当前位置: 仪器信息网 > 行业主题 > >

高照度植物生长箱

仪器信息网高照度植物生长箱专题为您提供2024年最新高照度植物生长箱价格报价、厂家品牌的相关信息, 包括高照度植物生长箱参数、型号等,不管是国产,还是进口品牌的高照度植物生长箱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高照度植物生长箱相关的耗材配件、试剂标物,还有高照度植物生长箱相关的最新资讯、资料,以及高照度植物生长箱相关的解决方案。

高照度植物生长箱相关的资讯

  • 五洲东方参加“第21届国际植物生长物质会议”
    由国际植物生长物质协会、中国科学院上海生命科学研究院植物生理生态研究所(以下称乙方)、植物分子遗传国家重点实验室、中国植物生理与植物分子生物学学会共同主办的&ldquo 第21届国际植物生长物质会议&rdquo (IPGSA Conference 2013)于2013年6月18-22日在上海国际会议中心召开。五洲东方作为赞助商参加了本次会议。   美国PERCIVAL公司成立于1886年,20世纪50年代20世纪50年代生产了第一台专业的植物培养箱。拥有百年历史的PERCIVAL是专业的植物培养箱体生产厂家,现已生产14个种类,近90个型号的培养箱,覆盖整个动物、植物培养和环境测试领域。另外,可根据客户具体需求定制特殊箱体。所有PERCIVAL产品从设计到生产都由PERCIVAL严格控制和把关,其产品值得信赖。   PERCIVAL产品目前遍布于世界各地,很多跨国企业及我国重点院校,知名科研院所和企业都正在使用PERCIVAL的各类产品。五洲东方公司作为PERCIVAL公司的全国独家代理商已有十余载,我们会和PERCIVAL一起继续为广大客户提供卓越的产品和全方位的服务。
  • 高精度高通量植物生长观测仪
    成果名称高精度高通量植物生长观测仪单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:该项目设计搭建一个用于观测植物表型的实验仪器,其中包括多个组件:高分辨率CCD和可调镜头组用来拍摄图片;平面光源用来提供不同波段的单色光照;气瓶和阀门等装置用来控制气体(如乙烯)的浓度;电动平移台用来实现实时观测过程中植物位置和观察角度的连续变化。以上所有组件与电脑相连接,在电脑软件&ldquo MatLab&rdquo 中编写程序,控制各组件的开关和运行,并在&ldquo MatLab&rdquo 中对拍摄得到的图片进行加工和处理,从而实现对拟南芥早期生长发育过程的高精度、高通量、自动化的实时观察和测量分析。主要的研究环节包括:1)使用高分辨率CCD、可调镜头组和平面光源作为图像采集系统,使用台式电脑和MatLab软件编写程序作为控制系统,实现对单一植物样品的自动化连续图像采集;2)使用MatLab软件编写图像处理程序,实现对植物图像中胚轴和根长度、顶端弯钩角度、子叶颜色变化的自动化识别和测量;3)在图像采集系统中加载电动平移台,在自动化的基础上,实现同时对多个植物样品的高通量图像采集;4)在图像采集系统中加载气流控制系统,实现气体处理(如植物激素乙烯)的加入和去除;5)在MatLab软件中改进和完善图像处理程序,在自动化的基础上,进一步提高识别和测量结果的精确度和可重复性。目前,基于以上设计的高精度高通量植物生长观测仪按期研制完成。自主开发了两种全新的图像处理程序,使电脑对植物图像中幼苗的长度和角度实现了自动化智能化的识别和测量,并达到了很高的精确度和可重复性,为关键技术突破。应用前景:样机已经在拟南芥黄化苗对植物激素乙烯的动力学反应研究中投入应用,取得相应成果,并在SCI期刊上发表文章。
  • 生物传感器监测植物生长
    日前,德国拜罗伊特大学和图宾根马克斯普朗克发育生物学研究所科学家开发出一种新型传感器,可以实时显示植物细胞中生长素的空间分布,并可快速检测环境变化对植物生长的影响。这种传感器为研究人员打开了观察植物内部运作的全新视角。相关研究成果发表在最近的《自然》杂志上。  无论是种子的胚胎发育、根系生长,还是植物对阳光方向的反应,生长素都具有协调植物对外界刺激反应的功能。为了触发对外部刺激的反应,它必须存在于所需的细胞组织中。迄今为止,人们还无法在细胞分辨率上直接确定生长素的时空分布。  此次,研究人员开发出一种新型基因编码的生物传感器,可将植物体内生长素的分布定量可视化。其特殊之处在于,它是一种植物经改造后可自己产生的人造蛋白质,而不必经由外部引入。他们利用这种传感器实时观察了细胞组织需要生长素的时空间分布动态过程。  在开发这种生物传感器时,研究人员发现大肠杆菌中有一种蛋白质可与两种荧光蛋白偶联,并在这些配对蛋白非常接近时发生荧光共振能量转移(FRET)。这种蛋白可与氨基酸色氨酸结合,但与生长素的结合要差得多。他们希望通过基因改造,使其能更好地与生长素结合,并使其FRET效应只在蛋白质与生长素结合时发生。  研究人员对植物进行了基因改造,使其在某种刺激下可在细胞组织中产生满足这些要求的蛋白质。于是,新型生物传感器诞生了:强烈的荧光信号表明了细胞组织中生长素的位置,提供了细胞内生长素分布的精确“快照”,且不会对生长素控制过程造成永久影响。  “传感器的发展是一个漫长的过程,在这个过程中,我们已经获得了关于蛋白质如何被选择性地改变以结合特定小分子的基本见解。”拜罗伊特大学蛋白质设计学教授比尔特哈克说,“预计在未来几年,新的生物传感器将发现更多关于植物内部运作以及它们对外界刺激反应的新见解。”
  • 植物茎流仪、果实生长变化仪、茎秆生长变化计应用于上海市农科院
    2020年5月,我公司为上海果蔬种植基地(上海清澄果蔬专业合作社)提供植物茎流仪、果实生长变化仪、茎秆生长变化计等数据采集系统。 上海清澄果蔬专业合作社占地面积480亩,先后被评为中国农业部和财政部现代农业产业技术示范基地、市农业技术推广服务中心先进科技示范户、2017年上海农业科学院梨树试验示范基地等多项荣誉。合作社坚持农旅结合,打造特色农业生态合作社,并利用网络平台开设微店,生产的各种特色果品深受市民喜爱。 PEM1000X植物生理生态监测系统是北京博伦经纬公司推出的一款新型的植物生理生态监测系统,分别有监测部分、采集部分、传输部分组成,监测部分包括:各种传感器和供电部分;采购部分包括:数据记录仪、数据存储部分和支架配件部分;传输部分包括:有线传输和无线传输。此系统包括:茎秆生长变化、果实生长变化、茎流等指标,可根据客户的需要酌情添加或减少传感器,可以长期地监测植物的生理变化和影响植物生长变化的监测系统。HPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用热脉冲速率法(HPV),测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量270mA线缆:5m,Max 60mDE-1T 树木生长变化传感器茎秆直径范围:60mm茎秆变化测量范围:0~10mm分辨率:0.005mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64尺寸:90 W × 60 H × 23 Dmm测量杆尺寸:160 L × 4Φ螺纹管口尺寸:10 L × 5Φ标准线缆:4m长,可选择10mFI-LT果实生长传感器是一个系列位移传感器,主要用于记录完全圆形的果实的生长尺寸和生长速度,在7 -160毫米范围内,通过三个直径变化测量。移动臂原始设计为平行四边形,提供牢固的笔直的传感器位置,用于果实研究。FI型传感器由一个安装在特殊夹子上的LVDT变送器,以及一个DC电源信号调节器组成。测量范围:30~160mm分辨率:0.065mm准确度:±0.3mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64标准线缆:4m长,可选择10m
  • 科学家开发新激光系统,可使植物生长加倍
    p style="line-height: 1.75em " 据英国《每日邮报》近日报道,俄罗斯科学家称,他们已在农业方面取得新突破,开发出一种激光系统,可使农作物生长速度快一倍,并且培育过程中不需任何杀虫剂。该技术可用于城市,亦或偏远地区,据称还可大大延长食品的储藏时间,延长食物保鲜期。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201604/insimg/b10c8e78-8144-4435-84c2-6b6324ec869c.jpg" title="ds.jpg"//pp style="line-height: 1.75em text-align: center "  图为培育植物所用激光器/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201604/insimg/4d060ae2-2885-4768-9e9e-9419743620bf.jpg" title="d.png"//pp style="line-height: 1.75em text-align: center "  激光系统/pp style="line-height: 1.75em "  报道指出,世界人口2050年将达90亿人,预计对食物的需求量将提高70%。要弥合这一鸿沟,科技将扮演重要的角色。/pp style="line-height: 1.75em "  该系统由俄罗斯米丘林国立农业大学(Michurinsk State Agrarian University)的科学家发明。该研究团队称,他们使用了相对便宜的激光系统培育作物,包括番茄、黄瓜、萝卜、茴香等,其生长速度和产量都比自然生长要高得多 并且无需杀虫剂等化学品加速农作物的生长,因此该技术培育出的植物为“生态清洁型”。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201604/insimg/b960ff6b-de1e-40b9-962a-b82785565aa8.jpg" title="a398e51b8d2a19f.png"//pp style="line-height: 1.75em text-align: center "  实验室/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201604/insimg/ade21677-dfad-4c5c-9e40-9df5fe2a9a87.jpg" title="258a0deded2db71.png"//pp style="line-height: 1.75em text-align: center "  植物每天需经激光照射,但该工作由机器人完成。与传统种植模式相比,此举可节省农民的时间。图为黄瓜接受激光照射/pp style="line-height: 1.75em "  该技术对植物用单一波长或颜色的激光进行照射。其他科学家正在研究不同颜色的LED光对促进植物生长分别有何作用。/pp style="line-height: 1.75em "  俄罗斯专家称,该激光系统还可提高植物免疫能力,从而治愈患病植物。专家还表示,激光技术还可延长作物储存时间,并发现其体内有毒有害物质。/ppbr//p
  • 即将实施! GB/T 42954-2023《肥料中植物生长调节剂的测定 气相色谱-质谱联用法》
