当前位置: 仪器信息网 > 行业主题 > >

光子烧结固化系统

仪器信息网光子烧结固化系统专题为您提供2024年最新光子烧结固化系统价格报价、厂家品牌的相关信息, 包括光子烧结固化系统参数、型号等,不管是国产,还是进口品牌的光子烧结固化系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光子烧结固化系统相关的耗材配件、试剂标物,还有光子烧结固化系统相关的最新资讯、资料,以及光子烧结固化系统相关的解决方案。

光子烧结固化系统相关的论坛

  • 【求助】蛋白质降解氨基酸测定----“冷冻固化后抽真空烧结封口”具体操作?

    我在做蛋白质降解氨基酸的测定的实验,实验步骤是这样的:称取样品--- 置于水解试管---- 加盐酸溶液 ----冷冻固化后抽真空烧结封口----- 110℃下水解22h------ 用水溶解 -----吸取溶解液1~2mL----- 于蒸发试管中旋转蒸发至干(<50℃﹚ ------加入内标物(AABA)-----混合均匀----吸取一定量液加入AQC衍生试剂 ------密封后于50℃下反应10min -----进HPLC 仪测定。其中:“冷冻固化后抽真空烧结封口”这一步骤我不明白,请问具体是怎么操作的?谢谢

  • 【分享】添加剂对燃料式熔炉固化垃圾焚烧飞灰特性的影响

    【分享】添加剂对燃料式熔炉固化垃圾焚烧飞灰特性的影响

    垃圾焚烧飞灰由于含有大量的可浸出重金属以及痕量的二恶英等有毒污染物,被列为危险废物(GB18485-2001),需经特殊处理方可进行安全填埋或资源再利用。据初步统计[1],到2005年底我国垃圾焚烧飞灰年产量已达30×104t以上,现有的危险废物安全填埋场已不堪重负。因此,开发适合我国国情的飞灰无害化处理技术和设备已迫在眉睫。熔融固化技术是国内外较先进的垃圾焚烧飞灰处理技术,相对于水泥固化和化学处理而言,熔融固化无害化彻底、减容减量程度高、产品性能稳定并可资源化再利用。因此,熔融固化成为固废处理技术领域研究的热点[2]。国外对飞灰熔融固化技术做了大量的研究并取得很多成果,如Jakob和Cheng等[3—4]研究了熔融气氛对飞灰熔融的影响,Kuo等[5]的研究表明熔融固化能有效去除飞灰中二恶英等剧毒有机物,Kirk等[6]研究了飞灰热处理过程中Cr的行为。而国内对飞灰处理的研究起步较晚,王琪、席北斗和李润东等[7—9]对飞灰的热处理做了大量的研究,为飞灰熔融固化处理提供了理论依据;然而鲜见对飞灰进行中试规模的熔融固化处理报道。熔融固化按照热源可分为燃料式熔融系统和电热式熔融系统。笔者采用沈阳航空工业学院设计的以柴油为燃料的表面熔炉,进行了处理量为500kg/d的飞灰熔融固化中试试验,重点考察了添加剂对飞灰熔融特性的影响,并对尾气中二恶英和其他气体成分进行了监测。 1条件与方法 1.1原料 试验用飞灰来自杭州某垃圾焚烧厂的布袋除尘器,飞灰的主要化学成分有CaO,SiO2,Al2O3,SO3,K2O,Na2O,MgO,Fe2O3和Cl等,共占总质量的89.2%(见表1);飞灰为灰白色的细小颗粒物,平均粒径为10~100μm,堆积密度为0.664g/cm3,真密度为2.92g/cm3,含水率为0.65%~1.2%,pH为12.6,灼减率为3.5%~4.8%。原灰及不同比例添加剂样品的熔融温度均采用《煤灰熔融性测试方法》(GB/T219-1996)进行分析,熔融温度采用灰熔点仪测定(HRKG-2)为1320℃。把废旧石英玻璃研磨成粒径为74~178μm的玻璃粉作为添加剂,对飞灰进行熔融处理。石英玻璃中w(SiO2)为99.2%,不含Pb,Cu,Zn,Cr和Cd等重金属,添加剂所占比例(质量分数)分别为5%,10%和20%。试验中测试分析项目所涉及的样品至少做2个平行。 [img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912262027_192216_1615922_3.jpg[/img]

  • 真空烧结炉结构的探讨

    [b]真空烧结炉[/b]的各个结构是相互配合运行的, 任何一个结构出现故障或者使用方式不合理, 都会影响到烧结炉的运行。 我们将针对真空烧结炉的不同结构展开探讨, 优化各结构的内部系统, 以达到能够为设备运行使用减少能源损耗, 达到更理想的燃烧效果。 一、 加热室加热室的作用顾名思义就是在使用阶段能够向炉内提供热量, 只有在热量达到一定的标准设备才能正常运行, 从而使各个结构在系统内发生配合, 从而达到真空烧结的目的。加热器的温度提升变动性比较大, 为了能够在短时间内实现更高效的使用, 通常是由三层温度变化组成的, 可以根据产品的不同类型和要求对系统内部进行调节, 使温度能够与需求的标准保持一致。二、 隔热屏该结构是以圆板和圆筒形状出现的, 能够将热量与外部环境相隔离, 这样既能保障使用阶段的安全性, 同时也能避免能源损耗。 该结构在系统中处于封闭的状态, 并且由多层结构组成, 投入使用后的隔热效果也更理想。 圆板和圆筒一起组成隔热屏, 形成封闭并且呈现真空状态, 当温度由在隔热屏中向周边散发时, 真空部分也能起到保护作用, 达到更理想的使用效果。三、 低温冷阱阱广泛用于超高真空( 或高真空)系统,作用类似于挡板,一般真空烧结炉为提升燃烧的效率, 并节省时间, 会采用低温冷阱的形式来降炉内的空气抽离, 这样能够确保在真空的环境下运行使用, 才能避免出现使用不稳定现象, 并达到设备的安全控制标准。四、 真空测量真空测量是针对炉内运行使用状态来进行的。 测量是定期进行的, 达到间隔时间后, 测量模块能够自动导通。 由于烧结炉的规模比较大, 使用期间检测得到的参数中存在很大的变化因素, 因此误差是不可以避免的。 虽然目前的技术理念已经十分成熟, 但在使用时仍然需要对现场设备采取全面监控的方法, 以确保燃烧效率能够达到预期标准。

  • 【讨论】UV固化的研究方法及内容

    UV固化的研究方法及内容 UV固化是一个多学科的研究领域,它涉及表面化学、高分子化学、高分子物理、涂料化学、辐射化学、光学、电工学、机械学等学科由于应用领域的不断扩大,uV固化的研究还涉及到通信、徽电子等高科技领域 uv固化的研究领域可以概括为以下几个方面: (1)化学 -新型单体、齐聚物、光引发剂(包括阳离子及其他引发系统)、颜料、添加(助)剂、阳离子系统及水基系统的合成、表征和应用开发 ·反应机理和反应动力学的研究 (2)工艺及流变学研究 针对不同用途的配方的探讨,包括对材料的化学组成、结构、性能之间关系的研究 (3)应用 uv固化的应用范围详见本书第1.2节uv固化材料的应用领域所述实际上,应用领域的开拓已不是简单的材料本身的问题,它还取决于相关领域的发展水平及对于材料的特殊要求正是这螳应用领域的科技进步,才导致了Uv固化材料如今蓬勃的发展uv固化的光纤涂料,光纤着色涂料及光刻胶等就是其中典型的例子 (4)分析测试 包括对辐射剂量、固化速率、固化程度及固化后材料的各种物理和化学性能的测试等 (5)基质的准备 包括对不同的基质进行电晕、火焰、等离子体、化学等方法的处理 (6)设备与装置 固化系统设备(包括uv源及其他相关设备)的开发、选择及相关理论的研究 (7)安全和控制 包括对人体的生理健康、产品的化学安全性和生态保护等方面的研究以及相关法规的制订 (8)技术与市场等方面的研究和研发

