绝对压力下热分离技术过程,它较低的沸腾温度,非常适合热敏性和高沸点物。在分子蒸馏工艺中,真空度的控制精度决定了分离物质的纯度,目前绝大多数分子蒸馏设备中真空度控制系统普遍还都采用液环真空泵与旋片式真空泵结合气体流量计的技术,这种通过气体流量计调节进气流量的方法无法实现高精度的真空度稳定控制,具体是以下几方面原因:(1)分子蒸馏过程的真空度变化范围一般为0.1~100Pa,这种高真空范围对气体流量计的真空漏率有较高要求,一般气体流量计很难满足要求,必须使用专门用于高真空的气体流量计。(2)气体流量计的调节精细度普遍较粗,如果要实现高精密的气体流量调节,同样要使用高档更精密的气体流量计。(3)通常气体流量计的响应速度比较慢,很难实现在1秒之内完成全闭到全关的动作时间。(4)多数分子蒸馏中的真空传感器普遍采用精度较差的数字皮拉尼电阻规和电热偶规等。(5)绝大多数调节气体流量计的PID控制器精度较差,多为12位AD和DA转换器,极少用到16位的AD和DA转换器,PID控制器的精度是决定分子蒸馏真空度控制精度的关键。为了提升蒸馏纯度,针对上述现有分子蒸馏中气体流量计式真空度控制系统存在的问题,本文提出了更高精度真空度控制的解决方案。解决方案将采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,由此可实现分子蒸馏工艺中任意设定真空度下±0.5%的控制精度,并对温度等因素所带来的真空度变化有极快的响应,有效保证分子蒸馏过程中真空度的高精度和高稳定性。[size=18px][color=#990000]二、解决方案[/color][/size]通过上述分析可以看出,限制现有短程分子蒸馏工艺真空度控制精度的主要因素分别是:(1)气体质量流量计调节精度和响应速度。(2)真空度传感器的测量精度。(3)PID控制器的测量和控制精度。为解决上述问题,本文提出的具体解决方案是采用相应的三个替换装置,如图1所示。[align=center][color=#990000][img=短程分子蒸馏高精度真空度控制装置,690,282]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040201378335_1412_3221506_3.jpg!w690x282.jpg[/img][/color][/align][align=center][color=#990000]图1 短程分子蒸馏高精度真空度控制装置[/color][/align]如图1所示,为提高蒸馏纯度,实现高精度真空度控制,解决方案采用了以下三个装置:[color=#990000](1)采用高速电动针阀代替气体质量流量计[/color]分子蒸馏高真空度控制的基本原理是调节蒸馏器的进气流量和出气流量并达到一个动态平衡,所以这里的技术关键是如何实现进气流量的精密调节。尽管气体质量流量计可以进行进气流量调节,但采用的是电磁阀技术,有着较大的迟滞现象和较慢的响应速度,这些都会影响真空度的控制精度。解决方案中所采用的高速电动针阀是一种高速步进电机驱动的纯机械式针型阀,在大幅度减少迟滞误差的同时,还将整体响应时间缩短到了800微秒,同时精细步长可实现阀门的快速精密调节。驱动控制只需采用0-10V的模拟电压,整体结构简单且可靠性强。多个规格的电动针阀具有不同的气体流量调节能力,可满足不同容积的蒸馏器的真空度控制,同时还可以采用FFKM全氟醚橡胶密封提高耐腐蚀性。[color=#990000](2)采用薄膜电容规代替皮拉尼电阻规和电热偶规[/color]薄膜电容规的测量精度要远高于皮拉尼电阻规和热偶规,在任意真空度下其精度都可以达到±0.25%。那么对于短程蒸馏器0.001~1mbar(0.1~100Pa)的真空度量程内,可直接选择一只1Torr的薄膜电容规即可满足全量程的真空度测量,如果为了保证0.1~1Pa范围内的测量精度,还可以再补充一只0.1Torr的薄膜电容规。这样,通过两只不同量程的薄膜电容规可覆盖全真空度范围内的准确测量。[color=#990000](3)采用超过精度真空控制器代替普通精度PID控制器[/color]在任何PID反馈式闭环控制系统中,无论传感器和执行器精度多高,最终的控制精度都需要控制器的精度予以保证,为此,在解决方案中采用了超高精度的PID真空控制器。此超高精度PID真空度控制器具有24位AD和16位DA,采用了双精度浮点运算可实现0.01%的最小输出百分比,这是目前国内外最高技术指标的工业用PID控制器。采用此真空控制器可充分发挥电动针阀执行器和薄膜电容规真空传感器的精度优势,而且此系列控制器具有单通道和双通道不同型号。单通道控制器是可编程PID控制器,突出特点是可以进行不同量程双真空计的自动切换来实现全量程自动控制。双通道控制器是一种定点控制器,两个通道可以分别独立控制真空度和温度。[size=18px][color=#990000]三、结论[/color][/size]新型的真空控制系统对短程分子蒸馏工艺的真空度控制过程进行了优化,对其中的真空度控制系统做出了以下三方面的改进:(1)采用电动针阀代替气体质量流量计,提高了进气流量调节执行器的精度。(2)采用薄膜电容规代替拉尼电阻规和电热偶规,提高了真空度测量的精度。(3)采用真空控制器代替传统的PID控制器,提高了PID控制精度,并扩展了控制功能,可实现双传感器自动切换和两个工艺参数同时控制。总之,通过以上改进可大幅提高短程分子蒸馏工艺的真空度控制水平,通过大量考核试验和实际应用已经证明,此解决方案成熟度很高,在全真空度范围内可轻松实现±0.5%的控制精度,如果采用更高精度的真空计,此解决方案可进一步达到±0.1%的控制精度。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    [color=#990000]摘要:针对温度跟踪控制中存在热电堆信号小致使控制器温度跟踪控制精度差,以及热电阻形式的温度跟踪控制中需要额外配置惠斯特电桥进行转换的问题,本文提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此仅通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[/color][align=center][img=高精度温度跟踪控制,600,330]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051642301750_9704_3221506_3.jpg!w690x380.jpg[/img][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size] 在一些工业领域和热分析仪器领域内,常会用到温度自动跟踪功能,以达到以下目的: (1)保证温度均匀性:如一些高精度加热炉和半导体圆晶快速热处理炉等,为实现一定空间或面积内的温度均匀,一般会采取分区加热方式,即辅助加热区的温度会自动跟踪主加热区。 (2)绝热防护:在许多热分析仪器中,如绝热量热仪、热导率测试仪和量热计等,测试模型要求绝热边界条件。这些热分析仪器往往会采取等温绝热方式手段,由此来实现比采用隔热材料的被动绝热方式更高的测量精度。 自动温度跟踪功能的使用往往意味着要实现快速和准确的温度控制,其特征是具有多个温度传感器和加热器,其中温差探测器多为电压信号输出的热电偶和电阻输出的热电阻形式。对于采用这两种温差探测器的温度跟踪控制,在具体实施过程中还存在以下两方面的问题: (1)在以热电堆为温差传感器的跟踪温度控制过程中,往往会用多只热电偶构成热电堆来放大,N对热电偶组成的热电堆会将温差信号放大N倍,但即使放大了温差信号,总的温差信号对应的输出电压也是非常小。如对于K型热电偶,1℃温差对应40uV的电压信号,若使用10对K型热电偶组成温差热电堆,则1℃温差时热电堆只有400uV的电压信号输出。对于如此小的电压值作为PID控制器的输入信号,若要实现小于0.1℃的温度跟踪控制,一般精度的PID控制器很难实现高精度,因此必须采用更高精度的PID控制器。 (2)在以热电阻测温形式的跟踪温度控制过程中,情况将更为复杂,一般是采用复杂的惠斯登电桥(wheatstonebridge)将两只热电阻温度传感器的电阻差转换为电压信号,再采用PID控制器进行跟踪控制。但这样一方面是增加额外的电桥仪表,另一方面同样要面临普通PID控制器精度不高的问题。 