化学气象沉积设备

仪器信息网化学气象沉积设备专题为您提供2024年最新化学气象沉积设备价格报价、厂家品牌的相关信息, 包括化学气象沉积设备参数、型号等,不管是国产,还是进口品牌的化学气象沉积设备您都可以在这里找到。 除此之外,仪器信息网还免费为您整合化学气象沉积设备相关的耗材配件、试剂标物,还有化学气象沉积设备相关的最新资讯、资料,以及化学气象沉积设备相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

化学气象沉积设备相关的厂商

  • 北京创诚科技有限公司是一家集研发,生产,销售,服务于一体,公司以技术创造格局,质量诚服客户为经营理念,不断进取,追求卓越,努力成为真空行业首屈一指的整体解决方案的供应商。 主要产品:电阻蒸发镀膜机,磁控溅射镀膜机,CVD化学气象沉积设备,真空镀膜机系列,手套箱,真空手套箱,非标定制等。产品用于高校物理实验室,化学实验室,大学科研,各大研究所及军工企业等高新技术企业。 北京创诚科技有限公司自成立以来,一直专注于真空设备的研发、制造,集真空镀膜设备、真空应用设备等相关设备及工艺的研发、制造、销售、服务于一体的高新技术企业。并于国内外多家著名的公司和科研院校建立了长期,友好的合作关系,公司技术不断完善,稳步发展,逐渐壮大。多年来,北京创诚科技有限公司恪守“质量第一、客户至上”的服务宗旨,遵循“优质、高效、团结、奉献的工作态度,为社会创造了一大批优质精品工程。 企业宗旨:技术创造格局,质量诚服客户 企业精神:诚信为本,创新为魂 企业文化:以创新为源,以质量为根,以服务为本
    留言咨询
  • 400-860-5168转6134
    南通宏腾微电子技术有限公司(NTHT Semiconductor Technologies Limited)是一家专业的微纳材料、半导体和微电子材料及器件研发仪器及设备的供应商。南通宏腾微电子技术有限公司所销售的仪器设备广泛用于高校、研究所、以及半导体和微电子领域的高科技企业。南通宏腾微电子目前代理的主要产品包括: - 霍尔效应测试仪; - 快速退火炉; - 回流焊炉,共晶炉,钎焊炉,真空烧结炉; - 电子束蒸发镀膜机,热蒸发镀膜机 - 探针台,低温探针台,微探针台; - 金刚石划片机; - 球焊机,锲焊机; - 磁控溅射镀膜机; - 原子层沉积系统,等离子增强原子层沉积设备; - 电化学C-V剖面浓度分析仪(ECV Profiler); - 扫描开尔文探针系统; - 光学膜厚仪;-PECVD\CVD;-脉冲激光沉积系统-PLD-纳米压印;-等离子清洗机、去胶机;-反应离子刻蚀RIE - 光刻机、无掩膜光刻机; - 匀胶机; - 热板,烤胶板; -少子寿命、太阳能模拟器;-NMR-瞬态能谱仪-外延沉积-等离子清洗机光刻胶光刻机(针尖/电子束光刻机EBL,紫外光刻机,激光直写光刻机),镀膜机(磁控溅射机,电子束蒸发机,化学沉积机,微波等离子沉积机,原子层沉积机 等等…
    留言咨询
  • 400-860-5168转3241
    载德半导体技术有限公司是专业的半导体及微电子领域仪器设备供应商,载德所代理的仪器设备广泛用于高校、研究所、半导体高新企业。载德半导体技术有限公司目前代理的主要产品包括: - 霍尔效应测试仪(Hall Effect Measurement System); - 快速退火炉(RTP); - 回流焊炉,真空烧结炉(Reflow Solder System); - 探针台(Probe Station),低温探针台(Cryogenic Probe Station); - 贴片机(Die Bonder),划片机(Scriber),球焊机/锲焊机(Wire Bonder); - 原子层沉积系统(ALD),等离子增强原子层沉积设备(PEALD); - 磁控溅射镀膜机(Sputter),电子束蒸发镀膜机(E-beam Evaporator),热蒸发镀膜机(Thermal Evaporator),脉冲激光沉积系统(PLD) - 低压化学气相沉积系统(LPCVD),等离子增强化学气相沉积系统(PECVD),快速热化学气相沉积系统(RTCVD); - 反应离子刻蚀机(RIE),ICP刻蚀机,等离子体刻蚀机; - 加热台、热板、烤胶台 (Hot Chuck / Hot Plate); - 扫描开尔文探针系统(Kelvin Probe),光反射膜厚仪(Reflectometer); 等等...
    留言咨询