  • 【分享】UV固化的工艺特点

    材料要得到满足实际应用要求的力学、机械、化学及其他性能,大都需有一个成型加工的过程通过固化使液体材料具有一定形状,是最常见的成型方法之一 液态材料固化一般可分为物理方法和化学方法二种物理方法使用加热或溶剂,使材料处于焙融或溶解状态,待成型以后冷却或蒸发溶剂,从而达到维持一定形状的目的;化学方法则是利用化学反应产生的键合力,使分子间不易产生相对运动,实现成型目的通常,物理方法得到的多是热塑性材料,化学方法得到的则多是热固性材料 uV固化属于化学方法,它是uv引发化学反应的结皋与其他固化方法比较,uv固化具有许多独特的优势,主要表现在以下三个方面: (1)速率快 液态的材料最快可在0 05 -0. ls的时间内固化,较之传统的最快也需几秒,常常多达数小时甚至几天才能固化的热固化工艺,无疑大大提高了生产率,节省了半成品堆放的空问,更能满足大规模自动化生产的要求同时,uV固化产品的质景也较易得到保证此外,由于是低温固化,因此uv固化可避免因热固化时的高温对各种热敏感基质(如塑料、纸张或其他电子产品等)可能造成的损伤,辐射固化工艺技术在某些领域已经是满足高水平标准的惟一选择[71由于容易控制,因而降低了废品率,产品性能稳定,而且,uv固化产品的结构也较容易调整 (2)费用低 uV固化仅需要用于激发光引发剂(或光敏剂)的辐射能(如中、高压汞灯的辐射).不像传统的热固化那样需要加热基质、材料、周围空间以及蒸发除去稀释用的水、有机溶剂的热量,从而可节省大量的能源同时,由于uv固化材料同含量高,使得材料实际消耗量大幅度减少此外uv固化设备投资相对较低,可节省一大笔热固化设备的投资,减少厂房占地 (3)污染少 传统的热固化法需向大气中排放大量稀释用的有机溶剂,以涂料为例,全世界每年消耗涂料2000多万吨,其中有机溶剂约占40%,就是说,每年有大约800多万吨溶剂进入大气进入大气的有机物可以形成比二氧化碳更严重的温室敢应,而且在阳光照射下可形成氧化物和光化学烟雾,从而造成环境污染和对操作工人身体健康的损害uv固化基本不使用有机溶剂,其稀释用的活性单体也参与固化反应,基本上100%固寒量,因此可减少因溶剂挥发所导致的环境污染以及可能产生的火灾或爆炸等事故随着世界各国对生态环境保护的重视,对大气排放物进行了严格的立法限制,uv固化技术的重要性也愈显突出美国、欧洲、日本等均将VOC的减少作为优先采用UV固化技术的重要原因之一在我国,随着经济规模的迅速扩大及对环境保护的日益重视,作为环保型“绿色”工艺的uv固化材料的研究、开发和应用也已日益深入和普及. 当然,任何技术或工艺都不可能是无缺陷的,uv固化也是这样与热固化相比,它仅仅有30余年的研宄、开发历史,由于尚未形成大的产业规模,故成本相对较高此外,有些uv固化材料,特别是其中单体,还存在着气味或毒性问题,有待进一步解决当然,这同时也给uv固化材料的研究与开发提供了广阔的空间.

  • 旋转流变仪平板系统测量固化曲线时的上样问题

    各位版友,有没有人用旋转流变仪的平板系统测试热固性树脂的固化的啊?我们在测试的时候,经常会遇到一些粘度较低的树脂样在做恒温固化曲线时,在一百多度的温度下会有很多气泡,因为含水率较高,这样转子跟样品之间会有气泡存在,做出来的曲线十分差,重复性也不好?有没有一些好的解决方案啊?

  • Heller PCO-1280压力固化炉用于填充固化应用

    Heller PCO-1280压力固化炉用于填充固化应用

    在电子元件制造过程中,填充固化是一项重要的工艺,可以提高生产效率和产品质量。而Heller PCO-1280压力固化炉则成为了这个领域的佼佼者。Heller Industries是一家成立于1960年的公司,其在1980年开创了对流回流焊接技术,在多年发展中不断完善系统以满足更高级应用要求。如今,Heller已经成为回流焊技术世界领导者之一,并凭借强大的研发团队能够快速提供特殊的热处理解决方案。Heller PCO-1280压力固化炉具有较大的操作空间尺寸(2000mm*4850mm*2400mm),蕞大操作压力为10 bar(145 psi),蕞高操作温度可达220℃。同时,该设备还具有真空能力可达到10 Torr,在半自动装载时可以同时容纳2个Magazines并进行PLP面板的双装载器。[img=,690,550]https://ng1.17img.cn/bbsfiles/images/2023/06/202306061659230240_1083_5802683_3.jpg!w690x550.jpg[/img]该设备主要适用于填充固化应用。在新工艺参数中,通过预先加入下填充物并预热后使用真空吸取较大气泡,随着温度升高,较小的气泡也会被压力吸收。通过真空和压力相结合的方式,可以提高整体气孔排除率,并缩短气孔排除时间。除了填充固化应用外,Heller PCO-1280压力固化炉还可用于其他热处理方面。该设备的出色表现不仅为电子元件制造行业带来了便利和效益,同时也推动了热处理技术的进步与发展。总之,在当今快速发展的电子工业中,Heller PCO-1280压力固化炉已经成为企业生产过程中必不可少的重要设备之一。[b]苏州仁恩机电科技有限公司[/b]代理销售的制造设备,广泛应用于汽车、医疗、3C、航天、军工、电力等电子工业行业。以高端技术、优良品质著称,并提供全程专业售后服务。

  • 【原创】UVLED固化必不可少的条件

    紫外线光固油必须要有uvled线光源来固化,否则不能很好的固化。可能很多的人考虑uvled油墨有没有很好的固化。就uvLED固化设备而言,你可能就会想到光功率不够,或速度不行,下面小编为你解答一下,你心中的疑惑。 1.针对不同的油墨也是不一样的,这个要求可能也不一样。 2.油墨的厚度:如果油墨太厚,则会影响固化效果。 3.气候的影响:温度高,uvled油墨的固化效力反而变低,所以一定要在适应的温度下进行。 4.颜色的吸收:颜色对油墨的吸收,反射也是不一样的, 5. UV灯的功率一定要满足油墨固化所需的要求 6.固化速度:先以某一速度通过uvled固化机固化,若固化了,再调整它的速度,使光固机的油不能再固化为止。这样就可以确定它的固化速度了。

