当前位置: 仪器信息网 > 行业主题 > >

高性能塑料检测计

仪器信息网高性能塑料检测计专题为您提供2024年最新高性能塑料检测计价格报价、厂家品牌的相关信息, 包括高性能塑料检测计参数、型号等,不管是国产,还是进口品牌的高性能塑料检测计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高性能塑料检测计相关的耗材配件、试剂标物,还有高性能塑料检测计相关的最新资讯、资料,以及高性能塑料检测计相关的解决方案。

高性能塑料检测计相关的资讯

  • 药品塑料瓶包装密封性能检测方案解析
    在药品包装领域,塑料瓶因其轻便、耐腐蚀、成本低等优点而被广泛使用。然而,塑料瓶的密封性能直接关系到药品的保存质量和安全性。因此,对药品塑料瓶包装的密封性进行检测是确保药品安全的关键环节。本文将解析药品塑料瓶包装密封性的检测方案。首先,药品塑料瓶包装密封性检测的基本原理是通过检测瓶内外压力差或真空度变化来判断瓶体的密封性能。常用的检测方法包括水检法、压力差法、真空衰减法等。这些方法各有优缺点,选择合适的检测方法需要根据实际需求和生产条件来确定。水检法是一种简便易行的检测方法,通过将塑料瓶完全浸入水中,观察是否有气泡产生来判断瓶体的密封性。这种方法适用于初步筛选和现场检测,但无法定量分析密封性能。压力差法是通过在塑料瓶内外施加不同的压力,检测瓶体是否漏气来判断密封性。这种方法可以定量分析密封性能,但需要专门的设备和技术人员操作。真空衰减法是通过在塑料瓶内部形成真空,检测真空度的变化来判断密封性。这种方法具有较高的灵敏度和准确性,但需要专门的真空衰减仪和熟练的操作技巧。在实际应用中,可以根据生产规模和检测要求选择合适的检测方法。对于小规模生产或现场检测,可以选择水检法;对于大规模生产或要求较高的检测,可以选择压力差法或真空衰减法。其次,药品塑料瓶包装密封性检测的设备选择也非常重要。不同的检测方法需要不同的检测设备,如LEAK-01负压法密封性测试仪,LSST-01泄漏与密封强度测试仪等。在选择设备时,需要考虑设备的精度、稳定性、操作简便性等因素。最后,药品塑料瓶包装密封性检测的操作流程也需要严格控制。无论是哪种检测方法,都需要进行标准化操作,以确保检测结果的准确性和可重复性。同时,还需要定期对检测设备进行校准和维护,以保证设备的正常运行和检测结果的准确性。综上所述,药品塑料瓶包装密封性检测是确保药品安全的关键环节。选择合适的检测方法和设备,严格控制操作流程,才能确保检测结果的准确性和可靠性。
  • 便携式拉曼光谱系统,助力微塑料快速检测
    前段时间,一项发表在环境科学领域权威期刊《环境国际》上的研究披露,科学家首次在人类血液中发现微塑料,进一步引发了微塑料对人体健康长期影响的担忧。我国高度重视微塑料对环境、人体影响的监测工作,越来越多研究机构已经开始布局微塑料研究。图片来自网络微塑料是指粒径小于5 mm的塑料颗粒,往往难以肉眼分辨,而拉曼光谱作为一种分子指纹光谱技术,结合显微成像,能够在微塑料的成分定性和颗粒统计中发挥重要作用,并且无惧水分干扰、无需复杂前处理。RS2000便携式拉曼与显微镜联用鉴知RS2000便携式拉曼系统可以与高性能光学显微镜联用,实现微米级塑料颗粒的表征和鉴别,根据样品的不同,还可选配不同波长的激光光源。RS2000具有以下优势: 1. 光学性能佳,分辨率优于6 cm-1,光谱范围覆盖200-3200 cm-1,采用深度制冷探测器,信噪比(SNR)超过7000,轻松进行微塑料的成分分析 2. 高分辨光学显微镜,可以进行微米级塑料颗粒的表征分析,并能够获取微塑料的二维图像信息 3. 方便移动,可以快速搭建分析平台,支持现场分析检测任务 4. 功能多样,既可以与显微镜连接使用,也可以通过探头直接检测不可移动的样品 5. 可靠性强,能够在复杂环境条件下使用常见塑料的拉曼光谱鉴知技术作为一家的光谱分析技术供应商,可以为研究人员提供定制化拉曼光谱检测配件和专业的技术指导,满足微塑料样品的现场快速检测需求。此外还提供各类光纤光谱仪,为科学研究提供更灵活的检测工具,详情可后台咨询。 鉴知技术可为用户提供不同配置的光谱仪
  • 特种工程塑料高温性能分析:超高温热变形维卡温度的测定(MAX.500℃)
    首先,让我们来了解一下什么是工程塑料?Whats”工程塑料,是指一类具有良好物理性质、机械性能、耐磨性、耐腐蚀性、绝缘性、耐热性、耐寒性、耐老化性等特点的高性能塑料材料。这些材料可以承受较高的温度和压力,具有较好的机械强度和耐用性,相对于传统的通用塑料具有更高的综合性能和更广泛的应用范围,相对于金属材料更轻、更薄、更能耐受高温,因此在工业和科技领域中被广泛应用并逐步成为发展趋势。例如常见的用于制造发动机内罩、轴承的聚醚酮(PEEK)、用于制造耐高温的薄膜、涂料,防火织物的聚酰亚胺(PI)、用于制造餐具、耐酸碱的管道阀门的聚苯硫醚(PPS)等。在工程和科研领域中,材料高温下性能的精确测定对材料研究和产品设计至关重要。如果工程塑料材料在实际使用中耐热性不好,就可能会出现以下问题:Question”1)部件变形或软化:在高温环境下,超级工程塑料可能会失去其结构稳定性,导致部件变形或软化,影响其性能和寿命。2)减弱耐久性:高温环境可能会导致超级工程塑料的分子结构发生变化,从而降低材料的耐久性和使用寿命。3)失去机械强度:高温环境可能会导致超级工程塑料的机械强度减弱,从而影响其承载能力和抗冲击性能。4)失效:如果超级工程塑料的耐热性能不好,那么在高温环境下,部件可能会失效,从而影响整个系统的性能和安全性。这些问题的出现会影响整个机械设备的性能和寿命。此外,还可能会对人员和环境造成安全隐患,例如部件失效引发事故、释放有害气体等。因而在使用工程塑料时,必须考虑其耐热性能,并根据实际使用情况选择适合的材料。表征高分子复合材料耐温性能的一个重要指标是热变形温度。但随着高性能聚酰亚胺塑料和各种纤维增强材料的研制和发展,由于其材料本身性能优越,通用仪器很难满足其测试要求。目前国内测定材料热变形的设备大多采用油介质加热,最高测定温度不超过300℃。同时由于加热时介质油的挥发和分解,产生大量的油烟,极易造成环境污染和人员中毒。通用热变形测试仪由金属材料加工制造,高温时,金属自身变形量增大,会对测试材料变形量产生影响,得到的材料热变形数据并不能反应材料的真实性能。而安田精机的高温热变形温度测定仪在测试材料的高温性能方面具有突出的优势。出色的高温稳定性和机械性能安田精机的高温热变形测试设备采用石英材质制作支架、测试台和压头等部位,该材质能够在高达500℃的极端温度下保持卓越的性能,设备最高测试温度可以达到500℃,同时可选择更换维卡测试头,支持维卡测试。【已知石英材质的热膨胀系数是5.6x10-7/℃,而SUS304不锈钢材质是17.3x10-6/℃,这意味着在同样高的温度下石英材质更不容易变形】精密的温度控制和实时监测加热方式放弃使用介质油加热,而选用更加环保安全、便捷经济的空气加热,为了保证温度分布均匀,各测试台的空气隔室是独立的,各自具备温控功能,能够均衡升温;防样条碳化功能为保护试样在高温下不发生碳化,测试过程中可以注入氮气保护,氮气可以将氧气排出,由于其自身具有惰性,可以降低塑料的氧化速度;安田精机的高温热变形温度测定仪可广泛应用于材料科学、汽车制造、航空航天和能源等领域。其卓越性能、高温范围、精密温度控制和广泛的应用领域为特种工程塑料高温性能分析提供了解决方案。感兴趣的朋友欢迎私信我们了解!更多精密物性设备,尽在仕家万联!
  • 塑料微珠被禁用,化妆品微珠检测出新规!——化妆品中塑料微珠的测定
    导 读 塑料微珠广泛用于洗面奶、按摩霜、去角质霜、牙膏、沐浴露等化妆品和个人护理品中,是一种直径小于5mm的塑料合成颗粒,常用原料有PE(聚乙烯),PP(聚丙烯),PMMA(聚甲基丙烯酸甲酯)等等。这种在化妆品界红极一时的塑料微珠,却对海洋及整个生态系统有着强大的破坏力。近年来,各国相继出台相关法规,禁止塑料微珠在化妆品中使用。国家发改委编制的《产业结构调整指导目录》(2019)要求,含塑料微珠的日化产品,到2020年12月31日禁止生产,到2022年12月31日禁止销售。目前我国发布最新的国标《化妆品中塑料微珠的测定》征求意见稿;该标准由深圳计量质量研究院负责制定,岛津作为验证单位参与了标准的验证。 应对细小塑料微珠的分析检测需求,您能否即刻满足?岛津公司助您从容应对。 仪器配置 岛津IRTracer-100, ATR(金刚石晶体), 岛津分析天平:感量0.1 mg,抽滤装置,烘箱,玻璃器皿等。 图1. 岛津IRTracer-100红外光谱仪 图2. 衰减全反射附件(ATR) 前处理及定性、定量方法 参考《化妆品中塑料微珠的定性定量分析》征求意见稿,用乙醇及乙醇水溶液将塑料微珠从化妆品样品中分离,烘干后使用岛津高性能红外IRTracer-100配置衰减全反射附件ATR测试化妆品中塑料微珠的种类,重量法定量。 结果考察 结合上述前处理方法,使用岛津红外IRTracer-100、ATR(金刚石晶体)对洁面膏、磨砂膏以及去角质啫喱进行了定性及定量分析。下图为三种样品的红外叠加谱图。从叠加谱图可以看到,三种样品中的塑料微珠红外光谱一致,可以判断,塑料微珠为同一物质。 图3 三种样品红外叠加谱图 对去角质啫喱中的塑料微珠进行光谱检索,结果如下图,图中红色谱图为去角质啫喱样品的红外光谱图,绿色谱图为聚乙烯PE的标准光谱图,两谱图出峰位置一致,峰强度比值一致,可以判断该去角质啫喱中的塑料微粒成分为PE。图4去角质啫喱样品光谱检索结果 结合重量法对塑料微珠进行了定量测试,从而实现了塑料微珠的定性定量分析。塑料微珠测试结果见下表: 结 语 应对化妆品行业中微珠的管控需求,岛津公司建立了快速分析化妆品中微珠成分及含量的分析方法。分析方法准确、可靠。且具有快速,易于操作的特点,适用于化妆品中塑料微珠的定性、定量分析。 识别二维码下载应用报告
  • 微塑料检测技术,解决微塑料难题!
