当前位置: 仪器信息网 > 行业主题 > >

供电膜片钳放大器

仪器信息网供电膜片钳放大器专题为您提供2024年最新供电膜片钳放大器价格报价、厂家品牌的相关信息, 包括供电膜片钳放大器参数、型号等,不管是国产,还是进口品牌的供电膜片钳放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合供电膜片钳放大器相关的耗材配件、试剂标物,还有供电膜片钳放大器相关的最新资讯、资料,以及供电膜片钳放大器相关的解决方案。

供电膜片钳放大器相关的论坛

  • 膜片钳探头固持器适配器详细规格参数

    Narishige的[url=http://www.f-lab.cn/stereotaxis/ap-14a.html][b]膜片钳探头固持器适配器AP-14A[/b][/url]用于将Axon膜片放大器连接到强大的万向节。[b]Axon膜片钳探头固持器:适配器-AP-14A[/b]* 可连接的固态万向节:UST-1, UST-2, UST-3 etc.阅读  膜片钳探头固持器汇总表了解所有组合概况。[img=膜片钳探头固持器适配器]http://www.f-lab.cn/Upload/ap-14a_.jpg[/img][b]适配器-AP-14A规格[/b][table][tr][td=1,3]尺寸大小/重量[/td][td]AP-14A[/td][td]宽58 x 深36 x 高9mm, 12g[/td][/tr][tr][td]AP-14L[/td][td]宽65 x 深39 x 高9mm, 15g[/td][/tr][tr][td]AP-14N[/td][td]宽40 x 深21 x 高9mm, 6g[/td][/tr][/table]Line [b]膜片钳探头固持器:适配器-AP-14L[/b]NARISHIGE 的AP-14L适配器用于将Line膜片放大器连接到强大的万向接头。*可连接的固态万向节: UST-1, UST-2, UST-3 etc.阅读  膜片钳探头固持器汇总表了解所有组合概况。[b]适配器-AP-14L规格[/b][table=95%][tr][td=1,3]尺寸大小/重量[/td][td]AP-14A[/td][td]宽58 x 深36 x 高9mm, 12g[/td][/tr][tr][td]AP-14L[/td][td]宽65 x 深39 x 高9mm, 15g[/td][/tr][tr][td]AP-14N[/td][td]宽40 x 深21 x 高9mm, 6g[/td][/tr][/table][b]Nihon Koden [b]膜片钳探头固持器:适配器-AP-14N[/b]NARISHIGE 的AP-14N适配器用于将Nihon Koden膜片放大器连接到强大的万向接头。*可连接的固态万向节: UST-1, UST-2, UST-3 etc.阅读  膜片钳探头固持器汇总表了解所有组合概况。[b][b]适配器-AP-14N规格[/b][/b][/b][table=95%][tr][td=1,3]尺寸大小/重量[/td][td]AP-14A[/td][td]宽58 x 深36 x 高9mm, 12g[/td][/tr][tr][td]AP-14L[/td][td]宽65 x 深39 x 高9mm, 15g[/td][/tr][tr][td]AP-14N[/td][td]宽40 x 深21 x 高9mm, 6g[/td][/tr][/table][b]膜片钳探头固持器适配器[/b]:[url]http://www.f-lab.cn/stereotaxis/ap-14a.html[/url][b][/b]

  • 【原创】膜片钳,,,,大家议议

    膜片钳实验系统配置 一个电生理配置有4个主要的需求:环境需求:保持标本的健康的手段。光学需求:显现标本以供观察的手段。机械结构需求:稳定定位微电极的手段。电子学需求:放大和测量信号的手段。我们将配置分成两种类型的“典型”配置:胞外记录和单通道膜片钳记录。胞外记录的配置 该配置主要用于记录脑片的场电位。一般目标是将一个相对粗糙的电极放置在组织的胞外空间,同时尽可能模仿体内的组织环境。因此,需要一个相当复杂的小空腔,用来对组织进行温暖、氧化、灌注。而另一方面,光学和机械结构需求则简单得多。一个显微镜,至少15cm的工作距离(配合近似垂直放置的微操纵器),通常已经可以看到切片或大体的形态学特征。由于对定位时手的震动和电极的精确放置都没有苛刻要求,微操纵器可以选用相对粗糙的机械类型。但是,在记录过程中,微操纵器不允许有一点漂移和震动。 需要使用低噪声的电压放大器。由于信号的范围可能在10 uV 到10 mV 范围内,低噪声电压放大器的增益至少要达到1000。单通道膜片钳记录配置 标准的膜片钳配置在许多方面与胞外记录恰好颠倒过来了。由于对环境的控制非常少,实验通常在室温下、一个无灌注的培养皿中进行。 光学和机械需求则根据实际的细胞的大小(10或20 um)有特殊的规定。显微镜应该有放大300或400倍的能力,并需要某种对照增强能力(Nomarski, Phase or Hoffman)。Nomarski(微分干涉)对于电极的精确放置是最好的,因为它的影像依赖于视野一个很窄的深度上,这有助于精确定位(定位不好,影像是模糊的)。Phase(相差法)用于精确定位程度要求低一些的场合,但提供了更好的对比度。Hoffman方法提供了较便宜的,稍微退化点的Nomarski版本。最好使用倒置显微镜(如奥林巴斯的倒置研究级显微镜IX71/IX81):(1) 这样能使电极顶端更容易被看到,因为物镜在chamber的下方,(2) 提供了更大更坚固的平台,用来固定微操纵器。 微操纵器应提供良好的,平滑的移动(最多每秒2um)。对震动和稳定性的需求决定于记录模式:是希望记录cell-attached- patch,还是cell-free (inside-out or outside-out) patch。 在cell-free- patch中,微操纵器只需要在形成封接过程中保持稳定,一旦离开了细胞,稳定就不是那么至关重要了。这通常不到一分钟。 单通道记录的放大器比胞外记录使用的要复杂得多。组织切片膜片钳记录配置 膜片钳技术的近来扩展,切片膜片钳技术,其配置需要是体外胞外记录和常规膜片钳配置的一个组合。例如,该技术可能需要一个chamber,需要连续对切片进行灌流和供氧。大部分的其他要求,与常规膜片钳类似。光学需求与切片的厚度有关(thick-slice or thin-slice),对thick-slice,简单的解剖显微镜就够了(如奥林巴斯的解剖SZ和SZX系列显微镜);而对thin-slice,显微镜则需要提供400倍的放大,良好的顶端聚焦和对照增强。设备放置 电生理实验人员倾向于在小房间的一角独自工作。小房间通常比较安静,震动和空气流动被削减了。 首先放置显微镜是比较明智的,然后是密切联系的附件,例如chamber,微操纵器和温度控制系统(如果安装了)。基本原则是第一要保证细胞恰当的处于静止状态,第二要确认从细胞记录信息的行为没有对细胞带来连续的致命伤害。第一原则可以通过良好的实验环境帮助实现,第二原则通过良好的光学和机械手段实现。 在显微镜周围工作,保持例如灌注阀门和微操纵器的控制要非常谨慎,避免震动。理想的情况是,它们放置在一个小架子上,该架子从防震台延伸出来,保证在通过显微镜观察细胞时,不会产生破坏的震动。 选择和放置电子仪器是个人偏好的事情。最低的要求是只有一个放大器和一台计算机,另外强调最好放置在一个仪器架上。一个示波器是重要的,因为,计算机通常不够灵活;而且,示波器常能展现在计算机屏幕上看不到的一些意外情况,例如计算机的采样率设置不合适时,就会丢失大量细节信息,而示波器则不会。 示波器应与眼睛水平,在示波器上面或下面直接放置微电极放大器,以便容易的调整和监视信号。 计算机应放置得尽可能远,但离显微镜还是应该保持在手臂来回够得着的地方。这有助于削减显示器的辐射噪声,也能确保在使用键盘匆忙记录时不至于肘部撞击显微镜。 膜片钎实验的平台---显微镜: 完成膜片钳实验最关键的前提是要有一台性能优异的显微镜为基础平台,只有在这个基础平台上才能完成膜片钳这一高技术含量的实验,例如奥林巴斯为膜片钳实验就提供了这个很好的平台,如BX51WI/BX61WI是专门为脑片膜片钳实验所提供的显微镜平台,而IX71/IX81则为单细胞膜片钎实验打下了坚实的实验基础.[em61] [em43]

  • 放大器是如何工作的?

    放大器是很多器件的关键组成部分,相信大家在生活中也见过放大器。为了增进大家对放大器的了解,本文将介绍运算放大器原理,并探讨如何设计运算放小。运算放大器是模数转换电路之中最常用、最关键的单元。全差分运算放大器是指输入和输出均为差分信号的运放,与一般单端输出运算放大机相比具有下列优点:更糟糕地抑制共模噪声。噪音更高。抑制谐波畸变的偶阶项效果更糟糕。因此,通常低性能运算放大器采用全差分形式。近年来,全差分运算放大器以其较低的单位增益带宽频率和较小的输出摆幅,在高速、低压电路之中得到了普遍的应用。随着数据转换速率的提高,对高速模数转换的需求越来越普遍,高速模数变换需要低增益和低单位增益带宽的运算放大器用以满足系统精度和快速设置的要求。速度和精度是模拟电路最关键的两个性能指标,然而,两者的要求是相互制约、相互对立的。所以很容易同时满足这两个要求。折叠共源共栅技术可以很好地解决这一问题,采用这种结构的运算放大器具有高开环增益和低单位增益带宽。全差分运算放大器的缺点是其之外反馈环路的共模环路增益很大,不能精确地确定输出共模电胜。[url=https://www.szcxwdz.com]创芯为电子[/url]提供电子元器件采购。主要产品包括[url=https://www.szcxwdz.com]电源管理[/url]芯片、[url=https://www.szcxwdz.com]处理器及微控制器[/url]、接口芯片、放大器、存储器 、逻辑器件、数据转换芯片、电容、二极管、三极管 、电阻、电感、晶振等,并提供相关的技术咨询。