  • 固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    [color=#990000]摘要:差示扫描量热(DSC)和调制式扫描量热(MDSC)技术在复合材料固化工艺研究中应用十分广泛,但无法应用于固化过程的在线实时监测。为解决固化过程在线监测难题、提高固化工艺优化效率和实现仿真计算的准确考核,需要在差示扫描量热技术基础上开发低价、简便、高效和实时的新型热分析技术。本文介绍了近些年来在此领域内最具代表性的几篇研究报道,分析这些研究的特点和不足,并提出了后续工作的技术方案。[/color][color=#990000]关键词:固化工艺、固化过程、固化度、差示扫描量热、DSC、调制式差示扫描量热、MDSC、MTDSC、比热容、热扩散系数、导热系数[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1.问题的提出[/color][/b] 在复合材料研究过程中,需要对固化工艺进行研究和优化。而在复合材料生产过程中,为保证复合材料成品质量及生产的可重复性,理想方式是对复合材料固化过程进行实时在线监测,确保固化过程中各部分充分固化、累积残余应力和温度非均匀性引起的应变尽可能小、控制复合材料固化温度避免热降解以及降低完全固化的总时间。为了实现固化工艺研究和优化以及固化过程的实时在线监测,需要针对材料固化过程中可监测的物理量,并结合固化过程中出现的物理化学反应特性,采用相应准确有效的测试技术。在固化工艺中,当前常用来判断固化是否完成的直接准则是最能表现固化反应的固化度,但在固化工艺研究和固化度监测方面面临着以下三方面的技术难题需要解决:(1)现有扫描量热技术测试样品小,测试结果与实际生产现场有差异 目前用于研究固化工艺最有效的手段是差示扫描量热(DSC)技术以及灵敏度和精度更高的调制式扫描量热(MDSC)技术,树脂供应商大多采用这两种技术提供树脂固化度信息。这两种技术的局限性是测试样品量很小,与实际固化过程中的产品尺寸和形状有巨大差异,扫描量热技术测试得到的固化工艺过程和参数很难在实际固化工艺中直接使用,还需要进行大量固化工艺优化研究工作。(2)现有扫描量热技术无法应用于在线实时监测 由于基于热动力学原理,并且可以与固化工艺具有完全相同的温度、压力和气氛变化过程,目前的各种扫描量热技术作为最成功的热分析技术,可以说是完美解决了微量样品层面的热分析问题,为固化工艺研究和优化、为固化工艺仿真计算研究提供了准确的基础数据。但目前热分析技术的最大局限性是无法推广应用到产品生产现场,无法采用扫描量热技术对固化过程进行在线实时监测,无法对固化工艺研究和仿真模拟结果进行快速的在线实时验证。(3)现有在线监测技术无法达到扫描量热技术的准确性,未达到实用水平 尽管扫描量热技术无法推广应用到生产现场,但为了满足复合材料研制和生产需要,近些年来开发了许多新技术来进行固化过程的实时在线监测。这些技术大多采用间接方法,而且种类繁多,主要分为光纤法、超声法、电学法和热学法。尽管这些方法都证明了其在监测固化过程中的有效性,但也存在局限性,还都无法替代扫描量热技术的有效性,每一种方法只能监测部分参数,在使用时需要根据具体条件进行选择评估,而且这些测试方法目前大多还都停留在实验室研究阶段,还未看出具有多大的市场使用前景。[b][color=#cc0000]2.解决方案[/color][/b] 综上所述,为了准确了解固化中的吸放热过程、实现固化工艺设计、快速准确寻找最佳固化工艺过程,并能对整个固化过程进行实时在线监测,就需要在扫描量热技术的基础上,开发新的测试技术并应用到实际固化工艺中,所开发的新技术方案主要包括以下几方面内容: (1)首先要解决大尺寸规则形状样品或材料的热分析测试问题,即在各种大尺寸的板状、柱状和球型模具/样品和构件上实现扫描量热测试功能,这相当于把DSC测试功能拓展到大尺寸规则模具/样品和构件上。 (2)解决材料热物理性能测试问题,即在DSC比热容测试能力基础上,增加了在整个固化过程中的热扩散系数和导热系数的连续测量能力,在得到固化特性的同时得到复合材料传热特性,这相当于把MDSC测试功能拓展到大尺寸规则模具/样品和构件上。 (3)最终要解决单样品热分析测试技术问题,一方面要避免像DSC和MDSC那样需要同时进行参考样品测试,另一方面还要避免使用传统热物性测试中那样长时间稳态一维热流测试形式,而是需要仅采用温度传感器测量模具/样品和构件内外的温度和热流变化,并在与固化工艺相同的升温、恒温和降温的动态过程中,同时测量得到多个热物理性能参数,如热扩散系数、热焓、比热容和导热系数,最终得到固化度等相应的固化工艺参数。[b][color=#cc0000]3.本文目的[/color][/b] 上述解决方案是当前复合材料固化度监测及固化反应动力学研究的发展方向,对复合材料研制和生产有着重大意义,特别是热分析技术在固化工艺和固化过程中的应用研究方面,很多研究机构和学校都开展了研究工作,但并没有取得实质性进展,基本还停留在实验室探索阶段。本文将介绍近些年来在此领域内最具代表性的几篇研究报道,分析各种研究的特点和不足,为后续的技术攻关提供参考。[b][color=#cc0000]4.温度调制型DSC:MDSC技术[/color][/b] 经典的DSC技术可以测量微小样品比热容随温度的变化特性,由此常用于固化反应动力学的研究和分析,但无法测量样品的热扩散系数和导热系数,因此采用DSC技术无法对固化过程中的热传递进行研究,无法了解材料内部的温度分布,进而使得无法进行固化工艺的优化。另外,传统的DSC对于微量样品的微弱吸热和放热还是不能提供足够高的灵敏度和精度。 为此,结合传统的Angstrom技术,在DSC技术基础上开发了温度调制型DSC(MDSC)技术,即在以往DSC测试的温度变化曲线上叠加了温度调制波,由此大幅度提高了测量灵敏度和测量精度,同时还实现了热扩散系数的测量。 目前,MDSC技术已经非常成熟,并有相应的商品化测试仪器,如图4-1所示。很多研究机构采用MDSC仪器对固化过程中的热传递进行研究,如侯进森等人对碳纤维/环氧树脂预浸料固化过程中不同纤维方向上的导热系数进行了测量。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141816583388_7031_3384_3.png!w690x230.jpg[/img] [/color][/align][color=#cc0000][/color][align=center]图4-1 MDSC测量原理和测试仪器[/align] 尽管MDSC已经具有很高的测量精度和灵敏度,但这种技术复合材料固化工艺研究和在线监测中的应用十分有限,主要因为以下原因: (1)样品量太小,很难保证样品对复合材料的代表性; (2)测试模型假设被测样品始终处于温度均匀状态,这就造成MDSC测试模型无法放大应用到大尺寸样品和固化部件的热分析测试; (3)与DSC一样,MDSC同样需要结合参考材料同时进行测量,这也限制了这种技术的实际应用; (4)为了保证MDSC技术中规定的边界条件,在被测样品周围需要配备复杂的配套装置,这在固化工艺现场根本无法实现。[b][color=#cc0000]5.固化过程的其他热分析技术研究[/color][/b] 到目前为止,固化过程中其他热分析技术的研究,主要侧重于对恒温固化过程中热物理性能变化过程的测量,重点是测量热扩散系数的变化规律,然后用不同阶段的热扩散系数来表征固化度C,即:[align=center][img=,690,57]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817455522_5587_3384_3.png!w690x57.jpg[/img][/align] 式中,B、A和D分别是液态、随时间推移和完全固化状态下的热扩散系数值。[color=#cc0000]5.1. Friis-Pedersen等人的研究工作(2006年)[/color] 较早尝试将DSC热分析技术推广应用到复合材料固化过程在线监测的是德国的Friis-Pedersen等人,他们模仿MDSC技术进行了初步的研究工作。在他们的研究中,模仿MDSC同样采用了Angstrom测量原理进行定点温度交变调制,模仿MDSC仪器结构搭建了一套经典的Angstrom法薄板热扩散系数测量装置,如图5-1所示,可以测量薄板材料(面积为100mm×100mm,厚度约为3mm)在不同恒定温度固化过程中热扩散系数的变化过程,并由此热扩散系数变化过程来表征复合材料固化度特性。[align=center][color=#cc0000][img=,690,226]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817271162_7843_3384_3.png!w690x226.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-1 试验装置示意图[/color][/align] 尽管采用了已知热扩散系数的硼硅酸盐玻璃对此测量装置进行了测量误差考核,并标称测量误差小于3%,但从文献报道来看,整个装置简陋,重复性测量结果偏差很大。特别是对于低粘度未固化树脂以及厚度的变化情况测试会有很多问题。 Friis-Pedersen等人还分别采用两种DSC仪器分别对微量样品的比热容进行了测量,并结合上述装置测量得到热扩散系数和密度计算得到了导热系数,通过对比证明了固化度与热扩散系数和导热系数的变化密切相关,采用热扩散系数来表征固化度甚至在灵敏度上更优于比热容。 尽管Friis-Pedersen等人的研究工作比较简易,测量误差也较大,但在采用热物理性能参数来表征固化度方面进行了积极的探索,并获得了初步的结果,证明了采用热扩散系数来表征固化度是一种切实可行的技术途径,并具有显著特点。[color=#cc0000]5.2. Rudolph 等人的研究工作(2016年)[/color] 为了实现固化过程的在线监测,基于经典的Angstrom法薄板热扩散系数测试技术,德国的Rudolph 等人搭建了一套更简易的试验装置来测量环氧树脂固化过程中的热扩散系数变化,并基于上述固化度的定义来对固化过程进行表征。 装置的测量原理基于经典的Angstrom法,如图5-2所示,不同之处在于温度的调制不是传统的正弦波,而是采用了三角波,相应的热扩散系数测量公式则采用了参数估计算法获得。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818091906_4688_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-2 基本思想是假设一维热流,评估两个温度信号之间的差异。a)样品描绘,b)顶部和底部温度信号[/color][/align] 为模拟在线固化过程,Rudolph 等人搭建的试验装置模仿了真空袋成型工艺,如图5-3所示,被测环氧树脂样品尺寸为直径29mm、厚度不超过3mm,样品装在外径为30mm、高度为4mm的铝制料盒内。试验参数中设置了温度振荡周期长度为4分钟,振荡幅度被设置为2K。