化学气象沉积设备相关的仪器

  • 等离子体增强型CVD设备 PD-2201LC节省空间的生产系统概要PD-2201LC 是一种盒式装载等离子体增强化学气相沉积 (PECVD) 设备,能够沉积硅基薄膜(氧化硅、氮化硅、氧氮化硅和非晶硅)。该系统在节省空间的前提下提供了PECVD的所有标准功能。可在直径220毫米的区域内沉积具有优异厚度均匀性和应力控制的薄膜,并具有优异的稳定性和可重复性。用户友好的触摸屏界面,用于参数控制和配方存储。该系统是大规模生产用薄膜沉积的理想选择,具有优异的重复性。主要特点和优点最大加工范围:ø 220 mm (ø 3" x 5, ø 4" x 3, ø 8" x 1)优异的均匀性和应力控制卓越的工艺稳定性和可重复性坚固的系统,最低的运行/维护成本用户友好的触摸屏界面,用于参数控制和配方存储PD-2201LC设计时尚、节省空间,只需最小的洁净室空间双频(13.56 MHz + 400 kHz)PECVD,用于卓越的过程控制应用SiH4-SiNxSiH4-SiO2液体前驱体(SN-2)SiNx。TEOS-SiO2
    留言咨询
  • 化学气相沉积 LPCVD设备是在低压高温的条件下,通过化学反应气相外延的方法在衬底上沉积各种功能薄膜(主要是Si3N4、SiO2及Poly硅薄膜)。可用于科学研究、实践教学、小型器件制造。LPCVD设备结构及特点:1、小型化,方便实验室操作和使用,大幅降低实验成本两种基片尺寸2英寸或4英寸;每次装片1~3片。基片放置方式:配置三种基片托架,竖直、水平卧式、带倾角。基片形状类型:不规则形状的散片、φ2~4英寸标准基片。2、设备为水平管卧式结构由石英管反应室、隔热罩炉体柜、电气控制系统、真空系统、气路系统、温控系统、压力控制系统及气瓶柜等系统组成。反应室由高纯石英制成,耐腐蚀、抗污染、漏率小、适合于高温使用;设备电控部分采用了先进的检测和控制系统,量值准确,性能稳定、可靠。LPCVD设备主要技术指标 类型参数 成膜类型 Si3N4、Poly-Si、SiO2等 最高温度 1200℃ 恒温区长度 根据用户需要配置 恒温区控温精度 ≤±0.5℃ 工作压强范围 13~1330Pa 膜层不均匀性 ≤±5% 基片每次装载数量 标准基片:1~3片 不规则尺寸散片:若干 压力控制 闭环充气式控制 装片方式 手动进出样品生产型LPCVD设备设备功能该设备是在低压高温的条件下,通过化学反应气相外延的方法在衬底上沉积各种功能薄膜(主要是Si3N4、SiO2及Poly硅薄膜)。可提供相关镀膜工艺。设备结构及特点设备为水平管卧式结构,由石英管反应室、隔热罩炉体柜、电气控制系统、真空系统、气路系统、温控系统、压力控制系统及气瓶柜等系统组成。反应室由高纯石英制成,耐腐蚀、抗污染、漏率小、适合于高温使用;设备电控部分采用了先进的检测和控制系统,量值准确,性能稳定、可靠。整个工艺过程由计算机对全部工艺流程进行管理,实现炉温、气体流量、压力、阀门动作、泵的启闭等工艺参数进行监测和自动控制。也可以手动控制。设备主要技术指标 类型参数 成膜类型Si3N4、Poly-Si、SiO2等 最高温度 1200℃ 恒温区长度 根据用户需要配置 恒温区控温精度 ≤±0.5℃ 工作压强范围 13~1330Pa 膜层不均匀性 ≤±5% 基片每次装载数量 100片 设备总功率 16kW 冷却水用量 2m3/h 压力控制 闭环充气式控制 装片方式 悬臂舟自动送样软件控制界面 关于鹏城半导体鹏城半导体技术(深圳)有限公司(简称:鹏城半导体),由哈尔滨工业大学(深圳)与有多年实践经验的工程师团队共同发起创建。公司立足于技术前沿与市场前沿的交叉点,寻求创新引领与可持续发展,解决产业的痛点和国产化难题,争取产业链的自主可控。公司核心业务是微纳技术与高端精密制造,具体应用领域包括半导体材料、半导体工艺和半导体装备的研发设计和生产制造。公司人才团队知识结构完整,有以哈工大教授和博士为核心的高水平材料研究和工艺研究团队;还有来自工业界的高级装备设计师团队,他们具有20多年的半导体材料研究、外延技术研究和半导体薄膜制备成套装备设计、生产制造的经验。公司依托于哈尔滨工业大学(深圳),具备先进的半导体研发设备平台和检测设备平台,可以在高起点开展科研工作。公司总部位于深圳市,具备半导体装备的研发、生产、调试以及半导体材料与器件的中试、生产、销售的能力。公司已投放市场的部分半导体设备|物理气相沉积(PVD)系列磁控溅射镀膜机、电子束镀膜机、热蒸发镀膜机,离子束溅射镀膜机、磁控与离子束复合镀膜机|化学气相沉积(CVD)系列MOCVD、PECVD、LPCVD、热丝CVD、ICPECVD、等离子刻蚀机、等离子清洗机|超高真空系列分子束外延系统(MBE)、激光分子束外延系统(LMBE)|OLED中试设备(G1、G2.5)|其它金刚石薄膜制备设备、硬质涂层设备、磁性薄膜设备、电极制备设备、合金退火炉|太阳能薄膜电池设备(PECVD+磁控溅射)团簇式太阳能薄膜电池中试线团队部分业绩分布完全自主设计制造的分子束外延(MBE)设备,包括自主设计制造的MBE超高真空外延生长室、工艺控制系统与软件、高温束源炉、高温样品台、Rheed原位实时在线监控仪(反射高能电子衍射仪)、直线型电子枪、膜厚仪(可计量外延生长的分子层数)、射频源等关键部件。真空度达到2×10-8Pa。设备于2005年在浙江大学光学仪器国家重点实验室投入使用,至今仍在正常使用。设计制造磁控溅射与等离子体增强化学气相沉积法PECVD技术联合系统,应用于团簇式太阳能薄膜电池中试线。使用单位中科院电工所。设计制造了金刚石薄膜制备设备,应用于金刚石薄膜材料的研究与中试生产设备。现使用单位中科院金属研究所。设计制造了全自动磁控溅射设备,可加水平磁场和垂直磁场,自行设计的真空机械手传递基片。应用于高密度磁记录材料与器件的研究和中试。现使用单位国家光电实验室。设计制造了OLED有机半导体发光材料及器件的研究和中试成套装备。现使用单位香港城市大学先进材料实验室。设计制造了MOCVD及合金退火炉,用于GaN和ZnO的外延生长,实现LED无机半导体发光材料与器件的研究和中试。现使用单位南昌大学国家硅基LED工程技术研究中心。设计制造了磁控溅射研究型设备。现使用单位浙江大学半导体所。设计制造了电子束蒸发仪研究型设备。现使用单位武汉理工大学。团队在第三代半导体装备及工艺方面的技术积累2001年与南昌大学合作设计了中试型的全自动化监控的MOCVD,用于外延GaN和ZnO。2005年 与浙江大学光学仪器国家重点实验室合作设计制造了第一台完全自主知识产权的分子束外延设备,用于外延光电半导体材料。2006年 与中国科技大学合作设计超高温CVD 和MBE。用于4H晶型SiC外延生长。2007年 与兰州大学物理学院合作设计制造了光学级金刚石生长设备(采用热激发技术和CVD技术)。2015年 中科院金属研究所沈阳材料科学国家(联合)实验室合作设计制造了金刚石薄膜制备,制备了金刚石电极、微米晶和纳米晶金刚石薄膜、导电金刚石薄膜。2017年-优化Rheed设计,开始生产型MBE设计。-开始研制PVD方法外延GaN的工艺和装备,目前正在进行设备工艺验证。2019年 设计制造了大型热丝CVD金刚石薄膜的生产设备。2021年 MBE生产型设计。2022年 大尺寸金刚石晶圆片制备(≥Φ6英寸)。2023年 PVD方法外延氮化镓装备与工艺攻关。
    留言咨询
  • 等离子沉积设备SI 500 D 高密度等离子体SI 500 D具有优异的等离子体特性,如高密度,低离子能量和低压等离子沉积介质膜。平行板ICP等离子体源SENTECH专利特有的平行板三螺旋天线(PTSA)ICP等离子体源实现了低功率耦合。优异的沉积性能低刻蚀速率,高击穿电压,低应力、不损伤衬底以及在低于100°C的沉积温度下的低界面态密度,使得所沉积的薄膜具有优异的性能。动态温度控制动态温度控制结合氦气背冷的衬底电极,以及衬底背面温度传感在从室温到+350°C的广泛温度范围内提供了优异稳定工艺条件。 SI 500 D等离子沉积设备代表了等离子体增强化学气相沉积的前沿技术,如介质膜、a-Si、SiC和其他材料。它基于PTSA等离子体源、独立的反应气体进气口、动态温度控制衬底电极、全自动控制的真空系统、采用远程现场总线技术的先进SENTECH控制软件,以及操作SI 500 D的用户友好的通用用户界面。SI 500 D等离子沉积设备可以加工各种各样的衬底,从直径高达200 mm的晶片到装载在载片器上的零件。单晶片预真空室保证了稳定的工艺条件,并实现在不同工艺之间的便捷切换。SI 500 D等离子增强沉积设备用于在从室温到350℃的温度范围内沉积SiO2、SiNx、SiONx和a-Si薄膜。通过液态或气态前驱体,SI 500 D可以为TEOS, SiC,和其它材料的沉积提供解决方案。SI 500 D特别适用于在低温下在有机材料上沉积保护层和在既定的温度下无损伤地沉积钝化膜。SENTECH提供不同级别的自动化程度,从真空片盒载片到一个工艺腔室或六个工艺模块端口,可用于不同的蚀刻和沉积工艺模块组成多腔系统,目标是高灵活性或高产量。SI 500 D也可用作多腔系统中的一个工艺模块。 SI 500 D ICPECVD等离子沉积设备 带预真空室 适用于200mm的晶片 衬底温度从室温到350?°C 激光终点检测 备选电极偏置
    留言咨询