  • 从PC膜片钳到NMT非损伤微测技术 | (3)现状与未来

    [b]活体研究智能传感技术的演进(3)现状与未来作者:许越 [url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820382&idx=2&sn=b59711014ab3bac4117cfe0f115a62da&chksm=844cc10eb33b48181a6e3cd18f734ae66f9059d781d54320e045b89677bd8bb7943c8bb0df6c&scene=21#wechat_redirect]点击查看作者自传[/url][b][color=#a5a5a5]许越,男,1967年生于北京。[/color][/b][/b][list][*][color=#a5a5a5][color=#888888]于[/color][color=#888888]1993[/color][color=#888888]年和[/color][color=#888888]2000[/color][color=#888888]年分别获得首都师范大学及美国麻省州立大学,植物生理学双硕士学位。[/color][/color][*][color=#a5a5a5][color=#888888]2001[/color][color=#888888]年在美国创建基于[/color][color=#888888]NMT[/color][color=#888888]技术的美国扬格公司,次年运用[/color][color=#888888]NMT[/color][color=#888888]服务于设立在美国北卡州立大学的美国航空航天局[/color]([color=#888888]NASA[/color])[color=#888888]空间植物学研究项目。[/color][/color][*][color=#a5a5a5][color=#888888]2005[/color][color=#888888]年成立旭月(北京)科技有限公司,在匡廷云院士、杨福愉院士和林克椿教授的帮助,以及各级政府的大力支持下,将非损伤微测技术引进中国大陆。[/color][/color][*][color=#a5a5a5][color=#888888]2014[/color][color=#888888]年带领旭月团队提出被誉为“第二个人类基因组计划”的“动态分离子组学([/color][color=#888888]imOmics[/color][color=#888888])”创新概念,同年成立旭月生物功能研究院。[/color][/color][*][color=#a5a5a5][color=#888888]2015[/color][color=#888888]年推出世界领先的“自动化非损伤微测系统”,并倡导建立中关村[/color][color=#888888]NMT[/color][color=#888888]产业联盟,开启以水安全、个体化精准医疗、粮食安全等民生应用为代表的[/color][color=#888888]NMT[/color][color=#888888]产业化进程。[/color][/color][*][color=#a5a5a5][color=#888888][color=#a5a5a5]截至2016年,已帮助国内400多个科研单位及实验室,利用NMT实现了科研水平的跨越式发展。[/color][/color][/color][/list]PC膜片钳与NMT非损伤微测技术虽然几乎诞生在同一历史时期,但是它们的发展和普及过程却大相径庭。[b]1) NMT的中国特色[/b]大家知道,各个国家对动物医学研究的投入通常要远远高于对其它研究领域的投入。下图是美国在医疗健康上面的投入是其它领域的5-10倍,在中国动物医学方面的投入大概是植物学研究的6倍左右(来自于个人通讯)。[align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2MvS7dCXdDYBfqrNMk6gpicChvuLDRS1569mM4NaA54xUEhEbZYcSY3w/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center](来自于网络)[/align]因此,在绝大多数情况下,很多生命科学的新技术,新思路,新突破,都是来自于动物医学领域,然后传导到其它科研领域,正如在本文的第一部分[url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820348&idx=1&sn=bd4fb10beab21b0499c233c9c6df16d5&chksm=844cc16cb33b487ae3226d4e2a4782738fe7a4203ab8a52d838ec30831ba79bf9f5d77cd0e81&scene=21#wechat_redirect](1)愿望与挑战[/url]中所叙述的那样,膜片钳技术诞生于动物神经细胞单通道离子电流(烟碱乙酰胆碱受体)的研究,90年代进入中国后,也被首先应用于动物医学研究。然而,非损伤微测技术在生命研究领域的发展,却划出了一个自己较为独特的发展轨迹。首先,大家去问问用膜片钳搞植物研究的科研人员,他们有多么羡慕用膜片钳进行动物医学研究的同行们,因为植物有细胞壁,研究植物的人必须要先用各种消化酶去除细胞壁后,才可以形成膜片钳技术必须的玻璃电极与细胞膜之间的高阻封接。[align=left]那么,大家可以想象,不用去除细胞壁就可以研究植物与外界环境的离子/分子交换信息,这对于搞植物研究的人该有多么大的吸引力呀!姑且不说,细胞壁作为植物细胞完整结构的一部分,在功能上更是不可或缺的重要环节,将其人为去除后,其结果的理论价值必然大打折扣外,单就技术上给植物学家们带来的简单、便捷和快速,就让大家兴奋不已。[/align] [img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug27IT7uZGkSnBKveX2hqCR3kByLLiaCiciaGpamSXicEKMicmibyic9tTbVLPlg/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](种康在《Cell》利用NMT发表水稻植物领域文章)[/align]因此,在国际上自从NMT诞生之日起,植物研究学者们对它的追求从来没有逊色于动物医学研究的同行们。而中国自身为农业国,在植物领域的研究底子好,投入又大。可能也加之旭月公司创始人自身的植物研究出身的背景,使得非损伤微测技术在中国的发展一路走来,在植物领域的发展要远远胜于在动物医学的发展,数据显示,在中国科学家至今发表的200多篇NMT应用已发表文献里,80%以上是来自植物领域的研究(数据来自“中关村NMT产业联盟”http://nmtia.org)。[b]2) 科研应用现状[/b]膜片钳技术在这二十几年的发展使其已经深深地融入了全世界生命科研活动的各个方面。在中国也不例外,这些年我国科研人员利用该技术取得了丰硕的科研成果,尤其是植物研究领域,以武维华、种康、刘春明等为代表的科研人员利用膜片钳技术在植物生理生化方面取得了系列世界级的成果。我国的动物医学研究方面,以周专、徐涛、王世强、王立伟、陈丽新、祁金顺等科学家为代表在诸多领域也已处于世界科技前沿。但就我个人在国外多年的所见所闻来看,我国在动物医学方面没有比现在发展的更快更好一些的一个重要原因是中国这方面的人才流失比较严重。我在哈佛、耶鲁等大学见到很多国内培养的膜片钳高手。即:国内培养出来后,在就要出成果的时候,却来到国外为国外的课题所用了。想必周专老师他们对这点肯定有更深更多的感受吧。非损伤微测技术在中国的普及应用,相比膜片钳技术有两个先天不足。一是进入中国要晚近10年的时间;二是没有膜片钳那样一开始便伴随着诺贝尔奖的耀眼光环。但是,非损伤微测技术也有其自身的优势,其一是进入中国适逢国家对基础科研的投入要远远大于90年代膜片钳进入时期;二是有匡廷云、杨福愉、林克椿、叶鑫生、高荣孚、尹伟伦、赵微平、邱泽生等老一辈科学家的鼎力支持。[align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2wjQ6aFhplNcl23wiarAqicxyxVibbOMIfrP4Y6ftiaDAchOn8awoaOJ9Tg/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center](来源于网络)[/align]所以,尽管非损伤微测技术进入中国时间不长,但是发展十分迅速,不但以印丽萍、陈少良、沈应柏、许卫峰、罗志斌等中青年科学家,利用非损伤微测技术快速将自身科研提升至世界水平,刚才所列的武维华、王立伟等国内膜片钳技术专家也已利用NMT,并结合膜片钳技术做出了世界一流的科研成果。[b]3) 技术现状[/b]全自动膜片钳虽然已于近年面市,但是传统的膜片钳技术仍然在生理、相关基因功能验证等基础研究领域,发挥着不可替代的作用。而全自动膜片钳虽然提高了数据的单位产出量,但似乎更多地被应用于药物研发、药效评价等应用领域,其对科研基础理论的贡献和潜力还有待于观察。[align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2aSo6YYWVabuqzRV3dKticXGNNbib3A4WMZAkVqhMibPWm0tAFjWHPPJ3Q/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center](来源于旭月公司网站:http://xuyue.net)[/align]智能自动化的NMT传感器制备装置,已经于2016年在中国市场有售,标志着非损伤微测技术开启了追赶膜片钳自动化的步伐。尽管数据的单位时间产出量,即:高通量并不是非损伤微测技术的优势,但是,鉴于该技术的长处之一就在于它的实时测量,即在正常生理时间尺度内,揭示生物的活体生理功能。相反,将非损伤微测技术与膜片钳技术相比,比较容易一叶障目的误区就是把非损伤微测技术的应用限制在了只是生物膜的层面。其所谓‘成也萧何,败也萧何!’,膜片钳的高阻封接成就了它的单通道测量,但同时也制约了它的测量材料的灵活性。而反观非损伤微测技术,因为不接触被测材料,所以在材料的选择上就有了极大的自由度。特别是近年的科学发现表明,如我在里所述,人类的各种疾病的答案,不在基因层面(半个多世纪寻找癌症基因努力的失败就是例证),甚至不在细胞层面,这就给组织层面的研究打开了广阔的新天地。当我们环顾实验室四周,能够帮助我们研究活体组织的技术凤毛麟角,而像非损伤微测技术这样完全近乎无损的技术更是难觅。加之进一步的研究表明,比如癌症的发生发展是和其组织微环境的改变密切相关,那么,还有什么技术比非损伤微测技术,这一能够在活体状况下检测微环境中各种离子分子活性的技术更合适的呢!山西医科大学的祁金顺教授,利用非损伤微测技术建立起的脑切片组织生理检测试验体系,就是这方面的一个很好的例证(具体描述请浏览: http://e.vhall.com/133934064或http://xbi.org/index.php?option=com_content&view=article&id=516&Itemid=907&lang=cn)。[b]4) 未来趋势[/b]每个技术都有它自己的特色,很难完全取代对方。因此,利用各自优势,膜片钳与非损伤微测技术配合使用将是一个趋势。这里已经有一些尝试,大家可以参考一下相关文献(http://xbi.org)。下面我就几个非损伤微测技术可以弥补膜片钳技术局限的地方跟大家分享一下,以便大家更好地结合两者使用。[align=center][img=,397,211]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2x4Tml1DWpOIDDI3WicJ2o6tvFQYUiaJqfCwnoGdkw1nT5D3wSFghk3Dg/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](来源于美国扬格公司网站:http://youngerusa.com/)[/align](a)‘零’电流问题如上图所示,当有等电荷的两种离子进出同一片细胞膜的时候,膜片钳技术将检测不到电流。而此刻科研人员可以利用非损伤微测技术的多传感器同时测量优势进行研究。(b)其它离子运输载体和方式的研究我们知道除了离子通道,生物细胞还有其它多种离子转运方式,它们与离子通道一起,共同担负着维持细胞和乃至整个生物体活性的各种生理功能。正如在[url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820382&idx=1&sn=156a5c79f5aba52283f147a9d4cb1e7f&chksm=844cc10eb33b48188af3c5762db8b3b21a30d311c3bbae3f85ad8fd71abbd91872704d321d35&scene=21#wechat_redirect](2)时间与空间[/url]中所说,将PC与NMT这两个跨越不同时间和空间的技术相结合使用,对于我们更加全面的了解生物现象的本质,有着不可替代的作用。(c)分子转运的研究毫无疑问,NMT非损伤微测技术在O2,H2O2,葡萄糖,乙酰胆碱等与生命活动密切相关的小分子,大分子跨膜运输方面,将极大补充PC技术在这方面的不足。(d)物理机械损伤尽管‘高阻封接’成就了PC的单通道测量,但是其巨大的机械损伤,被证明不但是的确存在的,而且的确会产生错误的结果。那么,有另外一个相对独立的技术对PC进行验证,对科学研究的准确性无疑是个巨大利好。[align=left]广州暨南大学的王立伟,陈丽新教授,利用NMT与PC结合,发现并推翻了PC过去错误的结论的故事很好地诠释了这一点。(具体描述请浏览:http://e.vhall.com/133934064[/align][align=left]或 http://xbi.org/index.php?option=com_content&view=article&id=516&Itemid=907&lang=cn)[/align][b]5)结束语[/b] [img=,280,231]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug26453BRepj8GYQsp578CpkibGszw4qrzbIkhsyxAH8vJxhAIACpICQjg/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](来源于网络)[/align]在一次社会名流的聚会上,当有人用略带轻蔑的口吻对发现美洲新大陆的哥伦布说到:“你发现美洲没有什么了不起的,只不过是你的运气比别人好些罢了!”。哥伦布没有马上说什么,而是让人拿来一个鸡蛋向在场的所有人发出挑战,看谁能够把这个鸡蛋立在桌子上。读者们中很多人知道这个故事的结局,就是在这些人费了九牛二虎之力失败之后,哥伦布将鸡蛋的一端击碎后立在了桌子上。Neher和Sakmann发明膜片钳“不过”是在前人电生理的基础上,略微地在玻璃电极与细胞膜接触时施加了一点点负压形成‘高阻封接’而已。同样NMT非损伤微测技术的诞生,Jaffe和Newman他们“也无非” 就是让离子/分子传感器动了起来,进行‘两点测量’而已!但就是这一看似细微的‘高阻封接’,这一看似平常的‘两点测量’,让科学家能够检测到pA(10[sup]-12[/sup])级的微弱单离子通道电流,让科学家能够检测到单个细胞离子(比如Ca[sup]2+[/sup])分子(比如O[sub]2[/sub])的10[sup]-15[/sup]级进出流速。他们就是科学界的哥伦布,帮助科学家们发现了科学世界的新大陆!同学们,老师们,朋友们,现在非损伤微测技术已经来到了你的身边,中国人在一些领域已经实现了弯道超车,能否先于他人把这个‘蛋’矗立在你们各自的研究领域,即是摆在你们面前的挑战,大家准备好了吗?![b]参考文献[/b][list][*]美国对不同研究领域的投入http://www.bu.edu/research/articles/funding-for-scientific-research/[/list][list][*]Verkhratsky, Alexei & Parpura, Vladimir. (2014). History of Electrophysiology and the Patch Clamp. Methods in molecular biology (Clifton, N.J.). 1183. 1-19. 10.1007/978-1-4939-1096-0_1.[/list][list][*]Uncoupling of K+ and Cl- transport across the cell membrane in the process of regulatory volume decrease. Linjie Yang, Linyan Zhu, Yue Xu, Haifeng Zhang, Wencai Ye, Jianwen Mao, Lixin Chen, Liwei Wang. Biochemical pharmacology 84 (3), 292-302[/list][list][*]非损伤微测技术实时检测海马脑片跨膜钙离子流。《生理学报》2017年 第4期 | 李甜 原丽 张军 焦娟娟 祁金顺[*]文中相关文献可以到旭月研究院网站下载: http://xbi.org/index.php?option=com_rsfiles&view=rsfiles&Itemid=304&lang=cn[/list][align=center][img]http://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDF6tmTJTMX4uic43l9icahVSUTxSOVWpIzWuU9op0axQeUZlOd197ib0J6kUyJDXf9MJrWibHg0hicvMCw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][/align][align=center][b]旭月版权所有,转载注明出处.[/b][/align][align=center][img=,,130]http://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDFvv5AgpUstNSuO10Yztkuqee9ozBmgmqkRl5Df8F3bvfhr0YroolbwMI0ScicdJDTJyTPYXIc1qvw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align]