为此,针对上述温度跟踪控制中存在的上述问题,本文将提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[b][size=18px][color=#990000]2. 解决方案[/color][/size][/b] 为了实现热电堆和热电阻两种测温形式的温度跟踪控制,解决方案需要解决两个问题: (1)高精度的PID控制器,可检测由多只热电偶组成的温差热电堆输出小信号。 (2)不使用电桥仪器,直接采用PID控制器连接两只热电阻温度传感器进行跟踪控制。 为解决温度跟踪控制中的上述两个问题,解决方案将采用VPC-2021系列多功能超高精度的PID控制器。此控制器的外观和背面接线图如图1所示。[align=center][img=,600,177]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051656426331_2008_3221506_3.jpg!w690x204.jpg[/img][/align][align=center][b][color=#990000]图1 VPC 2021系列多功能超高精度PID控制器[/color][/b][/align] 针对温度跟踪控制,VPC 2021系列多功能超高精度PID程序控制器的主要特点如下: (1)24位AD,16位DA,双精度浮点运算,最小输出百分比为0.01%。 (2)可连接模拟电压小信号,可连接各种热电偶,可连接各种铂电阻和热敏电阻温度传感器,共有多达47种输入信号形式。 (3)具备远程设定点功能,即将外部传感器信号直接作为设定点来进行自动控制。 对于由热电偶组成的热电堆温差探测器形式的温度跟踪控制,具体接线形式如图2所示。[align=center][color=#990000][b][img=温差热电堆控制器接线图,500,194]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051643371408_3010_3221506_3.jpg!w690x268.jpg[/img][/b][/color][/align][align=center][b][color=#990000]图2 温差热电堆控制器接线图[/color][/b][/align] 图2是典型的温差热电堆控制器接线形式,其中用了两只或多只热电偶构成的热电堆检测物体AB之间的温差,温差信号(电压)直接连接到PID控制器的主输入端,PID控制器调节物体B的加热功率,使温差信号始终保持最小(近似零),从而实现物体B的温度始终跟踪物体A。 对于由热电阻温度传感器形式构成的温度跟踪控制,具体接线形式如图3所示。这里用了控制器的远程设定点功能,这时需要物体AB上分别安装两只热电阻温度计,其中物体B上的热电阻(两线制或三线制)连接到PID控制器的主输入端作为控制传感器,物体A上的热电阻(与物体B热电阻制式保持相同)连接到PID控制器的辅助输入端作为远程设定点传感器,由此实现物体B的温度调节始终跟踪物体A的温度变化。[align=center][img=热电阻温度传感器控制器接线图,500,195]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051644317319_3570_3221506_3.jpg!w690x270.jpg[/img][/align][align=center][b][color=#990000]图3 热电阻温度传感器控制器接线图[/color][/b][/align][b][color=#990000][size=18px]3. 总结[/size][/color][/b] 高精度的温度跟踪控制一直以来都是一个技术难点,如对于热电偶组成的温差热电堆温度跟踪控制,若采用普通精度的PID控制器还有实现高精度的温度跟踪控制,通常需要增加外围辅助技术手段,一是通过增加热电偶对数来增大温差电压信号,但这种方式工程实现难度较大且带来导线漏热问题,二是采用较高品质的直流信号放大器对温差电压信号进行放大,这同时增加了控制设备的复杂程度和造价。 对于采用热电阻温度传感器进行温度跟踪控制,以往的实现方法是采用复杂的惠斯登电桥(wheatstone bridge)将两只热电阻温度传感器的电阻差转换为电压信号,这同样增加了控制设备的复杂程度和造价。 由此可见,采用VPC 2021系列多功能超高精度PID调节器,可直接与相应的温度传感器进行连接,简化了温度跟踪控制的实现难度和装置的体积,更主要的是超高精度的数据采集和控制可大幅提高温度跟踪的控制精度。[align=center]~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • 彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    [size=16px][color=#339999]摘要:针对晶体生长和CVD等半导体设备中对0.1%超高精度真空压力控制的要求,本文对相关专利技术进行了分析,认为采用低精度的真空度传感器、调节阀门和PID控制器,以及使用各种下游控制方法基本不太可能实现超高精度的长时间稳定控制。要满足超高精度要求,必须采用0.05%左右精度的传感器和相应精度的PID控制器,结合1s以内开合时间的高速电动针阀和电动球阀,同时还需采用上游进气控制模式。另外,本文提出的超高精度解决方案中,还创新性的提出了进气混合后的减压恒压措施,消除进气压力波动对超高精度控制的影响。[/color][/size][align=center][size=16px][img=彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制,690,290]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071124469579_383_3221506_3.jpg!w690x290.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在晶体生长和CVD等半导体设备领域,普遍要求对反应腔室的真空压力进行快速和准确控制。目前许多半导体工艺设备的真空压力基本在绝对压力10~400Torr的真空度范围内,通过使用下游节流阀(电动球阀或电动蝶阀)的开度自动变化来调节抽气速率基本能达到1%以内的控制精度。但对于有些特殊晶体生长等生产工艺,往往会要求在0.1~10Torr真空度范围内进行控制,并要求实现0.1%的更高精度控制。[/size][size=16px] 最近有用户提出对现有晶体生长炉进行技术升级的要求,希望晶体炉的真空压力控制精度从当前的1%改造升级到0.1%,客户进行改造升级的依据是宁波恒普真空科技股份有限公司的低造价的压力控制系统,且技术指标是“公司研发的压力传感器和控制阀门及配套的自适应算法,可将压力稳定控制在±0.3Pa(设定压力在100~500Pa间)”。[/size][size=16px] 我们分析了宁波恒普在真空压力控制方面的两个相关专利,CN115113660A(一种通过多比例阀进行压力控制的系统及方法)和CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),认为采用所示的专利技术可能无法实现100~500Pa全量程范围内0.1%的长时间稳定的控制精度,最多只可能在个别真空点和个别时间段内勉强内达到。本文将对这两项专利所设计的控制方法进行详细技术分析说明无法达到0.1%控制精度的原因,并提出相应的解决方案。[/size][b][size=18px][color=#339999]2. 专利技术分析[/color][/size][/b][size=16px] 宁波恒普公司申报的发明专利“一种通过多比例阀进行压力控制的系统及方法”,其压力控制系统结构如图1所示,所采用的控制技术是一种真空压力动态平衡控制方法中典型的下游控制模式,即固定进气流量,通过调节排气流量实现真空压力控制。[/size][align=center][size=16px][color=#339999][b][img=01.通过双比例阀进行压力控制的系统的示意图,500,244]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071128351485_5277_3221506_3.jpg!w690x338.