化学气象沉积设备相关的资讯

  • 1-11月进口额已达318亿元:化学气相沉积设备进口数据盘点
    化学气相沉积(Chemical Vapor Deposition 简称CVD) 是利用气态或蒸汽态的物质在气相或气固界面上发生反应生成固态沉积物的过程。化学气相沉积过程分为三个重要阶段:反应气体向基体表面扩散、反应气体吸附于基体表面、在基体表面上发生化学反应形成固态沉积物及产生的气相副产物脱离基体表面。最常见的化学气相沉积反应有:热分解反应、化学合成反应和化学传输反应等。通常沉积TiC或TiN,是向850~1100℃的反应室通入TiCl4,H2,CH4等气体,经化学反应,在基体表面形成覆层。如今,化学气相沉积被大量应用于半导体领域中。2021年是“十四五”开局之年,中国政府也推出了一系列激励政策来鼓励半导体产业发展,明确了半导体产业在产业升级中的重要地位,同时全球自2020年爆发的“芯片荒”在全球范围内愈演愈烈,却迟迟得不到缓解,各行各业都受到了一定的影响,受此影响包括仪器产业、新能源产业等在内的诸多产业都面临产品涨价、缺货的危机。危中有机,全球半导体行业的巨震却是中国半导体产业的发展契机。通过分析海关化学气相沉积设备的进口情况,可以从一个侧面反映出中国化学气相沉积设备市场的一些情况,进而了解到中国半导体产业的一些情况。海关统计中,根据化学气相沉积设备的应用领域将其分为制造半导体器件或IC的化学气相沉积装置 (84862021)和制造平板显示器用的化学气相沉积设备(CVD)(84863021)。 为了解2021年化学气相沉积设备的进出口情况,仪器信息网特别对2021年1-11月,化学气相沉积设备(商品编码84862021、84863021)进口数据进行了分析汇总,为大家了解中国目前化学气相沉积设备市场做一个参考。2021年1-11月化学气相沉积设备进口额变化(人民币/万元)2021年1-11月化学气相沉积设备进口数据商品名称进口额/元数量/台均价制造半导体器件或IC的化学气相沉积装置25,588,916,599181914067574制造平板显示器用的化学气相沉积设备(CVD)6,182,288,9799664398844总计31,771,205,57819152021年1-11月,中国进口化学气相沉积设备总额约318亿元,总台数达1915台,其中绝大部分用于制造半导体器件和集成电路,此类设备多达1819台,总额达256亿元,占比高达81%。可以看出,目前影响CVD设备进口的主要取决于半导体器件与集成电路制造。从此前统计的【进口数量同比增长68%:2021上半年CVD设备海关进口数据盘点】可以看出,2020年1-12月,我国共进口化学气相沉积设备1150台,进口额约为186亿元,而今年仅前十一个月就已远超去年全年的进口额。这表明,今年我国晶圆代工厂的建设热度不减,这也和如今的半导体投资热、芯片荒有关。2021年1-11月进口化学气相沉积设备贸易伙伴变化(人民币/万元)从进口CVD设备的贸易伙伴分布可以看出,主要进口的贸易伙伴为新加坡、中国台湾和韩国。新加坡处在马六甲海峡,扼太平洋及印度洋之间的航运要道,是全球海运的几大必经路线之一,战略地位十分重要——早在新加坡建国之前,“新加坡港”已发展成为国际著名的转口港。世界各国的将需要出口的货物运输到新加坡港,存放几天或几十天(其中20%的堆存时间仅为1天),然后再转运到进口国。由于新加坡的自由贸易港,通过新加坡的“转口贸易”可变成躲避贸易制裁的有效方式之一。从新加坡进口CVD可能是为了规避以美国为首的西方集团对我国日益收紧的高端装备进口限制。而从台湾进口的CVD主要用于制造平板显示器,从图中可以看出,中国台湾在平板显示器用CVD进口占比高达95%,而在集成电路或半导体器件制造中,仅占2%。用于半导体器件和集成电路制造的CVD中,主要来源为新加坡、韩国、美国和日本。 2021年1-11月化学气相沉积设备各注册地进口数据变化(单位/万元)那么这些化学气相沉积设备主要销往何处?通过对进口数据的注册地进行分析发现,陕西省、上海市、湖北省、江苏省和安徽省进口额最多,分列前五名。这些地区的化学气相沉积主要用于集成电路或半导体器件生产中,这表明这些地区在新建或改造集成电路生产线上投入较大,对半导体设备的需求也在激增。实际上,我国在1-11月从韩国进口的化学气相沉积设备主要的注册地就是陕西省,这可能和三星等韩国企业在西安的半导体生产线有关。而在平板显示器用CVD的注册地分布中可以看出,重庆市独占鳌头,这可能和京东方在重庆的生产线有关,京东方是我国面板产业的龙头企业,其对进口额影响较大。而福建省进口平板显示器用CVD仅次于重庆,这可能与位于厦门的天马微电子有关。重点商品化学气相沉积有哪些重点商品呢?对此,笔者查阅了海关总署,发现重点商品主要有4款,都属于84862021编号。商品1:K465i金属有机物化学气相淀积设备该商品由手套箱系统、反应腔、气体系统、电源及控制系统、真空系统、冷却水和气动系统、安全控制系统等组成。功能是在衬底表面生长一层或多层半导体薄膜。工作原理是通过控制通入反应腔气体的种类、流量和反应腔内的温度、压力,从而在衬底表面生长出不同工艺要求的半导体薄膜。进口后用于LED制造的外延片加工工序。该产品是由Veeco推出的TurboDisc.K465i,是一款用于生产高亮度LED(HB LED)的氮化镓(GaN) 金属有机化学气相沉淀(MOCVD)设备,2016年经过LED产业内的Veeco 用户试用后, K465i很快获得量产认可。