当前位置: 仪器信息网 > 行业主题 > >

光催化高压反应釜

仪器信息网光催化高压反应釜专题为您提供2024年最新光催化高压反应釜价格报价、厂家品牌的相关信息, 包括光催化高压反应釜参数、型号等,不管是国产,还是进口品牌的光催化高压反应釜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光催化高压反应釜相关的耗材配件、试剂标物,还有光催化高压反应釜相关的最新资讯、资料,以及光催化高压反应釜相关的解决方案。

光催化高压反应釜相关的资讯

  • 正信仪器厂发布机械搅拌高压反应釜新品
    Q-PSA系类机械搅拌反应釜是我厂与各高校合作经十多年研发生产的高端智能微型反应釜,釜体由大型加工中心一次加工成型。本反应釜是采用卡钳互锁快开式紧固结构,选6根顶丝均匀压紧方式,在使用过程中减少体力及时间,方便釜体与釜盖分离投料与取料。此款反应釜主要针对实验室做粘稠度大、高温高压的科研小试、微量分析定量合成等反应釜,该反应釜适用于石油化工、制药、高分子合成冶金等领域,可做催化反应、聚合反应釜、超临界反应釜、高温高压反应、加氢或惰性气体保护反应等产品特点安全设计:①选用优质棒毛环红炉锻造多层复杂工艺后一体加工而成②密封方式:软密封或硬密封结构③超温或超时自动报警④超压自动泄压防爆装置智能控制:①双路控温、连锁控制、杜绝冲温②采用稀土材料强力磁铁,直流无刷电机,无噪声、寿命长,转速/方向自由设定③快速导热嵌入式加热模块高效性设计:①釜体与加热装置可分离②法兰式结构稳定性设计:①阀门阀芯用合金面密封②耐高温耐腐蚀③散热片装置增加阀门寿命④外接口双卡?-?型号Q-PSK容积25-5000ML釜体材质304、316L、310S 、904L、哈氏合金、钛材等温度0~600度热电偶K型/316L/Φ2.0压力-0.1~30MPA压力表指针式/数显式 国产/进口压力防爆装置哈氏合金防爆膜搅拌方式轴传动桨叶搅拌(扭矩可达到40KG)搅拌速度0~1000rpm内衬聚四氟乙烯、石英、PPL时间0-999min/h加热装置全封闭式不锈钢加热器加热方式模块加热加热功率0-2500W控温方式PID智能双路控温,有效防止冲温,程序控温(选配)控温精度±1℃报警功能温度或时间超过设定值报警后均会触发报警,液晶显示界面会有提示并伴有声音提醒。特配用四氟包釜盖、测温管,搅拌杆及搅拌桨叶,四氟取液管,支架、筛网等;外置冷凝回流等电源220V/110V可根据样品或尺寸、图纸定制,以上参数仅供参考创新点:市场上同类其他产品结构为卡扣式外部加一个套圈为其紧固作用,操作繁琐。我公司反应釜为快开式反应釜,结构采用卡钳互锁快开式紧固结构,操作简单,机械搅拌高压反应釜
  • ChemTron发布ChemTron BR-300高压反应釜新品
    ChemTron BR-300高压反应釜该型号高压反应釜设计时尚,功能实用,由于其适用多种加热方式,多种搅拌方式,所以成为高压反应釜系列当中应用最为广泛的机型。和物料接触部分的材质可以选择不锈钢,哈氏合金或PTFE。根据釜体和PTFE 内衬规格不同,容积范围为310~990ml。BR 300/500/700 高压反应釜最大的特点是使用便捷。釜盖和釜体采用快开夹具紧固和密封,手动安装和拆卸,无需任何工具,密封O 型圈可以选择PTFE, FKM, or FFKM材质。其它选配附件材质为不锈钢1.4571 (SS 316TI) 或哈氏合金 C-22.釜盖上面总共有6 个开口,功能如下:* 温度计套管用于安装温度传感器* 金属爆破片,安全限制过高压力* 压力表* 排气阀* 两个预留口,用于安装气体采样或液体采样,温度计套管用于安装温度传感器,检测反应釜内部温度。第二根温度传感器可选,用于过温保护产品特点* 多功能小型高压反应釜,特别适用于常规高温高压应用* 反应釜材质包括不锈钢和哈氏合金,可选配 PTFE 内衬* 容积 300,350,500,600m,700,900ml 可选,最高耐压 200 bar,不锈钢和哈氏合金耐温300℃ ( 带PTFE 内衬耐温230° )* 釜体釜盖采用快开夹具,无需任何工具* 密封 O 型圈可选材质包括:Viton, PTFE 和 Kalrez* 可选择电加热套,循环导热油夹套控制温度。* 对于 300~350ml 配置,选择磁力搅拌方式进行样品混合* 该系列所有型号可选择磁偶密封轴承,使用机械搅拌方式进行样品混合* 可选配内置加热制冷盘管* 第二根温度传感器可选配技术参数型号BR-300BR-500 BR-700 材质SS316Ti or HC SS316Ti + PTFE SS316Ti or HC SS316Ti + PTFE SS316Ti or HC SS316Ti + PTFE 最高温度300℃ 230℃ 300℃ 230℃ 300℃ 230℃ 最大压力200 bar 200 bar 200 bar 釜体容积约390 ml 约630 ml 约980 ml 内部直径68 mm 68 mm 68 mm 内部高度108 mm 175 mm 271 mm 重量约4 kg 约6 kg 约8.5 kg PTFE 内衬( 选配) 容积- 约310 ml - 约500 ml - 约800 ml 内部直径- 62.5 mm - 62.5 mm - 62.5 mm 内部高度- 98 mm - 165 mm - 261 mm 釜盖标准配置爆破片,温度计套管,阀门爆破片,温度计套管,阀门爆破片,温度计套管,阀门压力测量压力表,模拟或数字型号压力表,模拟或数字型号压力表,模拟或数字型号釜盖接口(总数) 6 6 6 釜盖接口(预留) 2** 2** 2** 管路规格8 mm 8 mm 8 mm 加热单元 ( 选配) 搅拌电加热套√ - - JULABO 加热套√ √ √ 磁力搅拌√ √ √ 磁偶密封,顶置搅拌√ √ √ 釜体材质√ - - 最高温度√ √ √ * 当选用PTFE 内衬时,最高温度为230℃** 如果釜盖预留接口不够,可以使用T 型转接头扩展高压反应釜 BR-25/40该型号高压反应釜特别适用于小量及贵重物料的测试及化学反应,和物料接触部分的材质可以选择不锈钢,哈氏合金或PTFE。根据釜体和PTFE 内衬规格不同,容积范围为30~68ml。BR 25/40 高压反应釜最大的特点是使用便捷。釜盖和釜体为螺纹连接方式,手动安装和拆卸,无需任何工具,密封O 型圈可以选择PTFE, FKM, or FFKM 材质。其它选配附件材质为不锈钢1.4571 (SS 316TI) 或哈氏合金 C-22.釜盖上面总共有6 个开口,功能如下:* 温度计套管用于安装温度传感器* 金属爆破片,安全限制过高压力* 压力表* 排气阀* 两个预留口,用于安装气体采样或液体采样,温度计套管用于安装温度传感器,检测反应釜内部温度。第二根温度传感器可选,用于过温保护产品特点* 功能强大的迷你型高压反应釜,特别适用于小量及贵重样品* 反应釜材质包括不锈钢和哈氏合金,可选配 PTFE 内衬* 容积 25,40ml 可选,最高耐压 200 bar,不锈钢和哈氏合金耐温 300℃ ( 带 PTFE 内衬耐温 230° )* 釜体釜盖采用螺纹连接方式,手动安装拆卸方便,无需任何工具* 密封 O 型圈可选材质包括:Viton, PTFE 和 Kalrez* 可选择电加热套,循环导热油夹套控制温度。选择磁力搅拌方式进行样品混合* 第二根温度传感器可选配技术参数型号BR-25BR-40 材质SS316Ti or HC SS316Ti + PTFE SS316Ti or HC SS316Ti + PTFE 最高温度300℃ 230℃ 300℃ 230℃ 最大压力200 bar 200 bar 200 bar 200 bar 釜体容积约30 ml 约47 ml 约45 ml 约68 ml 内部直径25 mm 27 mm 24 mm 29 mm 内部高度62 mm 83 mm 99.6 mm 104 mm 重量约0.6 kg 约0.7 kg PTFE 内衬( 选配) 容积- 约29 ml* - 约45 ml* 内部直径- 22 mm* - 24 mm* 内部高度- 77 mm* - 101 mm* 釜盖标准配置爆破片,温度计套管,阀门爆破片,温度计套管,阀门压力测量压力表,模拟或数字型号压力表,模拟或数字型号釜盖接口(总数) 6 6 6 6 釜盖接口(预留) 2** 2** 2** 2** 管路规格1/8" 1/8" 1/8" 1/8" 加热单元 ( 选配) 电加热套√ √ √ √ JULABO 加热套- - - - 搅拌磁力搅拌√ √ √ √ 磁偶密封,顶置搅拌- - - - * 该参数仅适用于已经选配了PTFE 内衬的机型** 如果釜盖预留接口不够,可以使用T 型转接头扩展创新点:1、该型号高压反应釜设计时尚,功能实用,由于其适用多种加热方式,多种搅拌方式,2、配备了新款的温控。ChemTron BR-300高压反应釜
  • 大连化物所实现半导体光催化硼化反应
    近日,大连化学物理研究所精细化工研究室有机硼化学与绿色氧化创新特区研究组(02T6组)戴文研究员团队在多相光催化硼化方面取得新进展。团队选用易于制备的硫化镉纳米片作为多相光催化剂,利用光生电子—空穴的协同氧化还原作用,通过选择性硼化反应,实现了烯烃、炔烃、亚胺以及芳(杂)环的高值转化,合成了硼氢化和硼取代产物。氮杂环卡宾硼烷(NHC-BH3)由于其化学性质稳定且制备方法简单,近年来作为一种新型硼源,被应用于自由基硼化反应中。然而,大量有害的自由基引发剂或昂贵且无法回收的均相光催化剂的使用仍然阻碍其广泛应用。因此,发展一种通用、廉价且可循环的催化体系对NHC-BH3参与的自由基硼化反应的发展具有重要意义。在上述研究背景下,戴文团队发展了一种简单、高效的多相光催化体系。该体系利用易于制备的硫化镉纳米片作为多相光催化剂,NHC-BH3为硼源,在室温光照的条件下,实现了多种烯烃、炔烃、亚胺、芳(杂)环以及生物活性分子的选择性硼化反应。由于该转化过程充分利用了光生电子—空穴对,从而避免了牺牲剂的使用。进一步研究发现,该催化体系不仅能够实现克级规模放大,且催化剂多次循环后依旧保持稳定的收率,同时,该催化体系作为一个可循环的通用平台,回收后的催化剂仍可继续催化不同种类底物的硼化反应,这些结果可为以NHC-BH3为硼源的自由基硼化反应的发展提供新思路。此外,该工作还对所得到的有机硼化物进行了衍生化,合成了含有羟基,硼酸酯和二氟硼烷反应活性位点的合成砌块。  戴文团队一直致力于多相催化大宗化学品(烯烃、炔烃、有机硫化物和醇等)的高附加值转化并取得了一系列研究成果:在前期的工作中,分别发展了钴基氮掺杂介孔碳催化醇的氧化酯化制备酯(Angew. Chem. Int. Ed.,2020)、廉价锰氧化物催化醇的氧化氨化制备酰胺和腈(Chem,2022)、铁单原子纳米酶催化酮的氧化氨化制备腈(Science Advances,2022)、锰氧化物催化不饱和碳氢资源的氧化氨化制备酰胺和腈(JACS Au,2023)、钴纳米颗粒和钴单原子协同催化有机硫化物制备酰胺和腈(Nat. Commun., 2023)。  相关研究成果以“Facile Borylation of Alkenes, Alkynes, Imines, Arenes and Heteroarenes with N-Heterocyclic Carbene-Boranes and a Heterogeneous Semiconductor Photocatalyst”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)上,并被选为热点文章(Hot Paper)。该工作的共同第一作者是大连化学物理研究所02T6组博士后谢复开和科研助理毛展。上述工作得到了辽宁省优秀青年基金的资助。
  • 匠心演绎反应釜专家 岩征仪器添彩第八届岭南有机化学论坛
    栽下梧桐树,引得凤凰来。在务实基础、提升自主创新能力的坚守下,实验室反应釜专家上海岩征实验仪器有限公司(以下简称:“岩征仪器”)用实力趟出了一条属于品牌的绚丽之路,企业发展蒸蒸日上。第八届岭南有机化学论坛现场近年来,机械工业迅猛发展,实验室反应釜行业市场需求激增。在大环境的孕育和市场商机的刺激下,反应釜行业发展一路向好,由此也催生了一批批品质上乘的优质企业。作为行业的标杆企业之一,岩征仪器积极拥抱新时代,通过技术创新、商业模式创新为品牌发展源源不断注入新动能。作为一家具有自主知识产权的高新技术企业,岩征仪器秉持着“客户第一,信誉为本”的经营原则,专注于多通道固定床反应器、高通量催化剂评价装置、实验室反应装置、微型反应釜、实验室高压反应釜等领域,为化学、科研、环保、制药、医疗多个行业客户提供成套设备和一体化解决方案。岩征仪器展会现场2018年10月11日——13日,在第八届岭南有机化学论坛上,岩征仪器依赖技术和品质上的双重优势受邀参展,并携带智能反应釜、微型反应釜、快开反应釜等最新的产品和技术盛装亮相,备受瞩目。“创新”作为公司研发的核心理念,已经深入到上海岩征人的心灵深处。通过自主创新,上海岩征已经形成了厚重的技术积淀。尤其是岩征仪器2018年全新开发的智能反应釜、微型反应釜、快开反应釜等一经亮相,就博得不少与会者眼球。在本届论坛上的大放异彩,使得岩征仪器的品牌知名度大幅提高,影响范围也得以扩大。加速拓展市场业务的同时,也为品牌接下来的发展沉淀了新的有利优势。 如今,专注实验室反应釜领域七年。七年来,一批批高质量的产品植根于这家专注专业的企业。立足中国,面向世界,不断创新。未来,以“致力于实验室仪器自动化的引领者”为愿景,岩征仪器将不断把安全、智能、高效的产品传递给万千科研单位,致力成为仪器行业智能化在中国普及的有力推动者!
