当前位置: 仪器信息网 > 行业主题 > >

光合作用测试系统

仪器信息网光合作用测试系统专题为您提供2024年最新光合作用测试系统价格报价、厂家品牌的相关信息, 包括光合作用测试系统参数、型号等,不管是国产,还是进口品牌的光合作用测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光合作用测试系统相关的耗材配件、试剂标物,还有光合作用测试系统相关的最新资讯、资料,以及光合作用测试系统相关的解决方案。

光合作用测试系统相关的资讯

  • 恒美-植物光合作用测定仪检测植物的活体叶片光合作用-新品
    点击了解更多产品详情→植物光合作用测定仪 植物光合作用测定仪是一种用于测量植物光合作用效率和光合速率的设备。它可以帮助我们了解植物的光合作用情况,评估植物的健康状况和生长状态。 植物通过光合作用将光能转化为化学能,产生氧气和养分。光合作用测定仪通过测量植物叶片的光合速率和光能利用效率,可以评估植物的光合作用强度和效果。 使用植物光合作用测定仪非常简单。首先,将测定仪的探头或传感器放置在植物叶片表面。然后,仪器会通过测量叶片表面的光反射和吸收情况,计算出植物的光合速率和光能利用效率,通过测量植物的光合速率和光能利用效率,可以评估植物的健康状况。如果植物的光合作用效率较高,说明植物能够有效利用光能进行光合作用,代表植物健康良好。相反,如果植物的光合速率较低或光能利用效率较低,可能意味着植物存在养分缺乏、叶片受伤或其他生理问题。 植物光合作用测定仪可以监测植物的生长状态。通过定期测量植物的光合速率和光能利用效率,可以了解植物的生长过程中光合 作用的变化和适应能力。根据测量结果,可以调整光照、水分和养分等环境因素,以促进植物的健康生长。 优植物光合作用测定仪可以帮助研究人员和植物园艺师优化光合作用条件。通过测量不同光照、温度和其他环境因素对植物光合速率和光能利用效率的影响,可以确定最佳的光合作用条件,提高植物的生长效率和产量。 植物光合作用测定仪对于植物检测具有重要的作用。它可以帮助我们了解植物的光合作用情况,评估植物的健康状况和生长状态,优化光合作用条件,为植物的种植和研究提供科学依据。
  • 【来因科技】光合仪|光合作用测定仪高灵敏触摸屏
    植物是生物的食物源头。无论是动物还是人,其食物归根结底都直接或间接地来源于植物。因此,植物的重要性不言而喻。而植物主要是通过光合作用来将光能转化为化学能,从而在体中储存有机物的。这些有机物不仅能为植物自身的机体生命活动提供能量,还是人和动物生命活动的主要能量来源,作用匪浅。光合作用除了为生物提供食物和能量外,还能维持呼吸作用的氧气及防御紫外线杀伤作用的臭氧层,是生物圈形成、发展和繁荣及持续运转的基础、关键环节和驱动力。正因如此,植物光合作用的速率如何就显得尤为重要了。 光合作用测定仪产品详情介绍→https://www.instrument.com.cn/show/C460790.html增强植物的光合速率可以增加过氧化物酶及硝酸还原酶的活动,加快植物对二氧化碳的吸收,调节植物的碳氮比,大大的加强了植株的免疫能力,让植物可以呈现出良好的生长态势。不仅如此,光合作用还能固定空气中的二氧化碳,减缓温室效应,并与生物质能源、秸秆还田、碳基肥等建立密切的关系,帮助农业生产的同时保护了环境。但是植物的光合作用比较难掌控,所以说,能否测定植物光合作用对于农业生产种植的活动具有重要的指导意义。这时,光合作用测定仪的出现就彰显出了我们农业科研水平了。 光合作用测定仪产品优势:  产品特点:  1、智能化:采用Android操作系统,高灵敏触摸屏。高效的人机交互,测定过程实时显示,更好的操作体验;  2、高稳定性:双波长红外二氧化碳分析器,加入温度调节及大气压力测量单元,有效的提高了二氧化碳的稳定性及准确性。有效地避免了因为温度变化而造成二氧化碳数值过大波动的弊端;  3、多功能:同时测定光合速率、蒸腾速率、胞间二氧化碳浓度、气孔导度和水分利用效率,以及二氧化碳浓度、相对湿度、光合有效辐射和空气温度、叶片温度、大气压力等指标;  4、自定义:用户可根据测量需要自定义编辑实验备注,并可显示Pn曲线、Tr曲线、光-光合曲线以及湿度-蒸腾曲线;  5、数据分析:试验完毕后可将多组数据同时分析,生成放不同颜色的曲线图,方便进行实验数据对比;  6、大屏幕:10寸高灵敏触摸屏,人性化操作界面,为用户提供更好的数据显示。  7、数据导出:支持wifi、蓝牙传输,数据可无线上传;同时支持U盘拷贝数据,免驱动插拔。  8、配置云平台:检测结果可选择性或批量无线传至平台,方便用户进行长期数据管理和可视化分析。辅助科研。  9、长续航:满电状态下可在野外连续使用10-12个小时。  10、便捷性:体积小,重量轻,配手提箱随身携带,方便单人流动测试。  11、配置支架:方便长时间无人值守检测,主机支架高度可调,检测手柄三脚架高度角度均可调。光合作用测定仪是通过测量植物叶片既定时间内CO2吸收或释放量,并同时测量空气温湿度,叶片温度,光照强度以及同化CO2的叶片面积等要素,来直接计算出植物的光合速率、蒸腾速率、细胞间CO2浓度和气孔导度等光合作用指标。该仪器具有反应迅速,抗干扰性强,操作方便,结果精度高,可以进行连续的测定等突出优点,因而得以应用于植物生理学、植物生物化学、生态环境等多个领域,为农林业的进步发展贡献了力量。
  • 新品首发|光合作用测定仪品牌排行榜
    光合作用测定仪是一种用于测量植物光合作用速率的仪器,广泛应用于多个行业。 首先,在农业领域,光合作用测定仪是研究作物生理特点和评估作物生长状况的重要工具。通过使用光合作用测定仪,农民和农业科研人员可以了解作物的光合作用情况,从而更好地选择作物品种、调整种植策略和优化农业生产。 产品链接https://www.instrument.com.cn/netshow/SH104275/C542987.htm 其次,在生态学和环境科学领域,光合作用测定仪也被广泛应用于研究植物生态系统和评估环境变化对植物生长的影响。通过测量植物的光合作用速率,科学家们可以了解植物对环境的适应能力以及环境变化对植物生长的影响,为环境保护和生态修复提供科学依据。 此外,在林业、园艺、草地保护等领域,光合作用测定仪也有着广泛的应用。这些行业的从业者可以通过使用光合作用测定仪来评估植物的生长状况、预测植物病虫害的发生概率以及制定更加科学的植物养护方案。 总之,光合作用测定仪在多个行业中都有着广泛的应用价值,为人们提供了更加科学、准确的植物生理数据,为农业生产、环境保护和植物研究等领域提供了有力支持。
  • 模拟光合作用的光动力催化剂问世
    美国麻省理工学院研究人员通过模拟光合作用,即植物用来生产糖分的光驱动过程,设计了一种可以吸收光并用光来驱动各种化学反应的新型光催化剂。该研究成果15日发表在《化学》杂志上。  这种新型催化剂被称为生物混合光催化剂,其含有一种采光蛋白,可吸收光并将能量转移到含金属的催化剂上。然后,这种催化剂利用能量进行反应,这些反应可用于合成药物或将废物转化为生物燃料及其他有用的化合物。  研究资深作者、麻省理工学院化学副教授加布里埃拉施劳-科恩表示,光催化可使药物、农用化学品和燃料合成更加高效和环保。研究表明,新型光催化剂可显著提高他们尝试的化学反应的产量,且与现有的光催化剂不同,新催化剂可吸收所有波长的光。  在之前进行的关于光催化剂的工作中,研究人员使用一种分子来进行光吸收和催化。该方法有局限性,因为大多数使用的催化剂只能吸收某些波长的光。为了创建新催化剂,研究人员模拟光合作用并将两种不同的元素结合起来:一种用于采集光,另一种用于催化化学反应。对于光采集部分,他们使用了一种在红藻中发现的被称为R-植物红素的蛋白质。他们将这种蛋白质连接到含钌催化剂上,该催化剂以前曾被单独用于光催化。  联合展开研究的普林斯顿大学团队测试了催化剂在两种不同类型的化学反应中的性能。一种是硫醇—烯偶联,将硫醇和烯烃连接起来形成硫醚,另一种是肽偶联后用甲基取代剩余的硫醇基团。  普林斯顿团队的研究表明,与单独的钌光催化剂相比,新的生物混合催化剂可将这些反应产量提高十倍。他们还发现,这些反应可在红光照射下发生,这是现有光催化剂难以实现的,其对组织的破坏更小,因此有可能用于生物系统。  研究人员说,这种改进的光催化剂可被纳入上述两种反应的化学过程中。硫醇—烯偶联可用于创建蛋白质成像、传感、药物输送和生物分子稳定性所需的化合物。例如,它可用于合成脂肽,使新设计的抗原疫苗更容易被吸收。研究人员测试的另一种反应是西苯脱硫,它在肽合成中有许多应用,包括可用于生产艾滋病治疗药物恩夫韦地。  这种类型的光催化剂还可用于驱动一种被称为木质素解聚的反应,有助于从木材或其他难以分解的植物材料中产生生物燃料。
  • 光合作用测定仪-一款快速检测植物光合速率的仪器2024实时更新
    型号推荐:光合作用测定仪-一款快速检测植物光合速率的仪器2024实时更新,光合作用是植物生长的基础过程,它直接影响植物的生产力和生态系统的能量流。光合作用测定仪是一种专门用于测量植物光合作用速率的仪器,对于植物生理学研究、农业生产和生态监测等领域具有重要作用。 一、准确测量光合速率 光合作用测定仪能够精确测量植物在特定环境条件下的光合作用速率。通过测定植物叶片或整个植物的CO2吸收和O2释放,仪器提供了关于植物光合作用效率的重要数据。 二、产品特点&bull 智能化:采用Android操作系统,高灵敏触摸屏。高效的人机交互,测定过程实时显示,更好的操作体验;&bull 高稳定性:双波长红外二氧化碳分析器,加入温度调节及大气压力测量单元,有效的提高了二氧化碳的稳定性及准确性。有效地避免了因为温度变化而造成二氧化碳数值过大波动的弊端;&bull 多功能:同时测定光合速率、蒸腾速率、胞间二氧化碳浓度、气孔导度和水分利用效率,以及二氧化碳浓度、相对湿度、光合有效辐射和空气温度、叶片温度、大气压力等指标;&bull 自定义:用户可根据测量需要自定义编辑实验备注,并可显示Pn曲线、Tr曲线、光-光合曲线以及湿度-蒸腾曲线; 三、环境因素分析 该仪器不仅能够测量光合速率,还能够分析影响光合作用的各种环境因素,如光照强度、温度、CO2浓度和水分状况。这些数据有助于了解植物对环境变化的响应和适应性。 四、农业生产指导 在农业生产中,光合作用测定仪用于评估作物的光能利用效率,指导灌溉、施肥和病虫害管理。通过优化作物的光合作用,可以提高作物的产量和品质。 五、科学研究与生态监测 光合作用测定仪在科学研究中用于研究植物对气候变化的响应,如全球变化对植物光合作用的影响。在生态监测中,该仪器帮助评估生态系统的碳固定能力和健康状况。 光合作用测定仪是植物光合速率分析的重要工具,它通过精确测量光合速率和分析环境因素,为植物生理学研究、农业生产指导和生态监测提供了强有力的技术支持。随着对植物生态功能和全球变化影响认识的加深,光合作用测定仪将在相关领域发挥更加重要的作用。
  • 光合作用测定仪可以测哪些指标?