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 通过双比例阀进行压力控制的系统的示意图[/b][/color][/size][/align][size=16px] 在动态平衡法控制中,这种下游模式的特点是: (1)非常适用于10~760Torr范围内的高气压精确控制,抽气流量的变化可以很快改变真空腔体内部气压的变化,不存在滞后性,这对于高精度的高压气体控制非常重要,因此这种下游控制模式也是目前国内外绝大多数晶体炉的真空压力控制方法。 (2)并不适用于0.1~10Torr范围内低气压控制,这是因为在低气压控制过程中,抽气速率对低气压变化的影响较为缓慢,存在一定的滞后性,调节抽气速率很难实现低气压范围内的真空度高精度控制。因此,对于低气压高真空的精密控制普遍采用的是上游控制模式,即调节进气流量,利用了低气压对进气流量非常敏感的特性。 宁波恒普公司所申报的发明专利“一种通过多比例阀进行压力控制的系统及方法——CN 115113660A”,如图1所示,所采用的下游控制模式是通过分程(或粗调和细调)形式来具体实现,即通过次控制阀开度改变抽气口径大小后,再用主控制阀开度变化进行细调,本质还是为了解决抽气速率的精细化调节问题。 这种抽气速率分段调节的类似方法在国内用的比较普遍,较典型的如图2所示的浙江晶盛公司专利“一种用于碳化硅炉炉腔压力控制的控压装置——CN210089430U”,采用的就是多个分支管路进行下游模式控制,多个分支管路组合目的就是调节抽气口径大小。[/size][align=center][b][size=16px][color=#339999][img=02.下游控制整体结构示意图,500,450]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071129101289_1324_3221506_3.jpg!w690x621.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图2 下游多支路真空压力控制结构示意图[/color][/size][/b][/align][size=16px] 宁波恒普公司另一个实用新型专利CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),如图3所示,也是采用下游控制模式。[/size][align=center][b][size=16px][color=#339999][img=03.晶体生长炉的压力串级控制系统的结构示意图,450,361]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071132344137_9996_3221506_3.jpg!w690x555.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图3 下游串级控制系统结构示意图[/color][/size][/b][/align][size=16px] 在晶体生长和其他半导体工艺的真空压力控制中,国内外普遍都采用下游控制模式而很少用上游控制模式,主要原因如下:[/size][size=16px] (1)绝大多数工艺对气氛环境的要求是高气压(低真空)范围内控制,如10~500Torr(绝对压力),且控制精度能达到1%即可。这种要求,最适合的控制方法就是下游模式。[/size][size=16px] (2)绝大多数半导体工艺都需要输入多种工作气体,而且各种工作气体还要保持严格的质量和比例,所以进气控制基本都采用气体质量流量计。如果在质量和比例控制之后,再对进气流量进行控制,一是没有必要,二是会增加技术难度和设备成本。[/size][size=16px] (3)在下游控制模式中安装节流阀(电动蝶阀)比较方便,可以在真空泵和腔体之间的真空管路上安装节流阀,而且对节流阀的拆卸和清洗维护也较方便。[/size][size=16px] 国内有些厂家在下游模式中采用上述分程控制方法的动机主要是为了规避使用高速和高精度但价格相对较贵的下游节流阀(电动蝶阀),这种高速高精度下游节流阀主要是具有1秒以内的全程闭合时间,直接使用这种高速蝶阀就可以在高气压范围内实现低真空度控制。而绝大多数国产真空用电动球阀和电动蝶阀尽管价格便宜,但响应速度普遍在几十秒左右,这使得压力控制的波动性很大。所以为了使用国产慢速电动蝶阀,且保证控制精度,只能在下游管路上想办法。[/size][size=16px] 如果采用高速电动球阀或电动蝶阀,且真空计和控制器达到一定精度,则采用任何形式的下游模式控制方式都可以在低气压范围内轻松实现1%的控制精度,但无法达到0.1%的控制精度。而如果采用低速阀门和上述专利所述的控制方法,也有可能达到1%控制精度,但更是无法实现更高精度0.1%的真空压力控制。[/size][b][size=18px][color=#339999]3. 超高精度真空压力控制方法及其技术[/color][/size][/b][size=16px] 晶体生长炉的真空压力控制也是一种典型的闭环PID控制回路,回路中包括真空泵、真空计、电动阀门和PID控制器。其中真空泵提供真空源,真空计作为真空压力测量传感器,电动阀门作为执行器调节进气或出气流量,PID控制器接收传感器信号并与设定值进行比较和PID计算后输出控制信号给执行器。[/size][size=16px] 这里我们重点讨论在0.1~10Torr的低气压(高真空)范围内实现0.1%超高精度的控制方法和相关技术。依据动态平衡法控制理论以及大量的实际控制试验和成功应用经验,如果要实现上述低压范围内(0.1~10Torr)的高精度控制,必须满足以下几个条件,且缺一不可:[/size][size=16px] (1)真空泵要具备覆盖此真空度范围的抽取能力,并尽可能保持较大的抽速,由此在高温加热过程中的气体受热膨胀压力突增时,能及时抽走多余的气体。[/size][size=16px] (2)真空计和PID控制器要具有相应的测量和控制精度。[/size][size=16px] (3)采用上游控制模式,并需采用高速电动针阀自动和快速的调节进气流量大小。[/size][size=16px] 国内外晶体生长炉和半导体工艺的真空压力控制,普遍采用的是薄膜电容真空计,价格在一万元人民币左右的这种进口真空计,测量精度基本在0.25%左右。这种真空计完全可以实现0.5 ~ 1%的控制精度,但无法满足更高精度控制(如0.1%)中的测量要求,更高精度的真空度测量则需要采用0.05%以上精度的昂贵的薄膜电容真空计。[/size][size=16px] 同样,对于PID控制器,也需要相应的测量精度和控制精度。如对于0.25%精度的真空计,采用16位AD、12位DA和0.1%最小输出百分比的PID控制器,可以实现1%以内的控制精度,这在相关研究报告中进行过专门分析和报道。若要进行更高精度的控制,则在采用0.05%精度真空计基础上,还需采用24位AD、16位DA和0.01%最小输出百分比的PID控制器。[/size][size=16px] 宁波恒普公司在其官网的压力控制技术介绍中提到,采用恒普自己研发的压力传感器和控制阀门及配套的自适应算法,在绝对压力100~500Pa范围内可将国内外现有技术的±3Pa压力波动(控制精度在1%左右)提升到±0.3Pa(控制精度在0.1%左右),控制精度提高了一个数量级。我们分析认为:在绝对压力100~500Pa的低压范围内,如果不能同时满足上述的三个条件,基本不太可能实现0.1%的超高精度控制。[/size][b][size=18px][color=#339999]4. 超高精度真空压力控制技术方案[/color][/size][/b][size=16px] 对于超高精度真空压力控制解决方案,我们只关心前述条件的第二和第三点,不再涉及真空泵内容。[/size][b][color=#339999] (1)超高精度真空计的选择[/color][/b][size=16px] 目前国际上能达到0.05%测量精度的薄膜电容真空计有英福康和MKS两个品牌,如图4所示。这类超高精度的真空计都有模拟信号0~10V输出,数模转换是20位。[/size][align=center][b][size=16px][color=#339999][img=04.超高精度薄膜电容真空计,550,240]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130184466_8776_3221506_3.jpg!w690x302.