固定差分群延迟器

仪器信息网固定差分群延迟器专题为您提供2024年最新固定差分群延迟器价格报价、厂家品牌的相关信息, 包括固定差分群延迟器参数、型号等,不管是国产,还是进口品牌的固定差分群延迟器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合固定差分群延迟器相关的耗材配件、试剂标物,还有固定差分群延迟器相关的最新资讯、资料,以及固定差分群延迟器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

固定差分群延迟器相关的厂商

  • 西安鼎研科技股份有限公司创立于2005年,位于西安市高新区,是一家以工业过程气体分析设备、污染源在线监测及挥发性有机物监测设备的研发、生产、销售及运营维护服务为主,集环境工程设计、施工和治理为一体的国家级高新技术企业。 凭借多现场、多行业方案解决经验,鼎研科技股份已成为过程分析、环境治理领域中卓越的专家。通过不断的技术创新、产品改进,鼎研科技股份可为各种自动化系统提供可靠、经济、人性化的操作平台,造就“全集成、人性化、自动化、网络化”的工业4.0的佼佼领先品牌。体贴细致的专业技术服务、切合现场的技术解决方案、严谨的现场调试、完善的售后服务、专业的客户培训,无不彰显鼎研科技股份的品质与魅力。
    留言咨询
  • 岩征实验仪器有限公司(上海公司)上海岩征实验仪器有限公司成立于2011年。是一家主要从事各大专院校实验、科研、开发、生产等仪器设计、制造、安装、调试等专业化服务的公司。岩征以自动化技术为核心优势,专注于多通道固定床反应器、高通量催化剂评价装置、实验室反应装置、微型反应釜、实验室高压反应釜、成套连续反应装置等领域,为化工、科研、环保、制药、医疗多个行业客户提供成套设备和一体化解决方案。岩征仪器是集研发和生产一体的综合型企业,在上海自有生产工厂,设有销售部、技术部、生产部、售后维护等部门,产品远销国外。“创新"作为公司研发的核心理念,已经深入到上海岩征人的心灵深处。通过自主创新,上海岩征目前已有多项自主产品,形成了厚重的技术积淀。 随着公司的高速发展,已经形成覆盖全国的营销网络和应用服务体系。公司始终坚持“以人为本、海纳百川”的人才理念,汇集了一批高素质的研发、营销、经营管理人才。良好的研发实力、高品质的产品、完善的服务、规范的企业管理是上海岩征实验仪器有限公司赖以生存与发展的根本。
    留言咨询
  • 乐清市鼎轩照明有限公司是一家从事工业照明研发、制造、销售、服务为一体的民营企业。公司主导的照明产品:固定照明类、固定防爆类、移动照明类、移动防爆类四大类。鼎轩照明公司座落于美丽富饶的东海,北倚雁荡山风景区,西临国家级风景区楠溪江,104国道穿境而过,距温州机场仅20公里,交通便利,环境优越。在不断完善生产工艺、技术、有效保证产品质量的前提下,使公司生产的各种产品能够科学合理的贯彻国家颁布的各项标准。鼎轩照明严格按照ISO9001质量体系和标准执行,使我们各个环节的工作效率和服务得到提高和完善。现在依靠规范的服务、有序管理,使每一位客户的信息都记录在案,不但有据可查,而且资源共享,信息资源的效力得以充分发挥。同时,公司从管理着手,引进了优秀的企业系统管理软件以及产品数据管理软件;这些管理系统基于企业局域网平台,联结了企业的采购、销售、技术、仓库、财务决策等部门,整合了企业上下级的各种资源,并实现了规范产、供、销管理,而且严谨的控制了产品设计流程,使产品质量在源头得到了保证,改善了企业的经营效率和经营有效性,更加有效加强了企业与用户之间联系的时效性,使我们能将优秀的产品解决方案及时提供给用户。鼎轩照明拥有一支高学历、高素质、潮气蓬勃的设计开发团队,以数名资深行业专家为核心,多位精研专业的年轻研发人员为骨干,并由多所著名研究机构的行业知名教授组成的顾问团提供前瞻性的指导与支持,使公司的产品能够不断推陈出新。鼎轩照明将持续管理变革,实现高效的流程化运作。通过建立一支有共同奋斗目标的团核心团队,、高效有序的运作流程,着力于产品质的把关,以高度的责任心,确保产品的优质交付。鼎轩照明技本着以"服务求生存,以创新谋发展"的经营理念和"以人为本"的发展战略:为客户服务是鼎轩照明存在的唯一理由,客户的需要是鼎轩照明发展的原动力。我们将与商友共同发展,在专业照明行业市场中既是竞争对手,也是合作伙伴,共同创造良好的企业生存空间,为世界能源经济的高效发展贡献自己的一份力量。
    留言咨询