  • 【分享】驻极体传声器小型前置放大器的设计

    0 引言 随着我国通讯事业的迅猛发展,对驻极体传声器的需求也越来越大。目前,一些小型的驻极体传声器虽然可以将场效应管集成于传声器内部,但由于高端产品的售价高昂,低端产品传声器的精度和灵敏度又无法保证,再加上传统的前置放大器体积又过于庞大。因此,设计一种体积尽可能小,成本低廉而性能优良的前置放大器具有十分重要的意义。1 驻极体传声器的原理概述 传声器是一种将声信号转变为相应的电信号的电声换能器。驻极体传声器是一种用驻极体材料制造的新型传声器。它具有结构简单、灵敏度高等优点,被广泛应用于语言拾音、声信号检测等方面。 驻极体传声器内部主要包括声电转换和阻抗变换两部分。声电转换部分包括振膜、极板、空隙三部分。声电转换的关键元件是振动膜,它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜,然后再经过高压电场驻极后,两面分别驻有异性电荷,膜片的蒸金面向外,与金属外壳相连通。膜片的另一面与金属极板之间用薄的绝缘衬圈隔离开,这样,蒸金膜与金属极板之间就形成一个电容。当声音传入时,振膜随声波的运动发生振动,此时振膜与固定电极间的电容量也随声音而发生变化。从而产生了随声波变化而变化的交变电压信号,如此就完成了声音转换为电信号的过程。电压变化的大小,反映了外界声压的强弱,这种电压变化频率反映了外界声音的频率。驻极体传声器振膜与极板之间的电容量比较小,一般为几十pF。因而这个电信号输出阻抗很高,而且很弱。因此,不能将驻极体传声器的输出直接与音频放大器相接。而场效应晶体管具有输入阻抗极高、噪声系数低的特点,因此,一般是在传声器内部接入一只输入阻抗极高的结型场效应晶体[URL=http://www.midiqi.com/Shop/Product.asp?ClassId=376]三极管[/URL] [URL=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=47891]三极管[/URL] 用来放大驻极体电容产生的电压信号,同时以比较低的阻抗在源极S或者漏极G输出信号,实现阻抗变换,如图1所示。图1可以看出UOUT1或UOUT2为传声器的输出信号,由于UOUT1不会受到电源噪声VDD的影响,具有较强抗电源噪声干扰能力,所以将UOUT1接到前置放大器进行放大。2 前置放大电路的设计分析 前置放大器的作用一方面是对电容传声头输出的信号进行预放大,另一方面主要是将电容头的高输出阻抗转换为低阻抗输出。小型前置放大器的电路主要包括两部分,其中一部分是场效应管组成的阻抗变换电路,另一部分就是下面将详细分析的放大电路。2.1 放大电路的简化模型 传声器的前置放大电路如图2所示。图中运放采用了美国美信公司的麦克风前置放大器MAX4465,MAX4465为5脚SC70封装,低成本,微功耗。下面对这一电路的原理进行简化分析和说明。为便于电路的分析,令Z1=R1+1/(jωC1),Z2=R2//1/(jωC2)=R2/(1+jωR2C2),根据理想运放所具有的虚短和虚断的特点,可以得到电路的传递函数为: 从式(1)可以看出。当ω→∞或ω→0时,电路的传递函数Au→1。2.2 中频段通带增益的估算 在语音信号的频段(20 Hz~20 kHz)内,选择合适的R2、C2值,使R2C2≈O,则1+jωR2C2≈1,若1+jωR1C1≈jωR1C1则带入式(1)传递函数中,可得Au≈1+R2/R1。若取R2=10R1,则Au=1+R2/R1≈R2/R1。2.3 上限截止频率的估算 当信号的频率较高时,即在通频带内ω值较大,且R2=10R1时,式(1)可变为: 从上式可以看出,ω=1/(R2C2),即f=1/(2πR2C2)是电路对应的上限截止频率。2.4 下限截止频率的估算 当信号的频率较低时,即在通频带内ω值较小且R2=10R1时,则1+jωR2 C2≈1,式(1)可变为: 从上式可以看出,ω=1/(R1C1)时,即f=1/(2πR1C1)是电路对应的下限截止频率。2.5 前置放大电路的仿真结果 在电路的设计过程中,我们用电路仿真软件进行了仿真验证,仿真结果如图3所示。 从图3中可见,上述估算结果和仿真结果基本一致,同时,前置放大电路的实际调试结果也与上述分析基本吻合。3 小型前置放大器结构特点 根据上述原理设计的前置放大器电路板直径约为10 mm(1/2inch),其本身具有的微小体积,与高灵敏度的1/2inch驻极体传声器配合后可以大大缩小整个传声器系统的总体积,从而可以更好地满足复杂情况下对传声器体积的严格要求。4 总结 本文中所设计的传声器前置放大电路具有体积小,成本低廉,输入阻抗高,抗干扰性能强等优点。在电路加工过程中,使用高精度数字[URL=http://www.midiqi.com/Shop/Product.asp?ClassId=277]万用表[/URL] [URL=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=17373]绝缘万用表UT531[/URL] ,对元器件进行了精细的筛选,确保了同一批次不同前置放大器之间的一致性。此外,前置电路还可根据需要选用3~18 V电压源供电,以满足不同条件下的工程需求。目前1/2英寸驻极体传声器前置电路器在工程实践中已经得到了很好的应用。更多技术论文请详见:[URL=http://www.midiqi.com/]买电器网[/URL](MIDIQI.COM) [URL=http://www.midiqi.com/Knowledge/Index.asp]知识库[/URL]

