当前位置: 仪器信息网 > 行业主题 > >

光电发射分析装置

仪器信息网光电发射分析装置专题为您提供2024年最新光电发射分析装置价格报价、厂家品牌的相关信息, 包括光电发射分析装置参数、型号等,不管是国产,还是进口品牌的光电发射分析装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光电发射分析装置相关的耗材配件、试剂标物,还有光电发射分析装置相关的最新资讯、资料,以及光电发射分析装置相关的解决方案。

光电发射分析装置相关的资讯

  • 空间站梦天实验舱发射,这些科学装置踏上“梦天之旅”
    10月31日,空间站梦天实验舱在中国文昌航天发射场发射升空。此次梦天启程太空,搭载着三台由中国航天科技集团有限公司五院510所(以下简称510所)研发的重要科学装置:空间高效自由活塞斯特林热电转换装置、X射线透射成像系统和高温炉及批量样品管理系统。这些凝结着科研人员智慧与心血的产品,驶向了太空深处。  探索空间高效电源新技术  空间高效自由活塞斯特林热电转换装置作为梦天实验舱舱内的验证项目之一,安装在航天基础试验机柜内。作为独立系统试验模块,是目前国内最先进的空间能源转换装置。  负责该装置的高级工程师张安介绍,斯特林热电转换装置可将放射性同位素热能转换为电能,属于“动态”空间同位素电源系统中最先进的技术,相较于传统的“静态”同位素温差转换电源技术,具有高效率、高比功率等显著特点。目前,国际上尚未开展斯特林热电转换技术的空间应用。  张安说,此次空间科学试验的目的是进一步验证在空间环境下该项技术的适应性及可靠性,获得该技术在轨飞行应用数据,进而结合在轨飞行试验数据优化工程样机,加快飞行样机的研制,为我国空间先进电源技术的发展提供技术支持,为未来“深空探测”计划提供技术储备。  “在线”实时观察材料实验过程  此次任务,510所科研人员成功研制了X射线透射成像系统(以下简称X射线系统),巧妙地利用X射线透射成像这一目前最先进的观测方法,实现了在空间环境中对材料实验过程进行“在线”实时观察,可获得空间材料样品制备过程中的固/液界面形态、界面输运效应等实时科学数据,对于认知材料物理与化学过程的本征规律,指导和推动地基材料制备工艺和战略性新兴产业发展具有重要意义。  负责该装置的高级工程师孙晋川介绍,X射线系统作为空间站材料实时观察实验主载荷,也是“世界第一”台在载人航天器中使用X射线透射成像原理进行实验的科学装置。他说:“在载人航天器环境中,最核心的焦点是对航天员的保护,因此如何在资源与空间受限的情况下实现X射线的完全屏蔽,同时还能承受随火箭上行时的力学环境的考验,是摆在科研人员面前的首要难题,也是保证梦天舱安全性的重中之重。”  科研人员集智群策,勇趟科研“深水区”,在大量的分析与试验总结下,设计的综合屏蔽结构,既保证了装置在火箭上行时的力学可靠性,也确保了航天员的在轨安全。同时成功研制了空间成像结构,使装置的最高分辨率可达3μm,最大视场达30mm×20mm,最大穿透厚度为6mm,满足绝大多种(类)材料的实验需求,也使X射线系统成功实现了从专用设备到通用设备的转变。  “神话八卦炉”功能多样  在梦天实验舱内,510所研制的“天宫八卦炉”——高温炉及批量样品管理系统(以下简称高温炉)将神秘、奇幻的中国神话转化为现实。作为实验舱高温材料溶固实验主载荷,高温炉系统是具有“多温场联动、多功能制备、全自动压控”等特点的全新综合型空间材料试验设备,其内部有诸多“黑科技”,精密传动单元可为系统提供14种试验工况配置,使我国空间材料设备首次具备温场“区熔”功能;全新的材料制备方法,改变了我国同类设备工况少、功能单一的状况,打破了国外技术垄断;综合热控单元给设备建立了温度梯度,实现了材料制备温度的高稳定性,让航天员们在亲自操作时“手感温度刚刚好”。
  • 欧盟取得小型大功率微波发射装置技术突破
    欧盟第七研发框架计划(FP7)提供资助支持,由法国原子能与可替代能源委员公(CEA)科技人员领导的欧洲NMP研发团队,在小型大功率微波发射装置的研制中,取得重大技术突破。开发出的小型大功率产生电磁辐射的微波振荡器,在雷达侦查、广播电视、卫星通讯,当然还包括微波炉领域,具有广阔的革命性应用前景。  纳米科技作为原子和分子尺度上的科学,正在日益快速地向各行各业渗透,应用纳米技术开发的微波振荡器,在不利用外部磁场的情况下可以对纳米磁体进行人为操纵磁化。而且,微波振荡器在适当的条件下,可以经受住持续的微波共振频率的冲击。这种被称作为自旋转移纳米振荡器的微波发生装置具有体积小、高协调性和宽温度情况下正常运行的特点。技术成功的关键是提高输出功率,NMP研发团队开发的新型技术,成功地提高了自旋转移纳米振荡器的转换效率和功率输出。提高输出功率首先要解决多振荡器(阵列)震荡阶段的同步,优化设计摩擦弹簧这一在给定时间内的震荡周期运动,成为研发团队攻克的难点,为摩擦弹簧的精细化制造提出了很高的技术要求。  NMP研发团队的科技人员经过反复的对比试验,在传统生产线上实现了新型自旋转移纳米振荡器原型机的设计与制造,通过优化验证振荡器与锁定相位之间4种不同的偶合机制,结合理论推导和实验方法,最终确定了最佳同步相位。获取的结果已证实,新型自旋转移纳米振荡器的输出功率得到大幅度提升,而相位噪声得到有效降低。研发团队正在计划启动建造10台自旋转移纳米振荡器阵列装置同步优化的中试设施。
  • Aliben发布等离子体固样分析发射光谱仪-PJ10新品
    粮食土壤元素分析仪(等离子体固样分析发射光谱仪-PJ10)本产品是基于射流等离子体技术的固体样品元素直接分析的光谱仪器。该仪器无需对固体样品进行湿法消解等复杂的化学前处理,即可快速对固体样品中的元素进行定性和定量分析,为固体样品的直接快速分析提供了新的检测技术和方法,有效地提升了对固体样品的分析效率。 1、仪器特点: △ 直接对固体样品中的多种元素进行快速定性和定量分析,无需化学消解;△ 装载高能激发源,灵敏度高,检出限可达ppb级 ,RSD9%;△ 分析速度快,60秒内可以同时获得190nm-1100 nm波段的全谱信号,覆盖Cd,Cr,Cu,Pb,Zn,Ca,Fe等多种元素;△ 配备自动样品仓和智能软件,可实现多个待测样品自动检测并输出结果。 2、仪器参数型号:PJ10尺寸:400*410*662 mm重量:32kg功率:200W进样方式:固体直接进样样品前处理:简单混样压片、用时2-3分钟(无需消解)分析时间: 60 s可检测元素:镉Cd,铬Cr,铜Cu,铅Pb,钙Ca,铁Fe,锌Zn等元素光谱范围:190nm-1100 nm (可 根据用户需求选配)光谱分辨率:0.10~0.25nm软件:全自动检测,直接给出测试结果存储:128 GB SSD数据接口:4XUSB,1X网口,1XVGA创新点:粮食土壤元素分析仪(等离子体固样分析发射光谱仪-PJ10) 本产品是基于射流等离子体技术的固体样品元素直接分析的光谱仪器。该仪器无需对固体样品进行湿法消解等复杂的化学前处理,即可快速对固体样品中的元素进行定性和定量分析,为固体样品的直接快速分析提供了新的检测技术和方法,有效地提升了对固体样品的分析效率: 1.直接对固体样品中的多种元素进行快速定性和定量分析,无需化学消解; 2.装载高能激发源,灵敏度高,检出限可达ppb级 ,RSD9%; 3.分析速度快,60秒内可以同时获得190nm-1100 nm波段的全谱信号,覆盖Cd,Cr,Cu,Pb,Zn,Ca,Fe等多种元素; 4.配备自动样品仓和智能软件,可实现多个待测样品自动检测并输出结果。等离子体固样分析发射光谱仪-PJ10
  • 聚精彩:原子发射光谱分析技术交流会
    2017年5月17日,聚光科技(杭州)股份有限公司(以下简称“聚光科技”)下属子公司北京聚光盈安科技有限公司(以下简称“聚光盈安”)与重庆计量质量检测研究院联合举办了一场原子发射光谱分析技术交流会。这既是一场光谱分析技术知识讲座,更是一场质检人观点交锋,深度互动的盛会。  聚光盈安是聚光科技的全资子公司,企业规模、研发实力和市场占有率都排名国内行业首位,是中国分析仪器行业的龙头企业。  重庆计量质量检测研究院是重庆市政府设置的国家法定计量检定、质量检验、校准测试研究机构,为副局级社会公益型非盈利性事业单位,具有独立的法律地位和第三方公正性,是经国家计量考核和认证的国家法定检测机构,也是经中国实验室国家认可委员会认可的检测/校准实验室。  随着我国经济的发展和产业技术的升级,各行业对于金属材料的品质要求、新材料的开发也在不断提高,使得冶炼、铸造、加工等整个金属材料产业链对材料的研究分析以及产品的品质管理都提出了新的要求。如今传统的分析方法已经无法满足行业的需求,光电直读光谱分析技术在钢铁、有色金属、机械制造、第三方检测和行政执法等领域都得到广泛的应用。此次技术交流会应运而生,旨在为大家提供一个互相沟通、互相学习的平台,以促进整个产业的升级。  本次交流会首先由聚光科技直读光谱仪M5000、电感耦合等离子体发射光谱仪ICP-5000的产品经理分别做产品及其在金属领域的应用介绍;随后,重庆计量质量检测研究院周西林老师针对光电直读光谱制样技术向现场的观众做了详细而精彩的报告;最后,聚光盈安的工程师还为现场观众带来了最前沿的现场快速分析检测技术——XRF手持光谱仪。丰富而专业的会议内容引起了观众的强烈共鸣,频频提问互动,现场气氛热烈活跃。聚光科技直读光谱仪M5000产品经理喻正宁为现场观众做报告重庆计量质量检测研究院周西林老师做光电直读光谱制样技术报告 观众现场积极提问参与互动  此次交流会获得了与会观众的一致好评,同时也获得了很多用户反馈的意见和建议。后续聚光盈安还将继续开展线上、线下多种形式的技术交流会、技术培训会,为金属产品质量检测行业的广大工作者提供更高性能的设备,更完善的服务。
  • 风云三号成功发射,助力红外高光谱等3台光电产品开机
    2021年7月5日北京时间7时28分,风云三号E星在酒泉卫星发射中心成功发射,上海技物所承担研制中分辨率光谱成像仪(微光型)、红外高光谱大气探测仪Ⅱ型、红外地平仪等3台(套)光电产品随星入轨,将按预定程序先后开机。  在充分继承D星技术的基础上,E星载荷进行了系统升级与性能优化:中分辨率光谱成像仪(微光型)可实现7个数量级辐射动态范围和低照度下微光成像;红外高光谱大气探测仪Ⅱ型在红外宽谱段连续高光谱探测、探测灵敏度和精度、观测覆盖能力上得到大幅提升。上述载荷有望填补晨昏轨道国际气象业务探测资料空白,并在提高全球数值天气预报精度和时效方面发挥重要作用。  风云三号E星是风云三号03批气象卫星的首发星,也是世界民用业务气象卫星家族中首颗工作在晨昏轨道的卫星,设计寿命8年,配置11台遥感载荷,主要用于获取数值预报应用需要的大气温度、湿度等气象参数,保障气象领域核心业务,提升天气预测预报能力;监测全球冰雪覆盖、海面温度、自然灾害、生态与环境,提高应对气候变化和气象防灾减灾综合能力;开展太阳、空间环境及其效应、电离层数据监测,满足空间天气预报和保障服务的需求。发射现场红外高光谱大气探测仪Ⅱ型研制团队
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • 发射光谱和原子吸收光谱技术在矿产样品分析中的应用