    光合作用是植物生长的基本过程之一,对于科学研究和农业生产具有重要意义。而光合作用测定仪作为一种专业工具,可以帮助科研人员和农业专家详细解植物光合作用的各项指标,从而为相关领域的研究和生产提供可靠的数据支持。更多光合作用测定仪产品详情→https://www.instrument.com.cn/show/C552206.html通过测量气体CO₂ 浓度、空气温湿度、植物叶片温度、光强、气体流量等,光合作用测定仪可以得出多个关键指标,包括但不限于以下几个方面:1.光合速率(Pn):这是衡量植物光合作用效率的重要指标,通过测量单位时间内单位叶面积的净光合量来评估植物的光合速率。2.蒸腾速率(E):该指标反映了植物单位面积的蒸腾量,即水分从植物体内通过气孔排出的速率,对植物的水分利用和环境适应能力有重要影响。3.细胞间CO₂ 浓度(Ci):细胞间CO₂ 浓度是影响光合速率的关键因素之一,通过测量叶片内部的二氧化碳浓度变化,可以更好地了解植物的光合作用状态。4.气孔导度(Gs):气孔导度指的是单位时间内单位叶面积的气孔开放程度,与植物的蒸腾作用密切相关,是衡量植物对环境适应能力的重要指标之一。5.水分利用率(WUE):这是评估植物水分利用效率的指标,反映了单位光合速率所消耗的水分量,对于农业生产中的水资源管理具有重要意义。光合作用测定仪通过测量以上多个指标,能够全面评估植物的光合作用过程,为生物学、农学、园艺学、林业学等领域的研究提供了重要的数据支持,促进了相关领域的科学研究和生产实践的发展。
  • 中科院上海有机所田佳构筑新型人工光合体系 拓宽对自然光合作用体系的理解
    2023 年 5 月下旬,对于田佳来说是忙碌且有意义的一个初夏。在短短一周之内,他相继在 Nature Catalysis 和 Nature Materials 上发表两篇论文。目前,他在中科院上海有机所担任研究员。图 | 田佳(来源:田佳)利用超分子手段,拓宽对自然光合作用体系的理解5 月 18 日,第一篇论文发表在 Nature Catalysis 上。研究中,他和合作者利用超分子手段模拟自然光合作用,探索构筑新型的人工光合体系。光合作用被认为是地球上最重要的化学反应过程,为生命体提供着最基本的物质与能量来源。然而,由于天然光合系统通常需要兼顾诸多生命过程,且催化中心数量有限并距离光敏系统较远,导致"光能-化学能"转化的整体量子效率偏低。通过化学手段模拟光合作用中的关键基元,构筑光能转化效率更高的人工光合系统,有可能为缓解能源环境危机、降低碳排放提供新的理论和技术支撑。在复旦大学攻读博士学位期间,田佳师从该校的黎占亭教授。那时,前者主要从事超分子有机框架材料的研究。更早之前,黎占亭在芳酰胺大环、以及折叠体和分子识别等领域的工作,给田佳带来了重要启发。于是,后者萌生了将高强材料凯夫拉结构中的寡聚芳酰胺片段嫁接到天然卟啉两亲分子上,进而构筑人工光合组装体的想法。后来,田佳根据天然光合紫色细菌的球形色素体结构,设计了两亲性的三嵌段卟啉基分子单体。(来源:Nature Catalysis)令人惊喜的是,利用这一方法不仅在水中得到了尺寸分布均一的球形组装体,而且组装体表面具有环形的卟啉阵列亚结构。对于通过超分子组装体来模拟生物特定功能和结构来说,这是一次极其重要的突破。在性能上,这种球形组装体不仅展现出光收割"球形天线"效应,同时具有良好的抗光漂白性质和优异的结构稳定性,为超分子光催化体系的光敏剂选择提供了新的解决方案。(来源:Nature Catalysis)受天然光合紫色细菌球形色素体结构的启发,课题组设计了三嵌段卟啉基的两亲分子,并引入寡聚芳酰胺片段以便增强组装体结构的稳定性。合成关键分子之后,他开始进行超分子组装体的构筑和表征。通过亲疏水作用、氢键作用和π-π堆积作用,这种单体分子可以在水中自发组装形成球形纳米胶束组装体。通过增加芳酰胺片段的长度、提高分子间的氢键数量,可以构筑粒径更大、性质更稳定的组装体。在化学、材料等科学研究中,纳米结构表征占据十分重要的位置。在 Nature Catalysis 发表的这篇论文中,透射电子显微镜、扫描透射电子显微镜以及同步辐射小角 X 射线散射的观测结果显示:组装体呈现出尺度均一的球形结构。但是,更精细的组装亚结构表征,需要通过高分辨扫描透射电镜、原子力显微镜、冷冻电镜等手段实现。借助冷冻电镜单颗粒分析技术,田佳等人观察到球形组装体表面存在直径 4.2nm 左右的环形卟啉阵列,这为进一步研究催化性能及其构效关系奠定了基础。完成超分子组装体的构建之后,则要进行光催化实验和机理研究。这时,课题组根据球形胶束表面的环形卟啉阵列呈正电性,有目的地选择了合适的 Co 基卟啉催化剂。在水溶液中,催化剂具有阴离子形式,因此可以通过静电相互作用拉近其与正离子型卟啉环形阵列的空间距离,从而提高电子传输效率;且催化剂的尺寸约为 3-4 nm,略小于环形卟啉阵列的直径(4.2 nm),这也促进了催化剂与环形阵列的对接。另外,在催化过程中,好的催化剂不仅能降低反应活化能,也与反应底物二氧化碳具有一定的结合能力。同时,当生产最终目标产物 CH4 的时候,好的催化体系还能具有良好的脱附能力。基于此,该团队选用四(对磺酸苯基)卟啉-Co 配合物(TSPP-Co)为催化剂构筑人工光合体系,该体系在优化条件下表现出光促 CO2 至 CH4 转化的高催化效率与高产物选择性。同时,在描述反应机理时,他们提出"纳米围栏"以及"球形天线"效应,上述效应使光生电子高效地注入催化位点,进而带来高效的二氧化碳催化转化。当人工光合作用遇见超分子自组装生命过程离不开超分子自组装,光合生命以脂质和蛋白为骨架,可以对捕光复合物和反应中心进行精确定位,并能有序排列形成精妙的多级自组装结构,比如紫菌的色素体、高等植物的类囊体等。这些优雅的超分子组装体表现出高效的光捕获、精确的电子转移和选择性催化功能。而在人工光合领域,超分子自组装的好处在于可以让人们"自下而上"地构筑光合材料,比如将单体分子组装为纳米复合结构。另外,通过优化结构设计,还能提高能量转移和电子传递的效率。同时,超分子自组装能将不同的功能模块组装在一起,借此形成复合材料,从而打造多功能的人工光合系统。另外,超分子自组装还具有可逆性和修复性的特点,能对人工光合材料的长期稳定性和可持续性起到重要作用。如前所述,光合作用为生命提供了物质和能量。针对人工光合作用的研究一般主要关注:如何使用人工方法来模拟自然光合作用过程,将太阳能转化为化学能并进行储存。具体来说,该领域的研究主要集中在以下几个方面:其一,光吸收和能量转化。即设计和合成可以高效捕获太阳能的材料,让这些材料高效地吸收光能,并将不同波长的太阳光转化为可利用的能量。其二,电子传递。即研究光激发态中电子的传输过程,包括电子在光吸收材料内部和不同受体之间的传递,以便设计高效的电子传输路径,从而最大限度地提高能量转换效率。其三,光化学反应。即研究光激发态中的化学反应,例如使用光能来分解水或还原二氧化碳,寻找能够有效催化这些反应的催化剂,以便实现可控的太阳能转化。由此可见,针对人工光合作用的研究,主要目标是通过模仿自然光合作用的原理和过程,开发高效可持续的太阳能转化技术。而超分子自组装,是指分子通过非共价相互作用比如氢键、疏水作用等,自发地形成复合结构的过程。对构建结构精确可控的光合材料,超分子自组装也能提供有益的启示。基于这些原因,课题组将超分子自组装和人工光合作用加以结合,最终完成了 Nature Catalysis 这篇论文。5 月 18 日,相关论文以《人工球形色素体纳米胶束用于水相选择性CO2还原》(Artificial spherical chromatophore nanomicelles for selective CO2 reduction in water)为题发在 Nature Catalysis 上 [1]。于军来和 Huang Libei 是论文的共同第一作者;田佳研究员、香港城市大学叶汝全教授、香港大学大卫李菲利普斯(David Lee Phillips)教授、以及江苏大学杜莉莉教授担任共同通讯作者;中科院上海有机所是论文的第一完成单位。图 | 相关论文(来源:Nature Catalysis)在这篇论文发表四天之后,由田佳担任第一作者的另一篇论文发表在 Nature Materials 上。总体来看,这两篇论文都和超分子自组装有关。而在 Nature Materials 这篇论文里,则更进一步地探索了高分辨冷冻电镜技术在溶液相自组装领域的应用。提出基于溶剂化纳米纤维的分子模型具体来说,在 Nature Materials 这篇论文中,研究人员提出了溶剂化纳米纤维的详细分子模型。研究中,该团队使用高分辨的冷冻电镜作为主要研究手段。在冷冻电镜中,样品被冷冻在液氮温度下(约-196 摄氏度),这时可以形成一种名为玻璃态的固体状态,从而让分子保持在自然状态下的结构和构象。在传统电子显微镜技术的样品处理过程中,通常需要在干态下制样,由此可能会引起结构破坏和伪影。而采用高分辨冷冻电镜可以避免上述不足。通过收集不同角度和焦平面的电子图像,就能用计算算法对图像进行处理和重建,从而获得高分辨率的三维结构信息。研究中,针对嵌段共聚物所形成的线性纳米胶束,课题组将高分辨冷冻电镜用于溶液相表征中,借此获得关于结晶的高分子精确结构信息、以及晶格堆积方式。对于溶剂化的高分子链段,也可以通过冷冻电镜获得它在溶液相中的原位结构信息。凭借这些关键的结构信息,研究人员得以通过分子模拟的方式,针对嵌段高分子在溶液相形成的一维线性组装结构,进行分子尺度上的解析。期间,利用冷冻电镜观测到的晶格参数等关键信息,该团队对结晶核区之内的高分子链折叠方式和堆积方式进行了解析。此外,通过测量高分子链段的组装长度和排列方式,他们发现溶剂化区域的高分子链段在溶液相组装时,会采用螺旋形的发散排列形式。在 Nature Materials 这篇论文中,课题组还制备了溶液相分散的纳米纤维组装体。通过活性结晶驱动自组装,让线性纳米纤维的构筑和长度得到控制,而这一过程主要依赖以下几个因素:其一,分子设计。所设计的分子必须拥有合适的结构和功能单元。以嵌段高分子为例,这类高分子单体通常拥有两类高分子链段,即疏溶剂的结晶"核区(Core)"和亲溶剂的分散"晕区(Corona)",这可以促进分子在溶液中的结晶和有序组装。同时,所设计的分子必须具有弱相互作用,以便在晶体生长过程中实现动态调控。其二,晶体生长条件。通过调节晶体的生长条件,例如溶液浓度、温度、溶剂选择等,可以控制纳米纤维的生长速率。同时,通过调节这些条件,还能对分子聚集行为和晶体生长动力学产生影响,从而实现纤维的构筑、以及长度的控制。其三,动态调控。活性结晶驱动自组装的一大优势在于,它可以在晶体生长过程之中,对分子进行动态调控和重排。通过控制分子结构或者引入其他功能分子,可以在纳米纤维中引入特定结构或功能单元。这样一来,纳米纤维的构筑和长度控制,也会更加灵活和可控。研究"利器":GW4 高分辨电子冷冻显微镜另据悉,在具备一定选择性的溶剂条件之下,嵌段高分子单体的"核区(Core)"可以自发地形成晶核,并通过"种子生长(Seeded-growth)"的方式实现线性组装。而在同样的条件之下,亲溶剂的"晕区(Corona)"结构具有高度的溶剂化效应。对于纳米组装结构来说,这让它可以在溶剂介质中高度地分散,并能形成胶体稳定的溶液,且不会出现沉淀和析出。在电子束的照射之下,具有结晶能力的"核区(Core)"通常拥有较高的衬度,很容易就能和溶剂分子以及其他结构区别出来。但是,由于对电子束的不耐受性,通常很难直接观测到嵌段高分子单体的高分辨晶格结构。为此,在低温下通过使用冷冻电镜,该团队利用低剂量电子成像模式,对上述结构进行观测并取得了很好的效果。而亲溶剂的"晕区(Corona)"由于电子云密度比较低,使用普通的透射电镜手段难以观测到。