    近期,国家市场监督管理总局(国家标准化管理委员会)公示431项推荐性国家标准和2项国家标准修改单。其中GB/T 42954-2023《肥料中植物生长调节剂的测定 气相色谱-质谱联用法》为首次制定,该标准将于2024年3月1日正式实施。本标准描述了肥料中7种植物生长调节剂测定的气相色谱-质谱联用法的原理、试剂和材料、所用仪器、样品制备及提取过程、色谱及质谱参考条件、测定及试验数据处理过程。 01 标准编号及标准名称GB/T 42954-2023《肥料中植物生长调节剂的测定 气相色谱-质谱联用法》。 02 标准制定背景植物生长调节剂是经人工提取或合成的,能调节植物生长发育和生理功能的一类小分子物质,具有作用面广、针对性强、见效速度快、效益高等优点,目前广泛应用于大田作物、果树、蔬菜、花卉等方面。植物生长调节剂属于农药,需要严格按照登记批准标签上规定的使用剂量、时期和方法进行使用。如果肥料中隐形添加植物生长调节剂,可能造成与植物生长调节剂产品重复使用,导致农产品的质量显著下降,同时造成对农作物种植环境的残留危害,给百姓健康造成安全隐患。近年来,农业农村部动员部署全国农资打假专项治理行动,重点查处叶面肥等肥料中非法添加农药,尤其是植物生长调节剂的违法行为。针对肥料中植物生长调节剂的检测,国内已陆续制定GB/T 36204-2018、GB/T 37500-2019、GB/T 40459-2021,GB/T 40460-2021等多个国家标准,已发布的标准中胺鲜酯、多效唑、烯效唑已有气相色谱或液相色谱定量方法,但检出限相对较高;氯苯胺灵、噻节因、仲丁灵、氟节胺尚无检测标准。检测技术的缺失,成为隐形添加植物生长调节剂肥料产品质量安全监管工作的技术难题。制定肥料中植物生长调节剂的气相色谱-质谱联用检测技术标准,可进一步完善肥料中植物生长调节剂检测技术体系,为保障农作物质量安全提供技术保障。 03 标准主要内容(一)明确了肥料中7种植物生长调节剂测定的气相色谱-质谱联用法原理。本标准明确了肥料中7种植物生长调节剂的气相色谱-质谱联用法由气相色谱和配电子轰击离子源的质谱仪串联完成,通过气相色谱将待测样品分离后直接导入质谱进行检测,外标法定量。采用串联质谱选择离子扫描模式能在一定程度上降低化学噪音,提高信噪比,用色谱保留时间结合化合物的指纹质谱图鉴定组分,极大提高了对混合物分离、定性、定量效率。(二)建立了肥料中7种植物生长调节剂的高效净化技术。一是对液体和固体样品的制备过程分别进行了描述:液体样品混匀后直接称取,固体样品粉碎后全部过1.0 mm试验筛;二是明确了提取试剂类别和纯度:提取试剂为色谱纯丙酮;三是对样品提取过程进行了详细描述:称取样品于离心管中氮吹至近干,加入提取剂丙酮10 mL,室温下超声10 min;四是规定了提取液的净化过程:提取液经5000 r/min条件下离心5 min,上清液过0.22 μm有机相微孔滤膜。 (三)建立了肥料中7种植物生长调节剂的气相色谱分离技术。本标准明确了气相色谱参考条件:1.色谱柱类型为石英毛细管柱,长30 m,内径0.25 mm,膜厚0.25 µm,固定相为5%-苯基-甲基聚硅氧烷;2.程序升温:初始温度60℃,以 20℃/min升到280℃,保持5 min。3.载气(氦气)流速:1.0 mL/min;4.进样口温度:280℃;5.进样方式:不分流;6.进样量:1μL。(四)建立了肥料中7种植物生长调节剂的质谱确证技术。本标准明确了质谱参考条件:1.离子源类型为电子轰击离子源;2.电子轰击源电离能量:70 eV;3.扫描模式:选择离子扫描;4.质量扫描范围:50 u至550 u;5.离子源温度:280℃;6.传输线温度:280℃;7.四级杆温度:180℃。本标准详细描述了7种植物生长调节剂的质谱分析参考参数,包括目标物定性离子、定量离子,另外还规定了相对离子丰度的最大允许偏差。 04 标准实施意义《肥料中植物生长调节剂的测定 气相色谱-质谱联用法》适用于肥料中胺鲜酯、氯苯胺灵、噻节因、仲丁灵、氟节胺、多效唑、烯效唑的测定。根据目前肥料中违禁添加或过量添加植物生长调节剂的现状,研究目标物的性质,筛选、优化肥料产品中各违禁组分的前处理方法,对肥料产品中的胺鲜酯、氯苯胺灵、噻节因、仲丁灵、氟节胺、多效唑、烯效唑进行测定,确定了稳定性好、准确度高、回收率高、易于操作的检测方法。该标准的发布和实施有如下意义:一方面,可以避免因植物生长调节剂使用不当或过量使用带来的“药害”损失,保证农产品的产品质量安全,保障农民的合法利益;另一方面,完善了国内肥料中植物生长调节剂检测技术标准体系,提升了肥料检测行业标准化工作的能力水平,为打击在肥料中违法添加植物生长调节剂行为及开展肥料产品质量安全风险评估工作提供技术支撑;同时提高了检测及监管信息反馈工作效率,对于规范肥料产业健康发展、推动生态环境安全具有重要意义。 05 相关标准下载GB_T 40460-2021 肥料中植物生长调节剂的测定 气相色谱法.pdfGB_T 34764-2017 肥料中铜、铁、锰、锌、硼、钼含量的测定 等离子体发射光谱法.pdfGB_T 40459-2021 肥料中多种植物生长调节剂的定性筛选 液相色谱-质谱联用法.pdfGB_T 42955-2023 肥料中总氮含量的测定 杜马斯燃烧法.pdfGB_T 40462-2021 有机肥料中19种兽药残留量的测定 液相色谱串联质谱法.pdfGB_T 42954-2023 肥料中植物生长调节剂的测定 气相色谱-质谱联用法.pdfGBT42954-2023.pdfGB_T 42958-2023 肥料产品使用说明编写指南.pdf 质谱仪涉及所有的分析测试行业,国际竞争的技术壁垒较高、是科学研究的基础工具、也是高科技产业共性技术。随着关系人类健康的生命科学、生态环境、食品安全等学科的发展,质谱应用领域不断拓展,同时也推动了质谱技术与仪器的快速发展。2023年仪器信息网联合北美华人质谱学会(CASMS),于12月12-15日联合举办第十四届质谱网络会议(iCMS 2023),会议中设立了质谱在食品分析领域的技术应用进展专场,聚焦质谱技术在食品领域的最新研究进展。点击图片,免费报名参会!
  • 根系扫描仪-一款对植物根系生长状况分析的仪器2024实时更新
    型号推荐:根系扫描仪-一款对植物根系生长状况分析的仪器2024实时更新,根系扫描仪作为现代农业科技与植物研究的重要工具,通过非侵入性的方式,为植物根系生长状况的分析提供了前所未有的精准度和便利性。以下将从四个方面详细阐述根系扫描仪对植物根系生长状况分析的帮助。 一、精准测量根系参数 根系扫描仪能够精准测量根系的长度、直径、面积、体积以及根尖数量等关键参数。这些参数的获取,不仅为研究人员提供了详尽的根系生长数据,还使得定量分析根系生长状况成为可能,有助于揭示根系的生长规律和发育机制。 二、三维重建根系结构 根系分析系统利用高质量图形扫描仪获取高分辨率植物根系彩色图像或黑白图像,该扫描仪在扫描面板下方和上盖中安装有专门的双光源照明系统,并且在扫面板上预留了双光源校准区域。此外,还配备有不同尺寸的专用、高透明度根系放置盘。扫描时,扫面板下的光源和上盖板中的光源同时扫过高透明度根盘中的根系样品,这样可以避免根系扫描时容易产生的阴影和不均匀等现象的影响,有效地保证了获取的图像质量。研究人员可以更加全面地了解根系的生长状况,为优化植物种植结构和提高作物产量提供科学依据。 三、提升研究效率与准确性 根系扫描仪的操作简单,软件界面友好,用户可以通过软件轻松地进行数据分析和处理。此外,根系扫描仪还可以与计算机连接,实现数据的快速传输和存储,大大提升了研究效率。同时,非侵入性的检测方式减少了对植物根系的破坏,保证了测量结果的 准确性和可靠性。 四、广泛应用于植物研究与农业生产 根系扫描仪广泛应用于植物生长发育、植物营养状况、植物逆境耐受性等领域的研究。在农业生产中,根系扫描仪可用于实时检测作物根系的生长情况,为作物提供适宜的养分和水分管理方案;同时,通过根系结构分析,可以筛选具有优良根系特征的作物品种,提高作物的抗逆性和产量。 五、仪器用途 根系分析系统用于洗根后专业根系分析,还可以用于根盒培养植物的根系表型分析,可以分析根系长度、直径、面积、体积、根尖记数等,功能强大,操作简单,软件可分析植物根系的形态分析及根系的整体结构分布等,广泛运用于根系形态和构造研究。 综上所述,根系扫描仪以其精准测量、三维重建、提升研究效率与准确性以及广泛应用的优势,为植物根系生长状况的分析提供了强有力的支持。随着技术的不断进步和应用领域的拓展,根系扫描仪有望在植物研究和农业生产中发挥更加重要的作用。
  • 便携式光合速率测定仪了解植物的生长状况【恒美仪器】
    便携式光合速率测定仪是一种先进的仪器,用于测量植物的光合速率。光合速率是反映植物光合作用能力的重要指标,对于了解植物的生长状况、评估环境因素对植物生长的影响以及提高农业产量等方面都具有重要意义。 产品链接https://www.instrument.com.cn/netshow/SH104275/C309618.htm 该仪器采用先进的光合作用测量技术,能够实时、准确地测量植物叶片的光合速率。通过与计算机连接,用户可以方便地获取测量数据,并进行数据处理和分析。此外,该仪器还具有操作简便、易于携带等特点,可以随时随地进行植物光合速率的测量,不受时间和地点的限制。 便携式光合速率测定仪的应用范围广泛。在农业生产中,它可以用于监测作物的生长状况,指导合理施肥和灌溉,提高农作物的产量和品质。在生态研究中,它可以用于评估环境因素对植物生长的影响,了解植物对环境的适应性和生态系统的平衡。此外,该仪器还可以用于植物生理学、园艺学、林学等领域的研究。 综上所述,便携式光合速率测定仪对于了解植物光合作用能力、提高农业产量和生态研究等方面都具有重要作用。通过使用该仪器,可以更好地了解植物的生长状况和环境因素对植物生长的影响,为农业生产和生态研究提供科学依据。
  • 岛津液质应对肥料中多种植物生长调节剂的定性筛选
    民以食为天,粮安天下,粮食安全始终是国家头等大事。食以土为生,粮食的“粮食”要够,化肥则是粮食的“粮食”,对粮食增产贡献率在40%以上。 化肥的分析检测技术标准化对于化肥的科学、安全、高效的使用起到关键作用。 近期,国家市场监督管理总局发布了《GB/T 40459-2021肥料中多种植物生长调节剂的定性筛选 液相色谱-质谱联用法》,标准将于2022年的3月1日正式实施。 岛津解决方案岛津高效液相色谱质谱联用仪LCMS-2020 Seeing is Believing UFscanning高速扫描速度15,000Da/secUFswitching高速切换正负极性时间仅为15msecUFsensitivity高灵敏度对应超快速分析UFLC-MS测定超快速切换和超快速扫描的必要性。如在1分钟内洗脱6种组分的超快速分析中,需要超快速测定。 UF-switching和UF-scanning功能,使这样的超快速质谱测定变为可能。 UFsensitivity高灵敏度对应超快速分析采用了新开发的离子光学系统和新的Q阵列,实现了卓越的灵敏度、重现性和宽线性范围。 稳定性在血浆中添加样品,加入乙腈,离心除蛋白后,在10天中,连续进样1μL。其结果重现性为2.26%,证明了出色的长期稳定性。 维护简便从离子源向真空部导入样品的DL(Desolvation Line:除溶媒单元)的安装与拆卸,可以在不打破真空的状态下实施,因此,大幅提高了维护作业的效率。连续分析后的离子源 本文内容非商业广告,仅供专业人士参考。
  • 光学浮区法单晶生长技术在氧化物和金属间化合物材料领域应用进展
    化学性质活泼、高熔点、高压、高质量单晶生长法宝! 新一代高性能激光浮区法单晶炉-LFZ助您实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。高精度光学浮区法单晶炉-IRF助您实现高温超导体、介电材料、磁性材料、热电材料、金属间化合物、半导体、激光晶体等材料的生长工作。高温高压光学浮区炉助您实现各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等材料的生长。四电弧高温单晶生长炉助您实现化学性质活跃但熔点高的金属间化合物,包括含有稀土元素(或者金属铀)的二元及四元金属间化合物、合金单晶等材料的生长。高质量单晶生长设备——单晶炉系列1. 高精度光学浮区法单晶炉在休斯勒型镍-锰基合金磁致冷材料领域的应用 休斯勒(Heusler)型的镍-锰基材料自从发现其巨磁热效应以来,在过去的几十年中已成为被广泛研究的热点新型磁致冷材料之一。研究发现,休斯勒型铁磁性材料镍-锰-锡在从高温至低温的变温过程中会发生高温相(铁磁奥氏体相)到低温相(顺磁马氏体相)的转变,且该转变受磁场调制。高对称性的奥氏体相经一结构相变成低对称性的马氏体相,会造成磁有序降低,磁熵增加,这一过程为吸热过程,亦即形成反磁热效应,这也是磁致冷的基本原理。而休斯勒型镍-锰-锡合金材料也因为其成本廉价、无毒、无污染、易于获取、磁热效应显著、相变温度可调等一系列的特点成为一种具应用潜力的室温磁致冷材料。 研究表明,休斯勒型镍-锰-锡合金的单晶材料具有更大的磁效应导致的应变或磁热效应,且具有强烈的各向异性特点,因此研究者希望其单晶或单向织构晶体具有更加优异的磁性能。目前,已有学者采用布里奇曼技术和Czochralski方法制备出了镍-锰-镓和镍-锰-铟材料的单晶材料,但镍-锰-锡合金由于在晶体生长过程中易形成氧化锰,因此其高质量的单晶样品制备具挑战性。上海大学的余金科等人克服了镍-锰-锡合金单晶生长中的氧化锰形成及挥发的难题,采用光学浮区技术成功合成了高质量的镍-锰-锡合金单晶样品。晶体生长过程及样品腔实物图片晶体实物及解理面图片 余金科等人所用的光学浮区法单晶炉为Quantum Design日本公司推出的新一代高精度光学浮区炉单晶炉,文献中报道的相关晶体生长工艺参数为:生长速度6 mm/小时;转速(正、反)15转/分钟,氩气压力7bar。 