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图4 超高精度0.05%薄膜电容真空计 (a)INFICON Cube CDGsci;(b)MKS AA06A[/color][/size][/b][/align][size=16px][b][color=#339999] (2)超高精度PID控制器的选择[/color][/b] 从上述真空计指标可以看出,真空计的DAC输出是20位的0~10V模拟型号,那么真空压力控制器的数据采集精度ADC至少要20位。为此,解决方案选择了目前最高精度的工业用PID控制器,如图5所示,其中24位AD、16位DA和0.01%最小输出百分比。所选控制器具有单通道和双通道两种规格,这样可以分别用来满足不同真空度量程的控制,双通道控制器可以用来同时采集两只不同量程的真空计而分别控制进气阀和抽气阀实现真空压力全量程的覆盖控制。另外PID控制器还具有标准的RS485通讯和随机配套计算机软件。[/size][align=center][b][size=16px][color=#339999][img=05.高速电动阀门和超高精度PID调节器,650,237]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130375986_9640_3221506_3.jpg!w690x252.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图5 超高精度PID真空压力控制器和高速电动阀门[/color][/size][/b][/align][size=16px][b][color=#339999] (3)高速电动阀门选择[/color][/b] 高速电动阀门主要包括了真空用电动针阀和电动球阀,都有极小的漏率。如图5所示,其中电动针阀用于微小进气流量的快速调节,电动球阀用于大排气流量的快速调节,它们的全程开启闭合速度都小于1s,控制电压都为0~10V模拟信号。[b][color=#339999] (4)超高精度0.1%压力控制技术方案[/color][/b] 基于上述关键部件的选择,特别是针对0.1~10Torr范围内的0.1%超高精度真空压力控制,本文提出的控制系统具体技术方案如图6所示。[/size][align=center][b][size=16px][color=#339999][img=06.超高精度真空压力控制系统结构示意图,600,325]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071131004546_6716_3221506_3.jpg!w690x374.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图6 超高精度真空压力控制系统结构示意图[/color][/size][/b][/align][size=16px] 如前所述,在0.1~760Torr的真空压力范围内,分别采用了量程分别为10Torr和1000Torr的两只超高精度真空计,并分别对应上游和下游控制模式来进行覆盖控制,真空源为真空泵。[/size][size=16px] 在10~750Torr范围内,采用下游控制模式,即控制器的第一通道用来控制电动针阀的进气开度保持固定,第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动球阀的开度变化实现准确控制。[/size][size=16px] 在0.1~10Torr范围内,采用上游控制模式,即控制器的第二通道用来控制电动球阀的进气开度保持固定(一般为全开),第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动针阀的开度变化实现准确控制。[/size][size=16px] 由于电动针阀调节的是总进气流量,所以在具体工艺中需要将多种工作气体先进行混合后再流经电动针阀,而且多种工作气体通过相应的气体质量流量计(MFC)来控制各种气体所占比例,然后进入混气罐。在0.1~10Torr范围内的超高精度控制中,进气压力的稳定是个关键因素。为此,解决方案中增加了一个减压恒压罐,并采用正压控制器对混合后的气体进行减压,使恒压罐内的压力略高于一个大气压且恒定不变。[/size][size=16px] 解决方案中的超高精度PID控制器具有RS485接口并采用标准的MODBUS通讯协议,可以通过配套的计算机软件直接对控制器进行各种设置和操作运行,并显示、存储和调用各种控制参数的变化曲线,这非常便于整个工艺控制过程的调试。工艺参数和过程调试完毕后,可连接PLC上位机进行简单的编程就能与工艺设备控制软件进行集成。[/size][size=16px] 综上所述,本文设计的解决方案,结合相应的超高精度和高速的传感器、电动阀门和PID控制器,能够彻底解决超高精度且长时间的真空压力控制难题,可以满足生产工艺需要。[/size][b][size=18px][color=#339999]5. 总结[/color][/size][/b][size=16px] 晶体生长和半导体材料的生产过程往往需要较长的时间,工艺过程中的真空压力控制精度必须还要考虑长时间的控制精度,仅仅某个真空度下或短时间内达到控制精度并不能保证工艺的稳定和产品质量。[/size][size=16px] 在本文的解决方案中,特别强调了一是必须采用相应高精度和高速的传感器、执行器和控制器,二是必须采用相应的上游或下游控制方式,否则,如果仅靠复杂PID控制算法根本无法通过低精度部件实现高精度控制,特别是在温度对真空压力的非规律性严重影响下更是如此,这在太多的温度和正压控制中得到过证明,也是一个常识性概念。[/size][size=16px] 对于超高精度的真空压力控制,本文创新性的提出了稳定进气压力的技术措施,其背后的工程含义也是先粗调后细调,尽可能消除外界波动对控制精度的影响,这在长时间内都要求进行超高精度稳定控制中尤为重要。[/size][size=16px] 这里需要说明的是,实现超高精度控制的代价就是昂贵的硬件装置,如超高精度的电容真空计。尽管在高速电动阀门和超高精度PID控制器上已经取得技术突破并降低了价格,但在薄膜电容真空计方面国内基本还处于空白阶段。除非在超高精度电容真空计上的国内技术取得突破,可以使得造价大幅降低,否则将不可避免使得真空压力控制系统的成本增大很多,而目前在国内还未看到这种迹象。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~[/size][/align]

  • 高精度食品重金属检测仪介绍【云唐】

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405150953250257_9894_5604214_3.jpg!w690x690.jpg[/img]  高精度食品重金属检测仪是一种用于检测食品中重金属含量的专业设备。在现代食品安全管理中,重金属污染已经成为一个不可忽视的问题。为了保障消费者的健康,高精度食品重金属检测仪的应用显得尤为重要。  该设备采用先进的光谱分析技术,可以快速、准确地检测出食品中多种重金属元素的含量。与传统的检测方法相比,它具有更高的灵敏度和更低的检测限,可以及时发现食品中的微量重金属污染。  高精度食品重金属检测仪的使用十分便捷,用户只需将待检测的食品样品放入仪器中,仪器即可自动完成检测过程,并输出准确的检测结果。此外,该设备还具备数据记录和分析功能,可以方便用户进行数据管理和比对分析。  在食品安全领域,高精度食品重金属检测仪的应用范围广泛。它可以用于食品生产、加工、储存等各个环节的监测,确保食品中的重金属含量符合国家标准和法规要求。同时,该设备还可以用于食品质量监测和风险评估,为食品安全管理提供有力的技术支持。  总之,高精度食品重金属检测仪是保障食品安全的重要工具之一。它可以帮助企业和监管部门及时发现和控制食品中的重金属污染,保护消费者的健康和权益。随着技术的不断进步和应用领域的拓展,相信高精度食品重金属检测仪将在未来的食品安全管理中发挥更加重要的作用。

  • 高精度形位测试系统

    高精度形位测试系统是想测发动机或试件经受温度变化后(如从70℃到-70℃)后,尺寸的变化,用于材料的性能研究。本人不知道到底用什么仪器设备可以测试,有哪位能指点一下啊?谢谢了!其中有用电子散斑、激光多普勒测试系统进行测试的,不是太清楚,请各位指教,谢谢了!