固定差分群延迟器相关的仪器

  • VR延迟测试系统 400-860-5168转1980
    一. VR延迟系统介绍 VR延迟方案,根据人眼的运动规律,制作一个三轴的旋转移动平台,配合PLT高速相机,模拟人眼的运动规律,作上下左右以及旋转的运动。并通过PLT高速相机捕捉机台移动和VR眼镜中图像的变化。根据同步变化的规律,以此来观察图像与机构运动间的差异。整个测试过程,我们通过自动化的控制,将图像的拍摄与延迟的计算集成于一体,以此达到测试的便捷性与准确性。二. VR延迟系统解决方案该系统将PLT高速相机和VR相机固定在平台上,通过三台伺服马达控制平台的运动,以此来观察VR相机的图像变化。同时,另外一台高速相机使用支架固定,通过观察机台转轴上刻度的变化,观察机台的实际运动情况。并通过软件的跟踪找点功能,得到机台与图像运动的位移曲线,使用拟合算法得到VR眼镜的时间延迟。1、硬件部分: 系统采用3轴旋转方式,每个方向可以360度旋转,旋转速度可控,可以真实的模拟人体头部的运动状况,达到理想测试效果。双高速相机采用高速同步信号,同时拍摄VR眼镜画面和机械运动画面,观察开始和停止为止的差异现象。机构展示: 图1 VR延迟测试方案图 图2 VR延迟测试旋转方案 图3 双摄像机控制器三轴旋转的平台的规格为: 项目细项规格备注1.limit sensorYes安全防护2.紧急停机钮Yes规格1.载台尺寸Max 250*250mm2.精密旋转轴行程θ1:±300°精度0.1°max 180o/s0~360o/s^2φ:±300°φ:±300°其他项目1.万用家具客制化夹具2.PC systemADLink工业计算机3.电控系统PC Based操作系统厂务需求电力配合单相220V 20A文件操作手册中文售后服务1.教育训练完整量测教育训练及简单故障排除质保12个月PLT相机规格: 型号PL2 模拟输入功能信道数4信道(信道之间无隔离)测量范围-50V ~+50V 最大输入额定值±250V(DC+AC peak) 输入阻抗1MΩ±1% GND输入非绝缘测量精度精确到DC 放大器的±1.0% F.S. 采样率最大1MS/s 分辨率14bit 记录介质CF卡网络文件夹显示功能7.5英寸彩色TFT 像素数(640×RGB)×480 显示颜色262,144色电源供给AC 适配器(DC12V) AUX 接口参考“4.9. AUX 接口终端” CF 卡接口遵从CF协会标准Type 1 视频输出混合视频输出(NTSC/PAL) PC 接口USB USB2.0 兼容以太网100Base-TX OS WindowsXP SP3 over WindowsVista Windows7/8 分析软件PLEXLOGplusⅡ标准附属尺寸(宽度x 长度x 高度)212mm×257mm×62.5mm 重量1800g 环境要求工作温度范围0℃~40℃工作湿度范围20%~80%(无结露)存储温度范围-20℃~60℃存储湿度范围10%~90%(无结露)高速摄像头规格:拍照功能摄影元件1-inch CMOS图像传感器(彩色/黑白)记录速率250fps@SXGA 1600fps @VGA (最大10000fps@48x8) 快门速度1/50~1/100000 秒分辨率最大1280x1024 镜头C mount 图像/ 信号同步功能同步精度含模拟信号采样记录功能图像记录格式RAW、MJPEG 记录时间4GB 内存250fps@SXGA 9.38 s 250fps@VGA 39.31 s 1600fps@VGA 5.97 s 8GB 内存250fps@SXGA 18.99 s 250fps@VGA 78.86 s 1600fps @VGA 12.15 s 记录方法触发(利用外部信号、模拟信号阈值、图像亮度阈值)、手动记录(REC 键)尺寸(宽度x 长度x 高度)54mm×56mm×102mm 重量490g 环境要求工作温度范围0℃~40℃工作湿度范围20%~80% (无结露)2、软件部分:通过高速相机,我们直接将得到的图像传输到电脑中,使用软件的跟踪功能,分别将开始和结束段的图像跟踪,得到图像运动的变化与时间的波形,得到图像和机台在开始时和停止时变化的时间,最后通过拟合计算得到两部分的延时。根据图像的不同,软件中会设置自动和手动模式。自动模式即为使用固定图像,软件得到延迟图像后,会自动计算延迟时间。手动模式为使用随机图像,手动框选图像标定,计算延迟时间。软件界面机械控制部分 数据分析部分 三. VR延迟系统测试数据:测试步骤:(1) 固定测试样品,调整焦距(2) 设定测试参数(旋转角度、旋转速度、旋转加速度、测试帧数),按下开始按钮,两台相机同步拍摄(3) 图片自动上传至电脑,手动框选图形(如有固定图像,可自动框选),自动分析计算,得出延迟时间。