    长期以来,光谱分析法因其灵敏度高、受干扰影响小、不需要大量的实验样品、分析速度快、应用范围广泛、定性结果准确等优点被广泛应用于岩石矿物、土壤、金属产品等多种样品成分分析。地质矿产部门通过岩石矿物的光谱半定量分析法承担大量岩石矿物的测试任务,长期以来,分析工作者通过光谱半定量分析法为寻找化学矿区、区域地质普查提供了大量数据。通过数据分析可以寻找优质矿石,查明矿石的大致成分,为如何开采矿石提供参考。2023年8月24日,由国家地质实验测试中心主办期刊《岩矿测试》、仪器信息网联合主办的新一期“现代地质及矿物分析测试技术与应用”网络研讨会将召开。期间,山东省地质科学研究院所长/研究员赵伟将分享报告,介绍发射光谱和原子吸收光谱技术在矿产样品分析中的应用。欢迎大家报名参会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • E5000电弧直读发射光谱仪新品发布,开启地矿领域绿色快速分析新传奇 品发布,开启地矿领域绿色快速分析新传奇
    2014年10月21日,聚光科技(杭州)股份有限公司旗下全资子公司——北京盈安科技有限公司 (以下简称盈安科技)参加2014中国国际矿业大会暨中国矿业博览会,在现场成功发布E5000电弧直读发射光谱仪新品,正式宣布小型的非金属粉末元素分析的台式全谱直读发射光谱仪——聚光FPI-E5000电弧直读发射光谱仪成功推向市场。 发布会首先由盈安科技总经理姜宗宜先生致辞,随后由聚光实验室业务部副总经理兼原子光谱研发总监寿淼钧先生为大家讲解新产品,现场气氛十分活跃,各位专家、用户以及媒体朋友均对本次发布的新品抱以很大的热情。有专家说,聚光的研发实力有目共睹,能研发出这台产品是必然的,为中国有这样的企业感到骄傲,并对仪器的性能、参数等各项指标感到惊叹;在记者的采访中,用户说到,聚光是一个一直非常注重客户体验的企业,研发产品一直站在用户的角度去思考问题,比如这款产品的固体直接进样技术,既可以避免样品多次前处理带来的样品损失,又可以免去前处理使用酸、碱等试剂带来的二次污染,更重要的是为操作人员的安全和健康提供了保障,不得不为聚光点赞;闻声而来的媒体朋友们感叹道,参加过数场新品发布会,从来没有像今天这样激动过,为国人创新、研发精神感到自豪,同时认为科学仪器的中国梦即将到来,国产分析仪器的时代已经来了,国外品牌独占中国仪器市场的局面即将结束。 北京盈安科技有限公司总经理姜宗宜先生致辞 盈安科技总经理姜宗宜先生介绍到,盈安作为中国分析仪器行业拥有丰富经验的仪器供应商和技术服务企业,致力于为行业内企业提供更优的产品和服务。公司自主生产的M5000全谱直读光谱仪和代理的美国赛默飞Niton手持式光谱仪、英国ARUN光谱仪已广泛应用于铸造、冶金、金属加工、机械制造、地质勘探和开采、矿石贸易、土壤环境检测等领域。此次推出的新品E5000电弧直读发射光谱仪,满足了市场上对非金属粉末元素分析的需求,是对M5000全谱直读光谱仪(金属分析)系列产品的重要补充。 E5000电弧直读发射光谱仪 在发布会上,聚光实验室业务部副总经理兼原子光谱研发总监——寿淼钧先生亲自对E5000电弧直读发射光谱仪进行讲解。他自豪地说到:“聚光科技的研发团队,可以毫不夸张地说,是国内分析仪器领域规模大、创新能力强,国际上具有很强竞争优势的创新团队,团队目前拥有 500 余研发人员,其中博士后2人,博士38人,硕士260余人,更有原安捷伦质谱研发专家李刚强加盟,使得这支年轻而创新力十足的队伍如虎添翼。正是这样一个团队才能创造出光谱元素分析的新传奇——非金属粉末元素分析的台式全谱直读发射光谱仪——E5000电弧直读发射光谱仪。” 发布会现场 寿淼钧先生表示,凭借聚光多年积淀及不断创新的技术,其明星产品M5000全谱直读光谱仪产品自2010年上市以来已累计销售超过一亿元人民币,“我对我们的产品非常有信心,就如同M5000全谱直读光谱仪一样,我们不仅提供一台仪器,还包括软件、服务等一系列完整的解决方案,我们的目标是改善实验室的工作效率,简化工作步骤,提升工作品味,帮助客户解决分析难题,实现规模效益。 聚光科技实验室事业部总监寿淼钧先生宣讲E5000产品技术特性 寿淼钧先生指出,我国是一个需要精细化转换的国家,在地矿领域的化探任务也非常重。尤其是样品处理中,Ag/B/Sn的分析一直是地矿领域的难题。因此聚光科技推出了E5000电弧直读发射光谱仪,它能够直接分析元素、无需样品前处理,是一款快速的、绿色的分析仪器。这代表了聚光产品再次开启了地矿领域光谱元素分析的新传奇。 发布会上,寿淼钧先生总结了E5000电弧直读发射光谱仪的如下几个技术创新点: 数字电弧技术与发射光谱技术结合,固体粉末元素分析技术;紧凑的小型台式设计,让仪器分析准确,稳定可靠 高功率数字可编程光源,电流、电压、频率可控,可自由探索更优的分析方法 自动电极对准,一键激发,分析结果立等可取 多重连锁和监控,让操作安全可靠 绿色固体进样分析,解决地矿领域Ag/B/Sn分析难题,全谱技术更可实现分析元素的自由扩展 简洁易用的操作软件,内置工作曲线,方便、有效地响应客户日常分析需求 改变地矿领域分析传统,让分析更快、生活轻松、工作变得有品位 广泛适用于化探、地质、矿冶、有色、土壤、水泥、固废等领域的元素分析需求 聚光科技实验室事业部总监寿淼钧先生接受媒体采访 发布会后,各界媒体争相采访寿淼钧先生。在采访中他表示,在聚光十多年的发展历程中,聚光科技(FPI)的产品取得了多项里程碑式的技术创新,例如 CCD 火花直读光谱仪——M5000全谱直读光谱仪, CCD ICP-OES,以及到如今的 CCD小型Arc-OES——E5000电弧直读发射光谱仪。聚光科技(FPI)在国产仪器的研究、生产上任重而道远,并且前进的脚步未曾停息。不断进步是聚光及盈安一直以来的追求目标。 采访中,寿淼钧先生笑言:“在未来,我们也会继续接受更多的挑战,同时也会把现有的产品做到更加强大,我也邀请各位共同见证聚光产品的每一步蜕变,那一定是非常值得期待的。” 关于北京盈安科技有限公司 北京盈安科技有限公司创立于1995年,致力于为中国客户提供全球高品质的科学仪器、技术服务及分析测试解决方案,是中国分析仪器行业的供应商。公司主要产品包括自主研发生产的M5000全谱直读光谱仪,以及代理的英国ARUN台式金属分析仪、美国Niton手持式XRF分析仪。 更多信息请登陆:www.michem.com.cn ,或致电北京盈安全国免费服务热线:400-030-1717。
  • 北京瑞利原子荧光、专用发射光谱仪新产品通过鉴定
    仪器信息网讯 2012年8月31日,受北京市经济和信息委员会委托,由北京市技术创新服务中心组织的北京瑞利分析仪器有限公司AF-2200原子荧光光谱仪、AES-7000系列专用发射光谱仪新产品鉴定会在北京瑞利分析仪器有限公司举行。鉴定会现场  邓勃教授担任此次鉴定委员会主任,参加鉴定的委员有清华大学辛仁轩教授、中国首钢集团郑国经研究员、中国地质科学院力学研究所计子华研究员、有色金属研究总院钱伯仁教授、北京矿冶研究总院符斌研究员、北京矿冶研究总院冯先进研究员。北京市技术创新服务中心技术创新部王安居部长主持鉴定会,北京市经济和信息委员会科技标准处张刚处长出席本次鉴定会。北京市技术创新服务中心技术创新部王安居部长主持鉴定会  北京瑞利分析仪器有限公司孙兰海总经理向与会专家介绍了北京瑞利分析仪器有限公司企业概况。在致辞中,孙兰海总经理首先对与会专家的莅临表示感谢,而后对北京瑞利分析仪器有限公司进行了介绍,“北京瑞利分析仪器有限公司主要产品是光谱仪器,包括原子吸收光谱仪、原子荧光光谱仪、发射光谱仪、红外分光光度计、紫外分光光度计和样品前处理设备,产品型号数量已达38种,如果今天能够顺利验收,将达到40种。”北京瑞利分析仪器有限公司 孙兰海总经理  张刚处长在鉴定会上传达了北京市经济和信息委员会科技标准处对本次鉴定会的意见和建议,张刚处长表示,“第一,希望鉴定委员会各位专家能够对此次鉴定的AF-2200原子荧光光谱仪和AES-7000系列专用发射光谱仪新产品能够提供客观、科学、公正的鉴定意见 第二,希望与会专家能够借此机会就企业发展战略、技术发展等方面给企业提供建议 第三,通过鉴定的产品,希望企业能够尽快完成相关的后续产品上市手续,包括与税务部门的沟通等 第四,通过鉴定的产品,希望企业能够申请北京市级或者国家级相关仪器研发奖项,以争取支持仪器研发的资金,为今后更好的开展仪器研发项目做好基础工作。”北京市经济和信息委员会科技标准处 张刚处长  一、新一代高精度顺序注射原子荧光光谱仪AF-2200通过鉴定  北京瑞利分析仪器有限公司研发部梁敬副部长宣读了AF-2200原子荧光光谱仪的技术报告和工作总结报告。冯先进研究员宣读了AF-2200原子荧光光谱仪现场测试报告。北京瑞利分析仪器有限公司研发部梁敬副部长北京矿冶研究总院冯先进研究员  梁敬副部长在报告中指出,AF-2200原子荧光光谱仪采用了最先进的顺序注射进样技术,可实现高精度微量进样 注射泵阀体由传统的三阀双泵二维流路改为三维空间流路,即高度集成化的双泵双阀顺序注射流路系统,阀芯采用陶瓷和PEEK复合材料,具备优异的抗化学腐蚀性能,阀切换寿命不小于1000万次 注射器的柱塞选择UHMWPE,端帽采用PEEK材料,高鹏玻璃作为针筒,具有优异的耐腐蚀性能和长的使用寿命,存样环也在业内首次采用了热固化成型工艺技术,能够获得极小的扩散系数,该项技术获得了实用新型专利一项 AF-2200原子荧光光谱仪通过特殊的增敏试剂,将传统原子荧光的测量范围在As、Sb、Bi、Se、Te、Pb、Sn、Hg、Cd、Ge、Zn十一种元素基础上增加了Au、Ag、Cu、Co、Ni五种元素,测量范围达到16种元素。AF-2200原子荧光光谱仪已经申报的自主知识产权专利有5项。应用范围方面,AF-2200原子荧光光谱仪主要应用于食品安全、环境检测、地质普查、农业环境、临床医学、科研等领域的重金属总量分析。AF-2200原子荧光光谱仪  鉴定会委员详细审议了北京瑞利工作人员的工作总结报告、技术总结报告、财务报告、产品检测报告、产品技术标准说明、查新报告、用户使用报告、标准化审查报告、资料审查报告、现场测试报告 经过质询和现场考察仪器新品,最终形成如下鉴定意见:  AF-2200原子荧光光谱仪  1、该产品的鉴定文件齐全,符合鉴定要求。  2、该产品创新性采用了高度集成的高精度双泵双阀顺序注射进样系统,具有智能化漏液监测、高精度数字化气路系统压力监测和原子化室避光监测功能,形成了全新的蒸汽发生原子荧光仪器。  3、开发了一种全新分析方法的专用增敏剂,可测定元素扩大到16个(Cu、Ag、Au、Co、Ni等元素)之多。采用了压力平衡式四通混合模块,极大地稳定了流体的传输,保证了信号峰形的平滑度和重现度。首创了高韧性进样针,解决了石英采样针易碎和挂液的问题。  4、开发了自动进样器配合使用的全自动液体工作站软件,实现样品及标准溶液的自动稀释、自动定容等繁琐的溶液处理操作。  5、该产品结构简单可靠,具有广阔的市场前景。  6、该产品的技术文件资料齐全,符合国家规范,可以指导生产。  鉴定委员会一致认为:北京瑞利分析仪器有限公司研制开发的“AF-2200原子荧光光谱仪”技术达到国际先进水平,同意通过新产品鉴定。