Quantum Design 日本公司推出的高温光学浮区法单晶炉,采用镀金双面镜、高反射曲面设计,高温度可达2100℃-2200℃,系统采用高效冷却节能设计(不需要额外冷却系统),稳定的电源输出保证了灯丝的恒定加热功率,这对于获得高质量单晶至关重要。浮区炉技术特色:■ 占地空间小,操作简单,易于上手,立支撑设计■ 镀金双面高效反射镜,加热效率更高■ 可实现高温度2150°C■ 稳定的电源■ 内置闭循环冷却系统,无需外部水冷装置■ 采用商业化标准卤素灯 参考信息来源:[1]. Optical Floating-Zone Crystal Growth of Heusler Ni-Mn-Sn Alloy. Yu, Jinke & Ren, Jian & Li, Hongwei & Zheng, Hongxing. (2015). TMS Annual Meeting. 2015. 49-54.[2]. Ni-Mn-Sn(Co)磁制冷薄带材料结构相变及磁性能表征,王戊 硕士论文,上海大学 2. 高精度光学浮区法单晶炉在磁电领域取得重要进展在人类漫长的历史发展长河中,“材料学”贯穿了其整个历程。从人类活动早期开始使用木制工具,到随后的石器、金石并用(此时的金属主要指铜器)、青铜、铁器等各个时代,再到后来的蒸汽、电气、原子、信息时代,每个发展阶段无不伴随着人类对材料的认识和利用。在诸多材料中,铁是人类早认识和使用到的材料之一,早在西周以前我国就已开始将铁用于生产生活中[1];人们在长期的实践中也逐渐认识到相关材料的磁性并将其运用于实践中,司南就是具代表性的发明。这些在不少历史典籍中都有记载,比如:《鬼谷子谋篇十》记载:“故郑人取玉也,载司南之车,为其不惑也。夫度材量能揣情者,亦事之司南也”;《梦溪笔谈》提到:“方家以磁石磨针缝,则能指南”;《论衡》书曰:“司南之杓,投之于地,其柢指南”等等[2]。由此可见,人们对磁性材料的兴趣也算由来已久。 当时代来到21世纪,化学、物理、生物、医学、计算机等各个领域的技术都有了前所未有的突破,先进的生产力也将人类的文明推进智能工业化、信息化时代,随之而来的是人们对材料的更高要求。在诸多材料当中,多铁材料兼具铁磁、铁电特性,二者之间有着特的磁电耦合特性;与此同时,磁场作用下的电化和电场作用下的磁化等性质为未来功能材料探索和发展提供了更为宽广的选择和可能,在存储、传感器、自旋电子、微波器件、器件小型化等领域拥有巨大的潜在价值。2007年的《科学》杂志对未来的热点发展问题进行了报道,其中,多铁材料作为的物理类问题入选[3]。因此,研究并深刻理解磁电耦合和多铁材料背后的机理,有着非常重要的理论价值和实践意义。 近期,哈尔滨工业大学的W.Q.Liu等人对磁电材料Mn4Nb2O9单晶样品进行了深入的研究。研究表明:零磁场测试介电常数时,没有发现介电常数的反常,此时Mn4Nb2O9基态表现为顺电特性;而在磁场条件下,介电常数在Neel温度处发生突变的峰,且随着磁场的增加介电峰也增强,且峰位向低温端偏移,这意味着磁场有抑制反铁磁转变的趋势;高场(H≥4T)下的介电常数-温度依赖关系也跟H2正比关系,由此也表明Mn4Nb2O9是线性磁电材料。更多研究结果可参考文献[4]。以上图片引自文献[4].在该项研究工作中,作者合成Mn4Nb2O9单晶样品所用设备为Quantum Design Japan公司的高精度光学浮区法单晶炉,文章中所用单晶生长参数为:Ar气氛流速4 L/min,生长速度6 mm/h,转速25 rpm。参考信息来源:[1]. https://baijiahao.baidu.com/s?id=1713600818043231130&wfr=spider&for=pc[2]. https://baike.baidu.com/item/%E5%8F%B8%E5%8D%97/3671419?fr=aladdin[3]. https://www.science.org/doi/10.1126/science.318.5858.1848[4]. Wenqiang Liu, Long Li, Lei Tao, Ziyi Liu, Xianjie Wang, Yu Sui, Yang Wang, Evidence of linear magnetoelectric effect in Mn4Nb2O9 single crystal, Journal of Alloys and Compounds,Volume 886,2021,161272,ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021.161272.3. 高温高压光学浮区法单晶炉在外尔半金属材料领域应用案例 1929年,德国科学家外尔(Weyl)解出了无质量粒子的狄拉克方程,相应的无质量粒子被称为外尔费米子。然而直到2015年科研人员才在实验中观察到外尔费米子,被中国科学院物理研究所的研究人员报道,距离外尔费米子概念的提出,足足过去了近90年。2018年科研人员通过性原理计算预言RAlGe(R=Pr,Ce)体系有望成为新的磁性外尔半金属。目前人们对RAlGe(R=Pr,Ce)材料的物理性质研究还比较少,更进一步深入的实验研究需要大尺寸的单晶样品去支持。 H. Hodovanets等人曾用助熔剂方法生长CeAlGe单晶,但由于实验中需要用到SiO2容器,导致用该方法获取的单晶样品中会存在Si杂质,同时伴有CeAlSi相;另外,轻微的Al富集会导致形成不同的晶体结构。这些都大限制了拓扑外尔点的形成。因此,获取化学计量比的单晶样品对于研究材料的物理性质非常重要。Pascal Puphal等人近期的研究工作报道了其分别用助熔剂方法和高温高压浮区法两种晶体生长技术获得的RAlGe(R=Pr,Ce)单晶样品及研究成果。尽管作者为了避免Si的污染,采用了Al2O3坩埚,但终样品中Al的含量偏高问题依然存在,单晶样品表面成分:Ce1.0(2)Al1.3(5)Ge0.7(3)/ Pr1.0(1)Al1.2(2)Ge0.8(2),剥离面成分为:Ce1.0(1)Al1.12(1)Ge0.88(1)/Pr1.0(1)Al1.14(1)Ge0.86(1)。而采用浮区法则生长出了近乎理想化学计量比(1:1:1)的单晶样品,成分分别为:Ce1.02(7)Al1.01(16)Ge0.97(9)和Pr1.08(24)Al0.97(7)Ge0.95(17)。 浮区法得到的晶体的劳厄图片 Pascal Puphal等人所采用的浮区法单晶炉为德国ScIDre公司的HKZ高温高压光学浮区炉,文献中提到的相关实验参数为:5 KW功率的氙灯,晶体生长速度为1 mm/小时,CeAlGe采用30 bar的Ar保护气氛,PrAlGe采用5 bar的Ar保护气氛。德国ScIDre公司推出的高温高压光学浮区法单晶炉高能够提供3000℃的生长温度,晶体生长腔大压力可达300 bar,甚至10-5 mbar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。ScIDre单晶炉技术特色:► 采用垂直式光路设计► 采用高照度短弧氙灯,多种功率规格可选► 熔区温度:高达3000℃► 熔区压力:10bar/50bar/100bar/150bar/300bar等多种规格可选► 氧气/氩气/氮气/空气/混合气等多种气路可选► 采用光栅控制技术,加热功率从0-100% 连续可调► 样品腔可实现低10-5 mbar真空环境► 丰富的可升选件 参考信息来源:[1]. http://www.iop.cas.cn/xwzx/kydt/201507/t20150720_4395729.html[2]. Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe, H. Hodovanets, C. J. Eckberg, P. Y. Zavalij, H. Kim, W.-C. Lin, M. Zic, D. J. Campbell, J. S. Higgins, and J. PaglionePhys.Rev. B 98, 245132 (2018).[3]. Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce), Pascal Puphal, Charles Mielke, Neeraj Kumar, Y. Soh, Tian Shang, Marisa Medarde,Jonathan S. White, and Ekaterina Pomjakushina, Phys. Rev. Materials 3, 0242044. 高温高压光学浮区法单晶炉在准一维伊辛自旋链材料领域应用进展 低维磁性材料具有非常丰富和奇特的物理性质,且与多铁性和高温超导电性等材料密切相关。对低维磁性材料的物理性质进行研究有助于探索相关奇异现象的根本机制,从而对寻求新的功能材料提供帮助。因此,近年来关于低维磁性材料的研究吸引了科学家们的广泛关注。近日,德国马普固体化学物理研究所的学者A. C. Komarek等人[1,2]在准一维伊辛自旋链材料CoGeO3中发现了非常明显的1/3磁化平台,并通过中子衍射手段详细探究了其微观自旋结构。研究表明,初的零场反铁磁自旋结构的变化,类似于反铁磁“畴壁边界”的形成,从而产生一种具有1/3整数传播矢量的调制磁结构。净磁矩出现在这些“畴壁”上,而所有反铁磁链排列的三分之二仍然可以保留。同时A. C. Komarek等人也提出了一个基于各向异性受挫方形晶格的微观模型来解释其实验结果。更为详细的报道可参考文献相关文献[1,2]。A. C. Komarek等人所用的CoGeO3单晶样品由高压光学浮区法单晶炉(型号:HKZ, 制造商:德国ScIDre公司)制备获得[2],文章中报道的CoGeO3单晶生长参数为:Ar/O2混合气(比例98:2),压力80 bar,生长速度3.6 mm/hour。CoGeO3单晶实物图片 引自[2] 参考信息来源:[1]. Emergent 1/3 magnetization plateaus in pyroxene CoGeO3, H. Guo, L. Zhao, M. Baenitz, X. Fabrèges, A. Gukasov, A. Melendez Sans, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Phys. Rev. Research 3, L032037[2]. Single Crystal Growth and Physical Properties of Pyroxene CoGeO3,Zhao, L. Hu, Z. Guo, H. Geibel, C. Lin, H.-J. Chen, C.-T. Khomskii, D. Tjeng, L.H. Komarek, A.C. Crystals 2021, 11, 378.5. 高温高压光学浮区法单晶炉在锂离子电池领域新应用进展 锂离子电池由于具有能量密度高、寿命长、充电快、安全可靠、绿色环保等诸多优异性能,其与当今人民的日常生活已密不可分,在手机、电脑、电动车、电动汽车、航空航天等领域均有广泛的应用。 其中,Li2FeSiO4作为新一代锂离子电池阴材料,由于具有价格低廉、环境友好、安全性好等技术优势,因此在大型动力锂离子电池应用方面具有良好的前景。然而,Li2FeSiO4材料在不同温度具有不同的结构相(∼ 400 °C :Pmn21, , ∼ 700 °C :P121/n1, and ∼ 900 °C :Pmnb),研究其不同结构的电化学性质对于进一步对其进行改性研究尤为重要。 Waldemar Hergetta等人[1]采用高压光学浮区法获得了高温相(Pmnb)Li2FeSiO4单晶,并研究了晶体生长工艺参数对杂相的影响,相关结果已发表在Journal of Crystal Growth。作者所采用的高压光学浮区炉为德国ScIDre公司的HKZ高压光学浮区法单晶炉,文章报道的晶体生长参数为:生长速度10 mm/h,保护气氛Ar(30 bar)。温度梯度分布 引自[1]XRD图谱及晶体实物图片 引自[1]参考信息来源: [1]Waldemar Hergett, Christoph Neef, Hans-Peter Meyer, Rüdiger Klingeler, Challenges in the crystal growth of Li2FeSiO4, Journal of Crystal Growth, Volume 556,2021,125995,ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2020.125995.