测试结果:开始时 停止时 运算结果: 四. 总结VR延迟测试系统,模仿人眼的运动规律,非常直观的观测到VR影像的延迟,不需要过多的算法进行测试,保证了测试的精度。而且,我们还可以根据图像的变化率,计算出图像的拖影。PLT高速相机性能优良,轻便小巧,方便携带和移动。他的镜头可任意更换,包括内窥镜和显微镜等。另外,可外接外部信号源并作为触发信号,且传感器种类不限,日后可扩展不同应用。同时,我们可以多台多角度同步记录,包括手机跌落试验、零部件老化试验等。另外,我们的分析软件功能强大可做各种深入分析,还可根据客户需求做软件升级。
    留言咨询
  • Thorlabs 全波液晶可变延迟器/波片 偏振特性可变波片主动控制光的偏振态和/或相位延迟延迟范围:0 nm到λ,用于带残余延迟补偿的LC延迟器~30 nm到λ,用于无补偿的LC延迟器通光孔径:Ø 10 mm或Ø 20 mm低延迟均匀性(详情请看规格标签)兼容我们的LCC25和KLC101电压控制器(单独出售)Thorlabs的全波液晶延迟器(LCVR)利用向列型液晶盒作为可变波片。由于没有移动部件,可实现微秒级的响应时间(详情见响应时间标签)。我们提供五种常用波长范围的增透膜:350 - 700 nm、650 - 1050 nm、1050 - 1700 nm、1650 - 3000 nm或3600 - 5600 nm。Thorlabs提供两种通光孔径的尺寸:Ø 10 mm和Ø 20 mm。两种尺寸都可选两种可变延迟范围:0 nm到λ的延迟,用于带残余延迟补偿的延迟器,~30 nm到λ的延迟,用于无补偿的LC延迟器。我们有补偿的延迟器集成了由液晶聚合物制造的相位补偿器,可以补偿LCVR的残余延迟,以在特定的驱动电压下实现真正的零延迟其结构与原理如下所述。我们Ø 10 mm延迟器的外径为1英寸,兼容Ø 1英寸光学元件安装座。我们Ø 20 mm延迟器的外径为2英寸,兼容Ø 2英寸光学元件安装座。性能这些液晶可变延迟器拥有优异均匀性、低光损耗和低波前畸变。我们的延迟器还具有快速响应时间、宽工作温度范围、宽波长范围。我们同样提供热稳定全波延迟器,它具有更好的长期稳定性。工作如图1所示,液晶可变延迟器由填满液晶(LC)分子溶液的透明液晶盒组成,可用作可变波片。在未加电压的情况下,液晶分子的定向由取向膜决定,取向膜为有机聚酰亚胺(PI)膜层,其分子在制造过程中沿摩擦方向排列。由于LC材料的双折射性,该LC延迟器可以用作光学各向异性波片,其慢轴标记在机械外壳上,且与延迟器的表面平行。透明盒壁的两个平行面镀有透明导电膜,因此可在液晶盒上施加电压。加上交流电压后,液晶分子会根据所加电压Vrms改变默认排列方向。因此,改变施加电压可以主动控制液晶可变延迟器的延迟。残余延迟补偿由于PI层表面锚定,即使施加电压,仍有一些液晶分子无法改变方向,尤其是靠近取向膜的分子。这就使得LC延迟器在工作期间产生了残余延迟。Thorlabs无补偿的LC延迟器在25 Vrms驱动电压下具有~30 nm的残余延迟,如上方图2所示。为了满足敏感应用中真正的零延迟需要,我们提供有补偿的LC延迟器。由液晶聚合物(LCP)构成的补偿板粘合在液晶盒上,其慢轴垂直于液晶盒的慢轴。LCP补偿层的固定延迟为~50 nm。因此,特定驱动电压在5 V到20 V之间时,液晶盒与补偿器的延迟相互抵消,产生真实零延迟。但是,这可能会导致延迟均匀性稍微变低,响应时间变慢,总厚度增加。控制器虽然采用交流电压(0到25 Vrms),但LCC25和KLC101控制器提供主动直流偏移补偿。直流偏移补偿将液晶设备的直流偏置置零,以抵消电荷积累。
    留言咨询
  • 可提供多个范围在每个宽光谱范围内平坦响应λ/4 和 λ/2 延迟性与标准波片不同,消色差波片(相位延迟片)可实现恒定的相移,不受所使用的光线的波长影响。这种波长独立性通过使用两种不同的双折射晶体材料实现。在波长范围内延迟的相对位移通过所使用的两种材料进行均衡抵消。消色差波片(相位延迟片)的平坦响应尤其适用于可调激光、多激光线系统以及其他宽光谱源。设计用于 0° 入射角,±3° 的变化将产生少于 1% 的延迟性变化。11.5mm 通光孔径波片采用气隙构造, 23mm 通光孔径波片则采用胶接构造。所有消色差波片(相位延迟片)均装在阳极化铝外壳中,并清晰标示快光轴。通用规格构造 :Crystalline防护罩容差 (mm):+0/-0.25基底:Crystal Quartz and MgF2Configuration:Air Spaced
    留言咨询