  • 【讨论】集成电路运算放大器主要参数

    集成电路运算放大器主要参数对于实际使用运算放大器而言,重要的不是了解集成运算放大器的内部电路,而是在于了解它的特性,参数及实际连接方法.运算放大器的主要参数有:(1)输入失调电压力在输入电压和输入端外接电阻为0Ω时,为了使运算放大器输出失调电压为0V,在输入端间必须加一个直流补偿电压.这个电压就是输入失调电压UIO. UIO的值越小越好,一般运算放大器的UIO在1~20μV之间.(2)输入失调电流IIO当运算放大器失调电压为0时,两输入端静态偏置电流之差,称为输入失调电流0时,两输入端静态偏置电流之差,称为输入失调电流IIO. IIO实际上为运算放大器两个输入端所加的补偿电流,它越小越好.(3)输入偏置电流IIO运算放大器反相输入端与同相输入端的静态偏置电流IB1和IB2的平均值,称为输入偏置电流IB1.双极型运算放大器的IiB为μA数量级,MOS运算放大器的IiB为pA数量级.(4)输入失调电压温度系数dUIOt和输入失调电流温度系数dHO这俩个参数用来衡量运算放大器的温漂特性.这两个指标越小越好.(5)开环差模电压增益Aod当运算放大器工作在线性区时,输出开路电压uO与输入差模电压Uid的比值,称为Aod. Aod0,其值在60~180dB之间.(6)共模抑制比KCMR KCMR=| Aod / Aoc |,即动算放大器的开环差模型增益与开环共模型增益之比的绝对值,用分贝表示.此值一般在80~180dB之间.使用[url=http://www.bjshtek.net]集成电路测试仪[/url]GT2200A来解决这些参数的测试问题,也可以用这个设备对器件进行筛选测试。

  • 什么是放大器

    放大器是什么呢?你们知道吗?放大器有很多种,各式各样的都有,今天我们就来说说放大器是什么样的吧,放大器是用来增加信号幅度或功率的装置,它是自动化技术工具中处理信号的重要元件。放大器的放大作用是用输入信号控制能源来实现的,放大所需功耗由能源提供。输出就是输入信号的复现和增强。知道放大器的作用吗?它可以能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、电视、自动控制等各种装置中。它还有一个小小的原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。放大器的分类也有好几种呢?1:通用型集成运算放大器2:高精度集成运算放大器3:高速型集成运算放大器4:.高输入阻抗集成运算放大器5.低功耗集成运算放大器放大器的用途知道了不:主要用于检测信噪比很低的微弱信号。即使有用的信号被淹没在噪声信号里面,即使噪声信号比有用的信号大很多,只要知道有用的信号的频率值,就能准确地测量出这个信号的幅值。

  • 放大器的反向互调失真测量

    当放大器受到一个来自输出端的反向功率时,也会产生互调失真。虽然反向互调失真的概念和测试方法较少被提到,但实际上,射频工程师们在很多场合是关注到这个问题的,比如在正向互调测试中,要求合路器有很高的隔离度,如果自身隔离度不够,还要外加隔离器。另外一个例子是在多路发射机的合成系统中,对多工器的隔离度有很高的要求。这些都是为了减少反向功率加到放大器输出端时所产生的互调失真。[color=#ffffff]www.[/color][align=center][img=gooxian-放大器测量-1]http://www.gooxian.com/Storage/master/gallery/201711/20171110141354_6340.jpg[/img][/align][align=center]放大器的反向互调测量[/align] 上图是放大器反向互调的测试方法[url=http://www.hyxyyq.com][color=#ffffff].[/color][/url]。其中被测放大器以f1频率工作,而测试放大器将频率为的功率从反向加入到放大器的输出端。F2的功率要小于力的功率,至于小多少,要参照实际的应用环境由使用者来定义。比如在蜂窝基站测试中,要求反向信号功率的幅度比被测放大器的输出功率小30dB。[color=#ffffff]hyxyyq[/color] 反向互调的测试结果见下图。通常只考虑三阶互调产物,被测放大器的输出功率与最大的三阶互调产物之间的差值即为反向互调值。[align=center][img=gooxian-无源互调测量系统-2]http://www.gooxian.com/Storage/master/gallery/201711/20171110141418_3670.jpg[/img][/align][align=center]放大器的反向互调测试结果[/align][color=#ffffff].com[/color] 无源互调测量中各向异性器件的反向互调问题与之类似,实际上在很多功率放大器的末级就采用了铁氧体环流器。

  • 放大器的反向互调失真测量

    当放大器受到一个来自输出端的反向功率时,也会产生互调失真。虽然反向互调失真的概念和测试方法较少被提到,但实际上,射频工程师们在很多场合是关注到这个问题的,比如在正向互调测试中,要求合路器有很高的隔离度,如果自身隔离度不够,还要外加隔离器。另外一个例子是在多路发射机的合成系统中,对多工器的隔离度有很高的要求。这些都是为了减少反向功率加到放大器输出端时所产生的互调失真。[color=#ffffff]www.[/color][align=center][img=gooxian-放大器测量-1]http://www.gooxian.com/Storage/master/gallery/201711/20171110141354_6340.jpg[/img][/align][align=center]放大器的反向互调测量[/align] 上图是放大器反向互调的测试方法[url=http://www.hyxyyq.com][color=#ffffff].[/color][/url]。其中被测放大器以f1频率工作,而测试放大器将频率为的功率从反向加入到放大器的输出端。F2的功率要小于力的功率,至于小多少,要参照实际的应用环境由使用者来定义。比如在蜂窝基站测试中,要求反向信号功率的幅度比被测放大器的输出功率小30dB。[color=#ffffff]hyxyyq[/color] 反向互调的测试结果见下图。通常只考虑三阶互调产物,被测放大器的输出功率与最大的三阶互调产物之间的差值即为反向互调值。[align=center][img=gooxian-无源互调测量系统-2]http://www.gooxian.com/Storage/master/gallery/201711/20171110141418_3670.jpg[/img][/align][align=center]放大器的反向互调测试结果[/align][color=#ffffff].com[/color] 无源互调测量中各向异性器件的反向互调问题与之类似,实际上在很多功率放大器的末级就采用了铁氧体环流器。

  • GaN功率放大器在5G应用中的可能性?

    GaN功率放大器在5G应用中的可能性?

    由于NSA 5G NR中纳入了新的6GHz以下频段,因此需要新的射频硬件支持这些以前从未用于移动无线的新频率,尤其n77、n78及n79。虽然NSA 5G NR中尚未确定,但5G将最终支持600MHz以下频段,并将其用于物联网、工业4.0/工业物联网及其他机器类通信等海量低功率连接。额外的子载波信道间隔、带宽、载波聚合及4×4 MIMO规范与相应的NSA 5G NR调制解调器和射频收发器一同导致对滤波器、天线、低噪声放大器、功率放大器以及天线的大量需求。 早期的5G调制解调器和收发器由于可运行于选定频段,因此并不一定需要克服上述难题,但是用于增强型移动宽带和未来的工业及车载应用要求前向和后向兼容性。这意味着5G射频硬件不但需要服务所有的现有移动频段,还需要服务5G FR1及5G毫米波FR2 频率(见下图)。这一硬件要求是一项非常难以解决的挑战,这是因为:一方面,为了满足吞吐量规范,必须采用双连接性;而另一方面,用于很多现有蜂窝频率的硬件有会对NSA 5G NR频段造成干扰。除此之外,新的NSA 5G NR频段还具有位于Wi-Fi、蓝牙及其他无线设备所运行的免授权ISM频段附近的问题。部署之后,运行于6GHz以下频率及毫米波频率的独立5G服务将于图示各种服务共存 在如此密集分布的频带及极宽带无线电之下,可能发生滤波、功率放大器线性度及谐波抑制不足和接收机灵敏度下降,从而导致性能受损。此外,为了实现最大吞吐量,新的NSA 5G NR发射机可能会以更高的输出功率及更高的峰均功率比运行,从而给位于同一基站内的5G接收机或附近的5G设备造成问题。 目前,用户设备内的射频硬件(尤其天线)实体已经非常小型化,但是5G规范可能要求下行链路采用4×4的MIMO,而且上行链路采用2×2的MIMO,即6条独立的射频路径。为了实现在较宽带宽内提高天线的辐射效率,5G天线调谐技术将变得非常重要。此外,由于NSA 5G NR支持以具有更多可选载波聚合组合(第15版中多达600中新的组合)的单载波实现的100MHz带宽,因此上述射频路径的宽度必须远宽于4G LTE路径的宽度。由于NSA 5G NR还允许200MHz的组合上行链路带宽及400MHz的组合下行链路带宽,因此数据处理量极大,从而给节能型用户设备及基站带来了挑战。 通过利用片上系统(SoC)技术将滤波器组、高密度开关、天线调谐功能、低噪声放大器及功率放大器集成于射频前端,用户设备射频硬件的集成度有可能获得进一步的提升。5G用户设备天线也能采用集成解决方案,这些方案可能将天线调谐功能及一些预滤波和波束成形构件纳入其中。这种集成度还有助于实现成本目标,从而确保手机具有实惠的价格并满足形状参数要求17-19。随着5G的复杂性越来越高,以及鉴于当今对高密度射频解决方案的需求,无怪乎许多用户设备制造商为了更快的开发和部署而着迷于5G调制解调器-天线解决方案。[img=,500,243]https://ng1.17img.cn/bbsfiles/images/2019/03/201903141407247040_6003_3859729_3.jpg!w500x243.jpg[/img] 很多现有4G用户设备及基站采用LDMOS、GaAs及SiGe功率放大器,而GaN功率放大器于最近进入基站功率放大器市场。随着频率扩展至6GHz以下,最大工作频率为3GHz 的LDMOS不太可能满足5G规范的要求,与此相对,GaN功率放大器(且可能为低噪声放大器)则可有能用于5G基础设施。在6GHz以下5G应用的放大和切换功能方面,GaA和SiGe这两种放大器将形成竞争关系。为了实现比现有毫米波功率放大器、低噪声放大器及开关解决方案更低的成本及更小的外形尺寸,5G毫米波应用有可能会采用高集成度射频绝缘体上硅(SOI)技术。将来的射频前端可能通过由射频SOI技术、SiGe BiCMOS技术或射频CMOS片上系统技术集成的功率放大器、低噪声放大器、开关及控制功能对毫米波相控阵波束成形天线系统进行控制(见下图)。未来的射频硅技术有可能进一步与其他技术集成或结合,以纳入混合波束成形模块所需的滤波和数字硬件。射频SOI技术或射频CMOS技术的未来发展形式甚至有可能与FPGA、存储器及处理器等更加先进的数字硬件相集成。此外,基带处理及附件DSP功能也可能集成为封装体,以实现5G毫米波解决方案的小型化。5G FDD波束成形模块架构[img=,500,244]https://ng1.17img.cn/bbsfiles/images/2019/03/201903141407389518_1703_3859729_3.jpg!w500x244.jpg[/img] 由于频率路由和滤波功能对于5G载波聚合及与以往各代移动技术的后向兼容至关重要,因此集成SAW、BAW、FBAR以及其他集成谐振器和滤波器技术对于用户设备、甚至小型Small Cell甚为重要。鉴于潜在的干扰和设计复杂性,用户设备5G模块也可能包含Wi-Fi和蓝牙模块,然而这将进一步增大滤波和频率路由的复杂性。除此之外,由于射频SOI技术最近发展至可实现滤波器和放大器的共同集成,因此5G射频前端还可能会采用射频SOI等可实现集成的技术。虽然SOI滤波器在6GHz以下5G用途中的应用可能还需要若干年的时间,但是对于毫米波系统而言,SOI技术所实现的放大器和开关集成是一项非常具有吸引力的进展,因此其在毫米波系统中的应用可能指日可期。更多内容请关注嘉兆科技嘉兆公司拥有40年测试测量行业经验,专业的销售、技术、服务团队,在众多领域都非常出色,包括:通用微波/射频测试、无线通信测试、数据采集记录与分析、振动与噪声分析、电磁兼容测试、汽车安全测试、精密可编程测量电源、微波/射频元器件、传感器等。并分别在深圳、北京、上海、武汉、西安、沈阳、珠海、成都设有全资分公司、生产工厂、办事处。