  • 蓝菲光学积分球光谱分析仪在植物照明灯中的应用
    近几年来,随着LED技术与全球植物工厂、垂直农场等现代设施农业的发展,植物照明市场迎来了新的发展机遇,成为众多照明厂商走差异化竞争之选。 图1 植物照明由于LED灯具有光效高、发热低、体积小、寿命长灯特点,因此非常受植物照明生产厂商的青睐。不同植物生长过程中对不同光谱的光需求量不同,为此所选的补偿光也有差异。。 图2 LED灯具植物工程可分为种植设备技术和植物工艺技术,其中植物照明光谱技术是种植设备技术和植物工艺技术的关键。好的光谱设计可保证种植工艺所要求的光质能达到高效利用。 图3 光谱制造商设计植物照明系统,通常根据植物所需的光质、光密度,然后对植物照明光源进行选择。植物灯光谱设计需要依据植物种植工艺要求而设计,植物灯光谱分析和设计能力对制造商市场竞争至关重要。而这些都需要精确的光源光谱分析方法和设备。 蓝菲光学40年光学测量生产设备经验,可提供精确的光源光谱分析方法和积分球光谱分析设备,有效的计算PAR/PPF/PPFD值。 图4 蓝菲光学积分球光谱分析仪不同植物或者同一植物不同时期吸收光谱不同,通过确定种植工艺确定植物照明光谱范围和峰值波长,植物照明的光谱和峰值波长均可通过蓝菲光学积分球光谱分析仪获得。蓝菲光学(Labsphere)illumiaPlus2积分球光谱分析仪积分球尺寸 25 cm -3 m可选,具有 2π 和 4π 几何方式。三种光谱仪可选、特定的应用模块在保证生产效率最大化的同时也保证了非常高的精确度、可重复性。图5 蓝菲光学积分球光谱分析仪结构图提高生产力改进后的积分球设计允许待测灯在点亮的情况下放进,保证更高的效 率、缩短测量时间。 新增了兼具功能性与简易性的电控模块,符 合 IES LM-79-19、IES LM-78 等相关标准。图6 蓝菲光学积分球光谱分析仪系统图Integral 软件驱动设备搭配的 Integral 软件支持任何平台、任何设备、 任何地点、多种语言。符合 LM-45 标准要求进行稳定,自动执行校准程序。 符合 LM-79-19 和 LM-78 测量方法和行业标准颜色计算。 图7 Integral软件图概念:太阳辐射中对植物光合作用有效的光谱成分称为光合有效辐射(PAR,photosynthetically active radiation),波长范围400~700纳米,与可见光基本重合。标注单位有两种:一是用光合辐照度表示(w/m2),主要用于太阳光的光合作用的广义研究。二是用光合光子通量密度PPFD表示(umol/m2s),主要用于人造光源和太阳光对植物光合作用的研究。采用每秒辐射到植物表面的光子流量的这个方法表示辐射源的辐射能力,称为PPF_PAR法。PPF光合光子通量(Photosynthetic Photon Flux)是指波长在400-700nm波段里,人造光源每秒辐射出光子的微摩尔数量,单位umol/s。PPFD光合光子通量密度(Photosynthetic Photon Flux Density)是每平方米每秒光源辐射出的微摩尔数量,单位umol/m2s。
  • 广东省质量检验协会立项《豆芽中12种植物生长调节剂和喹诺酮类化合物的测定 液相色谱-质谱质谱法》团体标准
    各有关单位:按照有关法律法规和《广东省质量检验协会团体标准管理办法》规定,结合行业发展需要,经审核,同意《豆芽中12种植物生长调节剂和喹诺酮类化合物的测定 液相色谱-质谱质谱法》团体标准立项。联系人:招原春(020)38835232邮箱:gdaqi@gdaqi.org广东省质量检验协会2024年6月13日关于《豆芽中12种植物生长调节剂和喹诺酮类化合物的测定 液相色谱-质谱质谱法》团体标准立项的通知.pdf
  • 国家标准《肥料中植物生长调节剂的测定 气相色谱-质谱联用法》征求意见
    国家标准计划《肥料中植物生长调节剂的测定 气相色谱-质谱联用法》由 TC105(全国肥料和土壤调理剂标准化技术委员会)归口上报及执行 ,主管部门为中国石油和化学工业联合会。主要起草单位 山东省产品质量检验研究院 、上海化工院检测有限公司 、云南化工产品质量监督检验站 、山东农大肥业科技有限公司 、四川国光农化股份有限公司等 。征求意见稿.pdf编制说明.pdf
  • 1474万!中国农业科学院农业基因组研究所基因分析仪、步入式植物生长室等一批仪器采购项目
    一、项目基本情况1.项目编号:0868-2346ZD1262H项目名称:中国农业科学院农业基因组研究所基因分析仪等一批仪器采购项目预算金额:669.000000 万元(人民币)采购需求:基因分析仪等设备一批采购,具体如下:序号采购设备标的明细数量(台/套)是否允许进口产品投标1基因分析仪1否2细胞/微生物双用型生物反应器2否3高通量全自动基因克隆工作站1否4生物反应器1否5微生物中试发酵罐1否6单细胞自动制备系统1否7DNA合成仪1否8全自动生化分析仪1否9超纯水仪1否合同履行期限:(交货期):合同签订后6个月交货本项目( 不接受 )联合体投标。2.项目编号:0868-2346ZD1263H项目名称:中国农业科学院农业基因组研究所步入式植物生长室等仪器设备一批采购项目预算金额:805.000000 万元(人民币)采购需求:步入式植物生长室等设备一批采购,具体如下:序号采购设备标的明细数量(台/套)是否允许进口产品投标1步入式植物生长室3否2植物幼苗高通量动态表型组学分析系统1否3人工气候室智能控制系统2否合同履行期限:(交货期):详见招标文件。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月02日 至 2023年11月08日,每天上午9:30至11:30,下午14:00至17:30。(北京时间,法定节假日除外)地点:深圳市罗湖区桂园街道老围社区红宝路139号蔡屋围金龙大厦10楼1003室方式:在线获取售价:¥800.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国农业科学院农业基因组研究所     地址:深圳市大鹏新区布新路97号        联系方式:李老师 0755-28398801      2.采购代理机构信息名 称:深圳市振东招标代理有限公司            地 址:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号            联系方式:张先生 0755-82786018/82786038-808            3.项目联系方式项目联系人:张先生电 话:  0755-82786018/82786038-808
  • 222万!自然资源部第四海洋研究所计划采购植物培养生长监测系统、碳同位素分析仪等仪器设备
    一、项目基本情况项目编号:0633-2240126E4297项目名称:海洋自然资源开发利用与保护修复平台建设项目-植物培养生长监测系统、碳同位素分析仪采购预算金额:222.0000000 万元(人民币)最高限价(如有):222.0000000 万元(人民币)采购需求:标项名称:海洋自然资源开发利用与保护修复平台建设项目-植物培养生长监测系统、碳同位素分析仪采购数量:2套预算金额(元):人民币贰佰贰拾贰万元整(¥2,220,000.00)简要规格描述或项目基本概况介绍、用途:本项目需采购植物培养生长监测系统1套、碳同位素分析仪1套;如需进一步了解详细内容,详见招标文件。合同履行期限:国产设备自签订合同之日起1个月内交付安装使用并验收合格。进口设备自签订合同之日起3个月内交付安装使用并验收合格。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:(1)资质要求:无。(2)业绩要求:无。(3)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加本项目同一合同项下的政府采购活动。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目的采购活动。(4)未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。(5)按照招标公告规定获得招标文件。招标文件有规定时按要求提交投标保证金。三、获取招标文件时间:2022年04月27日 至 2022年05月06日,每天上午8:30至12:00,下午14:30至17:30。(北京时间,法定节假日除外)地点:广西机电设备招标有限公司北海分公司(广西北海市北海大道与西藏路交汇处银河产业城B1栋5层508)现场获取或线上邮箱(下载)。方式:潜在供应商可以自行选择以下方式之一获取招标文件:方式一:现场购买招标文件,潜在供应商应于本公告有效期内到获取招标文件地点购买招标文件,招标文件以纸质版发放或以电子邮件形式发送至供应商邮箱。方式二:线上购买招标文件,将材料以电子邮件(邮件标题注明供应商名称+所投项目名称;邮件内注明联系人及联系方式;因未按要求发送邮件而导致的后果由供应商自行承担)发送到zhengshuxin@gxbidding.cn。资料审核通过后,供应商以电汇、转账等非现金形式将标书款交至以下银行账号,并将汇款底单以电子邮件发送至上述邮箱,代理机构在核查完毕后把招标文件以电子邮件发送至供应商邮箱。银行账号信息:开户名称:广西机电设备招标有限公司开户银行:广西北部湾银行南宁市金湖支行账号:1705012090027723联行号:313611017053 资料需提供以下文件(以下资料未注明原件的均为复印件,要求加盖公章):(1)主体资格证明(如营业执照、事业单位法人证书、执业许可证、个体工商户营业执照等);(2)法定代表人及委托代理人身份证;(3)法定代表人授权书原件。售价:¥200.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年05月17日 09点30分(北京时间)开标时间:2022年05月17日 09点30分(北京时间)地点:广西机电设备招标有限公司北海分公司(广西北海市北海大道与西藏路交汇处银河产业城B1栋5层508)开标室。投标文件递交方式:邮寄或现场方式,具体要求详见供应商须知前附表。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.公告发布媒体:中国政府采购网(http://www.ccgp.gov.cn/)、中国招标投标公共服务平台(http://bulletin.cebpubservice.com/)、广西壮族自治区招标投标公共服务平台(http://ztb.gxi.gov.cn/)。2.需落实的政府采购政策:本项目适用政府采购促进中小企业、监狱企业发展、促进残疾人就业、节能环保、信息安全产品等有关政策,具体详见招标文件。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:自然资源部第四海洋研究所     地址:北海市银海区海景大道海洋科研创新园自然资源部第四海洋研究所联系方式:刘老师 0779-2260528      2.采购代理机构信息名 称:广西机电设备招标有限公司            地 址:广西北海市北海大道与西藏路交汇处银河产业城B1栋5层508联系方式:吴仁晖、郑舒心、李妍茜 0779-3900996             3.项目联系方式项目联系人:吴仁晖、郑舒心、李妍茜电 话:  0779-3900996