固定差分群延迟器相关的资讯

  • 填补空白!中智科仪发布数字脉冲延迟发生器“STC810”
    导读:中智科仪(北京)科技有限公司最近成功自主研发出STC810八通道数字延迟脉冲发生器,该产品以10ps延迟精度和35ps超低抖动性能脱颖而出,打破了国外技术垄断,为我国高端科研仪器自主创新树立了里程碑。STC810拥有8个独立高精度延时通道,采用了软件、触屏和旋钮操控模式相结合,同时配备多功能接口以适应多元化需求。这一技术突破填补了国内关键设备空白,极大提振了我国自主创新信心。STC810的成功为我国科技自主发展树立了榜样,鼓舞着更多企业积极从事科技创新,共同推动我国科研装备产业向更高层次迈进。正文:在当前信息化、智能化社会中,精准的时间和信号控制技术作为众多高科技领域发展的基石,在通信、雷达探测、医学成像等重要应用中发挥着不可或缺的作用。然而,在我国市场上,高端数字延时脉冲发生器这一关键设备长期以来被美国厂家的数字延迟脉冲发生器所主导。虽然国内部分企业也投入研发同类型产品,但在核心技术指标上,如延时精度与外触发抖动等方面仍难以达到与该厂家相媲美的水平。然而,为打破国际垄断局面,实现高端数字仪器设备国产化替代的目标,中智科仪(北京)科技有限公司的研发团队历经艰辛攻关,成功推出了自主研发的台式数字延迟脉冲发生器——STC810。这款专为科研工作者精心打造的产品,在性能和人机交互体验方面都取得了显著的进展。中智科仪自主研发的STC810八通道数字延迟脉冲发生器,内置八个独立可调延时输出通道,使用户能够轻松灵活地调节延迟时间、脉冲宽度以及频率等多种参数,以满足多元化应用场景需求。在核心性能方面,STC810以卓越的10ps延时精度挑战,同时将外触发抖动降低至35ps,达到了国际一流水准,充分体现了我国在该领域的自主研发实力和技术进步。STC810摒弃了传统的数码管显示模式,采用了先进的彩色触摸屏界面设计,大大提升了操作便捷性和直观性,使得实验过程中的参数设置更为高效、准确。通过自主研发的智能软件控制系统,STC810进一步简化了实验操作流程,无论是调整延迟、设置脉冲宽度还是频率,都能迅速响应,从而极大地提高了科研工作的效率。值得一提的是,STC810还具备分频处理功能,能在外部触发模式下实现70纳秒内的超短内置延迟,并支持低至0.25V的触发阈值,兼容上升沿和下降沿触发,同时适应高阻抗和低阻抗环境下的稳定运行。通过多功能输出端口的设计,确保了STC810能够在各种复杂的应用场景下发挥出色作用,真正实现了与国际标准比肩的精准同步延时能力。为了全面剖析“STC810”八通道数字延迟脉冲发生器的研发历程、技术创新及市场前景,我们特意与中智科仪(北京)科技有限公司的研发部负责人进行了一场深度对话,共同探讨了国产同类产品目前所遭遇的挑战以及蕴含的发展机遇。通过深入挖掘“STC810”的研发故事及其关键技术突破,我们揭示了这款产品如何成功应对国际竞争压力,实现对高端市场的突破,并为我国科研领域的自主可控提供了强有力的支撑,同时也展示了国产科学仪器在追求卓越性能与便捷操控上的不懈努力与创新成果。以下视频链接是与研发负责人探讨STC810数字延迟发生器发展历程与背后故事的对话:在与中智科仪研发负责人的深度对话中,我们共同追溯和剖析了STC810数字延迟发生器的研发历程及其背后的创新故事。这次互动使我们全面回顾了产品从设计构想到实际应用的发展历史,并深入体悟到其中所经历的曲折过程和取得的重大成就,从而深刻认识到创新道路上的挑战与突破对于产品研发的重要性。中智科仪在长期深耕时间分辨成像系统领域的基础上,为应对市场和技术挑战,以及降低潜在的供应链风险,自主研发了一款台式数字延迟脉冲发生器——STC810。这款产品源自公司核心相机技术中的时序控制功能扩展,不仅实现了对延时和脉冲宽度的高精度调节,还能够与镜头耦合型sCMOS相机及EyeiTS高速像增强模组完美融合,成为时间分辨成像系统不可或缺的核心组件。研发过程历经近五年的时间,团队在面对国内同类型技术空白、基础理论研究与算法层面相对薄弱的挑战时,以及在高科技竞争日益激烈的国际环境下的担忧中,决定主动出击,攻克关键技术难题。经过数年的持续努力,去年终于取得了突破性进展,成功研发出性能媲美国际先进水平的STC810。产品的核心亮点在于其外触发抖动达到了35皮秒的极低水平,远超国内市场上最优产品的500至800皮秒表现。同时,设备采用了先进的彩色屏幕显示技术,提供丰富全面的信息展示和便捷的操作体验,极大地提升了人机交互效果。展望未来,STC810同步时序控制器有着广阔的应用前景,可广泛适用于医学成像、激光雷达、时间分辨成像、量子精密测量、仪器触发与同步等多个尖端科技领域。这款自主知识产权的产品不仅彰显了中智科仪在高端科学仪器领域的研发实力,更预示着公司在国际市场上的强大竞争力,有望为中国乃至全球科研事业的进步作出重要贡献。图1 优于35ps外触发抖动图2 10ps延时精度图3 彩色触摸屏显示图4 数字延迟脉冲发生器经典应用以下视频链接是STC810分别在PC端软件/触屏操作/面板旋钮操作下的视频演示:以下链接是华中科技大学强电磁工程与新技术国家重点实验室借助中智科仪STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制的应用分享的文章:STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制-中智科仪(北京)科技有限公司 (cis-systems.com) 以下链接是上海交通大学航空航天学院光学精细成像实验室借助中智科仪STC810数字延迟脉冲发生器用于测试激光器触发与火焰动态拍摄的应用分享的文章:STC810八通道数字延迟脉冲发生器用于激光同步触发与火焰动态拍摄-中智科仪(北京)科技有限公司 (cis-systems.com)结论:通过深入听取研发工程师对STC810数字延迟脉冲发生器从最初构思到最终实现的全程回顾,以及分享的产品在开发过程中所遭遇的各种技术难关及其克服经历,结合当前我国高端设备自主研发所面临的挑战与机遇,我们有充分理由认为,国产数字延迟脉冲发生器未来的发展路径将尤为强调核心技术的自主突破、市场疆域的有力拓展和应用领域的深层次挖掘,具体体现在以下几个核心层面:1. 