    微塑料指的是直径小于5毫米的塑料微粒,常见化学成分有聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯等。相关研究表明,微塑料在鱼类、贝类等水生生物体内普遍存在,可通过食物链不断向上一级传递,位于食物链顶端的人类将不可避免成为微塑料的摄入和蓄积体。随着各方对微塑料的关注日益增多,微塑料的相关科学研究正如火如荼地开展着,如何精准快速的识别微塑料,对微塑料领域的研究至关重要。多年来,研究人员通过对水陆空环境与生物体等各类样品中的塑料微粒含量、大小、成分等进行科学分析,开展各类型的科研课题研究、环境本底调查,为我国环境微塑料污染防控与监控和常规产品检测等提供技术依据。为了了解当前微塑料检测分析技术和应用进展,加强沟通交流,7月27日-28日,仪器信息网将举办第四届环境新污染物检测网络会议,在28日的下午,以“微塑料的检验检测”为主题的会议专场,将邀请相关领域专家与大家分享当前针对该领域的技术研究与应用进展等。“微塑料的检验检测”专场日程如下:07月28日微塑料的检验检测14:00--14:30“流域-近海-大洋”微塑料观测研究进展与趋势分析蔡明刚厦门大学 教授14:30--15:00岛津GCMS在环境新型污染物检测中的应用王子君岛津企业管理(中国)有限公司 产品专员15:00--15:30污水处理厂微塑料的去除行为解析与探讨安立会中国环境科学研究院 研究员15:30--16:00传感器在渔业环境中新污染物检测应用吴立冬中国水产科学研究院 研究员嘉宾介绍:蔡明刚 教授厦门大学蔡明刚,教授,博士生导师。现任厦门大学海洋与地球学院教授,海洋与海岸带发展研究院兼职教授,福建省高校重点实验室副主任。主要研究方向:基于海洋学视角的开阔海域污染物传输动力学过程研究,及其作为新型示踪剂在海洋科学上的应用。研究海域涉及我国南海等边缘海、全球大洋及两极海区,课题组近10次参加中国南、北极科学考察。个人系中国第3、5次北极科学考察队队员,先后入选福建闽江科学传播学者、福建省杰出青年基金计划、新世纪优秀人才计划、CSC中德合作团队项目等人才计划。主持国家及省部级项目10余项,在Environmental Science & Technology、Environmental Pollution、Deep Sea ResearchⅠ、Marine Chemistry等环境、海洋期刊发表论文70余篇,获得专利授权12项,获得多项省部级奖项。 主要科研与应用成果如下:1)开展我国主要边缘海和极区持久性有机污染物的时间序列变化和储量估算,提出全球变化背景下边缘海POPs海/气交换与垂直传输的海洋生物泵调控机制。2)较早开展大洋海水中细颗粒微塑料研究,发现南海存在数量可观的微塑料。3)利用氟利昂等污染物开展海洋学过程的示踪与人为碳估算,取得创新性成果,组装了国内第1套海水超痕量氟利昂/六氟化硫的吹扫捕集-气相色谱分析系统,获批多项发明专利,分析精度达到国际同类水平。4)构建和应用海湾陆源污染物排海总量估算技术及其系统,提出基于长时间序列观测的沿海社会、经济和环境生态协调发展的计量统计学方法。5)建立基于工业化生产的雨生红球藻培养技术和配方,搭建了微藻多级培养系统并研发新型LED藻类培养设备,拥有多项专利,服务于企业生产并产生实际效益。王子君 产品专员岛津企业管理(中国)有限公司毕业于天津大学应用化学专业,具有丰富的分析仪器产品经验,擅长环境应用解决方案。安立会 研究员中国环境科学研究院安立会(1975 -),博士,中国环境科学研究院研究员,博士生导师。主要从事天然与合成环境污染物的水生态毒理效应、环境质量基准与标准及生态风险评价研究,近年重点关注环境塑料垃圾与微塑料对生态系统安全和人体健康的影响,并致力于塑料污染来源及其控制对策,为开展我国环境微塑料的管控措施和治理提供科学依据。吴立冬 研究员中国水产科学研究院吴立冬,博士、研究员、博士生导师,入选中国水产科学研究院“百人计划”,国家市场监督管理总局食品补充检验方法和快检方法等国标方法审评专家。受邀成为“Biosensor and Bioelectronics”杂志编委(IF 12.545),Agriculture Communications 和Journal of Analysis and Testing杂志青年编委,Micromachines杂志(IF 3.523)专题主编。主持国家自然科学基金、国家重点研发计划、国家标准等国家级及省部级项目10余项。2022年获得了中国农学会青年科技奖、中国仪器仪表学会青年创新奖(朱良漪青年创新奖)和中国分析测试协会一等奖(排名第一)。主要从事水产品危害物快速检测方法及渔业环境智能化监测器件研发。迄今,吴立冬博士在Informat(IF 24.7)、Chemical Engineering Journal(16.7)、ACS nano、Food Chemistry、Biosensor and Bioelectronics、Anal. Chem等杂志发表80多篇论文,申请专利22项(其中美国专利1项,国际专利2项),授权7项(已转让2项)。免费报名点击:第四届环境新污染物检测网络会议:https://www.instrument.com.cn/webinar/meetings/newpollutant2023/诚邀您的参与!
  • 我国塑料包装检测仪器市场崛起
    目前国内塑料凹版油墨以溶剂型油墨为主,超标的苯对人体危害极大,而凹印速度高,必须使用挥发性强的油墨才能满足印刷要求,这使得环保问题在凹印工艺中尤为突出。水性油墨由于不含挥发性有机溶剂,完全消除了溶剂型油墨中的有毒有害物质,避免对包装商品产生污染,是目前各种油墨中唯一经过美国FDA认可的无毒油墨。目前国内仅有极少数厂家生产该品种水墨,但由于水性油墨在凹版印刷中其附着力、印刷速度、光泽等方面还不能完全达到溶剂型油墨性能水平,一时无法满足塑料薄膜彩色包装印刷厂商的要求。  在国家和用户要求包装制品严格按标准生产的呼声越来越高的情况下,用于包装原辅材料和制品的检测仪器市场开始渐热,各种国产和进口的包装专用检测仪器纷纷出现在市场上。  据统计,我国年销售收入5,00万元以上的包装企业有1万余家,其中近三分之一为塑料包装制品企业。这些企业中过去只有少数企业拥有自己的检测试验室,而现在小企业也开始重视建立自己的检测室。专家指出,由于塑料包装制品大多具有阻隔水蒸气、氧气、二氧化碳功能,所以有关这方面检测仪器的需求将越来越大。
  • Spark微孔板多功能酶标仪,专为高性能细胞荧光检测而设计
    实施荧光检测是提高检测质量和灵敏度的一个快捷有效的途径。实现荧光检测最优化要求光学系统同时具有灵敏度和灵活性。以使用发射光束能横跨整个波长光谱的荧光染料为前提,高性能的光电倍增管 (PMT) 可以帮助您进行多重分析检测,给您清晰分离的信号和绝对的检测灵敏度。 细胞荧光检测增加了其他复杂因素:分析微孔底面分布不均匀的贴壁细胞极具挑战性,以及如何最大限度地减少培养基的自体荧光。Tecan Spark微孔板多功能酶标仪,采用荧光Fusion Optics™ 技术,能够应对这些挑战并提供您在设计及运行高等生物化学检测及基于细胞的荧光检测所需要的所有技术支持。 Tecan Spark多功能酶标仪,准确、灵敏地测定细胞荧光。使用灵活的Fusion Optics技术,发展高灵敏度的荧光检测方案 Spark独特的Fusion Optics功能为您的检测方案的提供了灵活且灵敏的开发平台。利用Fusion Optics技术, 您可以在同一检测试验中按需组合使用滤光片和光栅。这是相对于全功能酶标仪性能上的重大飞跃。 滤光片选择的灵活性既能够使激发端的光束输入最大化,也能使发射端信号检测效果最大化,而光栅能通过扫描以确定最优化设置的波长。用户选用的深阻二向色镜能提高波长谱末端常见染料的灵敏度。大功率氙闪灯减少了得到可靠灵敏的结果所需的闪光次数,因此您不必在灵敏度和速度间犹豫不决。结合应用了SparkControl软件后,系统可以通过自动调节扩大动态范围,避免荧光检测进入饱和状态。 使用光栅/光栅系统(浅绿)和光栅/滤光片系统(深绿)来扫描激发和发射波长的最大值。第二种组合系统能识别出更鲜明且灵敏的最大值。细胞检测时聚焦于微孔底面进行酶标可以使背景的自发荧光最小化 在细胞荧光分析中,使用传统的微孔底面酶标技术会降低检测的灵敏度,因为光束在到达样品之前必须要先穿过塑料或者玻璃板。这就降低了可以激活荧光的光束的量。Tecan Spark酶标仪能为您提供高性能的微孔底面酶标模块,以解决上述问题。Tecan Spark酶标仪拥有基于透镜的底面酶标系统,结合能将光束引导到样本焦点的Z-focus程序, 能提供极高的灵敏度。优化的酶标功能通过多次测量排列在微孔中的分离的样本点,可以使细胞分布不均导致的差异最小化。 基于细胞的检测所得的安全可靠的结果 为了可以得到可以在不同实验,不同微孔间比较的细胞检测结果,您需要特别注意细胞数量、细胞分布和细胞的健康状况。Tecan Spark酶标仪运用明视场及免标记技术、激光自动对焦技术,使您能够检查这些自动检测参数。细胞图像和细胞汇合度可以进行自动测量。使用SparkControl的实况查看器, 您可以使用Snapshot功能,记录开始实验之前的最后一个图像。 Tecan Spark酶标仪的细胞孵化功能如温度控制、气体控制和湿度控制允许细胞在酶标仪中孵育几天的时间。Tecan Spark酶标仪的自动开盖和进样器功能,以及可以进行有条件动力学编程,使检测的完成实现了智能自动化。例如,正常生长控制条件下细胞可以在酶标仪中生长;达到预定的细胞汇合度之后,酶标仪可在微孔中加入某种物质,激发GFP的产生。这是额外的荧光动力学监测功能, 在运行的同时监测图像以控制细胞的生长。总结Tecan Spark多功能酶标仪,以它独特的Fusion Optics技术,能在荧光检测领域带给而我们绝佳的性能体验。在同一检测中,滤光片和光栅的组合带给我们前所未有的灵活度,却丝毫没有影响其准确性。 环境控制特征、 成像能力及其动力学条件,使您的细胞检测实验得以自动化和标准化,且具有极高的重复性。结合了特殊的酶标功能,如基于透镜的底面酶标系统、自动化的z-focus以及优化的酶标功能,Tecan Spark是研究细胞和荧光时最理想的多功能酶标仪。
  • 海洋、土壤微塑料专场今日顺利召开!大气微塑料监测专场明早继续