  • 干货分享:酶标仪在植物对逆境胁迫应答中应用
    干货分享:酶标仪在植物对逆境胁迫应答中应用植物生长在开放的自然环境下,不可避免的被迫遭受和应对各种各样恶劣的生存环境,如干旱、盐害、低温、高温和病虫害等,这些不良环境统称为植物逆境或植物胁迫。随着全球环境的日益恶化,各种逆境胁迫因子对植物正常生长和发育的影响日趋严重,也是造成粮食作物和其它经济作物产量和品质下降的主要原因,成为制约现代农业发展的重要因素。植物为了适应各种胁迫环境,经过漫长的进化过程,产生了一系列对抗环境变化的能力,即抗性。植物抗性是绝大多数植物响应环境胁迫的普遍方式,植物抗性可以帮助植物提高对逆境的适应能力,但它是有一定限度的,如果逆境变化过强超出了植物的耐受范围,逆境胁迫会导致植物直接进入衰老和死亡。因此,植物对逆境胁迫的反应一直是植物科学领域的研究前沿。图1:植物与病原互作中的免疫反应人们已经发展出很多检测手段来探索和揭示植物免疫机制和植物抗逆机制,包括高通量测序技术、显微成像技术、色谱-质谱联用技术等,其中酶标仪检测技术作为一种高通量微孔板检测技术,且操作简便的方法,在生物医学、药物研发、农业和微生物学等领域得到了广泛应用。MolecularDevice公司的酶标仪产品可为植物抗逆领域的科学研究提供可行和简便的实验方案。针对钙信号检测,ROS信号检测,定量检测及动态曲线检测,MD都有相对应的完善的解决方案。Flexstation3可以用来检测钙信号,标配5大检测功能并内置自动移液系统,Flex快速动态监测模式,时间间隔最低达到毫秒级,轻松追踪从诱发到衰减完整的钙信号。使用SoftMaxPro软件的PeakPro分析功能,可对钙瞬变和钙振荡的信号进行峰频率、峰宽度、峰数目、峰上升时间及衰减时间等多个峰值属性进行分析。针对ROS信号检测,我们推荐多功能检测酶标仪,如SpectaMaxi3x和SpectaMaxiD系列,这几款仪器都可以配置自动双注射器,既能进行比色法和荧光强度测定,又能进行快速发光反应检测。针对定量检测,SoftMaxPro软件内置21种曲线拟合方式,可用于多种酶活分析和荧光定量分析。针对动态曲线检测,SoftMaxPro软件预置多种动力学参数,可一键输出最大速率、斜率、最大/最小时间和曲线下面积等分析。
  • 德祥举办2010南宁植物培养研究配套方案研讨会
    德祥成功举办2010年南宁“植物培养研究配套方案技术研讨会”  2010年4月8日,德祥在南宁成功举办“植物培养研究配套方案技术研讨会”。本次会议主要针对科研人员在幼苗生长,组织培养以及逆境研究中遇到的难题,提供可精确控制环境参数的仪器平台和系统的解决方案。     参与本次会议的嘉宾主要有广西科学院、广西药用植物园、广西农科院、广西林科院、广西甘蔗研究所、广西大学农学院和广西植物研究所等有关植物培养等领域的区级研究所。交流会中给出的相关解决方案获得与会嘉宾的热烈反响,通过现场的互动交流,用户加深了对产品的认识,也为德祥组织本次难得的学习交流机会表示感谢!
  • 国家植物基因研究中心植物激素检测平台举办技术讲座
    植物激素是植物体内合成的一系列天然微量有机物小分子化合物, 调控着植物生长发育过程中重要的生理反应,但其定量分析检测一直是限制研究深入的瓶颈问题。为了解决这一难题,国家植物基因研究中心(北京)从2007年开始致力于植物激素测定平台的建设,经过不断努力探索,目前已经建立了稳定的生长素、脱落酸、茉莉酸和水杨酸等激素的测定方法,并对外提供技术服务,部分数据已发表在Plant Cell、Cell Host & Microbe等杂志上。  为了充分发挥植物激素检测平台的作用,国家植物基因研究中心(北京)于11月26日举办了植物激素检测技术讲座。  此次讲座由负责植物激素检测平台工作的褚金芳主持。Waters公司的王则含首先介绍了超高效液相—三重四级杆串联质谱仪的工作原理、特点及其在痕量组分定性、定量分析中的应用及优势。随后,褚金芳就国内外植物激素检测的现状、植物激素检测平台的建设和运行、植物激素检测方法的建立以及植物激素检测流程需要注意的问题作了详细说明。来自所内外多个科研院所的70多名科研人员参加了此次培训。大家就植物激素检测相关问题踊跃提问,并得到了细致耐心的解答。
  • 华南植物园发现新的重金属超富集植物
    由于工矿企业的发展,农业化肥的过量使用,污水灌溉等,中国乃至世界的土壤重金属污染越来越严重。植物修复技术是目前重金属污染治理的研究热点,它具有治理效果的永久性、治理过程的原位性、治理成本的低廉性、环境美学的兼容性、后期处理的简易性等优点。这个技术成功的关键在于寻找超富集植物。虽然目前全世界已发现400多种超富集植物,但是大多数超富集植物都有生物量小,生长缓慢,弱抵抗力,种子少,缺乏与当地植物竞争的能力等缺点,所以能够真正应用于植物修复技术的超富集植物并不多。因此采用更有效的方法来筛选更多超富集植物是非常必要的。  中科院华南植物园土壤生态与生态工程研究组博士研究生张杏锋在导师夏汉平研究员的指导下,首次提出了用土壤种子库-重金属浓度梯度法来筛选重金属超富集植物,并成功找到一种Cd的超富集植物——少花龙葵(Solanum photeinocarpum)。该方法是指利用土壤种子库筛选对重金属具有超富集特性的植物,然后通过重金属浓度梯度实验对其超富集特性进行验证。结果发现,当土壤Cd浓度为60mg/kg时,少花龙葵的生长未受影响,根部Cd含量高达473mg/kg,茎、叶和地上部Cd含量分别达215、251和230mg/kg。在两个浓度梯度实验中,少花龙葵地上部Cd含量均超过Cd超富集植物的临界含量标准(100mg/kg),具有Cd超富集植物的基本特征,是Cd的超富集植物。  这一研究结果近期发表在环境工程领域主流杂志Journal of Hazardous Materials (2011,189: 414–419)上。  土壤种子库—重金属富集植物初步筛选实验中的植物种类(重金属添加到土壤中65天后)。最高的植物为少花龙葵。盆中数字分别表示如下:1-CK, 2-Cd4, 3-Cd8, 4-Zn100, 5-Pb300, 6-Pb600, 7-Cu100, 8-Cu300。
  • 恒美-植物光合作用测定仪检测植物的活体叶片光合作用-新品
    点击了解更多产品详情→植物光合作用测定仪 植物光合作用测定仪是一种用于测量植物光合作用效率和光合速率的设备。它可以帮助我们了解植物的光合作用情况,评估植物的健康状况和生长状态。 植物通过光合作用将光能转化为化学能,产生氧气和养分。光合作用测定仪通过测量植物叶片的光合速率和光能利用效率,可以评估植物的光合作用强度和效果。 使用植物光合作用测定仪非常简单。首先,将测定仪的探头或传感器放置在植物叶片表面。然后,仪器会通过测量叶片表面的光反射和吸收情况,计算出植物的光合速率和光能利用效率,通过测量植物的光合速率和光能利用效率,可以评估植物的健康状况。如果植物的光合作用效率较高,说明植物能够有效利用光能进行光合作用,代表植物健康良好。相反,如果植物的光合速率较低或光能利用效率较低,可能意味着植物存在养分缺乏、叶片受伤或其他生理问题。 植物光合作用测定仪可以监测植物的生长状态。通过定期测量植物的光合速率和光能利用效率,可以了解植物的生长过程中光合 作用的变化和适应能力。根据测量结果,可以调整光照、水分和养分等环境因素,以促进植物的健康生长。 优植物光合作用测定仪可以帮助研究人员和植物园艺师优化光合作用条件。通过测量不同光照、温度和其他环境因素对植物光合速率和光能利用效率的影响,可以确定最佳的光合作用条件,提高植物的生长效率和产量。 植物光合作用测定仪对于植物检测具有重要的作用。它可以帮助我们了解植物的光合作用情况,评估植物的健康状况和生长状态,优化光合作用条件,为植物的种植和研究提供科学依据。
  • 分子植物卓越中心等发现新型植物RNA低温感受器