  • 直播预告|“光催化之父”藤岛昭:如何获得清洁能源——光催化与碳循环
    7月20日,仪器信息网(instrument.com.cn)与日本分析仪器工业会(JAIMA) 首次共同主办“中日科学家论坛之材料科学”线上科技论坛,以期为中日科学家们提供交流平台,促进两国科学技术的发展。此次在线科技论坛有幸邀请到国际著名光化学家、光催化研究的开创者、中国工程院外籍院士、诺奖热门人选、荣膺2019年度中国政府友谊奖的日本藤岛昭教授,中国科学院院士、北京大学博雅讲席教授、北京石墨烯研究院院长刘忠范教授,中国科学院大学教授,中国科学院物理研究所孟庆波研究员,北京工业大学闫鹏飞教授,国家纳米科学中心孟幻研究员,将分别围绕光催化材料、新能源、纳米材料等前瞻领域进行探讨。同时也邀请到日本电子株式会社(JEOL Ltd. )TEM应用部总经理助理大西市朗、岛津企业管理(中国)有限公司SPM产品担当陈强将分别为大家分享科学研究离不开的利器技术:最前沿的球差校正透射电镜技术、原子力显微镜技术。以下为藤岛昭教授报告预告,以飨读者:藤岛昭(Akira Fujishima)教授,东京大学特别荣誉教授、东京理科大学荣誉教授、中国工程院外籍院士。他于1972 年在Nature 上发表了二氧化钛单晶表面在紫外光照射下水的光分解现象,这一被称为“本多-藤岛效应”(Honda-Fujishima Effect)的开创性科研成果及其随后的一系列重要成果,使得藤岛昭教授 被公认为“ 光催化之父” 。报告形式:线上直播,30分钟报告+10分钟在线答疑报告时间:2021年7月20日9:40-10:20(北京时间)报告语言:英文PPT,英文报告,中文字幕报告题目:How to Get Clean Energy: Photocatalysis and Carbon Recycling如何获得清洁能源:光催化与碳循环报告摘要:Photocatalysis has been widely developed and put into practical use in the areas of antifouling and antifogging,research on artificial photosynthesis—the process of extracting hydrogen through photocatalysis—has also been garnering significant attention in recent years as a technology with the potential to contribute to a decarbonized society. Along with the shift to replace fossil fuels with renewable energies such as hydrogen ,another important measure to achieving a decarbonized society is carbon recycling, effectively using CO2 as a resource. In consideration of that viewpoint, I has proposed the following method: first, extract hydrogen through water electrolysis using the electricity produced from highly efficient solar cells. Next, combine the extracted hydrogen with the CO2 emitted from power plants and factories to produce methanol, which can be used as an energy source.报名参加:免费,点击报名扫码报名藤岛昭教授在央视《开讲啦》栏目演讲视频回顾:央视网:《开讲啦》 20191019 中国工程院外籍院士,日本著名光化学家藤岛昭教授:知之不如好之,好之不如乐之藤岛昭简介(主要摘自中国工程院)藤岛昭教授藤岛昭教授,1942年生于日本东京,致力于研究半导体电化学。2009年,藤岛昭教授当选欧洲科学院院士。不久前,他接受一项新的职位,担任东京理科大学校长。1971年获得日本东京大学应用化学专业博士学位。在东京大学,他发现水可以通过光电化学方式,经TiO2电极照射分解为氢气和氧气。他在神奈川大学任教四年,后到东京大学任教,并于1986年取得教授职称;其研究领域也扩展到更大的范围,包括光与无机材料及有机材料的相互关系。他于1990年开始研究基于二氧化钛的光催化自洁涂料。他认识到太阳光中少量的紫外线辐射可以被有效利用,通过充分氧化的以氧为基础的自由基作用,用于自洁与自消毒。藤岛昭教授对光诱导的亲水性的相关现象进行研究,在此种现象中,紫外光会导致TiO2表面具有超亲水性。藤岛昭教授依然对光催化基础研究和应用,以及光诱导亲水性保持浓厚兴趣,同时也热衷于开发新材料,包括带有光功能性质的纳米结构材料。藤岛昭教授已经发表了750多篇原始论文,440篇综述文章,拥有280项专利。主要奖项:朝日新闻朝日奖(1983)、井上春成奖(技术创新)(1998)、日本化学会奖(2000)、Heinz Gerischer奖(电化学学会欧洲分会,2003)、紫绶带勋章(2003)、日本奖(2004)、日本学院奖(2004) )、国家发明嘉奖(2006年)、神奈川文化奖(2006)、文化功勋人物(2010年)、路易吉伽伐尼奖章(2011年)、汤森路透引文奖(2012年)、文化勋章(2017年)。2003年,藤岛昭教授成为中国工程院外籍院士。2003年,藤岛昭教授从东京大学退休,担任神奈川科学与技术研究院主席一职。2005年,成为东京大学特别大学荣誉教授。2006年至2008年期间,担任日本化学会会长。高被引代表作Surface Science Reports:TiO2 光催化作用及相关的表面现象(TiO2 photocatalysis and related surfacephenomena. Surface Science Reports, 2008, 63, 515-582)光催化领域的历史可以追溯到80多年以前,主要是对二氧化钛基涂料的粉化现象的早期观察以及对与有机化合物在阳光下接触的金属氧化物变黑的研究。在过去的20 年中,由于对空气和水的修复,自清洁表面和自灭菌表面的影响,它已成为一个研究非常深入的领域。在同一时期,研究人员也一直在努力地将光催化用于光辅助生产氢气。在研究最多的光催化剂二氧化钛上光催化的基本方面仍在积极研究中,并且最近已得到相当广泛的了解。但是,某些方面(例如光致润湿现象)仍存在争议,其中一些人认为该效应是一种简单的分解有机污染物的效应,而另一些人则认为存在其他效应,其中固有的表面性质被光修饰。在过去的几年中,一些有效的工具,例如在超高真空下对单晶执行的表面光谱技术和扫描探针技术,以及超快脉冲激光光谱技术都可以解决这些问题,并且新的见解也变得可能。除此之外,量子化学计算也提供了新的见解。最近已经基于二氧化钛开发了新材料,并且对可见光的敏感度得到了提高。作者在这篇综述中提供了一些亮点的概述,在回顾一些起源的同时,并指出一些可能的新方向。
  • 光催化领域新文章,水作为还原剂将氮气进行光催化固定
    1. 文章信息标题:stable ti3+ sites derived from the tixoy-pz layer boost cubic fe2o3 for enhanced photocatalytic n2 reductiondoi:https://doi.org/10.1021/acssuschemeng.1c058902. 文章链接https://pubs.acs.org/doi/10.1021/acssuschemeng.1c058903. 期刊信息期刊名:acs sustainable chemistry & engineeringissn:2168-04852021年影响因子:8.198分区信息:中科院1区top;jcr分区(q1)涉及研究方向:光催化4. 作者信息:第一作者是广州大学博士张文生。通讯作者为广州大学韩冬雪教授、广州大学何颖实验员。5. 正文中标记了“the photochemical reactor was installed on the cel-gppcl system (beijing china education au-light company) with a 300 w xe lamp.”.文中所述设备由北京中教金源科技有限公司提供,设备型号:cel-gppcl the photochemical reactor was installed on the cel-gppcl system (beijing china education au-light company) with a 300 w xe lamp. 利用水作为还原剂将氮气(n2)进行光催化固定是一种令人鼓舞的未来氨合成策略,这有助于人们开发高效的光催化剂,以提高太阳光利用率,并提高固定n2的催化效率。赤铁矿(α-fe2o3)是一种稳定性高、成本低廉、天然丰度高的半导体光催化剂,从经济效益上讲是可见光驱动n2-nh3转化的理想催化剂,但相关研究报道较少。这是因为单一组分fe2o3光催化剂的光生电子还原能力普遍较低、具有严重的电子空穴重组现象和有限的表面活性位点,限制了其在光催化固氮领域的发展。为克服这一问题,本文构建了表面磷掺杂含稳定ti3+位点的锐钛矿tio2(tixoy-pz)层,来增强α-fe2o3立方体的光催化n2还原反应(pnrr)性能。通过ph3处理,在tixoy-pz层上诱导不饱和ti3+物种来作为活性位点,实现对n2分子的高吸附和活化。同时,磷掺杂形成的部分金属钛缺陷使催化剂的结构更加稳定。此外,通过程序升温氮气吸脱附(tpd)和瞬态荧光衰变曲线证明了fe2o3@tixoy-pz的ti3+物种是n2化学吸附和活化的活性位点。fe2o3@tixoy-pz纳米杂化催化剂利用tixoy-pz层表面的ti3+位点和界面耦合的优势,实现了在环境条件下有效地将n2光还原为nh3;这为设计和开发具有优异光催化固氮性能的纳米催化剂提供了一种新的视角。文章doi : https://doi.org/10.1021/acssuschemeng.1c05890,原文链接:https://pubs.acs.org/doi/10.1021/acssuschemeng.1c05890原文下载:online acssuschemeng.1c05890.pdf:,。视频小程序赞,轻点两下取消赞在看,轻点两下取消在看