  • 【转帖】分布式拉曼光纤放大器的应用

    【转帖】分布式拉曼光纤放大器的应用

    摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注。本文介绍了拉曼光纤放大器的基本概念,重点分析了拉曼光纤放大器的应用前景和存在的问题。1 拉曼放大器介绍1.1 拉曼放大当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射光强,产生间隔恰好为分子振动频率的边带。低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度较高。这样,当两个恰好频率间隔为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,其能量转移到低频段上,这就是受激拉曼散射(SRS)。光纤拉曼放大器是SRS的一个重要应用。由于石英光纤具有很宽的SRS增益谱,且在13THz附近有一个较宽的主峰。如果一个弱信号和一个强的泵浦波在光纤中同时传输,并且它们的频率之差处在光纤的拉曼增益谱(见图1)范围内,则弱信号光即可得到放大,这种基于SRS机制的光放大器称为光纤拉曼放大器。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181034_274815_1759541_3.gif1.2 拉曼放大器的类型(1)集总式拉曼放大器,即放大过程发生在含有掺铒光纤的封闭模块中。主要作为高增益、高功率放大,可放大EDFA所无法放大的波段(图2中的绿色曲线)。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181034_274817_1759541_3.jpg(2)分步式拉曼放大器。拉曼泵浦位于每级跨距的末端,泵浦方向与信号的传输方向相反(图2中的蓝色曲线)。采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。这种分布式拉曼放大技术由于系统传输容量提升的需要而得到快速发展。1.3 拉曼放大(DRA)增益谱的调整拉曼增益谱的形状依赖于泵浦波长,最大增益波长比泵浦波长高100nm左右。这种特性使得在具有可用泵浦波长的条件下,放大任何波长区间的光信号成为可能。通过使用不同的泵浦波长组合可以在一个很宽的波长区间获得平坦的增益谱型(见图3)。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181035_274818_1759541_3.jpg1.4 拉曼泵浦模块图4中的绿色框图部分是一个为后向泵浦配置应用的拉曼泵浦激光器模块示意图。在这种配置中,DRA一般和系统的EDFA联合使用,用作EDFA的前级放大器(Pre-amplifier)。这就是大家熟知的RAMAN/EDFA混合放大器。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181035_274819_1759541_3.jpg摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注。本文介绍了拉曼光纤放大器的基本概念,重点分析了拉曼光纤放大器的应用前景和存在的问题。1 拉曼放大器介绍1.1 拉曼放大当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射光强,产生间隔恰好为分子振动频率的边带。低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度较高。这样,当两个恰好频率间隔为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,其能量转移到低频段上,这就是受激拉曼散射(SRS)。光纤拉曼放大器是SRS的一个重要应用。由于石英光纤具有很宽的SRS增益谱,且在13THz附近有一个较宽的主峰。如果一个弱信号和一个强的泵浦波在光纤中同时传输,并且它们的频率之差处在光纤的拉曼增益谱(见图1)范围内,则弱信号光即可得到放大,这种基于SRS机制的光放大器称为光纤拉曼放大器。http://www.gtxren.com/uploads/allimg/100722/0042092A8-0.gif图1 光纤中的受激拉曼增益谱1.2 拉曼放大器的类型(1)集总式拉曼放大器,即放大过程发生在含有掺铒光纤的封闭模块中。主要作为高增益、高功率放大,可放大EDFA所无法放大的波段(图2中的绿色曲线)。http://www.gtxren.com/uploads/allimg/100722/0042092b8-1.gif图2 分布式/集总式光放大器的比较(2)分步式拉曼放大器。拉曼泵浦位于每级跨距的末端,泵浦方向与信号的传输方向相反(图2中的蓝色曲线)。采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。这种分布式拉曼放大技术由于系统传输容量提升的需要而得到快速发展。1.3 拉曼放大(DRA)增益谱的调整拉曼增益谱的形状依赖于泵浦波长,最大增益波长比泵浦波长高100nm左右。这种特性使得在具有可用泵浦波长的条件下,放大任何波长区间的光信号成为可能。通过使用不同的泵浦波长组合可以在一个很宽的波长区间获得平坦的增益谱型(见图3)。 http://www.gtxren.com/uploads/allimg/100722/0042093501-2.gif图3 使用多泵浦波长获得平坦的宽带增益谱1.4 拉曼泵浦模块图4中的绿色框图部分是一个为后向泵浦配置应用的拉曼泵浦激光器模块示意图。在这种配置中,DRA一般和系统的EDFA联合使用,用作EDFA的前级放大器(Pre-amplifier)。这就是大家熟知的RAMAN/EDFA混合放大器。http://www.gtxren.com/uploads/allimg/100722/00420943T-3.gif图4 简化的后向泵浦的拉曼放大器应用框图图5表示的是采用某个拉曼泵浦模块在G.652光纤中的测试结果,包括增益谱及噪声指数(NF)随泵浦功率变化的情况。从图5中可以看出,在C-BAND范围,增益可以达到14dB以上,增益平坦度可以控制在1dB以内。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181036_274820_1759541_3.jpg2 分布式拉曼放大器(DRA)的应用掺铒光纤放大器是一种成熟、可靠、经济有效的技术,在光网络中的广泛应用已经超过10年。虽然分布式拉曼放大器在很多应用方面可以弥补EDFA的不足,但是也要考虑DRA应用中的各种挑战。(1)激光安全。由于向传输光纤引入了高的泵浦功率,需要关注激光功率安全问题。(2)端面清洁。为了防止光连接器的损伤、烧毁,影响系统性能,端面的清洁非常重要。(3)拉曼增益对传输光纤的特性敏感,例如光纤类型、光纤衰耗系数等。(4)投入成本与运营成本的考虑。因此,在讨论DRA的应用时,应主要考虑体现其重要价值和优越性的应用,而不是使用传统EDFA产品技术也可以满足的应用。广泛地说,DRA的应用可以分为无法在线路中间放大的长距离光纤通信线路的连接和LH,ULH高容量、长距离传输系统中的应用。2.1 单跨段长距离的通信线路对于2个相距遥远的无法在线路中间使用EDFA等中继设备的通信站点而言,选择使用分布式拉曼放大器产品是必须的,如海缆通信链路,偏远无人区站点间的通信链路,不便设立中继站点或中级放大器的通信链路。一般来说,如果光纤线路距离小于160km,在线路两端使用传统的EDFA即可,对于更长距离的线路,需要考虑使用分布式拉曼放大器(DRA)。图6进一步说明了这个问题。从图6可以看出,在不同的拉曼增益下OSNR与链路损耗的关系。假定每个通道的发送光功率为8dBm,前置EDFA的噪声指数为5dB;同时假定系统容量较低,通道数较少,不考虑色散及非线性效应引起的通道