核心技术自主可控: 持续投入研发,提升脉冲产生、精确延时等关键技术的自主研发能力,实现核心部件和整机系统的全面自主可控。2. 高性能产品持续创新: 瞄准国际先进水平,研制更高精度、更稳定、更具灵活性和智能化的新型数字延迟脉冲发生器产品,满足不同行业领域对精密时序控制的高端需求。3. 应用场景不断拓宽: 不断探索并进入新的应用场景,如量子计算、超快激光、高速通信、粒子加速器等领域,提供定制化解决方案和服务。4. 市场竞争力增强: 通过技术创新与品质升级,提高国产设备在国内外市场的份额和影响力,积极参与国际竞争,树立国产品牌形象。5. 产学研深度融合: 加强与高校、科研院所及产业界的协同合作,推动科技成果快速转化,共同构建完善的产业链条,支撑行业的长远健康发展。
  • 宁波材料所近红外热活化延迟荧光材料与器件研究获进展
    近红外有机发光二极管(NIR-OLEDs)在生物成像、防伪、传感器、远程医疗、显微摄影、夜视显示等方面颇具实际应用价值,已成为有机电致发光器件的重要发展方向之一,而热活化延迟荧光(TADF)材料可以实现100%激子利用率,其量子效率可媲美基于贵重金属的磷光材料,具有应用潜力。受能隙定律的影响,近红外发光材料的基态(S0)和第一单态激发态(S1)势能面接近,近红外发光材料普遍存在严重的非辐射失活现象,在聚集态中表现得尤为严重。非掺杂器件在面板显示和一般照明应用中具有良好的重复性、高稳定性和低成本等优点以及商业化潜力。鉴于TADF材料具有强的分子内电荷转移(ICT)特征,在非掺杂条件下可较易获得深红色甚至近红外发射,因此亟需开发出光亮的NIR-TADF非掺杂材料。  近日,中国科学院宁波材料技术与工程研究所研究员葛子义和副研究员李伟等开发了一种在非掺杂条件下即可实现高效率的NIR-TADF,基于该材料的NIR-OLED最大外量子效率为9.44%,发光峰位于711nm,是目前已报道的基于TADF材料的NIR-OLED最高效率之一。科研团队探究了TADF材料的材料结构、发光特性与聚集态之间的关系。一般认为,非晶态薄膜的无序程度高于有序排列的单晶,薄膜中光团的光致发光量子产率(PLQYs)普遍高于晶体态。已知TADF分子的非辐射淬灭主要受Dexter能量传递(DET)机制主导下的分子间电子交换作用。DET过程的短程特性,在高浓度下会发生激子湮灭,故分子填充模式的微小变化可能对光电子性能产生影响,甚至决定光团的光物理性能。因此,研究团队设计了T-β-IQD单晶来深入探究材料在结晶态和未掺杂态下的高发光量子产率的机理。x射线晶体学分析表明,T-β-IQD具有面对面的堆积结构,且相邻有较大的层间滑动,TIQD晶体呈“头尾”排列。根据Kasha激子模型,T-β-IQD的二聚体跃迁偶极子与对应偶极子对齐方向的夹角(θ)分别为24.92°,为J型聚集体形式,可以提高辐射衰减率。在T-β-IQD晶体中,同时存在分子内和分子间CNH-C和C-Hπ协同作用(图1)。这种适度的分子内C-Hπ相互作用可以锁住β-TPA供体上的分子内叔丁基苯单元和萘,高度限制它们在结晶态下的旋转。同时,在晶体和共轭骨架中没有观察到明显的π-π堆积接触,这降低了浓度淬灭效应(ACQ)。根据DET机制,T-β-IQD晶体的邻腈核之间的远距离(8.50)有望抑制延迟荧光(DF)和三态激射灭(图2)。此外,在TIQD晶体中,相邻的IQD段之间形成了距离为3.35的强分子间π-π相互作用,表明相对于T-β-IQD晶体,分子间的堆积更为紧密,且具有严重的非辐射衰变。分子动力学(MD)模拟表明,T-β-IQD的受体面与二聚体对齐方向的夹角(θ)为27.5°,T-β-IQD在非晶态下倾向于以J-聚集体形式堆积。T-β-IQD的吡咯核间距为4.1。T-β-IQD的平面受体之间距离较大,避免了浓度猝灭效应。T-β-IQD分子的平面受体片段呈现角度错位排列,未观察到明显的共面堆叠,这将有助于抑制非掺杂薄膜中的ACQ效应。  在稀释THF溶液中,T-β-IQD几乎不发射,而当水分数(fw)增加到60%时,PL强度迅速增加,表现出明显的聚集诱导发光(AIE)特征(图2)。T-β-IQD在固体状态下表现出几乎与浓度无关的特性。这种独特的优点可以归结于它的RIR原理的AIE效应、具有C-Hπ和CNH-C分子间相互作用的J聚集性质以及晶体态的大中心到中心距离,这提高了非掺杂薄膜和基于材料的发射效率。  相关研究成果以Highly Efficient Near-Infrared Thermally Activated Delayed Fluorescent Emitters in Non-Doped Electroluminescent Devices为题,作为热点文章发表在《德国应用化学》上。研究工作得到国家杰出青年科学基金、国家重点研发计划、国家自然科学基金、宁波市科技创新2025重大专项等的支持。
  • 欧盟延迟实施香波等产品的生态标签标准
    2013年3月19日,欧盟在OJ上发布了委员会决定,修订决定2007/506/EC和2007/742/EC,以对某些产品的生态标签标准实施予以推迟,这些产品包括了肥皂、香波和护发素,以及电动、气动或者气吸收热泵。具体修订为:  (1) 决定2007/506/EC的第4条修订为:  “肥皂、香波和护发素”产品族的生态标准及其相关的评估和核验要求均延迟至2013年12月31日。  (2) 决定2007/742/EC的第4条修订为:  “电动、气动或者气吸收热泵”产品族的生态标准及其相关的评估和核验要求均延迟至2013年12月31日。