  • 大连化物所发展抑制光催化分解水制氢逆反应新技术
    近日,大连化物所催化基础国家重点实验室、太阳能研究部(DNL16)李灿院士、博士后李政和李仁贵研究员等在纳米颗粒光催化完全分解水制氢的逆反应(氢气和氧气复合生成水的反应)研究方面取得新进展,确认光催化完全分解水逆反应发生于低配位活性位点,并利用原子层沉积技术精准定点修饰抑制逆反应,从而显著提升了光催化完全分解水的性能。   太阳能光催化完全分解水制氢不仅具有重要的应用背景,更是基础科学领域的前沿课题。其中,光催化完全分解水体系中助催化剂表面的氢氧逆反应是该领域长期未解决的重要问题。逆反应的存在使得完全分解水光催化体系的效率很低,甚至无法实现分解水反应,是光催化完全分解水的“最后一公里”。李灿团队长期致力于光催化分解水中助催化剂及其表面的催化作用研究,取得了系列重要进展:在国际上较早提出并发展了双助催化剂概念(J. Catal.,2009;Catal. Lett.,2010;Acc. Chem. Res.,2013;Energy Environ. Sci.,2016),并开发出单核锰水氧化催化剂,活性可媲美自然界水氧化催化剂的产氧活性(Nat. Catal.,2018),受到学术界的广泛关注。本工作聚焦光催化完全分解水体系中助催化剂表面的氢氧逆反应问题,以典型的可见光催化完全分解水的催化剂Rh/GaN-ZnO作为研究对象,通过原子层沉积(ALD)的方式将氧化铝(Al2O3)沉积到光催化剂反应中心,可显著提升光催化全分解水的活性。研究发现,ALD沉积Al2O3可以使Rh/GaN-ZnO上的逆反应降低90%,进一步通过光谱表征结合理论模拟证明,Al2O3主要沉积在Rh纳米颗粒表面的低配位点上,揭示出Rh表面的低配位点是氢氧逆反应的主要反应位点。团队通过ALD选择性地将Al2O3沉积到Rh表面低配位点上,有效阻断了氢氧逆反应的发生,从而将Rh/GaN-ZnO上可见光催化完全分解水的量子效率从0.3%提升至7.1%。此外,本工作还发现ALD选择性沉积氧化物的策略还适用于其他贵金属助催化剂,证明了这一策略的普适性。该工作明确了光催化完全分解水中氢氧逆反应的活性位点和机制,为解决这一挑战性问题提供了一条新的普适性策略。   相关研究成果以“Blocking the reverse reactions of overall water splitting on a Rh/GaN–ZnO photocatalyst modified with Al2O3”为题,于近日发表在《自然—催化》(Nature Catalysis)上。该工作的共同第一作者是李政和李仁贵。该工作的理论模拟部分主要与催化基础国家重点实验室理论催化创新特区研究组(05T8组)肖建平研究员团队合作完成。上述工作得到了国家自然科学基金委人工光合成中心、国家重点研发计划等项目的支持。
  • 安东帕康塔受邀参加第四届能源与环境光催化材料国际研讨会
    第四届能源与环境光催化材料国际研讨会(EEPM4)于2021年7月25日至29日在西安建国饭店及延安大学举行;EEPM4是一个致力于营造跨学科、无国界、形式丰富的纯学术交流讨论会。会议涉及光吸收、太阳能转换和存储、环境修复、清洁技术和可持续化学,专注于光催化和光电催化反应等领域的基础研究与应用研究。通过各种形式讨论来自世界各地的跨学科研究,包括全体会议、主题演讲和邀请讲座、口头和快速演示、海报会议和商业展览。安东帕邀您莅临3号展位,期待您的到来,进行现场交流。安东帕康塔物理/化学吸附分析仪:Autosorb iQ气体吸附全分析平台,涵盖超低比表面、微孔、蒸汽吸附和化学吸附测量动力学模式及迟滞环扫描模式可提供样品孔结构的全方位信息自动液位传感器控制冷阱升降,确保样品管体积最小化,实现微孔分析的高分辨率真正实时P0测量,为全压力段提供高分辨率可扩展第2和第3分析站,脱气站多达4个安东帕康塔高压容量法气体吸附分析仪:iSorb储气、气体分离研究真正高压:最高200bar安全无忧的高压设计精确的温度控制安东帕康塔真密度仪:Ultrapyc系列TruPyc技术,数据更精准TruLock密封技术,重复性更高powderProtect模式,无惧细粉污染Peltier温控系统,温度更稳定超大触屏,图形用户界面安东帕康塔压汞孔径分析仪:PoreMaster用于介孔和大孔的孔分布测定,孔径范围可达1080 μm-3.6 nm内置独立的高低压站,可多达2个高压站和2个低压站可测定多种固体材料的孔体积,孔径分布,孔隙率,孔喉比等信息低压站可自动进汞,高压站自动液压油循环过滤内置冷阱,双保险内部锁定,样品池倾斜系统,安全可靠微波消解系列:Multiwave GO Plus | 5000 | 7000集微波消解、萃取、合成、氧燃烧、干燥、赶酸等为一体多种转子可选,高达64位的样品处理量最高300℃、80bar的消解条件最高等级的安全防护能力通过国际权威 ETL及GS双重安全认证微波合成系列:Monowave 450 | 400 | 200从0.5mL到1L的刻度范围多达192个的平行反应最高微波反应条件:300℃@80bar最快的加热速率9℃/s安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 第二十二届全国稀土催化学术会议召开在即
    第二十二届全国稀土催化学术会议(2018年10月12-14日) 上海岩征邀请您参加由中国石油大学(华东)、中国海洋大学和青岛大学协办的第二十二届全国稀土催化学术会议。 本届会议将全面展示和反映近两年来我国在稀土催化材料以及稀土催化剂研究和应用方面所取得的成就,深入地探讨稀土催化领域所面临的机遇、挑战及未来发展方向,进一步促进和活跃我国稀土催化以及相关领域的科学技术事业的发展。 将围绕“稀土催化领域新概念与工业技术发展”的主题进行深入交流,交流形式包括大会报告、特邀报告、主题报告、邀请报告、口头报告、墙报展讲等。 我国是稀土资源大国,十三五期间我国稀土正从原材料的开发向推广应用转变,稀土催化作为稀土科学和和催化科学的重要分支,必将起到重要作用。加强稀土催化在能源、环境、材料等方面的应用基础研究,既可提高生产效率,又能高效利用资源和减少环境污染,符合国家十三五可持续发展的战略方向。 十月的青岛,气候凉爽,景色宜人。在这美丽的季节,我们期待各位相聚青岛、相聚“第二十二届全国稀土催化学术会议”。 我司将携带微型高压反应釜(机械搅拌);平行高压反应釜;高温高压光热催化装置;多通道催化剂评价装置参加此次会议,欢迎各位老师同学前来参加指导。会议地址:青岛中国气象局青岛气象度假村东海东路87号会议时间:2018年10月12-14日
  • 有效光合成苯甲醛耦合光催化析氢
    1. 文章信息标题:Efficient benzaldehyde photosynthesis coupling photocatalytic hydrogen evolution 中文标题: 有效光合成苯甲醛耦合光催化析氢页码:52-60 DOI:10.1016/j.jechem.2021.07.0172. 期刊信息期刊名:Journal of Energy Chemistry ISSN:2095-4956 2021年影响因子9.676 (2022年影响因子:13.599) 分区信息:中科院一区TOP 涉及研究方向:综合性期刊 3. 作者信息:第一作者是 华东师范大学罗娟娟 。通讯作者为 中国科学院上海硅酸盐研究所施剑林院士、华东师范大学陈立松副教授。4. 光源型号:CEL-HXF300E7光功率计型号:CEL-NP2000文章简介:为应对严峻的能源和环境危机,各国不断加大开发清洁和可再生能源的力度。氢气(H2)作为一种能量密度高、最有发展前景的可再生绿色能源引起了广泛关注。然而,迄今为止,传统的蒸汽甲烷重整制氢仍是制氢的主要方式,这导致了巨大的能源消耗和严重的温室气体排放。自1972年Fujishima和Honda首次报道在TiO2电极上光电化学分解水以来,光催化水裂解制氢一直被认为是将太阳能转化为化学能的潜在方法之一。然而,析氧反应(OER)动力学迟缓是水裂解的另一种半反应,已成为光催化水裂解商业化应用的最大障碍之一。同时,O2价值较低,在光催化水裂解过程中不可避免地会混入H2,存在潜在的爆炸风险和分离困难问题。为了克服这些,牺牲试剂如乳酸、抗坏血酸、三乙醇胺、甲醇、甘油、乙醇和Na2SO3/Na2S被用来抑制OER,通过消耗光产生的空穴并加速H2的产生,在此过程中这些牺牲剂被氧化。遗憾的是,这样的策略会大大增加制氢的总成本,并不能充分利用光生空穴的氧化能力。综上所述,寻找促进析氢反应(HER)的新策略具有重要意义。光合成是一种传统的利用可再生太阳能作为能源的方法,具有光能直接转化为化学能、反应路径短、不受苛刻的反应条件和有机试剂的影响等优点。为在温和的反应条件下合成药物、精细化学品和高附加值产品提供了一条绿色、清洁的途径。选择性氧化是继聚合反应后的第二大工业工艺,占化学工业总产量的30%,近年来在光合成领域引起了广泛关注。在众多的选择性氧化反应中,芳香醇转化为相应的醛被认为是最重要的官能团转化过程之一。此外,醛是一种高价值的中间体,用于有机合成广泛的化学物质,如糖果香精、染料、香水和药物。传统的醛类合成需要化学计量氧化剂,如铬酸盐、高锰酸盐等,具有剧毒、强腐蚀性,造成严重的环境问题。并极大地阻止了它们的大规模应用。然而,大多数基于光催化材料的醛的光催化合成,尽管比传统的合成方法更加环保,但都是在有机溶剂中操作或在以氧气作为一种温和氧化剂存在的情况下进行的,因此仍然存在光生电子还原能力浪费,环境不友好和效率低下的问题。因此,采用无氧化剂(或无O2)光合成的方法在水介质中氧化芳香醇选择性合成芳香醛将是最理想的环保工艺,具有重要意义。在该策略中,芳香醇氧化制取有价值化学品的过程不是简单的牺牲剂消耗,而是以高效氧化制取有价值化学品为主,并与制氢结合,尽管有众多优点但这仍然是一个巨大的挑战一种高性能的光催化氧化芳香醇并促进产氢的光催化剂是上述策略的前提。本文采用两步水热法合成了一种高效的非贵金属双功能光催化剂,NiS纳米颗粒修饰CdS纳米棒复合材料(NiS/CdS)。该催化剂对在水溶液和无氧气氛围下光合成苯甲醛同时促进产氢具有高效的活性,这归因于NiS和CdS间的协同作用。最优的光催化30% NiS/CdS在可见光照射下有显著的光催化产氢速率和苯甲醛合成速率分别为207.8μmol h-1, 163.8μmol h-1,比单独硫化镉性能高139和950倍。该研究极大地利用光产生的空穴和电子用于生产高附加值精细化学物质和氢气,因此在绿色可再生能源技术的发展及光催化合成领域中具有重要的意义。
  • 昭通学院110.00万元采购电化学工作站,旋转蒸发仪,搅拌器,反应釜,细胞破碎仪,离心机,冷冻干燥机...