    低温胁迫是限制植物分布的主要环境因素之一,感知低温信号是植物适应寒冷环境的基础。植物在低温中呈现出生长减缓、开花延迟等表型以适应低温环境。鉴定植物的冷感受器是解析植物低温感知分子机制的关键。   10月20日,中国科学院分子植物科学卓越创新中心/CAS-JIC植物和微生物科学联合研究中心研究员杨小飞研究组、东北师范大学教授张铧坤研究组,以及英国约翰英纳斯中心(John Innes Centre,JIC) 研究员丁一倞研究组合作,在《自然-通讯》(Nature Communications)上,发表了题为RNA G-quadruplex structure contributes to cold adaptation in plants的论文。   温度依赖的大分子结构变化决定生物大分子发挥细胞温度计的功能,如蛋白质、核糖核酸等。为寻找与温度感知有关的RNA结构域特征,科研团队对1000种植物转录组项目(1KP)的RNA序列开展研究。该研究对其中的906种陆生植物与环境因素的相关性分析表明,生长在低温地区的植物RNA中普遍富含鸟嘌呤(Guanine)。鸟嘌呤(G-rich)序列在体外可以折叠为特殊的鸟嘌呤四链体(RNA G-quadruplex,RG4)结构,耐寒植物中具有更多的RG4结构,暗示富含G-rich序列与植物的耐寒性有关。   为探究RG4折叠与冷响应间的关系,科研人员对模式植物拟南芥进行低温处理,并利用此前开发的RG4检测方法SHALiPE-seq对体内RG4折叠进行定量检测。结果表明,低温处理显著诱导植物体内RG4结构的折叠,证明植物RG4具有感知低温的能力。研究系统分析了拟南芥的mRNA降解组数据,发现包含有冷诱导RG4的mRNA降解速率明显降低,暗示RG4或抑制了mRNA的降解。为验证RG4结构在mRNA降解中的作用,科研团队挑选了一个受低温显著诱导的RG4基因,命名为CORG1。通过碱基替换将G突变为A,可将包含RG4结构的野生型wtRG4-CORG1突变为不能形成RG4结构mutRG4-CORG1基因。进一步研究发现,mutRG4-CORG1在冷胁迫中的降解速率显著高于wtRG4-CORG1的降解速率,证明低温诱导的RG4结构形成抑制mRNA的降解。同时,低温对mutRG4-CORG1的转基因植物的生长抑制也明显弱于wtRG4-CORG1的拟南芥,表明RG4结构突变降低植物对低温响应的敏感性。   综上所述,冷处理诱导植物mRNA的RG4折叠,进一步选择性抑制mRNA的降解从而减缓植物在低温环境下的生长速度。转录组中RG4结构的选择性富集帮助陆生植物感知低温信号,促进植物对寒冷环境的适应性进化。该研究迄今为止首次发现RG4结构抑制mRNA的降解,阐明了RG4结构的全新分子调节功能,且RG4结构是植物中发现的第一个RNA低温感受器。美国哈佛大学和耶鲁大学研究人员对动物细胞的同期研究工作表明,多种胁迫因素(如低温、饥饿)促进3’UTR的RNA结构折叠,并提高mRNA的稳定性(https://www.biorxiv.org/content/10.1101/2022.03.03.482884v1)。这些研究暗示环境依赖的RNA结构折叠作为胁迫感受器,在自然界广泛存在。   研究工作得到国家自然科学基金、英国生物技术与生物科学研究委员会基金和欧洲研究委员会基金等的支持。耐寒植物中的RG4富集提高了植物对寒冷环境的感知能力
  • 德祥:“植物培养解决方案”研讨会获得圆满成功
    2013年5月13日、15日、17日、20日、22日,德祥携手加拿大Conviron分别在武汉、南京、广州、海口、北京五地圆满地举办了Conviron植物培养解决方案的技术交流会。本次交流会旨在与广大用户共同分享目前植物生长箱的最新产品技术及在农业和生命科学领域的广泛使用,解决植物培养过程中遇到的难题。此次会议题材全面、新颖,吸引了来自高校及科研院所的师生前来学习交流。 此次交流会邀请了Conviron公司的植物应用专家Dann和产品经理Jamie主讲,会议主要围绕植物培养过程中大家关心的问题:植物病虫害和植物培养条件。用户针对植物培养过程中遇到的问题与Conviron的技术专家进行了交流。武汉站南京站北京站海口站 更多产品请登陆德祥官网:www.tegent.com.cn德祥热线:4008 822 822联系我们(终端用户)联系我们(经销商)邮箱:info@tegent.com.cn
  • 远方光电光谱彩色照度计明年上市
    12月30日晚间,远方光电公告称,公司自主研发的SPIC-200光谱彩色照度计已经实现产业化,将于2014年正式上市销售。  据悉,该产品可进行光谱、照度、色度、植物光合光度量等测量,融合360° 取样蓝牙探头、SD移动存储、WIFI无线传输等现代科技,产品可为客户提供了更加便捷、可靠的专业测试,产品为一款手持终端仪器,在现场照明、光源制造、科研等领域有较为广泛应用。  该产品相关核心技术已经获得国内外多项发明专利,填补了该领域的国内空白,整体技术国际领先。该产品不会对公司2013年度业绩造成影响,对公司2014年业绩将会有积极作用。
  • 被“海马”吹来的“植物木乃伊”
    台风“海马”过境广东河源 意外送来4000年乌木。10月25日河源市和平县彭寨镇土厘村村民在浰江河段意外发掘一棵年约4000年的乌木。这棵乌木轰动了整个土厘村,发现当晚,这棵千年乌木已被当地村民打捞上岸并在该村得到妥善保管和收藏。 原来,发现乌木前两天,台风“海马”过后当地一直暴雨不断,致使浰江河段一度河水暴涨。前日傍晚,当地一位村民路过彭寨镇土厘村浰江中游的鱼潭江河段时,意外发现了河床中漂浮着一棵乌黑的树木,怀疑是古木,遂第一时间向新闻媒体爆料,并提供了一张古木在河床的现场照片。随后媒体联系河源市博物馆馆长杜衍礼核实,杜衍礼初步确认该树木为千年以上的乌木。 初步认定这棵在江中发掘的乌木系千年阴沉木,年约4000年,乌木种类系当地常见的“麻柳树”。杜衍礼称,乌木又叫阴沉木、碳化木,有“东方神木”和“植物木乃伊”之称。杜衍礼称,这棵千年乌木的出土发掘,对于和平县境内的浰江河床变化以及地方古环境的变迁,具有一定的考古科研价值。 这只是一棵“死去”的植物,为什么却引来了新闻媒体、博物馆馆长的关注? 现今乌木在应用上可以制作家具、配饰等。乌木以碳化度定价、以是否返阳定价(晾干稳定)、以颜色定价(黑色普通、金丝楠少见)、以可利用的价值定价等等。 在古代阴沉木格外珍贵,其中原因之一是古代大型的基础建设较少,河流水量也充沛(不像当前这么多干旱)更缺乏大型的挖掘和吊装设备、挖沙船等,因此能发现和运回的阴沉木比较少,此为第一珍贵;其次阴沉木形成的特点也注定它在以往很难发现大型成材,且当它离开形成的环境后,温湿度等都环境变化比较大,保管不善也容易会出现开裂等状况,影响利用率,因此也显珍贵;最后就是传统文化中认为其在地底下埋藏千年而不腐,认为它已具有灵性,能辟邪纳福等等,就更显珍贵了。但同时,在风水先生眼中,真正的阴沉木也吸收至阴至寒之气。 最重要的是,由于乌木为不可再生资源,开发量越来越少,一些天然造型的乌木艺术品有一定的收藏价值。当今著名的考古学家魏学峰、社会学家陈历谋等对乌木的考古、艺术和社会的价值推崇备至,并将春列为“第一藏品”。 它的“尸体”为什么能够为当地河床的变化、地域古环境的变迁带来科研价值?因为乌木由地震、洪水、泥石流将地上植物生物等全部埋入古河床等低洼处,埋入淤泥中的部分树木,在缺氧、高压状态下,细菌等微生物的作用下,经长达成千上万年炭化过程形成乌木。 因此,科学研究中通过14C测定古树死亡年代,再用年轮计算其树龄,获得其生长年代;采用树轮的碳、氧同位素特征反映树木生长时古气候及古环境变化,利用树轮纤维素的碳、氧同位素特征来复原古代气候及环境为地球化学家提供重要依据;从古树洞的泥土中取样筛取(或浮选)其微体古生物进行种属鉴定,利用其生态属性,复原其生存环境;采集粘附于树孔洞中的软体动物外壳,进行鉴定和生态环境分析,研究地理环境变迁等。 对于它那些“还活着”的伙伴,我们又能做些什么?事件中的乌木由于台风、地震等灾害的侵袭,遭到严重的破坏,被村民们发现。那么,像这样的被摧毁,没被人关注到的树木又有多少呢?因此,为了避免这样的情况发生,对于古木的日常管理与养护工作必不可少,时刻了解树木的生长状况,研究树木根系的生长与周边土壤间的环境关系,通过科学手段,了解当地地址古环境变化,为灾害的发生预防做出贡献。 树木的寿命远比人类要长久,几百年、几千年甚至是上万年不等,它们扎根于地下,根系的在历史长河中不断的吸收释放一些物质,这些物质通过时间的积累与转化,形成了历史的印记,见证了环境的变迁,为人类研究历史古文化、古环境提供了良好的素材。因此,我们对古树等珍贵树种应当采取积极的保护,协同博物馆、政府等工作部门做好保护珍贵树种的工作,同时为科学研究保留更多的优质材料。
  • 探秘逆境植物实验室
    这是一个特殊的实验室,它的四周由玻璃制成,看起来好像是一间巨大的温室,里面摆放着各色植物,有的植物因为长期未浇水,已经变得枯萎,有的植物则被特意种植在盐碱土壤中,还有的植物则被放置在具有重金属污染的土壤中。它们所有的生长繁殖都被记录下来,进行科学研究。  这就是逆境植物实验室,用来观察植物的抗逆性,并且进行各种转基因实验。近日,记者来到了山东师范大学生命科学学院,对山东省逆境植物重点实验室进行了探访。  狗尾巴草  进入温室  在山师大生命科学学院楼前的空地上,记者见到了已经建成一年之久的“山东省逆境植物重点实验室”,据生命科学学院正在读博士的侯蕾同学介绍,这只是逆境植物实验室的一部分而已。  记者走进这间实验室发现,里面摆满了各种植物,有的植物因为缺水,叶梢已经开始发黄枯萎,还有的培养皿中带有一些白色的结晶颗粒。  “这些都是实验室要用的植物,”侯蕾向记者解释说,为了研究植物的抗逆性,实验室会专门针对不同的植物进行模拟生态繁殖。比如说有的植物会种植在富含盐碱的土壤中,有的植物则要种植在干旱的土壤中。更让记者惊讶的是,在温室的一角,记者居然发现了大量的狗尾巴草,而它们则是实验室进行抗逆实验的一部分。“我们给予这些狗尾巴草各种恶劣的环境,观察它们对恶劣的环境所产生的应变反应。”  除了进行模拟自然条件下恶劣的生长环境外,实验室的工作人员跟教授们还在进行着各种尝试,比如通过各种特殊的灯光模拟紫外线对植物进行光照,考察植物的反应 或者是可以降低或提升温度,观察植物的生长变化等等。“事实上所谓的逆境实验室,就是给植物极其恶劣的生存环境,逼迫促使它们在生长中对这些环境产生应对能力。”侯蕾告诉记者说,对于植物来说,当它们遭遇到严酷的逆境时,往往会产生一些意想不到的突变:“不可能每一株植物都会产生基因的突变,但是总会有一小部分的植物能够适应突变的环境,生存下去。”如果用通俗的话说,就是人为的促进植物进行进化。  未来用海水种植水稻?  那么逆境植物实验室将为科学家们提供什么样的帮助呢?或许我们可以从山师大的博士生导师张慧所描述的场景里窥得一二。  “我们都知道现在地球的淡水资源在减少,那么将来淡水不够用了怎么办?我们可以用海水来灌溉农田。”张慧向记者描述了这样一种情况:在未来的数年间,我国沿海各省将会在海边修建大量的水利工程,蔚蓝色的海水被引入内陆地区,经过河道或者专用的管道,然后送到水稻田中进行大面积的灌溉。  这些生活在蔚蓝色海水中的水稻,像普通的水稻一样生长,发芽,最后结果,然后被收割机收割,最终送上我们的餐桌 而困扰我们的干旱和沙漠也得到了有效的治理,一株株特殊的植物开始在干旱的沙漠中快速生长,原本漫天的黄沙变成了绿洲 原本惧怕低温的农作物开始在北方不断的生长发育,威胁到我们身体的重金属污染也因为一些特殊植物的出现而被分解消化。  “这么说可能大家觉得是在痴人说梦,但是对于我们这些研究植物抗逆性的专家来说,这个梦想已经距离现实越来越近了。”