  • “去伪存真”,锁相放大器精细感知复杂世界

    “去伪存真”,锁相放大器精细感知复杂世界

    [color=#333333]锁相放大器,是一种可以从干扰极大的环境中对特定频率的电学信号进行提取,还能进一步聚焦和锁定特定相位上步调一致成分的电子学仪器,从而滤除噪声,达到微弱信号检测的目的。锁相放大器的发明极大地推动了人类对于微弱信号的探测,比如搭配了锁相放大器的原子力显微镜,让人们可以观测并且操纵原子;一些电子电工的仪表、对人体健康的监测也能用到锁相放大器,这样我们就能更早的发现问题及时预防;在未来的跨星际探索中,高精度锁相放大器也可用来开展引力波探测和空间定位。[/color][color=#333333]自1941年第一台锁相放大器发明以来,锁相放大器经历了从模拟锁相放大器到数字锁相放大器的发展和演进。我国自20世纪70年代开始了对锁相放大器的研究,中科院物理研究所、南京大学、中山大学等科研机构与高校先后研制出锁相放大器。近几年由陆俊带领的中科院物理研究所研发团队在超宽频锁相、时间分辨锁相、脉冲锁相等实际应用方面进行了系统的研发,取得突破性进展:经过理论推导出单周期信号的数字锁相频谱在估计频点附近的局部函数形式并用三点拟合进行测频,避免经验抛物线函数的偏差问题,精度达到统计理论限值,而且相比快速傅里叶变换FFT测频复杂度跟取样长度N的关系由N*log(N)倍降为N倍依赖,基于此使用较少的运算量就能达到精确测频与锁相的结果。部份锁相放大技术已经应用于振动样品磁强计实现80皮安平方米灵敏的微弱磁矩探测、在强电磁脉冲干扰下恢复脉冲磁致伸缩信号等。[/color][img=,690,460]https://ng1.17img.cn/bbsfiles/images/2022/07/202207021435413757_4781_1644065_3.jpg!w690x460.jpg[/img][color=#333333]“锁相放大器对于被噪声干扰的信号,能让无关噪声抵消,而让被测信号增强,从而实现对复杂世界的精细感知,跟普通的万用表、示波器相比,当信号特别微弱或被噪声淹没时无法看到,使用锁相放大器恰好能从噪声中提取出有用信息。”陆俊在介绍锁相放大器的原理时谈到,“打个比方,锁相放大器的工作原理就像从一堆沙里淘金。首先我们先进行频率锁定,也就是洗沙的工作,将目标信号也就是金子确定在一个范围内,然后再通过另一个维度进一步聚焦,去除多余的噪声,提纯目标信号,相当于通过辨别颜色去除沙块,挑选金子。”[/color][color=#333333]早在十几年前,陆俊就开始研究锁相放大器,并开创性的采用虚拟仪器方法进行锁相放大器的原理和应用研究。目前陆俊团队已经率先研发出采用“测频锁相”算法的虚拟锁相放大器,相比其他的虚拟锁相放大器,能够从更多维度去锁定需要探测的信号,并且还在很多单项关键指标上实现了突破,带宽达到20 GHz,动态范围140 dB,测频精度1 ppb,均为国际先进水平。[/color][color=#333333]根据相关行业报告显示,随着科研以及工业领域精细测量微弱信号的需求不断增多,锁相放大器的应用需求量不断增长。2020年,我国锁相放大器市场规模约为10亿元。这一市场主要被美国斯坦福仪器、瑞士苏黎世仪器等国外少数公司所占领。[/color][color=#333333]虽然国内出现了性能基本对标进口的锁相放大器产品,但由于用户出于惯性依旧会选择市场上成名已久的外国品牌。目前陆俊团队研发的锁相放大器已经在中科院、首都师范大学等高校和科研单位有所应用,下一步将通过高端示范进入市场,增强用户深入应用,提高用户信赖度,塑造自有品牌。据悉,该项目参加了由中科院科技创新发展中心与海淀区发起的“CAS 概念验证计划”。[/color][color=#333333]陆俊谈到,“十四五”时期基础科研条件与重大科学仪器设备研发专项“精密大带宽锁相放大器”项目已获批立项,团队作为其中课题负责方将利用自身的技术优势,持续迭代并推广应用,以早日实现锁相放大器的国产化替代。[/color]

  • 从PC膜片钳到NMT非损伤微测技术(2)时间与空间

    [align=left][b]活体研究智能传感技术的演进(2)[b]时间与空间[/b][/b][/align][align=left]作者:许越 [url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651819860&idx=1&sn=0c4df0710b0519d9dc4a43b08c9cbd23&chksm=844cdf04b33b5612eb56793dba3143bbd3597a25facb5fe6be07588a611c9c2239f313cec201&scene=21#wechat_redirect]“点击查看作者自传”[/url][/align][b][b][b][color=#a5a5a5]许越,男,1967年生于北京。[/color][/b][/b][/b][list][*][color=#a5a5a5][color=#888888]于[/color][color=#888888]1993[/color][color=#888888]年和[/color][color=#888888]2000[/color][color=#888888]年分别获得首都师范大学及美国麻省州立大学,植物生理学双硕士学位。[/color][/color][*][color=#a5a5a5][color=#888888]2001[/color][color=#888888]年在美国创建基于[/color][color=#888888]NMT[/color][color=#888888]技术的美国扬格公司,次年运用[/color][color=#888888]NMT[/color][color=#888888]服务于设立在美国北卡州立大学的美国航空航天局[/color]([color=#888888]NASA[/color])[color=#888888]空间植物学研究项目。[/color][/color][*][color=#a5a5a5][color=#888888]2005[/color][color=#888888]年成立旭月(北京)科技有限公司,在匡廷云院士、杨福愉院士和林克椿教授的帮助,以及各级政府的大力支持下,将非损伤微测技术引进中国大陆。[/color][/color][*][color=#a5a5a5][color=#888888]2014[/color][color=#888888]年带领旭月团队提出被誉为“第二个人类基因组计划”的“动态分离子组学([/color][color=#888888]imOmics[/color][color=#888888])”创新概念,同年成立旭月生物功能研究院。[/color][/color][*][color=#a5a5a5][color=#888888]2015[/color][color=#888888]年推出世界领先的“自动化非损伤微测系统”,并倡导建立中关村[/color][color=#888888]NMT[/color][color=#888888]产业联盟,开启以水安全、个体化精准医疗、粮食安全等民生应用为代表的[/color][color=#888888]NMT[/color][color=#888888]产业化进程。[/color][/color][*][color=#a5a5a5][color=#888888][color=#a5a5a5] 截至2016年,已帮助国内400多个科研单位及实验室,利用NMT实现了科研水平的跨越式发展。[/color][/color][/color][/list]时间分辨率和空间分辨率,指的是一个检测技术能够在时间和空间上提供的最小分辨单位或数值。列文虎克(Anthony Von Leeuwenhoek)发明的能够看到活细胞的显微镜,就是在人类观察世界的空间分辨率上的一次大的提升。膜片钳技术之所以能够在90年代获得诺贝尔奖,一个很重要的原因就是它将人类对世界的感知能力,在时间分辨率上提升到毫秒级别,在空间分辨率上细小到微米级以下(请见下表),而且是对生物活体进行检测。[b][b] [img=,694,274]https://mmbiz.qpic.cn/mmbiz_png/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2kotPNzq90MdWicyeLWDCA6AciawYPkflWchjSDjbjQHRqAb4dgq9kjibw/640?wx_fmt=png&wxfrom=5&wx_lazy=1[/img][/b][/b][align=center](非损伤微测技术与膜片钳及荧光等化学技术在时间空间分辨率上的区别。来源于旭月研究院 http://xbi.org)[/align][b][b][/b][/b][align=center][/align][color=#ff0000]1)时间[/color][align=center][img]https://mmbiz.qpic.cn/mmbiz_png/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2fQATMY9iagCFuceSqsLf75Y9sdE4M3jGIVucKibMiaxHJ4Bjler2JvQhg/640?wx_fmt=gif&wxfrom=5&wx_lazy=1[/img][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](膜片钳技术典型数据图。来源于网络)[/align]膜片钳技术可以轻而易举地捉捕到毫秒级(ms)的离子通道的开放和关闭。这点让依靠反应时间最快也需要秒级的NMT离子分子传感器的非损伤微测技术望尘莫及。即使有的NMT分子传感器,比如O2传感器反应速度可以达到0.8秒(800ms),但面对离子通道的开关研究也无能为力。[b][b] [img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug29icHHJJDnWFQCqa882XZvLda0XsvxbptGC2nVsWbfAaUDr1cnyLVbSQ/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/b][/b][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](非损伤微测技术典型数据图。来源于网络)[/align][align=center][/align]然而,如果我们的科研需要几十分钟,几小时,甚至几十小时地跟踪研究活体材料的离子/分子活动,非损伤微测技术的时间方面的优势就体现了出来。因为只要科研人员有办法保持样品的活性,由于NMT传感器不和被测材料进行接触,所以时间上对非损伤微测技术就不是一个制约因素。有时即使NMT流速传感器在实验过程中失效了,或不小心损坏了,没有关系,马上换上一个好的传感器就是了,只要你的样品还正常就没有问题。[b][b][color=#ff0000]2)空间[/color][/b][/b]膜片钳技术通过全细胞等多种灵活的记录方式(见下图),极大地丰富了膜片钳与被测材料之间的空间关系,但是由于该技术对玻璃电极与材料之间高阻封接的必须要求,使得膜片钳技术对于大于微米材料的操作显得力不从心。[b][b][/b][/b][align=center][img]https://mmbiz.qpic.cn/mmbiz_png/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2TO5xCab6Y9ibT4BYkgUWvyxZBlkp6gRiboialWGSUCB2FcOSeiaWFPBKHw/640?wx_fmt=gif&wxfrom=5&wx_lazy=1[/img][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](膜片钳技术的多种测量构形。来源于网络)[/align]非损伤微测技术由于不需要接触被测材料,因此在被测材料的选择,特别是材料大小上面,相比膜片钳就有了非常大的自由度(见下图)。比如,最近面市的‘NMT活体生理检测仪’可以检测从微生物群体,一直到小型个体(如斑马鱼)的各种大小材料离子/分子的进出情况。[b][b][/b][/b][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2ef0ibeIqFdGZicpq4C1ONkWPjTS1gTCZ1krZPnbqYqSOsyQ2uXQcPibTA/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_png/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug284zhs9Mj1EIHaLMza2ZdqKc1ZYoDpMe00zm4GRnQyic0Czia471m22hQ/640?wx_fmt=png&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2PgibOksfsIs4g0yEKg3Auqktj24lT28aePO0icUdaBT9Ev8cXBUbbQvA/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2iaqt0YIY3kYSX2dMRpnso6GtKTWicI47ibx5hvP36UIM4rCgkoZYl4Jiag/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2OauXy22ibCp4ngxtUhxEwYhdhdYrfmeVSvboKw8npbGgXUiceoibma0Tw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2naZOUCNBiae6CyDnnbGqsWZ3LFYjM2QssLibjleWxicg6ptrp7BzxdbZA/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug20rJ8SDnjW63vh60Bd3kiaiaia60Xufia65HF2Tviaf6rruxYs4eKI9XEt3Q/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug21up5ZK2Sz8hPbubNosQh0ibic6CjicRt8sMJG6wwLD5evRa84CbHt9TAg/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2l1RKX0xF7x1e7nRFwlPufwgKnXXL68sorpFCHiaiamqp775HRnyyqfUw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug29ibs6mxnicDhpfXFgZYPePFKj2V5iayNpvDsyntbnWjOFSML74rgEjYHA/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center](非损伤微测技术可以测试的各种活体材料举例。来源于旭月研究院htt://xbi.org )[/align]膜片钳与非损伤微测技术在时间和空间分辨率上面各有千秋,可以根据科研需要进行合理选择。有时也可以联合应用则能够更加说明问题,不但两者在时间和空间上可以相互印证,而且非损伤微测技术所测得的离子信号是除离子通道在内,还包含有离子载体和转运体等多种离子运输载体的共同贡献。同时还有多糖吸附,细胞或组织表面的电化学作用,以及各种离子分子相互影响的物理,生物和化学的综合作用的结果。因此也是更加贴近真实的生理状态的结果。还有就是我们可以人为设计这些样品的检测环境,使其更加接近它们真正的活体状态。别忘了,毕竟您手中握有的是非损伤微测技术![b][b][color=#ff0000]3)引发其他联想[/color][/b][/b]这里有很多时候没有引起生命科学工作者足够重视的两个地方:1.生物体是多维的立体空间结构,生命活动和生理现象发生在不同的时间尺度2.每一项技术都有其在时间分辨率和空间分辨率上的特色或极限 具体而言:1.生物体是多维的立体空间结构,生命活动和生理现象发生在不同的时间尺度随着60年代DNA概念的提出,80年代生物化学的迅速崛起,90年代分子生物学的风靡全球,到近些年各种组学的盛行,科学界一部分人似乎认为只要搞定生命的各种组成成份,就可以解决人类的生老病死等等一切问题了。然而,半个世纪之后,人们终于承认人类寻找癌症等病魔的开关基因是不存在的。前一段时间,某些企业想通过基因序列为社会提供疾病/健康预测的服务尝试,也被以美国FDA为首的各国医药管理部门叫停,原因就是这些静态成份数据不足以支持建立基因组成与各种疾病之间的必然联系。也就是说,忽视生物体的在时间和空间上多维度的特点,所得到的结果也必然不能够反映生命活动的根本真实面目,其衍生的各类实际应用也必然是空中楼阁。2.每一项技术都有其在时间分辨率和空间分辨率上的特色或极限也正是由于相当一段时间以来,以生物化学,分子生物学和现在的各种组学为代表的,在生物体成份研究为主导的学科教育和科研大环境下,使得很多从事生命科学研究工作的朋友们,对于某一项技术的时间和空间分辨率定位不是很敏感。现实是,如图5所示,当NMT非损伤微测技术告诉你,它所涵盖的时间和空间分辨率既不同于膜片钳技术,也有别于其它荧光和放射性物质技术的时候,你的眼睛是否豁然一亮,因为在你面前出现了一个崭新的、宽阔无垠的科研蓝海!道理很简单,就是你将揭示前人从未涉足的生命现象领域,就像当年的列文虎克一样。参考文献1)旭月研究院网站 http://xbi.org2)美国扬格公司网站:http://youngerusa.com3)印莉萍, 上官宇, 许越. 非损伤性扫描离子选择电极技术及其在高等植物研究中的应用. 自然科学进展. 2006, 16(3):262-266.4)丁亚男,许越.非损伤微测技术及其在生物医学研究中的应用.物理. 2007, 36(7): 548-558.[align=center][img]http://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDF6tmTJTMX4uic43l9icahVSUTxSOVWpIzWuU9op0axQeUZlOd197ib0J6kUyJDXf9MJrWibHg0hicvMCw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][b]旭月版权所有,转载注明出处.[b][/b][/b][/align][align=center][b][b][img=,,130]http://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDFvv5AgpUstNSuO10Yztkuqee9ozBmgmqkRl5Df8F3bvfhr0YroolbwMI0ScicdJDTJyTPYXIc1qvw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/b][/b][/align]