    详细信息 昭通学院化学化工学院2023年功能材料教学实验平台建设项目竞争性磋商公告 云南省-昭通市-昭阳区 状态:公告 更新时间: 2023-10-13 项目概况 昭通学院化学化工学院2023年功能材料教学实验平台建设项目的潜在供应商应在中盛精诚工程项目管理有限公司(昭通市昭通大道丽水馨城E10幢8号)获取竞争性磋商文件,并于2023年10月26日09时30分(北京时间)前提交响应文件。 一、项目基本情况 (一)项目编号:ZSJC-2023-ZT020号; (二)项目名称:昭通学院化学化工学院2023年功能材料教学实验平台建设项目; (三)采购方式:竞争性磋商; (四)资金来源:央财资金,已落实; (五)预算金额:110万元; (六)最高限价:110万元; (七)采购需求: 序号 是否接受进口产品 产品(项目)名称 数量 单位 序号 是否接受进口产品 产品(项目)名称 数量 单位 1 否 自动控制型旋转蒸发仪 2 套 13 否 药品保存冰箱 4 台 2 否 磁力搅拌高低温反应浴 1 台 14 否 行星式球磨机 1 台 3 否 超声波细胞破碎仪分体式 7 台 15 否 蠕动泵 2 台 4 否 冷冻干燥机 1 台 16 否 控温摇床 3 台 5 否 低温冷却液循环泵 1 台 17 否 烘箱 10 台 6 否 集热式磁力搅拌器 4 台 18 否 其他电源设备 1 台 7 否 真空干燥箱 4 台 19 否 激光粒度仪 1 台 8 否 开启式真空/气氛管式电炉 2 台 20 否 气瓶防爆柜 8 台 9 否 光催化平行反应仪 3 台 21 否 即热式水龙头 25 个 10 否 电化学工作站 2 台 22 否 离子计 2 台 11 否 高温管式炉 1 台 23 否 小型高温高压反应釜 2 台 12 否 高速冷冻离心机 1 台 采购自动控制型旋转蒸发仪等23项共计88台(件)设备 (八)交货期:30日历天以内; (九)交货地点:昭通学院知行楼实验室; (十)服务标准:参照国家仪器设备标准和规范执行; (十一)本项目不接受联合体。 二、供应商的资格要求: (一)供应商应满足《中华人民共和国政府采购法》第二十二条规定: 1.1供应商须具有独立承担民事责任的能力:供应商须在中华人民共和国境内注册,提供三证合一的营业执照,经营范围满足本次采购需求(复印件加盖公章); 1.2供应商须具有良好的商业信誉和健全的财务会计制度: 1.2.1供应商在本项目响应文件提交截止时间前在国家企业信用信息公示系统(www.gsxt.gov.cn) “列入经营异常名录信息”、“列入严重违法失信企业名单(黑名单)信息”查询栏中查询的信息记录未出现参加政府采购活动前三年内因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、列入经营异常名录且未被移出、列入严重违法失信企业名单(黑名单)且未被移出等不良情况; 1.2.2提供2020-2022年度经会计师事务所审计的财务报告(含资产负债表、利润表、现金流量表),供应商2020年以后成立的,可提供成立之日起至今经会计师事务所审计的财务报告(含资产负债表、利润表、现金流量表),供应商于2023年1月以后成立的,可提供自响应文件提交截止时间前三个月内开户银行出具的资信证明或资金存款证明(复印件加盖公章); 1.3供应商须具有履行合同所必需的设备和专业技术能力证明材料(提供书面声明加盖公章); 1.4供应商须具有依法缴纳税收和社会保障资金的良好记录: 1.4.1供应商须提供缴税所属时间在2023年1月至本项目响应文件提交截止时间前任意3个月的税务局税收通用缴款书或银行电子缴税(费)凭证或税务局出具纳税情况的相关证明,依法免税的,应提供依法免税的相关证明文件(复印件加盖公章); 1.4.2供应商须提供缴费所属时间在2023年1月至本项目响应文件提交截止时间前任意3个月的社会保险费缴款书或银行电子缴税(费)凭证或社保管理部门出具的有效的缴款证明,依法免缴的,应提供依法免缴的相关证明文件(复印件加盖公章); 1.5供应商参加政府采购活动前三年内,在经营活动中没有重大违法记录(重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚)的书面声明; 1.6法律、行政法规规定的其他条件:供应商在本项目响应文件提交截止时间前在信用中国网站(www.creditchina.gov.cn)“信用信息”下载的信用信息或“信用信息”查询栏中查询的信用信息(包括失信被执行人查询、重大税收违法案件查询)未出现不良信用信息查询记录;供应商在本项目响应文件提交截止时间前在中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单内无不良信息记录; (二)落实政府采购政策需满足的资格要求:本项目属于专门面向中小微企业采购的项目,不接受非中小微企业参与本项目投标。 (三)本项目的特定资格要求:无。 三、获取竞争性磋商文件 (一)时间:2023年10月13日23:59至2023年10月20日,每天上午09:00至11:30,下午14:30至17:00(北京时间,法定节假日除外); (二)地点:中盛精诚工程项目管理有限公司(昭通市昭通大道丽水馨城E10幢8号); (三)方式:现场获取,供应商请持营业执照副本(复印件加盖公章)、法定代表人身份证明书(原件)、法定代表人授权委托书(原件)、法定代表人或其委托代理人身份证(原件及复印件);竞争性磋商文件售价:500.00元/份,售后不退; 四、响应文件提交截止时间及地点 (一)截止时间:2023年10月26日09时30分(北京时间); (二)地点:中盛精诚工程项目管理有限公司(昭通市昭通大道丽水馨城E10幢8号); 五、响应文件开启 (一)时间:2023年10月26日09时30分(北京时间); (二)地点:中盛精诚工程项目管理有限公司(昭通市昭通大道丽水馨城E10幢8号)。 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 (一)本项目需要落实的政府采购政策:政府采购节能产品、环境标志产品政策,政府采购促进中小企业发展政策,政府采购支持监狱企业发展政策,政府采购促进残疾人就业等。 (二)开标方式:现场开标 (三) 是否需要缴纳磋商保证金:是 保证金金额:8000.00(元) 保证金缴纳方式:支票、汇票、本票、保函、网银、电汇、转账等非现金形式; 保证金缴纳截止时间:2023年10月25日下午17:00时。 八、本次竞争性磋商公告在云南省政府采购网(www.yngp.com)和《昭通学院》www.ztu.edu.cn/上发布,其它网站转发无效,对其他网站或媒体转载的公告内容采购人和采购代理机构不承担任何责任。 九、凡对本次采购提出询问,请按以下方式联系 (一)采购人信息 名 称:昭通学院 地 址:昭通市昭阳区国学路 联 系 人:马老师 联系电话:0870-3169473 (二)采购代理机构信息 名 称:中盛精诚工程项目管理有限公司 地 址:昭通市昭通大道丽水馨城E10幢8号 联 系 人:黄工 联系电话:17787598172 (三)项目联系方式 项目联系人:黄工 电 话:17787598172 2023年10月13日 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:电化学工作站,旋转蒸发仪,搅拌器,反应釜,细胞破碎仪,离心机,冷冻干燥机,蠕动泵,干燥箱 开标时间:null 预算金额:110.00万元 采购单位:昭通学院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中盛精诚工程项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 昭通学院化学化工学院2023年功能材料教学实验平台建设项目竞争性磋商公告 云南省-昭通市-昭阳区 状态:公告 更新时间: 2023-10-13 项目概况 昭通学院化学化工学院2023年功能材料教学实验平台建设项目的潜在供应商应在中盛精诚工程项目管理有限公司(昭通市昭通大道丽水馨城E10幢8号)获取竞争性磋商文件,并于2023年10月26日09时30分(北京时间)前提交响应文件。 一、项目基本情况 (一)项目编号:ZSJC-2023-ZT020号; (二)项目名称:昭通学院化学化工学院2023年功能材料教学实验平台建设项目; (三)采购方式:竞争性磋商; (四)资金来源:央财资金,已落实; (五)预算金额:110万元; (六)最高限价:110万元; (七)采购需求: 序号 是否接受进口产品 产品(项目)名称 数量 单位 序号 是否接受进口产品 产品(项目)名称 数量 单位 1 否 自动控制型旋转蒸发仪 2 套 13 否 药品保存冰箱 4 台 2 否 磁力搅拌高低温反应浴 1 台 14 否 行星式球磨机 1 台 3 否 超声波细胞破碎仪分体式 7 台 15 否 蠕动泵 2 台 4 否 冷冻干燥机 1 台 16 否 控温摇床 3 台 5 否 低温冷却液循环泵 1 台 17 否 烘箱 10 台 6 否 集热式磁力搅拌器 4 台 18 否 其他电源设备 1 台 7 否 真空干燥箱 4 台 19 否 激光粒度仪 1 台 8 否 开启式真空/气氛管式电炉 2 台 20 否 气瓶防爆柜 8 台 9 否 光催化平行反应仪 3 台 21 否 即热式水龙头 25 个 10 否 电化学工作站 2 台 22 否 离子计 2 台 11 否 高温管式炉 1 台 23 否 小型高温高压反应釜 2 台 12 否 高速冷冻离心机 1 台 采购自动控制型旋转蒸发仪等23项共计88台(件)设备 (八)交货期:30日历天以内; (九)交货地点:昭通学院知行楼实验室; (十)服务标准:参照国家仪器设备标准和规范执行; (十一)本项目不接受联合体。 二、供应商的资格要求: (一)供应商应满足《中华人民共和国政府采购法》第二十二条规定: 1.1供应商须具有独立承担民事责任的能力:供应商须在中华人民共和国境内注册,提供三证合一的营业执照,经营范围满足本次采购需求(复印件加盖公章); 1.2供应商须具有良好的商业信誉和健全的财务会计制度: 1.2.1供应商在本项目响应文件提交截止时间前在国家企业信用信息公示系统(www.gsxt.gov.cn) “列入经营异常名录信息”、“列入严重违法失信企业名单(黑名单)信息”查询栏中查询的信息记录未出现参加政府采购活动前三年内因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、列入经营异常名录且未被移出、列入严重违法失信企业名单(黑名单)且未被移出等不良情况; 1.2.2提供2020-2022年度经会计师事务所审计的财务报告(含资产负债表、利润表、现金流量表),供应商2020年以后成立的,可提供成立之日起至今经会计师事务所审计的财务报告(含资产负债表、利润表、现金流量表),供应商于2023年1月以后成立的,可提供自响应文件提交截止时间前三个月内开户银行出具的资信证明或资金存款证明(复印件加盖公章); 1.3供应商须具有履行合同所必需的设备和专业技术能力证明材料(提供书面声明加盖公章); 1.4供应商须具有依法缴纳税收和社会保障资金的良好记录: 1.4.1供应商须提供缴税所属时间在2023年1月至本项目响应文件提交截止时间前任意3个月的税务局税收通用缴款书或银行电子缴税(费)凭证或税务局出具纳税情况的相关证明,依法免税的,应提供依法免税的相关证明文件(复印件加盖公章); 1.4.2供应商须提供缴费所属时间在2023年1月至本项目响应文件提交截止时间前任意3个月的社会保险费缴款书或银行电子缴税(费)凭证或社保管理部门出具的有效的缴款证明,依法免缴的,应提供依法免缴的相关证明文件(复印件加盖公章); 1.5供应商参加政府采购活动前三年内,在经营活动中没有重大违法记录(重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚)的书面声明; 1.6法律、行政法规规定的其他条件:供应商在本项目响应文件提交截止时间前在信用中国网站(www.creditchina.gov.cn)“信用信息”下载的信用信息或“信用信息”查询栏中查询的信用信息(包括失信被执行人查询、重大税收违法案件查询)未出现不良信用信息查询记录;供应商在本项目响应文件提交截止时间前在中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单内无不良信息记录; (二)落实政府采购政策需满足的资格要求:本项目属于专门面向中小微企业采购的项目,不接受非中小微企业参与本项目投标。 (三)本项目的特定资格要求:无。 三、获取竞争性磋商文件 (一)时间:2023年10月13日23:59至2023年10月20日,每天上午09:00至11:30,下午14:30至17:00(北京时间,法定节假日除外); (二)地点:中盛精诚工程项目管理有限公司(昭通市昭通大道丽水馨城E10幢8号); (三)方式:现场获取,供应商请持营业执照副本(复印件加盖公章)、法定代表人身份证明书(原件)、法定代表人授权委托书(原件)、法定代表人或其委托代理人身份证(原件及复印件);竞争性磋商文件售价:500.00元/份,售后不退; 四、响应文件提交截止时间及地点 (一)截止时间:2023年10月26日09时30分(北京时间); (二)地点:中盛精诚工程项目管理有限公司(昭通市昭通大道丽水馨城E10幢8号); 五、响应文件开启 (一)时间:2023年10月26日09时30分(北京时间); (二)地点:中盛精诚工程项目管理有限公司(昭通市昭通大道丽水馨城E10幢8号)。 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 (一)本项目需要落实的政府采购政策:政府采购节能产品、环境标志产品政策,政府采购促进中小企业发展政策,政府采购支持监狱企业发展政策,政府采购促进残疾人就业等。 (二)开标方式:现场开标 (三) 是否需要缴纳磋商保证金:是 保证金金额:8000.00(元) 保证金缴纳方式:支票、汇票、本票、保函、网银、电汇、转账等非现金形式; 保证金缴纳截止时间:2023年10月25日下午17:00时。 八、本次竞争性磋商公告在云南省政府采购网(www.yngp.com)和《昭通学院》www.ztu.edu.cn/上发布,其它网站转发无效,对其他网站或媒体转载的公告内容采购人和采购代理机构不承担任何责任。 九、凡对本次采购提出询问,请按以下方式联系 (一)采购人信息 名 称:昭通学院 地 址:昭通市昭阳区国学路 联 系 人:马老师 联系电话:0870-3169473 (二)采购代理机构信息 名 称:中盛精诚工程项目管理有限公司 地 址:昭通市昭通大道丽水馨城E10幢8号 联 系 人:黄工 联系电话:17787598172 (三)项目联系方式 项目联系人:黄工 电 话:17787598172 2023年10月13日
  • 开讲啦!新仪参会光催化中青年学者论坛
    2016光催化中青年学者论坛暨中国感光学会光催化专业委员会2016年学术年会,于2016年10月21-23日在上海师范大学举行。大会以“光催化的未来与青年学者的职责”为主题,为广大致力于光催化科学技术研究的中青年学者提供一个交流探讨、展示成果的机会,同时为促进光催化行业产学研结合提供平台。本次会议吸引了光催化行业相关学者和工作参加。 上海新仪也参与了本次会议,在光催化会议现场我们与上海硅酸盐研究所的黄富强老师,以及华东理工大学杨化桂老师交流了微波合成在材料制备上的应用,其中UWave-2000多功能微波合成萃取引起了老师们的兴趣。 其创造性地结合了常压,带压反应,微波,超声波和紫外辐照等多种功能为一体,为微波化学研究提供给了前所未有的兼具灵活性与可靠性的微波合成萃取工作站。并且广泛应用于有机萃取、制药研究、蛋白质化学、新材料科学、石墨烯的研发,聚合物合成等众多领域。 本次会议,在交流与探讨中,我们受益匪浅。坚持研发与创新,不断满足用户朋友们所需,解决更多个性化需求,是新仪不懈的追求!