固定差分群延迟器相关的方案

固定差分群延迟器相关的资料

固定差分群延迟器相关的试剂

固定差分群延迟器相关的论坛

  • 电动可调光纤延迟线0~1500ps

    [b][font=宋体][color=#ff0000]光延迟线[/color][/font][/b][font=宋体][color=#ff0000]:[/color][/font][font=宋体][font=宋体]电动光延迟线([/font]0~1500ps[font=宋体])、手动延迟线([/font][font=Calibri]0~1500ps[/font][font=宋体])、光栅尺延迟线[/font][font=Calibri]([/font][font=宋体]延迟精度[/font][font=Calibri]1fs[/font][font=宋体],[/font][font=Calibri]0~1500ps[/font][font=宋体])、固定延迟线([/font][font=Calibri]100ns~240us[/font][font=宋体])、步进延迟线 [/font][font=Calibri],[/font][font=宋体]所有延迟线都可定制多通道[/font][/font]

  • 【求助】/ 顶空进样的溶剂延迟问题~

    我想问下各位大侠们,我采用固体样品顶空进样1000微升气体~那我的溶剂延迟应该设为多长时间比较合适~这个情况是不是溶剂就是空气?那样的话空气中的水分和氧气对我检测的样品有没有什么大的影响呢?

  • 减量法滴定镁,终点延迟解决

    用酸性铬兰K-萘酚绿B作指示剂,用5毫升1比1三乙醇胺,0.5mlKCN作屏蔽剂,氨水-氯化铵作缓冲剂,EDTA滴定,颜色变化由红色-紫色-蓝色,紫色变蓝色过渡时很缓慢,延迟。怎么解决?蓝色也不太好观察