张慧肯定的告诉记者说。  喝盐水长大的满天星  张慧为何会如此确信海水种植水稻不是梦想呢?记者在逆境植物实验室中找到了答案。  在实验室的温室中,一种特殊的植物被大量培育,其土壤中含有大量的盐分,经过仔细观察记者发现,这些植物的表面都有着层层的白色颗粒,“这些白色的东西就是土壤中的盐分。”张慧告诉记者说,这种植物叫做补血草(即俗称的满天星)。与其他植物不同,补血草本身具有一种分泌盐分的能力,“这就好比我们人类,剧烈运动时,我们的汗腺会排出大量的汗水,补血草本身也具有这种类似汗腺的东西。”当实验室的工作人员用含盐量高的水去灌溉补血草时,它们会把盐分通过根茎吸收,然后通过叶子表面的“汗腺”把其中的盐分排出体外,从而得以继续生存。  如今,张慧正带领着自己的学生培育大量的补血草,然后在显微镜下将补血草叶面的“汗腺”分离出来进行观察,“为什么补血草会有这种汗腺,而其他植物没有呢?我们可以通过DNA的对比,发现其汗腺出现的原因,然后尝试着去把这种DNA镶嵌到水稻中去,让水稻也具有排泄盐分的能力。”  张慧告诉记者说,世界上已经有很多科学家在研究类似的问题,“大家都在尝试着使用海水去灌溉植物,因为在未来淡水资源会越来越珍贵,所以如何利用海水是一个很重要的课题。”  “在不同的环境下,植物会表现出各种抗逆性,比如说抗旱、抗盐碱、抗低温或者抗高温等等,这些都是植物的抗逆性。”张慧告诉记者说,我国一直很重视农业发展,因此在研究植物的抗逆性上投入了很大的资金:“希望我们通过植物的逆境实验,能够培育出抗旱、抗盐碱、抗低温或者是抗高温之类的植物,来改变生态环境,加大农业的发展力度。”  可以分解重金属的植物  “除了可以培育出抗旱、抗盐碱、抗低温高温的植物外,我们还可以利用植物的抗逆性来分解重金属污染。”张慧告诉记者说,由于人类对重金属的开采、冶炼、加工及商业制造活动日益增多,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤中,引起严重的环境污染。  “比如说蔬菜,前一段时间就有新闻报道说某些地方的蔬菜重金属污染超标,但是某些植物对于重金属有分解作用。”张慧告诉记者说,在一些富含重金属的矿山附近,往往会生长着一些植物,这些植物对于重金属污染已经有了分解能力:“我们可以通过模拟矿山或使用重金属污染的土壤培育一些植物,然后观察它们对重金属的抗逆性,根据它们的变化来选择出可以分解重金属的物种进行研究,然后培育出可以分解重金属或者是抵抗重金属的植物。”  名词解释  植物抗逆性  到底咋回事?  “任何一种植物,都具有抗逆性。”山东师范大学博士生导师张慧告诉记者说,所谓的植物抗逆性,是指植物所具有的抵抗不利环境的某些性状。“举个简单的例子,仙人掌可以在极度缺水的沙漠中存活,海南的红树林可以长期生活在海水中等等,这都是植物所具备的抗逆性。”  张慧告诉记者说,在遥远的远古时期有很多的植物,当地壳因为运动而发生改变时,这些植物的生存环境也发生了剧烈变化:有的时候因为大陆的抬升,造成了气候的湿润和温度的降低,有时候地面的凹陷,导致了河水海水的倒灌,在环境的剧烈变化下,大批的植物因为无法适应突变的环境而死去,但是也有少数植物,虽然其生理活动遭到了重创,但是却顽强的活了下来。  周围生存环境的剧变依然在延续,这些顽强生存下来的植物开始逐渐的适应这些环境,于是它们继续开始繁殖,其体内的基因也开始逐渐变化,最后直至完全适应了现有的生存环境。“一些植物可以采取不同的方式去抵抗各种胁迫因子,这就是植物的抗逆性。”张慧告诉记者说,正是因为植物具有这种抗逆性,才能够不断的适应环境,经过数千万年的不断进化,形成了如今我们所看到的各种植物。  “当然,正因为植物具有抗逆性,它们的其他方面就会减弱,比如说仙人掌,虽然耐旱耐高温,但是生长缓慢。”从事植物抗逆性基因研究多年的张慧不由得感慨造物主的神奇:“这就好像人一样,你的某一方面突出的同时,另一方面可能就会弱化,所以说我们这个世界没有全能型人才就是这个原因。”
  • 高温高压光浮区法单晶炉落户中国科学院物理研究所(怀柔园区)
    近日,德国ScIDre公司推出的HKZ系列高温高压光学浮区法单晶炉在中国科学院物理研究所怀柔园区材料基因组研究平台顺利完成安装调试。HKZ系列高温高压光学浮区法单晶炉能够提供2200–3000℃甚至更高的生长温度,晶体生长腔大压力可达300 bar,低可实现10-5 mbar的高真空,适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。ScIDre单晶炉技术特点:► 采用垂直式光路设计► 采用高照度氙灯,多种功率规格可选► 熔区温度:高可达3000℃► 熔区压力:10 bar/50 bar/100 bar/150 bar/300 bar等多种规格可选► 氧气/氩气/氮气/空气/混合气等多种气路可选► 采用光阑控制技术,加热功率从0-100% 连续可调► 样品腔可实现低10-5 mbar真空环境► 丰富的可升选件 中国科学院物理研究所除了聚焦基础前沿问题,扎根中关村科研攻关外,还积响应科技战略布局,投入北京科创中心怀柔科学城、粤港澳大湾区科创中心松山湖材料实验室以及长三角物理研究中心的建设。Quantum Design中国非常荣幸将德国ScIDre公司推出的HKZ高温高压光学浮区法单晶炉安装于该平台,该系统将为用户单位在氧化物晶体生长及各种新材料探索等诸领域的科研工作提供相关单晶样品制备支持!德国ScIDre公司的HKZ系列高温高压光学浮区法单晶炉外观图:系统内部结构实物图: 参考信息来源:http://www.iop.cas.cn/gkjj/skjj/
  • "植物激素"安全性惹争议 专家称毒性比味精小
    ●农业专家:毒性比味精还小 ●食品专家:滥用会危害健康  最近催熟剂、膨大剂、催红剂、增甜剂等植物生长调节剂被推向风口浪尖,这些调节剂被媒体冠名为"植物激素"之后,引起了消费者的不少担忧。  究竟"植物激素"危害大不大?应该禁止还是推广?针对这些消费者关心的问题,记者昨天采访了有关专家和官员。记者了解到,目前,植物生长调节剂在国内已被广泛应用于多种农作物。农业专家表示,植物生长剂属于农药范畴,基本都属于低毒和微毒农药,大部分毒性比味精和盐还小,是一种农业增产、增效的重要技术措施,并且是安全的。  不过一些食品专家也担忧,瓜农果农菜农为了高额利润,存在滥用植物激素,随意提高浓度,随意更改施用时间等现象,会给人类健康带来很大的风险。  植物生长剂已被广泛使用于多种农作物  "我们认为,最近的一些报道对消费者有误导作用。"昨天,广东省农业厅植保总站研究员江腾辉开门见山地对记者说,最近一些媒体把植物生长剂讲得太过恐怖。  "事实上,植物生长剂归属农药管理,并且属于低毒和微毒农药。"江腾辉说,前几天,省农业厅植保总站邀请华南农业大学、省农科院部分专家,专门召开会议研究植物生长调节剂的问题,与会专家一致认为,包括催熟剂和膨大剂在内的植物生长调节剂作为农作物生产中一项重要的技术措施,在农业增产、增效中发挥了重要作用。应加强对植物生长调节剂使用技术的宣传普及,指导农业生产者科学合理使用,引导社会公众科学看待,避免因一些不实信息或虚假消息误导消费者,切实维护公众的健康安全和广大农民的利益。  "作为一项农业增产、增效的重要技术措施,植物生长剂已被广泛使用于多种农作物,技术也已经比较成熟。"江腾辉说"广东每年使用植物生长调节剂约220吨,大概占全国使用量的3%多一点。"江腾辉说。  "植物生长剂跟化肥以及其他的农药本质是一样的,而且它还是低毒、微毒的。"江腾辉说。  农业专家毒性比味精和盐还小  "绝大部分的植物生长调节剂毒性比味精和盐还小。"华南农业大学资环学院徐汉虹教授说。  徐汉虹说,首先,作为一种农药,我国的农药管理制度还是比较严的。凡是在我国境内生产、销售和使用的植物生长调节剂,都必须进行农药登记。在申办农药登记时,必须进行药效、毒理、残留和环境影响等多项使用效果和安全性试验,经国家农药登记评审委员会评审通过后,才允许登记。  "如果植物生长剂是一种危害很大的农药的话,国家为什么还要允许它的存在和使用?"徐汉虹说,与杀虫剂、除草剂等其他的农药相比,植物生长调节剂的毒性要小得多。  "另一方面,在一些农作物中,植物生长调节剂的使用是必须的。例如香蕉便是这样。"徐汉虹说,在香蕉等一些水果中,使用"乙烯利"几乎是惯例,如果不这样,就得等到香蕉自熟以后再采摘,那么香蕉往往会在运输的过程中便烂掉。  食品专家过量激素聚集人体会危害健康  "植物激素添加剂真的无害吗?"中国人民大学农业与农村发展学院教授郑风田,一位研究食品安全问题的专家,昨天对记者表示,对这个问题的判定应该看看医学专家们的意见,毕竟那些用了膨大剂的西瓜最终还是要被人吃掉的。那些搞植物激素的专家们应该不会做人体健康试验的,因为这是医学专家们的领地。  "我接触的不少医学专家都认为:反季节蔬菜和水果大部分都是激素催成的,短期内影响不大,但长期食用会对人体产生副作用。"郑风田说,一份报告称,土耳其伊斯坦布尔大学生物系植物学教授因萨尔警告说,果菜中含有的过量激素,聚集在人体内对健康非常有害。  "瓜农果农菜农为了高额利润,存在滥用植物激素,随意提高浓度,随意更改施用时间等现象,会给人类健康带来很大的风险。"郑风田担忧地说。  "其实许多生长剂都不应该去使用,乙烯利等催熟剂必须要去禁止。"郑风田表示。他甚至"教大家一招":在瓜果市场,形状异常,外观色泽太美丽,味道差而平淡,一般都是被催熟剂、膨大剂搞出来的,要尽量少买少吃!  不过对于郑风田的观点,徐汉虹提出了不同的看法。他认为,以一种物质的化学成分来分析它的危害是片面的,科学的态度是,要考虑它的含量问题"植物生长调节剂一般在作物上使用剂量极低,不会对农产品(16.80,0.05,0.30%)质量安全造成危害。"徐汉虹说,作为一种激素,植物生长调节剂很低的含量就可以发挥作用,一般都是几千分之一,甚至上万分之一。"而且植物生长调节剂超剂量使用或使用剂量不够,不但难以达到理想的调控作物生长效果,甚至会影响农作物的正常生长,造成减产减收。"  关键是加强激素残留监测  "植物生长调节剂作为一种低毒或微毒的农药,已有38个经过国家批准登记,它们的安全性都是经过严格的试验的。"广东省农业厅植保总站研究员江腾辉呼吁,各界不要妖魔化植物生长调节剂。  "关键还是要加强监督和管理。"业内人士表示,目前,美国、加拿大、日本等发达国家都对植物生长调节剂制订了严格的农药残留标准。我国今后应加快制订和完善相关标准,加强农产品中农药的残留监测,切实保障农产品质量安全。