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818230117_8499_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-3 实验装置:1)隔离试验箱;2)温度控制器;3)用于温度测量和控制的PC机;4)测量放大器;5)室温显示;6)带有温度传感器的样品;7)铝块;8)珀尔帖元件;9)散热器[/color][/align] 采用这套试验装置,分别在不同温度下进行了固化过程中的热扩散系数测试,热扩散系数转换为固化度后的结果如图5-4所示。[align=center][color=#cc0000][img=,400,300]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818383568_7396_3384_3.png!w690x519.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 在不同温度下测量热扩散系数推断出环氧树脂的固化度[/color][/align] 通过上述Rudolph 等人的工作,至少可以看出以下几方面的优缺点: (1)再一次证明了热扩散系数作为固化度评价参数的有效性; (2)对于板材结构的复合材料固化过程,可以用很简易的装置就可以实现固化度的在线监测,特别是仅采用单面加热和厚度方向双点测温的方式,就可以在线实时对整个固化过程的固化度变化进行测试表征,这已经非常接近实用化水平。 (3)出于测试方法需要,样品加热采用的是单面加热三角波温度调制方式,这种加热方式显然不符合常规固化工艺线性加热模式,增加了在线监测设备的复杂程度。同样,这种测试结构并不适合低粘度液体以及厚度变化的固化过程。 (4)Rudolph 等人的工作实际上为今后的实用化研究奠定了一个基础,这种单面加热方式完全可以拓展到常规固化工艺中的线性加热模式,即只需采用一个温度传感器测量板材中心位置在固化过程中的温度变化,就可以实现板材固化过程的在线实时监测。 沈阳航空航天大学的卢少微等人出于对巴基纸(Buckypaper)作为温度传感器在固化工艺在线监测中的应用研究,借鉴了上述Rudolph 等人的工作,直接在真空袋固化工艺中研究固化度与巴基纸的电阻温度系数关系。尽管直接采用温度传感器在线监测固化过程的有效性十分有限,但他们对巴基纸的研究不失为给今后固化工艺中使用的温度传感器增加了一种可选性。[color=#cc0000]5.3. Struzziero等人的研究工作(2019年)[/color] 上述研究工作基本都是基于板材固化工艺的在线热扩散系数测试测试方法,但这些水平结构的固化过程并不适合流动性较强的低粘度液体树脂的固化过程监测,而且监测过程中样品厚度会发生变化而带来测量误差。为了提高材料的适用性,Struzziero等人采用了柱状结构的传热模型报道了在线固化监测的研究工作。 Struzziero等人研究的测试方法还是基于经典的Angstrom技术,在定点温度下交变调制加热温度来测量得到热扩散系数。设计的测量装置包括一个带冷却管的铜块,其中心有一个圆柱孔用于容纳直径为7mm、壁厚为1mm、高度40mm的空心铜管。该装置如图5-5所示。[align=center][color=#cc0000][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818568815_9052_3384_3.png!w690x223.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-5(a)实验装置;(b)截面图;(c)俯视图[/color][/align] 液体树脂倒入铜管,然后用软木塞封闭。软木塞在其中心有一个开口,以允许放置在中心的热电偶接触树脂。然后将铜管插入铜块的圆柱形孔中,两块隔热板放置在铜块的上下两侧,一根柔性电热丝缠绕在冷却管周围。铜块温度由温度控制器调节加热软线上的功率进行控制而产生周期性的变化。由于树脂的热惯性,在树脂区域中心测量的温度是相位滞后的周期性曲线,树脂和铜温度的周期性变化信号如图5-6所示,通过相位差的测量可以得到相应的热扩散系数。[align=center][color=#cc0000][img=,600,352]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141819092006_7113_3384_3.png!w690x405.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-6 树脂区域边界和中心的温度变化[/color][/align] 每次测试前,树脂在铜管中的填充量为四分之三左右,用软木密封封闭,并放置在铜块中。随后,外径0.5mm的测量热电偶探针穿过软木塞密封件的中心开口,使热电偶敏感区位于树脂的几何中心位置。在测试过程中,铜块温度调制所采用的幅度为1℃、一个调制周期为4分钟。Struzziero等人采用搭建的测量装置对三类材料进行了测试,第一类是非固化材料甘油作为该方法的考核;第二类包括一种脱气、预混合、单组分树脂,专门设计用于树脂传递模塑工艺的环氧树脂RTM6和另一种为灌注应用设计的低反应性单组分液态环氧树脂890RTM;第三类是采用液体增韧环氧树脂的双组分系统,用于缠绕和拉挤成型的XU3508/XB3473。 Struzziero等人用上述装置测量了上述材料不同温度下的热扩散系数,并采用MDSC进行了比热容测量和固化表征,同时还建立了相应的固化动力学模型,由此来进行相应的对比和验证。 通过甘油的导热系数测量验证了与文献值相差约为8%,需要注意的是这个偏差是包含了测量装置热扩散系数测量误差和MDSC比热容测量误差的合成误差。 Struzziero等人在此测量装置上开展了大量研究,在此就不再详细介绍。总之,Struzziero等人的工作再一次有效证明的热扩散系数表征固化过程的有效性,同时还证明了测量液体热固性塑料固化过程中的热扩散系数方面是可靠的,测量精度由树脂区域中心热电偶放置的精度控制,要求位置精度为0.5mm以将测量误差限制在3%以下。固化环氧树脂的导热系数测试结果显示出对固化度的线性依赖增加和对温度的反向线性依赖,所得结果可以根据声子输运解释为固化材料中的主要热载体。实验装置测量结果可用于生成材料表征数据,这些数据是建立固化模拟所需的精确导热本构模型所必需的。 Struzziero等人的工作最重要的是验证了固化过程中热扩散系数和导热系数变化的准确测量,热扩散系数和导热系数的获得可以更可靠地预测热梯度、放热现象和缺陷,如残余应力,有助于提高固化工艺预测的整体精度。另外,Struzziero等人的圆柱体测试结构,从测试模型上已经完全接近于实际固化工艺,而且还可以进行各种形式的推广应用。[b][color=#cc0000]6.分析[/color][/b] 上述研究工作基本上都是模仿MDSC而采用了Angstrom技术,同时也证明了测量得到的热扩散系数和导热系数完全可以用于固化评价。由于加热方式的复杂性,使得这种Angstrom技术还是无法应用到实际复合材料固化工艺中的在线监测,还只能停留在样品级别的应用。为了真正在复合材料固化工艺中采用热分析技术实现在线监测,依阳公司通过前期的大量研究,做出如下分析: (1)基于MDSC发展历史做出的分析:在DSC测试过程中,由于样品量小,样品的吸热和放热量以及热流信号都十分微弱,而Angstrom温度交变测试是一种灵敏度和精度很高的技术,因此MDSC采用了Angstrom技术实现了灵敏度和精度的大幅度提高,并同时实现了热扩散系数测量,结合已经具有的比热容测试能力,MDSC可用来测量导热系数。 (2)从实际固化工艺做出的分析:在产品生产固化工艺中,产品尺寸普遍较大,吸热和放热量以及热流信号普遍都较大,从信噪比分析来看根本无需高灵敏度的Angstrom技术。另外,在实际固化工艺设备上也很难实现Angstrom技术要求的温度交变调制。 (3)从热扩散系数测试技术做出的分析:尽管上述研究文献报道都是基于交变的Angstrom技术,但不采用这种交变技术,只通过加热变化过程也能准确测量出热扩散系数,而这种加热变化过程与固化工艺中的加热过程完全相同。这也就是说在现有固化工艺设备和固化加热过程中,通过工件中单点温度的测量,可以准确得到整个固化过程中的热扩散系数变化。 (4)从比热容测试技术做出的分析:DSC和MDSC的强大之处在于可以对热流进行测量,从而量化得到吸热和放热变化过程,其技术关键是采用了参考材料的对比测试,这也是限制DSC技术推广应用于在线热分析的主要障碍。这个主要障碍目前也有解决途径,就是设法将参考材料等效到现场固化工艺加热装置上,从而可以具备DSC的所有测试能力。[b][color=#cc0000]7.总结[/color][/b] 通过上述研究文献综述和分析,针对固化工艺研究和固化过程在线监测,可以描绘出这样一个技术愿景: (1)因为都是基于升温和降温过程,可以将差示扫描量热(DSC)技术等效到固化工艺设备上,只通过简单增加相应的温度传感器等,就基本可以实现MDSC的大部分功能,至少能具备热焓、比热容、热扩散系数和导热系数的测试能力,实现高效的固化过程在线监测。 (2)这是一种单点测温和基于一维传热的测试技术,可以应用在各种尺寸和形状的复合材料固化工艺中,造价极低使用便捷,单点植入式温度传感器对复合材料整体性能影响小。 (3)随着分布光纤技术和巴基纸(Buckypaper)技术的发展,温度传感器可以采用分布式植入结构,将会更高效的进行固化工艺现场监测。[b][color=#cc0000]8.参考文献[/color][/b](1)王奕首, 李煜坤, 吴迪, et al. 复合材料液体成型固化监测技术研究进展. 航空制造技术, 2017, 538(19):50-59.(2)侯进森, 叶金蕊, 王长春, et al. 碳纤维/环氧树脂预浸料固化过程中的热导率测定. 复合材料学报, 2012(4):23-28.(3)Friis-Pedersen H H, Pedersen J H, Haussler L, et al. Online measurement of thermal diffusivity during cure of an epoxy composite. Polymer testing, 2006, 25(8): 1059-1068.(4)Rudolph M, Naumann C, Stockmann M. Degree of cure definition for an epoxy resin based on thermal diffusivity measurements. Materials Today: Proceedings, 2016, 3(4): 1144-1149.(5)Lu S, Zhao C, Zhang L, et al. Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor. RSC Advances, 2018, 8(39): 22078-22085.(6)Struzziero G, Remy B, Skordos A A. Measurement of thermal conductivity of epoxy resins during cure. Journal of Applied Polymer Science, 2019, 136(5): 47015.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】哪有可测纤维介电树脂固化仪(DEA)