  • 光催化N-杂螺环的多组分直接组装
    你能想象有*化学也能玩成“乐高积木”吗?2022年10月5日,2022年诺贝尔化学奖授予了三位科学家:Carolyn R. Bertozzi、K. Barry Sharpless和Morten Meldal,奖励他们在发展“点击化学”和“生物正交化学”中的贡献。 问:什么是点击化学?“点击化学(Click chemistry)”是指一类能够高效生成“碳原子-杂原子链”的化学反应。点击化学有以下优势:1.区域特异性和立体特异性;2.对溶剂参数不敏感;3.反应得率高、副反应少,且原料充分反应4.实验条件简单;5.大的热力学驱动力。与点击化学的优势类似,流动化学也具有高效混合、简便*的温度控制、收率高、减少副产物等优势。 图1:发表在JOC杂志上的文章“可见光驱动光催化促进的N-异质螺环的多组分直接组装”今天为大家介绍在2022年9月,Steven V.Ley教授在JOC上一篇题为《可见光驱动光催化促进n杂螺环的多组分直接组装》的文章,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。1、螺环化合物20世纪六十年代起,生物学家和药物学家逐渐发现,从自然界分离得到的具有生物活性的化合物中拥有螺环结构的化合物占有很大的比例。随着研究的深入,螺环化合物的性质使他在药物研发中占据非常重要的地位。螺环化合物是指两个单环共用一个碳原子的多环化合物;共用的碳原子称为螺原子。杂环螺环结构在一定程度上改变药物分子的水溶性、亲脂性、优势构象等,使优化后的药物分子更容易成药。不同的螺环具有丰富的三维立体结构,从而提供了改善药效的可能性和药物*的创新性;既可以突破现有药物的*,又能设计全新结构或者骨架的小分子化合物。 图2:螺旋内酯固醇 图3:灰黄霉素已上市药物中,也有很多含有螺环结构的小分子药物,比如利尿剂螺旋内酯固醇(Spironolactone)(如图2所示)和抗真菌药物灰黄霉素(Griseofulvin)(如图3所示)。N-异螺旋环是在天然产物和药物中发现的有趣的结构单元,但其合成的可靠方法相对较少。传统合成方式 图4:获取螺旋环吡咯烷的策略 图5:从N-烯丙磺酰胺和烯烃中构建β-螺旋吡咯啶现有的方法通常需要几个步骤,并使用昂贵的催化剂,如钌或铑,以获得所需的产品。在过去,靠传统的办法合成目标分子,往往需要绕很多弯路。步骤越多,意味着产率越低,浪费越大。2、更高效的合成方式使用Vapourtec UV-150光反应器放大合成N-异象螺旋循环 图6:使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物Steven V. Ley教授是世界*的有机化学家,剑桥化学系研究主任,皇家化学会RSC的前任会长,教授在有机合成方法学和全合成领域中的成就斐然。Ley教授在“可见光驱动光催化促进n杂螺环的多组分直接组装”一文中,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。在近年来发展的叠杂杂螺环的大多数制备方法中都需要多步步骤。然而,光催化的最新应用可以使合成步骤大大减少。作者利用光催化生成N-中心自由基,可构建多种β-螺环吡咯烷,包括药物衍生物。利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。光催化能够在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构。在开发的螺环吡咯烷的制备方法中,大多数都能够制备α-螺环吡咯烷,克服了制备α-三级胺的一些困难。简化合成路线的解决方案之一是采用无试剂化学方法。从光化学上讲,以氮为中心的自由基的产生相对简单,并被证明可以激活N-H和N-X键。通过在合成螺旋环化合物时使用这种方法,可以避免四元碳中心引起的立体问题,从而改善整体过程。使用VapourtecE系列进行流动反应和放大实验,该系列由三个蠕动泵和一个光反应器组成,BPR输出为8bar。使用的光源是Vapourtec 61W(辐射功率)365 nm(峰值强度)LED灯光,辐射带范围为350&minus 400nm。利用在线监测,大大的缩短了研究时间,提高研究效率。作者使用配有365nm高功率LED灯的E-photochem演示了一系列螺环吡啶的合成。在合成双叠氮杂螺环的过程中,该方法使用光化学反应器UV-150进行了放大,产量达到了100克/天。3、实验总结1、相比传统的的反应,该反应具有操作简便、条件温和、反应时间短等优势;2、利用在线监测,大大的缩短了研究时间,提高研究效率;3、在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构;4、利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。4、关于Vapourtec Vapourtec是一家专业设计和制造流动化学设备的公司。Vapourtec公司的连续流动化学系统质量可靠、性能成熟、高效能模块系统可随您的流动化学生产能力的扩大而拓展。反应器可进行组合,实现多步合成。无需使用任何工具数秒内即可完成反应器更换。UV-150反应器UV-150反应器消除了传统批次光化学的问题,可以充分发挥光化学的潜力。在连续流动操作下,它提供了安全、精确、高效、一致和可扩展的光化学。 图7:vapourtec UV-150光化学反应器● UV-150光化学反应器与Vapourtec R系列和E系列流化学系统兼容,操作简便;● Vapourtec提供3种不同的光源,提供220纳米至650纳米之间的精确波长;● 可以在-20°C到80°C之间设置反应温度。参考文献[1] Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven PhotocatalysisOliver M. Griffiths and Steven V. LeyThe Journal of Organic Chemistry 2022 87 (19), 13204-13223 DOI:10.1021/acs.joc.2c01684[2] Total Synthesis of Phytotoxic Radulanin A Facilitated by the Photochemical Ring Expansion of a 2,2-Dimethylchromene in FlowBruce Lockett-Walters, Simon Thuillier, Emmanuel Baudouin, and Bastien NayOrganic Letters 2022 24 (22), 4029-4033 DOI: 10.1021/acs.orglett.2c01462
  • 158万!广东工业大学催化及能源材料实验室设备采购项目
    项目编号:0724-2101D25N6043项目名称:广东工业大学催化及能源材料实验室设备采购项目(二次)采购方式:公开招标预算金额:1,576,900.00元采购需求:合同包1(新能源方向实验室设备):合同包预算金额:1,576,900.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表往复振荡摇床2(台)详见采购文件39,200.00-1-2其他专用仪器仪表高压视窗反应釜1(台)详见采购文件68,000.00-1-3其他专用仪器仪表行星式球磨机1(台)详见采购文件26,000.00-1-4其他专用仪器仪表高气密性自动在线光催化分析系统1(套)详见采购文件154,200.00-1-5其他专用仪器仪表多通道光催化反应系统(核心设备)1(套)详见采购文件135,000.00-1-6其他专用仪器仪表光电催化反应系统1(套)详见采购文件81,000.00-1-7其他专用仪器仪表旋转蒸发仪套装1(套)详见采购文件51,790.00-1-8其他专用仪器仪表水焊机1(台)详见采购文件8,300.00-1-9其他专用仪器仪表电化学工作站2(套)详见采购文件120,000.00-1-10其他专用仪器仪表四探针电阻率仪1(台)详见采购文件25,000.00-1-11其他专用仪器仪表扣电一体式恒温充放电检测系统1(台)详见采购文件107,500.00-1-12其他专用仪器仪表振实密度仪1(台)详见采购文件14,000.00-1-13其他专用仪器仪表热压机1(台)详见采购文件30,000.00-1-14其他专用仪器仪表铝塑膜成型机1(台)详见采购文件36,000.00-1-15其他专用仪器仪表手动切片机1(台)详见采购文件8,500.00-1-16其他专用仪器仪表手套箱(单工位)1(台)详见采购文件140,000.00-1-17其他专用仪器仪表多用途微波化学合成仪1(台)详见采购文件124,000.00-1-18其他专用仪器仪表冷冻干燥机1(台)详见采购文件35,910.00-1-19其他专用仪器仪表双光束紫外可见分光光度计积分球1(台)详见采购文件84,800.00-1-20其他专用仪器仪表十万分之一电子天平1(台)详见采购文件38,800.00-1-21其他专用仪器仪表万分之一电子天平1(台)详见采购文件16,900.00-1-22其他专用仪器仪表气相色谱仪2(台)详见采购文件216,000.00-本合同包不接受联合体投标合同履行期限:60天
  • 用户之声丨光催化水氧化过程的分解机理研究
    韩国西江大学Kyung Byung Yoon教授 岛津拜访了韩国西江大学的Kyung Byung Yoon教授。他是人工合成领域的顶尖研究人员之一。Yoon团队曾在《Science》上报道了一种不怕水的CO2捕获新材料,为低成本捕获CO2并再利用研究提供了方向。他的实验室配备许多分析仪器,包括Tracera GC-BID系统和QYM-01光反应量子产率评价系统*,QYM-01系统可实现对吸收光子准确而快速的定量测量。 * QYM-01 为岛津今年6月刚发布的Lightway PQY-01光反应评价系统的前序机型。 Q 请介绍一下您的研究内容。 这个广泛用于均相光催化水氧化过程的系统包含作为光泵的水氧化催化剂RuⅡ(bpy)32+和作为电子牺牲受体的S2O82?。但是,因为RuⅡ(bpy)32+会发生非常快速的分解,导致在所有S2O82?消耗完之前,反应过程就停止,所以该系统还远不够理想。就这一点而言,如果能研究清楚RuⅡ(bpy)32+的分解途径和产物,就可以设计出更高效的光催化水氧化系统。 我们发现,在光-RuⅡ(bpy)32+-S2O82?系统中存在两种RuⅡ(bpy)32+分解途径。第一种是通过黑暗环境中,在pH>6条件下,RuⅢ(bpy)33+氧化OH?而下形成OH• 自由基,OH• 自由基攻击RuⅡ(bpy)32+的bpy配体。这个在黑暗中分解的途径是次要的。在辐照过程中,RuⅡ(bpy)32+和RuⅢ(bpy)33+都受到光激发,并且光激发的RuⅢ(bpy)33+与S2O82?反应生成一种中间体。当中间体浓度较低时,中间体分解为催化活性的钌μ-氧代二聚体,当中间体浓度较高时,中间体分解为催化惰性的寡聚钌μ-氧代物。光诱导分解途径是主要途径。当RuⅡ(bpy)32+浓度较低时,即使在没有任何添加催化剂的情况下,光-RuⅡ(bpy)32+-S2O82?系统也会通过类似在黑暗中生成氧气的途径产生氧气。当RuⅡ(bpy)32+浓度较高时,由于光诱导分解途径的总速率比生成氧气的暗途径的总速率要快得多,因此系统中不会生成氧气。 Q “QYM-01”和“Tracera(GC+BID检测器)”是否正高效地用于您的研究?它们有多大用处? QYM-01可以在每分钟或更短的时间内获得紫外-可见光谱。这使我们能够监测光反应过程中物质的反应速度有多快。QYM-01还可以测量光敏剂吸收的光子数量。当我们检测到产物时,通过绘制吸收光子数量与生成产物的关系曲线来计算反应的量子产率。Tracera可高效检测液体产物,检测灵敏度较高。几乎检测到了柱内所有物质。 Q 您认为“QYM-01”和“Tracera(GC+BID检测器)”有哪些优点? 我们可以在光解过程中获得紫外-可见光谱,无需改变任何其他反应系统。我们可以测量我们正在使用的激发光的功率,这就是QYM-01的优点。至于Tracera,检出限很好。 Q 请告诉我们您对“岛津”的印象。 你们提供前所未有的产品和优质服务。 我们与Kyung Byung Yoon教授的交谈很愉快,通过这次采访,我们了解了Yoon教授对我们仪器和我们公司的看法。我们必须努力,争取越来越好。也非常感谢Yoon教授接受岛津的采访! 关于采访的评论 采访之后,Yoon教授说:“虽然QYM-01还有一些地方有待改进,但是岛津拥有QYM-01等前所未有的独特性创新技术,这令我印象深刻,我也期待这些技术的未来发展。”