AF-2200原子荧光光谱仪产品考察AF-2200原子荧光光谱仪生产车间  二、AES-7000系列专用发射光谱仪通过鉴定  北京瑞利分析仪器有限公司研发部王彦东副部长宣读了工作总结报告和技术总结报告。计子华研究员宣读了AES-7000系列专用发射光谱仪现场测试报告。AES-7000系列包含AES-7100/ AES-7200两款产品,专用于高纯金属和地质样品的测定。北京瑞利分析仪器有限公司研发部王彦东副部长中国地质科学院力学研究所计子华研究员  据王彦东副部长在报告中介绍,AES-7100/ AES-7200直/交流电弧专用发射光谱仪在国内首次将交流或直流电弧激发光源与凹面光栅分光系统及光电倍增管接收系统相结合,构成全新的组合模式,具有全新的光路、结构及外形 AES-7100/ AES-7200两种专用仪器分别做了方法开发:AES-7100直流电弧专用发射光谱仪针对高纯金属氧化钼和氧化钨中的18-19中杂质元素开发了专用的分析方法,确定了氧化钼和氧化钨光谱缓冲剂配比,而AES-7200交流电弧专用发射光谱仪针对地球化学样品中Ag、Sn、B三种比较难测定的元素开发了专门的测定方法,并可测定Mo、Pb、Au、Ni、Co等十几种元素 相对于一米光栅光谱仪采用的传统的相板记录方式,AES-7000系列专用发射光谱仪以光电直读代之,改变了我国30多年来电弧激发光谱分析现状,使电弧激发这项“古典”而又“经典”的分析技术焕发了青春。据介绍,自主知识产权方面,AES-7000系列专用发射光谱仪已申请八项专利技术。AES-7000系列专用发射光谱仪  北京瑞利分析仪器有限公司相关工作人员汇报了AES-7000系列专用发射光谱仪相关技术总结报告、工作总结报告、财务报告、产品检测报告、产品技术标准说明、查新报告、用户使用报告、标准化审查报告、资料审查报告、现场测试报告,经过鉴定会委员的详细审议、质询和现场考察,最终形成如下鉴定意见:  (1)产品(技术)名称: AES-7100型高纯金属专用发射光谱仪  1、该产品的鉴定文件齐全,符合鉴定要求。  2、该产品首次采用了直流电弧激发光源与凹面光栅分光系统和光电倍增管检测系统的全新组合,可直接对粉末状样品进行灵敏、快速的测定,属国内首创。  3、该产品采用了自动控温水冷式电极夹,增强了产品的稳定性 采用汞灯描迹装置,能够方便的进行谱线定位 设有电极成像显示屏,可直接观察到电极成像投影,便于操作。  4、该产品针对相关领域的要求设计了专用应用软件,可根据蒸发曲线分别为每条谱线设定曝光时间参数、强弱线可同步衔接测量,具有内标、背景及分析数据校正处理等功能,提高了直流电弧光量计分析信背比。  5、该产品能对有色、冶金领域高纯金属及氧化物样品中的多种微量元素进行同时测定,市场前景广阔,具有良好的社会效益及经济效益。  6、该产品的技术文件资料齐全,符合国家规范,可以指导生产。  鉴定委员会一致认为:北京瑞利分析仪器有限公司研制开发的“AES-7100型高纯金属专用发射光谱仪”技术达到国内领先水平,同意通过新产品鉴定。  (2)产品(技术)名称: AES-7200型地质样品专用发射光谱仪  1、该产品首次采用了交流电弧激发光源与凹面光栅分光系统和光电倍增管检测系统的全新组合,研制成功的交流电弧直读光谱仪在国内尚属首创。该产品可直接对粉末状样品进行灵敏、快速的测定。  2、该产品整机设计合理、结构新颖,具有使用寿命较长的“自动控温水冷式电极夹” 在外光路全封闭防护装置上,可直接观察到电极成像投影,便于操作 采用汞灯描迹装置,能快速进行谱线定位。  3、该产品针对相关领域的要求设计了专门应用软件,具有以下特殊功能:可根据蒸发曲线分别为每条谱线设定曝光时间参数、强弱线可同步衔接测量、有出色的内标、背景及分析数据校正处理等功能、强大的数据库供历史数据处理查询。  4、该产品是—种性价比较高的电弧直读光谱仪,填补了我国在该类仪器的空白,能对地质领域样品中的多种微量元素进行同时测定。市场前景广阔,具有良好的社会效益及经济效益。  5、该产品的技术资料齐全完整,符合国家规范,具备批量生产条件。  鉴定委员会一致认为:北京瑞利分析仪器有限公司研制开发的“AES-7200型地质样品专用发射光谱仪”,其仪器性能及技术指标已达到国内领先水平,同意通过新产品鉴定。AES-7000系列专用发射光谱仪产品考察AES-7000系列专用发射光谱仪生产车间  出席本次新产品鉴定会的人员还有:北京北分瑞利分析仪器(集团)公司李源总经理、武慧忠总工程师、北京瑞利分析仪器有限公司曾伟总工程师、原总工/技术顾问章诒学研究员、副总工程师王百华女士、技术顾问:原地质科学院物化探研究所的张文华和张锦茂高级工程师、项目主管吴冬梅高级工程师。
  • 高能同步辐射光源储存环主体设备安装闭环,预计2024年发射第一束光
    HEPS最后一台二极磁铁就位。中国科学院高能物理研究所供图中国科学报讯(记者倪思洁)12月11日,国家重大科技基础设施项目高能同步辐射光源(HEPS)加速器储存环最后一台磁铁就位,标志着HEPS储存环主体设备安装闭环。HEPS储存环为超低发射度电子环形加速器,束流轨道周长约1360.4米,是世界上第三大光源加速器、国内第一大加速器,环内面积约合20余个足球场大小,用于储存高能高品质电子束,同时产生同步辐射光。今年2月初,储存环启动隧道设备安装,安装团队历经10个月完成全环288个预准直单元、240台弯转二极磁铁、288个基座等主体设备安装,实现主体设备安装闭环。HEPS工程总指挥潘卫民指出,作为我国首台第四代同步辐射装置的核心组成部分,储存环是HEPS规模最大、研制精度最高、难度成分最多的部分,由48个改进型混合7弯铁消色散(7BA)磁聚焦结构周期组成,每个周期长度约28米,包含37台磁铁和支架等主体硬件设备,其中,超高梯度四极磁铁、电源数字控制器和高精度电流传感器、高稳定性磁铁支撑等设备均达到国际先进水平。HEPS总工艺师林国平说,为了保证精度和效率,各系统设备完成加工测试后,在实验室完成预准直单元组装,实现预准直单元支架上磁铁的就位精度优于30微米后,方可运往储存环隧道进行安装。根据单元磁铁数不同,各预准直单元重约1.7吨至8.5吨,面对设备重、隧道设备密集、不能影响预准直精度等难点,安装团队提前设计定制专用吊臂车和工装,组织工艺安装实验,优化运输方案,检查设备接口、安装与操作空间,最终确认批量安装方案,为高效推进储存环隧道安装奠定基础。HEPS是国家发展改革委批复立项、由中国科学院高能物理研究所承担建设的国家重大科技基础设施,是北京怀柔科学城的核心装置。HEPS建成后,将成为我国首台高能量同步辐射光源,也是世界上亮度最高的第四代同步辐射光源之一,可以发射比太阳亮1万亿倍的光,有助于更深层次地解析物质微观结构和演化机制,为提升我国国家发展战略与前沿基础科学技术领域的原始创新能力提供高科技研究平台。HEPS自2019年6月启动建设以来,已完成直线加速器、增强器出束,储存环磁铁、机械、电源、预准直系统率先完成全部研制任务,真空、束控、注入引出、高频、低温等设备和光束线站批量加工测试工作正在紧张推进中,预计将于2024年发射第一束光。原标题:高能同步辐射光源储存环主体设备安装闭环
  • 华东理工自主研制界面光电分析装置 可用于超灵敏光电生物传感器构建
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/18580eb5-c78e-4baa-a5ae-f6bc8e181e94.jpg" title="149034298047758_meitu_5.jpg"//pp 对界面上电荷传输信息的精准获取,是深入认识生命活动与光电能量转化过程的基础,可应用在超灵敏光电生物传感器的构建和敏化太阳能电池光电转化效率的提高等方面。/pp  刚刚获得2016年度上海市自然科学一等奖的“功能化界面电荷传输过程中的电分析化学基础研究及其应用”项目,所研究的正是这一领域。/pp  针对界面光电分析化学基础研究中存在的关键问题与挑战,华东理工大学龙亿涛、花建丽、应佚伦、马巍、武文俊等老师,经过10年的努力,取得了多项成果:在研制界面光电分析装置上,通过设计与制备结构可控的光电分子,聚焦功能化动态界面电荷传输过程,发展了高时空分辨的“电化学—纳米光谱”单纳米粒子动态界面传感新方法,应用于纳米粒子界面电荷传输的动态、原位、实时、高通量分析 提出纳米孔道电化学限域效应,建立纳米孔道单分子界面分析技术,实现了对多尺度界面单分子动态结构研究,为功能化复杂界面电荷传输新机制的研究提供了新方法。/pp  据介绍,该获奖团队目前正在以筹建中的“国际合作联合实验室”和“界面光电分析化学基础研究”创新研究群体项目为依托,通过构建新型功能化动态界面,对单分子水平和单颗粒水平上的电荷传输机制进行探索。/ppbr//p
  • 聚光科技E5000电弧直读发射光谱仪顺利通过辐射测试认证
    电磁辐射是指在电磁振荡过程中,电磁波向四周传播传递能量的现象。长期的电磁辐射会对人体的心血管系统、视觉系统、神经系统和生殖系统造成极大的危害,是心血管病、癌突变,不孕不育、白内障的主要诱因。电弧发射光谱仪的原理是通过高频引燃,产生大功率电弧火焰,实现样品的蒸发和激发,进行各元素的测定。因此,长期使用电弧发射光谱仪器的工作人员深受电磁辐射的危害,做好电弧发射光谱仪的电磁辐射屏蔽防护十分必要,更是仪器生产厂商对客户责任感的体现。  聚光科技(杭州)股份有限公司生产的E5000全谱直读电弧发射光谱仪是国内首台非金属粉末元素分析的台式全谱直读发射光谱仪,其将电弧激发光源与Paschen-Runge型全谱CCD 光谱仪相结合,通过激光定位与程控电极,自动调整电极位置,实现激发间距的精确控制,利用高阵列CCD 数采获得了激发样品的全谱信息,通过实时扣除背景与干扰校正,直接获得分析结果。与传统摄谱仪相比,仪器操作简单,自动化程度高,谱线信息丰富,测定结果快速准确。  E5000采用新一代数字电弧光源,替代了传统的电弧源,电极在矩室内全自动对准激发,无需人工直接观察调节间距,有效防护人眼,屏蔽了大量电磁辐射;此外,数字电源体积更小,可直接置于仪器内部,无需加长激发线连接外置的交流电源,有效降低大电流传导过程中产生的辐射。  辐射测试结果显示,正常工作时,若电弧光源无防护措施,电磁辐射显著高于国家标准限定的40dBN;如果有效屏蔽掉电源的电磁辐射,使用长的激发线激发时,高频300MHz以上的电磁辐射稍有降低,但300MHz以下的电磁辐射仍然较大。而经过完全防护的E5000仪器在正常工作时电磁辐射显著降低,完全符合国标中关于仪器设备的电磁辐射限定要求,具体结果如下图。E5000全谱直读电弧发射光谱仪电磁辐射测试结果  国家电子计算机外部设备质量监督检验中心是经国家主管部门审查认可的,具有第三方公正地位的国家级质量检验机构。经国家电子计算机外部设备质量监督检验中心的辐射骚扰场强试验(30MHz~1GHz)测试认证,聚光科技(杭州)股份有限公司研发生产的E5000电弧直读发射光谱仪符合国标GB 9254-2008《信息技术设备的无线电骚扰限值和测量方法》的B级标准要求。E5000全谱直读电弧发射光谱仪辐射骚扰场强试验检验报告
  • 强发射线星系光谱研究取得进展