因此在 Nature Materials 这篇论文中,课题组使用了一台 Talos Arctica 冷冻透射电子显微镜,让其工作在 200 kV 电压之下,并配上 K2 直接电子探测器和 BioQuantum 能量过滤器,借此获取了关于"核区(Core)"和"晕区(Corona)"的高分辨率冷冻电镜图像。由此可见,在超分子自组装材料领域,预计冷冻电镜这一表征手段,将对组装机制、结构和功能关系的理解发挥重大作用。而活性结晶自组装(Living CDSA,Living Crystallization-Driven Self-Assembly),则是 Nature Materials 这篇论文的另一个关键词。活性结晶驱动自组装,是国际高分子领域的热点研究方向,也是一种新颖的自组装方法。它能帮助人们深入理解晶体生长和自组装的机制,为材料合成和设计提供新的思路。在材料科学、纳米技术和生物医学等领域,该方法具有广泛的应用前景,可被用于制备功能性纳米材料、晶体纳米颗粒、有序纳米结构等。在这一研究大方向上,课题组主要聚焦在如何利用晶体的自发形成,来控制和引导功能性材料的组装。一些嵌段共聚物分子具有两亲性,这些分子在在晶体生长过程之中,会出现溶液相组装的行为。而通过"种子生长"的方法,可以对这种行为进行控制。具体来说,纳米结构的形貌、大小、结构、以及超分子组装的性质,都可以通过该方法得到精确的调控。在 Nature Materials 这篇论文中,田佳 的合作者是来自英国 GW4 高分辨电子冷冻显微镜中心的研究人员。GW4 高分辨电子冷冻显微镜,是一个用于高分辨度冷冻电子显微镜研究的设备设施,由英国布里斯托大学、加的夫大学、卡迪夫大学和巴斯大学这四所大学合作建立,旨在提供先进的电子显微镜技术支持,以用于研究生物大分子结构和功能。该设施配有最先进的仪器设备,包括冷冻透射电子显微镜、电子能量过滤器和直接电子探测器,可以提供高分辨度的图像和结构分析能力。正是在这些设备的帮助之下,他们顺利地完成了本次研究。5 月 22 日,相关论文以《具有结晶核的嵌段共聚物纳米纤维的高分辨冷冻电子显微镜结构》(High-resolution cryo-electron microscopy structure of block copolymer nanofibres with a crystalline core )为题发在 Nature Materials 上,并被选为当期期刊封面[2]。上海有机所田佳是论文第一作者,加拿大维多利亚大学伊恩曼纳斯(Ian Manners)担任通讯作者。图 | 相关论文(来源:Nature Materials)审稿人评价称:"作者在组装过程中所展现的细节,以及最终对于纳米结构的表征令人印象深刻,突显了之前人们没有意识到的纳米结构独特性。"长远目标:全面地模拟自然光合作用在人工光合作用领域,目前自然体系的平均"光能-化学能"转化效率不足 1%。如能更深入地理解自然光合过程并对其加以改进,则有希望将光能至化学能转化的总量子效率提高至 10% 以上并向实用领域拓展,从而对光能高效利用以及"双碳"目标的实现起到技术支撑作用。在溶液相自组装结构表征领域,假如可以建立冷冻电镜的表征方法并加以推广,对于深刻理解自组装过程、构筑更多的具有特定功能的自组装超分子结构有着重要意义。在人工光合组装体构筑领域,超分子球形色素体结构已被证明具有光收割"球形天线"效应以及优异的稳定性。基于上述结构,田佳 团队将筛选合适的无机催化剂比如杂多酸、无机纳米颗粒,构建有机超分子组装体与无机粒子的高阶组装体系,并探讨其在光催化产氢以及二氧化碳还原方面的应用。同时,他希望通过筛选合适的催化剂,开展光催化产氧的研究,以便构筑不含牺牲试剂的全反应型光催化体系,借此在同一系统中让光催化氧化反应与还原反应同时进行,进而全面地模拟自然光合作用。在组装结构的冷冻电镜表征上,田佳将和其他冷冻电镜平台开展合作,重点研究溶液相构筑的自组装结构,对大分子、小分子在溶液相中的自组装行为进行深入探究,并将根据已有理论知识与研究基础深入理解超分子组装体"结构与功能"之间的内在联系。田佳目前所在的中科院上海有机化学研究所,起步于抗生素和高分子化学的研究,所里的老一辈科学家在"两弹一星"研制、"人工合成牛胰岛素、人工合成酵母丙氨酸转移核糖核酸"和物理有机化学中的两个基本问题等一系列紧密结合国家战略的重要研究中作出了卓越贡献。目前,上海有机所的整体主攻方向是分子合成科学,致力于解决化学键的选择性断裂和重组等重大科学问题。通过结合人工智能技术,旨在探索基础研究驱动变革性技术的创新模式,通过分子合成科学领域的原始创新,推动生物医药和战略有机材料等核心技术的发展。
  • 植物光合作用测定仪如何使用以及注意事项
    植物光合作用测定仪是一种用于测量植物光合作用速率的科学仪器。光合作用是植物、藻类和一些细菌利用光能将二氧化碳和水转化为有机物和氧气的过程,是植物生命活动的基本过程之一。通过植物光合作用测定仪,我们可以了解植物在特定条件下的光合作用速率,进而帮助我们更好地了解植物的生长环境、生长状况以及与植物光合作用有关的生理生化特性。 植物光合作用测定仪的主要功能是测量植物叶片或其他部位的净光合速率和蒸腾速率,同时也可以测量气体交换参数,如二氧化碳浓度、湿度和温度等。通过这些参数,我们可以了解植物的光合作用效率和水分利用效率,进而为植物生长提供更好的环境和条件。 植物光合作用测定仪的应用范围非常广泛,可以应用于植物生理生态、农业科学、环境科学等领域的研究。例如,在农业生产中,我们可以利用植物光合作用测定仪来了解不同品种作物在不同环境条件下的光合作用状况,为农业生产提供理论依据和指导。在植物生理生态研究中,我们可以利用植物光合作用测定仪来研究植物的光合作用和环境因子的关系,探讨植物的适应机制和生态习性。
  • 【仪器百科】光合作用测定仪工作原理与参数指标
    工作原理植物光合作用测定仪是一款用于检测植物叶片光合作用的实验仪器,适用于人工气候室、温室、大棚、大田等环境。该测定仪通过多项参数的测量,分析植物在不同环境条件下的光合作用情况。其工作原理主要包括以下几个方面:CO2分析:采用非扩散式红外CO2分析技术,测定空气中的CO2浓度,通过监测植物周围CO2浓度变化,计算出植物的光合作用速率。温湿度测量:利用高精度传感器,测量环境温度、环境湿度、叶室温度、叶室湿度及叶面温度,提供植物生理状态及环境条件的全面信息。光合有效辐射(PAR):通过光传感器测定植物接收到的光合有效辐射强度,了解光照对植物光合作用的影响。气体交换测量:通过测量气孔导度、蒸腾速率及胞间CO2浓度,评估植物叶片的气体交换效率和水分利用情况。通过上述测量数据,光合作用测定仪可以计算出植物的光合速率(Pn)、水分利用率(WUE)、呼吸速率(Rd)及蒸腾比(TR)等重要生理参数,为植物生长生理、光合生理及胁迫生理研究提供可靠的数据支持。了解更多光合作用测定仪产品详情→https://www.instrument.com.cn/show/C561710.html参数指标1、空气CO2浓度测量技术:非扩散式红外CO2分析测量范围:0-3000 μmol/mol (ppm)分辨率:0.0005 ppm误差:≤ 3% FS2、环境温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃3、环境湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH4、叶室温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃5、叶室湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH6、叶面温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃7、大气压力测量范围:30-110 kPa分辨率:0.01 kPa误差:≤ ±0.06 kPa8、光合有效辐射(PAR)测量范围:0-3000 μmol/(m² s)分辨率:0.001 μmol/(m² s)误差:≤ ±5 μmol/(m² s)9、光合速率(Pn)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)10、气孔导度(Gs)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)11、蒸腾速率(Tr)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)12、胞间CO2浓度(Ci)单位:μmol/mol分辨率:0.001 μmol/mol13、水分利用率(WUE)单位:μmol CO2/mol H₂ O分辨率:0.001 μmol CO2/mol H₂ O14、呼吸速率(Rd)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)15、蒸腾比(TR)单位:μmol H₂ O/mmol CO2分辨率:0.001 μmol H₂ O/mmol CO2植物光合作用测定仪的高精度和多参数测量能力,使其成为农业科研、教学、园艺、草业、林业等领域中不可或缺的重要工具。农业科研植物光合作用测定仪在农业科研中用于评估作物光合作用效率,筛选高效能品种,优化栽培技术,并研究环境变化对作物生长的影响,从而提升农业生产力。教学在教学中,该仪器为植物生理学和生态学课程提供实验平台,帮助学生理解植物光合作用原理,培养科研能力和实验技能,通过多参数测量了解植物在不同环境下的生理响应。园艺园艺领域利用该仪器监测花卉和观赏植物的光合作用,调节温室环境,优化生长状态。它还能帮助选育具观赏价值和抗逆性的品种,并评估病虫害防治效果。草业在草业中,该仪器用于评估牧草生长状况和生产力,研究不同品种的适应性和生产潜力。还可用于草地改良和生态修复,指导草地管理和保护措施。林业林业领域通过测定仪监测树木光合作用,评估森林健康状况和碳吸收能力。它提供树木生理响应数据,帮助制定森林管理策略,并研究树木对环境胁迫的适应机制,指导林木品种选育和改良。植物光合作用测定仪在以上各领域中提供重要技术支持,促进了科研进步和产业发展。
  • 光合作用测定仪智能化,高灵敏触摸屏
    对植物来说,要想顺利的生长发育,并且其果实无论是产量还是品质都要符合预期的话,就离不开长日照条件对植物光合作用的推动。这也是为什么人工照明在现如今普及起来的原因。因为如果仅依靠自然光照的话,一些地区会受到地形和天气的影响,无法进行足够的光合作用,进而影响到了农业经济。所以说,就农业发展而言,如何保障植物的光合作用产率,怎样利用好光调节因子至关重要。 光合作用测定仪参数详细介绍点击查看→https://www.instrument.com.cn/show/C552696.html  光合作用测定仪可以对植物的光合作用速率做出高精度的分析,通过对氧气、二氧化碳、光照强度等指标数据的测定来指导调节环境条件,进而保障植物的光合作用得以高效的进行,让植物保持旺盛的长势,实现增产增收。此外,因为光合作用是指绿色植物通过叶绿体,把光能用二氧化碳和水转化成化学能,储存在有机物中并且释放出氧气的过程。所以检测植物的光合速率还能为判断空气环境质量提供依据。  光合作用测定仪能够对植物的光合速率作出测量,以此来反应植物生长的旺盛与否。因为当我们通过肉眼发现植物生长状态欠佳时,往往早为时已晚,就算采取了补救措施,效果也会不尽如人意。并且很多植物对光照有着特定要求,所以一概而论的话并不能满足其生长发育所需的条件,对于农业种植管理来说,不太好掌控。该仪器通过测定气体中二氧化碳、空气湿度、植物叶片温度、光强、气体流量等数据来计算出植物的光合速率、蒸腾速率等指标,可以尽早检出植物生长不佳状况,从而提前采取措施并指导调节植物的光照条件,让植物们的光合作用都可以顺利进行,促使植物有旺盛的长势,做到增产增收。  光合作用测定仪对于我们了解植物的生长品性,掌握植物的生长规律具有不可磨灭的积极意义。它的应用推广保障了植物的健康生长发育,推动了农业经济的进步与发展,是农业生产现代化进程中不可缺失的重要一环;作为人们的基础产业,农业与我们的生活密不可分;农业经济也在现代经济的体系中占据着重要位置。因此,我们需要对农业生产高度重视,用科学的手法构建智慧农业体系。