固定差分群延迟器相关的耗材

  • 消色差延迟器
    消色差延迟器,菲涅尔菱体由中国领先的进口光学精密仪器旗舰型 服务商进口销售,孚光精仪精通光学,服务科学,为中科院上海光机所,安徽光机所,西安光机所,中国工程物理研究院等单位提供进口的相位延迟器,消色差延迟器这款消色差延迟器是一款采用菲涅尔菱体的高级相位延迟器,消色差延迟器安装有保护外壳,其中菲涅尔菱体它由BK7玻璃或紫外熔炉石英制造而成。单个菲涅尔菱体产生90度的相位位移,因为光在它的两个表面上发生全内反射。双菲涅尔菱体产生180位移差。消色差延迟器的保护外壳是圆柱体的。相位延迟器的端面与旋转轴正交。更多相位延迟器,消色差延迟器,菲涅尔菱体 相位延迟器规格和参数材料:BK7或UVFS光束偏移:镀膜:增透镀膜波长范围:260-400nm (UV), 400-700nm (VIS), 700-1300nm(NIR1),1300 - 1600 nm(NIR2)ModelRetardationwavelenght range, nmL, mml, mm1single (λ/4)700-130039.523.52single (λ/4)1300-160039.523.53single (λ/4)260-40033.517.54single (λ/4)400-70039.523.55double (λ/2)700-130062466double (λ/2)1300-160062467double (λ/2)260-40050348double (λ/2)400-7006246消色差延迟器是采用菲涅尔菱体的高级相位延迟器,其中单个菲涅尔菱体产生90度的相位位移,双菲涅尔菱体产生180位移差.中国领先的进口精密激光光学器件旗舰型服务商--孚光精仪!
  • 精密延迟发生器
    Kentech公司的精密延迟发生器无源延时线是一种小型工具,是专为快速摄像系统和其他快速仪器的关键时序调整而设计的,精密延迟发生器可以应用于快速取景相机的帧间定时调整,和激光系统的触发或脉冲整形。也提高其它延迟长度和调整档幅度满足顾客的特殊要求。精密延迟发生器特点可以延迟任意输入的信号,延迟调整范围是在25ps档,20ns内。延迟发生器的组成部件有一组转换的50Ω校准延迟线以及控制微机。不会产生内部振动,上升时间小于1ns,高电压进行短脉冲。在前面板或RS232遥控接口设置延迟。当前的延迟设置显示在LCD显示器上,设备具有相对或绝对延迟模式。使用相匹配的继电器,切换延迟线的各个部分,设置延迟。整个调整范围内,上升时间可以重复设置,所有延迟设置的上升时间少于0.8ns。该延迟发生器有延迟短,相对高电压的触发信号的功能。Kentech公司的许多高压脉冲发生器可以使用此功能在两个或多个输出脉冲通道之间实现高度稳定的相对定时。精密延迟发生器产品规格?最大可调延迟 20ns?延迟增量 25ps?最小设置时的吞吐量延迟 6ns?增幅间误差?振动 零有效,机械装置。?特性阻抗 50?。?电压处理 直流30V。随着脉冲信号电压高达30V,可能改变延迟,但信号通过设备播。 如果延迟设置不改变,脉冲传播, 脉冲限制1.8μA库仑。如为2ns 时1.5KV。?使用前面板键和串行端口进行全功能控制。?LCD显示状态和功能。?串口RS232,75到9600波特,(率存储在EEPROM),需要从终端或模拟器得到简单文本命令。?延迟 绝对或相对。?内存 非易失性内存存储最后一次手动延迟设置和相对或绝对延迟模式,绝对最小延迟和波特率。(请注意,当电源关闭时延迟将恢复到最小值,但信号仍然会被传输。) ?尺寸 270 x 210 x 87 mm 3 ?电源 要求通用电源 功率约20W。
  • 紫外-远红外相位延迟可调谐波片