  • 大连化学物理研究所开发新型宽光谱捕光催化材料
    近日,大连化物所太阳能制储氢材料与催化研究组(DNL1621组)章福祥研究员团队与日本东京工业大学Kazuhiko Maeda教授团队合作,设计合成了一种层状结构的宽光谱捕光催化新材料β-ZrNBr,其吸光带边可至530nm,表现出较优异的光催化水分解半反应制氢和放氧、光催化半反应还原CO2制甲酸等功能。宽光谱捕光催化材料的设计合成是实现太阳能高效光—化学转化的基础,其吸收带边越宽,太阳能 转化理论效率越高。   在前期氮氧化物设计合成基础上,本工作中,科研人员通过氮元素与卤素离子共取代氧原子策略,合成了氮卤化物(β-ZrNBr),解决了以往单纯氮取代氧过程中,由于电荷不匹配(N3-,O2-),导致产生不可避免缺陷态的弊端,实现了兼具宽光谱响应和低缺陷密度的新型可见光催化材料的开发。该新型宽光谱捕光催化材料为层状结构化合物,其结构单层为双面Br-离子夹棱形ZrN层板的结构,且通过插层剥离后可得到纳米片结构。此外,科研人员通过在β-ZrNBr表面分别修饰Pt、RuOx、RuRu’分子,实现了该材料光催化还原水产氢、光催化水氧化产氧、光催化还原CO2产甲酸等半反应功能,展示了较好的光化学转化应用潜力。   大连化物所太阳能研究部长期致力于具有较宽可见光利用的新光催化材料开发,先后设计合成了氮氧化物类(J. Mater. Chem. A,2013;J. Mater. Chem. A,2017;Chem. Commun.,2014;Angew. Chem. Int. Ed.,2015;Appl. Catal. B,2019;Adv. Mater.,2021;J. Energy Chem.,2021等)、含氧酸盐类(Adv. Energy Mater.,2018)、金属有机框架类(Adv. Mater.,2018;Sci. China Chem.,2020;J. Am. Chem. Soc.,2022)等不同类型、具有我国自主知识产权的新材料,在光催化分解水制氢方面展现了良好性能。   上述工作以“Layered β-ZrNBr Nitro-Halide as Multifunctional Photocatalyst for Water Splitting and CO2 Reduction”为题,于近日发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该论文的第一作者是大连化物所DNL1621组毕业生鲍云锋博士和博士后杜仕文,以上工作得到了国家自然科学基金、国家科技部等项目资助。
  • 大连化物所等开发出新型宽光谱捕光催化材料
    近日,中国科学院大连化学物理研究所太阳能制储氢材料与催化研究组研究员章福祥团队与日本东京工业大学Kazuhiko Maeda教授团队合作,设计合成了层状结构的宽光谱捕光催化新材料β-ZrNBr,其吸光带边可至530nm,表现出较优异的光催化水分解半反应制氢和放氧、光催化半反应还原CO2制甲酸等功能。  宽光谱捕光催化材料的设计合成是实现太阳能高效光—化学转化的基础,其吸收带边越宽,太阳能转化理论效率越高。在前期氮氧化物设计合成基础上,本工作利用氮元素与卤素离子共取代氧原子策略,合成了氮卤化物(β-ZrNBr),解决了以往单纯氮取代氧过程中因电荷不匹配(N3-,O2-)产生不可避免缺陷态的弊端,开发了兼具宽光谱响应和低缺陷密度的新型可见光催化材料。该新型宽光谱捕光催化材料为层状结构化合物,其结构单层为双面Br-离子夹棱形ZrN层板的结构,且通过插层剥离后可得到纳米片结构。此外,科研人员通过在β-ZrNBr表面分别修饰Pt、RuOx、RuRu’分子,实现了该材料光催化还原水产氢、光催化水氧化产氧、光催化还原CO2产甲酸等半反应功能,展示了较好的光化学转化应用潜力。  大连化物所太阳能研究部长期致力于具有较宽可见光利用的新光催化材料开发,设计合成了氮氧化物类(J. Mater. Chem. A、J. Mater. Chem. A、Chem. Commun.、Angew. Chem. Int. Ed.、Appl. Catal. B、Adv. Mater.、J. Energy Chem.)、含氧酸盐类(Adv. Energy Mater.)、金属有机框架类(Adv. Mater.、Sci. China Chem.、J. Am. Chem. Soc.)等不同类型、且具有我国自主知识产权的新材料,在光催化分解水制氢方面展现了良好性能。  相关研究成果以Layered β-ZrNBr Nitro-Halide as Multifunctional Photocatalyst for Water Splitting and CO2 Reduction为题,发表在《德国应用化学》上。研究工作得到国家自然科学基金、科技部等的支持。
  • 重磅推出-莱北AE小麻雀系列反应釜新品
    莱北仪器,向科研者致敬!AE小麻雀系列高压反应釜 AE小麻雀系列反应釜是我公司22年研的新品,该设备体积小,性价比高,维护成本低,适用于实验室工作台面,让您不再为实验室没有地方而苦恼,在预算内又多了一个选择!莱北仪器团队表示此次新品,将为您的工作时间带来跨越式的进步。AE小麻雀系列反应釜特点安全:釜内釜壁双温控,电子机械双保险,超温报警,主动切断加热电源,控制回路和安全回路完全独立运行。小巧便捷:机身宽度为215mm,仅为一张A4纸大小。易操作:结构小巧,可整体移动,小仙女也可以自行操作、清洗、安装及拆卸。.高品质:7寸工业级触摸屏,可显示温度、转速、压力等,PID程序升温,加热功率100%可调;原装进口阀门,分离式搅拌电机,双线槽柔性密封,防腐性、耐磨性强。人性化:原位自降温系统,无需漫长等待;数据采集,带有本地实时及曲线显示,可通过U盘导出数据。互换性:不同容积可互换使用,实现一机多用。小麻雀AE系列反应釜安全优势压力表:双刻度压力表,实时监测釜内反应压力(进口)。搅拌器: 机械搅拌,性能稳定。热电偶:用于反应温度的测定(进口探头)放气阀:进样针阀和放气针阀(进口)取样阀:和探底管相连配单向阀,便于反应过程中随时取样并分析反应进程莱北仪器设备使用的所有材料均符合国际标准。莱北仪器通过了ISO 9001企业质量管理体系认证、ISO 14001环境管理体系认证、ISO45001职业健康安全管理体系认证,以及CE认证。莱北仪器所使用的生产材料都遵从RoHS标准,以保证对环境及使用者的健康保护。该仪器反应釜研发团队-来自于国际知名品牌反应釜制造公司,凭借多年进口反应釜的经验,结合国内用户的情况来研发,同时也自主研发设计了多达40余款反应釜,容积范围从25mL到20L,温度范围从-40℃到700℃,压力范围从高真空到40MPa。莱北仪器自助研发设计以反应釜、反应系统集成装置、样品前处理设备为主的具有核心竞争力的仪器设备,广泛应用于石油化工、材料冶金、生物制药、能源环境等科研领域,所有设备为本公司实验仪器自主研发,均可根据客户需求进行定制。如果您对AE小麻雀系列反应釜感兴趣,可以通过仪器信息网https://www.instrument.com.cn/netshow/SH104818/ 直接联系我们!欢迎您的来电!
  • 化物所宽光谱响应光催化剂分解水研究获进展
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室及洁净能源国家实验室中科院院士李灿和&ldquo 百人计划&rdquo 学者章福祥研究员负责的宽光谱响应半导体光催化分解水研究取得新进展:通过对宽光谱捕光材料Ta3N5 (Eg: 2.1 eV,吸收带边可至600 nm)与高效氧化助催化剂CoOx之间的界面进行MgO纳米层修饰,不仅改善了CoOx与其界面接触和分散状态,而且还对半导体Ta3N5表面起到钝化保护作用,使光催化体系在可见光长波段500&minus 600 nm激发条件下的分解水放氧量子效率(AQE),由文献最高值5.2%提升至目前的11.3%。相关研究结果在线发表在《德国应用化学》期刊上。  太阳能光催化分解水制氢是实现太阳能光-化学转化的重要反应,被认为是化学领域的一个&ldquo 圣杯&rdquo 式的反应。光催化水分解反应主要涉及质子还原和水氧化两个半反应,其中水氧化是涉及多电子转移、热力学爬坡的反应,被认为是实现上述太阳能光化学转化的速控步。太阳能光催化转化涉及如何实现太阳能宽光谱利用、如何实现高效的光生电荷分离以及表面的催化转化等关键科学问题,然而随着半导体催化剂吸收带边的红移,其驱动光生电荷分离以及水分解(还原、氧化)的能力就随之变弱。因此,太阳光的充分利用与光生电荷的高效分离常常不易兼得,要实现宽光谱响应的光催化剂高效水氧化过程是一个非常具有挑战性的难题。  助催化剂可有效促进光生电荷分离和催化转化,李灿研究团队在国际上明确提出了双助催化剂策略(Acc. Chem. Res. 2013, 46, 2355)。最近几年,为了攻克宽光谱响应光催化剂上水氧化这一科学难题,他们发展了高温负载廉价助催化剂CoOx的策略,在LaTiO2N (Eg: 2.1 eV)上取得了比传统贵金属IrO2和RuO2助催化剂更高的放氧性能(J. Am. Chem. Soc. 2012, 134, 8348-8351.),随后又成功地将这种CoOx负载策略拓展到了新开发的宽光谱响应的氮掺杂氧化物Sr5Ta4O15-xNx 和MgTa2O6&minus xNx材料体系上(J. Mater. Chem. 2013, 12, 5651 Chem. Commun. 2014, 50, 14415)。  该研究进一步利用MgO纳米层调变宽光谱响应半导体Ta3N5与助催化剂CoOx之间的界面性质,通过改变半导体材料表面的亲疏水性,改善了助催化剂的纳米分散以及界面间电荷的转移,取得了目前宽光谱响应光催化剂上分解水放氧反应的最高量子效率,为发展高效的光催化体系提供了新策略。  该研究工作获得基金委重大基金、科技部&ldquo 973&rdquo 项目以及中科院&ldquo 百人计划&rdquo 人才项目资助。宽光谱响应光催化剂分解水研究取得新进展
  • 岛津原子力显微镜——KPFM在光催化中的应用
    二氧化钛(TiO2)是一种宽禁带N型半导体,其表面受到光的照射时,若光子的能量大于或等于其禁带宽度(波长低于400nm的紫外光),价带的电子将受到激发跃迁至导带,形成自由电子,同时带正电荷的空穴留在价带上,从而产生了电子-空穴对。电子和空穴分别发生氧化和还原反应,使反应体系中的原子基团被催化分解,完成光催化的功能。因此TiO2纳米颗粒有良好的光催化功能。但是因为TiO2纳米颗粒吸收截面非常小,所以光激发产生的电子与空穴复合率高,导致光催化效率降低。如何提高TiO2纳米颗粒对近紫外光的吸收截面是提升其光催化性能的一条重要途径。 通过研究发现,加入贵金属纳米颗粒可以提高电荷转移的效率,降低电子与空穴的复合率,从而提高其光催化性能。其可能的原因是贵金属纳米颗粒与光相互作用时表面产生等离子体共振,完成了能量传递,增加了光催化能力。 金纳米颗粒(AuNP)增强光催化是当前能源、环境领域的一个研究热点。AuNP和TiO2的复合材料的催化机理已被广泛研究,反应过程中对表面电荷的分布进行观察可以有效阐明催化过程。原子力显微镜的开尔文探针力显微镜(KPFM)功能是一种将开尔文定律应用于扫描探针显微镜(SPM)的分析技术,不仅可以测量样品的表面形状,还可以测量样品的表面电位分布。 因此,尝试在紫外光照射下的对AuNP和复合材料进行表面KPFM扫描,可表征样品表面上的光致电荷分布(电荷分离)。 利用生物素-链霉亲和素复合物可将AuNP有效结合到TiO2颗粒表面。设计实验,制备两种样品,一种是没有生物素-链霉亲和素复合物的对照样品,以及使用生物素-链霉亲和素复合物的样品,在照射紫外光及不照射紫外光的条件下,分别测量固定在TiO2上的AuNP的表面电位分布,以可视化光致电荷分布。 生物素-链霉亲和素复合物与AuNP作用示意图 AuNP与TiO2 复合材料表面电位分布测量图 岛津SPM-9700HT使用光照射单元通过光纤对样品表面进行紫外光照射 没有生物素-链霉亲和素复合物作用下分散在TiO2表面上的AuNP形貌图与电势分布图 有生物素-链霉亲和素复合物作用下分散在TiO2表面上的AuNP形貌图与电势分布图 从上面两组图可以看出,这两种样品,在紫外光照射时AuNP的相对电位都低于TiO2表面的相对电位。 没有生物素-链霉亲和素复合物(蓝色),有生物素-链霉亲和素复合物(红色)时AuNP对TiO2表面的相对电位统计对比 将两种样品在有紫外光照射和没有紫外光照射情况下的表面电位进行统计分析。白色框图柱表示没有紫外光照射,颜色柱表示有紫外光照射。误差条显示6-7个粒子的测量值的中值±IQR。当AuNP形成组装体时,在紫外光照射下AuNP与TiO2表面的相对电位显着降低。 本实验通过在紫外光照射下通过KPFM测量表面电位分布,实现了固定在TiO2上的AuNP杂化物的光致电荷分布的可视化。这表明使用SPM的KPFM 模式,辅助以光照射单元可以有效地观察光催化是表面的电荷分离情况。 本文内容非商业广告,仅供专业人士参考。