  • 法国Bio-logic公司参加第十五届国际光合作用大会
    光合作用是生命的起点,是人类不可或缺的资源,越来越多的科学家融入到光合作用的研究上来。法国Bio-logic公司正是适应了这一发展要求,研制出JTS-10叶绿色荧光/吸收测定仪,满足客户对光合作用测试的各种要求。并在此次参加了8月22日到8月27日在北京举办的第十五届光合作用大会,让更多国内的专家学者认识华洋科仪代理的法国Bio-logic这款产品。下面就是我们参展的照片,如对此仪器感兴趣的专家也请莅临我们的展位。
  • 2016全国光合作用学术研讨会LI-6800成热议焦点
    4月21-23日,2016年全国光合作用学术研讨会在武汉华中师范大学召开。本次研讨会由中国植物学会植物生理及分子生物学专业委员会、光合代谢专业委员会主办,华中师范大学承办。 会议邀请了匡廷云院士和赵进东院士,详细研讨了光合作用研究的热点和难点问题,涵盖“光合膜复合物结构、功能及生物发生”“叶绿体发育、基因表达与反向信号”“光合碳代谢”“光合功能调节和环境与农业”等多个研究方向。 值得一提的是,鉴于北京力高泰科技有限公司在光合作用研究领域雄厚的技术积累,会议组委会特别邀请我公司技术支持部经理刘美玲博士做了题为《开启气体交换与叶绿素荧光研究的新历程——LI-6800便携式光合荧光测定系统》的报告。 会议的一大看点是美国LI-COR公司全新推出的LI-6800便携式光合荧光测量系统。 LI-6800是在经典的LI-6400XT便携式光合作用测量系统基础上,融入了500余项创新技术的一件划时代作品。它历经6年的研发试验,代表了当今光合测量的最新行业标准。通过准确测定叶片尺度气体交换和叶绿素荧光参数,LI-6800为广大学者开启了研究植物光合作用的大门,是植物生理学研究的强大工具。
  • 美国完成团藻基因组测序 有望破解光合作用玄机
    在为交通运输提供碳中性(平衡)燃料这条漫长且艰难的道路上,美国能源部正寻求多种途径力图实现自己的目标。能源部的努力包括探寻自然界中潜在的新型燃料资源,它们包括从陆地上可作为纤维质原料的植物(如快速生长的树木和多年生牧草)到水中及其他生长环境中的产油生物(如海藻和细菌),极具多样性。  对生物燃料研究人员而言,近期美国《科学》杂志刊登的一项成果无疑是一条喜讯。根据该杂志的报道,美国能源部联合基因组研究所(JGI)和索尔克研究所领导的研究人员破译了carteri团藻(Volvox)的基因组。carteri团藻是一种多细胞海藻,它通过光合作用获取光能。  藻类光合作用藏&ldquo 玄机&rdquo   据悉,美国能源部之所以大力支持光合成生物体内复杂机制的研究,为的是更好地认识生物体如何将阳光转换成能量,以及光合成细胞如何控制生物的新陈代谢过程。这些信息有助于未来可再生生物燃料的生产。  在《科学》杂志刊登的文章中,研究人员将团藻基因组同其近亲单细胞莱茵衣藻(Chlamydomonas reinhardtii)的基因组进行了比较。3年前,联合基因组研究所曾破译了莱茵衣藻的基因组。衣藻是人们深入研究的潜在的海藻生物燃料资源。团藻和衣藻均属于团藻目家族,团藻基因测序的重要价值在于它可以作为衣藻基因参照物(对比物),研究人员通过数据比较来研究它们的光合作用机理以及多细胞生物的演化。  与衣藻不同,团藻包含两种细胞:一种是数量较少的生殖细胞,另一种则是数量较多的体细胞。生殖细胞能够分化形成新的菌落,与此同时,体细胞则提供机动力,并分泌能导致生物体扩展的细胞外基质。团藻内两种细胞的分工使得团藻比衣藻生长和游动都要快,从而帮助团藻能够躲避捕食者,同时在更深的水域获取营养。  文章第一合著者、索尔克研究所科学家吉姆· 伍曼表示,团藻特别令人着迷的地方是它如何有选择地减少光合作用或调节光合作用以支持另一种细胞。虽然目前人们还没有很好地认识团藻的这一特性,但该特性有可能帮助人们通过转基因工程让光合生物进行相应变化,生产生物燃料或其他产品。  并不是&ldquo 越小越简单&rdquo   联合基因组研究所生物信息学家西蒙· 普鲁克尼克解释说,研究团藻目生物的兴趣点在于单细胞祖先在较短的进化时间段演化成多细胞和复杂的细胞过程。研究人员发现,尽管团藻和衣藻两种生物的复杂程度和生命史存在很大差异,二者的基因组却有相似的蛋白编码潜能。与莱茵衣藻相比,专家在团藻细胞内只发现了很少该生物特有的基因,也就是说,多细胞的团藻基因组缺乏创新。因此,越小越简单的理念开始受到挑战,科研人员由此推断,从单细胞生物演变为多细胞生物并非必须大幅提高基因的数目,在这种演变中,基因如何以及何时编码合成特定的蛋白才具有决定意义。相信随着更多的单分子生物的基因组被破译,人们对此将会有更多的了解。  分析显示,大约有1800个蛋白质家族属于团藻和衣藻所独有。这些蛋白质家族是多细胞物种生长和发生形态变化的基因物质资源,尤其是经查明,某些蛋白质家族与多细胞体相关。团藻和衣藻在利用这些蛋白质家族方面的不同之处将是人们未来准备研究的问题。伍曼表示,团藻基因组为衣藻基因组工程以及精确认识形态进化和蛋白质创新增加了巨大的价值,现在人们需要静下来研究这些基因的功能。  普鲁克尼克认为,团藻和衣藻作为易驾驭的实验模式生物,它们的信息可以被人们广泛使用,包括那些对团藻生物学不感兴趣的研究人员。他表示,团藻基因组是指导其对目标领域进行深入研究的极好资源。  华盛顿大学名誉教授大卫· 科克预计,由于团藻基因组的破译,在未来5年里,研究团藻的群体人数将迅速增加。他说:&ldquo 认识多细胞体的起源是我毕生的兴趣,随着基因组测序完成,这项工作开始起步了。现在,人们可以轻而易举地获得更多的答案。真希望自己出生得晚些,这样可以成为研究的参与者。不过,我将在一旁为研究者欢呼。&rdquo
  • 泽泉科技参加沈允钢院士九十华诞暨2016长三角光合作用学术研讨会
    2016年12月19日,上海生科院生理大楼2楼报告厅,来自全国各地的200多位植物生理专家齐聚一堂,共同庆祝沈允钢先生90华诞并召开2016长三角光合作用学术研讨会。本次盛会由上海市植物生理与植物分子生物学学会、中科院上海生科院植物生理生态研究所光合作用与环境生物学实验室承办,浙江省植物生理与植物分子生物学学会和江苏省植物生理学会协办。 沈允钢先生,植物生理学家。1927年出生于浙江杭州,1951年毕业于浙江大学农业化学系,同年8月,被分配到中国科学院上海实验生物研究所植物生理研究室工作,任研究实习员。20世纪50年代末,沈允钢先生在殷宏章先生的领导下,着手探讨光合作用机理研究,着重进行光合磷酸化的机理研究。1961年,他与合作者完成了光合磷酸化量子需要量的测定,结果表明在光合电子传递还原一个辅酶II等电子受体的同时无论合成一个腺三磷与否都需要利用4-6个光量子,这证实腺三磷合成和光合电子传递是偶联在一起的。这一结果被殷宏章先生带到1961年在莫斯科召开的第五届国际生化学会议的光合作用专题组中发表,得到了与会代表的认可。沈允钢等人在世界上首先发现了光合磷酸化过程中存在着高能中间态,比美国科学家Jagendorf等早发表一年,这一发现引起了国际同行的重视,在文献中被多次引用。Jagendorf等的后续研究证明这种高能中间态就是Mitchell提出的化学渗透假说中的跨膜质子梯度,为化学渗透假说提供了最早的直接证据,该学说于1978年获诺贝尔化学奖。沈允钢等的光合磷酸化高能态的发现,使光合磷酸化机理研究迈进了大大一步,受到了国际科学界的高度评价。1980年沈允钢先生当选为中国科学院学部委员(院士)。 沈允钢先生为我国植物生理研究做出了巨大的贡献,他实事求是、平易近人、踏实笃定、治学严谨的作风影响着一代又一代的光合人,他的一言一行激励着一批又一批的后备科研工作者,也激励着我们为各位科研工作者提供更好的技术服务。泽泉科技全体同仁恭祝沈允钢先生福寿安康、松鹤长春! 在九十华诞庆典之后召开了2016长三角光合作用学术研讨会,与会专家就光合作用研究的进展、沈允钢院士的光合作用研究历程等内容做了报告交流。 本次研讨会,泽泉科技向广大与会专家介绍了植物光合作用测量的全方位解决方案,并展示了德国WALZ气体交换光合仪GFS-3000、双通道调制叶绿素荧光仪DUAL-PAM-100、光纤式放氧仪等产品。很多与会专家到泽泉展台就仪器的使用以及更新换代进行了深入的交流,对泽泉科技的产品和服务表示充分肯定。
  • 单颗粒冷冻电镜技术助力我国学者率先破解光合作用超分子结构之谜
    p style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201605/insimg/10b97d65-a440-46ce-8444-f08d5fcc0fd3.jpg" title="QQ图片20160526093428.jpg"//pp style="line-height: 1.75em text-align: center "章新政、李梅、柳振峰(由左至右)在中国科学院生物物理所的实验室内合影/pp style="line-height: 1.75em " 近日,中国科学院生物物理研究所柳振峰研究组、章新政研究组与常文瑞/李梅研究组通力合作,联合攻关,通过单颗粒冷冻电镜技术,在3.2埃分辨率下解析了高等植物(菠菜)光系统II-捕光复合物II超级膜蛋白复合体(PSII-LHCII supercomplex)的三维结构。该项研究工作于5月18日在《自然》(Nature)期刊作为长篇主题论文(Article)在线发表。/pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201605/insimg/40e208d7-2d2e-41ef-b61d-30c43ddd32e7.jpg" title="QQ图片20160526093928.jpg"//pp style="line-height: 1.75em text-align: center "章新政在中国科学院生物物理所的实验室内展示冷冻电镜/pp style="line-height: 1.75em "  光合作用为地球上几乎所有生命体提供赖以生存的物质和能量,基于结构的光合作用机理研究不仅具有重要的理论意义,同时也将为解决能源、粮食、环境等问题提供具有启示性的方案。植物光合作用的原初反应是从光系统II开始的,光系统II是由25个以上蛋白质亚基以及众多色素和其它辅因子组成的超大膜蛋白-色素复合物。该复合物中包含了天线系统、反应中心系统以及一个能在常温常压下裂解水释放氧气的放氧中心。解析植物光系统II神秘而复杂的精细结构将有助于理解该超分子机器的工作原理,也是结构生物学研究领域中多年来一直追求的热点和难点课题,并且是光合作用研究领域中众所期盼的一个超大膜蛋白-色素复合体三维结构。/pp style="line-height: 1.75em "  在对高等植物光系统II超大膜蛋白复合物样品的分离制备和晶体学研究方法长期探索的基础上,该研究团队及时引进并应用单颗粒冷冻电镜技术,通过联合三个课题组的优势科研力量并发挥各自的特长,团结奋战,协作攻关,以最高的效率在较短的时期内取得了突破性进展,高质量完成了该项具有高度挑战性的国际前沿研究课题。