    新兴污染物微塑料广泛分布于水体、陆地和大气环境中。4月27日上午9:00,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的“ 微塑料检测与分析网络研讨会”于线上顺利开幕!共计700余名听众参会,现场互动氛围热烈。上午的海洋微塑料监测方法的标准化及风险评估专场,南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》;生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》;安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》;珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》;中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》;中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。在下午的陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》;浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》;QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》;中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》;复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。微塑料在淡水、海洋和土壤介质中的迁移转化研究等备受科研界关注,各项优秀成果层出不穷,与之相对的是,对大气中微塑料的研究相对较少。大气中的微塑料研究起步较晚,但其潜在生态环境影响的范围更广,鉴于空气对人类生存的重要性,今后该领域的研究必然会逐渐增多。有研究表明,大气微塑料已分布于全球大气中,其分布特征与室内外环境、下垫面类型和污染扩散等环境因素相关。大气环境中微塑料主要来源于塑料制品的生产、使用和回收过程,少量来源于陆地和海洋中积累的微塑料。值得关注的是,新冠疫情中口罩的使用可能加重了大气中的微塑料污染。微塑料在大气环境中可发生悬浮、沉降和扩散等迁移,这种迁移同时受到微塑料形态、风力、风向和降水等因素的影响。2023年4月28日上午9:30,由仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的微塑料检测与分析网络研讨会大气微塑料的监测及健康风险专场将于线上召开!报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/专家阵容如下:李道季 华东师范大学 教授《海洋大气微塑料入海通量:问题与挑战》李道季,博士,华东师范大学二级教授,博士生导师,华东师范大学塑料循环与创新研究院院长(海洋塑料研究中心主任),享受国务院特殊津贴专家。他目前还担任上海市海洋湖沼学会理事长、教育部科学技术委员会委员、联合国教科文组织海洋科学委员会(UNESCO-IOC)海洋塑料垃圾和微塑料区域培训和研究中心主任、联合国环境署(UNEP)海洋垃圾和微塑料科学咨询委员会委员、联合国海洋环境科学问题联合专家组(GESAMP)WG38和WG40成员等职务。龙鑫 中科院重庆绿色智能技术研究院 副研究员《东亚陆地-海洋微塑料大气传输的数值模拟研究》龙鑫,中国科学院大学环境科学理学博士,现任中国科学院重庆绿色智能研究院作副研究员。主要从事大气环境数值模拟研究,发表研究论文30余篇,先后主持国家自然科学基金青年基金、深圳市科创委面上项目、全球变化与中国绿色发展协同中心青年人才交叉项目等竞争性项目。2019年被认定为深圳市高层次专业人才(后备级)。胡辉 应用工程师 岛津企业管理(中国)有限公司《PY-TD-GCMS技术应用于微塑料中典型污染物分析》胡辉,应用工程师,从事色谱质谱工作10余年,擅长于环境、食品安全和电子电气等领域。刘凯 华东师范大学 博士后《城市冠层及海气边界层大气微塑料赋存观测》刘凯,华东师范大学河口海岸国家重点实验室在站博士后/助理研究员,主要从事微塑料陆海传输过程机制及其生态环境效应方面研究。近年来,在国家自然科学基金青年基金、上海市科技创新行动计划启明星培育“扬帆专项”、博士后面上项目和上海市博士后日常经费资助下,开展了陆海界面及海气边界层大气微塑料观测及大洋微塑料沉降模式方面的研究。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/
  • 塑料软包装溶剂残留检测又有新规定
    5月22日,参加塑料软包装溶剂残留标准制定会议的北京兰德梅克公司王庆国高工对记者表示,这次塑料软包装溶剂残留检测标准草稿的修改会议上,把原来的取样要求取0.2m2,裁剪为1×3cm的小块,放入500ml玻璃瓶进行烘烤。改为取内表面积100cm2放入20ml玻璃瓶进行烘烤,并且样品不要求裁剪。  这次修改是根据国外最新标准制定的,新方法比原来有三个优点:  1、 面积减小后容易取样。因为对于已经分切的卷膜,因为要除去边缘处,面积太大不方便取样。  2、 减少复合膜层间粘合剂层的溶剂干扰。溶剂残留主要指表层印刷的溶剂残留量,如果裁剪成很多小碎片,层间粘合剂层暴露多,集中挥发的溶剂对结果影响大。  3、 方便操作,减少了工作量。  王庆国高工是国内最早关注软包装溶剂残留的权威人士之一,曾经主持设计了专门用于软包装溶剂残留的2061C 、3061C气相色谱仪,是这次会议专家组中唯一被邀请的塑料包装检测仪器生产代表。
  • 直击橡塑领域热点话题!首届橡胶及塑料质量控制及检测主题网络会议即将召开
    橡塑制品广泛应用于包装、建筑、电子电器、信息、汽车、航空航天和日用医疗等领域。从零部件到汽车轮胎内饰,可以说凡是目光所及,都是橡胶和塑料材料的影子。我国橡胶制品销售收入自2017年起就超过了3000亿人民币,而进出口总额也超过了244亿美元,塑料制品的体量不遑多让。因此,当前对于橡塑材料的研发、检测与质量控制成为面向国民经济的重要议题,仪器信息网特于2021年7月22日组织举办首届橡胶及塑料质量控制及检测主题网络会议,邀请业内从事橡胶研发、检测和质控的资深专家进行经验分享。首届报告的嘉宾分别是:国家橡胶轮胎质量监督检验中心副总工程师 苍飞飞报告题目:《检测技术服务于橡胶及塑料质量控制》上海市食品药品包装材料测试所主任 徐俊报告题目:《药用橡胶密封件的质量控制》四川大学教授 严正报告题目:《聚丙烯CO2超临界发泡》上海恩捷新材料科技有限公司高级工程师 王汝友报告题目:《分析技术在锂电高分子材料行业质量控制过程中的应用》青岛市产品质量检验研究院主任 孙春鹏报告题目:《食品接触材料(塑料)国家标准体系解读》此外,还有知名科学仪器厂商——梅特勒-托利多和布鲁克的技术专家:梅特勒-托利多国际贸易(上海)有限公司热分析技术专家 袁宁肖报告题目:《热分析技术在弹性体材料领域的应用》布鲁克(北京)科技有限公司 资深应用科学家报告题目:《橡胶和塑料制品表面微观力学及摩擦磨损性能测试方法》会议日程及会议报名:https://www.instrument.com.cn/webinar/meetings/rubberplastics2021/
  • 福建厦门市质检院塑料薄膜拉伸强度检测能力通过验证
    近日,福建省厦门市质检院塑料薄膜拉伸强度检测能力以“满意”结果通过验证。据悉,塑料薄膜拉伸性能是用来评价分析材料静态力学性能的参数,拉伸强度是用来判定材料初次出现破坏的应力点。影响塑料薄膜拉伸性能试验结果的因素有很多,除了样品本身,试验仪器、试样的状态调节处理和试验环境、操作过程等对结果影响也很大。此次厦门市质检院塑料薄膜拉伸性能测定的能力验证顺利通过,客观准确地反映出该院在技术水平和质量管理等方面的综合实力,说明该院在包装材料领域检验检测能力可为生产企业控制质量提供良好的技术支持、为使用单位提供强有力的技术保障,有效保证产品的质量安全。据悉,厦门市质检院将以参加国内外能力验证为契机,进一步提高业务水平,为社会各界提供更全面、更高效、更优质的技术服务,为包装材料行业高质量发展提供可靠的技术支撑。
  • 国家高性能纤维表征检测(宁波)基地建成
    近日,中国化学纤维工业协会授予中科院宁波材料技术与工程研究所“国家高性能纤维表征检测(宁波)基地”。表明宁波材料所在高性能纤维表征检测方面得到了业界的广泛认可,同时,也将促进中国高性能纤维产业的发展。  高性能纤维(High-Performance Fibers)是指具有高拉伸强度和压缩强度、耐磨擦、高耐破坏力、低比重等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维,主要包括碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、玄武岩纤维等。它们通常采用高技术制成,且大多应用于工业、国防、医疗、环境保护和尖端科学各方面。  经过几年的发展,宁波材料所先后置办了热分析仪(DSC、TG)、凝胶色谱仪(GPC)、气相色谱仪(GC)、万能材料试验机、纤维强伸度仪、纤维细度仪和密度梯度管等先进精良仪器,同时结合公共技术服务中心测试中心的大型设备仪器,在高性能纤维的表面微观形貌与结构分析、物性分析、有机和无机成分分析方面形成了比较完善的体系,在纤维检测方面取得了较大的进展,并为国内多家单位提供了测试服务。目前,宁波材料所能够依据实践得出的检测方法来测量高性能纤维的各种性能以及为高性能纤维的质量问题提供解决方案。
  • 《热塑性塑料及其复合材料热封面热粘性能测定》国家标准通过专家审查
    5月10日,《热塑性塑料及其复合材料热封面热粘性能测定》国家标准正式通过专家审查,向全面实施迈出了重要的一步。   该标准详细规定了热塑性材料及其复合材料的热封面,在热封刚结束尚未冷却时的热粘力(即热粘强度)的测试方法,填补了国内相关国家标准和行业标准的空白。审查会中,来自全国塑料制品标准化技术委员会、国家包装产品质量监督检验中心、山东省医疗器械产品质量检验中心等国家检验、学术机构的专家对标准文本、试验验证报告等文件资料进行了认真的讨论并提出修改意见,认定该标准草案已具有与国际标准等同的技术水平。   热粘力,是材料热封部分在热封后未冷却测得的剥离力。在实际生产中,包装材料的热粘力的合适与否直接影响到生产线的灌装效率和破袋率。目前,国际上已经拥有了成熟的热粘性能检测的测试标准—ASTM F1921,但国内标准仍处于空白,标准需求极为迫切。   ——由北京市海淀区产品质量监督检验所、济南兰光机电技术有限公司等多家机构企业的技术人员共同组建了标准起草小组,经过大量的行业调研和国外标准研读,同时辅以兰光热粘拉力机的试验验证,历时3年最终形成了本版标准草案。接下来,本草案将会进一步完善,正式实施后必将对包装材料合理选择和使用提供强有力的量化支持。附:设备介绍HTT-L1热粘拉力试验仪专业适用于塑料薄膜、复合膜等包装材料的热粘、热封性能的测试。同时也适用于胶粘剂、胶粘带、不干胶、胶黏复合品、复合膜、塑料薄膜、纸张等软质材料进行剥离、拉断等项目的试验。
  • 洛克泰克(RTK)推出密闭呼吸计用于塑料生物降解需氧量检测
    湖北洛克泰克仪器股份有限公司(RTK)又发布新产品啦!RTK CRM-18密闭呼吸计是一款专门针对密闭呼吸计相关测试标准的、多通道的材料生物降解性能测试设备。该设备广泛适用于以液态或固态培养基作为降解环境,采用超微量气体流量测定(GMC)专利技术,可在密闭试验系统中直接测定需氧量。本产品主要应用于材料降解标准测试,是国家标准认可和指定的标准测试装置:同时,本产品也广泛应用于其他降解环境以及微生物学、水质、环境保护领域的测试和研究。本产品具有产品特点:(1) 18通道高通量设计,适合多组平行试验,提高效率。(2) 全实验周期,软件WEB服务器跨平台操作,可实现远程控制。(3) 模块化设计,方便更换和升级不同模块,适应不同标准测试。(4) 可高达1.0 mL测量精度。(5) 软件自动化控制、采集数据、绘图等,省时省力。(6) 即可采用机械搅拌,也能采用磁力搅拌,方式灵活。(7) 断电数据保存,电源再次启动后自动测试。(8) 可适用不同试验或检测目的,也可用于多种科学研究领域测试。(9) 设置有尾气吸收装置,可以通过环评。 湖北洛克泰克仪器股份有限公司(RTK)是国家高新技术企业(证书编号GR202042003741)。我司自主研发生产的塑料崩解仪,严格按照国家标准,可用于在定义堆肥化中试条件下测试塑料材料崩解程度。另外,我司还自主研发生产RTK PBDA塑料生物降解分析仪、RTK PBD 全自动塑料崩解分析仪、RTK CRM密闭呼吸计、RTK BMP全自动甲烷潜力测试系统、RTK-BRE微生物降解呼吸仪等产品,可用于各类塑料生物降解性能评估标准方法,欢迎垂询!