  • 低温超导测试系统中实现高精度液氦压力控制的解决方案

    低温超导测试系统中实现高精度液氦压力控制的解决方案

    [color=#ff0000]摘要:针对目前两种典型低温超导测试系统中存在的液氦压力控制精度较差的问题,本文提出了相应的解决方案。解决方案分别采用了直接压力控制和流量控制两种技术手段和配套数控阀门,结合24位AD和16位DA的超高精度的PID真空压力控制器和压力传感器,大幅提高了液氦压力控制精度,最终实现低温超导性能的高精度测试。[/color][color=#ff0000][/color][color=#ff0000][/color][align=center][img=低温超导测试系统中实现高精度液氦温度控制的解决方案,690,411]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031120120633_4214_3221506_3.jpg!w690x411.jpg[/img][/align][align=center]~~~~~~~~~~~~~[/align][size=14px][/size][size=18px][color=#ff0000][b]1. 项目概述[/b][/color][/size] 各种超导部件如超导磁铁和超导腔体在装机前都需要在低温超导测试系统中对其性能进行测试,为了使超导部件达到低温环境则需要将被测部件浸泡在液氦介质内,并采用低温杜瓦盛装液氦介质。在整个测试过程中,对低温测试系统内的液氦压力要求极高,即要求杜瓦顶部氦气压强(绝对压力)有极好的稳定性,否则会导致测试不稳定,给测试结果带来严重误差。 目前国内现有的很多低温超导测试系统都存在液氦压力控制不稳定的严重问题,有些客户提出了相应的技术升级改造要求。 如图1所示的低温超导测试系统中,采用了两个不同口径的第一和第二泄压阀来粗调和细调液氦压力,但这种调节方法的液氦压力只能控制在1.2~1.6Bar范围内,对应4.39~4.74℃范围的液氦温度变化,造成0.35℃的温度波动。目前客户提出要设法将温度波动控制在0.1℃以内或更高的稳定性上,以提高超导部件性能测试精度。[align=center][color=#ff0000][b][img=超导试件测试时氦压控制系统,500,356]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123466941_8802_3221506_3.jpg!w690x492.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图1 低温超导测试系统液氦压力控制装置[/b][/color][/align] 如图2所示的高场超导磁体低温垂直测试系统,其压力控制范围1~1.3Bar,尽管在图2所示系统中采用了液氦加热器来改变液氦压力,但由于压力控制阀的调节精密度不够,最终造成压力控制精度远达不到测试要求,客户也提出了技术改造要求。[align=center][b][color=#ff0000][img=高场超导磁体低温垂直测试系统,400,557]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123146762_3661_3221506_3.jpg!w522x728.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 高场超导磁体低温垂直测试系统[/color][/b][/align] 针对上述两种典型低温超导测试系统中存在的液氦压力控制精度不足的问题,本文将提出相应的解决方案。解决方案将分别采用直接压力控制和流量控制两种技术手段和配套数控阀门,结合超高精度的PID真空压力控制器和压力传感器,可大幅度提高液氦压力控制精度,最终减小低温超导性能测试误差。[b][size=18px][color=#ff0000]2. 解决方案[/color][/size][/b] 在图1和图2所示的两种典型低温超导测试系统中,它们各自的液氦压力变化起因不同,因此要实现液氦压力准确控制的技术手段也不同。以下是解决方案中对应的两种不同技术途径。[b][color=#ff0000](1)直接压力调节法[/color][/b] 在图1所示的低温超导测试系统中,造成液氦蒸发的因素并不可控,只能通过调节液氦上方的氦气压力来使得测试系统保持稳定。因此,为了实现液氦上方的压强控制,解决方案采用了直接压力调节法,如图3所示,即采用数控压力控制阀代替图1中的第一和第二泄压阀。此压力控制阀与高精度PID控制器和压力传感器构成闭环控制回路,实现自动泄压和高精度压力控制。[align=center][color=#ff0000][b][img=纯压力控制结构,500,350]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031124390427_8017_3221506_3.jpg!w690x483.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图3 直接压力调节法控制装置结构[/b][/color][/align] 数控压力控制阀是一种数控正压减压控制阀,正好可以满足低温超导测试系统的微正压控制需求。通过氦气源和减压阀提供的驱动压力,可在控制阀出口处实现高精度的压力控制,同时还保持很小的漏气以节省氦气。 另外,此数控压力控制阀具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,可将液氦压力控制在0.1%的高精度水平。[b][color=#ff0000](2)流量调节法[/color][/b] 在图2所示的低温超低测试系统中,其不同之处之一是具有液氦加热器,即通过液氦加热器和压力控制阀构成的控制回路可进行不同液氦压力的控制,由此实现不同液氦温度的控制。 为实现不同液氦压力的精密控制,解决方案在此采用了流量调节法。如图4所示,解决方案采用了电动针阀作为图2中的压力控制阀,电动针阀与双通道高精度PID控制器、压力传感器和液氦加热器构成闭环控制回路,可以按照任意设定值进行高精度的压力控制。[align=center][color=#ff0000][b][img=流量控制结构,500,290]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031125069440_4211_3221506_3.jpg!w690x401.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图4 流量调节法控制装置结构[/b][/color][/align] 电动针阀是一种数控的微小流量调节阀,可通过PID压力控制器自动调节针阀开度,流出的氦气可通向氦气回收气囊。电动针阀同样具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,同样可将液氦压力控制在0.1%的高精度水平。[b][size=18px][color=#ff0000]3. 总结[/color][/size][/b] 通过上述解决方案的技术手段,可实现低温超低测试系统中液氦压力的准确控制,控制精度最高可达±0.1%。 按照绝对压力进行计算,饱和蒸气压为1.2Bar时,液氦温度为4.4K。由此,如果压力控制精度为±0.1%,液氦压力的波动范围为±1.2mBar(相当于绝对压力±120Pa),对应的液氦温度波动范围为4.4mK,即所控的液氦温度为4.4±0.0044K。 由此可见,通过本文所述的解决方案,仅通过采用工业级别较低造价的PID真空压力控制器和压力传感器,结合数控压力控制阀和电动针阀,就可实现很高精度的液氦压力控制,温度控制精度可达到mK量级,完全能满足绝大多数低温超导测试系统的需要。[align=center]~~~~~~~~~~~~~~~~~[/align]