    近日,由中国科学院上海天文台研究员郑振亚带领的早期宇宙与高红移星系团组牵头,联合中国科学院大学、中国科学技术大学、美国宇航局戈达德太空飞行中心、加拿大曼尼托巴大学等国内外研究单位,基于目前最大的绿豌豆(Green Pea,GP)星系光谱搜寻样本,在近1550例绿豌豆星系中发现了5例具有双峰窄线的特殊星系,进一步分析表明这类特殊天体可能起源于活动星系核(Active Galactic Nuclei,AGN)的合并。这一成果有望揭示绿豌豆星系这一类特殊星系中的大质量星系和超大质量黑洞的联合演化特征。7月19日,相关研究成果发表在《皇家天文学会月刊》(MNRAS)上。绿豌豆星系,因呈现为绿色、致密的光学形态而得名,具有极强的发射线,特别是电离氧[OIII]发射线。绿豌豆星系通常是质量较小、贫金属丰度、恒星形成活动活跃的低红移星系,被认为是早期星系在近邻宇宙中的对应体。部分绿豌豆星系中显示出活动星系核的活动迹象,体现了核区超大质量黑洞活动的特征。因此,系统地搜寻研究绿豌豆星系,能够帮助天文学家更深入地探讨早期星系的形成与演化。同时,研究绿豌豆星系的AGN样本为开展早期超大质量黑洞与寄主星系的联合演化的研究带来启示。联合研究团队,基于郭守敬望远镜(LAMOST)河外巡天项目的绿豌豆星系样本,对LAMOST光谱发射线轮廓进行了分析(如图)。LAMOST河外巡天项目的绿豌豆星系样本是目前最大的豌豆星系光谱搜寻样本,囊括近1550例豌豆星系光谱,比此前的斯隆数字巡天(SDSS)光谱证认的豌豆星系样本数目提升了一倍以上。研究发现,在近1550例豌豆星系光谱中,仅有5例具有明显双峰窄线的绿豌豆星系,根据X射线、中红外、射电等多波段测光和光谱数据,利用能谱拟合和光学谱线诊断的方法高度可信地认证了该样本中的AGN活动。结合发射线轮廓以及光学形态,研究表明,这些星系的双峰轮廓的物理来源更可能是双AGN合并而不是外流或气体盘。上海天文台博士研究生林如秋表示,这五例绿豌豆星系的双峰发射线的成分非常窄,形态致密无法分辨盘结构而且没有明显倾斜角度,因此双峰源于外流或者气体盘的可能性低。郑振亚表示,这5例绿豌豆星系比一般2型AGN中的双峰发射线星系有更强的[OIII]的等值宽度(等值宽度定义为线强与连续谱的比值),而导致这个现象的原因可能与早期宇宙中星系并合相关,即将进行的LAMOST绿豌豆星系新一期巡天项目将有望为我们提供更多此类特殊星系样本,进一步揭示大质量星系和超大质量黑洞的联合演化情况。研究工作得到国家自然科学基金、中智天文研究合作项目,中国巡天空间望远镜(CSST)一期科学项目、上海天文台培育项目和上海市自然科学基金的支持。左列为五个双峰窄线豌豆星系的Pan-STARR光学gri三色伪彩图。图片尺寸为10角秒×10角秒。右列为光谱发射线拟合结果。黑线为观测光谱、蓝线为拟合成分、红线为模型光谱。
  • 欧洲X射线自由电子激光装置在德国汉堡正式启用
    p  欧洲X射线自由电子激光装置(XFEL)于2017年9月1日在德国汉堡大都市区正式投入使用,德国教研部(BMBF)部长万卡与参与研发和建设的其他11国代表共同按下首次试验的启动按钮。br//pp  欧洲XFEL装置建设项目2003年由德国科学理事会(WR)提议设立,于2009年启动,造价约为12亿欧元,并拥有延伸至德国石勒苏益格-荷尔斯泰因州的3.4千米隧道系统,是全球最大的X射线激光设施。每秒可发射多达2.7万个脉冲,较世界上其他五个同类装置的效率增加200倍。该装置的成功研制,将有助于人类开辟全新研究领域、突破当前的知识界限。例如,借助该装置能更准确观察物质材料的内部结构、像电影的“慢镜头”一样记录化学反应过程、在纳米粒子中制作三维图像、解开处于非结晶状态的病原单分子结构之谜以及推动新药和新材料的研发。/pp  除了德国,参与XFEL装置项目建设的其他11个欧洲国家分别是丹麦、法国、英国、意大利、波兰、俄罗斯、瑞典、瑞士、斯洛伐克、西班牙和匈牙利。德国提供了全部造价的58%,是出资最多的国家,其次是俄罗斯和法国。BMBF已投入约7.6亿欧元用于与此相关的研究项目。目前利用该装置从事研究工作的科学家来自46个国家,还有一些全球顶尖科学家正在申请。/ppbr//p
  • 电弧发射光谱: 成熟技术带来新的应用价值
    2015年1月6日,2014年北京光谱年会在北理工国际交流大厦顺利闭幕,大会吸引约200人来自科研机构、质检机构、知名企业等专家和代表们参加,聚光科技作为国内领航的分析仪器厂商应邀参加。 北京光谱年会历年是学术交流的圣地,本次年会更是汇聚了各行专家。在光谱年会开始,北京光谱学会理事长郑国经首先介绍了光谱学会2014年所做工作,并指出,“当前光谱分析及其仪器技术可以说非常成熟,对于元素测定,原子光谱仍是强项 对于分子及化合物的测定,分子光谱依然是定性定量的有效手段。”随后,清华大学孙素琴、王哲、陈建波北京理工大学袁洪福老师和中国检验检疫科学院的齐小花老师分别在荧光、分子光谱和拉曼光谱技术领域做了精彩报告。 北京光谱学会理事长 郑国经教授 聚光科技实验室业务部总监寿淼钧先生在本次光谱年会上向与会专家和代表们介绍最新上市的E5000电弧直读发射光谱仪。从E5000产品的研发故事,到产品在各个行业的应用,都做了详细的介绍和汇报,并向与会的专家和代表们发出合作的邀请,希望能共同致力于国产仪器的发展事业。 聚光科技(杭州)股份有限公司 实验室研发总监 寿淼钧先生 E5000电弧直读发射光谱仪技术创新点:数字电弧技术与发射光谱技术结合,革命性的固体粉末元素分析技术;紧凑的小型台式设计,确保仪器分析精确,稳定可靠高功率数字可编程光源,电流、电压、频率可控,可自由探索更优的分析方法自动电极对准,一键激发,分析结果立等可取多重连锁和监控,确保操作安全可靠绿色固体进样分析,完美解决地矿领域Ag/B/Se分析难题,全谱技术更可实现分析元素的自由扩展简洁易用的操作软件,内置工作曲线,最方便、最有效地响应客户日常分析需求改变地矿领域分析传统,让分析高效、生活轻松、工作变得有品位广泛适用于化探、地质、矿冶、有色、土壤、水泥、固废等领域的元素分析需求 E5000电弧直读发射光谱仪 聚光科技展区现场聚光科技实验室业务发展事业部简介: 聚光科技(杭州)股份有限公司在实验室仪器市场经过多年战略布局,目前已成功推出便携式GC-MS、气质联用仪、气相色谱仪、电感耦合等离子体发射光谱仪、近红外光谱仪等在内的分析仪器;通过并购北京吉天仪器有限公司,扩充了无机分析仪器组合以及前处理仪器;通过与LUMEX的合作,补充了原子吸收,测汞仪和荧光测油仪等产品,成为了包括色谱、质谱、光谱、应急检测以及前处理设备等在内的全方位解决方案供应商;实验室仪器市场,成为聚光科技未来十年的主战场之一。聚光科技在不断努力,立志成为国内最好、国际主流的实验室仪器供应商之一。
  • 深紫外激光二极管室温下发射连续波
    由2014年诺贝尔物理学奖获得者、日本名古屋大学材料与系统可持续发展研究所的天野弘领导的一个研究小组,与旭化成株式会社合作,成功地对深紫外激光二极管(波长低至UV-C区)进行了世界上第一个室温连续波激光发射。研究结果近日发表在《应用物理快报》上,代表这项技术朝着广泛应用迈出了一步。  从2017年开始,天野弘研究小组与提供2英寸氮化铝基板的旭化成公司合作,开始开发深紫外激光二极管。起初,向该装置注入足够的电流太困难,阻碍了紫外可见(UV-C)激光二极管的进一步发展。  2019年,天野弘的研究小组使用偏振诱导掺杂技术解决了上述问题,首次制造了一种短波长的UV-C半导体激光器,它可以在短脉冲电流下工作。这些电流脉冲所需的输入功率为5.2W,这对于连续波激光来说太高了,因为功率会导致二极管迅速升温并使激光停止。  研究人员此次重塑了设备本身的结构,将激光器在室温下运行所需的驱动功率降低至仅1.1W。研究人员发现,强晶体应变会阻碍有效电流路径。通过巧妙地剪裁激光条纹的侧壁,他们克服了缺陷,实现了流向激光二极管有源区的高效电流,并降低了工作功率。  这项研究是半导体激光器在所有波长范围内实际应用和发展的一个里程碑。未来,UV-C激光二极管可应用于医疗保健、病毒检测、颗粒物测量、气体分析和高清晰度激光处理,尤其有利于需要消毒手术室和自来水的外科医生和护士们。
  • 【华高仪器】岛津顺序型双单色器——高性能ICP发射光谱仪
    双顺序扫描型单色器装置确保尖锐的谱线和稳定性这是一款高性能的ICP发射光谱仪,配置了顺序型双单色器,拥有高分辨率及快速的特点,并且提供了多种的进样系统。仪器易于操作,适用于研发和质量控制。高分辨率(0.0045 nm)高分辨率可满足金属、稀土和土壤分析的要求,可对目标分析物提供精细准确至痕量水平的高分辨率分析,并且不受干扰物质或者主要成分的影响。真空型光室可提供长期稳定的测量真空光室可对S, B, I, Al和其他在真空紫外线区域拥有很高灵敏度分析线的成分进行高灵敏度分析。由于不需要气体吹扫,因此可减少气体对流时的波动和污染。所需稳定时间短,并能确保长时间分析的稳定性分析铁中的锌和砷。登记样品名称并用已设定好的分析条件开始分析。分析条件很容易改变,并可设置到常规条件中。分析结果可用商业软件以报告的形式打开。
  • “神十四”成功发射背后的关键技术
    6月5日上午,搭载神舟十四号载人飞船的长征二号F遥十四运载火箭,在酒泉卫星发射中心点火升空,成功将航天员陈冬、刘洋、蔡旭哲顺利送入太空,中国空间站建造阶段首次载人飞行任务发射告捷。神舟十四号载人飞船入轨后,采取径向自主快速交会对接方式同空间站组合体对接。3位航天员将进入空间站天和核心舱,正式开启6个月的太空之旅。“神十四”成功发射背后的关键技术有哪些?下面由小编汇总。点火发射的“火工品”此次神舟十四号发射任务中,四川航天川南火工技术有限公司承担了长征二号F遥十四运载火箭和神舟十四号载人飞船上点火器、起爆器、爆炸螺栓、火药装药、点火药盒、固体小火箭和非电传爆类产品等30余种共计500余发火工品的研制生产工作,为此次任务提供了充分的动力保证。保驾护航的“护甲”与“隔热衣”此次神舟十四号发射任务中,上海硅酸盐研究所研制的长寿命低比值无机热控涂层、耐高温隔热材料与组件、返回舱舷窗防烧蚀污染涂层、姿控发动机热防护材料、舱内通道照明和仪器仪表等多种载荷表面高辐射热控涂层、舷窗玻璃及光学涂层、消杂散光涂层、不锈钢灰色化学转换热控涂层、返回舱防热天线窗等十余种涂层与部件得到应用。上海有机化学研究所研制的有机温控涂层、导航用陀螺油助力神舟十四成功发射,实现了我国在液浮导航系统关键原材料的全方位自主可控。此外飞船、火箭上60%以上关键铝合金材料是“西南铝造”,还有“河南造”特种阀门配套系统、“苏州造”配套电路等许多关键技术也为神舟十四号的成功发射提供了不可或缺的助力。近在咫尺的“实时画面”此次神舟十四号发射过程中,火箭飞行中喷射的尾焰、在火箭高速运行过程中三位航天员的状态以及解体过程等高清画面离不开北京理工大学研发的高效视频编码技术。自2005年首次应用于长征火箭以来,该项技术不断进行技术创新和产品升级迭代,持续为“神舟”系列飞船的发射提供技术支持和服务,将火箭飞行动态的珍贵图像实时传回地面。交会对接的“精准测量员”神舟十四号载人飞船采用自主快速交会对接模式,与中国空间站成功“牵手”。中国航天科工二院25所研制的微波雷达与安装在空间站核心舱上的微波应答机配合工作,为空间交会对接任务保驾护航。