  • “生物分解塑料检测与绿色认证关键技术研究”项目座谈会在京召开
    日前,中国检科院在北京组织召开“十四五”国家重点研发专项“生物分解塑料检测与绿色认证关键技术研究”项目座谈会。来自中国科学院、中国物资再生协会、吉林中粮生物材料有限公司、安徽丰原生物新材料有限公司、深圳职业技术学院等单位技术专家及项目参加单位技术人员参加会议。   项目负责人、中国检科院首席专家邹明强主持会议并介绍了项目概况、研究工作进展和近期拟开展的重点研究工作。项目重点围绕降解材料和添加剂及其降解产物的健康危害因子检测技术、安全性评价替代方法和绿色产品认证评价体系研究、全自动降解性能检测设备和生物分解塑料标准物质研制等开展研究。 近期,市场监管领域开展“塑料污染治理”和“制止餐饮浪费”等专项治理工作,项目优先开展生物分解塑料替代不可降解塑料在一次性餐饮具、食品包装领域应用涉及的检测方法和标准研究,为其市场监管急需的检测手段提供技术支撑。   中国物资再生协会再生塑料分会秘书长王永刚和深圳职业技术学院张丛光教授分别作了“塑料污染治理与循环利用情况及实践”和“基于生命周期管理的塑料污染治理和循环利用机制研究”的专题报告,会议围绕一次性餐饮具等塑料制品循环利用和生物分解塑料替代应用问题进行座谈,与会专家作了专题发言。   近年来,随着餐饮外卖和预制菜产业快速发展,塑料制品在一次性餐饮具、食品包装领域用量大幅度增加,由此带来的塑料污染问题不容忽视。2022年11月近200个国家在乌拉圭召开会议,以推进制定关于对抗塑料污染的“全球公约塑料公约”。   与会代表认为,随着国家塑料污染治理政策的实施,我国将全面禁止一次性餐饮具等不可降解塑料制品,生物分解塑料等替代产品越来越广泛地应用到食品行业,降解新材料及化学添加剂对食品安全的影响不容重视,急需加强生物分解材料及其化学添加剂等健康危害因子在食品安全方面的安全性评价、迁移规律、检测方法等技术研究,修订完善现有相关标准。针对我国降解材料产业推广应用仍面临的诸多难题,需针对我国国情和国内生物分解塑料实际应用场景,研究建立具有中国特色的生物分解塑料标准体系和绿色产品认证制度,对落实习近平总书记提出的推动建设节约型社会的指示精神具有重要意义。
  • 塑料购物袋国家标准及快速检测方法6月1日起正式执行
    记者从中国塑料加工工业协会获悉,关于塑料购物袋的国家标准已经正式向社会公布,并将从今年6月1日起正式执行。  记者近日在沃尔玛大型连锁超市看到,收银处已有醒目标识提醒购物者说超市将从6月1日起不提供免费塑料购物袋,不少购物者已在使用自备的购物袋。  据了解,塑料购物袋国家标准包括三项:《塑料购物袋的环境、安全和标识通用技术要求》《塑料购物袋》以及《塑料购物袋的快速检测方法与评价》。  中国塑料加工工业协会副会长、环境化学专家董金狮在接受记者采访时说,《塑料购物袋》标准将适用于以各种塑料原料及其混合料(可加入添加剂)生产的薄膜、经热合或黏合等制袋工艺加工制得的塑料购物袋,也适用于塑料与其他材料复合的购物袋。标准详细规定了塑料购物袋的定义和术语、要求、试验方法、检验规则及包装、运输、贮存等内容,其中,塑料购物袋被定义为以树脂为主要原料制得的,在销售、服务等场所用于盛装及携提商品的袋制品,不包括食品袋以及连卷袋等包装用袋类制品。  据董金狮介绍,根据标准要求,塑料购物袋应为本色,其他颜色应由供需双方商定 塑料购物袋不允许有妨碍使用的气泡、穿孔、塑化不良、鱼眼僵块等瑕疵,袋膜应均匀、平整、无皱折 印刷塑料购物袋应油墨均匀,图案、文字清晰、完整,印刷剥离率小于20%。  标准还对塑料购物袋的提吊能力、封合强度、漏水性等物理力学性能,以及塑料购物袋的包装、运输和贮存提出了要求。  根据《塑料购物袋的环境、安全和标识通用技术要求》规定,塑料购物袋的厚度必须大于等于0.025毫米。塑料购物袋的标识需要明确袋的名称、标准号、规格、标志等,如普通塑料购物袋、含有回收塑料的购物袋、降解塑料购物袋、淀粉基塑料购物袋(淀粉含量应不小于15%)、直接接触食品用塑料购物袋应在袋上明示“食品用”字样等。其中,塑料购物袋的标志要用醒目的颜色,应不易褪色或脱落 可以采用印刷或喷涂等方法,但应不损害塑料购物袋的性能 每个塑料购物袋一般为一个标志,如有必要,可予增加 标志一般应位于塑料购物袋的明显处,直接接触食品用塑料购物袋、本身不便或无法标识的塑料购物袋,可在其外包装上进行标识。塑料购物袋还要明确标识生产厂家的厂名、生产日期以及检验合格证等信息,要求塑料袋的存放保质期不超过一年。  董金狮建议,该标准将从6月1日起正式执行,但从现在开始,企业就应积极按照标准要求进行设计和生产,商场、超市以及商品零售批发市场的经营者应积极按照标准要求进行备货,否则将面临行政处罚,给经营带来不必要的麻烦。附:塑料购物袋的快速检测方法与评价.doc
  • 终于全了!微塑料检测主流技术专家报告!
    微塑料最早在海洋领域被科学家发现。近几年,随着科学家不断深入的研究,大气、土壤、陆地环境乃至生物体中相继检出微塑料,研究人员已开始尝试对微塑料样品进行更进一步的定性和定量分析。目前常用的微塑料检测方法包括光谱方法和热裂解-气质联用法(Py-GC/MS) 等手段。对于微塑料在合成过程中使用化学品和添加剂、微塑料表面吸附或吸收的污染物质的检测,还需要色谱质谱联用及原子光谱技术。科学家新发现:“微纳塑料”的定量检测方法微塑料是指直径小于5毫米的塑料颗粒,进一步还可分为纳米塑料、亚微米塑料、微米塑料。微纳塑料的检测难度更大,往往需要更高精度的分离-分析技术或分析方法。为此,主办方拟于5月26日举办环境研究系列活动——环境中微塑料分析检测新技术,并邀请到中科院于素娟副研究员出席。届时,于老师将主要介绍研究团队在微纳塑料分离测定方面的研究进展,介绍几种分离测定方法,如用浊点萃取-热裂解-气相色谱质谱联用仪,膜分离-热裂解-气相色谱质谱联用仪测定微纳塑料的质量浓度,单颗粒-电感耦合等离子体质谱测定微纳塑料的数浓度,以及基于总有机碳法测定微纳塑料的监测方法等。更多权威专家,陆续更新,点击右侧红字免费预约:5月26日,我要参会多位专家开讲:光谱、质谱技术检测微塑料显微、光谱技术作为微塑料检测的经典技术,最近又有了新发展。为此,主办方将于6月9日举办微塑料分析检测技术网络研讨会。会议聚焦光谱、质谱技术,涵盖海洋、饮用水、大环境健康范围内容的微塑料检测技术报告,将有疾控中专家团队、中科院烟台海岸带研究所专家开讲,同时,Nature发表微塑料检测技术文章的第一作者将惊喜出席!点此右侧红字免费参会:6月9日,我要参会会议日程:报告时间报告主题报告嘉宾09:30--10:00基于拉曼光谱检测饮用水中微塑料张岚 中国疾病预防控制中心环境所 主任/研究员10:00--10:30“见微知著,赛默飞助您洞察微观世界”-微塑料检测全面解决方案邓洁 赛默飞世尔科技(中国)有限公司 赛默飞分子光谱应用专家10:30--11:00聚合物和聚合物材料的MALDI-TOF质谱分析王勇为 布鲁克(北京)科技有限公司 应用经理11:00--11:30黄渤海微塑料污染特征研究王清 中国科学院烟台海岸带研究所 研究员14:00--14:30O-PTIR显微光谱技术识别环境中微塑料来源苏宇 东南大学能源与环境学院 教授/研究员14:30--15:008700 LDIR 激光红外成像如何准确快速的进行环境样品中微塑料含量测定张晓丹 安捷伦科技(中国)有限公司 分子光谱工程师15:00--15:30待定魏琳琳 布鲁克纳米表面仪器部 应用工程师15:30--16:00土壤微纳塑料分析检测技术待定 南京土壤所
  • 又一顶刊!微塑料快速检测新成果!