    介电法树脂固化仪(DEA),一般用做树脂固化交联的测试。不知哪个学校或公司可以用来[color=#DC143C][B][size=4]测试纤维[/size][/B][/color]的热介电损耗等,或者能否做成复合材料测出纤维的介电损耗。本人已在这方面困扰好久,课题一直进展不下去。请各位同行网友不吝提供相关信息,万分感谢。PS:如有可测试的DEA,最好是[size=4][B]开展对外检测上海周边的高校[/B][/size],其它地方也可。提供拥有DEA的地方也可,我自己去咨询是否可做纤维材料。

  • 【求助】瓦里安ICP 715 线圈、炬管和石英帽烧结

    【求助】瓦里安ICP 715 线圈、炬管和石英帽烧结

    [size=3][size=1]前天使用ICP过程点火时出现故障,共点火三次,均为点着,每次报错提示相同。第一次,无任何反应,随即弹出报错信息;第二次,待雾化器的压力回零后炬管室里传出扑哧的声音,随即报错;然后断电拆下石英帽和炬管用超纯水清洗,烘干,用无纺布擦拭线圈上的烧黑的痕迹,再装配到仪器上;第三次,和第二次情况相同。即石英帽上又多了一块烧结的痕迹,但未烧穿。ICP点火时进入仪器的为超纯水,平日测试时,溶液为有机溶液,氧气为辅助气体。电话咨询技术专家,答复为:可能为线圈、炬管和(或)石英帽上有残留有机物。个人觉得这个可能性不大,比较每次测试后都会用酒精和纯水来冲洗进样系统。下面是线圈,石英帽和炬管的图片,希望各位大虾不吝赐教,分析出现点火失败以及烧结现象的原因。[/size][/size][size=2]图一:点火失败报错信息:[/size][size=5][img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006280913_227359_1797961_3.jpg[/img][size=2]图二:线圈烧结痕迹[/size][img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006280914_227360_1797961_3.jpg[/img][size=2]图三:石英帽烧结 没有烧穿[/size][img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006280914_227361_1797961_3.jpg[/img][size=2]图四:炬管最中心层有污染 测试铜留下的痕迹 而不是有机物[/size][img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006280915_227362_1797961_3.jpg[/img][/size]

  • 【求助】(已应助)求助论文《双重固化技术在UV固化胶粘剂中的应用研究》

    1.双重固化技术在UV固化胶粘剂中的应用研究【作者】 王涛 【导师】 江棂 马家举 【学位授予单位】 安徽理工大学 【学科专业名称】 应用化学 【学位年度】 2007 【论文级别】 硕士 【网络出版投稿人】 安徽理工大学 2耐候型UV涂料的研制 【作者】 王坚 【导师】 杨绪杰 钱伯容 【学位授予单位】 南京理工大学 【学科专业名称】 应用化学 【学位年度】 2006 【论文级别】 硕士 【网络出版投稿人】 南京理工大学 3UV固化胶粘剂的研制 【作者】 吕希光 【导师】 江棂 【学位授予单位】 安徽理工大学 【学科专业名称】 应用化学 【学位年度】 2005 【论文级别】 硕士 【网络出版投稿人】 安徽理工大学 4紫外光—热双重固化材料的制备过程及性能研究 【作者】 李武成 【导师】 王德海 【学位授予单位】 浙江工业大学 【学科专业名称】 材料学 【学位年度】 2007 【论文级别】 硕士 【网络出版投稿人】 浙江工业大学 5超支化聚硅氧基硅烷的合成及其紫外光固化动力学研究 【作者】 王欣 【导师】 范晓东 【学位授予单位】 西北工业大学 【学科专业名称】 材料学 【学位年度】 2007 【论文级别】 硕士 【网络出版投稿人】 西北工业大学

  • Heller PCO-1150压力固化炉:高效、可靠的固化解决方案

    Heller PCO-1150压力固化炉:高效、可靠的固化解决方案

    [b]高效的PCB固化[/b]PCB(Printed Circuit Board)是电子产品中不可或缺的组成部分,它由多层导线和绝缘材料组成。为了保证其稳定性和可靠性,需要进行固化处理。而Heller公司的PCO-1150压力固化炉,则提供了高效、可靠的解决方案。[b]强大的技术支持[/b]作为一家拥有60年历史并在回流焊接系统领域处于全球领先地位的企业,HELLER对设备持续改进和创新,并与客户紧密合作。此外,他们还拥有全球服务网络,并提供24小时热线号码以及RMATS(远程数据机——可访问技术服务中心)等前沿支持系统,确保客户随时能够得到专业技术支持。[img=,668,653]https://ng1.17img.cn/bbsfiles/images/2023/05/202305301005501925_3949_5802683_3.png!w668x653.jpg[/img][b]优秀的奖项荣誉[/b]HELLER公司在行业内享有盛誉,在2018年度获得多个奖项包括年度蕞佳服务奖、VisionAward年度蕞佳创新奖、行业领导奖以及 Frost & Sullivan 全球SMT企业年度奖。这些荣誉不仅是对HELLER公司技术实力的肯定,也是对他们不断追求卓越、为客户提供蕞优质服务的努力和成果。[b]多重功能特点[/b]除了高效、可靠的固化处理外,Heller PCO-1150压力固化炉还有以下多重功能特点:1. 蕞大操作压力达到10 bar(145 psi),确保PCB表面平整度和稳定性。2. 蕞高操作温度为220℃,满足各种工艺要求。3. 氮气/氢气使用,提高固化效果。4. 洁净室等级1000,保证环境干净卫生。5. 真空能力可达到10 Torr,更好地控制固化过程中气体排放和PCB表面状态。[b]结语[/b]在电子产品领域,品质至上是蕞基本的要求。而Helller PCO-1150压力固化炉则以其高效、稳定和多重特点,在PCB固化处理方面提供了全方位解决方案。与此同时,HELLER公司强大的技术支持体系也确保了客户能够随时得到专业支持和服务,为电子产品的研发、制造和维护提供了有力保障。在汽车、医疗、3C、航天、军工、电力等电子工业应用行业,RINEUN-SEMICON代理的heller回流焊制造设备赢得了广泛的应用。无论您的需求是什么,我们都能够为您提供合适的解决方案。

  • 【求助】膨润土烧结产物(急!在线等高手帮忙)

    膨润土主要结构是蒙脱石,烧结后测XRD分析后主要是:印度石(Indialite )Mg2Al4Si5O18 ,但是我不知道这是种什么物质啊?有哪位知道的告诉下?此外,下图是我按20、25、30、35、40%的氧化钕掺杂进膨润土烧结的XRD图,但是为什么在10度的时候20、25的峰消失了,而在30、35的又出现了,在40的时候又消失了啊?这是什么原因啊?[img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811112134_117738_1667626_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811112126_117733_1667626_3.gif[/img]

  • Heller PCO-500压力固化炉:提高生产效率的利器

    Heller PCO-500压力固化炉:提高生产效率的利器

    [b]PCO-500压力固化炉介绍[/b]Heller PCO-500是一款具有高性能和可靠性的压力固化炉。其工作室可用面积为350[长]x 350[宽]x 227[高],蕞大工作压力为12Bar (174 psi),蕞高工作温度为200? C(强制空气对流)或350? C(导电板选项)。该设备适用于手动装载批量PCO,并可选择300mm晶圆的传导加热板。[b]填充固化工艺介绍[/b]原始的固化工艺参数需要75分钟循环时间,并存在气孔缺陷。但是,通过使用真空模块,新的工艺参数可以在40分钟内即可固化,同时不再出现气孔缺陷。这种方法可以缩短整个固化循环时间,从而提高生产效率(UPH)。[img=,517,578]https://ng1.17img.cn/bbsfiles/images/2023/05/202305261022150629_3317_5802683_3.jpg!w517x578.jpg[/img][b]HELLE 公司介绍[/b]成立于1960年的HELLER公司首创对流式回流焊接,在80年代成为业界领先企业。多年来,HELLER与客户合作不断改善设备并进行创新以满足更新要求。经过技术创新和变化,HELLER已获得并一直保持回流焊接系统的全球领先地位。该公司曾多次获得殊荣,包括2018年度Zui佳服务奖、VisionAward年度Zui佳创新奖、行业领导奖以及Frost&Sullivan全球SMT企业年度奖。[b]PCO-500压力固化炉结论[/b]Heller PCO-500压力固化炉是一款高性能、可靠且具有优秀特点的设备。填充固化工艺参数改善后,可以在更短时间内完成任务,并提高生产效率。而HELLE公司作为一个经过多次验证的行业领袖,在技术方面不断进行创新和改进以适应市场需求。[b]苏州仁恩机电科技有限公司[/b],致力于为客户提供集成全新半导体先进封装进口设备及材料和高端电子制造相关设备解决方案集成供应商。我们不断地努力创新和发展,以满足客户日益增长的需求。如果您需要heller回流焊设备,或者帮助,欢迎随时联系我们。

  • 【求助】DSC能否用来确定油漆的固化温度和固化时间???