商品2:|Oerlikon Solar|KAI MT 化学气相沉积装置该化学气相沉积装置主要用于太阳能电池组件导电层的镀膜。工作原理:该装置内部的传输机械手将玻璃基板传送到薄膜沉积模块中,在一定的温度、压强下,等离子体发生器在反应室内产生射频电压,将工艺气体电离成原子、分子、原子团形式的带电荷粒子混合状态,经过离子碰撞后使之发生化学反应,沉积成一层非晶硅或者微晶硅薄膜在玻璃基板表面。商品3:|CENTROTHERM|E2000-HT 410-4等离子化学气相沉积装置该产品是太阳能电池生产线用|在半导体表层沉积氮化硅膜。商品4:铂阳|无型号|PECVD化学气相沉积设备PECVD化学气相沉积设备:离解化学气体,在玻璃基板上产生化学反应,生长薄膜/ 250MW硅基薄膜太阳能自动化生产线。
  • 十一种化学气相沉积(CVD)技术盘点
    CVD(化学气相沉积)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。化学气相沉积法是传统的制备薄膜的技术,其原理是利用气态的先驱反应物,通过原子、分子间化学反应,使得气态前驱体中的某些成分分解,而在基体上形成薄膜。化学气相沉积包括常压化学气相沉积、等离子体辅助化学沉积、激光辅助化学沉积、金属有机化合物沉积等。不过随着技术的发展,CVD技术也不断推陈出新,出现了很多针对某几种用途的专门技术,在此特为大家盘点介绍一些CVD技术。等离子体增强化学气相沉积(PECVD)等离子体增强化学气相沉积是在化学气相沉积中,激发气体,使其产生低温等离子体,增强反应物质的化学活性,从而进行外延的一种方法。该方法可在较低温度下形成固体膜。例如在一个反应室内将基体材料置于阴极上,通入反应气体至较低气压(1~600Pa),基体保持一定温度,以某种方式产生辉光放电,基体表面附近气体电离,反应气体得到活化,同时基体表面产生阴极溅射,从而提高了表面活性。在表面上不仅存在着通常的热化学反应,还存在着复杂的等离子体化学反应。沉积膜就是在这两种化学反应的共同作用下形成的。激发辉光放电的方法主要有:射频激发,直流高压激发,脉冲激发和微波激发。等离子体增强化学气相沉积的主要优点是沉积温度低,对基体的结构和物理性质影响小;膜的厚度及成分均匀性好;膜组织致密、针孔少;膜层的附着力强;应用范围广,可制备各种金属膜、无机膜和有机膜。【市场分析】上海市采购量独占鳌头——半导体仪器设备中标市场盘点系列之CVD篇高密度等离子体化学气相淀积(HDP CVD)HDP-CVD 是一种利用电感耦合等离子体 (ICP) 源的化学气相沉积设备,是一种越来越受欢迎的等离子体沉积设备。HDP-CVD(也称为ICP-CVD)能够在较低的沉积温度下产生比传统PECVD设备更高的等离子体密度和质量。此外,HDP-CVD 提供几乎独立的离子通量和能量控制,提高了沟槽或孔填充能力。但是,HDP-CVD 配置的另一个显著优势是,它可以转换为用于等离子体刻蚀的 ICP-RIE。 在预算或系统占用空间受限时,优势明显。听起来可能很奇怪。但是这两种类型的工艺确实可以在同一个系统中运行。虽然存在一些内部差异,例如额外的气体入口,但两种设备的核心结构几乎完全相同。在HDP CVD工艺问世之前,大多数芯片厂普遍采用PECVD进行绝缘介质的填充。这种工艺对于大于0.8微米的间隔具有良好的填孔效果,然而对于小于0.8微米的间隙,PECVD工艺一步填充具有高的深宽比的间隔时会在间隔中部产生夹断和空洞。在探索如何同时满足高深宽比间隙的填充和控制成本的过程中诞生了HDP CVD工艺,它的突破创新之处在于,在同一个反应腔中同步地进行沉积和刻蚀工艺。微波等离子化学气相沉积(MPCVD)微波等离子化学气相沉积技术(MPCVD)适合制备面积大、均匀性好、纯度高、结晶形态好的高质量硬质薄膜和晶体。MPCVD是制备大尺寸单晶金刚石有效手段之一。该方法利用电磁波能量来激发反应气体。由于是无极放电,等离子体纯净,同时微波的放电区集中而不扩展,能激活产生各种原子基团如原子氢等,产生的离子的最大动能低,不会腐蚀已生成的金刚石。通过对MPCVD沉积反应室结构的结构调整,可以在沉积腔中产生大面积而又稳定的等离子体球,因而有利于大面积、均匀地沉积金刚石膜,这一点又是火焰法所难以达到的,因而微波等离子体法制备金刚石膜的优越性在所有制备法中显得十分的突出。微波电子回旋共振等离子体化学气相沉积(ECR-MPCVD)在MPCVD中为了进一步提高等离子体密度,又出现了电子回旋共振MPCVD(Electron Cyclotron Resonance CVD,简称ECR-MPCVD)。由于微波CVD在制备金刚石膜中的独有优势,使得研究人员普遍使用该方法制备金刚石膜,通过大量的研究,不仅在MPCVD制备金刚石膜的机理上取得了显著的成果,而且用CVD法制备的金刚石膜也广泛的用于工具、热沉、光学、高温电子等领域的工业研究与应用。超高真空化学气相沉积(UHV/CVD)超高真空化学气相沉积(UHV/CVD)是制备优质亚微米晶体薄膜、纳米结构材料、研制硅基高速高频器件和纳电子器件的关键的先进薄膜技术。超高真空化学气相沉积技术发展于20世纪80年代末,是指在低于10-6 Pa (10-8 Torr) 的超高真空反应器中进行的化学气相沉积过程,特别适合于在化学活性高的衬底表面沉积单晶薄膜。石墨烯就是可以通过UHV/CVD生产的材料之一。与传统的气相外延不同,UHV/CVD技术采用低压和低温生长,能够有效地减少掺杂源的固态扩散,抑制外延薄膜的三维生长。