  • 气候变化对南极植物和土壤微生物的影响研究
    原文以Biology Researchers Studying Climate Change' s Effect on Plants and Soil Microbes in Antarctica为标题发表于2019年1月22日的https://today.ttu.edu/上原文作者:Glenys Young翻译:毅 德克萨斯理工大学(Texas Tech University)在南极的学术研究历史非常悠久。早在20世纪60年代,由Alton Wade领导的地质研究组就在南极考察。当时他们试图回答:数百万年前,世界是什么样子的? 然而,最近关于南极的研究并不着眼于我们这个星球的历史,这是它的未来。 德克萨斯理工大学生物科学系助理教授Natasja van Gestel正在研究气候变化如何影响那里的植物和微生物活动。 ? 确实,目前南极只有不到1%的土地是无冰的,但是,这个数字正在增长。van Gestel博士正在研究的区域在1960年前后还被冰川所覆盖,但是现在,冰川已经消退了大约500m。随着冰川退缩,植物开始在这一地区生长。?图1 van Gestel博士在这里安装了美国METER公司制造的EM50数据采集器和气象土壤测量传感器图2 美国METER制造的6通道数据采集器ZL6和一体式集成气象站ATMOS41首次安装在南极 “我们有一个很好的时间序列,来研究植被覆盖与距离冰川远近的关系。”van Gestel说。“自1950年以来,南极洲的244个冰川中有近90%已经退缩,并且这一过程仍在持续。因此,时间顺序信息可以帮助我们预测其他区域(冰川未消退区)会如何应对气候变暖。” 图3 冰川消退进程记录(1963~2018) 与研究生Kelly McMillen一起,van Gestel正在研究冰川消退区的整个环境梯度:从裸地到完全被植被覆盖的区域。 “我们发现了大约有100种苔藓以及两种维管束植物,南极发草和珍珠草(Antarctic hairgrass and Pearlwort)。”van Gestel说,“生产力最高的区域位于利奇菲尔德岛(Litchfield Island),这是一个需要特殊许可才能进入的保护区。生产力最低的区域距离冰川的边缘只有几米。虽然那里没有可见的植物,但土壤中的微生物是可以进行光合作用的。这些微生物是碳通量的重要贡献者。” 图4 生产力最高的利奇菲尔德岛(Litchfield Island)所在位置图5 冰川消退后岩石上开始着生地衣和苔藓? 碳通量测量是van Gestel博士研究的重要组成部分。这有助于了解植物生产力梯度格局以及植物和微生物对气候变暖的响应。 图6 van Gestel博士使用美国LI-COR公司制造的LI-6800测量地表碳通量(1) “我们预计碳通量会随着植被覆盖度的增大而增加。”van Gestel说,“而且,微生物的数量也会增多。随着植被覆盖度的增大,它们的代谢活动会更高。同时,我们预期微生物的群落组成也会发生改变。” “相当多的微生物目前并不活跃,它们可能从其他地方被风吹来,处于休眠状态。但是一旦时机成熟,它们就会打破休眠。”图7 van Gestel博士使用美国LI-COR公司制造的LI-6800测量地表碳通量(2) 与此同时,van Gestel博士还开展了野外增温实验。这一实验用于确认微生物响应发生的速度。北亚利桑那大学的博士Alicia Purcell将使用一种称为定量稳定同位素探测(qSIP)的技术,这是由van Gestel的合作者——北亚利桑那大学Bruce Hungate发明的一种新方法。这种方法可以确定哪些微生物正在积极生长,以及生长的速度。 van Gestel和McMillen使用可以在阳光下捕获热量的敞口加热室(Open-Top Warming Chambers),加热小面积的土壤和植被。这种方法的优势是,除温度以外的其他变量可基本保持和自然环境一致。 图8 敞口加热室(Open-Top Warming Chambers)制作与效果评估 Van Gestel的研究团队沿生产力梯度,选取了四个研究站点,在每个站点上采集完整的土壤苔藓样本土核四个,然后向样本土核中添加水并放置在敞口加热室内。两个样品土核添加纯水,另外两个样品土核添加氧18重水。 图9 野外安置的敞口加热室(Open-Top Warming Chambers) “微生物活跃后将会吸收水,”van Gestel说,“那些重氧将被整合到他们的DNA中,从而使他们的DNA变得更重。我们可以根据DNA的重量变化来计算其生长速度。” 最终,这些研究将能回答:气候变化如何影响南极洲的植物和微生物?这些改变又如何影响该地区生态系统的碳平衡。 “温暖的条件可能会使某些微生物受益,但不会使所有微生物受益。对植物来说也是如此。”van Gestel说。“我们预期微生物群落会发生改变。由于植物生长非常缓慢,因此短时间内较难确定植物群落的变化规律。为此,我们需要对植被覆盖进行长期定位监测。” “相对于对照地块,温暖地块的碳通量会更大。生态系统光合作用和呼吸速率都会有所增加,但哪一个组分增加的更多呢?因为这最终决定了整个系统的净碳通量对气候变暖的反馈。” ? “由于南极生态系统比地球上的其他生态系统更简单”,van Gestel说,“在这里的发现可以为生态系统的碳储存提供更多机制信息,进而对气候模型完善做出贡献。” “例如,微生物碳利用效率的温度敏感性如何?微生物利用一部分碳构建生命体,其余部分则通过呼吸作用消耗掉。那问题来了,温度变暖会使微生物更加浪费碳吗?微生物碳利用效率是气候模型中的一个重要参数。如果微生物的碳利用效率下降,那么更强的呼吸损失会导致更多的碳从土壤迁移到大气中,从而进一步加剧全球变暖。”
  • 新品力荐|植物根系分析仪功能强大,操作简单
    植物根系分析仪是一套用于洗根后专业根系分析系统,还可以用于根盒培养植物的根系表型分析,可以分析根系长度、直径、面积、体积、根尖记数等,功能强大,操作简单,软件可分析植物根系的形态分析及根系的整体结构分布等,广泛运用于根系形态和构造研究。产品链接https://www.instrument.com.cn/netshow/SH104275/C510092.htm 这种植物根系分析仪还有助于发现根系的问题。当植物遭遇病害、营养不良或其他生长障碍时,其根系往往会出现异常。植物根系分析仪能够及时发现这些异常,帮助科研人员找出问题的根源,为植物的治疗和复苏提供指导。 植物根系分析仪在农业生产中的应用也不容忽视。通过对不同种类或不同生长阶段的植物根系进行研究,科研人员可以为农民提供更加科学的种植建议,如合适的灌溉量、最佳的施肥方案等,从而提高农作物的产量和质量。 植物根系分析仪为科研人员提供了一个全新的视角来探索植物的生长奥秘。它深化了我们对植物生理学的理解,同时为农业生产提供了有力的技术支撑。在未来,随着技术的进步和普及,植物根系分析仪有望在更多领域得到应用,为人类的生活和生态环境带来更大的益处。
  • IVIS视角—IVIS系统在植物领域的应用(二)
    在上一期IVIS视角中我们和大家分享了IVIS系统如何在活体状态监测植物氮代谢水平,并基于转基因植物开发分子传感器(IVIS系统在植物领域的应用(一)(点击前方蓝字直达文章内容)),其实除通过构建生物发光的转基因植物之外,IVIS系统还能通过化学发光或者荧光染料探针等方式研究植物领域的多种应用。本期将带领大家继续拓展在植物活体光学领域的应用。活性氧(ROS)是有氧生物在进化过程中产生的一类含氧基团,具有较高的生物活性。除了作为一种氧代谢副产物会导致细胞氧化应激甚至凋亡之外,随着近年来研究的深入,ROS也被发现参与植物的正常生长进和代谢过程,是许多基本生物过程的关键调节因子,包括细胞增殖分化、器官成熟发育、植物应激抗逆等。在往期分享(点击前方蓝字直达文章内容)中,我们介绍过一种纳米探针用于检测动物体内炎症及肿瘤发生时活性氧水平。而在植物中,虽然许多ROS成像技术已经得到了发展和应用,但目前还缺乏一个动态检测植物体内ROS的植物成像平台。近期出现了一种可靠和直接的方法来对植物中的活性氧进行全植物活体成像,该方法发表在《Molecular Plant》期刊上。该方法是利用荧光探针的氧化来直接检测ROS,并且研究人员结合IVIS Lumina活体成像系统,开发了一个用于整株植物活体成像的工作流程。通过该工作平台,可以完成荧光染料探针对整株植物的染色、植株刺激处理以及处理后的ROS定量评价。系统工作流图解说明:A-B 植物在合适的光照周期和湿度的培养环境中培养 C 植物在玻璃熏蒸箱里用雾状染料熏蒸30分钟 D 植物进行相应的刺激(强光照射、植株损伤、病菌感染)E 整株植物在IVIS Lumina成像系统中拍摄 F 利用IVIS LivingImage软件分析植株ROS信号利用该工作平台,研究人员测试了一系列包括DHE、H?DCFDA、H?HFF-OxyBURST、Amplex red、SOSG和PO1在内的多种荧光探针,通过整株植物ROS信号积累数据分析筛选出了一个最有效,最敏感,能够响应多种外界刺激所产生的ROS的荧光探针——H?DCFDA,该探针能够表现出最强的信噪比和应用广泛性。这些不同的外界刺激包括局部强光照刺激、损伤或病原体感染,未来也可以拓展到其他种类的应激反应研究中。此外,通过rbohD和apx1突变体中ROS信号的减弱和增强以及DPI(ROS生产抑制剂)处理后ROS信号传播的减少,进一步证明了该成像系统的有效性,并且表明该方法不受外界因素的影响。拟南芥在不同外界刺激下30分钟内的ROS积累情况(A 局部强光刺激;D 叶片损伤刺激;G 病菌感染)这个新方法可用于研究不同遗传变异体的局部和植株整体积累的ROS信号,进行表型分析来发现新的ROS信号通路,监测不同植物和突变体的应激水平,揭示ROS参与到植物应激、生长调节和发育过程的新途径。文章中探讨了这种新方法在不同拟南芥突变体系统以及小麦、玉米等谷物创伤反应研究中的应用。综上,该研究所报道的方法可以快速有效的对植物进行整体的ROS活体成像,这为今后ROS代谢,系统信号传导等的研究提供了十分有利的科学工具。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制