    DSC能否用来确定油漆的固化温度和固化时间???记得我在做论文的时候,请教过老师,他说可以的,而且毕业论文也就是这么确定环氧树脂的固化过程的,但我一直很迷惑,哪位高人能否指点一下,具体可不可以,步骤如何???[em01] [em01]

  • 水性紫外光固化涂料的性能研究进展

    分享一篇紫外的文献,希望对大家有所帮助崔芙红(兰州石化职业技术学院应用化学工程系,甘肃兰州)水性紫外光固化涂料结合了传统水性涂料和紫外光固化涂料的优点,成为环保型涂料研究的一个主要方向。本文综述了水性紫外光固化涂料的特点,主要组成部分以及其最前沿的发展方向,并介绍了这种涂料的应用情况和面临的挑战。水性紫外光固化涂料;组成;研究进展TQ A 1007-1865(2013)10-0099-02由于水性涂料对环境无污染,对人体健康影响小,粘度易调节,挥发度低使之适合于喷涂,但它仍存在不抗碱、不抗水、干燥慢、易造成基材收缩等弊病。紫外光(UV)固化涂料的优点之一是涂料的固化时间短而且可以控制,因其不含溶剂,从而大大消除了有机挥发分(VOC)对环境的污染。但其主要成分低聚物一般均具有较高的粘度,在涂布时必须加入稀释剂以调节其粘度和流变性。传统的丙烯酸酯类活性稀释剂对眼睛有较强的刺激作用,影响人体健康。因此,UV光固化涂料技术总的发展趋势是以水代替反应性稀释剂,一方面可以消除因挥发分导致的污染、刺激等问题,另一方面也为水性涂料提供了一种新的固化手段。因而综合了两者优点的水性紫外光固化涂料,成为极具开发和应用前景的新的涂料技术。1·特点与传统的油性紫外光固化涂料相比,水性紫外光固化涂料具有以下优点。(1)用水替代活性稀释剂,黏度更方便调节。(2)减少活性稀释剂的使用,使其毒性和刺激性大大降低。(3)以水为稀释剂可降低固化膜的收缩率,有利于提高固化膜对底材的黏附性。(4)可以得到超薄型固化膜。(5)涂装设备和装置可用水进行清洗。(6)可以使用相对分子质量高的预聚物,克服了传统紫外光固化涂料不能兼顾高硬度和高柔韧性两者的问题。2·组成2.1 低聚物水性低聚物是水性光固化材料最重要的组成部分,它决定固化膜的力学性能,如硬度、柔韧性、耐磨性、耐化学药品性等,也影响紫外光固化的灵敏度。水性低聚物在结构上要有参与UV固化反应的不饱和基团,如丙烯酰氧基、乙烯基等,由于丙烯酰氧基反应活性高,固化速度最快,所以各类丙烯酸树脂的为其主要品种;另外分子链上需含有一定数量的亲水基团,如羧基、羟基、氨基、磺酸基等。按低聚物的化学结构,目前最常用的水性紫外光固化树脂主要包括环氧丙烯酸酯(EA)、聚氨酯丙烯酸酯(PUA)、聚丙烯酸酯(Acrylatedacrylic oligomer)和聚酯丙烯酸酯(PEA)。表1列出了这些常用水性紫外光固化涂料低聚物的性能。表1 常用水性紫外光固化涂料低聚物的性能2.1.1 环氧丙烯酸酯环氧丙烯酸酯是一种广泛使用的低聚物,原料价格便宜,机械性能优良。环氧树脂分子链上的羟基赋予它良好的极性,促使其对金属材料表面有良好的粘附力。并且环氧树脂聚合物链含有稳定的C-C键和醚键,这使得它耐化学药品性优良。此外,可以通过环氧树脂的环氧基和羟基将甲基/丙烯酸单体接入从而引入反应双键,来提高其固化活性。而且环氧树脂中的羟基也可以作为接入酸酐的反应点而引入羧基,用碱中和便可得到具有亲水性的树脂。2.1.2 聚氨酯丙烯酸酯聚氨酯丙烯酸酯的制备方法是将带有羟基的丙烯酸酯类单体与异氰酸酯基团反应,引入C=C双键,使之具有UV活性;再用带有羧基的扩链剂对聚氨酯分子链进行扩链;最后经碱中和得到可UV固化的水性聚氨酯丙烯酸酯树脂。聚氨酯分子链上除了含有大量氨基甲酸酯链段外,还含有醚键、酯键、脲键等活性基团,这些结构赋予了聚氨酯材料良好的物理机械性能,优异的弹性、耐寒性、耐有机溶剂及良好的温度适应性,是近年来发展较快的高分子材料。2.1.3 聚丙烯酸酯水性UV固化聚丙烯酸酯体系一般由多种丙烯酸(酯)类单体共聚,并利用共聚物侧链的活性基团,如:羟基、羧基等,与丙烯酸(酯)类单体反应,获得具有不饱和双键的聚丙烯酸酯树脂。这种方法环保且无需分散可直接得到水乳液,但是通常其接枝率比较低,涂膜固化后性能提高,其另一个缺点是此类树脂丙烯酸所含的双键在共聚反应中被消耗,其光固化活性较差。2.1.4 聚酯丙烯酸酯聚酯丙烯酸酯可由聚酯端羟基与丙烯酸酯化或由聚酯端羧基与甲基丙烯酸缩水甘油醚反应而得。其双键位于分子链末端,活性相对较高,同时较低分子量使其易于进行流变调节。在超支化聚酯的末端可以接入丙烯酸酯或聚氨酯丙烯酸酯,得到水基超支化UV固化树脂,可以稳定的分散在水中。2.2 光引发剂光引发剂是光固化涂料的重要组成,是决定紫外光固化涂料是否能够迅速交联固化的关键。与传统油性紫外光固化涂料不同的是用于水性体系的光引发剂必须要与水性环境有一定的相容性,而且挥发性较低,按其产生活性中间体的不同,可分为自由基光引发剂和阳离子型光引发剂两类。自由基光引发剂根据产生自由基的机理不同,又可分为裂解型自由基光引发剂和夺氢型自由基光引发剂两类。裂解型自由基光引发剂从结构上看,多是芳基烷基酮类化合物,主要有安息香及其衍生物、苯偶酰及其衍生物、苯乙酮及其衍生物、酰基膦氧化物等。夺氢型自由基光引发剂多为芳香酮类。阳离子光引发剂包括芳香重氮盐、二芳基碘翁盐、三芳基硫翁盐、二茂铁盐、烷基翁盐、三芳基硅氧醚、磺酰基酮等,其优点是不受O2的影响。较先进的光引发剂固化方式可采用双重固化体系,即通过两个独立的体系完成交联聚合,一个阶段是光固化反应,另一个阶段是暗反应,暗反应包括湿气固化、热固化、氧化固化或厌氧固化反应等。2.3 功能助剂在涂料的实际应用中,为达到应用要求,还需加入各种功能助剂。常见的有助溶剂、润湿剂、分散剂、消泡剂、成膜助剂。助剂可以改变涂料的某些性能,但在使用时不能破坏涂料的稳定性和其耐水性,要控制其用量达到性能平衡和低VOC含量。近年来由于纳米无机粒子其独特的表面界面效应,使纳米复合材料呈现出许多新颖的特点,成为紫外光固化涂料的一个研究热点。刘红波等在紫外光固化涂料中加入无机纳米抗菌剂,制得了抗菌型的木器漆。3·发展方向3.1 超支化体系采用超支化技术可制备多官能度树脂。超支化树脂不仅低熔点、低黏度、易溶解且支链上可含有更多的官能基团,是作为水性光固化树脂的理想材料。超支化低聚物可利用端羟基超支化聚合物与丙烯酸通过酯化反应,或与二异氰酸酯和丙烯酸羟基酯半加成物反应,引入丙烯酸基团,成为光固化超支化低聚物。也可利用端羧基超支化聚合物与甲基丙烯酸缩水甘油酯反应,引入甲基丙烯酸基团制得。3.2 双重固化体系为了改善水性紫外光固化涂料在不透明介质、形状较复杂的部件上的固化性能,可利用杂化的方式合成含有两种不同活性基团的低聚物,开发出兼有两者优良特性的体系。汪存东等以聚氨酯丙烯酸酯为乳化剂制成了紫外光固化的水性环氧丙烯酸酯/聚氨酯丙烯酸酯复合涂料。一方面,通过聚氨酯丙烯酸酯与环氧丙烯酸酯复合改善了涂膜性能;另一方面,由于阴离子型聚氨酯丙烯酸酯本身为一种高分子乳化剂,加入后可使疏水性的环氧丙烯酸酯形成一种稳定的水分散体系。3.3 有机-无机复合体系有机/无机杂化体系在保持有机高分子成膜性、透明性的同时又具有耐溶剂、高硬度及耐磨性的优点,是水性紫外光固化涂料很有前景的一个发展方向。水性紫外光固化体系可以通过直接分散、插层或溶胶/凝胶等手段引入纳米SiO2、蒙脱土等无机粒子,来改善涂层的硬度、耐磨性、耐热性或光学性能等。4·结语随着人们环保意识的不断增强,水性紫外光固化涂料越来越多的进入到人们的生活当中。在国外,已广泛应用于建筑涂料、体育用品、电子通讯等不同领域;在我国它每年都以20%~30%的速度增长,在纸张、木器、塑料、金属、光盘和光纤等基材上获得了很好的应用。当前水性紫外光固化涂料技术不足之处主要包括涂料水分散体系的长期稳定性有待提高,光引发剂品种不多,对于颜料着色涂料,选择余地更小,增设干燥除水装置对该技术的推广应用有不利影响。针对上述问题,我们应加大基础性研究,进一步完善相关技术,使它更大程度的应用到我们的生活当中。参考文献金养智,洪啸吟.紫外光固化涂料的进.涂料工业,1999,29(12):30-33.姚伯龙,罗侃,杨同华.国内外水性紫外光固化涂料的研究进展.涂料技术与文摘,2007,28(11):1-4.李红强,曾幸荣.紫外光固化涂料及其研究进展.涂料技术与文摘,2007,28(4):8-11.殷海龙,卿宁.水性聚氨酯丙烯酸酯紫外光固化低聚物研究进展.化工新型材料,2011,39(4):51-54.周钢,陈建山,奚海,等.紫外光固化光引发剂研究进展.精细化工中间体,2003,33(2):6-8.姚桃花.紫外光固化涂料用光引发剂的研究进展.甘肃石油和化工,2007,(3):8-13.李海燕,谢川.阳离子光引发剂研究进展.信息记录材料,2004,5(4):35-39.丁立朋,李拥军,马兴法.阳离子聚合光引发剂及其阳离子反应机理.热固性树脂,1997(2):47-54.戴洪义,王少君,高学明.用于辐射固化的特种丙烯酸酯单体及其发展动向.山东化工,2000,29(1):25-26.刘红波,李荣先,缪国元.紫外光固化纳米抗菌木器漆.涂料工业,2007,37(5):14-16.汪存东,王久芬.紫外光固化环氧-丙烯酸酯/聚氨酯-丙烯酸酯复合型水性涂料的研制.涂料工业,2005,35(2),1-4.张高文,褚衡,李纯清.水性紫外光固化涂料的研究进展.现代涂料与涂装,2008,11(1):16-19.王坚,苟小青,沈雪峰.水性UV涂料在塑料上的应用.涂料工业,2009,39(11):49-52.何京.UV固化涂料及其发