  • 高精度测厚仪哪个好

    在选择高精度测厚仪这样大型的机械设备时,往往都通过比较做出选择,知名品牌也是参考的一点,但是设备的质量也尤为重要。大成精密高精度测厚仪就符合这两点的厂家,在国内来说,他们做的是相当不错的,自主研发生产,质量高,得到了得到了消费者的大力认可,下面我们就来介绍一下,它好在哪些方面吧:   1、操作简单方便  简单方便的设备仪器不管是谁,都会非常喜欢的。如果设备仪器的操作比较繁琐或是需要专业人员来操作。厂家就会考虑很多方面,一来操作繁琐要对工作人员进行一系列的培训,二来请来的专业人员所需要的成本就会有所上升,利益就会相应减少。高精度测厚仪操作十分简单方便,这是厂家选择他们的其中一个理由。  2、能连接数据进行打印  测厚仪有电脑连接接口,在使用的时候可以购买相关软件,从而实现对测两次数据的储存打印,而且相关的软件还能够对测量数据进行统一,用专业的方式显示出来,从而让我们更加简单的了解测量数据机器所具有的特点。  http://www.dcprecision.cn/Uploads/201601/56a1a0aa23fb3.jpg  3、采用国外进口的优质元件  专业的测厚仪传感器部件通常采用的都是国外进口的优质元件,这些优质传感器元件能够让测厚仪的测厚分辨率比普通测厚仪增加很多,这种仪器对于零点一微米的距离都能精准的测量。然而测厚仪里面的优质传动元件也是确保测厚仪工作稳定性和准确性的重要因素。  激光测厚仪是近年来开发出的高科技实用型设备,是用于热轧生产线上实时在线式连续测量成材厚度的非接触式测量设备。它有效地改善了工作环境,具有测量准确、精度高、实用性好、安全可靠、无辐射、非接触式测量等人工测量及其它测量方法无法比拟的优点,并为轧制钢材厚度控制提供了准确的信息,从而提高了生产效率和产品质量,降低了劳动强度。  使用大成精密激光测厚仪以来,具不完全统计,因板厚误差造成的废品率下降了50%以上,创经济效益近千万元,受到各级部门和工作人员的肯定与赞赏。

  • 软管夹管阀在流体介质高精度压力和流量控制中的应用

    软管夹管阀在流体介质高精度压力和流量控制中的应用

    [align=center][b][img=采用夹管阀实现无菌流体系统中的高精度压力和流量控制解决方案,690,450]https://ng1.17img.cn/bbsfiles/images/2023/10/202310181658154269_9598_3221506_3.jpg!w690x450.jpg[/img][/b][/align][size=16px][b][color=#000066][/color][color=#339999]摘要:针对卫生和无菌流体系统中柔性管路内的压力和流量控制,本文介绍了采用电控夹管阀的高精度控制解决方案。解决方案基于反馈控制原理,采用压力传感器或流量传感器进行测量并反馈给程序控制器,控制器驱动夹管阀来改变柔性管路的内径从而实现高精度控制。尽管解决方案只介绍了最基本的夹管阀闭环控制回路,但这种简单控制可以进行多种组合以适用于多种流体介质的压力流量控制。本文同时也介绍了夹管阀应用的局限性和改进方法。[/color][/b][/size][align=center][size=16px][color=#339999][b]=======================[/b][/color][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 夹管阀是一种打开或关闭流体路径,而阀体不会与流动介质接触的阀门,也就是流体管路内径的控制依赖于弹性管路外部的挤压压力。夹管阀主体内部不会接触到流体,仅有管路内部会接触流经的液体或气体,可确保流体不会受到污染,且能保持夹管阀的清洁,因此适合做为生物加工、食品工业、饮料工业、剂量系统、自动贩卖机、血液处理/分析、实验室分析、冲洗程序需无菌的生物制药等设备的阀门。与其他闸阀或活塞阀相比,使用夹管阀的主要优点是让阀体不会与腐蚀性流动介质接触,因此无论在使用寿命或卫生方面都更持久、干净。[/size][size=16px] 在夹管阀的实际应用中,往往是通过改变夹管阀挤压压力来调节软管的开度,以控制管路内[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]介质的输送流量与流速,同时也相应的改变了软管内部的背压压力。夹管阀只是作为一个调节流量和压力的执行器件,还无法进行管路内部压力和流量的闭环自动控制。[/size][size=16px] 为了采用夹管阀实现无菌流体系统中的压力和流量控制,特别是实现高精度的自动控制,本文将介绍一种闭环控制解决方案及其一些具体应用案例。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了高精度的控制流体介质管路中的压力和流量,本解决方案提出的控制系统如图1所示。解决方案设计的控制系统是一种最基本的控制结构,可以根据实际应用情况进行各种组合。[/size][size=16px] 图1所示的控制系统主要由泵、压力传感器、流量传感器、夹管阀、程序控制器和柔性管材组成,其各组件的功能如下:[/size][size=16px] (1)泵:主要用来驱动流体在柔性管路内流动,相当于一个进液源。[/size][size=16px] (2)压力传感器:测量柔性管路内流动液体的压力,并输出相应的压力测量信号。[/size][size=16px] (3)流量传感器:测量柔性管路内流动液体的流量,并输出相应的流量测量信号。[/size][size=16px] (4)夹管阀:夹管阀采用的是电控式夹管阀,可灵活调节挤压压力,对应最大可夹软管外径7mm,软管壁厚范围0.5~2mm,夹紧留隙调节为0.5~2mm。夹管阀可方便地调节运动滑块的初始位置,灵活适用不同壁厚尺寸的软管。24V直流供电,控制信号为0~5V或0-20mA。[/size][size=16px] (5)程序控制器:程序控制器采用的是VPC2021系列多功能超高精度PID真空压力程序调节器,可接入真空、压力、流量、温度和张力等47种传感器信号,具有串级控制、分程控制、比值控制等高级控制功能,具有控制程序功能和外部设定点功能,具有24位AD、16位DA和0.01%最小输出百分比。控制器自动计算机软件,可由计算机进行远程参数设置和运行操作。[/size][align=center][size=16px][color=#339999][b][img=夹管阀流体压力和流量闭环控制系统结构示意图,600,296]https://ng1.17img.cn/bbsfiles/images/2023/10/202310181700229428_1520_3221506_3.jpg!w690x341.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 夹管阀流体压力和流量精密控制系统结构示意图[/b][/color][/size][/align][size=16px] 解决方案中的压力和流量控制系统的工作过程是进液通过泵的驱动使流体介质在柔性管道内流动,压力或流量传感器采集相应的压力或流量信号并传输给程序控制器,控制器根据设定值进行比较后输出控制信号驱动夹管阀动作,使管路内的压力或流量准确达到设定值。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 尽管上述夹管阀具有高精度的压力和流量的控制能力和响应速度快的特点,但由于夹管阀会改变柔性管路的内径大小,使得管路内部的背压增大,而这种压力的增大必须要在软管的可承受范围之内,否则很容易造成软管的爆裂或接口爆开。因此,更安全可靠的压力和流量控制方式是不使用夹管阀,而是直接控制进液压力,通过改变进液压力来调节管路内的介质压力和流量。