/pp style="line-height: 1.75em "  此次所解析的菠菜PSII-LHCII超级复合物的总分子量约1.1兆道尔顿(megadalton)(1,100 kDa),形成了一个同质二聚体的超分子体系。每个单体中包含了25个蛋白亚基、105个叶绿素分子、28个类胡萝卜素分子和众多的其它辅因子。研究结果首次揭示了这一高度复杂的超分子体系的总体结构特征和各亚基的排布规律。/pp style="line-height: 1.75em "  在每个菠菜PSII核心复合物的外周,结合了主要捕光复合物LHCII三聚体,以及分子量分别为29 kD和26 kD的次要捕光复合物CP29和CP26。该项工作首次解析了CP29的全长结构和CP26的结构,并发现了这三个不同外周捕光复合物与核心复合物之间相互装配和识别的机制和位点。在准确指认了外周捕光复合物与核心复合物界面上的三个小亚基的基础上,合理解释了它们在介导二者之间装配以及稳定超级复合物方面的作用。/pp style="line-height: 1.75em "  外周捕光复合物为光系统II核心复合物提供激发能,而二者之间的能量传递途径多年来一直未能得到精确解析。在对菠菜PSII-LHCII超级复合物内部高度复杂的色素网络进行深入分析的基础上,首次揭示了LHCII、CP29以及CP26向核心天线复合物CP43或CP47传递能量的途径。同时,还对在光保护过程中发挥作用的潜在能量淬灭位点进行了定位。研究结果对于进一步在分子水平理解PSII-LHCII超级复合物中的能量传递时间动力学和光保护机理具有重要意义。/pp style="line-height: 1.75em "  该工作由生物物理所三个课题组共同完成,博士研究生魏雪鹏和助理研究员苏小东为该项工作的共同第一作者。该研究工作得到了中科院B类先导“生物超大分子复合体的结构、功能与调控”专项、科技部“973”重大科学问题导向项目“光合作用与‘人工叶片’ ”和自然科学基金的共同资助,研究员柳振峰和章新政得到了国家“青年千人计划”的资助和支持。该项工作得到生物物理所生物成像中心、 国家蛋白质科学中心(上海)、生物物理所蛋白质科学研究平台等有关工作人员的大力支持和帮助。/pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201605/insimg/f7e41d6a-ef3b-45c0-8e8a-a702c6a63549.jpg" title="W020160523352780363591.jpg"//pp style="line-height: 1.75em text-align: center "菠菜PSII-LHCII复合物整体结构(顶视图)/ppbr//p
  • 美国Headwall公司利用高光谱成像传感器研究植物光合作用
    【据军事航空网站2月28日报道】位于马萨诸塞州菲奇堡市的海德沃尔光电公司的光电专家正在推出高光谱叶绿素荧光光谱成像传感器,用于高光谱作物科学、气候学研究以及植物和作物光合作用的其他应用研究。高光谱叶绿素荧光传感器采用高光谱传感器收集叶绿素荧光(CF)数据。它小而轻,重约13磅,尺寸为12×8英寸,分辨率为0.2纳米以下,可装载在目前大多数商用无人机、载人飞机和轨道卫星上。传感器收集的图像数据来自670到780纳米的叶绿素荧光发射光谱,利用其中重要的“氧气A”和“氧气-B”波段。传感器使用全反射方式以及海德沃尔公司的衍射光栅**技术以达到高信噪比性能。海德公司CEO大卫班农说,全球快速发展的食品和生物燃料需求驱动着新型传感器的开发。“由于叶绿素荧光信号相对较弱,因此可以在极高分辨率下对其进行收集的小型和轻型成像传感器就是我们研究更多全球生态系统的制胜法则。”美国航空航天局的劳伦斯库珀博士补充道。
  • 法国Bio-Logic公司参加第15届国际光合作用大会
    法国Bio-Logic公司将携带自己最新型的仪器参加2010年8月22日至27日在北京举行的第15届国际光合作用大会,欢迎广大用户莅临我们的展位。
  • 2015-09:9月光合作用、土壤碳通量测量与实践系列讲座今圆满落幕
    2015年9月17-18日和21-22日,由北京力高泰科技有限公司(即基因有限公司农业环境科学部)主办的“光合作用、土壤碳通量测量与实践系列讲座”分别在东北林业大学和中科院成都生物所成功举办。 此次培训班全程由美国LI-COR公司的科学与技术支持部经理Shannon Loriaux女士与应用科学家Lingling Yuan博士主讲,主要围绕LI-6400XT光合仪的基本使用与应用展开,涵盖了仪器的基本原理,使用方法,注意事项以及日常维护等方面。LI-COR公司2位专家还补充讲解了LI-6400XT光合仪荧光理论与实践,LAI-2200C冠层分析仪的测量原理与基本测量,并对具体实验数据进行了针对性的指导与分析。 与会师生将自己的仪器以及平时实验中遇到的问题带到培训班上,北京力高泰科技有限公司的技术工程师们对部分仪器出现的小故障进行了排查与处理,并指导大家进行日常检查、光路清洁以及气路堵塞处理。大家积极动手,取得了很好的效果;对于实验中遇到的问题,LI-COR专家及公司工程师分别一一耐心解答,给出了合理的建议与意见,得到了各位师生的肯定与认可。 北京力高泰科技有限公司将继续秉承“让专才为专家服务”的宗旨,为大家做好服务工作,帮助大家在科研中获得更为可靠的测量结果。【哈尔滨站培训班掠影】【成都站培训班掠影】
  • Nature:发现不能进行光合作用但能产生叶绿素的生物---corallicolid
    顶复动物亚门(Apicomplexa)是一组专性细胞内寄生虫,包括疟疾和弓形虫病等人类疾病的致病因子。顶复动物亚门是由自由生活的光养性祖先进化而来的,但是人们对这种向寄生过渡的过程如何发生仍然是不清楚的。一个潜在的线索在于珊瑚礁,在那里,环境DNA调查已发现了未被描述的基底分支的顶复动物亚门的几个谱系。造礁珊瑚与具有光合作用的Symbiodiniaceae dinoflagellates存在良好的共生关系,但是鉴定珊瑚的其他的至为重要的微生物共生体经证实是具有挑战性的。corallicolid存在于全世界70%的珊瑚中在一项新的研究中,来自加拿大不列颠哥伦比亚大学的研究人员通过使用群落调查、基因组学和显微镜分析鉴定出顶复动物亚门的一个谱系,我们将它非正式地命名为corallicolid。我们发现corallicolid在所有主要珊瑚群中是普遍存在的(存在于80%以上的珊瑚样本和70%的珊瑚属中)。相关研究结果发表在2019年4月4日的Nature期刊上,论文标题为“A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes”。corallicolid是仅次于Symbiodiniaceae的第二丰富的珊瑚相关微真核生物(microeukaryote),因此是珊瑚微生物组的核心成员。原位荧光和电子显微镜实验证实,corallicolid生活在珊瑚胃腔组织的细胞内,并且它们具有顶复动物亚门的超微结构特征。这些研究人员对corallicolid质体进行基因组测序,发现它缺乏所有编码光系统蛋白的基因;这表明corallicolid很可能含有不能进行光合作用的质体(顶质体)。然而,corallicolid质体与所有其他已知的顶质体(apicoplast)不同,这是因为它保留了四个参与叶绿素生物合成的祖先基因。因此,corallicolid与它们的寄生性亲属和能够自由生活的亲属存在一些相同特征,这表明它们是进化中间体,并提示着在从光养性到寄生性的过渡期间存在着一种独特的生化机制。
  • 从光到电的转换!新型光电探测器能模仿光合作用
    美国密歇根大学研究人员在《光学》期刊发表论文称,他们使用被称为极化子的独特准粒子开发了一种新型高效光电探测器,其灵感来自植物用来将阳光转化为能量的光合复合物。该设备将光能的远程传输与电流的远程转换相结合,有可能大大提高太阳能电池的发电效率。在许多植物中发现的光合复合物由一个大的光吸收区域组成,该区域将分子激发态能量传递到反应中心,在那里能量转化为电荷。极化子将分子激发态与光子结合在一起,赋予它类光和类物质的特性,从而实现远距离能量传输和转换。这种新型光电探测器是首次展示基于极化子的实用光电设备之一。  为了创建基于极化子的光电探测器,研究人员必须设计允许极化子在有机半导体薄膜中长距离传播的结构。此外,他们必须将一个简单的有机检测器集成到传播区域中,以产生有效的极化子到电荷的转换。  研究人员使用特殊的傅里叶平面显微镜来观察极化子传播,以分析他们的新设备。结果表明,新的光电探测器在将光转换为电流方面比硅光电二极管更有效。它还可从大约0.01平方毫米的区域收集光,并在0.1毫米的“超长”距离内实现光到电流的转换——这个距离比光合复合物的能量传递距离大3个数量级。  到目前为止,观察的大多数极化子为封闭腔中的静止准粒子,顶部和底部都有高反射镜。这项新研究揭示了极化子如何在单个镜子的开放结构中传播,新设备还允许首次测量入射光子转换为极化子的效率。
  • 光合强度测定仪如何出测定报告
    光合强度测定仪如何出测定报告,光合强度测定仪的测定报告可以按照以下格式清晰、分点地表示和归纳:一、引言报告目的:明确报告旨在通过光合强度测定仪对植物叶片的光合作用效率进行测定,并提供详细数据和结果分析。测定原理:基于气体交换技术,通过测量植物叶片在光照条件下吸收和释放的气体量,结合环境参数(如温度、湿度和光照强度)计算光合作用效率。二、实验材料与方法实验器材:光合强度测定仪、辐射计(用于测定光照强度)、荧光分析仪(可选,用于测定荧光发射强度)等。植物样品:选取叶绿素丰富的植物品种,如菠菜、马铃薯、豌豆等,确保叶片健康且处于光适应状态。实验步骤:准备工作:检查仪器是否完好,连接电源,放置于光线充足处。校准仪器:按照说明书要求进行校准,确保测量结果的准确性。准备样品:将植物叶片放入测定仪的样品室中,关闭室门。设定参数:设置光照强度、温度等测量条件。开始测量:按下测量按钮,记录数据。三、实验结果数据记录:详细记录测量过程中的各项数据,包括光照强度、温度、湿度、二氧化碳浓度等环境参数,以及光合作用速率、荧光发射率等测量数据。表格展示:将数据以表格形式展示,便于比较和分析。例如,可以列出不同植物品种在不同光照条件下的光合强度数据。以下是一个示例表格(以菠菜、马铃薯、豌豆为例):植物品种光照时长(min)光照强度(μmol/m^2s)荧光发射率(Fv/Fm)光合强度(μmolCO2/m^2s)菠菜605000.8115.3马铃薯907000.7518.9豌豆1208000.6821.6四、结果分析与讨论数据分析:对实验数据进行统计和分析,比较不同植物品种在不同光照条件下的光合强度差异。例如,可以发现豌豆的光合强度最高,而菠菜的光合强度最低。影响因素讨论:分析光照强度、光照时长、波长等因素对光合强度的影响。例如,光合作用的净速率随着光强度的增加而增加,但在一定范围内增长速度逐渐减缓。结论与建议:根据实验结果和分析,得出结论并提出建议。例如,不同植物的光合强度存在明显差异,这与植物的生理构造和光合色素的含量有关。因此,在农业生产中可以根据植物的光合特性选择合适的品种和种植条件以提高产量。五、总结本报告通过光合强度测定仪对植物叶片的光合作用效率进行了测定和分析,提供了详细的实验数据和结果分析。实验结果表明不同植物的光合强度存在明显差异且受到多种因素的影响。通过本报告的研究可以为农业生产、生态保护和植物科学研究提供重要的数据支持。
  • 4月25日北京林业大学光合仪培训班通知!