UHV/CVD系统反应器的超高真空避免了Si衬底表面的氧化,并有效地减少了反应气体所产生的杂质掺入到生长的薄膜中。在超高真空条件下,反应气分子能够直接传输到衬底表面,不存在反应气体的扩散及分子间的复杂相互作用,沉积过程主要取决于气-固界面的反应。传统的气相外延中,气相前驱物通过边界层向衬底表面的扩散决定了外延薄膜的生长速率。超高真空使得气相前驱物分子直接冲击衬底表面,薄膜的生长主要由表面的化学反应控制。因此,在支撑座上的所有基片(衬底)表面的气相前驱物硅烷或锗烷分子流量都是相同的,这使得同时在多基片上实现外延生长成为可能。低压化学气相沉积(LPCVD)低压化学气相沉积法(Low-pressure CVD,LPCVD)的设计就是将反应气体在反应器内进行沉积反应时的操作压力,降低到大约133Pa以下的一种CVD反应。LPCVD压强下降到约133Pa以下,与此相应,分子的自由程与气体扩散系数增大,使气态反应物和副产物的质量传输速率加快,形成薄膜的反应速率增加,即使平行垂直放置片子片子的片距减小到5~10mm,质量传输限制同片子表面化学反应速率相比仍可不予考虑,这就为直立密排装片创造了条件,大大提高了每批装片量。以LPCVD法来沉积的薄膜,将具备较佳的阶梯覆盖能力,很好的组成成份和结构控制、很高的沉积速率及输出量。再者LPCVD并不需要载子气体,因此大大降低了颗粒污染源,被广泛地应用在高附加价值的半导体产业中,用以作薄膜的沉积。LPCVD广泛用于二氧化硅(LTO TEOS)、氮化硅(低应力)(Si3N4)、多晶硅(LP-POLY)、磷硅玻璃(BSG)、硼磷硅玻璃(BPSG)、掺杂多晶硅、石墨烯、碳纳米管等多种薄膜。热化学气相沉积(TCVD)热化学气相沉积(TCVD)是指利用高温激活化学反应进行气相生长的方法。广泛应用的TCVD技术如金属有机化学气相沉积、氯化物化学气相沉积、氢化物化学气相沉积等均属于热化学气相沉积的范围。热化学气相沉积按其化学反应形式可分成几大类:(1)化学输运法:构成薄膜物质在源区与另一种固体或液体物质反应生成气体.然后输运到一定温度下的生长区,通过相反的热反应生成所需材料,正反应为输运过程的热反应,逆反应为晶体生长过程的热反应。(2)热解法:将含有构成薄膜元素的某种易挥发物质,输运到生长区,通过热分解反应生成所需物质,它的生长温度为1000-1050摄氏度。(3)合成反应法:几种气体物质在生长区内反应生成所生长物质的过程,上述三种方法中,化学输运法一般用于块状晶体生长,分解反应法通常用于薄膜材料生长,合成反应法则两种情况都用。热化学气相沉积应用于半导体材料,如Si,GaAs,InP等各种氧化物和其它材料。高温化学气相沉积(HTCVD)高温化学气相沉积是碳化硅晶体生长的重要方法。HTCVD生长碳化硅晶体是在密闭的反应器中,外部加热使反应室保持所需要的反应温度(2000℃~2300℃)。高温化学气相沉积是在衬底材料表面上产生的组合反应,是一种化学反应。它涉及热力学、气体输送及膜层生长等方面的问题,根据反应气体、排出气体分析和光谱分析,其过程一般分为以下几步:混合反应气体到达衬底材料表面;反应气体在高温分解并在衬底材料表面上产生化学反应生成固态晶体膜;固体生成物在衬底表面脱离移开,不断地通入反应气体,晶体膜层材料不断生长。中温化学气相沉积(MTCVD)MTCVD硬质涂层工艺技术,在20世纪80年代中期就已问世,但在当时并没有引起人们的重视,直到20世纪90年代中期,世界上主要硬质合金工具生产公司,利用HTCVD和MTCVD技术相结合,研究开发出新型的超级硬质合金涂层材料,有效地解决了在高速、高效切削、合金钢重切削、干切削等机械加工领域中,刀具使用寿命低的难高强度题才引起广泛的重视。目前,已在涂层硬质合金刀具行业投入生产应用,效果十分显著。MTCVD技术沉积工艺如下。沉积温度:700~ 900℃;沉积反应压力:2X103~2X104Pa;主要反应气体配比: CH3CN:TiCl4:H2=0.01:0.02:1;沉积时间:1一4h。金属有机化合物化学气相沉积(MOCVD)MOCVD是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术。MOCVD是以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V主族、Ⅱ-Ⅵ副族化合物半导体以及它们的多元固溶体的薄层单晶材料。通常MOCVD系统中的晶体生长都是在常压或低压(10-100Torr)下通H2的冷壁石英(不锈钢)反应室中进行,衬底温度为500-1200℃,用直流加热石墨基座(衬底基片在石墨基座上方),H2通过温度可控的液体源鼓泡携带金属有机物到生长区。MOCVD适用范围广泛,几乎可以生长所有化合物及合金半导体,非常适合于生长各种异质结构材料,还可以生长超薄外延层,并能获得很陡的界面过渡,生长易于控制,可以生长纯度很高的材料,外延层大面积均匀性良好,可以进行大规模生产。激光诱导化学气相沉积(LCVD)LCVD是利用激光束的光子能量激发和促进化学气相反应的沉积薄膜方法。在光子的作用下,气相中的分子发生分解,原子被激活,在衬底上形成薄膜。这种方法与常规的化学气相沉积(CVD)相比,可以大大降低衬底的温度,防止衬底中杂质分布截面受到破坏,可在不能承受高温的衬底上合成薄膜。与等离子体化学气相沉积方法相比,可以避免高能粒子辐照在薄膜中造成损伤。