    研究证实,人体中微塑料的主要来源,除了生活中的塑料制品,还包括我们平时吃的海产品等。那么,生物体内的微塑料从何而来?根据有关报告,海产品似乎是目前了解最多的人类摄入微塑料的来源。正因为如此,近几年,微塑料污染对养殖水产品的影响引起了广泛关注。而渔业环境中的微塑料主要来源于陆地上大型塑料垃圾的降解及养殖过程中塑料的使用,长期暴露于高浓度微塑料环境中,养殖水生物的质量安全和生殖发育都将受到较大影响。顶刊新技术:淡水及海水养殖环境中微塑料快速检测及去除技术近日,中国水产科学研究院质量与标准研究中心吴立冬副研究员与东海水产研究所渔业生态环境实验室合作研发出一种可快速富集渔业环境(淡水及海水养殖环境)中微塑料的磁性纳米材料(mANM)。此项成果发表在环境科学顶级期刊《Journal of Hazardous Materials》。该复合材料对水体中不同粒径、多种典型微塑料均有作用,并且可通过调节pH控制磁性纳米颗粒聚团大小,实现在强磁场中30秒快速分离微塑料。为了更好地促进微塑料检测技术发展,网络讲堂邀请到论文通讯作者——中国水产科学研究院吴立冬副研究员,在8月25日做精彩的技术分享。(点击图片,立即报名)同时,本次会议特邀嘉宾——中科院烟台海岸带研究所陈令新研究员,将分享课题组在近海环境中分析新污染物样品前处理技术的最新研究进展。陈令新研究员作为海洋环境分析监测领域的资深权威专家,科技成果丰富,并著有海洋监测领域的宝典书籍——《海洋环境分析监测技术》,报名并观看本次直播,有机会免费领取哦!免费报名:https://www.instrument.com.cn/webinar/meetings/ocean20220825/(京东售价:161.90元)
  • 微塑料检测标准盘点:多项团标在进程中
    微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。早在2004年,英国普利茅斯大学Thompson等在《科学》杂志上就首次提出了“微塑料”的概念。作为一类重要的新污染物,微塑料近年来多次引起业界的热议。据发表在《冰冻圈》杂志上的一篇论文称,新西兰坎特伯雷大学研究人员在南极洲的新降雪中首次发现了微塑料 ;发表在《整体环境科学》上研究显示,德国研究人员在城市收集的蜘蛛网中检测出了微塑料颗粒,并且蜘蛛网“捕获”的微塑料颗粒占整个蜘蛛网重量的10%,由多种不同的种类组成;一项发表在环境科学领域权威期刊《环境国际》上的研究披露,科学家首次在人类血液中发现微塑料,引发微塑料对人体健康长期影响的担忧;今年,来自美国国家标准与技术研究院 (NIST) 的化学家Christopher Zangmeister团队开展的一项新研究,带有防水涂层——低密度聚乙烯(LDPE)内衬的一次性纸杯,在接触 100 ℃ 热水短短 20 分钟后,释放的微塑料颗粒密度可达 1012/L。这意味着喝下一杯 300 ml 的外带热咖啡,将有上千亿微塑料颗粒进入体内,研究人员推算,这意味着平均每 7 个身体细胞就会吸收一个微塑料颗粒… … 不得不说,以上研究让大家细思极恐,与“白色污染”塑料相比,微塑料的危害体现在其颗粒直径微小上,这是其与一般的不可降解塑料相比,对于环境的危害程度更深的原因,其治理迫在眉睫!(更多阅读:南极雪中惊现微塑料 新污染物治理迫在眉睫)作为一种新型环境污染物,目前微塑料相关研究如火如荼,但是对其科学客观评判迫切需要建立标准化的分析测试方法和生态健康风险评估技术。由于微塑料物理特性以及化学组分等的差异,不同类型微塑料在不同环境中流动过程的时间均不相同,使微塑料检测变成一大难题。近年来发展的微塑料检测方法主要有傅立叶红外光谱法(FT-IR)、拉曼光谱法、热裂解气质联用法(Pyr-GCMS),以及其他方法等,大大提高了微塑料定量分析的准确性。(更多阅读:微塑料治理持续加码 这些仪器采购正当时)同时,相关标准也在完善过程中,据不完全统计,现行的地方标准有两项:DB21/T 2751-2017海水中微塑料的测定 傅立叶变换显微红外光谱法 ;DB37/T 4323-2021海水增养殖区环境微塑料监测技术规范 ;作为标准体系的一个重要部分,团体标准越来越吸引大家的关注。近年来,一系列微塑料相关的团体标准也在陆续立项或者发布中。其中,2020年6月,上海市环境科学学会批准立项了上海锐浦环境技术发展有限公司申报的《环境水体中微塑料的测定傅里叶变换显微红外光谱法》团体标准;2020年12月,中国材料与试验团体标准委员会批准CSTM标准《景观水中微塑料的测定 显微红外光谱法》立项;2021年5月,中国纺联标准化技术委员会发布关于下达21项团体标准计划项目的通知(中国纺联标委函[2021]3号),其中包括《纤维微塑料术语、定义和分类》、《纤维微塑料鉴别试验方法》、《地表水环境纤维微塑料分析测试方法》。序号项目编号标准项目名称标准类别制定/修订完成年限申报单位1202102-CNTAC001纤维微塑料术语、定义和分类基础制定2022东华大学2202102-CNTAC002纤维微塑料鉴别试验方法方法制定2022东华大学3202102-CNTAC003地表水环境纤维微塑料分析测试方法管理制定2022东华大学其中,《T/CSTM 00563—2022 景观环境用水中微塑料的测定 傅里叶变换显微红外光谱法》已经于2022年2月21日公布,2022年05月21日实施。该文件规定了傅里叶变换显微红外光谱法测定景观环境用水中微塑料的术语和定义、方法原理、仪器设备与试剂、测试样品制备、测定步骤、结果分析与计算等,适用于景观环境用水中尺寸范围在50 μm-5 mm之间的微塑料的形状、颜色、尺寸、数量和聚合物种类的测定。其他水环境中微塑料的测定可参考本方法。此外,2021年4月13日,中国水利企业协会发布通知,对《地表水中微塑料的测定(征求意见稿)》征求意见,标准中涉及了显微拉曼成像光谱法、傅立叶变换显微红外光谱法、傅立叶变换红外光谱法等。2022年初,“中国材料试验团体标准委员会/基础与共性技术领域委员会/微塑料及其环保试验技术委员会(CSTM/FC00/TC03)成立暨专题报告会”召开期间,CSTM 标准委员会批准同意在基础与共性技术领域委员会(CSTM/FC00)下设立微塑料及其环保试验技术委员会。与会专家、委员组成评审组召开团体标准立项答辩会,对《饮用水中微塑料的测定 傅里叶变换显微红外光谱法》、《地下水中微塑料的测定 傅里叶变换显微红外光谱法》、《污水中微塑料的测定 傅里叶变换显微红外光谱法》、《海产品中微塑料的测定 傅里叶变换显微红外光谱法》、《土壤中微塑料的测定 傅里叶变换显微红外光谱法》等5项CSTM团体标准进行立项评审,经全面论证后一致同意立项。2022年7月19-22日,仪器信息网联合江苏省分析测试协会、中国仪器仪表学会近红外光谱分会、中国生物物理学会太赫兹生物物理分会等共同举办“第十一届光谱网络会议(简称iCS2022) ”。其中,针对微塑料的热点话题,特别邀请了中国地质调查局南京地质调查中心沈小明高级工程师和中国科学院烟台海岸带研究所王运庆研究员,分别就《激光共聚焦显微拉幔光谱分析技术在海岸带沉积物微塑料检测中的应用》、《SERS标记纳米塑料及其在典型模式生物体内分布研究》主题发表演讲。立即报名》》》
  • 基于V型纳米孔表面增强拉曼基底的微纳塑料检测
    微塑料通常被定义为尺寸小于5 mm的塑料碎片,在海洋、陆地、淡水系统中均有所发现,对环境安全和生物健康均有一定程度的影响。更令人担忧的是,微塑料通过机械磨损、光降解和生物降解等作用会进一步分解,形成尺寸更小的微塑料甚至是纳米塑料。它们的危害可能更大,因为它们可以穿过生物膜并容易在不同组织间转移,如果吸入空气中的微纳塑料甚至可以穿过肺组织。据已有的研究显示,应用在微塑料检测的传统技术仅能检测到10 μm 左右的大小,远远不能满足当前和未来研究的需要。因此,迫切需要开发适用于小尺寸微纳塑料的检测新方法。表面增强拉曼光谱(SERS)技术是一种强有力的基于拉曼光谱的原位分析技术。一般来说,分子的拉曼效应很弱。然而,当这些分子被吸附在贵金属(例如金和银)的粗糙表面时,分子的拉曼效应会大大提高。甚至可以在单分子水平上获得高灵敏度。在我们之前的研究工作中,首次报道利用SERS技术实现了环境纳米塑料的检测(EST, 2020, 54(24): 15594)。但是,采用的商业化Klarite基底的高昂成本使其不适宜广泛大规模的应用。因此,本研究利用一种低成本的具有大量有序的V型纳米孔阵列的阳极氧化铝(AAO)模板,通过磁控溅射或离子溅射将金纳米粒子沉积在模板上,开发得到用于小尺寸微纳塑料检测的 SERS 基底(AuNPs@V-shaped AAO SERS substrate)。由于AAO模板中纳米孔阵列特殊的V型结构以及有序规则的排列,使得AuNPs@V-shaped AAO SERS基底可以提供大量“热点”和额外的体积增强拉曼效应,在检测微塑料时表现出高 SERS 灵敏度。图1 摘要图本研究首先使用不同尺寸(1 μm、2 μm和5 μm)的聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)两种标准样品在AuNPs@V-shaped AAO SERS基底和硅基底上进行检测,并计算相应的增强因子(图2、图3)。结果显示,单个PS和PMMA两种颗粒在硅基底上均不能检测到1 μm的尺寸大小,且其他尺寸的拉曼信号强度也相对较弱。而在AuNPs@V-shaped AAO SERS基底上,在相同的检测条件下,各尺寸的单个PS和PMMA颗粒的拉曼信号强度大大增强,且1 μm的PS和2 μm的PMMA都有拉曼信号检出。增强因子的计算结果显示,使用AuNPs@V-shaped AAO SERS基底检测单个微塑料颗粒可获得最大20倍的增强效果。此外,通过比较磁控溅射和离子溅射两种沉积方式所分别形成的基底检测微塑料的拉曼光谱结果和增强因子计算结果,我们可以得出磁控溅射所形成的基底具有更好的检测性能。这个结果可以联系到SERS基底的扫描电镜表征结果(图4)进行解释,磁控溅射所形成的金纳米层更加细腻平整,而离子溅射所形成的金纳米层出现了一定的团聚,导致形貌结构较为粗糙,因此信号强度有所减弱。图2:PS的拉曼检测。(a)不同尺寸的单个PS颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PS颗粒在硅基底上的形态分布;(c)不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图3:PMMA的拉曼检测。(a)不同尺寸的单个PMMA颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PMMA颗粒在硅基底上的形态分布;(c)不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图4:AAO模板和SERS基底的扫描电镜表征。(a)空白的AAO模板;(b)经过离子溅射形成的SERS基底;(c)经过磁控溅射形成的SERS基底;(d)(e)微塑料标准样品在基底上的形态分布。之后,本研究采集了雨水作为大气样品,对基底检测实际样品的能力进行了测试。采集到的雨水样品经过过滤、消解等前处理后,被滴加在基底上进行后续的拉曼检测,获得若干疑似微塑料的拉曼光谱。通过将这些采集到的拉曼光谱与标准微塑料样品的拉曼光谱进行比对,找到了雨水样品中所含有的微纳塑料颗粒,证实了大气中微塑料颗粒的存在以及基底检测实际样品的能力。图5:雨水样品的检测。(a)在基底上发现的疑似微塑料颗粒,尺寸约为2 μm × 2 μm;(b)疑似微塑料颗粒的拉曼光谱。该研究了提出了一种新型的适用于环境微纳塑料检测的低成本SERS基底,具备热点均一、增强效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。
  • 塑料包装袋和铝塑包装袋在使用热封试验仪测试热封性能时的区别
    在快节奏的现代生活中,包装袋的密封性能直接关系到商品的质量和保质期。塑料包装袋和铝塑包装袋是两种常见的包装材料,它们在结构和材料特性上有所不同,因此在使用热封试验仪测试热封性能时,也需要采取不同的测试策略和参数配置。材料特性塑料包装袋:通常由单一塑料材料制成,如PE(聚乙烯)、PP(聚丙烯)等。具有较好的柔韧性和透明度。热封温度和热封强度通常较低。铝塑包装袋:由铝箔和塑料薄膜复合而成,具有金属层。阻隔性好,不透光,适合保护敏感物质。热封温度和热封强度通常较高。测试目的塑料包装袋:测试塑料包装袋的热封性能,主要评估其密封的可靠性和一致性。重点在于确保包装的完整性和内容物的保护。铝塑包装袋:测试铝塑包装袋的热封性能,除了评估密封性外,还需考虑铝层的保护作用。重点在于确保包装的气密性和光阻隔性。测试参数配置塑料包装袋:热封温度:根据塑料材料的熔点和热稳定性设定。热封速度:通常较快,以适应塑料材料的热封特性。热封压力:适中,以确保密封而不损伤材料。铝塑包装袋:热封温度:需要更高的温度以确保铝层和塑料层的充分粘合。热封速度:可能较慢,以保证铝层和塑料层之间的良好结合。热封压力:较高,以确保金属层的热封效果。测试方法塑料包装袋:通常采用直线热封或脉冲热封。测试时,可能需要关注热封后的平整度和密封线的连续性。铝塑包装袋:可能需要采用特殊的热封技术,如超声波热封或高频热封。测试时,除了关注密封性,还需评估铝层的完整性和热封后的阻隔性能。结果评估塑料包装袋:结果评估通常基于热封强度和密封质量。可能需要进行气密性测试和视觉检查。铝塑包装袋:结果评估除了热封强度外,还需考虑铝层的保护性能。可能需要进行阻隔性能测试,如氧气透过率测试。安全与维护塑料包装袋和铝塑包装袋:在测试过程中,都应遵循安全操作指南,确保操作人员的安全。定期对热封试验仪进行维护和校准,以保证测试结果的准确性。通过上述分析,我们可以看到,塑料包装袋和铝塑包装袋在使用热封试验仪测试热封性能时,需要根据它们的材料特性和测试目的来选择合适的测试参数和方法。正确的测试策略不仅能确保包装的质量和性能,还能提高产品的市场竞争力。
  • 【直播】微塑料检测!南大、复旦、中科院等高校科研院所大咖云集!