    LI-6400/XT光合仪等生态仪器使用培训及技术交流报告会2014年4月25日 北京林业大学 为了向广大用户提供更全面系统的技术服务,使广大从事光合作用研究的科研人员更充分的了解LI-6400XT光合荧光测量系统的使用和维护事项,使仪器的先进性能在实验过程中得到更好的发挥,北京林业大学“森林培育与保护重点实验室”联合基因有限公司农业环境科学部/北京力高泰科技有限公司,将于2014年4月25日在北京林业大学林业楼409会议室举办“LI-6400/XT光合仪等生态仪器使用培训及技术交流报告会”。 基因有限公司是美国LI-COR公司科研设备在中国大陆和香港地区的独家代理商,多年来,我们一直致力于为农林、植物生理、植物生态领域的研究人员提供最先进的仪器设备和全面的技术服务,目前为止,国内LI-COR便携式光合作用测定系统(LI-6400/XT)已有近1000台,遍布于祖国大江南北。诚挚欢迎感兴趣的老师和同学们参加!主要内容:8:30~9:00 生理生态仪器的介绍及配合使用9:00~9:30 气体交换技术和叶绿素荧光技术在光合作用研究中的应用9:30~17:30 LI-6400XT光合仪培训: 9:30~10:45 LI-6400/XT仪器硬件、基本原理和软件介绍,、基本测量步骤 11:00~11:30 日常检查及操作注意事项 11:30~12:00自动测量程序:光响应曲线 13:30~14:15自动测量程序:CO2响应曲线 14:15~15:15数据导出、数据处理及案例数据分析 15:30~16:00光合测定常见问题及解决方法 16:00~17:00 荧光叶室使用讲解 17:00~17:30仪器校准与维护保养 全天进行答疑和仪器现场检修主讲人:贾子毅 博士,2011年毕业于中国林业科学研究院荒漠化研究所,具有丰富的植物光合测量及数据分析经验。现任北京力高泰科技有限公司技术部副经理。曾多次担任培训班主讲,生动到位的讲解时常受到参加培训师生的欢迎。王晓辉 技术工程师,毕业于中国科学院生态环境中心,具有丰富的植物生理生态测量和技术服务经验。培训班信息:日 期:2014年4月25日(上午8:30~12:00,下午13:30~17:30)地 点:北京林业大学林业楼409会议室联系人:张振琦 139 1126 7921 zhangzhenqi@ecotek.com.cn注意事项:1. 请填写回执,并尽可能在4月24日17:00前发给联系人,以便为您准备培训资料。2. 请提前准备仪器使用过程中的问题或需要分析的数据,工程师会现场答疑。3. 如有条件,可携带仪器参加,以便现场练习。4. 请参加培训人员提前阅读LI-6400/XT中文手册,如果没有,请登陆www.ecotek.com.cn下载或者发E-mail给相关联系人索取。
  • 便携式光合速率测定仪了解植物的生长状况【恒美仪器】
    便携式光合速率测定仪是一种先进的仪器,用于测量植物的光合速率。光合速率是反映植物光合作用能力的重要指标,对于了解植物的生长状况、评估环境因素对植物生长的影响以及提高农业产量等方面都具有重要意义。 产品链接https://www.instrument.com.cn/netshow/SH104275/C309618.htm 该仪器采用先进的光合作用测量技术,能够实时、准确地测量植物叶片的光合速率。通过与计算机连接,用户可以方便地获取测量数据,并进行数据处理和分析。此外,该仪器还具有操作简便、易于携带等特点,可以随时随地进行植物光合速率的测量,不受时间和地点的限制。 便携式光合速率测定仪的应用范围广泛。在农业生产中,它可以用于监测作物的生长状况,指导合理施肥和灌溉,提高农作物的产量和品质。在生态研究中,它可以用于评估环境因素对植物生长的影响,了解植物对环境的适应性和生态系统的平衡。此外,该仪器还可以用于植物生理学、园艺学、林学等领域的研究。 综上所述,便携式光合速率测定仪对于了解植物光合作用能力、提高农业产量和生态研究等方面都具有重要作用。通过使用该仪器,可以更好地了解植物的生长状况和环境因素对植物生长的影响,为农业生产和生态研究提供科学依据。
  • NMT历史上的今天丨Int J Mol Sci 氮营养、Physiol Plantarum 光合文章发表
    NMT历史上的今天2018年8月6日,北京林业大学尹伟伦、孟森利用NMT技术在International journal of molecular sciences 上发表了标题为Distinct Carbon and Nitrogen Metabolism of Two Contrasting Poplar Species in Response to Different N Supply Levels的文章。影响因子为3.687。2012年8月6日,中科院海洋所王广策、林阿朋利用NMT技术在Physiologia Plantarum上发表了标题为Simultaneous measurements of H+and O2 fluxes in Zostera marina and its physiological implications 的文章。影响因子为3.067.期刊:International journal of molecular sciences主题:两种杨树对不同氮素供应水平的碳氮代谢差异标题:Distinct Carbon and Nitrogen Metabolism of Two Contrasting Poplar Species in Response to Different N Supply Levels影响因子:3.687检测指标:NH4+、NO3-、H+流速流速检测部位:杨树根部NH4+、NO3-、H+流实验处理方法:杨树在低中高(0.01,1或10 mM的NH4NO3)的氮浓度下处理4周NH4+、NO3-、H+流实验测试液成份:0.01mM/1mM/10mM NH4NO3,0.1mM KCl,0.1mM CaCl 2,pH 5.5通讯作者:北京林业大学尹伟伦、孟森英文摘要Poplars have evolved various strategies to optimize acclimation responses to environmental conditions. However, how poplars balance growth and nitrogen deficiency remains to be elucidated.In the present study, changes in root development, carbon and nitrogen physiology, and the transcript abundance of associated genes were investigated in slow-growing Populus simonii (Ps) and fast-growing Populus euramericana (Pe) saplings treated with low, medium, and high nitrogen supply. The slow-growing Ps showed a flourishing system, higher δ15N, accelerated C export, lower N uptake and assimilation, and less sensitive transcriptional regulation in response to low N supply.The slow-growing Ps also had greater resistance to N deficiency due to the transport of photosynthate to the roots and the stimulation of root development, which allows survival. To support its rapid metabolism and growth, compared with the slow-growing Ps, the fast-growing Pe showed greater root development, C/N uptake and assimilation capacity, and more responsive transcriptional regulation with greater N supply. These data suggest that poplars can differentially manage C/N metabolism and photosynthate allocation under different N supply conditions.中文摘要(谷歌机翻)杨树已经发展出各种策略来优化对环境条件的适应性反应。然而,杨树如何平衡生长和氮缺乏仍有待阐明。在本研究中,在慢生长的小叶杨(Pops simonii)(Ps)和快速生长的欧洲杨(Populus euramericana(Pe)幼树)中研究了根系发育,碳和氮生理学以及相关基因的转录本丰度的变化。高氮供应。缓慢生长的Ps显示出繁殖系统,更高的δ15N,加速的C输出,更低的N吸收和同化,以及响应于低N供应的较不敏感的转录调节。由于光合产物向根部的转运和根系发育的刺激,缓慢生长的Ps对N缺乏具有更大的抗性,这允许存活。为了支持其快速代谢和生长,与生长缓慢的Ps相比,快速生长的Pe显示出更大的根发育,C / N吸收和同化能力,以及具有更大N供应的更具响应性的转录调节。这些数据表明,杨树可以在不同的氮供应条件下差异化地控制C / N代谢和光合产物分配。Figure 4. Net NH4+ (A), NO3? (B) and H+ (C) fluxes of P. simonii (Ps) and Populus euramericana (Pe) under 0.01, 1 and 10 mM NH4NO3. Bars labelled with different letters indicate significant difference between the treatments. p-Values of the ANOVAs of species, N treatment, and their interaction are indicated. ** p 0.01 *** p 0.001 ns, not significant.期刊:Physiologia Plantarum主题:同时测量H+和O2流速及其生理意义标题:Simultaneous measurements of H+ and O2 fluxes in Zostera marina and its physiological implications影响因子:3.067检测指标:H+、O2流速检测部位:大叶藻叶片H+、O2流实验处理方法:大叶藻叶片瞬时由暗至光(300μmolm-2s-1)处理H+、O2流实验测试液成份:天然海水(NSW)盐浓度30–32‰通讯作者:中科院海洋所王广策、林阿朋英文摘要Zostera marina (eelgrass) is an important ecological component of many shallow, temperate lagoons. Evidence suggests that Z. marina has a high bicarbonate utilization capability, which could be promoted by possible proton extrusion and the consequent formation of an ‘acid zone’ in the apoplastic space (unstirred layer) of its leaves.It has been found that 50?mM of the buffer Tris significantly inhibited the photosynthetic O2 evolution of Z. marina and it was proposed that this was because of Tris' s ability to bond with protons outside the cell wall. To investigate if H+ played an important role in the photosynthetic carbon utilization of Z. marina, it is very important to simultaneously monitor the photosynthesis status and possible H+ fluxes. However, probably because of the lack of suitable techniques, this has never been attempted.In this study, experiments were undertaken on Z. marina by monitoring H+ and O2 fluxes and the relative electron transport rates during light–dark transition. During stable photosynthesis, in addition to an obvious O2 outflow, there was a significant net H+ influx connected to Z. marina photosynthesis. The inhibitory effects of both Tris and respiration inhibitors on apparent O2 evolution of Z. marina were confirmed. However, evidence did not support the proposed Tris inhibition mechanism.中文摘要(谷歌机翻)Zostera marina(eelgrass)是许多浅水温带泻湖的重要生态组成部分。有证据表明,Z。marina具有较高的碳酸氢盐利用能力,可以通过可能的质子挤出促进,并因此在其叶片的非质外体空间(未搅拌层)中形成“酸性区域”。已经发现50mM的缓冲液Tris显着抑制了Z.marina的光合作用O2进化,并且提出这是因为Tris能够与细胞壁外的质子结合。为了研究H +是否在Z. marina的光合碳利用中起重要作用,同时监测光合作用状态和可能的H +通量是非常重要的。然而,可能由于缺乏合适的技术,这从未尝试过。在这项研究中,通过监测H +和O2通量以及在明暗过渡期间的相对电子传输速率对Z.marina进行了实验。在稳定的光合作用期间,除了明显的O2流出外,还有显着的净H +流入与Z. marina光合作用相关。证实了Tris和呼吸抑制剂对Z. marina的表观O2进化的抑制作用。然而,证据不支持所提出的Tris抑制机制。Fig. 1. Typical transient changes in H+ ?ux near Zostera marina leaf segments in response to bright white light. The result of a single measurement is used in this ?gure as multiple results in one graph would result in large ?uctuations and mask the transient responses. The sample was dark adapted for 1 h. After 25 min of measurement, leaf segments were exposed to bright white light (300 μmol m?2 s?1)for 15 min. Measurements were made at intervals of 6.4 s. Each point on the graph represents average data over an interval of three measurements.