  • UV固化涂料成分分析

    一、UV固化涂料的低聚物 低聚物又叫寡聚物,也称预聚物,是UV固化涂料的基体树脂,作为骨架在UV固化涂料体系中占有相当大的比例,对体系的基本性能(包括附着力、硬度、柔韧性、耐磨性、耐热性、耐化学药品性、耐久性、光学性能及耐老化性能等)起着决定性作用。UV固化涂料研究和应用较为广泛的低聚物的类型主要有不饱和聚酯,环氧丙烯酸酯和聚氨酯丙烯酸酯等。1.1 环氧丙烯酸酯 环氧丙烯酸酯(Epoxy acrylate,EA)是由环氧树脂和丙烯酸或甲基丙烯酸在催化剂作用下开环酯化而得,按结构类型可分为双酚A环氧丙烯酸酯、酚醛环氧丙烯酸酯、改性环氧丙烯酸酯和环氧化油丙烯酸酯等。EA光固化反应速率较快,固化膜附着力、硬度、强度、光泽度和耐化学药品性好,且价格较低,是光固化产业内消耗量最大的光固化低聚物。EA粘度高,影响施工和流平,固化膜性脆、柔性差、不耐老化,因此改进环氧丙烯酸酯性能的研究一直在进行,如增加低聚物的相对分子质量来减小固化时的收缩率,引入含硅化合物合成了一种预聚物提高涂膜耐热性能,引入柔性长链来克服环氧树脂的脆性等。1.2 聚氨酯丙烯酸酯(PUA) 聚氨酯丙烯酸酯(Polyurethane acrylate,PUA)是由多异氰酸酯的NCO基团和多元醇的羟基反应,并利用含羟基的丙烯酸酯引入光活性基团而得,随分子质量的增大和分子中含有的光反应性基团的增加固化速度加快,是一类重要的光固化低聚物。使PUA具有三维球状结构的星型超支化聚合物正成为研究的热点,该结构与传统的线性聚合物不同,使聚合物具有高官能度、分子间和分子内不缠结等特点,因此该类聚合物活性高、黏度低、溶解性好、官能团易改性等,可以获得合适的施工性能和优良的涂膜性能。虽然PUA价格相对较高,但是聚氨酯丙烯酸酯固化膜具有优异的柔韧性和耐磨性,良好的耐化学药品性和耐冲击性,较好的附着力等优点,所以PUA是用量上紧次于EA的低聚物。1.3 不饱和聚酯 不饱和聚酯(Unsaturated polyester,UPE)是最早用于UV固化涂料的低聚物,是指分子中含有可反应C=C双键的直链或支链状聚酯大分子。在活性自由基引发下发生活泼的乙烯基等单体与UPE共聚,可交联固化网络结构。然而该聚合反应时间长、温度高,且聚合过程的氧阻聚现象较严重,增加了涂膜的黄变,因此应用受到一定的限制。采用超支化技术制备多官能度的不饱和聚酯是解决问题的一个方向。超支化低聚物有独特的三维分子结构,使其具有相溶性好、黏度低和反应活性高等性能,固化膜的收缩率变小,有良好的基材附着性能,并且还能避免使用挥发性活性稀释剂,所以更环保。二、 UV固化涂料的活性稀释剂、光引发剂和助剂及颜填料2.1 活性稀释剂 活性稀释剂是含有可聚合官能团的有机小分子,能够溶解和稀释低聚物,调节体系的粘度,改善施工性能,并可以参与聚合固化成膜,调节光固化速度和固化膜的各种性能,如耐磨、硬度、柔韧性等。1)单官能团活性稀释剂。(甲基)丙烯酸酯等,每个分子仅含有一个可参与固化反应基团,一般具有黏度低、转化率高、固化速率低、体积收缩小、交联密度低等特点。2)双官能团活性稀释剂。含有两个(甲基)丙烯酸酯官能团,对比单官能团活性稀释剂,一般具有良好的稀释性、固化速率加快、交联密度增大等特点。3)多官能团活性稀释剂。含有3个及以上(甲基)丙烯酸酯官能团,一般具有黏度较大、光固化速度快、成膜硬度高等特点。4)阳离子UV固化体系的活性稀释剂。如脂环族环氧树脂、多元醇和乙烯基醚等。在选用活性稀释剂时应考虑如下问题:与低聚物的相容性、稀释能力、固化速度、固化收缩率和对固化涂膜性能的影响等。2.2 光引发剂 光引发剂是光固化体系的关键组分之一,它的性能决定了UV固化涂料的固化速率和固化程度,按反应机理的不同为自由基聚合光引发剂与阳离子聚合光引发剂,自由基光引发剂分为裂解型和夺氢型两种类型。 在UV固化涂料领域使用较多的为小分子自由基光聚合引发剂,其中未反应的光引发剂及光解碎片容易使涂膜老化黄变;还可以使用聚合夺氢型光引发剂,其中光引发剂的不能完全反应也会使涂膜老化黄变。如果将光引发剂大分子化和多官能度(含有2个及以上光化学活性基团),则可以降低光引发剂引起涂膜的黄变。对阳离子光固化体系,适用的低聚物仅有乙烯基醚官能团的树脂、环氧树脂和环氧官能化聚硅氧烷树脂等,使阳离子光固化剂使用受到一定限制。 自由基光引发剂具有低价优势,大多数UV固化涂料采用自由基固化,也有采用阳离子与自由基混合双重UV固化,可以形成互穿网络结构来改善涂膜性能。通过合理利用光引发剂种类和用量以及与光增敏剂配伍技术等,调整固化速率和固化程度,以适应不同的需要。UV固化涂料用于形状复杂的构件时会出现阴影难以固化,用于厚涂层、不透明介质和有色体系的固化也有困难。这些可以用双重固化体系来克服,即通过光固化反应阶段和暗反应(包括热固化、湿气固化、氧化固化或厌氧固化反应等)阶段完成,其中光固化反应使体系快速定型或达到表干,而暗反应使底层部分或阴影部分固化完全。2.3 助剂 在实际UV固化涂料应用中,由于光固化速率较快,除了基本成分外,还要加入各种助剂(包括流平剂、消泡剂、润湿分散剂、偶联剂和消光剂等),以达到使用要求。流平剂的加入可解决UV固化涂料因流平差而产生涂膜表的缺陷等;润湿分散剂和消泡剂的加入可增加产品稳定性和施工性能等;偶联剂的加入可提高施工性能和附着力等。随着UV固化涂料应用领域不断拓展,为满足被涂物件的使用要求,可供选用的助剂还有消光剂、热阻聚剂、增感剂、稳定剂等。2.4 颜填料 为配制UV固化有色涂料,还要加入颜填料。1)颜料。颜料对涂料性能的影响应引起注意,许多颜料(如炭黑、铁黄等)会散射或吸收UV辐射阻碍了UV固化。颜料在涂膜表面与涂膜深处对UV吸也收存在较大差别,可能会导致表面与底部固化不同步引起涂膜收缩起皱,因此要选择与体系配套颜料。2)填料。试验表明滑石粉和碳酸钙等可作UV固化涂料的填料。一些纳米填料的加入,使涂膜耐磨性、抗菌性、抗老化性、柔韧性和光泽度得到显著提高。南京蓝大飞秒检测竭诚为您服务 联系人 :王老师 TEL 18061750890(同微信号) QQ 1683131911