这种进液压力调节有以下三种控制方式:[/size][size=16px] (1)采用转速可调节式泵来改变进液压压力。[/size][size=16px] (2)采用注射泵来改变进液压力和流速。[/size][size=16px] (3)采用进液容器顶部气压控制方式的压力控制器,同时连接外部压力或流量传感器形成闭环控制回路,以改变液池顶部加载压力实现压力和流量的自动控制。[/size][size=16px] 上述的三种控制方式中,顶部气压控制方式的技术优势最为明显,同样可以实现高精度的压力和流量控制,特别是可以应用到微小流量的快速和超高精度控制。[/size][size=16px] 另外,对于微流控芯片技术中所用的微小流量控制,往往会使用到小于1mm的很细软管,这些微细软管内的压力和流量控制则可能不太适合采用夹管阀,这时更适合采用注射泵或压力控制器形式。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    [size=16px][color=#339999]摘要:为解决石英晶体微量天平这类压电传感器频率温度特性全自动测量中存在的温度控制精度差和测试效率低的问题,本文在TEC半导体制冷技术基础上,提出了小尺寸、高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/color][/size][size=16px][color=#339999][/color][/size][align=center][size=16px][img=TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用,550,309]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141513442750_3958_3221506_3.jpg!w690x388.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 石英晶体微天平(Quartz Crystal Microbalance,QCM)作为一种超高灵敏的质量检测装置,其测量精度可达纳克级,并广泛应用于化学、物理、生物、医学和表面科学等领域中,用以进行气体、液体的成分分析以及微质量的测量、薄膜厚度及粘弹性结构检测等。石英晶体微天平实际上是一种压电传感器,它利用了石英晶体的压电效应,将石英晶体电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的测量结果。石英晶体微天平除了具有高灵敏度高和高精度之外,最大特点是结构简单和成本低,它由一薄的石英片组成,两侧金属化,提供电接触。QCM的工作原理类似于用于时间和频率控制的晶体振荡器,但QCM表面常暴露在周围环境中,且对环境温度变化非常敏感,QCM的一个重要技术指标就是频率温度特性。在QCM的具体应用中,温度变化会严重影响QCM测量结果,因此准确测量频率温度特性是表征评价QCM的一项重要内容。但在目前的各种频率温度特性测试装置中,特别是高精度温度控制装置,还存在以下问题:[/size][size=16px] (1)在常用的-10~+70℃的温度范围内需要对QCM进行多个设定点的高精度温度控制和频率测量,而目前常用温控技术往往控制精度偏低,若提高控制精度又带来测试时间过长的问题。[/size][size=16px] (2)专门用于压电晶体频率温度特性测试的恒温装置往往体积普遍偏大,内部温度均匀性较差,同样会带来温控精度差的问题,仅能用于批量压电晶体较低精度的频率温度特性测试。[/size][size=16px] (3)尽管采用了TEC半导体制冷技术可实现QCM的高精度温度控制,实现了小型化和快速温控和频率测量,但存在的问题是多个温度点的自动化程序控制能力差,无法实现全温度区间内多个温度点的自动控制和频率测量。[/size][size=16px] 为了解决QCM这类压电传感器频率温度特性全自动测量中存在的上述问题,本文在TEC半导体制冷技术基础上,提出了高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了进行石英精度微天平(QCM)的频率温度特性测量,需要将QCM放置在一个受控的热环境中。为了提高热环境的温度控制精度,热环境的尺寸空间较小,并采用TEC模组进行加热和制冷,整个热控装置的结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=压电传感器频率温度测量温控系统示意图,690,209]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141516237559_7391_3221506_3.jpg!w690x209.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 石英精度微天平频率温度特性温控装置结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,TEC被放置在铝制均热套和散热器之间,铝制均热套作为热稳定工作的密闭腔体,为整个腔体提供均匀的温度环境。散热器直接浸泡在水浴中使得TEC的工作表面达到较低的负温度,散热器也可以直接采用水冷板,水冷板内通循环冷却水。[/size][size=16px] 另外,在频率温度特性测试过程中,TEC要提供高低温范围内温度控制,那么在高低温运行时,TEC工作表面和散热器之间存在较大差异,因此,在TEC周围布置隔热材料以减少其两侧之间的热流,从而增加TEC工作面的温度均匀性。[/size][size=16px] 铝制均热套放置在TEC工作表面的顶部,在均热套与TEC之间采用银胶以减小均热套与TEC工作表面之间的接触热阻,铝制均热套被隔热材料包裹以减少与环境的热交换。[/size][size=16px] 在铝制均热套内布置了两只电阻型温度传感器,其中一只安装在铝制均热套的侧壁上作为控温传感器,此温度信号提供给超高精度的PID控制器进行温度自动控制。另一只用来测量固定在铝制支架上的QCM组件温度。[/size][size=16px] 在图1所示的温控装置中,为满足不同尺寸和结构的TEC温控装置,采用了独立的TEC换向电源以满足不同加热功率的需要。在温控器方面,则采用了超高精度的PID控制器,可直接对TEC进行加热制冷双向控制,其中AD为24位,DA为16位,最小输出百分比为0.01%,PID参数自整定,可编程程序控制,由此可实现高精度的温度控制。[/size][size=16px] 对于图1所示结构的温控装置,在全温区范围内设定点从-10变化到+70℃,步进5℃,其温度控制可实现±12mK的温度稳定性和±15mK的设定值精度。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 上述压电传感器频率温度特性测试的温控解决方案,主要具备以下几个特点:[/size][size=16px] (1)采用了TEC半导体制冷组件,可低成本的实现压电传感器频率温度特性测试过程中的精密温度控制,并使得整个频率温度特性测试装置的体积非常小巧。[/size][size=16px] (2)整个温控结构的设计简便,但可以实现0.02℃以内的控制精度和重复性,完全能满足各种压电传感器的频率温度特性测试需要。[/size][size=16px] (3)由于采用了目前最高精度的工业级可编程PID控制器,具有24位AD、16位DA和0.01%的最小输出百分比,这是实现高精度TEC温度控制的必要条件。[/size][size=16px] (4)高精度的可编程PID控制器可按照设定程序进行全测试过程的温度自动控制,设定程序可通过随机的计算机软件进行编辑和修改,控制过程参数可自动进行显示和存储。