同样在交会对接任务中屡立新功的还有中国航天科工三院33所研制的高精度加速度计组合及多只加速度计。它们出色完成了微重力环境下加速度的测量任务,帮助飞船精准把握速度和位置,让交会对接又稳又准。太空生活的“贴心服务员”中国航天科工航天三江红峰公司自主设计生产的“太空厨房”“太空医院”和“太空空调”系列产品,它们为航天员舒适的太空生活提供保障。此次随神舟十四号出征的食品加热装置、气体流量调节阀、液路截止阀、生理信号测试盒、心电记录装置等5种产品,主要用于神舟飞船环控生保分系统和医监医保设备分系统,它们是“太空厨房”“太空医院”“太空空调”的一部分,为航天员营造了舒适的太空之家。技术精湛的“护航员”由中国航天科工二院706所研制的搜救信息系统,是技术精湛的“全程护航员”,它承担神舟十四号载人飞船的待发段、上升段、运行段、返回段应急搜救指挥保障任务。系统具备搜救力量管理、搜救任务筹划、搜救预案仿真推演、任务执行跟踪与态势展示等功能,为航天员搜救任务事前运筹规划、事中指挥调度与事后复盘分析提供服务,是空间站任务实现航天员救援保障的关键系统,为载人航天工程建设发挥重要作用。另外一个“护航员”是护航飞行通信,保证全程清晰的声表滤波器。据介绍,航天器发射在太空中一旦有信号干扰,地面接收到的内容就像接听串了线的电话,难以分辨准确信息。为保障飞行全程通信清晰,由中国航天科工二院23所自主研制的声表滤波器,能有效滤除不同飞行阶段和太空中宇宙杂波的各种干扰信号,确保通信清晰准确传回地面。夜空中的最亮“船”在本次神舟十四号载人飞船任务中,上海技术物理研究所承担研制2台交会对接灯、轨道舱照明灯和返回舱照明灯等4台光电产品。交会对接灯配置在载人运输飞船舱外,在交会对接过程中为“太空拍摄”提供照明服务;轨道舱照明灯和返回舱照明灯为宇航员在舱内工作生活提供照明。由于篇幅限制,除了上述列举的技术外,还有诸多重要技术尚未提及。神舟十四号成功发射离不开我国科技的进步,离不开各界人士的支持,在此,小编预祝神舟十四任务圆满成功。
  • ICP等离子体发射光谱仪新品「SPS3500DD系列」发售
    利用高精度直接驱动马达的驱动方式有效提高了精度和测量效率  精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:新保雅文,总公司:千叶县千叶市)的全资子公司。公司的最新产品—利用高精度直接驱动马达的驱动方式,兼备高精度和高效率测量的ICP等离子体发射光谱仪(ICP-OES或ICP-AES※1)「SPS3500DD系列」将于8月4日正式开始销售。ICP等离子体发射光谱仪 SPS3500DD系列  ICP-OES能够对应从ppm(百万分率)到ppb(十亿分率)级别的分析。由于可进行元素的精密分析,因此被很多法定法规所采用。其应用特别是在近年来极其关注的稀有金属和稀土类元素分析的领域,另外也广泛应用在电子仪器中的环境管制物质的管理、电镀、工业材料、钢铁等高共存元素样品中的组成分析以及品质管理。 以往的SPS3500是通过旋转驱动光栅,对元素所发出的特征光线进行分离,来对样品中所含有的各种元素进行精密分析的扫描型ICP-OES。过去为了驱动光栅,使用的是滚珠丝杠和斜口滑块等几个部件组合起来的正弦设定方式。因此,在测量的精度和效率方面就有所限制。此次新开发的「SPS3500DD系列」,使用新开发的直接驱动马达来直接驱动光栅,避免了一些无用的机械动作,使得高精度・ 高效率的测量成为可能。与过去的驱动方式相比,其波长位置精度提高了5倍,定性分析提高约6倍,大大提高了测量的效率。 此外,由于「SPS3500DD系列」可更大角度地驱动高分辨率光栅,可对长达460nm波长范围进行分析,而其中有着很多需要利用高灵敏度分析线才能分析的稀土类元素镨、钕、钐等元素,也能够进行高分辨率的测量。并且,通过直接驱动马达方式,最小驱动波长单位为2pm,通过一次测量,进行全波长能谱的广域波长分析。测定结束后,能够对广域波长的能谱进行局部扩大并进行观察。特别是在未知样品的元素干扰分析方面,是非常有效的。【SPS3500DD系列的主要特征】 (1) 实现高精度分析光栅的驱动无需使用正弦设定、滚珠丝杠等辅助部件,通过直接驱动马达直接驱动。因此、基本不会受到各部件的热膨胀等影响,可进行高精度的分析。(2) 可进行快速测量由于可以快速驱动(以往的10倍以上)分光的光栅,全元素定性测量所花的时间只是以往的约1/6。同时也可减少样品的消耗量。(3) 可测量广域波长通过采用高分辨率直接驱动马达,增加了对任意设定广域连续能谱进行高分辨率的获取功能。可进行全元素、全波长的能谱确认和以此信息为基本的定性判断。也可简单地设定含有复杂的共存元素的样品的测量条件。(4) 高分辨率测量由于采用了直接驱动马达,光栅的角度就没有限制了。可大角度驱动高分辨率的光栅(4320根/mm),所以可在以往不可能达到的450nm附近的波长进行高分辨率测量。通过采用4320根/mm光栅,实现了世界顶尖水平的分辨率0.0045nm,可精确测量金属等的共存元素高的样品。(5) 定性分析功能的充实可选择快速定性分析和高精度定性分析等定性分析方法。根据样品内容和目的可进行广泛的对应。(6) 紧凑型设计与以往机型同样,采用的是分光器竖着配置,高频电源和循环冷却水装置内置在主机内的一体化紧凑型设计。 【价格】 1700万日元~(不含税)【预定销售台数】 100台(2011年度) 本产品的咨询方式中国:精工盈司电子科技(上海)有限公司TEL:021-50273533FAX:021-50273733MAIL:sales@siint.com.cn日本:【媒体宣传】精工电子有限公司综合企划本部 秘书广告部【客户】精工电子纳米科技有限公司分析营业部 营业二科TEL: 03-6280-0077(直线)MAIL:info@siint.co.jp
  • 岛津应用:LED灯的发射光谱测定
    荧光灯和LED灯等发射可见光的光源具有特有的发射光谱。因为光波长和光量决定光的色调,所以在灯的开发过程中,测定其发射光谱对评价光源的性质非常重要。 通常使用紫外可见分光光度计(UV)或荧光光谱仪(RF)测定发射光谱。使用UV 得到的光谱为包含仪器特性(仪器函数)的发射光谱,该光谱的色调与视觉感知的色调不同。如果使用岛津公司生产的具有自动仪器校正功能的荧光光谱RF-6000,则不受仪器函数的影响,可以得到精确的发射光谱。综上所述,RF-6000配置大型样品室,可以直接放置较大光源的样品。另外,还可以通过仪器的自动光谱校正功能获得仪器校正后的光谱。使用RF-6000,可以得到准确的LED灯发射光谱。 本文向您介绍使用RF-6000 测定LED 灯发射光谱的示例。 将LED灯放置到样品室内 了解详情,敬请点击《LED灯的发射光谱测定》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 【新品发布】锐意进取,东西分析光谱家族新秀-ICP-7700型电感耦合等离子体发射光谱仪荣耀上市
    新品发布锐意进取,东西分析光谱家族再添新秀-icp-7700电感耦合等离子体发射光谱仪,这是东西分析数十载又一精华力作。光源系统,采用固态射频发生器,端氏观测方式,具有检出限低、分辨率高、工作稳定和适用面广的特点,可以快捷、准确地检测微量至常量的70种元素。仪器特点icp固态射频发生器:体积小、重量轻、效率高,具有自动匹配功能,输出功率稳定性优于0.1%,可测试有机溶液的样品;观测方式:端式,具有检出限低的特点;进样系统:采用精密质量流量计,稳定可靠。先进的雾室,重复性rsd可达到1.0%;自动保护:断水、断气、过流、过热,防止炬管烧熔等;典型可分析的元素及检出限(如下图)应用领域地质、冶金、稀土分离、稀土磁性材料、医药卫生、环境、生物、海洋、石油、化工、核工业、农业、水质等科学领域。新品上市,购买有礼品赠送哦!登录公司网站了解更多详细内容。www.ewai-group.com关于我们北京东西分析仪器有限公司,拥有二十多年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过iso9001国际质量体系认证,iso14001环境管理体系认证,多个产品取得欧盟ce认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 低能强流发射度仪的研制
    成果名称低能强流发射度仪的研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com合作方式□技术转让 □技术入股 &radic 合作开发 □其他成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:束流发射度是反映束流品质的重要物理参数,是加速器和束流输运线设计的重要参数,也是研究束流匹配传输和束流传输效率的基础。近年来,强流加速器已成为国际上加速器技术发展的最为重要的方向之一。强流加速器的关键问题之一是尽量减小束流损失。为此,对强流离子束或电子束进行准确的发射度测量是十分重要的。国内外多个实验室均在进行强流束发射度仪的研制。其中,北京大学重离子物理研究所正在开展强流离子、电子加速技术及应用研究,为获得高品质的束流并实现对束流的有效调控,需要能够测量强流发射度、使用方便且精度较高的束流发射度仪。而现有发射度仪不能很好满足测量强流束发射度的需要,因此需要研制强流束发射度仪。2009年,北京大学物理学院陆元荣教授申请的&ldquo 低能强流发射度仪研制&rdquo 项目获得了第一期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。该项目研制的低能强流发射度仪用于测量强流RFQ加速器中强流离子束(脉冲束或直流束)的发射度和发射相图,能够全面反映离子束从离子源引出到低能束流输运段、RFQ加速器入口处等各阶段的发射相图的变化,对北大强流RFQ加速器技术的发展和建立基于RFQ加速器的中子照相研究平台具有重要意义。在基金的资助下,课题组完成的工作包括:(1)根据测量要求进行仪器的物理设计;(2)研发测量同一束流截面、两个相互垂直方向的发射度机械装置;(3)开发与系统功能相适应的自动控制电路;(4)研究数据采集过程中的噪声抑制电路和信号处理的算法;(5)编制用于控制、数据采集、结果显示的可视化图形软件。应用前景:目前该项目已经顺利结题,其研制的包含全套软、硬件装置的强流束流发射度仪正在强流离子束应用领域(如强流离子注入、散裂中子源、同步辐射光源等)进行推广,将为该领域其它单位的科研工作提供有力的帮助。
  • 辉光放电光谱、火花源原子发射光谱的新应用