  • 如何挑选一款合适的高压功率放大器?

    高压功率放大器是一款非常通用的测试仪器,配合厂家的任意波信号发生器使用达到,提升其驱动能力,保证驱动对应测试设备的目的,如何选择一款适合的功率放大器需要注意以下指标。[b]1.带宽[/b]带宽:通常厂家放大器带宽都是以正弦波来定义的,例如功率放大器100KHz,指的是正弦波信号可以达到的最高频率,而不是方波或者三角波。这些波形由于其高次谐波的影响,不能达到,通常厂家会给出小信号带宽或者大信号带宽,客户需要根据自己的应用与厂家进行沟通。[b]2.电压[/b]电压:需要放大信号的最高电压值,客户通常要注意自己测试应用需要的电压是有效值Vrms还是峰峰值Vpp,通常厂家给出的是峰峰值。[b]3.电流[/b]电流:功率放大器通常输出的功率是恒定的,这样P=U*I,也就是电压和电流在功率恒定下是成反比的,通常厂家给出的电流值是最大值,特别是在DC下当电压输出最大时,电流一定是最小的。[b]4.功率[/b]功率:功率代表了放大器的驱动能力,P=U*I,通常功率的选择与客户预期希望加载再待测设备上的电压与电流有关,但是如果负载是纯阻性负载是方便计算的,如果是容性或是感性负载就需要客户与厂家工程师进行沟通,进行一定的模拟仿真后获得一个准确的需求。[b]5.通道[/b]通道:根据测试的应用选择通道数,目前厂家主流的是单通道或者双通道,但是有些厂家可以根据用户需要定制通道,最多可以达到8通道,同时可以保证通道的同步性,也可以输出不同相位差的信号,方便了用户的使用。[b]6.增益[/b]增益:分为模拟增益及数控增益,模拟增益采用电位器调节,模拟增益无法精确放大只能,通过外置观测示波器来读取,逐步被厂家淘汰,数字增益控制,调节精度高,直观方便,是目前主流放大器采用的增益放大方式。[b]7.输入输出阻抗匹配[/b]输入输出阻抗匹配:放大器通常配合信号源使用,通常信号源有50欧姆及高阻输出,放大器在输入阻抗有对应的匹配阻抗,保证了输入端的安全。输出阻抗匹配,由于客户驱动的负载的多样性,需要厂家提供更灵活的匹配电阻。[b]8.保护[/b]保护:功率放大器由于驱动负载,由于很多是动态变化的,就对功率放大器提出了更高的要求,为了防止损坏功率放大器,通常要求有过电压保护、过电流保护、过热保护、短路保护。[b]9.安全性[/b]由于功率放大器通常进行负载的驱动,而负载特性的复杂,决定了我们使用功率放大器的风险,如果安全的使用功率放大器需要注意的问题:(1)选择合适功率的放大器,对于待输入信号进行预估电压电流、功率、频率、波形等(参见如何选择功率放大器);(2)保证功率放大器安全接地;(3)查看说明书看厂家对应产品是否支持长时间连续工作能力;(4)注意仪器的散热;(5)前端连接线的稳定可靠,防止短路发生;(6)信号源输入信号在安全范围之内。

  • CATV放大器ADI

    [url=http://www.leadwaytk.com/article/4828.html]ADI[/url][font=宋体][font=宋体]在电缆线调制调解器和数字电视机顶盒中,高性能模拟电子电路针对应用极为重要。[/font][font=Calibri]ADI[/font][font=宋体]公司凭借着有[/font][font=Calibri]CATV[/font][font=宋体]放大器系列,持续作为满足这些需求的主要客户。借助于[/font][font=Calibri]ADI[/font][font=宋体]公司高性能[/font][font=Calibri]CATV[/font][font=宋体]放大器,[/font][font=Calibri]ADI[/font][font=宋体]可以研发出市场中最先进的电缆线调制调解器和数字机顶盒。[/font][font=Calibri]AD45048[/font][font=宋体]等线路驱动器可以超出常见发射极跟随器输出级的输出电压性能,[/font][font=Calibri]ADI[/font][font=宋体]的[/font][font=Calibri]CATV[/font][font=宋体]放大器系列特别适合[/font][font=Calibri]DOCSIS2.0[/font][font=宋体]或[/font][font=Calibri]EuroDOCSIS[/font][font=宋体]等应用。[/font][/font][font=宋体]深圳市立维创展科技是[/font][font=Calibri]ADI[/font][font=宋体]的分销商,主要供应放大器、线性产品、数据转换器、音视频产品、宽带产品、时钟和定时[/font][font=Calibri]IC[/font][font=宋体]、光纤通信产品、接口和间隔、[/font][font=Calibri]MEMS[/font][font=宋体]和传感器、电源和热经管、处理器和[/font][font=Calibri]DSP[/font][font=宋体]、射频和图形处理器、开关和分配器等。大部分产品,均提供现货库存供货。[/font][font=宋体]详情了解[/font][font=Calibri]ADI[/font][font=宋体]芯片请点击:[/font][url=http://www.leadwaytk.com/brand/25.html][font=Calibri]http://www.leadwaytk.com/brand/25.html[/font][/url]

  • 【分享】测量放大器(Measuring amplifier)

    是声学测量的基本仪器之一。可用作高质量电压放大器,配接测量传声器可测量声压级和声级。它是由可变衰减器、放大器和滤波器组成。它的电路通常分为两部分:前一部分放大量为40dB,并在前面加有0~100dB的可变衰减器。后一部分是把经过滤波器后的信号用0~40dB的衰减器衰减和60dB增益的放大器放大,使输出信号在10V左右,这样记录和测量都较为方便。 测量放大器的频率范围不窄于20Hz~20kHz,并设置计权网络和三种典型时间常数的平均电路,也可外接滤波器,其功能相当于一台实验室用的0级声级计。

  • LSK489系列JFET放大器 低电容单芯片双N沟道

    Linear Systems LSK489是业界输入电容最低、噪声最低的单芯片双N沟道JFET。低输入电容可显著降低互调失真。此外,这些双通道JFET在整个温度范围内具有严格的失调电压和低漂移,适用于各种精密仪器仪表和传感器应用。该器件采用 TO-71 6L、SOIC 8L、SOT-23 6L 和 DFN 8L 封装以及裸片形式。[b]订购信息[/b]以下是订购此零件系列时的选项:LSK489A TO-71 6L RoHSLSK489B TO-71 6L RoHSLSK489A SOIC 8L RoHSLSK489B SOIC 8L RoHSLSK489A SOT-23 6L RoHSLSK489B SOT-23 6L RoHS489 DFN 8L RoHSLSK489A DieLSK489B Die[b]好处[/b]?紧密差分电压匹配与电流?改进运算放大器速度沉降时间的准确性?最小输入误差微调误差电压?由于低输入电容,降低互调失真[b]应用[/b]?宽带差分放大器?高速温度补偿单端输入放大器?高速比较器?阻抗转换器?声呐和水听器?声学传感器更多相关产品信息请访问立维创展ldteq.com

  • 【求助】请问这样的放大器有问题吗?