    2004年,英国普利茅斯大学的汤普森等人在《科学》杂志上发表了关于海洋水体和沉积物中塑料碎片的论文,首次提出了“微塑料”的概念,其指的是直径小于5毫米的塑料碎片和颗粒。自此,微塑料污染开始引发关注。近年,微塑料污染的危害已经在科研界被广泛证实。目前,我国陆续颁布微塑料相关的政策、标准。2021 -2022年,各省发布的十四五生态环境保护规划中,已有多数省份提到要强化微塑料污染管控;2022年下半年,各地发布的新污染物治理行动方案中,所有省份均提到了强化微塑料污染治理;2023年2月,上海印发重点管控新污染物清单(2023年版),微塑料上榜。为了促进微塑料检测技术发展,同时推动我国新污染物治理,仪器信息网联合上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院,将于4月27日-4月28日联合主办“ 微塑料检测与分析”网络研讨会,届时将邀请领域内相关专家出席,共同就微塑料检测与分析进行交流讨论。三大分会场,聚焦微塑料:【1】海洋微塑料监测方法的标准化及风险评估【2】陆地土壤环境微-纳塑料的分析方法及有害添加物的检测【3】大气微塑料的监测及健康风险本届会议赞助商:本届会议适合的参会人群:【1】商业检测机构:第三方检测人员、实验室主任、实验室主管等【2】政府检测部门:环境监测总站、各省市环境监测中心技术检测人员、管理人员;各省市环境生态中心科长、所长、执法人员等【3】科研院所:农科院、中科院、环科院、食品科学院、检科院等单位研究员或技术人员【4】高等院校:各普通高等院校环境、农业等专业教授、分析测试中心技术或管理人员【5】工业企业:大型环保企业、环保工程单位技术人员、管理人员等赞助商会议合作:(刘老师:13717560883 微信同号)形式1:【1】可在任一会场做30分钟主题报告1次,会后报告视频剪辑后上传至3i讲堂【2】列为本届会议赞助商,在会议页面展示企业logo【3】会议报道、EDM、海报、主持人口播等体现赞助商名称【4】直播期间,弹出调研问卷(注:本次会议免费增值服务)形式2:【1】可在任一会场做15分钟技术展示1次,会后展示视频剪辑后上传至3i讲堂【2】列为本届会议赞助商,在会议页面展示企业logo【3】会议报道、EDM、海报、主持人口播等体现赞助商名称【4】直播期间,弹出调研问卷(注:本次会议免费增值服务) 用户免费参会 报名链接:https://www.instrument.com.cn/webinar/meetings/microplastic230427/可添加助教微信:13260310733(保存二维码图片,相册中长按识别后添加)
  • 首届橡胶及塑料质量控制及检测主题网络会议回放视频
    仪器信息网于2021年7月22日组织举办首届橡胶及塑料质量控制及检测主题网络会议,邀请业内从事橡胶研发、检测和质控的资深专家分享了相关经验成果。小编将会议报告的部分报告视频整合成集锦以飨读者。回放视频链接如下(点击观看):国家橡胶轮胎质量监督检验中心副总工程师 苍飞飞:《检测技术服务于橡胶及塑料质量控制》上海市食品药品包装材料测试所主任 徐俊:《药用橡胶密封件的质量控制》四川大学教授 严正:《聚丙烯CO2超临界发泡》布鲁克(北京)科技有限公司资深应用科学家 魏岳腾:《橡胶和塑料制品表面微观力学及摩擦磨损性能测试方法》
  • 从此告别复杂分析,安捷伦铝膜原位测试方案让微塑料检测轻松易行!
    为了进一步解决微塑料测试过程中操作复杂耗时的问题,且实现环境样品大规模实时监测研究的可行性,安捷伦最新推出了 8700 LDIR 红外成像搭配镀铝滤膜(0.8um, 25mm)进行微塑料原位分析的解决方案。该方案在保证测试结果精确度的同时,将进一步简化用户样品前处理的工作流程。镀铝滤膜安装及过滤流程使用镀铝滤膜(0.8um, 25mm)搭配小孔玻璃砂芯真空抽滤装置,对前处理完的样品进行直接过滤,并使用不含微塑料的水(提前过滤处理)冲洗瓶子和漏斗的内部各一次,尽量确保将瓶内的所有微塑料收集到。抽滤完成后,将滤膜自然晾干后安装到滤膜支架上,并尽量保持滤膜表面的平整度。具体操作流程如图 1 所示:图 1. 样品抽滤装置及滤膜过滤安装流程为保证滤膜的平整度,请使用提供的镊子对滤膜进行转移。与镀金滤膜相比,涂层的硬度增加使得镀铝滤膜不易折叠,用户能更加轻松地将其放置到滤膜支架上。使用 8700 LDIR 红外成像原位测试镀铝滤膜上微塑料颗粒为对比仪器测试结果的精度及准确性,我们使用了自动测试和手动计数方式来评估 LDIR 对镀铝滤膜上颗粒的检测能力。将 20µ m 透明聚苯乙烯微球悬浮于 10mL 无水乙醇中,然后使用镀铝滤膜直接进行过滤后上机测试,并对测试结果进行如下对比。LDIR 利用 1442 cm-1 对目标测试区域进行快速成像,软件对成像区域内的颗粒进行自动识别对上述同一测试区域生成的可见光图像进行高倍放大后,利用人眼手动计数的方式识别颗粒如图 2 所示,使用软件自动检测流程共测试出 31 个颗粒,而在可见光图像中通过人眼仅能识别出 30 个颗粒。结果表明,LDIR 对镀铝滤膜上的颗粒具有优异的检测能力。与容易出错的可见光图像颗粒检测方法相比,基于红外成像的自动颗粒检测方法的测试结果更加便捷精准,且大大提高了工作效率并降低了小颗粒人眼识别的辨别难度。图 2. 同一目标测试区域采集的两张图像。(A)通过固定波数红外成像图自动识别的微塑料颗粒总数;(B)通过高倍放大可见光图像人眼手动识别的微塑料颗粒总数颗粒数、粒径及定性结果数据重现性对比我们使用 Clarity 软件中的微塑料颗粒自动分析测试流程,从颗粒数、粒径和定性统计结果三个方面综合评价了 LDIR 测试镀铝滤膜样品的结果重现性。在不移动样品的情况下,对直径为 9mm 的圆形区域共进行了 10 次测量。从测试结果看,检测到的微塑料颗粒数的总平均值为 407 个,10 次运行之间的差异性 1%(如图 3A)。基于粒径范围和聚合物鉴定的颗粒数重现性显示出相似的性能,10 次运行的差异性 1%(如图 3B 和图 3C)。以上结果均证实 LDIR 对镀铝滤膜上微塑料的测试结果具有良好的可靠性和准确度。图 3. 使用 LDIR 自动颗粒分析工作流程,对同一测试区域进行 10 次重复测试结果的重现性对比。(A)颗粒总数重现性;(B)粒径范围颗粒数重现性;(C)定性统计结果重现性粒径准确度对比由于微塑料研究中准确的粒径测定对于获得可靠且有意义的结果至关重要,因此对粒径测定数据的准确度进行了评估。通过监测 NIST 可溯源的 50 µ m 和 20 µ m 聚苯乙烯微球,来考察镀铝滤膜上样品测试颗粒粒径的准确度。如图 4 所示,检测到 37 个 50 µ m 的微球,它们的平均粒径为 55.10 µ m,标准偏差为 3.67 µ m;检测到 223 个 20 µ m 的微球,它们的平均粒径为 22.9 µ m,标准偏差为 2.3 µ m。这些结果表明,使用 LDIR 自动颗粒分析工作流程能够在镀铝滤膜上实现准确的粒径测定,且差异极小。图 4. 使用自动颗粒分析工作流程得到的粒径统计结果。其中(A)为 50 µ m NIST 微球粒径分布统计结果;(B)为 20 µ m NIST 微球粒径分布统计结果大样本研究对于全面了解微塑料污染物对环境和健康的影响以及制定减少微塑料污染影响的策略至关重要。与其他技术相比,使用 8700 LDIR 红外成像直接分析滤膜上的微塑料颗粒能够大幅减少样品处理,降低样品污染的可能性并提高样品通量,使实验室能够在更短时间内表征更多数量的样品。点击下载:利用 8700 LDIR 激光红外成像系统分析镀铝滤膜上的微塑料 (agilent.com.cn)
  • 微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?
    近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年全球192 个沿海和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到2015 年已有超过900 万吨塑料垃圾排入海洋。如果不加以控制,科学家预计到2050年海洋中的塑料垃圾排放量将会是2010年的两倍。这些污染物正在持续威胁海洋生物和人类自身的安全与健康。近期,科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。这一发现引起科学家的广泛关注,同时,也引起了各国政府的高度重视。近期,生态环境部发布的《生态环境监测规划纲要(2020-2035年)》也着重强调应加强海洋微塑料监测,加快形成相关领域监测支撑能力,为国际履约谈判和全球新兴环境问题治理提供支撑。在微塑料监测中,由于微塑料的物理特性(大小、形状、密度、颜色)以及化学组分等差异,不同类型微塑料在不同环境中流动过程(输入、输出和存留)的时间均不相同,使微塑料监测变成一大难题。目前,对微塑料的分析方法主要有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及Raman光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术;而在实际操作中上述技术仅可对几微米颗粒物进行检测(FT-IR为10~20μm、Raman 低仅为1 μm),使微塑料的研究仍处于起步阶段。作为先进仪器平台,Quantum Design中国时刻关注重大科研发展方向,并致力于引进先进表征技术及设备,为我国科研搭建先进科技平台。聚焦于微塑料监测难题,Quantum Design中国表面光谱部门认为需要考虑三个关键因素:尺寸、微观形貌以及聚合物类型。理论上可用于测量两者的方法均适用于微塑料分析,但是由于疑似微塑料样品的干扰,使得仅用一种分析方法难以准确的识别微塑料,为了提高准确度以及检测效率,需要采用多组合分析测试方法对其进行监测。目前,我司主要有Neaspec纳米傅里叶红外光谱仪(nano-FTIR)、IRsweep微秒时间分辨超灵敏红外光谱仪和PSC非接触式亚微米分辨触红外拉曼同步测量系统mIRage三款先进光谱表征设备。其中,非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500 nm的空间分辨率。不仅如此,该设备将显微成像、红外及Raman测试集成于一体,多测试方法同步测量有效提高检测效率及准确度。同时,它具有更简单,更快速的测量模式,无需复杂的样品制备过程等优势,让更快、更准确地进行微塑料追踪、监测和研究成为可能,正成为下一代标准的方法。为更好的服务国内科研用户,Quantum Design中国北京样机实验室引进了非接触式亚微米分辨触红外拉曼同步测量系统mIRage,为国内科研用户开放,以期为微塑料监测技术的发展做出一定的贡献。 Quantum Design中国非接触亚微米红外光谱系统mIRage样机操作过程示意 精选案例:目前,mIRage在塑料领域的研究中大放异彩,助力美国特拉华大学Isao Noda教授课题组对PLA和PHA的复合薄片塑料结合方式及内在机理的研究,向我们展示了mIRage在微塑料领域研究中的潜力。该工作中,作者先对PHA和PLA的结合面进行了固定波数下的红外成像(图1)。通过对比发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用光学光热红外技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图1. PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比 为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图2)。从羰基(C=O)伸缩振动区和指纹区(图2 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图2C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图2. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,采用同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)来分析羰基拉伸区域采集到的红外谱图(图3A和3B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过非接触式亚微米分辨触红外拉曼同步测量系统对该区域进行了同步红外和拉曼分析(图3C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。 图3. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域红外和拉曼光谱分析(左为红外,右为拉曼)。 参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure,DOI: 10.1016/j.molstruc.2020.128045.