    仪器信息网讯 2014年10月20-21日,由中国工程院、中国合格评定国家认可委员会、中国标准化协会、中国金属学会、国际钢铁工业分析委员会、中国钢研科技集团有限公司主办的&ldquo CCATM&rsquo 2014国际冶金及材料分析测试学术报告会&rdquo 之&ldquo 辉光光谱/表面分析/火花源原子发射光谱&rdquo 分会在北京国际会议中心举行。会议现场  辉光放电光谱(GD-OES)由于具有固体样品直接分析、可分析非导体样品、分析速度快、气体消耗量低、分析成本低等优点,近年来,在元素分析中的应用逐渐增多。目前应用的商业化辉光放电光谱仪厂商主要有美国的Leco公司、德国的Spectro公司、法国的Horiba Jobin Yvon公司。报告人:首钢技术研究院徐永林报告题目:辉光放电光谱法在镀锡板检测上的应用  徐永林利用辉光放电光谱仪对镀锡板样品进行逐层剥离,根据样品由表至里的辉光放电积分图谱,分别设定公式积分计算镀锡板镀层厚度及重量、钝化层厚度及重量、基板成分、镀层中有害元素等。通过与传统方法的分析结果比对,说明采用辉光放电光谱法分析这些检测项目具有较佳的准确度及精密度,提高了检测效率,同时达到了镀锡板多个检测项目的同时测定。报告人:首钢技术研究院梁潇报告题目:直流辉光放电光谱法同时测定铸铁中12种元素  梁潇研究了利用辉光放电光谱法同时测定铸铁中的多种元素含量。通过分析激发电压、激发电流、光电倍增管、预燃时间和积分时间等因素对各元素光谱强度和稳定性的影响,以铁为内标建立了同时测定铸铁中碳、硅、锰、磷、硫、镍、铬、钼、铜、钒、硼等元素含量的分析方法。对不同铸铁样品进行准确度和精密度试验,均得到了很好的结果。  火花源原子发射光谱分析法是一项成熟的分析技术,具有操作简便、分析速度快和准确度高的优点。在生产实践中分析金属试样表现出的快速、准确和高精度是其他分析方法无法取代的,因而广泛的应用于钢铁和有色冶金行业炉前快速分析,也是分析各种常见固体金属材料的一种普及的标准分析方法。  在会议中,多位报告人介绍了火花源原子发射光谱的最新应用研究。江苏沙钢集团的陈熙介绍了火花源原子发射光谱快速测定钢中低含量硅 钢研纳克检测技术有限公司宋宏峰介绍了火花源原子发射光谱法分析高锰铬钢 上海宝钢工业技术服务有限公司张叶介绍了火花源发射光谱分析焊丝钢线材试样 宝山钢铁股份有限公司研究院赵涛介绍了火花源原子发射光谱法测定铁基非晶合金中的硅和硼。
  • 共振X射线发射光谱下发现稀土金属价态转变新进展
    稀土元素是现代科技中不可或缺的元素,在磁性激光、光纤通信、新能源、超导、航天航空、军事国防等领域有着不可替代的作用,是21世纪重要的战略元素。6月27日,北京高压科学研究中心研究员丁阳带领的国际研究团队在高压稀土金属价态转变研究领域获突破性进展。相关研究以《80 GPa左右单质金属铕(Eu)的新价态转变》为题发表于《物理评论快报》(Physical Review Letters)。 价态转变—价电子数的变化,是稀土金属及其化合物中普遍存在的物理现象,反映了局域4f电子在外界(比如压力、掺杂、温度)作用下向非局域化转化的过程,而这种非局域化转化标志着材料中大规模电子关联的开始。在此过程中,由于局域电子和非局域价电子之间的竞争等相互作用,稀土元素会衍生出许多奇异的量子现象,如价态转变、金属到绝缘体的转变、超导等,而这些都会极大影响稀土元素的磁、光、电等物理性质。因此揭示这些变化机制,将为设计研制面向国家战略需求的量子演生新材料,促进新型功能器件诞生及推动新能源产业升级提供巨大机遇。 在该研究中,研究人员使用同步辐射X射线共振发射光谱和X射线衍射技术,探测了Eu在高压下的电子和晶体结构变化,压力高达160万大气压。他们发现,在约80万大气压的压缩下,Eu中也发生了明显的价态变化,而且价态转变恰好与Eu在相同压力下的晶体结构变化相吻合;并提出Eu中这种电子重构归因于所谓的Promotional模型—4f轨道的电子向5d导带的跃迁导致的结果,为研究稀土元素的价态变化提供了重要的实验依据和理论模型。 “共振X射线发射光谱(RXES)是迄今为止在高压下研究稀土元素价态变化的最强大的实验技术,它可以提供可靠的电子结构测量,从而使我们能够检测到Eu在高压下电子结构的变化。”丁阳说。 据了解,目前该实验成果也是国内首次利用共振X射线发射光谱在如此高的压力下研究稀土元素4f 的电子结构,极大推进了高压调控4f电子研究的发展,同时也为我国同步辐射谱学技术的发展提供了重要参考。 据悉,北京高压科学研究中心博士后陈碧娟博士为该文第一作者,北京高压科学研究中心研究员丁阳和陕西师范大学的昌峻研究员为通讯作者,合作单位包括流体物理研究所、北京应用物理与计算数学研究所、吉林大学、美国阿贡国家实验室、中国科学院物理研究所等。 相关工作得到了国家自然科学基金项目、挑战者计划、国家重点研发计划项目、美国DOE-NNSA’s Office of Experimental Sciences等联合资助。
  • 德开发出微型太赫兹发射器
    近日,德国达姆施塔特工业大学的科学家成功研发出可在常温下使用的微型太赫兹发射器,并创造了1.111太赫兹的电子发射器频率纪录,为太赫兹辐射的广泛应用铺平了道路。  通过辐射的帮助,穿透日常的材料,如塑料、纸张、纺织品或陶瓷,从而对工件的质量进行无损检测,或者分析正在运行的发动机的燃烧过程,甚至不用打开就检测邮包和信件是否带有危险的生物物质,这些都是波长在0.1毫米至1毫米的太赫兹辐射可能的用途。然而直到目前太赫兹技术的发展和应用仍很局限,其主要障碍就是其发射和接收装置至今仍然十分笨重而且昂贵。  这一情况可能很快就会有所改变:达姆施塔特的物理学家和工程师在迈克尔菲格诺瓦博士的领导下成功开发出一种太赫兹辐射发射装置。其核心部件是一个所谓的共振隧道二极管(RTD),面积不到1平方毫米,制造工艺基于传统的半导体技术,实现了1.111太赫兹的频率纪录。  在对他们的新设备小型化的过程中,菲格诺瓦团队花了几年时间不断接近微电子的技术极限。共振隧道二极管的核心是一个所谓的双势垒结构,其中嵌入了一个量子阱(QW)。与量子阱有关的是一层非常薄的铟镓砷化物半导体层,它夹在两个很薄的铝砷半导体层中。每一层仅几纳米厚。这种双势垒结构,再加上量子力学效应,使太赫兹振荡器产生的电磁波被反复放大,而不是减弱,这使得振荡器可在太赫兹频率发出连续的电磁辐射。  该太赫兹发射装置可在室温下运行,这使它更具技术应用前景。例如可以利用共振在太赫兹范围内进行分子光谱研究。以前不能用频谱分析的物质,现在都可以在太赫兹范围内用这个方法进行研究。首先受益是医药领域,例如,可以把体内的病变组织从健康组织中区别开来。  菲格诺瓦表示,这是目前有源半导体器件所能达到的最高频率。而从理论上讲,他们研制的发射器还能实现更高的、直到3太赫兹的频率。他们将在未来几年进一步改进该发射器,使其达到更高频率。而利用更高频率的太赫兹辐射来进行材料分析则可获得更高的分辨率,即在图片上可以识别更小的细节。新太赫兹发射器将在电脑、手机和其他电子设备等许多领域获得至今无法想象的应用。
  • 沈阳科仪:正参与同步辐射装置、先进光源等大科学装置建设
    近日,上交所表示,终止半导体设备厂商中国科学院沈阳科学仪器股份有限公司(以下简称“沈阳科仪”)发行上市审核。在沈阳科仪得招股说明书中显示,其正参与同步辐射装置、先进光源等大科学装置建设。招股书显示,沈阳科仪主要从事干式真空泵、真空仪器设备的研发、生产和销售,并提供相关技术服务。干式真空泵是半导体制造工艺设备的核心附属设备,为集成电路、光伏、LED、平板显示、锂电池等行业的生产设备提供所必需的高度洁净真空环境。沈阳科仪得真空仪器设备产品主要包括大科学装置、真空薄膜仪器设备、新材料制备设备三大类。其中大科学装置指用于基础科学研究的国家重大科学工程的大型科研装置与设施;真空薄膜仪器设备主要包括用于科研的PVD、CVD设备;新材料制备设备主要包括晶体材料制备设备、真空冶金设备等。在招股书的发行人的主营业务经营情况部分中显示,发行人正在参与北京高能同步辐射光源、上海同步辐射装置、合肥先进光源、大连相干光源等国家重大科学基础设施的建设,发行人已成为国内大科学装置真空技术及真空科研仪器设备领域领先的产品与服务提供商。资料显示,合肥先进光源(HALS)是基于衍射极限储存环的第四代同步辐射光源,其发射度及亮度指标的设计目标为世界第一,建成后将是全世界最先进的衍射极限储存环光源。合肥先进光源(HALS)设计定位世界唯一、位于中低能区、“具有鲜明衍射极限及全空间相干特色”的第四代同步辐射光源,将应用于动态世界的观测,为能源与环境、量子材料、物质与生命交叉等领域带来前所未有的机遇。图源 大连相干光源大连相干光源是一台采用高增益谐波放大运行模式的极紫外自由电子激光用户装置,是一种以相对论高品质电子束作为工作介质,在周期磁场中以受激发射方式放大电磁辐射的新型强相干激光光源。该装置是我国第一台自由电子激光大型用户装置,是世界上唯一工作在极紫外波段的自由电子激光用户装置,也是世界上最亮的极紫外光源。自由电子激光是近年来国际科技界飞速发展的一类重大科技基础设施,被称为“第四代先进光源”,具有超高亮度、超短脉冲、全相干等优异特性,大大提高了实验研究的时间和空间分辨率。
  • 27载电镜人新探索:高效捕获电子态信息的软X射线发射光谱——访吉林大学电镜中心主任张伟教授
    在过去的近百年里,电子显微镜在现代材料科学研究中起着不可或缺的作用。随着电子显微镜技术的发展,能量色散光谱(EDS)、波长色散光谱仪(WDS)以及电子能量损失谱(EELS)等基于电子显微镜的光谱分析手段不断涌现。在电镜空间分辨率的基础上,这些光谱分析手段为电镜表征又赋予了能量分辨率的维度,通过将两者相融合,电镜技术得以在分析过程中获得高能量分辨率和高空间分辨率并存的结果。近年来,随着先进光谱分析手段的发展,出现了一种基于电镜且十分便捷高效的X射线发射光谱分析方法:软X射线发射光谱(SXES)。吉林大学张伟教授在国内、乃至国际,较早的围绕SXES展开了系列研究,并取得了诸多亮眼成果。近三十年,张伟教授围绕电镜,在诸多材料体系均有代表性成果产出,这不仅基于他对电子显微学的热爱,也离不开对电镜技术的“敏感”。近日,仪器信息网有幸采访了张伟教授,请其分享了SXES技术的最新进展与应用潜力,也聆听了其与电镜的故事。张伟,吉林大学电子显微镜中心主任、材料科学与工程学院“唐敖庆学者”领军教授。现任吉林省电子显微镜学会理事长、英国皇家化学会会士(2022),科睿唯安“全球高被引科学家榜单”(2023,交叉学科)。关注电化学能源存储/转换材料的表/界面的化学和物理调控及与性能的构效关系,强调先进材料的电子显微分析。作为学术带头人引进人才来吉林大学工作前,先后在日本国立材料研究所、韩国三星综合技术研究院、德国Fritz-Haber研究所、丹麦技术大学、西班牙能源协作研究中心从事合作和独立的科学研究。2017年起先后任电子显微镜中心副主任、主任。2020年起任唐敖庆学者-领军教授。27载电镜魅力职业:既是技术手段,更是一门学问“热爱,往往收获意外的惊喜”1997年至2004年,张伟在我国电子显微学重要发展地之一的中国科学院金属研究所攻读硕士和博士,师从我国著名电子显微学专家李斗星研究员、隋曼龄教授。在此,张伟开始开展电镜相关研究,与电镜结缘,并对这个学科产生浓厚兴趣。2004年博士毕业以后又先后在多个国家从事合作和独立的科学研究。2014年开始到吉林大学工作。这十余年间,虽然研究的材料体系广泛、领域不同,但电镜都是最重要的研究手段或对象。回顾以往,“因为我可能经历的地方很多,当时我的直觉,在哪个地方离开的时候都要留下些什么”。在这种直觉和热爱驱动下,十余年的科研历程收获诸多“意外惊喜”,每个领域和阶段也都有一些值得回忆的成果。