    在不点火的情况下,把信号线与检测器断开,基线平稳,-4.3mv,这样的话放大板能否证明没有问题呢?我以前坏过一个放大板,在信号线不接检测器时,电压在1000mv左右波动,显然这个放大器是有问题的,而上一个放大器电压在-4.3mv稳定是正常的对吗?

  • 【求助】英斯特朗大带宽放大器,请给予点评

    试验机的最核心部分,测控系统,一直是中国试验机的软肋,最近Sans,天源,长春试验机厂在这方面都有了大幅度的提升.英斯特朗的测控系统采用先进的32位浮点数字信号处理器DSP系统,提供快速响应,高精度和高可靠性.首先对于载荷传感器或引伸计的模拟信号进行放大,英斯特朗采用20000HZ大带宽放大器.请问各位专家,带宽放大器的优点是,,,,

  • 【原创】比较器和运算放大器的区别

    比较器和运算放大器的区别比较器和运算放大器实际上是相同的集成电路,只是比较器一般开环使用,运算放大器是闭环使用。因而比较器的开环放大系数比较低,开环使用都比较稳定;而运算放大器的开环放大系数很高,不闭环使用非常不稳定,只能闭环。测试这些元器件请使用:[url=http://www.bjshtek.net]集成电路测试仪[/url]GT2200A

  • 低噪声放大器在射频测试测量中的应用

    [color=#333333]低噪声放大器[/color]除了用于接收机的信号放大以外,在测试和测量中也经常用到。以下列举了一些低噪声放大器在射频测试和测量中的典型应用。 [b]一、用于电磁环境测量[/b] 电磁环境测量是保证各类无线电业务正常开展的必要环节,是合理、有效利用有限的无线电频谱资源的基木技术保障。下图是一个典型的电磁环境测量系统的方框图。[align=center][img=gooxian-噪声放大器-1]http://www.gooxian.com/Storage/master/gallery/201711/20171107105413_8860.jpg[/img][/align][align=center]电磁环境测量系统[/align] 在这个系统中,低噪声放大器是核心部件。 以下就是低噪声放大器在这个应用中的基本要求和相关指标: 1、基本要求 系统的基本要求是噪声电平(频谱分析仪的底噪声)要比被测信号的幅度至少小10dB,而且采用低噪声放大器后不应产生影响测试精度的假信号。 2、带宽 假设系统的带宽是1~18GHz,那么是采用多个倍频程带宽的放大器还是采用一个宽带放大器实现呢?这里有二种选择,一是采用四个放大器来覆盖,包括1`2GHz、2~4GHz、4~8GHz和8~18GHz。选择这种方案的测试者认为可以利用窄带放大器的带外抑制特性,在测试点附近的、不在测试目标内的大信号在某种程度上被放大器抑制了。但实际上,放大器并不会定义带外的传输特性也就是说,这种选择的“优点”无法化。但相对于宽带放大器,窄带放大器具有更高的增益和更低的噪声系数。 另一种选择是采用一个宽带放大器(1~18GHz)来实现全频段覆盖,这种方案的最大优点就是可以“一览无余”地在频谱分析仪上观察到整个频段内的频谱。对于可能出现的由大信号产生的假信号,可以用一组滤波器来滤除。这种方案具有更强的灵活性,同时为测试者提供了更宽的视角。 3、增益 无论是窄带还是宽带的低噪声放大器,都具有足够高的增益来满足电磁环境测量的要求,在这个应用中,可以选用25~35dB增益的低噪声放大器。 4、噪声系数 按照倍频程设计的窄带放大器(如4~8 GHz)可以做到很低的噪声系数,其典型值为1dB;而宽带放大器(1~18 GHz)的噪声系数也只比其高1dB左右。 综合以上因素,在电磁环境测量应用中,用宽带低噪声放大器更为合适。 [b]二、用于基站杂散测量[/b] 在蜂窝基站的杂散测量项目中,有—项落入系统内部接收频段的杂散和互调测试,这项测试对频谱分析仪[url=http://www.hyxyyq.com][color=#ffffff].[/color][/url]有很高的要求,如果频谱分析仪的底噪声无法满足测试要求,可以采用低噪声放大器来协助完成(如下图)。[align=center][img=gooxian-噪声放大器]http://www.gooxian.com/Storage/master/gallery/201711/20171107105427_4250.jpg[/img][/align][align=center]用低噪声放大器配合基站杂散测量[/align]

  • 【分享】锁相放大器

    各位大侠,有谁在用锁相放大器阿?它的工作流程是什么啊?还有知道不知道在使用调制方面有什么技巧没?谢了!

  • 【原创】CIM1100 DC-120MHz宽带隔离放大器在仪器中的应用

    隔离放大器的输入侧和输出侧之间是电气隔离(绝缘)的,但是电信号可以从输入侧线性地传送到输出侧。通常的隔离放大器,最高带宽约在100kHz左右。CIM1100是业界首款MHz级宽带隔离放大器。由于采用了专有的宽带线性隔离技术,CIM1100的带宽革命性地拓展到DC~120MHz以上。在拓展带宽的同时,并未损失精度,其直流和低频范围(DC~100kHz)的非线性度仍保持在0.03%以下,做到了高速且精确地隔离。CIM1100的输入侧和输出侧之间的绝缘层额定耐压是1000Vrms,可在此电压下长期工作。输入侧和输出侧间电容约20pF,在1000Vrms/50Hz时的漏电流是6.28 A。CIM1100由双组±5V隔离电源供电,输入侧电源电流42mA,输出侧电源电流28mA。除需要用一个电位器来对输出直流调零外,无需其他元件就可以构成一个增益为1的宽带隔离放大器。产品特点■带宽DC~120MHz(-3dB)■非线性度小于±0.03%■输出电压幅度0~±2V■额定隔离耐压1000Vrms■短时最大隔离耐压5000Vrms(1min)■可灵活连接的独立输入缓冲放大器■简单的外围电路,易于使用■双组±5V供电■51mm×38mm×8mm尺寸应用领域■示波器通道隔离■虚拟仪器输入隔离■高速数据采集■视频信号隔离■高速测试仪器■电网及瞬变脉冲检测■工业控制■科学实验

  • AMM-8211UC5宽带MMIC驱动放大器Marki

    AMM-8211UC5是一款高性能的宽带MMIC驱动放大器,由[url=https://www.leadwaytk.com/brand/31.html]Marki[/url]公司生产。这款放大器专为在22至57 GHz的频率范围内驱动Marki的H型或L型二极管混频器以及25至50 GHz的S型二极管混频器而设计。它能够提供高达+21 dBm的输出功率,确保了信号的强度和稳定性。[align=center][img=AMM-8211UC5宽带MMIC驱动放大器Marki]https://www.leadwaytk.com/public/ueditor/upload/image/20240701/1719796035895934.png[/img][/align][b]  该放大器的特点包括:[/b]  宽带性能:AMM-8211UC5覆盖了广泛的频率范围,使其适用于多种高频应用。  仅正,单电源偏置:这种设计简化了电源管理,用户只需提供一个正电压电源即可操作。  5V单电源电压模块:该模块设计为使用5V电源电压,这有助于简化电源设计和集成。  内置隔直电容:在输入和输出端都集成了隔直电容,这有助于防止直流偏置干扰信号路径。[b]  AMM-8211UC5的应用领域包括:[/b]  移动式测试测量设备:在需要便携性和灵活性的测试环境中,这款放大器可以提供稳定的信号放大。  雷达和卫星通信:在需要高频信号放大的雷达系统和卫星通信设备中,AMM-8211UC5可以提供必要的信号增强。  5G收发器:随着5G技术的发展,对高频信号处理的需求日益增长。这款放大器可以作为5G收发器中的关键组件,提供所需的信号放大。  驱动放大器:它特别适合作为L、H、S型二极管混频器的驱动放大器,确保混频器能够有效地工作。[font=微软雅黑][/font][url=https://www.leadwaytk.com/]深圳市立维创展科技[/url][size=14px][font=宋体]是[/font][font=Calibri]Marki[/font][font=宋体]的经销商,优势提供[font=Calibri][url=https://www.leadwaytk.com/brand/31.html]Marki[/url][/font]毫米波产品现货服务,并提供技术支持,欢迎咨询。[/font][/size]

  • 离子计的前置放大器

    【题名】:离子计的前置放大器【全文链接】: https://www.cnki.com.cn/Article/CJFDTOTAL-HXCH198401001.htm

  • AM02018039WN-SN-R宽带功率放大器 AMCOM

    AMCOM的AM02018039WN-SN-R乃高效的宽带GaN MMIC功率放大器,特为3至15 GHz的广泛频段而设计。在指定频段内,此放大器呈现出优异的20dB增益,并具备高达39 dBm的输出功率,充分满足高功率应用所需。AM02018039WN-SN-R采用精心设计的陶瓷封装,不仅结构坚固,还配备了法兰和直射频及直流引线,使得插入式组装非常方便,大大提升了灵活性和便捷性。然而,由于直流功率耗散较高,为确保稳定可靠的工作性能,该放大器对散热性能提出较高要求。因此,在使用时,务必确保良好的散热条件,以免过热对设备性能造成不利影响。AM02018039WN-SN-R的封装完全符合RoHS标准,该MMIC与50欧姆阻抗匹配,使其能够在各种电路和系统中展现出良好的兼容性和性能表现。无论是用于通信、雷达亦或其他高性能电子系统,AM02018039WN-SN-R都能提供稳定、可靠的功率放大效果,实为业界值得信赖之选。产品规格参数:- 频率(GHz):2- 频率最大值(GHz):18- 增益(db):20- Psat(dBm):39- Vd(V):32- 封装:法兰[font=微软雅黑, &][size=16px][color=#666666]深圳[/color][/size][/font][url=https://www.leadwaytk.com/]立维创展[/url][font=微软雅黑, &][size=16px][color=#666666]是[/color][/size][/font][url=https://www.leadwaytk.com/brand/1.html]AMCOM[/url][font=微软雅黑, &][size=16px][color=#666666]功率放大器的代理销售,主营AMCOM的功率放大器,如:射频晶体管、MMIC功率放大器、混合放大器模块、宽带放大器、高功率放大器模块、带RF和DC连接器的高功率放大器模块和低噪声放大器,功率放大器,开关,衰减器,移相器以及上/下边变频器的定制,欢迎咨询。[/color][/size][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制