  • 第四届能源与环境催化会议在长沙正式召开
    第四届能源与环境催化会议”重新启动,会议于2022年8月15-16日召开,我们在长沙等待与您相聚! 中教金源展品一览: 一、GPPCM微型光热催化微反系统;二、CEL-PECRS2000全自动光电催化流动反应系统;三、PCRD300-12光化学反应仪及气体分配仪;四、CEL-PF300-T9氙灯光源系统(高端一体);五、GC7920全自动系统气相色谱;六、HPRS-PEC250光催化光电反应釜;七、CEL-NP2000-2(10)A强光光功率计;八、CEL-GPRT100鼎式光催化反应釜;
  • 157万!广东工业大学催化及能源材料实验室设备采购项目(三次)
    项目编号:0724-2101D25N6043项目名称:广东工业大学催化及能源材料实验室设备采购项目(三次)采购方式:公开招标预算金额:1,576,900.00元采购需求:合同包1(新能源方向实验室设备):合同包预算金额:1,576,900.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表往复振荡摇床2(台)详见采购文件39,200.00-1-2其他专用仪器仪表高压视窗反应釜1(台)详见采购文件68,000.00-1-3其他专用仪器仪表行星式球磨机1(台)详见采购文件26,000.00-1-4其他专用仪器仪表高气密性自动在线光催化分析系统1(套)详见采购文件154,200.00-1-5其他专用仪器仪表多通道光催化反应系统(核心设备)1(套)详见采购文件135,000.00-1-6其他专用仪器仪表光电催化反应系统1(套)详见采购文件81,000.00-1-7其他专用仪器仪表旋转蒸发仪套装1(套)详见采购文件51,790.00-1-8其他专用仪器仪表水焊机1(台)详见采购文件8,300.00-1-9其他专用仪器仪表电化学工作站2(套)详见采购文件120,000.00-1-10其他专用仪器仪表四探针电阻率仪1(台)详见采购文件25,000.00-1-11其他专用仪器仪表扣电一体式恒温充放电检测系统1(台)详见采购文件107,500.00-1-12其他专用仪器仪表振实密度仪1(台)详见采购文件14,000.00-1-13其他专用仪器仪表热压机1(台)详见采购文件30,000.00-1-14其他专用仪器仪表铝塑膜成型机1(台)详见采购文件36,000.00-1-15其他专用仪器仪表手动切片机1(台)详见采购文件8,500.00-1-16其他专用仪器仪表手套箱(单工位)1(台)详见采购文件140,000.00-1-17其他专用仪器仪表多用途微波化学合成仪1(台)详见采购文件124,000.00-1-18其他专用仪器仪表冷冻干燥机1(台)详见采购文件35,910.00-1-19其他专用仪器仪表双光束紫外可见分光光度计积分球1(台)详见采购文件84,800.00-1-20其他专用仪器仪表十万分之一电子天平1(台)详见采购文件38,800.00-1-21其他专用仪器仪表万分之一电子天平1(台)详见采购文件16,900.00-1-22其他专用仪器仪表气相色谱仪2(台)详见采购文件216,000.00-本合同包不接受联合体投标合同履行期限:60天
  • 第五届华人光催化材料学术研讨会正式召开
    会议介绍:本次会议于2023年2月17-20日在武汉晴川假日酒店举行。由中国地质大学(武汉)、淮北师范大学、长沙学院、吉林化工学院联合主办。会议名誉主席为吴骊珠院士,孙立成院士,唐军旺院士,张金龙院士。会议主席为余家国院士。会议旨在为光催化领域的海外华人和国内外专家提供一个高 水平的成果交流和展示平台。北京中教金源科技有限公司作为赞助单位参加此次会议,欢迎各位老师莅临指导。会议议题:光催化材料的基础研究;S型异质结光催化材料;光催化材料的掺杂和能带调控;光催化材料的形貌和晶面控制;光催化材料的制备策略;光催化材料的第一性原理研究;光催化材料的环境应用;光催化分解水产氢;光催化产过氧化氢;光催化二氧化碳还原制备碳氢燃料。会议目的及意义:大气变暖、能源短缺和环境污染已经成为制约人类社会可持续发展的重大科技和社会问题。当前,中国已进入能源高速消耗阶段并排放大量CO2,其CO2排放量约占全球排放量的27%。习近平总书记在第75届联合国大会上讲话指出,中国力争于2030年前实现碳达峰,努力争取2060年前实现碳中和。中国正积极采取各种措施应对气候变化,同时探寻气候变化带来的新机遇。太阳能是最重要的清洁和可再生能源,然而其不可预测性、季节昼夜时变性、分布不均和能量密度低等难题限制了它的实际应用。传统的太阳能电池和风力发电受时间和地理位置的影响,电能的产生和利用不能同步,因此必须解决电能储存的问题。光催化技术在解决能源和环境问题方面有着非常广阔的应用前景。光催化可以利用太阳光将水分解产生氢气,从而将光能转化为可储存的化学能—氢能,氢能能量密度高,使用方便,零碳排放,被认为是一种理想的能源载体。光催化材料和技术还可以利用太阳光将二氧化碳转化为甲烷和甲醇燃料,从而达到节能减排的目的。光催化也可以通过空气中的氧气和水反应合成过氧化氢,过氧化氢是一种绿色化工产品,广泛应用于杀菌、消毒、漂白,燃料电池等领域。通过太阳能光催化技术制备的氢气、碳氢燃料、过氧化氢等燃料统称为太阳燃料。
  • 将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化
    1. 文章信息标题:Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/ AgCl@SiO2DOI: 10.1039/d2sc01140a2. 文章链接https://pubs.rsc.org/en/content/articlelanding/2022/SC/D2SC01140A3. 期刊信息期刊名:Chemical ScienceISSN:2041-65202020年影响因子:9.825分区信息:中科院1区Top;JCR分区(Q1)涉及研究方向:化学4. 作者信息:翟建新(首要作者),周宝文(首要通讯作者);吴海虹(第二通讯);何鸣元(第三通讯作者)韩布兴(第四通讯作者)5. 光源型号:北京中教金源CEL HXF300(300 W氙灯,300-800范围)、NP2000、CEL-SPS1000、CEL-TPV2000文章简介:设计一种能够在温和条件下利用甲烷的光催化剂具有重要意义,我们制备了一种Ag/AgCl@SiO2 光催化剂,其可以高选择性将甲烷光氧化为一氧化碳,一氧化碳产量为2.3 为μmol/h,选择性为73%。基于半原位红外光谱学、电子顺磁共振等一系列表征研究,二氧化硅的引入可以增加光生载流子的寿命,并且揭示了甲烷通过原位形成的单线态氧转化为COOH*中间体从而氧化为CO的中间过程。同时Ag/AgCl@SiO2催化剂也能在环境条件下使用真实的阳光进行甲烷的转化。 我们一致认为本文的创新之处有以下几点:1. 首次将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化2. 通过一系列表征表明二氧化硅的引入可以增加载流子的寿命3. 在真实太阳光下也能发生图1 催化机理图
  • 魅力光催化,聚焦西华师大——2017光催化中青年学者论坛暨中国感光学会光催化专业委员会2017年学术年会圆满落幕
    11月4至5日,由中国感光学会光催化专业委员会主办,西华师范大学联合西南石油大学、四川理工学院承办,北京泊菲莱科技有限公司协办,主题为“光催化与可持续发展”的2017光催化中青年学者论坛暨中国感光学会光催化专业委员会2017年学术年会在四川省南充市西华师范大学召开。4日上午,西华师范大学党委副书记、校长王元君,中国感光学会光催化专业委员会主任、清华大学教授朱永法,大会学术委员会主任、广东工业大学教授安太成,大会委员会代表以及来自全国200多所高校和科研院所的400余名专家学者、研究生出席在西华师范大学图书馆学术厅举行的开幕式。安太成深入浅出地介绍了光催化中青年学者论坛主要是讨论光催化基础技术的完备和基础性的课题研究。他谈道:“从1972年正式研究光催化至今,光催化研究已经进入选择性的路口,可持续发展怎样实现、学科怎样进步,对研究者来说不仅是一种挑战,更是一种机遇。”5日下午,朱永法等六位光催化领域专家在图书馆学术报告厅与参会学者、师生和企业代表深入探讨光催化技术的相关问题。我司总经理陈磊先生对光催化基础性研究与应用化研究相结合这一观点做了发言。
  • 最强光催化剂“出手”“水变氢”效率刷新世界纪录
    在太阳光或一缕LED紫外光照拂下,玻璃烧杯中加入一点点白色粉末,无须加热也无须其他能源,烧杯里的水便可源源不绝产生氢气,且经过数百小时的实验,这种白色粉末的量并未衰减。在云南大学材料与能源学院实验室,你能见到这样的“奇观”。  在碳达峰、碳中和背景下,洁净的氢成为未来的重要能源,高效、低成本制氢,特别是光解水制氢是科学家研究的方向。1月10日,国际著名期刊《自然通讯》发表了云南大学柳清菊教授团队与英国伦敦大学学院唐军旺教授团队、华东师范大学黄荣教授团队合作的一项重要研究成果——以单原子铜锚定二氧化钛,成功制备新型光催化剂,其分解水制氢量子效率高达56%,被审稿人称为“世界纪录”。这意味着“水变氢”有了一条可实用化的新路径。  提高催化效率 才能助推光解水制氢走向实用化  氢能是一种清洁无污染的可再生能源,燃烧值很高,可达每千克140兆焦耳,其具有来源丰富、燃烧产物无二次污染等优点,有望代替石油和天然气,因而受到世界范围的广泛关注。若能得以大规模实际应用,将为“双碳”目标的顺利实现作出贡献。  “目前,制备氢的主要方法有化石燃料制氢和电解水制氢,但两种方法都需消耗传统能源。”柳清菊向科技日报记者介绍,化石燃料制氢,二氧化碳排放量大,每生产1千克氢气,将产生10千克左右的二氧化碳;而电解水制氢也存在能耗和成本问题。“在环境和能源问题日益严重的今天,开发清洁、可持续、低成本的制氢技术,推进氢能的发展显得尤为迫切和重要。”柳清菊说,采用光催化技术,利用太阳能驱动水分解制氢是一种极具发展前途的新方法。  自1972年科学家发现二氧化钛半导体具有光催化性能以来,光解水制氢一直受到学术界及产业界的关注与重视。在能量大于或等于半导体禁带宽度的光照射下,光催化材料价带中的电子吸收入射光子的能量跃迁到导带,形成“电子—空穴”对,空穴和电子迁移到材料表面,与表面吸附的水分子发生氧化还原反应,也就是电子与水发生还原反应产生氢气,空穴氧化水产生氧气。  然而,由于电子带负电,空穴带正电,使得光催化材料中光照所产生的“电子—空穴”很容易复合,导致产氢量子效率低下,严重阻碍了光解水制氢的发展。因此,如何阻止“电子—空穴”的复合,提高光催化制氢效率,成为目前国际上光催化研究领域的重大挑战之一,也是制约光催化制氢技术实用化的瓶颈难题。  这其中,光催化材料是核心。而光催化材料的活性、稳定性和成本是决定光催化技术能否实际应用的关键。  铜离子“补位” 新型光催化材料设计制备突破瓶颈  金属单原子催化剂是近年来迅速发展起来的新型催化剂。相比传统金属催化剂,金属单原子催化剂中的原子以单个的形式负载在载体上,在催化反应中可充分参与反应,实现反应活性中心的最大化,利用效率可接近100%,在理论上可以同时提高催化活性并降低成本。然而由于单原子具有极高的表面能,在合成和催化反应过程中容易团聚、稳定性差、寿命短且制备成本高,阻碍了其实际应用。  “这次起光催化作用的二氧化钛,是一种钛和氧规则排列的晶体,我们通过独特的合成工艺,在其中生成大量的钛空位。”柳清菊向记者解释,有了这些钛空位,就可以请铜离子来帮忙“补位”。  “通过对钛基有机框架材料MIL-125中钛空位的设计和可控合成,我们研制出具有大比表面积和丰富钛空位的二氧化钛纳米材料,以此为载体锚定过渡金属铜单原子,使铜与二氧化钛形成了牢固的‘铜—氧—钛’键。”柳清菊介绍,在光催化制氢反应过程中,一价阳离子铜和二价阳离子铜的可逆变化,大大促进了光生“电子—空穴”的分离和传输,大幅提高了光生电子的利用率,使产氢量子效率获得突破,达到56%。这项突破获得了欧洲科学院院士、伦敦大学学院光催化和材料化学终身教授唐军旺团队的验证。  成本、工艺更“亲民” 光解水制氢产业已初露曙光  新研制的二氧化钛基光催化材料,具有性能稳定、无毒、无二次污染等优点,且生物相容性好、制备方法简单、成本低,与传统方法相比优势明显。通常含贵金属的催化剂,催化活性高,但相应的成本也极高。“新材料中,我们用的是‘贱金属’铜,它储量大、价格低、易获得,这是成本降低的第一个方面。” 柳清菊介绍,此外,原有的催化材料中单个金属原子活性很大,很容易形成团簇,使得催化活性降低。研发团队将铜原子牢固地锚定在钛空位上,不容易团聚,创新性地解决了这个问题,稳定时间很长,在常温常湿条件下,样品放置380天之久,仍然具有与新制备样品相当的产氢性能,进一步降低了产氢成本;另外,新型光催化材料制备工艺简单,无需昂贵的设备,使光催化制氢更加“亲民”。  近年来,柳清菊团队在实验室进行了大量的基础研究,包括材料设计、合成工艺、机理研究、性能优化等,已获得稳定的高性能光解水制氢光催化材料的实验室制备工艺,正准备开展放大工艺研发,为后续产业化奠定基础。虽然传统的光催化材料成本高、量子效率低,国内光催化产氢市场尚未成熟,但随着产业链衔接及相关政策的完善,光催化制氢产业化已是曙光初露。  对柳清菊团队而言,56%的产氢量子效率也不是终点。“我们还在继续努力,使效率进一步提高,如果能够提高到70%以上,对生产应用的意义将是不言而喻的。”柳清菊说,找准了方向,效率再提升将不是梦。随着光解水效率进一步提高和成本进一步降低,氢能时代将加速到来,人类也将还地球以绿水青山。