攻读博士期间,张伟专注于金属与合金的研究。利用电镜深入探索,通过快速加热的方法,发现了传统钛合金中一种特殊的相变形式——快速升温马氏体相变。由于马氏体相变在材料科学和凝聚态物理领域都扮演着至关重要的角色,这一成果在当时备受关注,不仅发表在应用物理快报上,还得到了中国科学院官方报纸科学时报的专门报道。在德国研究期间,基于团队自由的学术氛围,得以深入研究一些有趣的方向。在电镜中,张伟发现了一种超大单胞的表面终结状态,这在当时具有重大意义。传统观念上,透射电镜主要研究块体结构,但此研究成功挑战了表面研究的难题。通过调整衬度传递函数,结合先进球差电镜中的HAADF-STEM技术,揭示了超大单胞结构表面终结于非完整通道的现象,解决了团队长期关于侧面或表面态原子排布的争议。这一工作发表后,引起了广泛关注,并启发了后续相关的诸多研究。回顾这一发现,张伟认为这依旧是自己目前最具原创性的工作之一。随后在丹麦继续研究期间,张伟在电镜中随意观察石墨烯样品时,意外发现石墨烯上会留下痕迹,敏锐地意识到这可能是一种纳米书写工具。于是深入探究,最终发表了题为“以石墨烯为纸,电子束为墨”的纳米书写技术论文。发表后迅速受到国家科技日报海外头版头条报道,这一结果因他灵活的想法和电镜的作用而备受关注,也让张伟备受激励。回国后,张伟致力于能源存储领域研究,并与西班牙能源协作研究中心和韩国基础科学研究所合作,发现了氢氧化物赝电容超级电容器的新机制,即氢离子的嵌入脱出过程,而非传统认为的表面氧化还原反应。成果发表受到广泛关注,至今被引超过250多次。2019年诺贝尔化学奖获得者古迪纳夫教授甚至专门撰写文章评价了这一工作的重要意义。尽管运用了多种研究手段,但核心仍是张伟对电镜的敏锐洞察,通过观察特征形貌演变和电子衍射谱分析,发现了充电和放电结构的高度相似性,这一发现对后续研究起到了关键作用。张伟讲授“电子显微镜魅力职业”课堂一瞥问及在诸多材料体系中都有一定成果的原因,张伟讲到,“一个可能是我兴趣在,再有一个也确实热爱”。正如张伟曾经给本科生、研究生和留学生讲授几门相关的课程“材料科学测试方法”、“电子显微镜应用与实例分析”或讲座“电子显微镜魅力职业与追求”中所阐释的,电镜除了是生存手段,更成为喜欢的一个魅力职业。“双管齐下”的学科:电镜既是手段,更是一门学问在谈到电子显微学这门学科时,张伟认为,首先,电子显微学是一门实用性极强、应用范围广泛,起着为其他学科服务支撑的重要作用。但另外,电子显微学本身也蕴含了丰富的理论,是一门需要不断研究、探索和突破的学问。作为现代科研的重要支撑学科,电子显微学在材料物理化学等领域扮演着不可或缺的角色。无论是探索新现象、新机理,还是揭示物质结构,电镜都发挥着举足轻重的作用。通过电镜对材料的深入研究,科学家们得以发现许多未知的领域,为科学进步贡献着力量。回顾以往,许多革命性成果的获得,正是依赖于电子显微学的突破性发现。例如,碳纳米管、准晶的发现等,背后都离不开电子显微学的直接贡献。同时,随着电镜技术的飞速发展,空间分辨率、能量分辨率以及时间分辨率等方面都取得了前所未有的提高,这些进步离不开新的理论支撑。例如,空间分辨率方面,球差电镜如今已经能够达到0.5埃甚至0.4埃的尺度。然而,一篇物理快报中提到,如果能克服某些限制,分辨率甚至可以达到0.01埃以下。这些突破性的进展,都需要其他学科的研究支持,以实现对分辨率不断突破的目标。总之,电子显微学是一门“双管齐下”的学科。它在支撑其他学科发展的同时,也在自身领域内不断取得新的突破和进展。二者相辅相成,共同推动着电子显微学不断向前发展。张伟的科研工作也与电子显微学的以上两个特性十分契合,在不同材料体系中广泛应用电镜的同时,也在围绕一些电子显微技术进行系统研究。2017年,吉林大学成立电子显微镜中心,张伟先后任电子显微镜中心副主任、执行主任、主任,并开始“双肩挑”的工作。一方面继续在材料学院从事科研工作,一方面也在电镜中心负责管理行政工作,同时也开始“回归”电镜相关研究,希望能通过一些原创性工作,为电子显微学的发展做出一些贡献。其中,软X射线发射光谱的应用与发展就是张伟近来比较聚焦的一个研究方向。探索新方向:基于电镜,以高能量分辨率表征电子态信息的SXES技术SXES技术发展历程:一种高效表征键合电子态信息的光谱方法诞生X射线发射光谱(XES)属于X射线光谱学,其分析原理是入射电子束辐照内层能级电子使其激发,被激发的电子脱离原来稳定的系统,内壳层会存在空穴,此时整个系统处于一种不稳定的激发态。与此同时,外层电子会向内壳层的空穴发生跃迁(退激发De-excitation),从而促使X射线的发射,通过分析发射光子的能量可以获得相关材料的电子信息。X射线发射光谱有多种类型,其中,软X射线发射光谱(SXES)也可用于确定材料的电子结构。1924年,林德(Lindh)和伦德奎斯特(Lundquist)首次发表了关于X射线发射光谱的实验结果,随后X射线发射光谱被广泛应用在材料研究中。虽然这些早期研究提供了对小分子电子构型的基本见解,但X射线发射光谱直到在同步辐射设施提供高X射线强度束后才得到更广泛的应用。近年来,随着先进光谱分析手段的发展,出现了一种基于电子显微镜且十分便捷高效的X射线发射光谱分析方法:软X射线发射光谱(SXES)。SXES的能量分辨率和检出限分别可以达到0.3 eV和20 ppm,优于EDS(120-130 eV、5000 ppm)和WDS(8 eV、100 ppm)。这意味着SXES的诞生为研究更精细的材料电子结构提供了更多的可能性。SXES与WDS,EDS对比(参考日本电子数据,根据安装的装置不同而不同)SXES作为附着在电子显微镜上的光谱分析方法,其目标是获得更高的分辨率,为了达到超高的能量分辨率以及空间分辨率,该技术也经历了几代漫长的发展。2000年,日本东北大学M Terauchi等人开发了连接到透射电子显微镜的第一代亚电子伏特分辨率软X射线光谱仪(JEM 2000FX)。光谱仪由VLS光栅和冷却的CCD探测器组成。首次在TEM中以0.6 eV能量分辨率的特定样品区域观察到价带(VB)的部分态密度(DOS)。然而,由于空间分辨率仅为1μm,在分析更小结构时能力不足。2002年,第二代软X射线发射光谱仪被开发。与第一代相比,能量分辨率从0.6 eV提高到0.4 eV,空间分辨率从1 μm提高到400 nm。可以设置两种不同的光栅,能量范围为60-1200 eV。然而,高能量区域的收集角和能量分辨率仍然不够。因此,从2008年到2012年,日本科学技术振兴机构(JST)资助了一项产学研联合种子创新项目,开发了一种光谱仪,该光谱仪利用VLS光栅作为色散元件,以达到超高的能量分辨率,可以在50 eV到4000 eV的宽能量范围内对软X射线光谱进行测量。成功研发出新一代商用软X射线发射光谱仪(SS- 94000 SXES),随后日本电子以商业化产品推向市场。该光谱仪带有两个光栅,可以检测50 -210 eV的一阶光谱和高达420 eV的二阶光谱,以及更高阶的光谱。该光谱仪可以探测到70多种元素的软X射线发射信号。到目前为止,SXES已经成为在纳米尺度上描述材料物理性质的成熟技术。SXES技术优势:高分辨,无损、化学键状态、锂元素分析X射线发射光谱工作原理示意图X射线发射主要是由电子束辐照引发的电子从价带(键合电子)到核心能级的电子跃迁。发射的X射线携带着有关键合电子(如Li的2s电子,C的2s和2p电子)的能量状态信息。通过检测电子从价带跃迁到内壳引起的X射线发射(上图),可以获得键合电子的部分态密度。由于核心能级态具有良好的对称性,发射强度分布反映了价带的部分态密度。作为一种基于电子显微镜的光谱分析方法,在样品制备过程中无需对样品进行特殊处理;在低加速电压下工作时,可以实现纳米级空间分辨率;在对简单金属、半导体和铝基化合物进行光谱分析时可以探究其能带结构效应。也就是说,一种新的、方便的表征键合电子态信息的光谱方法诞生了,该方法正在蓬勃发展,并在各个领域中得到应用。SS-94000 SXES检测金属Li图谱(图自日本电子)关于SXES技术的优势,张伟表示,一方面是分辨率高,其能量分辨率和检出限分别可以达到0.3 eV和20 ppm,优于EDS和WDS。这意味着SXES的诞生为研究更精细的材料电子结构提供了更多的可能性。另一方面,SXES还具有可视化和选择分析区域的优势,这使得SXES能够获得材料的局部或平均信息。此外,SXES 还具有几个独特的优势。第一,SXES的检测深度在几纳米到几百纳米之间,这使得SXES能够对样品进行无损的分析。其次,由于SXES具有非常高的能量分辨率和检出限,因此高能量分辨率的SXES可用于分析材料中化学键的状态。第三,也是最重要的一点,SXES可以对材料中的锂元素进行分析,这对于当下热点研究的新能源材料、能量存储材料中的应用是十分重要的。SXES技术应用进展:成果广泛,应用潜力被低估当前,从事基于电镜SXES技术研究与应用的团队较少,国际上主要是日本在推进相关研究,张伟则是我国鲜有的从事相关应用研究团队。日本偏技术推进,而张伟则在应用研究方面做了系列工作。并在全球率先发表了以基于电镜SXES技术应用研究为主题的综述。安装于吉林大学的国内首台基于扫描电子显微镜的软X射线发射光谱仪吉林大学也在2017年,购置了国内首台基于扫描电子显微镜的软X射线发射光谱仪(SS-94000 SXES),配置在JSM-7900F热场发射扫描电子显微镜上。基于SXES,张伟团队成功地将SXES应用于电化学能源和电催化领域,并为团队一些文章提供了关键数据,起到画龙点睛的作用。近两年来,张伟团队产出6篇实验型文章,1篇综述型文章。在水系电池领域,通过SXES揭示了CuHCF正极材料中铵离子的可逆嵌入/脱出,伴随Cu/Fe可逆价态转变的储能机制,发表于国际纳米领域的权威期刊Nano Lett上(Nano Lett. 23 (2023) 5307-5316)。在双离子电池工作中,团队利用SXES技术检测了石墨电极中Li-K和C-K边发射峰,证明了Li+成功的预嵌入石墨电极中,发表在国产卓越行动计划期刊JEC上(Journal of Energy Chemistry 71 (2022) 392-399)。团队将SXES与XANES的结果一同分析,研究了充放电过程中Bi电极和碱金属离子(Li+、Na+ 和K+)之间的电子结构演化过程,发表在影响因子高达20.4的ESM期刊中(Energy Storage Materials 45 (2022) 33-39)。此外团队也将这种表征手段应用于OER中,采用熔融盐辅助硼热反应法制备了FeCoB2。通过SXES对OER反应后催化剂的表征,证实OER反应后的催化剂中B原子与FeBO4中B的存在形式相同,与XPS的结果一致(Journal of Energy Chemistry 72 (2022) 509-515)。在HER中,通过SXES对反应前后对MXene量子点催化剂进行表征,证明了在电化学反应后,-Cl基团被氧基团取代,从而优化了HER性能,在EEM期刊上发表,并且作为封面 (Energy Environment Materials 6 (2023) e12438),正逢MXene量子点获得诺贝尔化学奖之际。