  • 央视一套报道:藻类光合-碳中和研究技术
    在央视综合频道播出的纪录片《共同的家园》第3集共利中,中国科学院植物研究所匡廷云院士带领的研究团队长期利用硅藻开展光合作用机理研究及人工模拟,以提高太阳光能的利用率,减轻对化石能源的依赖。“基于自然的解决方案,坚实可靠地”实现“双碳”目标。北京易科泰提供的ET-PSI多功能藻类培养与在线监测系统、FKM多光谱荧光动态显微成像系统在纪录片中闪亮登场。点击以下视频一饱眼福吧。ET-PSI多功能藻类培养与在线监测系统由大型平板式培养器(标配25L,可选配100L或定制其它容积大小)、控制系统及在线监测系统组成,集成光养生物反应器技术、叶绿素荧光监测技术、水体/藻类光合呼吸监测技术、营养盐在线监测技术等先进科学技术,可广泛应用于藻类生理生态学研究实验、水体富营养化模拟实验、海水酸化控制实验、水体光合呼吸监测控制实验、藻类利用与有效控制研究、藻类生物质能源研究实验,以及其它藻类生物工程、生态工程、环境工程等实验研究。FKM(FluorescenceKineticMicroscope)多光谱荧光动态显微成像系统是目前功能最为强大全面的植物显微荧光研究仪器,是基于FluorCam叶绿素荧光成像技术的显微成像定制系统。它由包含可扩展部件的增强显微镜、高分辨率CCD相机、激发光源组、光谱仪、控温模块以及相应的控制单元和专用的工作站与分析软件组成。它不仅可以进行微藻、单个细胞、单个叶绿体乃至基粒-基质类囊体片段进行Fv/Fm、Kautsky诱导效应、荧光淬灭、OJIP快速荧光响应曲线、QA再氧化等各种叶绿素荧光及MCF多光谱荧光(multicolorfluorescence)成像分析;还能通过激发光源组进行进行任意荧光激发和荧光释放波段的测量,从而进行GFP、DAPI、DiBAC4、SYTOX、CTC等荧光蛋白、荧光染料以及藻青蛋白、藻红蛋白、藻胆素等藻类特有荧光色素的成像分析;更可以利用光谱仪对各种荧光进行光谱分析,区分各发色团(例如PSI和PSII及各种捕光色素复合体等)并进行深入分析。真核与原核藻类的光合固碳达到地球上光合固碳总量的一半,对缓解大气中CO2的积累起着重要作用。利用微藻固碳是世界上最主要、最有效的固碳方式之一,并具备经济可行、环境友好和可持续性等无可比拟的优势。北京易科泰生态技术有限公司致力于先进光生物反应器和藻类光合生理无损检测技术的推广、研发与应用服务,曾推出“微藻生物固碳研究仪器推荐”专题,助力实现“双碳”目标。仪器名称功能常用参数/程序在微藻固碳研究中的作用AquaPen手持式藻类荧光测量仪快速测量叶绿素荧光参数Fv/Fm、NPQ、JIPtest、LightCurve快速评估固碳候选藻种在高浓度CO2下的光合活力和光能转化效率AP-kit藻类光合生理检测盒快速轻松获得叶绿素荧光参数和光合呼吸速率参数Fv/Fm、NPQ、JIPtest、LightCurve、光合放氧速率综合评估固碳候选藻种在高浓度CO2下的光化学转化效率及CO2同化率MC10008通道藻类培养与在线监测系统8通道的精确控光培养及在线生物量评估培养周期及环境参数设定;OD680&OD720提供精确可控的培养环境(光、温度、气体),在线评估微藻生物量浓度(比色法),筛选优质固碳藻种FMT150藻类培养与在线监测系统精确控光培养及多参数调控监测培养周期及环境参数设定;OD680&OD720;Fv/Fm、ΦPSII;pH、溶解氧(选配)、溶解CO2(选配)提供精确可控的培养环境(光、温度、气体,可选恒化及恒浊培养),在线评估微藻生物量浓度,对微藻的光合生理状态、培养液溶解CO2浓度进行在线监测ET-PSI多功能藻类培养与在线监测系统25L、100L及以上容积的规模化藻类培养,精确控光培养及多参数调控监测培养周期及环境参数设定;OD680&OD720;Fv/Fm、ΦPSII;pH、溶解氧(选配)、溶解CO2(选配)提供精确可控的培养环境(光、温度、气体,可选恒化及恒浊培养),在线评估微藻生物量浓度,对微藻的光合生理状态、培养液溶解CO2浓度进行在线监测,培养优质固碳藻种及工业应用FluorCam叶绿素荧光成像系统高通量测定微藻叶绿素荧光参数Fv/Fm、NPQ、φPSII、qP、Rfd、ETR、LC曲线等高通量筛选光合突变体;高通量筛选高光化学效率、低热耗散的高效固碳藻种AOM藻类荧光在线监测系统微藻叶绿素荧光在线监测Ft、Fv/Fm、OJIP、FixArea(与藻类浓度线性相关)在线评估微藻生长状况及浓度
  • 2014年9月LI-6400/XT光合仪使用培训班(第一轮通知)
    为了向广大用户提供更全面系统的技术服务,帮助大家充分了解仪器使用和维护事项,使仪器的先进性能在实验过程中得到更好的发挥,基因有限公司农业环境科学部将于2014年9月分别在北京、长沙、桂林、杭州四市举办“LI-6400/XT光合仪使用培训班”。 作为国内植物生理生态仪器领域的成熟企业,基因有限公司已与广大科研工作者携手走过了二十余个春秋。为了配合业务的开展,我们于2004年在大陆注册成立了北京力高泰科技有限公司。自1997年成为美国LI-COR公司科研设备在中国大陆和香港地区的独家代理商,多年来,我们一直致力于为农林、植物生理、植物生态领域的研究人员提供最先进的仪器设备和全面的技术服务,目前为止,国内LI-COR便携式光合作用测定系统(LI-6400/XT)已超过1100台,遍布于祖国大江南北。 目前我们代理的国际知名植物生理生态仪器品牌还有DECAGON、DYNAMAX、TNC、ARA等。先后为科技部“973”项目和“863”项目、国家“211”工程和“985”工程、中国生态系统研究网络(CERN)、中国森林生态系统定位研究网络(CFERN)等重大科研项目提供了有力支持,充分体现了我公司“让专才为专家服务”的服务宗旨。诚挚欢迎感兴趣的科研工作者参加!日程安排:→ 9月15-16号 北京,中国农业大学西区; → 9月18-19号 长沙,湖南农业大学; → 9月22-23号 桂林,国地质科学院岩溶地质研究所; → 9月25-26号 杭州,浙江大学;
  • 电化学红外光谱揭示光合放氧中心锰簇拟合物在多重氧化还原状态中的结构重排
    2021年10月4日,Journal of Physical Chemistry letters 在线报道了中国科学院物理研究所/北京凝聚态物理国家研究中心软物质物理实验室翁羽翔研究组(SM6组)题为“电化学红外光谱揭示光合放氧中心锰簇拟合物在多重氧化还原状态中的结构重排(Structural Reorganization of a Synthetic Mimic of the Oxygen-Evolving Center in Multiple Redox Transitions Revealed by Electrochemical FTIR Spectra)”的研究工作。该工作利用傅里叶变换红外光谱仪在低波数波段研究了人工合成的锰簇在电化学氧化过程中的机构变化,为光合放氧中心裂解水的反应机制研究开辟了一条新途径。光合作用是自然界利用太阳光大规模地将二氧化碳和水合成有机物并放出氧气的过程。在地球与生命进化过程中,具有放氧复合体的放氧光合生物的出现,使地球大气层中的氧气从无到有、逐渐积累并恒定在大约21%的水平,大大加速了地球演化、生物圈形成与繁荣的进程。光系统Ⅱ核心复合体是光能驱动水氧化的重要场所,具有光解水放氧功能的系统II核心复合体是一个由多个蛋白亚基、锰簇、色素分子等辅助因子组成的色素膜蛋白复合体。其核心锰簇是含有五个金属离子的Mn4O5Ca。其中的三个Mn原子,四个氧原子和一个钙离子占据六面体的8个顶点,形成立方体结构。太阳光经捕光天线吸收后分步传给反应中心的叶绿素特殊对,并实现电荷分离,形成的正电荷将邻近的酪氨酸Z氧化成正离子自由基,后者进一步将锰簇物氧化,驱动水的氧化并放出氧气:早期闪光诱导动力学研究表明,氧气的释放需要4个持续的闪光过程才能完成一个放氧周期。Kok等在1970就提出天然锰簇物放氧中心存在一个由S0-S4的5个状态构成的循环反应模式(即Kok 循环)。S0,S1,S2 ,S3 和S4分别表示放氧锰簇物的不同氧化还原状态。每一次氧化诱导的状态改变都会丢失一个电子,而每循环一次则需吸收4个光子,积累4个氧化当量(失去4个电子,积累4个质子)才能把水分子完全裂解,释放氧气后再次回复到S0态,如图1所示。2H2O−4e−⟶4hvO2↑+4H+" role="presentation"的释放需要4个持续的闪光过程才能完成一个放氧周期。图1. Kok循环示意图光系统放氧中心复合物的晶体结构研究表明,放氧中心锰簇物是由锰离子和钙离子经D1和CP43蛋白上氨基酸羧基侧链结合而形成的生物自组装结构。由于D1蛋白对强光很敏感,在体内的代谢周转十分迅速,半衰期大约为十分钟。可见,在自然界中放氧中心锰簇物是依靠生物的自修复功能实现其持续运转的。天然氧中心锰簇物的不稳定性对光合作用水裂解的机制研究也带来了相应的困难。2015年中科院化学研究所张纯喜研究小组在光系统放氧中心人工拟合物的研究中获得重大进展,成功合成了新型Mn4O4Ca簇合物(Science, 2015, 348, 690-693)。迄今为止,该类化合物是与天然放氧中心锰簇物最为接近的人工拟合物,该拟合物中四个Mn离子的价态(+3,+3,+4,+4)与天然放氧中心锰簇物S1态一致,而且同样具有催化水裂解的功能。