  • 我国学者在有机污染物光催化降解及机理研究方面取得系列进展
    在国家自然科学基金委的持续支持下,中国科学院化学研究所赵进才课题组在光催化降解有机污染物及其机理方面进行了十几年的系统深入研究,取得一系列重要研究进展。  低浓度、高毒性、难降解有机污染物是一类普遍存在、具有长期危害性的环境污染物,用传统方法很难处理。TiO2光催化可利用洁净的太阳光驱动反应,利用环境友好的分子氧为氧化剂,是消除这类污染物最有应用前景的方法之一。TiO2耐腐蚀,光、热和化学稳定性好,是目前最好的光催化体系。但TiO2只能利用紫外光(约占太阳光5%),由于占太阳光主要部分的可见光的激发能较低,从传统半导体光催化的带-带激发原理上很难实现同时满足导带电子活化氧和价带空穴氧化水或污染物两个必需条件的可见光反应。因此,如何实现可见光反应是对TiO2光催化原理和应用提出的一个极大挑战。  赵进才课题组从1995年开始致力于染料污染物可见光光催化降解及其机理的研究。发现染料分子吸收可见光被激发后可以向TiO2导带注入电子实现电荷分离,通过半导体导带的媒介作用实现可见光照射下染料分子和空气中氧分子的同时活化,成功地将有机染料污染物氧化降解。揭示了一个与传统光催化有着本质区别的可见光光降解机理,该机理不涉及半导体的带-带吸收以及空穴的生成和反应,而是利用染料污染物分子吸收可见光诱发的活性自由基和分子氧的共同作用导致污染物降解。  通过对几十种染料污染物降解的研究,发现只要染料的电子激发态电位比TiO2导带电位更负,都能实现有效的电子注入进而降解,证明了该原理的有效性和普适性。该原理还在共存无色小分子污染物的氧化降解、卤代污染物的还原脱卤以及可见光光催化合成化学品等方面有着广泛的应用前景。相关研究成果先后在J. Am. Chem. Soc., Angew. Chem. Int. Ed., Environ. Sci. Technol.等刊物上发表系列论文。  最近应英国皇家化学会综述期刊Chemical Society Reviews的邀请,撰写了题为“Semiconductor-mediated photodegradation of pollutants under visible-light irradiation”的综述论文 (Chem. Soc. Rev. 2010, 39, 4206-4219),系统地介绍了该课题组取得的相关研究成果。  最近,他们在光催化活化分子氧机理研究方面取得新进展。光催化反应过程中分子氧如何活化一直是该研究领域的一个关键科学问题。他们利用同位素标记等实验研究TiO2 光催化氧化醇类分子时,发现在反应过程中醇分子中的氧原子完全被氧分子中的一个氧原子所置换(置换率99%)生成相应的羰基化合物。基于顺磁共振、氧同位素标记拉曼光谱、动力学同位素效应等实验结果,揭示了与以往贵金属等催化氧化机理完全不同的TiO2光催化氧原子转移机理(Angew. Chem. Int. Ed., 2009, 48, 6081-6084,被选为Highly Important Paper (HIP),并作为封面论文发表)。  在这一机理的指导下,他们进一步实现了通过TiO2表面吸附Bronsted酸来加速醇类分子的光催化转化,同时发现由于掺杂SiO2能增加酸的吸附位点,当用Bronsted酸对TiO2/SiO2复合光催化剂进行表面修饰后加速作用进一步加强。表面光谱滴定实验证实了质子能够有效促进TiO2表面形成的Ti-过氧化物中间物种的分解,进而使得表面光催化活性位点再生,因此加速了光催化循环和反应。该研究有助于深入理解TiO2光催化活化分子氧的微观机理,为今后制备新型光催化剂和调控光催化反应提供了重要的科学依据。相关研究成果发表在Angew. Chem. Int. Ed. (2010, 49, 7976-7979),被选为VIP论文并作为内封面(Inside Cover)做了专门介绍,Nature China对此研究成果也做了评述 (Highlight)。
  • 大连化物所发展光催化中仿生电荷传输层的可控组装策略
    近日,中科院大连化物所催化基础国家重点实验室、太阳能研究部(DNL16)李灿院士,李仁贵研究员等在光催化水氧化研究方面取得新进展。   团队仿习自然光合体系中电荷传输链的原理,基于团队发现的半导体光催化剂晶面间光生电荷分离现象,在铬酸铅光催化剂光生空穴富集的氧化晶面上可控组装氧化石墨烯作为电荷传输层,进而将钴立方烷分子催化剂选择性组装到氧化石墨烯电荷传输层,实现了光生空穴从铬酸铅光催化剂至钴立方烷分子催化剂之间的快速传输,显著提升了光催化水氧化性能。   光催化分解水制氢是将太阳能转化为化学能的重要途径之一。其中,光生空穴参与的水氧化反应是涉及多电子多质子转移的复杂过程,是光催化分解水反应的关键。虽然负载合适的水氧化助催化剂有助于提高水氧化反应性能,但是半导体与水氧化助催化剂之间的界面势垒会阻碍光生电荷的传输和利用。李灿团队长期从事太阳能人工光合成过程中的关键基础科学问题研究,尤其在光催化分解水研究方面,先后在国际上提出双助催化剂策略(J. Catal.,2009;Catal. Lett.,2010;Acc. Chem. Res.,2013)、在光电催化分解水研究中发现部分氧化的石墨烯在水氧化催化剂和捕光半导体之间具有类似自然光合作用过程中酪氨酸的电荷传输功能(J. Am. Chem. Soc.,2018)、实验上确认了晶面间光生电荷分离效应(Nature Comm.,2013;Energy Environ. Sci.,2016;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2022)、提出可规模化太阳能分解水制氢的氢农场策略(Angew. Chem. Int. Ed.,2020),提出光催化完全分解水氢氧逆反应抑制新策略(Nature Catal.,2023)等,受到了国际学术界的广泛关注。   研究团队借鉴自然光合系统电荷传递链中酪氨酸等电荷传输媒介的作用,利用铬酸铅光催化剂光生电子和空穴在不同暴露晶面间的光生电荷分离性质,借助超声辅助的手段在铬酸铅光生空穴富集的氧化晶面上可控组装氧化石墨烯电荷传输层。   进一步,团队确认通过氧化石墨烯电荷传输层与钴立方烷水氧化催化剂之间强的范德华作用力,可以选择性地将钴立方烷分子催化剂吸附到铬酸铅的氧化晶面,从而实现了光生空穴从铬酸铅到钴立方烷分子催化剂的有效传输,显著提升了铬酸铅的光催化水氧化性能。   此外,团队通过表面光电压谱等手段证明,在铬酸铅氧化晶面与钴立方烷分子之间引入氧化石墨烯电荷传输媒介,可以有效抑制光生电荷在界面的复合,延长光生电荷的寿命,显著提升光催化水氧化反应性能。   该工作发展了基于仿生思路实现光生电荷传输和助催化剂可控构筑的策略,为微纳尺度上高效人工光催化剂的理性设计和构筑奠定了基础。   相关研究成果以“Graphene Mediates Charge Transfer between Lead Chromate and a Cobalt Cubane Cocatalyst for Photocatalytic Water Oxidation”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)。该工作的第一作者是503组联合培养博士研究生蒋文超。以上工作得到国家重点研发计划、国家自然科学基金委“人工光合成”基础科学中心项目等资助。
  • 天美仪器亮相全国太阳能光化学与光催化会议
    2016年8月21-24日由中国可再生能源学会光化学专业委员会和中国化学会催化专业委员会主办,由山东大学、中科院兰州化物所、青岛大学、石油大学联合承办的第十五届全国太阳能光化学和光催化会议在山东大学召开。此次会议主要在光催化反应及其在环境保护中的应用、光电化学及清洁能源的开发利用、光化学与光催化新材料研究等领域展开交流,其中包括太阳能电池的开发和利用、光解水制氢系统、可见光催化降解有毒难降解有机物等热点议题,来自全国各大高校、研究院所及海内外机构的1300余人参加了会议。  北京泊菲莱科技有限公司作为会议的主赞助方全程参与了此次会议。天美(中国)科学仪器有限公司作为泊菲莱公司在光催化行业的唯一合作方受邀参加了此次盛会,并展出了在光催化及相关领域的检测仪器:赛里安气质联用仪——Scion 456-SQ、上海天美气相色谱仪——GC7980。  天美(中国)总部分析及色谱仪器市场部和济南分公司人员参加了会议,并在展会期间向广大参会者介绍了以上两款仪器的优势特点及光催化行业检测应用。   第十五届全国太阳能光化学和光催化会议在精彩的学术交流与展会活动中圆满落幕,天美公司将一如既往的致力于分析仪器在环保及新生能源的检测应用。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 大连化物所提出光催化烯烃的卤代/吡啶双官能化新策略
    近日,中国科学院大连化学物理研究所仿生催化合成创新特区研究组研究员陈庆安团队在光催化烯烃的卤代/吡啶双官能化方面取得新进展,发展出通过调控氧化淬灭活化模式和自由基极性交叉途径,实现光催化非活化烯烃的卤代/吡啶双官能化反应新策略。该策略作为对传统Heck型反应的补充,通过自由基反应过程避免了中间体β-H消除带来的底物限制,高效地将卤代基和吡啶基团区域选择性地加成到烯烃双键。  由简单底物快速构建复杂分子是有机化学的重要研究方向。其中,烯烃的催化官能化反应由于底物成本低且来源广泛而备受关注。虽然经典的Heck反应和还原型Heck反应提供了烯烃的芳基化和氢芳基化的有效途径,但这些方法均涉及了卤原子的消除,产生了不可避免的废弃物。此外,碳卤键的选择性构建十分重要,它是多种官能团转化的重要反应位点。因此,在不牺牲卤原子的情况下,实现烯烃双键同时构建新的C-C和C-X键具有重要意义。  陈庆安团队长期致力于发展不同催化体系,以实现烯烃选择性催化转化与合成。在前期相关研究(Angew. Chem. Int. Ed.,2019;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021)基础上,该团队最近利用卤代吡啶和非活化烯烃作为简单的反应底物,采用光催反应策略来实现非活化烯烃的卤代/吡啶双官能化。科研人员通过添加三氟乙酸,促进卤代吡啶底物发生质子化,使铱光催化剂更易于发生氧化淬灭,激发质子化的卤代吡啶产生亲电性吡啶自由基,进一步与富电子的非活化烯烃发生加成;氧化态的铱光催化剂可将生成的烷基自由基中间体氧化为碳正离子,进一步捕获体系中的卤负离子,实现C-C键和C-X键(X=Cl,Br,I)的选择性构建。此外,科研人员还进行了Stern-Volmer荧光淬灭、循环伏安法、量子产率测定等机理探究实验和动力学研究,解释了反应途径调控的机制和反应机理。为进一步验证该反应的实用性,科研人员开展了一系列转化实验:利用烯烃的卤代吡啶双官能化产物的碳卤键,可发生进一步的消除反应,以及与亚磺酸盐、硫氰酸盐、苯硫酚和叠氮钠的取代反应得到相应的转化产物。  相关研究成果以Photo-Induced Catalytic Halopyridylation of Alkenes为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、辽宁省博士科研启动基金等的支持。  论文链接
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制