[/size][size=16px] 总之,本文为实现高精度、简便小巧和低价格的压电传感器频率温度特性测试中的温度控制提供了切实可行的解决方案,为单个或少量压电传感器稳频特性评价提供了有效的技术途径。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    [b][color=#3366ff]摘要:针对现有压力衰减法孔径测量中存在的基本概念不清和实施方法不明确等问题,本文详细介绍了压力衰减法的孔径测量基本原理,并重点介绍压差法测量中的高精度压力控制方法,为各种微小孔径和等效孔径的准确测量提供切实可行的解决方案。[/color][/b][align=center][img=压力衰减法孔径测量,550,294]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230914562217_9430_3221506_3.jpg!w690x370.jpg[/img][/align][b][size=18px][color=#3366ff]1. 问题的提出[/color][/size][/b] 在工业生产和实验室研究中存在着大量管件内部孔径的测量需求,而且还要求具有较高的测量精度,常见的需要精密测量的几类孔径有: (1)毛细管内径。 (2)鲁尔接头或其他连接器母接头孔径。 (3)各种喷灯气孔孔径。 (4)栓环缝通道等效孔径。 (5)药用玻璃瓶或药品包装系统漏孔孔径。 通道孔径主要分为直接测量方法和间接测量方法。直接测量主要是通过精密的尺规等工具进行测量,如游标卡尺、圆锥尺、针规和塞规等,但直接测量方法并不适应于细长管和针栓环缝通道等的孔径或等效通径的测量。 间接测量法主要有光学法和流体标定法。光学法一般是利用像素为基本单位对各种形状的孔进行测量,适用于元件表面孔和裂纹的测量。但对于细长或者弯曲多变的孔径,光学法不适用。流体标定方法是一种基于压力衰减法的有效的等效通径标定方法,流体介质多以气体和液体为主,通过流量计和压力传感器分别测量流体流量和压力差。但在目前的压力衰减法中普遍存在以下几方面的问题: (1)在低于和高于一个标准大气压的负压和正压条件下,都可以采用压力衰减法进行孔径测量,但绝大多数文献和专利报道对此并没有明确的规定,正负压测试条件的使用显着非常随意和混乱。 (2)压力衰减法的核心是在被测孔径管道的两侧形成恒定压力差,并同时测量由此压差引起的流量变化,其中的恒定压力控制是建立试验条件和影响测量精度的最重要因素。对于精确的压力控制在各种文献和专利报道中很少看到,大多报道只是给出一个不完整的压力衰减法测试框图,对精确的压力控制以生成高精度的恒定压差还未见报道。 针对上述现有压力衰减法孔径测量中存在的问题,本文将详细介绍压力衰减法孔径测量的基本原理,重点介绍压差法测量中的高精度压力控制方法,为微小孔径和等效孔径的准确测量提供切实可行的解决方案。[b][size=18px][color=#3366ff]2. 压力衰减法基本原理——泊肃叶定律[/color][/size][/b] 在恒定压差条件下,在粗细均匀的水平刚性圆管中作层流流动的黏性流体,其体积流量满足如图1所示的泊肃叶(Poiseuille)公式。[align=center][img=泊肃叶定律,600,311]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230917419388_2550_3221506_3.jpg!w690x358.jpg[/img][/align][align=center][color=#3366ff][b]图1 流体介质的泊肃叶定律[/b][/color][/align] 从泊肃叶公式中可以看出,体积流量与管孔半径的四次方成正比,孔径微小的变化都会对流量产生明显的影响。这就是压力衰减法孔径测量的依据,孔径的微小改变都会引起流量的显著变化,因此压力衰减法在孔径测量中具有很高的灵敏度,但前提是一要准确控制管道两端的压力,二是要准确测量体积流量。[b][size=18px][color=#3366ff]3. 孔径测量解决方案[/color][/size][/b] 依据泊肃叶定律,孔径测量的关键是实现准确的压力控制和流量测量。为此,本文针对高精度孔径测量提出的解决方案如图2所示。[align=center][b][color=#3366ff][img=压力衰减法孔径测量装置结构示意图,600,572]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230918265466_3029_3221506_3.jpg!w690x658.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图2 压力衰减法孔径测量装置结构示意图[/color][/b][/align] 如图2所示,被测孔径管件安装在两个压力腔室之间,整个装置的目的是精确控制这两个腔室的压力以形成稳定的压力差,在压力差稳定的装置下测量流进和留出两个腔室的气体流量,从而可计算得到被测孔径大小。 此孔径测量装置涉及以下几方面的主要内容: (1)此孔径测量装置采用了正压压力控制方案,这主要是因为正压控制同样可以达到很高的精度,而且,相对于负压真空环境下的测量和控制造价较低。正压控制过程中,采用纯净的高压气瓶和减压阀提供稳定的高压气源,高压气源同时供给两个压力控制阀以实现不同的正压压力控制。 (2)由于要测量进出两个腔室的气体流量,需要在两个腔室的进气口和出气口处分别安装气体质量流量计进行流量测量,因此压力控制阀无法直接对两个腔室的压力直接控制。为此,解决方案采用了串级控制方式,即在两个腔室上分别增加压力传感器,通过双通道PID压力控制器采集压力传感器信号,并两个通道分别设定不同的压力值,由此来驱动压力控制阀进行双回路的压力控制,由此实现两个腔室内的压力准确稳定在设定值上。 (3)压力控制阀是一个自带PID控制板和压力传感器的闭环压力控制装置,通过接收双通道PID压力控制器的控制信号,可以使压力控制阀出口处的压力准确恒定。压力控制阀自带泄压放气孔,由此两个压力控制阀组成的压差控制回路可使气体单向流过被测孔径管件。 (4)此解决方案中的孔径测量装置是一个对称装置,这种对称结构设计的目的是可以对被测孔径管件进行双向测试,这也是一种提高孔径测量精度的途径之一。 (5)压力控制器采用的是双通道高精度PID控制器,AD精度为24位,DA精度为16位,两个通道独立运行,可满足各种孔径精度测量中的压力控制需要。 (6)整个孔径测量装置的测量精度,除了受压力控制器精度影响之外,还会受到压力控制阀、压力传感器和气体质量流量计精度的影响,因此要针对不同的孔径测量精度要求选择合适精度的部件。 (7)由于此孔径测量装置是直接控制两个腔室的压力,所以在室温下运行时腔室温度的波动对压力变化没有影响,腔室压力控制自动会消除掉温度影响而保持腔室气压恒定。 (8)为了实现数据的自动采集和计算孔径测量结果,双通道压力控制器和两个气体质量流量计需要与计算机通讯连接(图2中并未绘出)。由此,通过计算机可设定控制压力,采集压力和流量变化曲线以监控压力和流量是否稳定,当达到稳态状态后可通过压力和流量采集数据并依据泊肃叶公式计算得到孔径测量值。[b][size=18px][color=#3366ff]4. 总结[/color][/size][/b] 综上所述,本文所提出的基于压力衰减法的孔径测量解决方案,具有很高的测量精度和广泛的适用性,整个测量过程自动运行,关键是可以满足多种形式的微小孔径测量,在替代传统塞规的前提下,是一种高精度的无损测量解决方案。特别是采用气体作为流体介质,非常适合微小尺寸(如毛细管等)和漏孔的等效口径测量。[align=center]~~~~~~~~~~~~~~~~~~~~~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制