根据激光在化学气相沉积过程中所起的作用不同可以将LCVD分为光LCVD和热LCVD,它们的反应机理也不尽相同。光LCVD是利用反应气体分子或催化分子对特定波长的激光共振吸收,反应分子气体收到激光加热被诱导发生离解的化学反应,在合适的制备工艺参数如激光功率、反应室压力与气氛的比例、气体流量以及反应区温度等条件下形成薄膜。光LCVD原理与常规CVD主要不同在于激光参与了源分子的化学分解反应,反应区附近极陡的温度梯度可精确控制,能够制备组分可控、粒度可控的超微粒子。热LCVD主要利用基体吸收激光的能量后在表面形成一定的温度场,反应气体流经基体表面发生化学反应,从而在基体表面形成薄膜。热LCVD过程是一种急热急冷的成膜过程,基材发生固态相变时,快速加热会造成大量形核,激光辐照后,成膜区快速冷却,过冷度急剧增大,形核密度增大。同时,快速冷却使晶界的迁移率降低,反应时间缩短,可以形成细小的纳米晶粒。除以上提到的薄膜沉积方法外,还有常压化学气相沉积(APCVD)等分类技术。
  • 薄膜沉积工艺和设备简述
    薄膜沉积(Thin Film Deposition)是在基材上沉积一层纳米级的薄膜,再配合蚀刻和抛光等工艺的反复进行,就做出了很多堆叠起来的导电或绝缘层,而且每一层都具有设计好的线路图案。这样半导体元件和线路就被集成为具有复杂结构的芯片了。化学气相沉积(CVD)化学气相沉积(CVD)通过热分解和/或气体化合物的反应在衬底表面形成薄膜。CVD法可以制作的薄膜层材料包括碳化物、氮化物、硼化物、氧化物、硫化物、硒化物、碲化物,以及一些金属化合物、合金等。化学气相沉积是目前很重要的微观制造方法,因为它有如下的这些特点:1. 沉积物种类多: 可以沉积金属薄膜、非金属薄膜,也可以按要求制备多组分合金的薄膜,以及陶瓷或化合物层。2. CVD反应在常压或低真空进行,镀膜的绕射性好,对于形状复杂的表面或工件的深孔、细孔都能均匀镀覆。3. 能得到纯度高、致密性好、残余应力小、结晶良好的薄膜镀层。由于反应气体、反应产物和基材的相互扩散,可以得到附着力好的膜层,这对表面钝化、抗蚀及耐磨等表面增强膜是很重要的。4. 由于薄膜生长的温度比膜材料的熔点低得多,由此可以得到纯度高、结晶完全的膜层,这是有些半导体膜层所必须的。5. 利用调节沉积的参数,可以有效地控制覆层的化学成分、形貌、晶体结构和晶粒度等。6. 设备简单、操作维修方便。7. 反应温度太高,一般要850~ 1100℃下进行,许多基体材料都耐受不住CVD的高温。采用等离子或激光辅助技术可以降低沉积温度。化学气相沉积过程分为三个重要阶段:1、反应气体向基体表面扩散2、反应气体吸附于基体表面3、在基体表面发生化学反应形成固态沉积物及产生的气相副产物脱离基体表面CVD的主要有下面几种反应过程:i). 多晶硅 PolysiliconSiH4 — Si + 2h2 (600℃)沉积速度 100 - 200 nm /min可添加磷(磷化氢)、硼(二硼烷)或砷气体。多晶硅也可以在沉积后用扩散气体掺杂。ii). 二氧化硅 DioxideSiH4 + O2→SiO2 + 2h2 (300 - 500℃)SiO2用作绝缘体或钝化层。通常添加磷是为了获得更好的电子流动性能。当硅在氧气中存在时,SiO2会热生长。氧气来自氧气或水蒸气。环境温度要求为900 ~ 1200℃。氧气和水都会通过现有的SiO2扩散,并与Si结合形成额外的SiO2。水(蒸汽)比氧气更容易扩散,因此使用蒸汽的生长速度要快得多。氧化物用于提供绝缘和钝化层,形成晶体管栅极。干氧用于形成栅极和薄氧化层。蒸汽被用来形成厚厚的氧化层。绝缘氧化层通常在1500nm左右,栅极层通常在200nm到500nm间。iii). 氮化硅 Siicon Nitride3SiH4 + 4NH3 — Si3N4 + 12H2(硅烷) (氨) (氮化物)化学气相沉积CVD 设备CVD反应器有三种基本类型:◈ 大气化学气相沉积(APCVD: Atmospheric pressure CVD)◈ 低压CVD (LPCVD:Low pressure CVD,LPCVD)◈ 超高真空化学气相沉积(UHVCVD: Ultrahigh vacuum CVD)◈ 激光化学气相沉积(LCVD: Laser CVD,)◈ 金属有机物化学气相沉积(MOCVD:Metal-organic CVD)◈ 等离子增强CVD (PECVD)物理气相沉积(PVD)在真空条件下,采用物理方法,将材料源(固体或液体) 表面材料气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积不仅可沉积金属膜、合金膜, 还可以沉积化合物、陶瓷、半导体、聚合物膜等。物理气相沉积技术基本原理可分三个工艺步骤:(1)镀料的气化:即使镀料蒸发,升华或被溅射,也就是通过镀料的气化源。(2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。(3)镀料原子、分子或离子在基体上沉积。物理气相沉积技术工艺过程无污染,耗材少。成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐蚀、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层 。物理气相沉积也有多种工艺方法:◈ 真空蒸度 Thin Film Vacuum Coating◈ 溅射镀膜 PVD-Sputtering◈ 离子镀膜 Ion-Coating