此人工合成物为天然放氧中心锰簇物裂解水过程的微观机制研究提供了良好的契机。相关实验研究中,位于红外光谱低频波段(1000 cm-1)的 Mn—O键特征峰一直是指认放氧中心锰簇物状态变换过程中结构变化的重要依据。国际上利用脉冲闪光结合傅里叶变换红外光谱在该方向开展了大量的研究工作。由于天然锰簇物是组装在蛋白质中的,直接进行电化学氧化会导致蛋白质分解,同时蛋白质的低频峰会干扰锰核物峰位指认。另一方面,脉冲闪光引起的氧化还原电位变化是量子化的,无法实现氧化还原过程的连续调控,有可能错过某些变化细节。而人工拟合物则不然,可以进行连续电位扫描,且没有蛋白质在低频波段的干扰。针对上述问题,SM6课题组与长春应化所蒋俊光研究员合作设计了一种适用于傅里叶变化光谱仪的微型密封透射式电化学池,然后通过对锰簇拟合物进行连续电位扫描,研究了锰簇拟合物(由化学所张纯喜研究员提供)的结构变化过程。研究发现,S2氧化态存在两种不同的结构,即Mn1—O5是成键还是断开状态所对应于的封闭或开放锰核立方体结构(见图2)。该结论和天然锰簇物极为相似,不同的是,对于人工拟合物,S2态的闭合立方体结构比开放的立方体结构更加稳定,而这一次序在天然锰簇物中正好相反。可能的原因可归结于两者在配体分子上的差异,即人工锰簇物不存在H2O分子配体,而天然锰簇物含H2O分子配体。该工作为光合放氧中心裂解水的反应机制研究开辟了一条新途径,审稿人认为该工作为天然放氧中心锰簇物的研究提供了有用的基准信息“useful benchmark information”。图2.天然锰簇物(a)和人工拟合物(b)S2状态开放及闭合结构示意图该研究得到了国家自然科学基金委重点项目(21433014, 91961203)和中国科学院前沿重点项目(QYZDJ-SSWSYS017)的支持。
  • 中国科大在红外人工光合成领域取得进展
    通过人造材料,进行与自然界光合作用相似的化学反应,利用阳光、二氧化碳和水生成人类所需物质,是长期以来的梦想。然而,这种人工光合成体系进行应用尝试时,面临挑战,关键在于如何利用太阳光中低能量的光子。红外光是太阳光谱中典型的低能光子,在太阳光谱中占比达53%。通常的半导体光催化技术只能利用紫外区和可见区的光子来驱动化学转化,制约了太阳能利用效率。近年来,国际上的等离激元催化研究团队提出利用金属纳米材料的等离激元效应来驱动催化反应的思路,以期解决半导体光催化面临的瓶颈。等离激元金属纳米材料具有吸收低能光子的能力,却难以将吸收的能量有效地利用到催化反应中去,导致化学转化活性很低。中国科学技术大学教授熊宇杰研究团队针对等离激元催化的机制问题,开展了近十年的研究(Angew. Chem. Int. Ed.2014, 53, 3205;Angew. Chem. Int. Ed.2015, 54, 2425;J. Am. Chem. Soc. 2016, 138, 6822;J. Am. Chem. Soc. 2019, 141, 7807;Adv. Mater. 2022, 34, 2202367)。近日,熊宇杰/龙冉研究团队设计了一类等离激元催化材料,发现其独特的界面耦合态直接电子激发机制,实现了可见光区和红外光区二氧化碳与水的高选择性转化。该技术使用广谱低强度光,甲烷产率高达0.55 mmol/g/h,碳氢化合物的产物选择性达100%,是目前光驱动二氧化碳资源化利用的最高纪录。相关研究成果发表在《自然-通讯》(Nat. Commun. 2023, 14, 221)。该团队聚焦二氧化碳与水的转化反应,基于等离激元材料的催化活性位点设计,形成金属与二氧化碳分子的有效杂化耦合体系。研究通过一系列工况条件下的谱学表征,发现在等离激元的局域电场增强效应下,其费米能级之上会出现准离散的陷阱态,有助于发生热电子的直接激发过程,并通过延长热电子寿命而发生二次激发过程,从而实现高效多光子吸收和选择性能量转移。基于该作用机制,所设计的材料在可见光区和红外光区范围内,皆可驱动二氧化碳与水高选择性转化为碳氢化合物。有鉴于等离激元催化的多光子吸收特点,该团队设计优化了反应装置,实现了散射光子的高效吸收,从而突破了当前光驱动二氧化碳资源化利用领域的瓶颈。研究工作得到国家重点研发计划、国家自然科学基金国家杰出青年科学基金项目/优秀青年科学基金项目、中科院战略性先导科技专项(B类)等的支持。天津大学、安徽师范大学、合肥光源等的课题组参与研究。中国科大在红外人工光合成领域取得进展
  • 文献速递 | 玉米的三个SWEET蔗糖转运蛋白旁系同源基因在韧皮部装载中的重要作用
    玉米的三个sweet蔗糖转运蛋白旁系同源基因在韧皮部装载中的重要作用原文以 impaired phloem loading in genome-edited triple knock-out mutants of sweet13 sucrose transporters为标题发表在2017年10月6日的biorxiv上,原文作者margret bezrutczyk等译:贾子毅 作物产量依赖于蔗糖从叶片到籽粒的有效分配。在拟南芥中,韧皮部装载(phloem loading)是通过sweet蔗糖流(sweet sucrose effluxers)以及随之的sut1/suc2蔗糖/h+协同转运子配合完成的。zmsut1对于玉米的碳分配至关重要,但其对质外体韧皮部装载以及易位途径所导致的蔗糖损失回收的贡献还不清楚。因此,研究者检测了玉米中sweets对韧皮部装载的重要性。 研究者们确认了三个基于叶片表达的sweet蔗糖转运蛋白,它们在质外体韧皮部装载中发挥重要作用。尤其是,zmsweet13旁系同源体(a,b,c)是叶脉管系统表达量最高的基因之一。经基因组编辑,三个基因敲除后的突变体明显发育不良。 野生型和突变体植株在生长发育(如株高)以及zmsweets表达方面的差异 为了定量评估突变体在光合作用方面的受损情况,研究者采用li-6800光合荧光自动测量系统评价野生型和突变体玉米植株在光合速率方面的差异。实验在温室条件下进行:温度28℃;光合有效辐射1000μmol/m2/s;相对湿度60%。 li-6800光合荧光自动测量系统 结果发现,突变体的光合作用受损,叶片积累淀粉和可溶性糖。转录组测序(rna-seq)表明,突变体存在显著的与光合器官和碳水化合物代谢相关基因的异常转录。gwas分析表明,zmsweet13s旁系同源体与作物的农艺性状有关,尤其会影响开花时间和叶片角度。 野生型和突变体植株在叶片淀粉以及可溶性糖累积间的差别 实验证实,zmsweet13旁系同源体(a,b,c)和zmsut1在韧皮部装载过程中存在合作。研究者认为,试图通过生物工程措施提高作物产量时,可以将其作为重点候选对象。
  • 光系统II功能综合研究系统落户河南大学
    近日北京易科泰生态技术有限公司工程师克服新冠疫情影响,为河南大学调试安装完成一套光系统II功能综合研究系统。这套系统包含3个功能单元:FluorCam封闭式叶绿素荧光成像仪、FL6000双调制叶绿素荧光测量仪、TL6000植物热释光测量仪。 光合作用发生于叶绿体内的类囊体(thylakoid)膜上,类囊体膜上嵌插有光系统I和光系统II(PSI和PSII)。由于光系统II位于光系统I前端,同时还含有放氧复合体oxygen-evolving complex。因此光合作用研究的重中之重就是对光系统II的研究。 FluorCam封闭式叶绿素荧光成像仪用于叶绿素荧光淬灭动力学的各种参数测量并成像,尤其适用于研究植物不同部位逆境响应的变化规律、突变体筛选等。同时FluorCam封闭式叶绿素荧光成像仪是国际上唯一可以进行宏观OJIP快速荧光动力学成像和QA再氧化动力学成像的仪器。 FL6000双调制叶绿素荧光测量仪使用STF(单周转光闪)为主要测量工具,进行QA–再氧化动力学、S状态转换、快速叶绿素荧光诱导等其他普通调制式荧光仪无法完成的测量程序,反映光系统II的差异变化。同时还可以测量PAM(脉冲调制)测量、OJIP快速荧光动力学测量,时间分辨率最高达1μs,世界上公认的功能最为全面、时间分辨率最高的叶绿素荧光仪。 TL6000植物热释光测量仪通过检测光系统II的温度-热释光强度曲线,反映光系统II S2QB?、S3QB?稳定性、放氧复合体的活性及S态转换。从而将光系统II研究的深度推进到光合电子传递某一具体步骤的层次。这也是目前国际上唯一商用化的光系统II热释光测量仪器。 这一综合系统代表了国际上光系统II研究技术的最高峰,是光合作用深入研究的不二之选。河南大学计划使用这一综合系统,开展对拟南芥、微藻、玉米等作物的光合机理研究。除河南大学以外,中科院植物所、中科院水生所、上海师范大学、山东农大等单位也都装备了这一系统。 易科泰生态技术公司提供植物表型组学研究全面解决方案:? 从手持式、便携式仪器,到PlantScreen大型植物表型成像分析平台? 从FKM细胞亚细胞水平,到叶片尺度、冠层尺度及Ecodrone无人机遥感技术? FluorCam叶绿素荧光成像技术? Specim高光谱成像技术? Thermo-RGB红外热成像与彩色成像融合技术
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制