在ORR中,借助SXES 分析了铠甲催化剂的电子结构,通过对比金属Co元素引入的Co-NC催化剂与没有金属引入的NC催化剂的SXES峰位,表明金属Co物种的引入会使石墨电子结构发生变化,与同步辐射的结果一致,并且在国产卓越行动计划期刊JEC上发表(Journal of Energy Chemistry 70 (2022) 211-218)。随后团队对SXES在锂离子电池中的应用进行了全面的总结,在专注研究材料领域创新性研究成果的国际顶级快报MRL期刊上(年发文量74篇)发表了全球首篇关于软X射线发射光谱仪在锂离子电池研究领域应用的综述型文章,(Materials Research Letters 11 (2022) 239-249)并对SXES未来的发展提出了合理的展望。近两年,张伟团队产出的部分成果显然,SXES将成为在材料科学领域剖析电子结构信息的一个非常重要和强大的表征手段。尽管已经取得了一些进展,但SXES技术在许多的研究领域中的作用仍然被忽视。张伟认为,随着应用的不断深入,相关成果不断涌现,相信SXES技术会受到更多科研工作者的青睐。SXES作为一种简单、方便的光谱分析工具,并不局限于能源和催化领域。另外,张伟也十分看好SXES与其他表征手段联用技术,通过SXES辅助其它表征手段可以简化材料电子结构的研究,通过与其他表征手段的结合可以实现1+1远远大于2的效果。2024年1月,日本电子软X射线发光分光器出货第100台合影留念关于SXES技术的未来展望,张伟十分看好SXES技术以及相关联用技术,并认为,虽然目前SXES技术的研究与应用还处于一个相对初期的阶段,但相信在仪器使用者、研究者,以及仪器企业等多方共同努力下,SXES技术必将在材料电子结构研究领域掀起一个巨大浪潮,从而促进催化、能源以及其他领域的蓬勃发展。后记基于电镜技术,张伟在多个材料体系研究中取得显著成果,并较早投入SXES技术的研究,取得了系列突破。分享经验时,他强调了兴趣的重要性,提倡夯实基础知识,聚焦研究领域,并注重多学科交流。他特别提到,科研应摆脱功利心态,以平和之心面对挑战。就像团队学生们以“正能量满满”来描述张老师,兴趣为伴,乐观的心态下,有生活也有理想,科研与生活之旅中自然收获惊喜。或许,这便是张伟与电镜故事的真实写照。附:4分钟视频一览SXES的特点和功能(视频自日本电子官网)
  • 珀金埃尔默隆重推出Avio 200电感耦合等离子体发射光谱仪(ICP-OES)能够为多领域应用提供多元素无机分析
    业内最小的电感耦合等离子体发射光谱仪(ICP-OES)能够帮助研究人员检测复杂的食品、工业和环境样品WHAT: 致力于改善人类与环境健康的全球领导企业珀金埃尔默今日宣布推出AvioTM 200电感耦合等离子体发射光谱仪(ICP-OES)。这是目前业内最为紧凑的分析系统,旨在提供高效的多元素无机分析。这项创新技术能够帮助负责无机分析的实验室人员轻松应对更多种类、更复杂的高基体样品的测试,且无需对样品进行稀释。 Avio 200系统所具备的基体耐受性能够处理各种类型的样品,应用范围多种多样,比如营养品标签上营养成分的分析,确保符合RoHS指令(限制在电子电器设备中使用某些有害物质的行业规定),土壤微量元素的分析,水中微量元素的测定,以及玩具中金属含量的评估。 WHY: 珀金埃尔默环境健康总裁Jon DiVincenzo表示:“随着行业规定变得更加复杂,需要测试的元素越来越多,实验室专业人员不得不对更多数量的样品进行管理,进行更加耗时的分析。Avio 200 ICP系统是我们在电感耦合等离子体仪器方面的最新创新成果,能够帮助我们的客户在食品安全、工业和环境应用方面进行可靠高效的多元素分析,得到更好的结果。” HOW: Avio 200系统能够延长正常运行时间,将维护时间降到最低,从而帮助实验室人员提高工作效率。 这套系统采用了垂直等离子体设计,能够满足不同样品的测试灵活性,氩气消耗量低(凭借专利Flat PlateTM等离子体技术),启动快速,从而提高分析效率。此外,这套系统还采用了独特的双光观测技术,具有灵敏度高、分辨率高、线性范围宽等特点。 需要同时对多种元素进行无机分析的实验室人员现在可以利用Avio 200系统进行多元素分析,与与原子吸收(AA)一样简单易用,并且无需使用易燃气体。此外,这套系统还具有与原子吸收(AA)技术相同的成本效率和效益,无需在对新元素进行测试时购买元素灯。与此同时,这套系统还采用原子光谱跨平台SyngistixTM软件,从而实现从原子吸收(AA)到电感耦合等离子体(ICP)软件的无缝切换。 MORE: 如欲了解有关Avio 200系统和电感耦合等离子体(ICP)Syngistix软件的更多信息,请访问(http://www.perkinelmer.com/product/avio-200-icp-optical-emission-spectrometer-avio200)。 珀金埃尔默是一家致力于改善人类与环境健康的全球领导企业。2015年,公司收入约为23亿美元,约8000名员工在全球150多个国家为客户提供服务。珀金埃尔默是标准普尔500指数成分公司。更多信息,请致电1-877-PKI-NYSE或访问www.perkinelmer.com。 媒体联系人:Leanne Highlhigh@apcoworldwide.com919-867-2812
  • 1048万!中南大学场发射电镜显微分析平台、哈尔滨工业大学智能超灵敏活细胞超分辨显微镜采购项目
    一、项目基本情况1.项目编号:HZ20230204-0084项目名称:中南大学材料科学与工程学院场发射电镜显微分析平台采购项目预算金额:583.0000000 万元(人民币)最高限价(如有):583.0000000 万元(人民币)采购需求:项目名称包号包名称分项项目名称(标的名称)是否核心产品是否接受进口产品数量/单位交货要求代理服务收费标准备注时间地点中南大学材料科学与工程学院场发射电镜显微分析平台采购项目一场发射扫描电镜和软X射线分析谱仪联用系统场发射扫描电子显微镜是是1台合同签订后10个月内中南大学用户指定地点按国家计委计价格【2002】1980号文标准的70%收取,按中标金额计算。软X射线分析谱仪否1台二场发射扫描电镜和EDS/EBSD联用系统场发射扫描电子显微镜是1台能谱仪否1台背散射电子衍射仪否1台注:投标人可按以上划分的包次分别进行投报,但不得对包次里的内容进行拆分投报,否则按无效投标处理。说明:1.同意购买进口产品的,不限制满足采购需求的国内产品参与投标。采购项目预算(最高限价):人民币583.00万元(其中包一:329.00万元;包二:254.00万元)合同履行期限:详见招标文件本项目( 不接受 )联合体投标。2.项目编号:HITZB-2023000042项目名称:哈尔滨工业大学智能超灵敏活细胞超分辨显微镜预算金额:465万元采购需求:见公告附件合同履行期限:自合同签署生效之日起计算,在1周内完成设备、材料的采购并运送至空间环境地面模拟装置项目园区;自货物到达空间环境地面模拟装置项目园区起计算,在1周内完成智能超灵敏活细胞超分辨显微镜的安装;自货物完成安装起计算,在2周内完成设备的调试及验收。合同履行地点:哈尔滨工业大学空间环境地面模拟装置项目园区本项目不接受联合体投标。二、获取招标文件1.时间:2023年09月07日 至 2023年09月14日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:湖南新星项目管理有限公司招标部( 长沙市芙蓉中路一段479号建鸿达现代城1701室)方式:持法定代表人身份证明原件或授权委托书原件(并附法定代表人身份证明原件)、个人身份证原件、投标人营业执照副本复印件购买招标文件(如潜在投标人无法现场购买招标文件的,可以通过邮件报名,请将公司信息及联系人信息发送至2071768384@qq.com邮箱获取报名须知,按须知要求及流程进行线上报名,联系电话:0731-84452269)售价:¥400.0 元,本公告包含的招标文件售价总和2.时间:2023年9月8日至2023年9月14日,每天上午8时30分至11时30分,下午13时00分至16时30分(北京时间,法定节假日除外)地点:登陆中招联合采购平台下载电子采购文件。下载者请务必至少在文件发售截止时间半个工作日前登录平台并完成购买操作,否则将无法保证获取电子采购文件。方式:下载者登陆平台前,须前往中招联合采购采购平台:www.365trade.com.cn/免费注册(平台仅对供应商注册信息与其提供的附件信息进行一致性检查);注册为一次性工作,以后若有需要只需变更及完善相关信息;注册成功后,可以及时参与平台上所有发布的采购项目。平台注册成功后,登陆平台真实准确完善用户信息,特别是财务信息,及时办理CA数字证书。售价:采购文件每套售价0元,平台服务费200元,CA企业证书平台收费标准:首年400元,售后不退。下载者需要发票的,须通过平台填写“开票申请”;采购文件发票由采购代理机构出具;平台下载服务费由“中招联合信息股份有限公司”出具增值税电子普通发票,可登录平台自行下载。平台统一服务热线:010-86397110,(工作日9:00-12:00,13:30-17:00),平台将确保下载者的购买信息在开标前对平台公司有关工作人员保密;如下载者主动与平台公司工作人员联系咨询事宜,则视为下载者主动放弃信息保密的权利,平台公司将不承担任何责任。三、对本次招标提出询问,请按以下方式联系。项目一:1.采购人信息名 称:中南大学     地址:长沙市麓山南路932号,中南大学采购与招标管理中心        联系方式:姚老师 0731-88836937      2.采购代理机构信息名 称:湖南新星项目管理有限公司            地 址:长沙市芙蓉中路一段479号建鸿达现代城1701室            联系方式:段得前、吴晗、吴颖 0731-84452269 2071768384@qq.com            3.项目联系方式项目联系人:张老师电 话:  13974894393项目二:1.采购人信息名 称:哈尔滨工业大学地址:哈尔滨市南岗区西大直街92号哈尔滨工业大学行政办公楼联系方式:0451-86417955 2.采购代理机构信息名 称:北京国际招标有限公司地 址:黑龙江省哈尔滨市道里区群力第四大道528号天鹅湾大厦9层联系方式:郭先生 0451-843501783.项目联系方式项目联系人:郭先生电 话:0451-84350178
  • MH-5000 便携式等离子体发射光谱仪
    佰汇兴业(北京)科技有限公司最新代理日本MICRO EMISSION MH-5000等离子体发射光谱仪,该仪器为一款利用液态电极等离子体来分析痕量金属的发射光谱仪,它通过向溶液施加电压以使其加热并蒸发,液体电极产生等离子体,溶液中的溶质被送入等离子体中产生发射光谱。它可以应用到冶金制造、工业废物处理和环境监测等领域中。特点:手持掌上型尺寸的实现(小型,便携式手持)操作简单,初学者也可快速入门电池驱动,可使用于现场测定同时测定多种元素检测极限0.1ppm~100ppm工程管理、土壤测定、水质测定、食品测定
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制