化学气象沉积设备相关的方案

  • 粉末工程的革命—粉末型原子层沉积(PALD)设备选型
    原子层沉积技术(ALD)是一种自限制性的化学气相沉积手段,通过将目标反应拆解为若干个半反应,实现表面涂层的原子层级厚度控制。利用该技术制备的涂层具有:共形,无针孔,均匀的特点,对于复杂的表面界面以及高纵深比样品有较好的沉积效果。
  • 稀土元素对钴-镍-硼合金化学沉积的影响
    研究了稀土元素铈、镧、钇对化学镀钴-镍-硼合金沉积速度的影响。稀土元素的加入增大了合金层的沉积速度,其中,钇的作用最为明显。 只做学术交流,不做其他任何商业用途,版权归原作者所有!
  • 天津兰力科:稀土化学沉积数据库系统设计与应用研究
    在科技日新月异的今天,新材料的发展水平已经成为衡量一个国家高科技水平和综合国力强弱的重要标志,化学镀是在材料领域中发展起来的一类新兴技术,化学沉积钻基合金不需要电流,可在各种基体材料上沉积以及具有优异的磁学性能,但它存在镀液稳定性差、沉积速度和均镀能力不理想等问题。由于稀土元素在电镀、表面化学热处理中能有效提高镀液稳定性、沉积速度和渗速,可以改善材料的可焊性、硬度和耐磨性等功能特性作用,所以展开了稀土元素介入化学沉积钻基合金的尝试。稀土元素介入化学沉积钻基合金是一个具有良好发展前景的研究方向,为了加速其实际应用的步伐,对在试验过程中获得大量数据,以中文VisualFoxPro6.O为工具,开发出化学沉积数据库系统应用软件。该软件系统分别建立了镀覆工艺、显微硬度和磁学性能三个数据库。以此为基础,开发了六个应用模块,分别为文件管理模块、编辑处理模块、数据管理模块、图片管理模块、打印管理模块、退出系统模块。通过该软件,我们可以方便的管理所有的试验数据。根据试验数据,用数值分析的方法进行数据处理,拟合出试验数据的近似函数表达式。用正交表对基础配方进行分析,得到最佳配方,并进行相应方差分析 用样条函数和最小二乘法分析镀覆工艺试验数据,绘制出三次样条函数和三次近似多项式的图形,获得化学沉积速度最大时各因素浓度所在的区间。本文的研究是对试验数据处理的一种探讨,为稀土化学沉积数据库系统的建立探索出一条途径,为获得最佳的钻基合金镀层性能奠定了基础,具有较大的理论和现实意义。