    (Zhuan利申请中)ALPHALAS可调谐真零级相位延迟波片是一款新型的相位延迟波片,实现了光偏振测量的全新突破,现已上市。对于从150nm(真空紫外)到6000nm(远红外)的任意波长,UVIR型号可以调节到1 / 4或半波相位延迟,而FIR型波片可以调节到1µm到21µm。因此,新型的相位延迟波片取代了几十块普通的相位延迟波片,以覆盖这些超宽的光谱范围。 将两个光学接触的薄波片以相对于光轴适当的角度进行切割,形成一个真零级相位延迟波片,在设计上与萨瓦尔波片相似。所需的相位延迟可以通过将波片倾斜8-15°来实现。这种设计旨在避免光线反射回激光系统,这在许多情况下会导致复杂性。在染料激光器、光学参量发生器和飞秒激光器等宽带可调谐或宽带激光源的研究中,新款相位延迟波片是不可或缺的。 这款波片有独特的新功能,且价格非常有竞争力,通常低于普通波片的价格安全事项:本产品含有硒化镉 (CdSe)晶体。在一些国家,通过粉末或蒸气形式摄入和吸入超过一定程度的镉被认定为危险行为。详细信息和注意事项请参考当地的安全法规。本产品应避免接触皮肤,小心轻放,并储存在安全的地方。仅允许收到相关指示的人员进入。避免产品掉落或断裂。禁止与可能蒸发或烧蚀该材料的高功率激光器一起使用。技术参数产品应用:偏振测量和控制、激光研究、光谱学、非线性光学、OPO、飞秒激光器 专用波片固定器的对准过程1. 使入射光束的偏振面平行于矩形板固定器的任一边缘,以这种方式对固定器进行定向。在图中,显示了一种可能的偏振方向E;另一种是旋转90度的偏振。 2.旋转螺钉,直到延迟板与固定器平面平行。然后对准整个装置,使板和支架垂直于入射光束。然后,光束将从波片准确地向后反射。3.旋转螺钉,直到达到要求的延迟。所需的延迟是通过围绕轴倾斜8°- 15°(取决于光谱区域)来实现的,这个轴在一个平面上与光的偏振成45°(见图)。当板置于两个平行偏振器之间时,实现了半波延迟的对准,并且通过倾斜板,透射光完全熄灭。为了将偏振面旋转任意角度,请使用带度数的拨号旋转按钮。当透射光达到最大强度的一半时,四分之一波片的对准是正确的,并且它在第二个偏振器任意旋转时保持恒定。延迟器设计允许产生左或右圆偏振。偏振态的改变(右/左)通过将板旋转90°来实现。对准过程非常简单,在获得经验后,可以很容易地调整所需的偏振态。这种新型设计的主要优点是延迟器相对于激光束是倾斜的,从而避免了背反射和标准具效应。这一特性特别适合于模型锁定激光器的应用。另外,我们提供倾斜角对波长具有依赖的调谐曲线。请注意,当该板不倾斜时,不像普通相位延迟板那样有任何确定的光轴。 波片型号波片描述PO-TWP-L4-12-UVIR可调谐真零阶四分之一波(λ/ 4)相位延迟波片,范围150 - 6000 nm,孔径Ø11mm,厚度2.0 mmPO-TWP-L4-25-UVIR可调谐真零级四分之一波(λ/ 4)相位延迟波片,范围150 - 6000 nm,孔径Ø24mm,厚度2.0 mmPO-TWP-L4-25-IR可调谐真零阶四分之一波(λ/ 4)相位延迟波片,范围500 - 6500 nm,孔径Ø24mm,厚度5.0 mmPO-TWP-L2-12-UVIR可调谐真零级半波(λ/ 2)相位延迟波片,范围150 - 6000 nm,孔径Ø11mm,厚度2.5 mmPO-TWP-L2-25-UVIR可调谐真零级半波(λ/ 2)相位延迟波片,范围150 - 6000 nm ,孔径Ø24mm,厚度2.5 mmPO-TWP-L2-12-IR可调谐真零级半波(λ/ 2)相位延迟波片,优化范围为2000 - 6500 nm,孔径Ø11mm,厚度2.5 mmPO-TWP-L2-25-IR可调谐真零级半波(λ/ 2)相位延迟波片,优化范围为500 - 6500 nm,孔径Ø24mm,厚度5 mmPO-TWP-L4-25-FIR可调谐真零阶四分之一波(λ/ 4)相位延迟波片,范围1 - 19μm,孔径Ø24mm,厚度5 mmPO-TWP-L2-25-FIR可调谐真零级半波(λ/ 2)相位延迟波片,范围1 - 19μm,孔径Ø24mm,厚度5 mm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制