  • 【求助】固化剂可否进样

    单位6890机器,一直是检测溶剂的。我现在想检测固化剂(比水稍微浓点的混合溶剂,成分是异氰酸酯,二甲苯,芳香烃等)是否可以进样?

  • 【原创大赛】光固化丙烯酸树脂

    本实验目的及意义:近年来,水基涂料因其绿色环保的优点越来越多地应用于涂料涂装行业,其最大的优点是不含有挥发性的有机溶剂,降低了有机溶剂挥发物(VOC)的量,不会损害人体的健康,满足涂层无毒的要求,属于环保型涂料。相对于其他类型的涂料,光固化涂料具有高效、经济、节能、适应性广、环境友好等优点。光固化涂料通常可以在几秒的时间内固化,固化所需的能量小,UV光固化依需要可涂装多种基材,如木材、金属、塑料、纸张、皮革等,光固化涂料基本不含挥发性溶剂,具有环境友好的特点。因此将水性涂料与光固化涂料的优点结合起来的涂料将具有更加优良的性能。本文中介绍一种光固化的丙烯酸树脂用于涂料涂装,其制备方法如下:实验原料:己二酸、环氧E51、丙烯酸合成方法:将己二酸和环氧E51以及丙烯酸按照摩尔比为3:5:1加入三口瓶中,升温至140℃,搅拌,反应4-5h;将反应完全的丙烯酸树脂倒入准备好的塑料模具中,使树脂铺满模具底板,加入光引发剂2959,在350nm紫外光下照射30s,树脂即固化完全,在塑料模具底板上形成均匀的涂料层,用手指触之,涂层指干。

  • 钢厂烧结烟气和燃煤电厂烟气有何不同之处?

    钢厂烧结烟气的成分复杂,除含有二氧化硫、粉尘外,还有重金属、二恶英、氮氧化物等成分;烧结烟气中二氧化硫浓度也变化很大,在400~5000mg/Nm3之间波动,烟气量波动也很大。燃煤电厂烟气中二氧化硫浓度稳定不稳定呢?有没有做过此项目监测的同行来传授下实战经验!

  • 【分享】UV紫外线光固化导电胶、光固化导电胶简介和应用

    UV紫外线光固化导电胶、光固化导电胶简介和应用一、UV紫外线光固化导电胶简介 Uninwell国际的UV紫外线光固化导电胶是是由光敏高分子聚合物、反应性稀释单体、导电粒子、光和热引发剂、抗氧剂经混合、研磨制成。其中光敏高分子聚合物为环氧丙烯酸树脂或/和聚氨酯丙烯酸酯;反应性稀释单体为丙烯酸的单、双、多关能团单体;导电粒子为银粉、铜粉或镀银铜粉;光引发剂为α-胺烷基丙酮、安息香(或取代安息香)醚或酰基膦化物;热引发基为偶氮化合物或过氧化合物;抗氧基为对苯二酚、对羟基苯甲醚、2、6-二叔丁基-4-甲基酚等。可以广泛用于触摸屏、CSP、FPC、FPC/ITO glass、PET/ITOglass、PET/PET、倒装芯片(Flipchip)、液晶显示(LCD)、TP、射频识别(RFID)、薄膜开关、EL backlight terminals等领域的快速粘结导电。也可以满足聚酯、薄膜电路、PCB电路板等微电子封装技术的需要。由于UV紫外线光固化导电胶具有光化学敏感性, 可以极大提高生产效率;施工安全:没有溶剂参与,有利环境;产品固化温度低,尤以对热敏材料使用为优,且能解决深层固化;固化能耗低,节省成本;固化后有良好的粘着性、耐溶剂性;粘接强度高、电阻率低;并且适于自动化流水线大规模生产。Uninwell国际的光敏导电胶、FPD感光银浆、FPD光刻浆料、LCD导电银浆、PDP导电银浆、触摸屏导电胶、TP银胶在LCM模组、PFD(平板显示器)、液晶显示(LCD)、等离子显示(PDP)、电致发光显示(ELD)、有机电致发光显示(OLED)、场发射显示(FED)、投影显示等领域都有成功的案例。二、在平面显示领域中的应用 在平板显示器(FPD)技术中的应用近几年FPD技术发展迅猛,尤其是液晶显示器(LCD)具有低电压、低功耗的优点,应用几乎覆盖所有显示应用领域,已开始取代阴极射线管,成为FPD中的主导产品。 LCD由8大类材料组成,即透明电极玻璃、液晶、取向剂、光刻胶、偏振片、导电胶、粘合剂及清洗剂。其中,光刻胶在FPD加工技术中主要用于制作显示器像素、电极、障壁、荧光粉点阵等。早先,制作FPD的液晶滤色器、像素、电极、障壁、荧光粉点阵等都采用厚膜印刷工艺,即将印有液晶滤色器或像素、电极、障壁、荧光粉点阵的图形先复印在丝网漏模上,然后将所需浆料丝网印刷至玻璃基板上,无论是制液晶滤色器、像素、电极,还是障壁、荧光粉点阵,都需要重复丝印十多次才能达到几十微米至一百微米以上的厚度。由于丝网漏模是由金属细丝网状编织而成,其尺寸愈大,则愈易弯曲或扭曲,精度误差大,制成的液晶滤色器、像素、电极、障壁、荧光粉点阵表面粗糙、边缘不整,图形精度和定位精度差。因此,为了制做大屏幕、高分辨率平板显示器,必须通过采用光刻加工技术来实现。近年来,业界针对平面显示器的快速发展需求,已经研制并规模生产出TN/STN LCD专用正型光刻胶。 在平板显示器中,除LCD之外,近年了PDP(等离子显示器)和EL(电致发光)也发展很快。业界专家预测,在15吋以下的FPD中,液晶技术将受到有机EL、FED(场致发光显示)等技术的严重挑战,但仍可望继续占据主导地位;而在60吋以上大屏幕显示领域,目前仍以PDP优势明显。  随着FPD行业的迅速发展,大屏幕显示屏制作要求越来越高。由于在显示大幅面细腻的彩色图像时,需要具备高达数十万的像素,因而要求FPD的加工过程必须运用光刻技术来完成液晶滤色器、像素、电极、障壁、荧光粉点阵等具有高、精、细线条的图形制作,专用光刻胶(或光刻浆料)的研制开发已经迫在眉睫,如用于TFT-LCD加工技术的彩色液晶三色感光剂,用于彩色PDP加工技术的彩色PDP专用光刻浆料(制作电极的黑色光刻银浆和光刻导电银浆、制作障壁的耐喷砂光致抗蚀剂、制作荧光粉点阵的三基色荧光粉光刻浆料)等等。 [em0808]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制