化学气象沉积设备相关的资料

化学气象沉积设备相关的试剂

化学气象沉积设备相关的论坛

  • 请教关于电化学沉积的问题

    电沉积总共有哪几种方法啊?控制一定的电流密度,沉积一定的时间,这种电沉积方式是什么电化学方法实现的?恳求各位大侠伸出援助之手

  • 【求购】化学气相沉积仪器

    实验室需要购买化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(CVD)设备,三路气体,双温区,正规厂家可以和我联系。xiufang-qin@163.com。谢谢

化学气象沉积设备相关的耗材

  • 原子层沉积(ALD)
    原子层沉积(ALD)是一项真正意义上的纳米技术,使纳米超薄薄膜以一种精确控制的方式沉积。原子层沉积ALD有两个特征 自限性原子分层技术增长和高保形涂层。这些特征在半导体工程、微机电系统和其他纳米技术的应用程序使用方面展现许多优势。原子层沉积的优势原子层沉积的过程正是每个周期中单个原子层沉积的过程,完全控制的沉积是一个获得纳米尺度的过程:保形涂层即使在高深宽比和复杂的结构中也可以实现可实现针孔和无颗粒沉积一个非常广泛的材料与原子层沉积是可能的,例如:氧化物:Al2O3, HfO2, SiO2, TiO2, SrTiO3, Ta2O5, Gd2O3, ZrO2, Ga2O3, V2O5, Co3O4, ZnO, ZnO:Al, ZnO:B, In2O3:H, WO3, MoO3, Nb2O5, NiO, MgO, RuO2氟化物:MgF2, AlF3有机杂化材料:Alucone氮化物:TiN, TaN, Si3N4, AlN, GaN, WN, HfN, NbN, GdN, VN, ZrN金属:Pt, Ru, Pd, Ni, W硫化物:ZnSALD工具比较Feature功能OpALFlexAL基板**200毫米晶圆**200毫米晶圆液体和固体的前驅物**4路+水、臭氧和气体**8路+水,臭氧和气体**前驅物温度200oC200oC拥有快速传递系统Mfc控制下的气体管道:1)热气体的前体(例如,NH3, O2)2)等离子气体(例如,O2, N2,H2)2个内部结构。多达8个外部安装气路多达10个外部安装气路等离子体选择/現地升级选项載片开腔闭锁或片匣可集群其他流程模块不可可以- 第三方公司MESC模块作为特殊选择载盘温度范围25oC – 400oC25oC – 400oC (部分550oC)椭偏仪接口可以可以快速脉冲ALD阀门接头套管10 ms可以可以原子层沉积系统包括FlexAL和OpAL 兩款。
  • 脉冲激光沉积用准分子激光器
    IPEXTM 840/860 PLD系列 脉冲激光沉积用准分子激光器Excimer Lasers for Pulsed Laser Deposition基于轻工机械最畅销的Ipex系列工业级准分子激光器,为PLD应用优化了激光器优秀的光束匀称性,脉冲到脉冲能量稳定和短脉冲持续时间在所有重复率能量恒定最长气体寿命和最低运行成本的ICONTM(在镍集成陶瓷)技术EasyClean自动光学密封,以保持填充气体,减少维护时停机时间高亮度镜头,适用于要求低光束发散或延长相干长度定制光束传输系统IPEX-840/860系列准分子激光器在脉冲激光沉积(PLD)领域展现了优异的性能、耐用性、可靠性和满足研究人员和系统集成商要求的易于集成性能。稳定性能得到可靠PLD结果:能量恒定IPEX-840/860系列激光器的指定脉冲能量从单脉冲到最大重复频率都是恒定的。这与其他有竞争力的激光器智能在地重复频率能量恒定和能量岁脉冲重复率上升而快速下降形成鲜明对比。LightMachinery的方法使PLD的工艺参数与激光重复率是一个恒量。恒定脉冲稳定性在PLD应用中,脉冲能量受一个先进的能量监视器监控,能够准确的调节放电电压和混合气体,在任何操作条件,包括PLD需要的突发脉冲,恒定输出能量。指向性恒定不变高稳定性使镜片座能够有200m-radian指向稳定性和光学维护后不需要调制光束角度光束质量稳定性IPEX-840/860系列激光器的光束强度分布被设计为边缘陡峭,顶部平坦,特别是激光管寿命的微小变化。PLD光束传输系统我们可以针对任何特定的PLD要求提供完整的激光传输系统规格设备电源: 单相,200-240V,20A,50/60Hz冷却水:5 litres/minute,5-20℃,40-60psig激光气体:预混合气,具体请联系我们
  • 电子显微镜专用用碳沉积
    CARBON FILL,MGIS碳沉积(多支气体注入系统专用)用于原厂电子显微镜多支气体注入系统,碳沉积(多支气体注入系统专用)是一种存放碳化合物的容器,将药品加热到一定温度,药品气化,在真空压差和可控阀门的作用下,将药品气体喷洒在样品表面,同时在离子束的诱导作用下将碳分子沉积在样品表面。以实现对样品表面形貌的保护,或对样品进行导电处理。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制