  • 塑料粒子及PVC粉末黑点外观检测仪一体机面世
    近日,卡尔帕斯(塑料黑点缺陷扫描仪厂家)总部传来消息,用于检测塑料树脂黑点和PVC黑点杂质的产品在一台机上自由切换的技术完美解决。 塑料树脂粒子表面外观上会出现黑点、黑斑点,甚至整颗都是色粒,将粒子快速挑选出来并进行分析是几乎每个工厂质检部门都希望的事情,用人眼按照现行国标1公斤的方法,量太大,重复性差,颗粒外观仪器法国家标准在2016韵鼎公司承办至今仍在推荐,黑点缺陷扫描仪检测技术也越来越好,快速、重复性高。 PVC粉末中也经常存在黑点或杂质,很多生产厂在经过对比后,选择卡尔帕斯黑点缺陷扫描仪的产品。 有些客户两种产品都有,虽然原来的技术也是一台主机就可以测量塑料粒子和PVC粉末的黑点外观,但需要更换备件,现在两者的一体化设计让这类客户非常方便测试。 到目前为止,卡尔帕斯黑点缺陷扫描仪产品多模块化的设计可以自由组合完成客户任意对颗粒或粉末样品中黑点、黑斑点、色粒、纤维、拖尾、连粒及塑料膜上鱼眼的快速测量、评估。
  • 海洋生物微塑料检测方法及污染现状研究进展
    来源:《农业资源与环境学报》2022 年 06 期作者:李娟1,季超2,张芹1,汪星宇1,伍志强1,解玉鑫1,李嘉晴1,张皓森1,臧桐宇1, 郑文杰1*单位:1. 天津师范大学生命科学学院;2. 云南农业大学云南生物资源保护与利用国家重点实验室摘要海洋微塑料污染问题是全球研究热点,现有研究表明微塑料在海洋环境中无处不在,对海洋生态的威胁逐渐加重,伴随着海洋食品的兴起,人们也越来越重视微塑料污染对人体健康的危害。本文通过对海洋生物体内微塑料污染情况的概述,系统分析了微塑料对海洋生物造成的影响。主要针对微塑料检测的前处理方法以及组分的鉴定方法展开综述,对不同方法的优缺点进行比较,指出在微塑料检测研究中多种方法综合应用效果最佳。基于现阶段海洋微塑料的研究状况,从科学研究和管控方面讨论了目前研究中存在的问题,展望了未来的研究方向。结论与展望:微塑料已经成为全球海洋环境中的新兴污染物之一,获取海洋环境中微塑料丰度等信息的标准程序方案对于确定微塑料对海洋环境的污染情况和潜在影响至关重要。本文总结了海洋微塑料污染的现状,详细阐述了对样品进行消解和分离的常用方法,认为对于海洋生物体内微塑料的提取分离而言,碱液(KOH、NaOH 等)提取相较于其他提取液的回收效果更好。针对微塑料的鉴定分析方法,本文重点介绍了显微观察法、傅里叶变换红外光谱法、拉曼光谱法和热分析法,并讨论了多种分析方法的优缺点及各自的适用特点。目前而言,单一的分析方法很难对复杂的环境样品中的微塑料进行准确定性和定量研究,尤其对于尺寸小于1 mm 的微塑料,建议采用显微观察和光谱分析相结合的方法;而对于截距小于10 μm 的微塑料,拉曼光谱是更好的选择。微塑料的来源与人类活动息息相关,人类产生的塑料垃圾会通过排水系统、河流以及风的作用进入海洋生态系统,在其中产生累积效应,已有相关研究表明,微塑料可能是海洋生物多样性降低的重要因素之一。这一方面由于微塑料体积相对较小,易被海洋生物摄取并在其体内富集,对海洋生物的组织、循环系统造成有害影响;另一方面由于微塑料自身的物理和化学性质特殊,其表面易吸附污染物,成为污染物进入海洋生物体的载体,并可通过食物链进入人体,对人类产生潜在危害,但其作为载体的具体机制和转移途径鲜见报道。未来,微塑料相关研究可从以下几个方面进行:(1)目前塑料颗粒检测技术多样且发展迅速,但随着新产业新科技的发展,一些新的材料会产生微米级、纳米级等更小的塑料颗粒,因此,针对这些新材料的检测需要探索新的检测方法来实现。(2)现阶段微塑料的检测方法良莠不齐,各种方法检测结果的准确性有待进一步验证。为了更加全面准确地监测微塑料污染情况,应建立检测微塑料、评估微塑料污染风险的标准体系,标准化、规范化的微塑料检测流程,可保证微塑料污染风险评估的准确性,为维护海洋环境和生态安全提供理论支撑。(3)人们普遍认为粒径小于100 μm 的微塑料对海洋生物和人体的影响最大,但是微塑料不同的形态、大小及聚合物类型对海洋生物的风险仍缺少具体的参考标准,故建立评估微塑料污染风险的标准体系非常必要。微塑料危害并不仅限于微塑料本身,其表面富集的各类污染物的风险更大。通过微塑料摄入将有毒化学物质转移到生物群是一个值得重视的问题,然而现有的研究鲜少使用微塑料载体进行毒性研究。为进一步明确微塑料的物理性质和污染物的连锁效应,应加强对微塑料的吸附作用和污染物(如放射性重金属和抗生素)之间相互作用的研究。(4)目前全球不同区域的食品种类繁多,而大多数微塑料研究是针对鱼类、贝类等水生生物体内微塑料浓度、形态、大小和聚合物类型所开展,对加工食品中微塑料的研究不多,这使得人类通过食物摄入的微塑料总体数量很难估计。因此,今后的研究应加强对各类食品中微塑料提取鉴定方法以及定量分析方法的研究,为食品安全检测提供途径。
  • 探微知著:微塑料多维检测技术的发展与应用
    微塑料(Microplastic)的定义是指尺寸小于5 mm 的塑料颗粒、微纤维或者薄膜等。从目前的研究报道看,微塑料在环境中的分布已极为广泛,从深海到高山,从极地到赤道地区,几乎无处不在。近几年微塑料的环境影响引起了全球的关注,它们能够被多种生物摄取,通过食物链的传递可能对生态系统造成长期且复杂的影响。此外,微塑料还能吸附水中的有毒物质,如重金属和有机污染物,这些物质可能通过食物链累积并放大,最终对人类健康构成潜在风险。微塑料逐渐成为一种需特别关注的潜在环境污染物,越来越受到研究人员和公众的关注。 “微塑料”的概念最早于2004年《Lost at Sea: Where Is All the Plastic? 》文章中被首次提出。2012年《The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments》文章发表,红外光谱技术被引入微塑料的定性表征检测,很荣幸珀金埃尔默的Spotlight红外显微成像系统担任了文章中检测微塑料光谱信息的任务。 2017年中国重点研发计划“海洋微塑料监测和生态环境效应评估技术研究”启动,同年3月份辽宁省海洋水产科学研究院起草发布了国内首个微塑料的检测标准《DB21/T 2751-2017 海水中微塑料的测定 傅立叶变换显微红外光谱法》。 △ 点击可查看大图 在微塑料科研和检测方法的发展过程中,珀金埃尔默始终和各行各业的客户合作,助力客户的科研和检测工作,改进完善微塑料的检测方案。 2018年,一项由新闻机构Orb Media组织的研究对全球11个国家的259瓶瓶装水进行了测试,结果显示其中93%的瓶装水样本含有微塑料。微塑料污染问题引起了国际社会的广泛关注,成为全球环境和健康议题的一部分。 微塑料相关领域的研究人员,采用了各种测试方法来确定微塑料在环境中的分布和来源。其中红外及显微红外光谱法,被用作检测和鉴别各种环境和样品基质中的微塑料的标准方法。珀金埃尔默的红外及显微红外已有完善的准确可靠检测方案,另外还充分挖掘不同检测设备的优势,将热分析-红外光谱-色谱质谱联用方法和单颗粒ICPMS方法引入微塑料研究,以提供微塑料多维检测数据,更好的服务于行业客户对全面表征数据的需求。 Part.1 ✦ ✦ 微塑料的红外及显微红外 光谱检测方案 ✦ △ 点击可查看大图 多尺寸 提供1.56微米以上多尺寸全光谱范围的微塑料的红外光谱法检测方案,可以根据测试尺寸要求的下限,自由选择不同的检测手段。现场检测大尺寸的微塑料,比如在船上直接检测拖网上的颗粒,可以直接使用红外光谱仪Spectrum 3或Spectrum 2。在实验室测试肉眼不可见的微米级别的微塑料,可使用Spotlight200i红外显微镜或Spotlight400红外显微成像系统。采用Spotlight200i红外显微镜,配合珀金埃尔默自主开发的微塑料自动分析统计软件,可以快速得到整张滤膜的微塑料的测试数据和尺寸统计等信息。下图是自来水样品过滤到滤膜上之后,整个滤膜全自动扫描微塑料光谱和微塑料自动计数的数据。 △ 点击可查看大图 测试10微米以下尺寸的微塑料,采用Spotlight400红外显微成像系统,配合ATR成像附件,最小可以原位测到1.56微米尺寸的微塑料。下图是海洋中贝类样品的小尺寸微塑料的ATR成像原位测试的数据。 △ 点击可查看大图 全光谱 珀金埃尔默方案提供微塑料完整的红外光谱图定性结果,光谱范围至少覆盖7800cm-1~600cm-1波段,保证谱图符合光谱学的定性三要素(特征峰位置、峰形状和峰强度),确保微塑料定性结果的准确无误。 其他使用局部波段的检测技术,会出现微塑料光谱图的误判情况,导致微塑料成分鉴定是不准确的。 △ 点击可查看大图 上图是高密度PE微塑料和ABS微塑料的全波段红外光谱图,在1900cm-1以上和900cm-1以下的波段有非常关键的特征官能团和指纹吸收峰(标阴影区域),如果只是采集中间局部光谱图,比如1900-900cm-1的谱图来定性微塑料,会缺少待测物质的特征信息,不符合光谱学的定性三要素,不能始终给出可靠的光谱学定性结果。 Part.2 ✦ ✦ 微塑料的热重-红外-GCMS 联用技术检测方案 ✦ 微塑料通常悬浮在水面,被生物摄入后进入食物链,并在体内蓄积。随着微塑料带来的环境问题越来越受关注,除了微塑料颗粒、纤维的定性定量研究外,越来越多的研究人员,也在研究微塑料吸附的污染物以及微塑料降解产物的成分相关信息。在研究开始早期,微塑料的热裂解气相色谱-质谱联用技术,被用于分析和鉴定微塑料及其裂解产物的分析。但是随着研究方法使用的深入,暴漏了一些方法的弊端,比如无法获得关于降解产物特性的充分信息,几乎无法获得关于降解产物形成时间的信息。 △ 点击可查看大图 珀金埃尔默将热重分析(TGA)-红外(IR)-气相色谱-质谱(GC/MS)联用方案引入微塑料研究,可以程序控制样品升温速率,实时分析微塑料基质中微塑料PE、PP、PS的总离子色谱图(TIC)数据热分解产生的产物,对逸出气体进行深入表征,获得更多关于降解产物特性的信息以及关于降解产物形成时间的详细信息。 下图为珀金埃尔默联用技术TGA-GCMS模式,悬浮液体中的微塑料(聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS))成分分析数据。 △ 点击可查看大图 另外珀金埃尔默联用技术的TG-IR模式,可快速的对可降解性塑料的成分进行界别,下面是可降解性塑料餐盘(上)和不可降解性塑料(下)的对比热红联用数据。 △ 点击可查看大图 Part.3 ✦ ✦ 微塑料的TGA-ICPOES 及单颗粒ICPMS技术检测方案简述 ✦ 微塑料吸附的污染物,有机污染物部分可以用前面所述的联机技术进行检测。可能吸附的无机污染物部分,可采用珀金埃尔默开发的TGA-ICPOES联用技术,对微塑料上吸附的重金属等无机污染物进行定性表征,如下图为微塑料的热失重和热重逸出气体的实时ICPOES响应曲线数据。 △ 点击可查看大图 单颗粒ICPMS(SP-ICP-MS)技术,也可作为一种快速筛选方式,作为微塑料表征手段的一种补充工具。 相比其他分析手段,SP-ICP-MS分析速度较快,可以在更短的时间内采集更多颗粒,并能提供粒度分布和颗粒浓度的更多信息。通过监测C13的信号,使用NexION系统的SP-ICP-MS,可以成功用作微塑料测定的筛选工具或补充技术。利用单颗粒ICP-MS分析技术采用的快速瞬时采集能力(NexION 系列ICP-MS高达100000点每秒),C13背景得以大大降低,从而实现纳微塑料颗粒的准确分析。将SP-ICP-MS与可鉴别微塑料成分的红外光谱技术相结合,可以获得有关微塑料的更全面信息。右图为SP-ICP-MS筛选塑料茶包中微塑料颗粒的分析数据。 △表1:塑料茶包中含碳颗粒结果 综上,珀金埃尔默仪器与解决方案,在微塑料检测技术的发展中扮演着关键的角色,不断推动各项测试技术的创新与更新。我们的微塑料检测方法开发团队不仅积极参与当前的研究工作,而且与不同行业的合作伙伴携手,共同推动检测标准的建立与完善。我们坚信,微塑料问题所在之处,正是珀金埃尔默技术和解决方案发挥作用的地方。珀金埃尔默的使命是致力于创造一个更加美好的未来,我们期望能够支持和帮助更多投身于微塑料研究和检测的科研工作者。我们共同努力,为了我们共同生存的地球环境的改善和可持续发展贡献力量。 关注我们
  • 微塑料检测网络会议顺利闭幕!回看视频上线
    2004年,英国普利茅斯大学的汤普森等人在《科学》杂志上首次提出了“微塑料”的概念,其指的是直径小于5毫米的塑料碎片和颗粒。2023年4月27日-28日,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办“ 微塑料检测与分析网络研讨会”。本次会议共邀请领域内相关报告专家15位,吸引线上听会观众700余位报名。现场学术报告与答疑讨论穿插进行,专家与听众共同就微塑料检测与分析进行了一场别开生面的学术研讨。《全球海洋微塑料的源与汇:三维传输模型视角》(点击图片回看)会议以海洋微塑料监测方法的标准化及风险评估专场开场。南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》。报告围绕目前微塑料的河流入海通量有多高?海洋中有多少塑料?不同年代和国家的贡献有多大?河流入海的塑料归驱如何?这四大关键科学问题展开。《海洋微塑料标准化监测技术方法研究进展》(未授权回看)生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》。报告围绕微塑料问题产生的背景、国内外微塑料的监测进展、微塑料监测存在的挑战三大方向展开。报告指出,2019年,塑料产生了18亿吨温室气体排放,相当于全球排放量的3.4%。《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》(点击图片回看)安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》。报告介绍了安捷伦 8700 LDIR 激光红外成像的详细解决方案。《Perkinelmer微塑料检测分析方案》(点击图片回看)珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》。报告详细分享了Perkinelmer最新的微塑料检测分析方案。《黄渤海微塑料污染及其生态效应》(未授权回看)中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》。报告提到微塑料的研究有一系列重要的背景与意义:2008年,欧盟海洋战略框架指令和美国NOAA将微塑料作为重要监测研究对象;2019年,G20首脑峰会通过《大阪宣言》,重申应采取措施解决海洋垃圾污染,尤其是海洋塑料垃圾和微塑料;2022年,来自160个国家的代表在乌拉圭召开关于制定全球塑料公约的第一轮谈判。《海洋微塑料的生态效应研究进展及展望》(未授权回看)中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。报告介绍到,微塑料的摄氏效应会造成物理堵塞或损伤,会沿食物链传递与累计;微塑料的毒性效应会传播有毒化学物质,会引起生物中毒现象;微塑料的附着效应还会影响生物多样性,并导致生物入侵。《农田土壤微塑料污染及其环境风险研究进展》(未授权回看)陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》。报告介绍了农田土壤微塑料的多种分析检验方法,包括传统的密度分离法后使用体视镜记录微塑料的形态及尺寸,并结合显微傅里叶变换红外光谱进行聚合物类型判定。《微纳塑料检测分析中的那些“坑”》(点击图片回看)浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》。在采样、分离与富集阶段,现在常用的大面积水体拖网采样存在孔径大小不一、只能采集相对大粒径的塑料微粒等问题;而采用密度法和简单浮选方法很难达到农田土壤中微塑料的分离,存在土壤中有机质和黏土容易黏附在微塑料表面等问题。这些大大小小的“坑”都会影响农田土壤微塑料的分离与检测。《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》(点击图片回看)QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》,介绍了亚微米分辨红外-拉曼同步测量系统。《微塑料表面生物膜的结构与功能研究方法》(未授权回看)中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》。报告内容涵盖微塑料表面生物膜的形成过程及其组成;微塑料生物膜的主要研究方法;微塑料表面生物膜形成的影响因素;生物膜的形成对微塑料表面性质的影响;生物膜的形成对微塑料吸附污染物的影响与机理;生物膜的形成对微塑料降解的影响及未来的研究展望等。《基于表面增强拉曼光谱的纳米塑料检测》(点击图片回看)复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。报告聚焦拉曼光谱技术在微塑料研究上的应用,指出传统的拉曼光谱存在信号响应较弱、易受荧光干扰、缺乏深度信息等问题。而如今的改进技术包括傅里叶变换拉曼光谱、针尖增强拉曼光谱、共聚焦拉曼光谱、相干抗斯托克斯拉曼散射技术、表面增强拉曼光谱(SERS)、受激拉曼散射技术(SRS)等。《海洋大气微塑料入海通量:问题与挑战》(未授权回看)28日上午的大气微塑料的监测及健康风险专场,华东师范大学李道季教授分享报告题为《海洋大气微塑料入海通量:问题与挑战》。报告提到,到目前为止,全球所有关于大气微塑料的研究包括大气沉降和大气悬浮。据了解,李道季课题组通过西太平航次在2019年首次揭示了大气微塑料会持续由陆向海传输,并通过估算模型揭示了西太平洋大气塑料袋的存量为1.21吨。《东亚陆地-海洋微塑料大气传输的数值模拟研究》(点击图片回看)中科院重庆绿色智能技术研究院龙鑫副研究员分享报告题为《东亚陆地-海洋微塑料大气传输的数值模拟研究》。报告提到大气微塑料的传输存在形态、来源复杂;采样困难,数据少;远洋及冰川等生态敏感区难以采集;微塑料对于生态系统的影响难以评估等问题。而研究微塑料的源及汇的动力过程及通量可使其造成的生态效应被准确评估,并方便开展有效消减干预对策。《PY-TD-GCMS技术应用于微塑料中典型污染物分析》(点击图片回看)岛津企业管理(中国)有限公司胡辉应用工程师分享报告题为《PY-TD-GCMS技术应用于微塑料中典型污染物分析》。详细介绍了岛津最新的PY-TD-GCMS技术。《城市冠层及海气边界层大气微塑料赋存观测》(点击图片回看)华东师范大学刘凯博士后分享报告题为《城市冠层及海气边界层大气微塑料赋存观测》。面对目前大气微塑料领域亟待解决的大气输送过程中时空分异、理化多样性的变化未知等问题,该报告提出了可靠的大气微塑料采集分析方法,并阐明了微塑料在城市冠层及海气边界层的赋存特征。
  • 岛津与三菱合作开发出高效塑料检测技术
    三菱电机与岛津制作所于2012年12月19日宣布,共同开发出了“再利用塑料高精度成分检测技术”,能够在1秒钟内,以99%以上的精度瞬间检测识别出塑料的品种。除此之外,此技术也实现了塑料纯度检测的自动化。  此技术的原理是,通过向树脂照射波长比近红外光长的中红外光,然后分析其反射光来识别塑料的品种。无论染色剂及添加剂的含量是多少,该技术均可在1秒钟内以99%以上的精度识别出塑料的品种。  此技术将主要运用在从废旧家电中回收资源并循环利用。以前的技术已经能比较好的对铁、铜、铝及单一成分塑料进行回收利用,但对混合材料的塑料仍然难以筛选并进行分离及回收,而且塑料的纯度检测完全靠手工作业来完成。另一大问题在于,原来主要使用近红外光检测技术,很容易受染色剂影响而难以准确检测深色塑料。新技术将大幅提升塑料检测及回收的效率。塑料高精度材料分析设备 岛津及三菱已展示出开发完成的塑料高精度材料分析仪器设备,如图,此次开发的设备采用了不易受塑料形状影响的光学设备,以及能够以高灵敏度识别反射光的检测设备,此外还开发出了1秒钟内多次检测同一片塑料内的反射光、根据其数据综合识别塑料品种的算法,提高了识别精度。高精度塑料材料分析设备原理图  该设备中,塑料物体不断进入到有许多小孔的圆盘状搬运板上,在马达驱动下自动搬运,搬运板是倾斜的,利用塑料自身的重量使其落入各个小孔,被自动搬运至识别位置,能够连续检测识别。过程通过电脑掌握和控制,另外,该设备根据设置,利用气枪自动筛选识别后的塑料,使筛选后的塑料的纯度检测也实现了自动化。  目前,此技术已申请了14项专利。今后进一步的研究开发上,三菱电机的研究方向是利用此技术提高回收的树脂的纯度检测效率,扩大循环再利用的产量,而岛津制作所的研究方向则是实现回收的家电等的塑料循环再利用设备的产品化。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制